WorldWideScience

Sample records for gold-coated w-coil trapping

  1. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com [Medical Laboratory Techniques, Vocational Higher School of Healthcare Studies, Mardin Artuklu University, 47200 Mardin (Turkey); Bakırdere, Sezgin [Yıldız Technical University, Art and Science Faculy, Department of Chemistry, Esenler, TR 34220 İstanbul (Turkey); Aydın, Fırat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbakır (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2013-11-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL{sup −1} and 0.51 ng mL{sup −1}, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL{sup −1} for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL{sup −1}. • The technique is suggested for laboratories equipped with only a flame AA spectrometer.

  2. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    International Nuclear Information System (INIS)

    Kılınç, Ersin; Bakırdere, Sezgin; Aydın, Fırat; Ataman, O. Yavuz

    2013-01-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL −1 and 0.51 ng mL −1 , respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL −1 for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL −1 . • The technique is suggested for laboratories equipped with only a flame AA spectrometer

  3. Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices.

    Science.gov (United States)

    Strobel, Sebastian; Sperling, Ralph A; Fenk, Bernhard; Parak, Wolfgang J; Tornow, Marc

    2011-06-07

    We report on the successful dielectrophoretic trapping and electrical characterization of DNA-coated gold nanoparticles on vertical nanogap devices (VNDs). The nanogap devices with an electrode distance of 13 nm were fabricated from Silicon-on-Insulator (SOI) material using a combination of anisotropic reactive ion etching (RIE), selective wet chemical etching and metal thin-film deposition. Au nanoparticles (diameter 40 nm) coated with a monolayer of dithiolated 8 base pairs double stranded DNA were dielectrophoretically trapped into the nanogap from electrolyte buffer solution at MHz frequencies as verified by scanning and transmission electron microscopy (SEM/TEM) analysis. First electrical transport measurements through the formed DNA-Au-DNA junctions partially revealed an approximately linear current-voltage characteristic with resistance in the range of 2-4 GΩ when measured in solution. Our findings point to the importance of strong covalent bonding to the electrodes in order to observe DNA conductance, both in solution and in the dry state. We propose our setup for novel applications in biosensing, addressing the direct interaction of biomolecular species with DNA in aqueous electrolyte media.

  4. Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil

    International Nuclear Information System (INIS)

    Liu Rui; Wu Peng; Xu Kailai; Lv Yi; Hou Xiandeng

    2008-01-01

    Bismuthine was on-line trapped on tungsten coil and subsequently electrothermally vaporized for the determination by atomic fluorescence spectrometry (AFS). Several noble metals, including Pd, Rh, Pt, and Ir, were explored as permanent chemical modifier for tungsten coil on-line trapping. Investigation showed that Ir gave the best performance, in which bismuthine was on-line trapped on Ir-coated tungsten coil at 560 o C, and then released at 1550 o C for subsequent transfer to AFS by a mixture of Ar and H 2 . Under optimum instrumental conditions, the trapping efficiency was found to be 73 ± 3%. With 120 s (12 mL sample volume) trapping time, a limit of detection (LOD) of 4 ng L -1 was obtained, compared to conventional hydride generation AFS (0.09 μg L -1 ); the LOD can be lowered down to 1 ng L -1 by increasing the trapping time to 480 s. The LOD was found to be better or at least comparable to literature levels involving on-line trapping and some other sophisticated instrumental methods such as ICP-MS and GF-AAS. A comprehensive interference study involving conventional hydride-forming elements and some transition metals was carried out, and the result showed that the gas phase interference from other hydride-forming elements was largely reduced, thanks to the use of on-line tungsten coil trapping. Finally, the proposed method was applied to the determination of bismuth in several biological and environmental standard reference materials, and a t-test shows that the analytical results by the proposed method have no significant difference from the certified values at the confidence level of 95%

  5. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  6. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu

    2014-11-13

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  7. Acoustic rainbow trapping by coiling up space

    KAUST Repository

    Ni, Xu; Wu, Ying; Chen, Ze-Guo; Zheng, Li-Yang; Xu, Ye-Long; Nayar, Priyanka; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    We numerically realize the acoustic rainbow trapping effect by tapping an air waveguide with space-coiling metamaterials. Due to the high refractive-index of the space-coiling metamaterials, our device is more compact compared to the reported trapped-rainbow devices. A numerical model utilizing effective parameters is also calculated, whose results are consistent well with the direct numerical simulation of space-coiling structure. Moreover, such device with the capability of dropping different frequency components of a broadband incident temporal acoustic signal into different channels can function as an acoustic wavelength division de-multiplexer. These results may have potential applications in acoustic device design such as an acoustic filter and an artificial cochlea.

  8. Enhancing DNA binding rate using optical trapping of high-density gold nanodisks

    International Nuclear Information System (INIS)

    Lin, En-Hung; Pan, Ming-Yang; Lee, Ming-Chang; Wei, Pei-Kuen

    2014-01-01

    We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays. The gold nanodisks were fabricated by electron beam lithography with a diameter of 500 nm and a period of 1 μm. Dark-field illumination showed ∼15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ∼10 fN under 3.58 × 10 3 W/m 2 illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads. Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity. The binding rate increased from 2.14 × 10 3 s −1 (I = 0.7 × 10 3 W/m 2 ) to 1.15 × 10 5 s −1 (I = 3.58 × 10 3 W/m 2 ). Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays

  9. Electron Beam Curing of Coil Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Morganstern, K. H. [Radiation Dynamics, Inc., Westbury, NY (United States)

    1969-12-15

    The application of electron accelerators for the rapid curing of coatings on coil processing of steel and aluminium appears to have many practical and economic advantages. This paper discusses this particular application, but in the general framework of electron beam application by industry. Although industry has investigated radiation application for two decades, there have been few applications to date. The reasons for this are discussed as well as the shift in attitude now taking place, indicating a more ready acceptance of radiation processing by industry. This shift is apparent particularly in the coatings field, where the benefits of radiation processing are quite evident. In order to pinpoint these benefits a specific coatings application - coil coating - has been chosen. A typical conventional coil coating line is discussed and compared to a line employing a radiation source. Specific engineering information on the types of electron accelerators suitable for this application; the relative economics of radiation vs. heat curing; and a number of other peripheral advantages of radiation are discussed. (author)

  10. Gold nanoparticle trapping and delivery for therapeutic applications

    Directory of Open Access Journals (Sweden)

    Aziz MS

    2011-12-01

    Full Text Available MS Aziz1, Nathaporn Suwanpayak3,4, Muhammad Arif Jalil2, R Jomtarak4, T Saktioto2, Jalil Ali1, PP Yupapin41Institute of Advanced Photonics Science, 2Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3King Mongkut's Institute of Technology Ladkrabang, Chump on Campus, Chumphon, 4Nanoscale Science and Engineering Research Alliance (N'SERA, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, ThailandAbstract: A new optical trapping design to transport gold nanoparticles using a PANDA ring resonator system is proposed. Intense optical fields in the form of dark solitons controlled by Gaussian pulses are used to trap and transport nanoscopic volumes of matter to the desired destination via an optical waveguide. Theoretically, the gradient and scattering forces are responsible for this trapping phenomenon, where in practice such systems can be fabricated and a thin-film device formed on the specific artificial medical materials, for instance, an artificial bone. The dynamic behavior of the tweezers can be tuned by controlling the optical pulse input power and parameters of the ring resonator system. Different trap sizes can be generated to trap different gold nanoparticles sizes, which is useful for gold nanoparticle therapy. In this paper, we have shown the utility of gold nanoparticle trapping and delivery for therapy, which may be useful for cosmetic therapy and related applications.Keywords: gold nanoparticle trapping, particle trapping, therapy, transport

  11. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  12. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  13. Experimental study of vascular embolization with homemade second-level Copper coil

    International Nuclear Information System (INIS)

    Jiang Hua; Wang Jiaping; Li Yingchun; Tong Yuyun; Yang Qing; Yan Dong; Ding Lili; Yuan Shuguang

    2013-01-01

    Objective: To evaluate the embolic effect of homemade copper coil in rabbits. Methods: Seventeen New Zealand Big Ear Rabbit was included in this study. After conventional anesthesia, one common carotid artery or subclavian artery was embolized with second-level copper coated platinum microcoils (experimental group) through a 3F catheter, and the other common carotid artery or subclavian artery was embolized with second-level platinum micro-coils (control group) as control. Angiography was processed to observe the extent of vascular occlusion 10 min, 30 min, 3 d, 1 w, 2 w, 4 w, 6 w, and 12 w after embolization respectively. The rabbits were sacrificed to observe thrombosis and pathological change of the embolic artery 3 days, 1 w, 2 w, 4 w, 6 w and 12 w after the embolization. Vascular occlusion and thrombosis were compared between experimental group and the control group by using the exact probability method and rank sum test for statistical analysis. Results: Embolization experiment was successfully implemented in 15 of 17 rabbits. Twenty-one second-level copper coated platinum micro-coils were used in the experimental group, while 19 second-level platinum micro-coils were used in the control group. Ten min and 30 min after embolization, angiography showed that vascular embolization effect was not significantly different between the two groups. The vascular embolization effect of the experiment group was superior to control group 3 d, 1, 2, 4, 6 and 12 w after embolization (P < 0.05). Pathological examination showed that there were a lot of blood clots around the copper coil and in the proximal and distal arterial lumen. Only a small amount of blood clots was found around the platinum coil in the control group. For every time point of observation, thrombosis was more severe in the experiment group than that in the control group (P < 0.05). Conclusion: Second-level copper coated coil can be released with 4F catheter to embolize the vessel, showing good physical

  14. Gold-coated nanoparticles for use in biotechnology applications

    Science.gov (United States)

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  15. Optimization of multifunnel traps for emerald ash borer (Coleoptera: Buprestidae): influence of size, trap coating, and color.

    Science.gov (United States)

    Francese, Joseph A; Rietz, Michael L; Mastro, Victor C

    2013-12-01

    Field assays were conducted in southeastern and south-central Michigan in 2011 and 2012 to optimize green and purple multifunnel (Lindgren funnel) traps for use as a survey tool for the emerald ash borer, Agrilus planipennis Fairmaire. Larger sized (12- and 16-unit) multifunnel traps caught more beetles than their smaller-sized (4- and 8-unit) counterparts. Green traps coated with untinted (white) fluon caught almost four times as many adult A. planipennis as Rain-X and tinted (green) fluon-coated traps and almost 33 times more beetles than untreated control traps. Purple multifunnel traps generally caught much lower numbers of A. planipennis adults than green traps, and trap catch on them was not affected by differences in the type of coating applied. However, trap coating was necessary as untreated control purple traps caught significantly less beetles than traps treated with Rain-X and untinted or tinted (purple) fluon. Proportions of male beetles captured were generally much higher on green traps than on purple traps, but sex ratios were not affected by trap coating. In 2012, a new shade of purple plastic, based on a better color match to an attractive purple paint than the previously used purple, was used for trapping assays. When multifunnel traps were treated with fluon, green traps caught more A. planipennis adults than both shades of purple and a prism trap that was manufactured based on the same color match. Trap catch was not affected by diluting the fluon concentration applied to traps to 50% (1:1 mixture in water). At 10%, trap catch was significantly lowered.

  16. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    Science.gov (United States)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is

  17. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    gold-coated NAA is strongly quenched due to the strong plasmonic coupling. Keywords. Plasmon ... When coated by a thin film of gold, these templates can support surface plasmon resonance. ... 2.2 Equipment for characterization. Surface ...

  18. Trapped particle confinement studies in L = 2 torsatrons for additional helical coils, radial electric field and finite beta effect

    International Nuclear Information System (INIS)

    Kato, A.; Nakamura, Y.; Wakatani, M.

    1990-07-01

    L = 2 torsatrons are studied to improve the high energy trapped particle confinement with additional l = 1 and/or l = 3 helical coils. The winding laws are selected in two ways. One is to realize 'σ - optimization' by the additional helical coils, but this approach loses magnetic well region. The other selection is to produce or deepen the magnetic well by the additional helical coils. L=3 helical coils are usable to this end. In this case the improvement of the trapped particle confinement depends on magnetic axis position. Radial electric field producing sheared rotational motion is also considered to improve the trapped particle confinement in a standard l = 2 torsatron. By excluding cancellation between E x B and ΔB drift motion occurred for the parabolic potential profiles, all deeply trapped particles can be confined in the central region. Degradation of the trapped particle confinement by the Shafranov shift is mitigated by shifting the magnetic axis inside in the vacuum configuration. (author)

  19. Superconductors for W VII-X coils

    International Nuclear Information System (INIS)

    Maurer, W.

    1987-01-01

    Superconductor concepts are discussed with respect to operational current, cooling and bending behavior, and ac losses. The encouraging results for NbTi superconducting technology are recalled. It is argued that the WVII-X stellarator modular superconducting coils can be built just as the modular Cu coils for WVII-AS. Special attention must be paid to the dB/dt allowed for the conductor. Shape and price depend on the means used to avoid ac losses. Formula to elucidate the main physical parameters influencing ac loss behavior of superconductors are given. Configurations investigated with respect to plasma behavior are compared. Masses to be cooled were estimated for two configurations. The estimated cooling power is of the order of 3kW

  20. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    International Nuclear Information System (INIS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-01-01

    Cleavage strength for YBCO-coated conductor is extremely low, typically 0.5 MPa. The remarkable weakness is due to cracks on the slit edge of the conductor. The cleavage stress appears on YBCO double pancake coils impregnated with epoxy. The cleavage stress should be avoided in the coil winding. Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  1. Effects of gold coating on experimental implant fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2009-01-01

    Insertions of orthopedic implants are traumatic procedures that trigger an inflammatory response. Macrophages have been shown to liberate gold ions from metallic gold. Gold ions are known to act in an antiinflammatory manner by inhibiting cellular NF-kappa B-DNA binding and suppressing I-kappa B......-kinase activation. The present study investigated whether gilding implant Surfaces augmented early implant osseointegration and implant fixation by its modulatory effect on the local inflammatory response. Ion release was traced by autometallographic silver enhancement. Gold-coated cylindrical porous coated Ti6Al4V...

  2. Determination of antimony by using tungsten trap atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap [Department of Chemistry, Inoenue University, 44065 Malatya (Turkey); Kenduezler, Erdal [Department of Primary Education, Faculty of Education, Ahi Evran University, 40100 Kirsehir (Turkey); Arslan, Yasin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Atatuerk University, 25240 Erzurum (Turkey); Kula, Ibrahim [Department of Chemistry, Mugla University, 48000 Mugla (Turkey); Bakirdere, Sezgin [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Department of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey); Ataman, O. Yavuz. [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH{sub 3} is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH{sub 4} solutions, H{sub 2} and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l{sup -1} using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  3. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.

    Science.gov (United States)

    Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun

    2016-10-12

    We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.

  4. Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Elnaz Shaabani

    2017-04-01

    Full Text Available Objective(s: Biological applications of gold nanoparticles have limitations because of the toxic chemicals used in their synthesis. Curcumin can be used as reducing as well as capping agent in synthesis of GNPs to eliminate the cytotoxicity. Conjugation of curcumin to gold also helps in increasing its solubility and bioavailability. Materials and Methods: Here we report synthesis of gold nanoparticles coated with citrate and curcumin and of two different sizes via chemical routes. UV-Vis absorbance spectroscopy, Dynamic Light Scattering and Transmission Electron Microscopy were applied to study the average particle size, size stability of the samples and zeta potential. Fourier transform infrared, Raman Spectroscopy and Fluorescence Spectroscopy were applied for detection of curcumin on the surface of GNPs. The antioxidant activity was evaluated using DPPH assay and Cytotoxicity was evaluated by MTT assay.Results: Particles were synthesized of 6 and 16 nm size. The average particle size was found to be 21.7 ± 5.7 by TEM. The zeta potential on the surface of Cur-GNPs was negative and larger than 25 mV which is a sign of their high stability. The stability of these particles (with different coatings but with similar sizes at different time intervals (up to 3 months and also in different media like cell culture medium, different buffers, glucose and at different pH conditions have been investigated thoroughly. Appearance of functional groups assigned to curcumin in FTIR and SERS spectra are sign of presence of curcumin in the sample. The quenching of the fluorescence in the presence of GNPs reveals the clear indication of the capping and binding of curcumin with GNPs. Cur-GNP1 (16 nm were found to exhibit highest antioxidant activity than other gold nanoparticles. Cytotoxicity evaluation using MTT assay on L929 cell line proved curcumin coated gold nanoparticles were non-toxic up to 40 ppm.Conclusion: The results revealed that larger curcumin

  5. Efficacy of multifunnel traps for capturing emerald ash borer (Coleoptera: Buprestidae): effect of color, glue, and other trap coatings.

    Science.gov (United States)

    Francese, Joseph A; Fraser, Ivich; Lance, David R; Mastro, Victor C

    2011-06-01

    Tens of thousands of adhesive-coated purple prism traps are deployed annually in the United States to survey for the invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). A reusable, more user-friendly trap is desired by program managers, surveyors, and researchers. Field assays were conducted in southeastern Michigan to ascertain the feasibility of using nonsticky traps as survey and detection tools for emerald ash borer. Three nonsticky trap designs, including multifunnel (Lindgren), modified intercept panel, and drainpipe (all painted purple) were compared with the standard purple prism trap; no statistical differences in capture of emerald ash borer adults were detected between the multifunnel design and the prism. In subsequent color comparison assays, both green- and purple-painted multifunnel traps (and later, plastic versions of these colors) performed as well or better than the prism traps. Multifunnel traps coated with spray-on adhesive caught more beetles than untreated traps. The increased catch, however, occurred in the traps' collection cups and not on the trap surface. In a separate assay, there was no significant difference detected between glue-coated traps and Rain-X (normally a glass treatment)-coated traps, but both caught significantly more A. planipennis adults than untreated traps.

  6. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    Science.gov (United States)

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  7. GOLD's coating and testing facilities for ISSIS-WSO

    Science.gov (United States)

    Larruquert, Juan I.; Méndez, José Antonio; Aznárez, José Antonio; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica

    2011-09-01

    ISSIS imager has been thought as an open purpose instrument within the World Space Observatory (WSO) international space mission. The highest priorities of ISSIS, an instrument to be developed by Spain, are to guarantee high spatial resolution and high sensitivity down to the far ultraviolet (FUV). The paper displays the capacities of GOLD for multilayer deposition and FUV reflectometry, among other metrologies, for ISSIS optical elements. Deposition of coatings for ISSIS-WSO will be carried out in a new UHV system with a 75-cm diameter deposition chamber. The purpose of the new laboratory is the deposition of coatings satisfying the constraints for FUV space optics. The first target coating to be developed in this new laboratory is Al protected with MgF2, with optimum reflectance down to ˜120 nm. GOLD's existing reflectometer is able to characterize flat pieces both by transmittance and reflectance, and the latter from near-normal to grazing incidence, in the range from 12 to 200 nm. Other metrologies that will be available at GOLD for ISSIS's coatings and filters include optical thickness of filters to assure parfocality, filter wedge, and coating and filter scattering.

  8. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  9. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Cho, Hea-Young; Han, Beom Seok; Kim, Sheen Hee; Kim, Hyoung Ook; Lim, Yong Taik; Chung, Bong Hyun; Jeong, Jayoung

    2009-01-01

    In general, gold nanoparticles are recognized as being as nontoxic. Still, there have been some reports on their toxicity, which has been shown to depend on the physical dimension, surface chemistry, and shape of the nanoparticles. In this study, we carry out an in vivo toxicity study using 13 nm-sized gold nanoparticles coated with PEG (MW 5000). In our findings the 13 nm sized PEG-coated gold nanoparticles were seen to induce acute inflammation and apoptosis in the liver. These nanoparticles were found to accumulate in the liver and spleen for up to 7 days after injection and to have long blood circulation times. In addition, transmission electron microscopy showed that numerous cytoplasmic vesicles and lysosomes of liver Kupffer cells and spleen macrophages contained the PEG-coated gold nanoparticles. These findings of toxicity and kinetics of PEG-coated gold nanoparticles may have important clinical implications regarding the safety issue as PEG-coated gold nanoparticles are widely used in biomedical applications

  10. Lessons learned from the manufacture of the W7-X planar coils

    Science.gov (United States)

    Viebke, H.; Gustke, D.; Rummel, T.; Sborchia, C.; Schroeder, R.; Williams, D.; Bates, S.; Leigh, B.; Winter, R.

    2006-06-01

    WENDELSTEIN 7-X (W7-X) is a superconducting stellarator. The planar coils are in charge to modify the magnetic filed configuration of the W7-X. The major challenges during manufacturing were the fabrication of the cable-in-conduit conductor, the accuracy of the coil cases after welding and machining and the development of electrical joints with a resistance below 1 nΩ. Leaks were detected during repetitive in the case cooling system, which were caused by stress corrosion cracking. High voltage tests in a reduced vacuum environment (Paschen conditions) revealed that the insulation had to be reinforced and the quench detection wires had to be exchanged. This paper gives an overview about the main technical challenges of the planar coils and the lessons learned during production.

  11. Lessons learned from the manufacture of the W7-X planar coils

    International Nuclear Information System (INIS)

    Viebke, H; Gustke, D; Rummel, T; Sborchia, C; Schroeder, R; Williams, D; Bates, S; Leigh, B; Winter, R

    2006-01-01

    WENDELSTEIN 7-X (W7-X) is a superconducting stellarator. The planar coils are in charge to modify the magnetic filed configuration of the W7-X. The major challenges during manufacturing were the fabrication of the cable-in-conduit conductor, the accuracy of the coil cases after welding and machining and the development of electrical joints with a resistance below 1 nΩ. Leaks were detected during repetitive in the case cooling system, which were caused by stress corrosion cracking. High voltage tests in a reduced vacuum environment (Paschen conditions) revealed that the insulation had to be reinforced and the quench detection wires had to be exchanged. This paper gives an overview about the main technical challenges of the planar coils and the lessons learned during production

  12. Identification of second harmonic optical effects from vaccine coated gold microparticles

    International Nuclear Information System (INIS)

    Jumah, N A; Ameer-Beg, S M; White, N S; Prasad, K V R; Bellhouse, B J

    2004-01-01

    This study investigates the optical effects observed from uncoated and protein vaccine coated gold microparticles while imaging with two-photon excitation in the Mie scattering regime. When observed with time correlated single photon counting fluorescence lifetime microscopy, the emission from the gold microparticles appeared as an intense instrument-limited temporal response. The intensity of the emission showed a second-order dependence on the laser power and frequency doubling of the emitted light was observed for fundamental light between 890 and 970 nm. The optical effect was attributed to two-photon induced second harmonic generation. The vaccine coated gold microparticles had a much weaker second harmonic signal than the uncoated gold microparticles. Chemical analysis of the surface of the gold microparticles revealed that the vaccine coating decreases the surface charge thereby diminishing the observed second harmonic signal. These optical properties can be exploited to identify both the location of the protein vaccine coating as well as the gold microparticles in vitro and potentially to investigate the vaccine delivery kinetics in vivo

  13. Acceleration of aneurysm healing by P(DLLA-co-TMC)-coated coils enabling the controlled release of vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Wang, Qiujing; Gao, Yuyuan; Sun, Xinlin; Ji, Bin; Cui, Xubo; Liu, Yaqi; Zheng, Tao; Chen, Chengwei; Jiang, Xiaodan; Zhu, Aiping; Quan, Daping

    2014-01-01

    Since the introduction of the detachable coil in endovascular treatment of intracranial aneurysms, the in-hospital mortality rate has been significantly decreased. Recurrence of the aneurysm remains the major drawback of using detachable coils. We prepared a bioactive coil coated with poly(d,l-lactide)-7co-(1,3-trimethylene carbonate) (P(DLLA-co-TMC)), a novel copolymer for controlling the release of vascular endothelial growth factor (VEGF). Platinum coils were prepared by successive coating with cationic P(DLLA-co-TMC) and anionic heparin. Then, recombinant human VEGF-165 (rhVEGF) was immobilized by affinity binding to heparin. The morphological characteristics and sustained in vitro release of rhVEGF were examined using scanning electron microscopy and enzyme-linked immunosorbent assay, respectively. The efficacy of these novel coils modified by P(DLLA-co-TMC)/rhVEGF was tested using a common carotid artery aneurysm model in rats. Experimental aneurysms were embolized with unmodified, P(DLLA-co-TMC)/heparin-coated or P(DLLA-co-TMC)/rhVEGF-coated platinum coils (n = 18). The coils were removed on days 15, 30 and 90 after insertion, and the histological and immunohistochemical analysis of factor VIII was performed to confirm the presence of endothelial cells in the organized area. In addition, the controlled in vivo release of VEGF was confirmed by Western blotting analysis. The release of VEGF tended to increase during the whole period and no burst release was observed. In the group treated with P(DLLA-co-TMC)/rhVEGF-coated platinum coils, clot organization and endothelial cell proliferation were accelerated. The immunohistochemistry study showed that the expression of factor VIII was found in the P(DLLA-co-TMC)/rhVEGF-coated coil group but not in the other two groups. Furthermore, Western blotting analysis confirmed that the major released VEGF in the aneurysm sac was from the P(DLLA-co-TMC)/VEGF-coated coil. P(DLLA-co-TMC)/rhVEGF-coated platinum coils can

  14. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    International Nuclear Information System (INIS)

    Tsukamoto, Akira; Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro; Enpuku, Keiji; Sugisaki, Masaki; Arai, Eiichi; Tanabe, Keiichi

    2013-01-01

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 . -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa 2 Cu 3 O y coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil

  15. Transition of W7-X non-planar coils from manufacturing to assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ehrke, G. [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: gunnar.ehrke@ipp.mpg.de

    2009-06-15

    The main magnetic field of Wendelstein 7-X fusion experiment (W7-X) at Max-Planck-Institut fuer Plasmaphysik Greifswald, Germany will be provided by 50 non-planar coils and supported by 20 planar coils. The non-planar coils were delivered by a consortium (CON) consisting of Babcock Noell GmbH Germany (BNG) and ASG Superconductors S.p.A. Italy (ASG). The coil production ended with the delivery of the last non-planar coil in March 2008 at the manufacturing branch of BNG in Zeitz, Germany. The construction of the coils was characterised by design changes, many rework actions and resulting time delays. Due to these numerous adjustments and changes a continuous improvement process was needed. This paper will give an overview about the transition of the non-planar coils from the acceptance tests at the manufacturer site to the beginning of the assembly at IPP. Furthermore this report will highlight technical interfaces in the period of transition.

  16. Effects of coating on the optical trapping efficiency of microspheres via geometrical optics approximation.

    Science.gov (United States)

    Park, Bum Jun; Furst, Eric M

    2014-09-23

    We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.

  17. An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings.

    Science.gov (United States)

    Zong, Yiwu; Liu, Jing; Liu, Rui; Guo, Honglian; Yang, Mingcheng; Li, Zhiyuan; Chen, Ke

    2015-11-24

    Bistable rotation is realized for a gold-coated Janus colloidal particle in an infrared optical trap. The metal coating on the Janus particles are patterned by sputtering gold on a monolayer of closely packed polystyrene particles. The Janus particle is observed to stably rotate in an optical trap. Both the direction and the rate of rotation can be experimentally controlled. Numerical calculations reveal that the bistable rotation is the result of spontaneous symmetry breaking induced by the uneven curvature of the coating patterns on the Janus sphere. Our results thus provide a simple method to construct large quantities of fully functional rotary motors for nano- or microdevices.

  18. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    Science.gov (United States)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  19. Change of manufacturing technique for the W7-X nonplanar coil cases

    International Nuclear Information System (INIS)

    Gehring, M.; Schaefer, P.; Herrmann, K.D.; Scheller, H.

    2001-01-01

    The geometry of the coil cases of the nonplanar coil system for the Wendelstein 7-X (W7-X) experiment (Sapper, The superconducting magnet system for the W7-X stellarator. Proceedings 12th Topical Meeting on the Fusion Technology) was changed to a more complex shape compared to the DEMO Coil case (Kronhardt et al., 1998. Proceedings of the 20th SOFT (1998) 731-734). Therefore the manufacturing technique developed for the DEMO Coil case cannot be used for the series production of 50 coils. For the final design of the coil cases, investigations were performed to find a technique suitable for manufacturing the cases within the required geometrical tolerances and mechanical characteristics. In order to qualify the manufacturing technique a complete half case was cast and machined afterwards. The casting procedure was optimised with respect to the geometrical accuracy and the mechanical characteristics at 4.2 K. Measurements of the yield strength, the tensile strength, the elongation, and the Young's modulus were performed at room- and cryo-temperature (4 and 7 K). The influence of the heat treatment, the annealing temperature and the size of the casting on the mechanical values is shown. The requirements on the stainless steel are a yield strength of 800 MPa at 4 K and an elongation at fracture of >25%. The magnetic permeability has to be <1.01. Furthermore the welding properties of the case material were investigated. The development program showed that casting of complete case half shells is a feasible manufacturing technique for the series production of the Wendelstein 7-X nonplanar coil cases

  20. Surface studies of Os Re W alloy-coated impregnated tungsten cathodes

    International Nuclear Information System (INIS)

    Ares Fang, C.S.; Maloney, C.E.

    1990-01-01

    Impregnated tungsten cathodes half-coated with Re/W (or Os/W) alloy and Os Re W alloy at right angles were studied to compare the effects of Os Re W alloy coatings on the electron emission and emission mechanisms. Constant surface metal compositions of 32% Os--29% Re--39% W and 35% Os--26% Re--39% W were obtained from the activated surfaces initially coated with 40% Os--40% Re--20% W and 35% Os--45% Re--20% W alloys, respectively. Thermionic emission microscopy measurements showed that the Os Re W alloy-coated surface gives an average effective work function of 0.29, 0.08, and 0.03 eV lower than the uncoated, Re/W and Os/W alloy-coated surfaces. An effective work function of 1.73 eV was obtained from an activated Os Re W alloy surface. Auger studies exhibited a smaller BaO coverage and a higher barium coverage in excess of BaO stoichiometry on the Os Re W alloy-coated surface compared to the uncoated, Re/W and Os/W alloy-coated surfaces

  1. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    Science.gov (United States)

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  2. Synthesis and characterization of pHLIP® coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Jennifer L. Daniels

    2017-07-01

    Full Text Available Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG and pH Low Insertion Peptide (pHLIP® were introduced. The presence of a tumor-targeting pHLIP® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  3. Synthesis and surface modification of spindle-type magnetic nanoparticles: gold coating and PEG functionalization

    OpenAIRE

    Mendez-Garza , Juan; Wang , Biran; Madeira , Alexandra; Di-Giorgio , Christophe; Bossis , Georges

    2013-01-01

    International audience; In this paper, we describe the synthesis of gold coated spindle-type iron nanoparticles and its surface modification by a thiolated fluorescently-labelled polyethylene glycol (PEG) polymer. A forced hydrolysis of ferric salts in the presence of phosphate ions was used to produce α-Fe2O3 spindle-type particles. The oxide powders were first reduced to α-iron under high temperature and controlled dihydrogen atmosphere. Then, the resulting magnetic spindle-type particles w...

  4. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  5. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings

    Science.gov (United States)

    Zhang, Xinyu; Qin, Jiaqian; Das, Malay Kumar; Hao, Ruru; Zhong, Hua; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanant; Ma, Mingzhen; Liu, Riping

    2016-02-01

    Electroplated hard chrome coating is widely used as a wear resistant coating to prolong the life of mechanical components. However, the electroplating process generates hexavalent chromium ion which is known carcinogen. Hence, there is a major effort throughout the electroplating industry to replace hard chrome coating. Composite coating has been identified as suitable materials for replacement of hard chrome coating, while deposition coating prepared using traditional co-deposition techniques have relatively low particles content, but the content of particles incorporated into a coating may fundamentally affect its properties. In the present work, Ni-W/diamond composite coatings were prepared by sediment co-electrodeposition from Ni-W plating bath, containing suspended diamond particles. This study indicates that higher diamond contents could be successfully co-deposited and uniformly distributed in the Ni-W alloy matrix. The maximum hardness of Ni-W/diamond composite coatings is found to be 2249 ± 23 Hv due to the highest diamond content of 64 wt.%. The hardness could be further enhanced up to 2647 ± 25 Hv with heat treatment at 873 K for 1 h in Ar gas, which is comparable to hard chrome coatings. Moreover, the addition of diamond particles could significantly enhance the wear resistance of the coatings.

  6. Plasmon-Organic Fiber Interactions in Diamond-Like Carbon Coated Nanostructured Gold Films

    DEFF Research Database (Denmark)

    Cielecki, Pawel Piotr; Sobolewska, Elżbieta Karolina; Kostiučenko, Oksana

    2017-01-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such p......Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence...

  7. Countering the stray magnetic field of the CUSP trap by using additional coils

    CERN Document Server

    Thole, Jelle

    2016-01-01

    The ASACUSA experiment at the Antiproton Decelerator (AD) at CERN tries to measure the Hyperfine Structure (HFS) of Antihydrogen (H ̄) using a Rabi spectroscopy set-up. In measuring this HFS it will yield a very precise test of CPT-symmetry. For this set-up to work a homogeneous magnetic field is needed in the cavity where the Hyperfine transition of H ̄ occurs. Due to the stray fields from the CUSP trap, where H ̄ is produced, additional coils are needed to counter these fields. It is found, using COMSOL simulations, that two coils are suitable for this. Leading to a relative standard deviation of the magnetic field of σB/B = 1.06%.

  8. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  9. Experiment of enhancing critical current and reducing ac loss in pancake coil comprised of Ni-coated Bi-2223/Ag tape

    International Nuclear Information System (INIS)

    Alamgir, A.K.M.; Gu, C.; Han, Z.

    2006-01-01

    An approach of realizing high performance HTS coil comprised of ferromagnetic material-coated BSCCO tape is proposed. The concept of influencing critical current and ac loss is based on the magnetic shielding effect resulting in redirection of self-field flux-lines. In the previous article, ac performance of Ni-coated tape was demonstrated where the Ni-coating was introduced at the edge-regime of the finished tape in order to redirect the perpendicular component of self-field lines. In order to investigate the shielding effect on ac performance in HTS coil, a two-turn pancake coil comprised of Ni-coated Bi-2223/Ag tape is demonstrated in the present article. About 6.4% of critical current was enhanced and 30% of transport current ac loss was reduced by means of 40 μm thick and 0.3 mm long (from the edge toward center of the tape) Ni-coating. This result suggests that additional ferromagnetic loss could be compensated well by the shielding effect of the partial Ni-coating. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the volume and geometry of ferromagnetic coating introduced. Therefore, it is very important to control the parameter of ferromagnetic coating of the tape in order to balance the critical current and ac loss for optimum coil performance

  10. Experiment of enhancing critical current and reducing ac loss in pancake coil comprised of Ni-coated Bi-2223/Ag tape

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, A.K.M. [Department of Physics, Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)]. E-mail: alam643@hotmail.com; Gu, C. [Department of Physics, Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Han, Z. [Department of Physics, Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)

    2006-07-01

    An approach of realizing high performance HTS coil comprised of ferromagnetic material-coated BSCCO tape is proposed. The concept of influencing critical current and ac loss is based on the magnetic shielding effect resulting in redirection of self-field flux-lines. In the previous article, ac performance of Ni-coated tape was demonstrated where the Ni-coating was introduced at the edge-regime of the finished tape in order to redirect the perpendicular component of self-field lines. In order to investigate the shielding effect on ac performance in HTS coil, a two-turn pancake coil comprised of Ni-coated Bi-2223/Ag tape is demonstrated in the present article. About 6.4% of critical current was enhanced and 30% of transport current ac loss was reduced by means of 40 {mu}m thick and 0.3 mm long (from the edge toward center of the tape) Ni-coating. This result suggests that additional ferromagnetic loss could be compensated well by the shielding effect of the partial Ni-coating. The degree of enhancement in critical current as well as ferromagnetic impact on ac losses depend on the volume and geometry of ferromagnetic coating introduced. Therefore, it is very important to control the parameter of ferromagnetic coating of the tape in order to balance the critical current and ac loss for optimum coil performance.

  11. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  12. Isothermal and dynamic oxidation behaviour of Mo-W doped carbon-based coating

    Science.gov (United States)

    Mandal, Paranjayee; Ehiasarian, Arutiun P.; Hovsepian, Papken Eh.

    2015-10-01

    The oxidation behaviour of Mo-W doped carbon-based coating (Mo-W-C) is investigated in elevated temperature (400-1000 °C). Strong metallurgical bond between Mo-W-C coating and substrate prevents any sort of delamination during heat-treatment. Isothermal oxidation tests show initial growth of metal oxides at 500 °C, however graphitic nature of the as-deposited coating is preserved. The oxidation progresses with further rise in temperature and the substrate is eventually exposed at 700 °C. The performance of Mo-W-C coating is compared with a state-of-the-art DLC(Cr/Cr-WC/W:C-H/a:C-H) coating, which shows preliminary oxidation at 400 °C and local delamination of the coating at 500 °C leading to substrate exposure. The graphitisation starts at 400 °C and the diamond-like structure is completely converted into the graphite-like structure at 500 °C. Dynamic oxidation behaviour of both the coatings is investigated using Thermo-gravimetric analysis carried out with a slow heating rate of 1 °C/min from ambient temperature to 1000 °C. Mo-W-C coating resists oxidation up to ˜800 °C whereas delamination of DLC(Cr/Cr-WC/W:C-H/a:C-H) coating is observed beyond ˜380 °C. In summary, Mo-W-C coating provides improved oxidation resistance at elevated temperature compared to DLC(Cr/Cr-WC/W:C-H/a:C-H) coating.

  13. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  14. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  15. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of

  16. In vitro toxicity studies of polymer-coated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rayavarapu, Raja G; Petersen, Wilma; Manohar, Srirang; Van Leeuwen, Ton G [Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Hartsuiker, Liesbeth; Otto, Cees [Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Chin, Patrick; Van Leeuwen, Fijs W B [Division of Diagnostic Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Janssen, Hans, E-mail: S.Manohar@utwente.nl [Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2010-04-09

    We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.

  17. Influence of W content on tribological performance of W-doped diamond-like carbon coatings under dry friction and polyalpha olefin lubrication conditions

    International Nuclear Information System (INIS)

    Fu, Zhi-qiang; Wang, Cheng-biao; Zhang, Wei; Wang, Wei; Yue, Wen; Yu, Xiang; Peng, Zhi-jian; Lin, Song-sheng; Dai, Ming-jiang

    2013-01-01

    Highlights: • W-doped DLC coating with various W contents was fabricated. • Friction and wear of DLC coated sample was studied. • The lubricant additive was T307. • The influence of W content on friction under lubrication was unveiled. • The influence of W content on wear under lubrication was studied. - Abstract: The influence on tungsten content on the structure, mechanical properties and tribological performance of W-doped diamond-like carbon (DLC) coatings was studied by X-ray photoelectron spectroscopy, nano-indentation, scratch test, and ball-on-disk friction test. It was found that with increasing W content, the content of WC and free W in the coatings is increased while the content of sp 3 -C in the coatings is decreased. The effect of W content on the hardness and elastic modulus of the coatings is indistinctive, but there exists the highest critical load of scratch test of above 100 N when W content is 3.08 at.%. With the increase of W content, the friction coefficients of W-doped DLC coatings under dry friction conditions are increased while the friction coefficients of W-doped DLC coatings under polyalpha olefin (PAO) lubrication are decreased. With the increase of W content, the wear rates of the DLC-coated samples under dry friction conditions show a minimum value; under pure PAO lubrication, the influence of W content on the wear rates of the DLC-coated samples is indistinctive when the W content is below 10.73 at.% while the wear rates are increased with increasing W content from 10.73 at.% to 24.09 at.%; when lubricated by PAO + thiophosphoric acid amine (T307) salt, the samples coated with the undoped DLC or the W-doped DLC with high W content exhibit low wear rates

  18. Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W

    International Nuclear Information System (INIS)

    Grigore, E; Ruset, C; Gherendi, M; Chioibasu, D; Hakola, A

    2016-01-01

    In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20–35 μm to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 °C and a power density of about 3 MW m −2 . A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples. (paper)

  19. Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W

    Science.gov (United States)

    Grigore, E.; Ruset, C.; Gherendi, M.; Chioibasu, D.; Hakola, A.; contributors, JET

    2016-02-01

    In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20-35 μm to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 °C and a power density of about 3 MW m-2. A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples.

  20. Magnetic traps with a sperical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1979-11-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphesis on Tornado spiral coil configurations. The confinement and heating of static plasmas in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In additio, the mode of rotating plasma operation by crossed electric and magnetic fields is being described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps for the creation and containment of hot plasmas. (author)

  1. Magnetic traps with a spherical separatrix: Tornado traps

    International Nuclear Information System (INIS)

    Peregood, B.P.; Lehnert, B.

    1981-01-01

    A review is given on the features of magnetic traps with a spherical separatrix, with special emphasis on Tornado spiral coil configurations. The confinement and heating of static plasms in Tornado traps is treated, including the topology of the magnetic field structure, the magneto-mechanical properties of the magnetic coil system, as well as the particle orbits and plasma behaviour in these traps. In addition, the mode of rotating plasma operation by crossed electric and magnetic fields is described. The results of experiments on static and rotating plasmas are summarized, and conclusions are drawn about future possibilities of Tornado traps in the creation and containment of hot plasmas. (orig.)

  2. Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure

    International Nuclear Information System (INIS)

    Skidmore, E.

    2016-01-01

    Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhanced by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.

  3. Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhanced by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.

  4. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  5. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  6. Influence of dielectric protective layer on laser damage resistance of gold coated gratings

    Science.gov (United States)

    Wu, Kepeng; Ma, Ping; Pu, Yunti; Xia, Zhilin

    2016-03-01

    Aiming at the problem that the damage threshold of gold coated grating is relatively low, a dielectric film is considered on the gold coated gratings as a protective layer. The thickness range of the protective layer is determined under the prerequisite that the diffraction efficiency of the gold coated grating is reduced to an acceptable degree. In this paper, the electromagnetic field, the temperature field and the stress field distribution in the grating are calculated when the silica and hafnium oxide are used as protective layers, under the preconditions of the electromagnetic field distribution of the gratings known. The results show that the addition of the protective layer changes the distribution of the electromagnetic field, temperature field and stress field in the grating, and the protective layer with an appropriate thickness can improve the laser damage resistance of the grating.

  7. Completion of designing and manufacturing of the coil support structure of W7-X

    International Nuclear Information System (INIS)

    Chauvin, Didier; Koppe, Torsten; Cardella, Antonio; Missal, Bernd; Pilopp, Dirk; Di Bartolo, Giovanni; Camin, Rocio; Gonzales, Ivan; Giordano, Luca; Langone, Stefano

    2011-01-01

    In February 2000, the project called coil support structure for the Wendelstein 7-X fusion machine was started. Since October 2009 the full production of this big (80 tons) and complex component is now completed and delivered at IPP Greifswald. The W7-X coil system consists of 20 planar and 50 non-planar coils. They are supported by a pentagonal 10 m diameter, 2.5 m high called coil support structure (CSS). The CSS is divided into five modules and each module consists of two equal half modules around the radial axis. Currently, the five modules were successfully assembled with the coils meeting the tight manufacturing tolerances. Designing, structural calculation, raw material procurement, welding and soldering technologies, milling, drilling, accurate machining, helium cooling pipe forming, laser metrology, ultra sonic cleaning and vacuum test are some of the key points used all along this successful manufacturing process. The lessons learned in the large scale production of this difficult kind of support structure will be presented as relevant experience for the realization of similar systems for future fusion devices, such as ITER.

  8. The effect of nanocrystalline Ni-W coating on the tensile properties of copper

    Directory of Open Access Journals (Sweden)

    E. P. Georgiou

    2016-03-01

    Full Text Available Nanostructured Ni-W alloy coatings containing approximately 40 wt.% tungsten were electrodeposited onto copper substrates. The effect of the coatings thickness on the surface topography, microstructure and grain size was investigated with the aid of Atomic Force Microscopy (AFM, Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD techniques respectively. In addition, this research work aims in understanding the influence and correlation between microstructure and thickness of these Ni-W coatings with the bulk mechanical properties of coated specimens. The experimental results indicated that the micro-hardness and Ultimate Tensile Strength (UTS of the Ni-W coated copper were higher than that of bare copper, whereas both slightly increased with increasing coating thickness up to 21 μm. On the other hand, the ductility of Ni-W coated copper decreased significantly with increasing coating thickness. Thus it could be said that when applying Ni-W coatings there are certain limitations not only in terms of their composition, but their thickness, grain size and coating structure should be also taken into consideration, in order to obtain an understanding of their mechanical behavior.

  9. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  10. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    International Nuclear Information System (INIS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN) 2 ] + ) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN) 2 ] + complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au 0 ) proceeding by an inner sphere mechanism. The residual [Au(MeCN) 2 ] + complex was allowed to react with water, disproportionating into Au 0 and Au(III), respectively, with the Au 0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au 0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  11. Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release

    DEFF Research Database (Denmark)

    Kyrsting, Anders; Bendix, Pól Martin; Stamou, Dimitrios

    2011-01-01

    Irradiated metallic nanoparticles hold great promise as heat transducers in photothermal applications such as drug delivery assays or photothermal therapy. We quantify the temperature increase of individual gold nanoparticles trapped in three dimensions near lipid vesicles exhibiting temperature...

  12. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Ataman, O. Yavuz

    2008-01-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C 0 , where the change in characteristic mass, m 0 , can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E max , maximum enhancement factor; E t , enhancement for 1.0 minute sampling and E v , enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  13. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  14. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    Science.gov (United States)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  15. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

    Science.gov (United States)

    Elias, Liju; Hegde, A. Chitharanjan

    2018-03-01

    Nickel-tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

  16. Induced codeposition of nanocrystalline Co-W coatings and their mechanical properties

    International Nuclear Information System (INIS)

    Belevskij, Stanislav

    2012-01-01

    The aim of the research: the complex investigation of induced codeposition mechanism of Co-W coatings obtaining from citrate electrolyte and determining the conditions of electrodeposition that provide the coatings the properties that could compete with the hard chromium electroplating coatings. The scientific novelty and originality of the work: for the first time it is demonstrated that citrate electrolyte used for electrodeposition of Co-W alloy is a mixture of complex compounds, whose composition is determined by the pH. At high pH values, its main component is hetero polynuclear complex with a molecular weight over 1200 g / mol. The totality of the results obtained by different methods (gel-chromatography, voltammetry, the methods of physicochemical hydrodynamics, determination of the composition of coatings, the current efficiency, etc.), can conclude that the chemical composition of electrodeposited Co-W coatings is determined by the hetero polynuclear complex composition on the one hand and the pH near-electrode layer on the other. However, the pH near-electrode layer depends on the rate of the parallel hydrogen evolution reaction (defined by the potential of electrodeposition and the hydrodynamic conditions). The increasing of the pH near-electrode layer shifts the chemical equilibrium toward to the formation of complex products with high molecular weight. It was confirmed the existence of hetero polynuclear Co-W-citrate complex compound, where the atomic ratio of Co:W is equal to 1:1. Solved scientific problem: The experimental proof of the fact that the formation of cobalt-tungsten coatings from citric electrolyte is the result of electrochemical reduction of polynuclear heterometallic complex. The research object is the chemical composition of citrate electrolyte (identification of the contained complexes) and induced codeposition of Co-W coatings from citrate electrolyte. The determination of the influence of the degree of the electrodeposition

  17. Large area IBAD deposition of Zn-alloys in the coil coating mode

    International Nuclear Information System (INIS)

    Wolf, G.K.; Preiss, G.; Muenz, R.; Guzman, L.

    2001-01-01

    In the last years many studies on IBAD coatings on metals and insulators for wear reduction and corrosion protection have been published. However the IBAD deposition of larger areas (>10 x 10 cm) is still a major problem. Therefore we have developed a coil coater running inside the IBAD deposition chamber and allowing very flexible deposition modes. Single layers, multilayers and alloys can be deposited under ion bombardment on substrates up to 30 by 40 cm or on metal and polymer strips 30 cm wide. A number of examples dealing with Zn-alloy coatings on low alloy steel are reported: pure Zn-coatings were compared with Zn/Ti-alloys Zn/Cr-alloys and Zn/Mn-alloys. In some cases also multilayers of the different metals were studied in the static and dynamic operation mode. The coatings had a thickness of 2-8 μm and their corrosion behaviour was investigated by salt spray tests. The microstructure of the coatings was studied by electron microscopy and EDX-depth profiling. The behaviour of the coating/substrate system is discussed in comparison with 'state-of-the-art' Zn-coatings produced by electrogalvanizing. Generally speaking the performance of the optimized coatings was as good as or better than the electrogalvanized standard

  18. Application of neutron activation analysis to the corrosion study of gold coated studs used for piercing ears

    International Nuclear Information System (INIS)

    Saiki, M.; Rogero, S.O.; Costa, I.; Correa, O.V.; Higa, O.Z.

    1998-01-01

    Complete text of publication follows. Gold is known as a metal having little or no toxicity and it has been widely used for coating studs for ear piercing. However, for some people gold coated studs have caused serious allergy and inflammation problems. After piercing, the studs are usually kept in the ear lobes for at least one week, and during this period the stud surfaces in contact with the body fluids have caused swelling, pain and redness of the skin. Consequently, it is of great interest to evaluate if elements from the metallic substrate underneath the gold coatings migrate to the body fluids due to the corrosion and the presence of defects in gold coatings. The solutions for corrosion test were obtained by placing the gold coated studs in contact with the solutions of NaCl and of culture medium. Elemental analyses of these solutions by radioanalytical method of neutron activation analysis indicated the occurrence of substrate corrosion since the elements Cr, Fe, Ni and Zn were found in these solutions. These elements are substrate material components of alloys used to make the studs and they were quantified by X-ray fluorescence analysis. The defects of the coatings were also detected by scanning electron microscopy and energy dispersive spectroscopy analysis of the gold coated studs before and after the corrosion tests. Cytotoxicity studies indicated that after corrosion test the solution used was toxic in the culture cell assay. Among the elements quantified in the test solutions, Ni is considered responsible for most of allergic reactions. Results obtained in this work indicated the necessity to improve quality control of the coating process of studs and in the appropriate choice of material used as substrate

  19. A drift-pump coil design for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Logan, B.

    1983-01-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yinyang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region

  20. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  1. Synthesis and characterization of thiolated pectin stabilized gold coated magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Varun, E-mail: varun.arora3986@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078 (India); Sood, Ankur, E-mail: ankursood02@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078 (India); Shah, Jyoti, E-mail: shah.jyoti1@gmail.com [National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Kotnala, R.K., E-mail: rkkotnala@nplindia.org [National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Jain, Tapan K., E-mail: tapankjain@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi 110078 (India)

    2016-04-15

    Core–shell nanoparticles, magnetic core and gold shell, were synthesized by reduction of gold chloride on the surface of magnetic nanoparticles; using tyrosine as a reducing agent. The formation of gold shell on magnetic nanoparticles was confirmed by X-ray diffraction (XRD) and UV-Visible spectroscopy. The core–shell nanoparticles (CSn) were conjugated with thiolated pectin to form a stable aqueous dispersion. The hydrodynamic size of thiolated pectin stabilized core–shell nanoparticles (TP-CSn) measured by Dynamic light scattering (DLS) was 160.5 nm with a poly dispersity index (PDI) of 0.302, whereas the mean particle size of TP-CSn calculated by high resolution transmission electron microscopy (HRTEM) was 10.8 ± 2.7 nm. The value of zeta potential for TP-CSn was −13.6 mV. There was a decrease in the value of saturation magnetization upon formation of the gold shell on magnetic nanoparticles. The amount of thiolated pectin bound to the surface of core–shell nanoparticles, calculated using Thermogravimetric analysis (TGA), was 6% of sample weight. - Highlights: • Use of side group of tyrosine (phenol) as a pH dependent reducing agent to synthesize gold coated magnetic nanoparticles. • Successful coating of gold shell on magnetic nanoparticles core. • Synthesis of thiolated pectin and stabilization of aqueous dispersion of core–shell nanoparticles with thiolated pectin. • The superparamagnetic behaviour of magnetic nanoparticles is retained after shell formation.

  2. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C{sub 0}, where the change in characteristic mass, m{sub 0}, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E{sub max}, maximum enhancement factor; E{sub t}, enhancement for 1.0 minute sampling and E{sub v}, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  3. Microstructure and tribological property of nanocrystalline Co–W alloy coating produced by dual-pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Huang Ping

    2012-01-01

    Highlights: ► The nanocrystalline Co–W alloy coating were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate. ► The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of electrodeposited Co–W alloy coatings were established. ► By careful control of the electrodeposition condition and the bath composition, the Co–W alloy coating excellent performance of microhardness and tribological properties, can exhibit excellent performances of microhardness and tribological properties. - Abstract: The nanocrystalline Co–W alloy coatings were produced by dual-pulse electrodeposition from aqueous bath with cobalt sulfate and sodium tungstate (Na 2 WO 4 ). Influence of the current density and Na 2 WO 4 concentration in bath on the microstructure, morphology and hardness of the Co–W alloy coatings were investigated using an X-ray diffraction, a scanning electronic microscope and a Vickers hardness tester, respectively. In addition, the friction and wear properties of the Co–W alloy coating electrodeposited under different condition were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation between the electrodeposition condition, the microstructure and alloy composition, and the hardness and tribological properties of the deposited Co–W alloy coatings were discussed in detail. The results showed that the microhardness of the deposited Co–W alloy coating was significantly affected by its average grain size, W content and crystal orientation. Smaller grain size, higher W content and strong hcp (1 0 0) orientation favor the improvement of the hardness for Co–W alloy coatings. The deposited Co–W alloy coating could obtain the maximum microhardness over 1000 kgf mm −2 by careful control of the electrodeposition conditions. The tribological properties of the electrodeposited Co–W alloy coating were greatly

  4. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  5. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    International Nuclear Information System (INIS)

    Ainslie, Mark D; Yuan Weijia; Flack, Timothy J; Coombs, Timothy A; Rodriguez-Zermeno, Victor M; Hong Zhiyong

    2011-01-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  6. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, Mark D; Yuan Weijia; Flack, Timothy J; Coombs, Timothy A [Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Rodriguez-Zermeno, Victor M [Department of Mathematics, Technical University of Denmark, Kongens Lyngby 2800 (Denmark); Hong Zhiyong, E-mail: mda36@cam.ac.uk [School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2011-04-15

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  7. The emissivity of W coatings deposited on carbon materials for fusion applications

    International Nuclear Information System (INIS)

    Ruset, C.; Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V.; Zastrow, K.-D.; Matthews, G.; Courtois, X.; Bucalossi, J.; Likonen, J.

    2017-01-01

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  8. The emissivity of W coatings deposited on carbon materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ruset, C., E-mail: ruset@infim.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Zastrow, K.-D.; Matthews, G. [Culham Centre for Fusion Energy (CCFE), Culham Science Centre, Abingdon (United Kingdom); Courtois, X.; Bucalossi, J. [IRFM, CEA Cadarache, F-13108 SAINT PAUL LEZ DURANCE (France); Likonen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-01-15

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  9. Design and modelling of a SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Weijia; Campbell, A M; Coombs, T A, E-mail: wy215@cam.ac.u [EPEC Superconductivity group, Engineering Department, 9 JJ Thomson Avenue, Cambridge, CB3 0FA (United Kingdom)

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  10. Erosion behavior of W-Ta coatings in plasmas of stationary mirror penning discharges

    International Nuclear Information System (INIS)

    Belous, V.A.; Bondarenko, M.N.; Glazunov, G.P.; Ilchenko, A.V.; Kuprin, A.S.; Konotopskiy, A.L.; Lunyov, V.M.; Ovcharenko, V.D.

    2016-01-01

    Investigations had been carried out of the influence of Ta alloying (2...16 wt.%) in W-coatings on their erosion behavior in steady state plasmas of Penning discharges in different gases: argon, nitrogen, and hydrogen. The coatings were deposited on stainless steel substrates by argon ion sputtering of targets made from appropriate metals. For comparison the erosion behavior had been examined of pure W and Ta coatings obtained by the same method. It was shown the essential decrease of an erosion rate after Ta addition in W coatings. The possible physical mechanism is suggested to explain such erosion behavior

  11. NCO-sP(EO-stat-PO Coatings on Gold Sensors—a QCM Study of Hemocompatibility

    Directory of Open Access Journals (Sweden)

    Frank K. Gehring

    2011-05-01

    Full Text Available The reliability of implantable blood sensors is often hampered by unspecific adsorption of plasma proteins and blood cells. This not only leads to a loss of sensor signal over time, but can also result in undesired host vs. graft reactions. Within this study we evaluated the hemocompatibility of isocyanate conjugated star shaped polytheylene oxide—polypropylene oxide co-polymers NCO-sP(EO-stat-PO when applied to gold surfaces as an auspicious coating material for gold sputtered blood contacting sensors. Quartz crystal microbalance (QCM sensors were coated with ultrathin NCO-sP(EO-stat-PO films and compared with uncoated gold sensors. Protein resistance was assessed by QCM measurements with fibrinogen solution and platelet poor plasma (PPP, followed by quantification of fibrinogen adsorption. Hemocompatibility was tested by incubation with human platelet rich plasma (PRP. Thrombin antithrombin-III complex (TAT, β-thromboglobulin (β-TG and platelet factor 4 (PF4 were used as coagulation activation markers. Furthermore, scanning electron microscopy (SEM was used to visualize platelet adhesion to the sensor surfaces. Compared to uncoated gold sensors, NCO-sP(EO-stat-PO coated sensors revealed significant better resistance against protein adsorption, lower TAT generation and a lower amount of adherent platelets. Moreover, coating with ultrathin NCO-sP(EO-stat-PO films creates a cell resistant hemocompatible surface on gold that increases the chance of prolonged sensor functionality and can easily be modified with specific receptor molecules.

  12. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  13. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    DEFF Research Database (Denmark)

    Ainslie, Mark D; Rodriguez Zermeno, Victor Manuel; Hong, Zhiyong

    2011-01-01

    and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC...

  14. Morphological and microstructural characterization of nanostructured pure α-phase W coatings on a wide thickness range

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, N., E-mail: nuri.gordillo@gmail.com [Instituto de Fusión Nuclear, ETSI de Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, E-28006 Madrid (Spain); CEI Campus Moncloa, UCM-UPM, Madrid (Spain); Panizo-Laiz, M. [Instituto de Fusión Nuclear, ETSI de Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, E-28006 Madrid (Spain); Tejado, E. [Department of Materials Science, Research Centre on Safety and Durability of Structures and Materials (CISDEM), UPM-CSIC, C/Profesor Aranguren s/n, E-28040 Madrid (Spain); Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid (Spain); Fernandez-Martinez, I. [Instituto de Energía Solar (IES), Universidad Politécnica de Madrid, Avenida Complutense s/n, E-28040 Madrid (Spain); Instituto de Microelectrónica de Madrid, IMM-CNM-CSIC, Isaac Newton 8 PTM, Tres Cantos, E-28760 Madrid (Spain); Rivera, A. [Instituto de Fusión Nuclear, ETSI de Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, E-28006 Madrid (Spain); Pastor, J.Y. [Department of Materials Science, Research Centre on Safety and Durability of Structures and Materials (CISDEM), UPM-CSIC, C/Profesor Aranguren s/n, E-28040 Madrid (Spain); Castro, C. Gómez de [Departamento de Física de Materiales, Facultad de CC. Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, E-28040 Madrid (Spain); and others

    2014-10-15

    Highlights: • Pure α-phase tungsten nanostructures were deposited by DC-magnetron sputtering. • Non-delaminated coatings were achieved at powers ≤50 W. • The coating thicknesses vary from 30 nm up to ∼4.0 μm. • The influence of the substrate on the coating properties was investigated. • We report on the morphological, microstructural and mechanical properties. - Abstract: Nanostructured tungsten (nanoW) coatings have been deposited by DC magnetron sputtering. First, the influence of the sputtering power on the adhesion of the coatings to the substrate was investigated by depositing coatings at powers varying from 30 up to 220 W. Non-delaminated coatings were achieved at powers ≤50 W. Second, the influence of coating thickness on the morphological, microstructural and mechanical properties was investigated for films deposited at 50 W with thicknesses varying from 30 nm up to ∼4.0 μm. SEM images reveal that all the films are highly compact, consisting of nanometer sized columns that grow perpendicular to the substrate. XRD data evidence that films are monophasic, being made of pure α-phase. All coatings show compressive stress and low micro-strain. Nanoindentation tests show that coatings have a hardness higher than that reported for coarse grained W. No significant dependence of the previous properties on coating thickness was observed. Finally, the influence of the substrate on coatings properties was studied, by depositing a W coating at a power of 50 W on a commercial steel substrate: no significant dependence was found.

  15. Improving the contact resistance at low force using gold coated carbon nanotube surfaces

    Science.gov (United States)

    McBride, J. W.; Yunus, E. M.; Spearing, S. M.

    2010-04-01

    Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.

  16. Gold-coated iron nanoparticles in transparent Si{sub 3}N{sub 4} matrix thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Marcos, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain); Cespedes, E. [Keele University, Institute for Science and Technology in Medicine, Guy Hilton Research Centre (United Kingdom); Jimenez-Villacorta, F. [Northeastern University, Department of Chemical Engineering (United States); Munoz-Martin, A. [Universidad Autonoma de Madrid, Centro de Microanalisis de Materiales (Spain); Prieto, C., E-mail: cprieto@icmm.csic.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Madrid (Spain)

    2013-06-15

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si{sub 3}N{sub 4} system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si{sub 3}N{sub 4} multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  17. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm

    International Nuclear Information System (INIS)

    Kueck, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-01-01

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of ∼1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute

  18. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  19. Biological and Geochemical Development of Placer Gold Deposits at Rich Hill, Arizona, USA

    Directory of Open Access Journals (Sweden)

    Erik B. Melchiorre

    2018-02-01

    Full Text Available Placer gold from the Devils Nest deposits at Rich Hill, Arizona, USA, was studied using a range of micro-analytical and microbiological techniques to assess if differences in (paleo-environmental conditions of three stratigraphically-adjacent placer units are recorded by the gold particles themselves. High-angle basin and range faulting at 5–17 Ma produced a shallow basin that preserved three placer units. The stratigraphically-oldest unit is thin gold-rich gravel within bedrock gravity traps, hosting elongated and flattened placer gold particles coated with manganese-, iron-, barium- (Mn-Fe-Ba oxide crusts. These crusts host abundant nano-particulate and microcrystalline secondary gold, as well as thick biomats. Gold surfaces display unusual plumate-dendritic structures of putative secondary gold. A new micro-aerophilic Betaproteobacterium, identified as a strain of Comamonas testosteroni, was isolated from these biomats. Significantly, this ‘black’ placer gold is the radiogenically youngest of the gold from the three placer units. The middle unit has well-rounded gold nuggets with deep chemical weathering rims, which likely recorded chemical weathering during a wetter period in Arizona’s history. Biomats, nano-particulate gold and secondary gold growths were not observed here. The uppermost unit is a pulse placer deposited by debris flows during a recent drier period. Deep cracks and pits in the rough and angular gold from this unit host biomats and nano-particulate gold. During this late arid period, and continuing to the present, microbial communities established within the wet, oxygen-poor bedrock traps of the lowermost placer unit, which resulted in biological modification of placer gold chemistry, and production of Mn-Fe-Ba oxide biomats, which have coated and cemented both gold and sediments. Similarly, deep cracks and pits in gold from the uppermost unit provided a moist and sheltered micro-environment for additional gold

  20. Dual levitated coils for antihydrogen production

    Science.gov (United States)

    Wofford, J. D.; Ordonez, C. A.

    2013-04-01

    Two coaxial superconducting magnetic coils that carry currents in the same direction and that are simultaneously levitated may serve for antihydrogen plasma confinement. The configuration may be suitable for use by a collaboration at the CERN Antiproton Decelerator facility to test fundamental symmetries between the properties of hydrogen and antihydrogen. Nested Penning traps are currently used to confine recombining antihydrogen plasma. Symmetry studies require the production of sufficiently cold antihydrogen. However, plasma drifts within nested Penning traps can increase the kinetic energy of antiprotons that form antihydrogen atoms. Dual levitated coils may serve to confine relatively large, cold, dense non-drifting recombining antihydrogen plasmas. A minimum-B magnetic field that is produced by the coils could provide for atom trapping. A toroidal plasma is confined between the coils. High density plasmas may be possible, by allowing plasma pressure to balance mechanical pressure to keep the coils apart. Progress is reported on theoretical and experimental efforts. The theoretical effort includes the development of a classical trajectory Monte Carlo simulation of confinement. The experimental effort includes levitation of a NdFeB permanent ring magnet, which produces a magnetic field that is qualitatively similar to the field that would be produced by the two coaxial superconducting magnetic coils. Liquid-nitrogen-cooled Bi-2223 high-temperature-superconducting components, with a critical temperature of 108 K, were used to levitate the ring magnet. An issue concerning keeping the plane of the levitated ring horizontal is discussed.

  1. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Xia Lijin; Yi Sijia; Lenaghan, Scott C.; Zhang Mingjun, E-mail: mjzhang@utk.edu [University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2012-07-15

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  2. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    International Nuclear Information System (INIS)

    Xia Lijin; Yi Sijia; Lenaghan, Scott C.; Zhang Mingjun

    2012-01-01

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  3. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    Science.gov (United States)

    Xia, Lijin; Yi, Sijia; Lenaghan, Scott C.; Zhang, Mingjun

    2012-07-01

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  4. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    Science.gov (United States)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  5. Deep superconducting magnetic traps for neutral atoms and molecules

    International Nuclear Information System (INIS)

    Harris, J.G.E.; Michniak, R.A.; Nguyen, S.V.; Campbell, W.C.; Egorov, D.; Maxwell, S.E.; Buuren, L.D. van; Doyle, J.M.

    2004-01-01

    We describe the design, construction and performance of three realizations of a high-field superconducting magnetic trap for neutral atoms and molecules. Each of these traps utilizes a pair of coaxial coils in the anti-Helmholtz geometry and achieves depths greater than 4 T, allowing it to capture magnetic atoms and molecules cooled in a cryogenic buffer gas. Achieving this depth requires that the repulsive force between the coils (which can exceed 30 metric tons) be contained. We also describe additional features of the traps, including the elimination of trapped fluxes from the coils and the integration of the coils into a cryogenic vacuum environment suitable for producing cold atoms and molecules

  6. Performance of coils wound from long lengths of surface-coated, reacted, BSCCO-2212 conductor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.S.; Hazelton, D.W.; Gardner, M.T. [Intermagnetics General Corp., Latham, NY (United States)] [and others

    1996-10-01

    React-before-wind surface-coated BSCCO-2212 is being established as a relatively low cost HTS conductor for practical applications. Quality tape is presently being manufactured in 450-500m lengths at a cost estimated to be 1/3-1/5 of the industry costs of BSCCO-2223 powder-in-tube tape. Robust, mechanically sound coils for applications ranging from NMR insert magnets to transformer windings are being made from this BSCCO-2212 tape. The coils have performed consistently through test and thermal cycling without degradation and as projected from short sample measurements. A hybrid approach, which uses mainly BSCCO- 2212 augmented by BSCCO-2223 conductor in the high radial field end regions, is expected to halve magnet system costs.

  7. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy.

    Directory of Open Access Journals (Sweden)

    Catarina Oliveira Silva

    Full Text Available The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm showed a plasmon absorption band located within the near-infrared range (650-900 nm, optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%. Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.

  8. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    Science.gov (United States)

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  9. Highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles

    Science.gov (United States)

    Huang, Yuewang; Zhao, Qiancheng; Sharac, Nicholas; Ragan, Regina; Boyraz, Ozdal

    2015-05-01

    We demonstrate the fabrication of a highly nonlinear sub-micron silicon nitride trench waveguide coated with gold nanoparticles for plasmonic enhancement. The average enhancement effect is evaluated by measuring the spectral broadening effect caused by self-phase-modulation. The nonlinear refractive index n2 was measured to be 7.0917×10-19 m2/W for a waveguide whose Wopen is 5 μm. Several waveguides at different locations on one wafer were measured in order to take the randomness of the nanoparticle distribution into consideration. The largest enhancement is measured to be as high as 10 times. Fabrication of this waveguide started with a MEMS grade photomask. By using conventional optical lithography, the wide linewidth was transferred to a wafer. Then the wafer was etched anisotropically by potassium hydroxide (KOH) to engrave trapezoidal trenches with an angle of 54.7º. Side wall roughness was mitigated by KOH etching and thermal oxidation that was used to generate a buffer layer for silicon nitride waveguide. The guiding material silicon nitride was then deposited by low pressure chemical vapor deposition. The waveguide was then patterned with a chemical template, with 20 nm gold particles being chemically attached to the functionalized poly(methyl methacrylate) domains. Since the particles attached only to the PMMA domains, they were confined to localized regions, therefore forcing the nanoparticles into clusters of various numbers and geometries. Experiments reveal that the waveguide has negligible nonlinear absorption loss, and its nonlinear refractive index can be greatly enhanced by gold nano clusters. The silicon nitride trench waveguide has large nonlinear refractive index, rendering itself promising for nonlinear applications.

  10. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    Science.gov (United States)

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  11. Interface topography and residual stress distributions in W coatings for fusion armour applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, G. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)], E-mail: g.thomas@cranfield.ac.uk; Vincent, R. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Matthews, G. [UKAEA Fusion, K2 Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Dance, B. [TWI Ltd, Granta Park, Great Abingdon, Cambridge CB1 6AL (United Kingdom); Grant, P.S. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2008-03-25

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates.

  12. Interface topography and residual stress distributions in W coatings for fusion armour applications

    International Nuclear Information System (INIS)

    Thomas, G.; Vincent, R.; Matthews, G.; Dance, B.; Grant, P.S.

    2008-01-01

    Vacuum plasma sprayed (VPS) tungsten (W) coatings are potential plasma facing components in future fusion power plants. However, the large coefficient of thermal expansion mismatch between W and underlying structural steels and other metallic materials poses a significant problem for manufacturing and service life because of the evolution of large thermally induced stresses leading to failure. In this paper, the effects of the substrate/coating interface 3D geometry on stress distributions are investigated using finite element analysis and VPS experiments to manufacture up to 2 mm thick W coatings. The key factors that affect internal stress distributions during thermal exposure have been identified including graded composition inter-layers, stress concentration effects, mechanical adhesion, and the possible role of segmentation in relieving coating stresses on surface sculptured substrates

  13. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Novotná, Zdenka, E-mail: zdenka1.novotn@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague (Czech Republic); Rimpelová, Silvie; Juřík, Petr [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague (Czech Republic); Veselý, Martin [Department of Organic Technology, University of Chemistry and Technology Prague, Prague (Czech Republic); Kolská, Zdenka [Faculty and Science, J. E. Purkinje University in Usti nad Labem, Usti nad Labem (Czech Republic); Hubáček, Tomáš [Biology Centre CAS CR, SoWa National Research Infrastructure, Ceske Budejovice (Czech Republic); Ruml, Tomáš [Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague (Czech Republic); Švorčík, Václav [Department of Solid State Engineering, University of Chemistry and Technology Prague, Prague (Czech Republic)

    2017-02-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. - Highlights: • Gold-coating improved wettability of polyethylene in comparison with plasma-treatment. • Plasma-treatment increased the surface roughness while the subsequent gold-coating decreased the roughness. • Adhesion and growth of mouse embryonic fibroblasts (L929) were studied in vitro. • Low amounts of gold nanoparticles released in the medium promoted cell growth.

  14. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility

    International Nuclear Information System (INIS)

    Novotná, Zdenka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdenka; Hubáček, Tomáš; Ruml, Tomáš; Švorčík, Václav

    2017-01-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. - Highlights: • Gold-coating improved wettability of polyethylene in comparison with plasma-treatment. • Plasma-treatment increased the surface roughness while the subsequent gold-coating decreased the roughness. • Adhesion and growth of mouse embryonic fibroblasts (L929) were studied in vitro. • Low amounts of gold nanoparticles released in the medium promoted cell growth.

  15. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Recent progress in the understanding of H transport and trapping in W

    International Nuclear Information System (INIS)

    Schmid, K; Bauer, J; Schwarz-Selinger, T; Toussaint, U v; Manhard, A; Jacob, W; Markelj, S

    2017-01-01

    The retention of hydrogen isotopes (HIs) (H, D and T) in the first, plasma exposed wall is one of the key concerns for the operation of future long pulse fusion devices. It affects the particle-, momentum- and energy balance in the scrape off layer as well as the retention of HIs and their permeation into the coolant. The currently accepted picture that is used for interpreting current laboratory and tokamak experiments is that of diffusion hindered by trapping at lattice defects. This paper summarises recent results that show that this current picture of how HIs are transported and retained in W needs to be extended: the modification of the surface (e.g. blistering) can lead to the formation of fast loss channels for near surface HIs. Trapping at single occupancy traps with fixed de-trapping energy fails to explain isotope exchange experiments, instead a trapping model with multi occupancy traps and fill level dependent de-trapping energies is required. The presence of interstitial impurities like N or C may affect the transport of solute HI. The presence of HIs during damage creation by e.g. neutrons stabilises defects and reduces defect annealing at elevated temperatures. (paper)

  17. [Effect of sintering gold paste coating on the bonding strength of pure titanium and three low-fusing porcelains].

    Science.gov (United States)

    Zhang, Ya-li; Luo, Xiao-ping; Zhou, Li

    2012-05-01

    To study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces. Sixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure. FE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P 0.05). The gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.

  18. Effect of Carbon Nanotubes on Corrosion and Tribological Properties of Pulse-Electrodeposited Co-W Composite Coatings

    Science.gov (United States)

    Edward Anand, E.; Natarajan, S.

    2015-01-01

    Cobalt-Tungsten (Co-W) alloy coatings possessing high hardness and wear/corrosion resistance, due to their ecofriendly processing, have been of interest to the researchers owing to its various industrial applications in automobile, aerospace, and machine parts. This technical paper reports Co-W alloy coatings dispersed with multiwalled carbon nanotubes (MWCNTs) produced by pulse electrodeposition from aqueous bath involving cobalt sulfate, sodium tungstate, and citric acid on stainless steel substrate (SS316). Studies on surface morphology through SEM, microhardness by Vickers method, microwear by pin-on-disk method, and corrosion behavior through potentiodynamic polarization method for the Co-W-CNT coatings were reported. Characterization studies were done by SEM and EDX analysis. The results showed that the corrosion and tribological properties of the pulse-electrodeposited Co-W-CNT alloy coatings were greatly influenced by its morphology, microhardness, %W, and MWCNT content in the coatings.

  19. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    Science.gov (United States)

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  20. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  1. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    International Nuclear Information System (INIS)

    Lee, Kuo-Hao; Lai, Sheng-Feng; Lin, Yan-Cheng; Chou, Wu-Ching; Ong, Edwin B.L.; Tan, Hui-Ru; Tok, Eng Soon; Yang, C.S.; Margaritondo, G.; Hwu, Y.

    2015-01-01

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue

  2. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion resistance, were investigated.

  3. A study of back-trap mottle in coated papers using electron probe microanalysis

    International Nuclear Information System (INIS)

    Eby, T.; Whalen-Shaw, M.

    1991-01-01

    In this paper methodology is been developed for analyzing both the surface and cross-sectional distributions for coating components using electron probe microanalysis and image analysis technology. Actual light and dark areas of print mottle are physically separated and analyzed to provide an unequivocal relationship between the distribution of coating components and the physical structure of the coating in areas of print mottle. Areas of low ink density were found to have higher surface latex concentration, greater mean coating thickness, and greater mean rawstock roughness. Furthermore, the difference in surface concentration of CaCO 3 within areas of, low and high ink density was established as a new and additional probable cause of back-trap mottle

  4. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats.

    Science.gov (United States)

    Alalaiwe, Ahmed; Roberts, Georgia; Carpinone, Paul; Munson, John; Roberts, Stephen

    2017-11-01

    Metallic nanoparticles can be produced in a variety of shapes, sizes, and surface chemistries, making them promising potential tools for drug delivery. Most studies to date have evaluated uptake of metallic nanoparticles from the GI tract with methods that are at best semi-quantitative. This study used the classical method of comparing blood concentration area under the curve (AUC) following intravenous and oral doses to determine the oral bioavailability of 1, 2 and 5 kDa PEG-coated 5 nm gold nanoparticles (AuNPs). Male rats were given a single intravenous dose (0.8 mg/kg) or oral (gavage) dose (8 mg/kg) of a PEG-coated AuNP, and the concentration of gold was measured in blood over time and in tissues (liver, spleen and kidney) at sacrifice. Blood concentrations following oral administration were inversely related to PEG size, and the AUC in blood was significantly greater for the 1 kDa PEG-coated AuNPs than particles coated with 2 or 5 kDa PEG. However, bioavailabilities of all of the particles were very low (bioavailability of AuNPs coated with PEG in the 1-5 kDa range, this study demonstrates the utility of applying the blood AUC approach to assess the quantitative oral bioavailability of metallic nanoparticles.

  5. Tribological behavior of W-DLC coated rubber seals

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Zhou, X.B.; Hosson, J.Th.M. De

    2008-01-01

    Tungsten-containing diamond-like carbon (W-DLC) coatings have been deposited on FKM (fluorocarbon) and HNBR (hydrogenated nitrile butadiene) rubbers via unbalanced magnetron reactive sputtering from a WC target in a C2H2/Ar plasma. The surface morphology and fracture cross sections of uncoated and

  6. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    Science.gov (United States)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  7. Efficient light extraction from GaN LEDs using gold-coated ZnO nanoparticles

    KAUST Repository

    Alhadidi, A.

    2015-11-01

    We experimentally demonstrate the effect of depositing gold-coated ZnO nanoparticles on the surface of GaN multi-quantum well LED structures. We show that this method can significantly increase the amount of extracted light.

  8. The SMES model coil. Fabrication

    International Nuclear Information System (INIS)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji

    1998-01-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  9. The SMES model coil. Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji [Toshiba Corp., Yokohama, Kanagawa (Japan)] [and others

    1998-07-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  10. A tetraethylene glycol coat gives gold nanoparticles long in vivo half-lives with minimal increase in size

    Directory of Open Access Journals (Sweden)

    Willett JDS

    2017-03-01

    Full Text Available Julian DS Willett, Marlon G Lawrence, Jennifer C Wilder, Oliver Smithies† Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA †Dr Oliver Smithies passed away on January 10, 2017 Abstract: In this study, we describe the experiments determining whether coating gold nanoparticles with tetraethylene glycol (TEG provides pharmacologically relevant advantages, such as increased serum half-life and resistance to protein adsorption. Monodisperse TEG-coated, NaBH4-reduced gold nanoparticles with a hydrodynamic size comparable to albumin were synthesized by reducing gold chloride with NaBH4 under alkaline conditions in the presence of TEG-SH. The particles were characterized by gel electrophoresis, column chromatography, and transmission electron microscopy. The nanoparticles were subsequently injected intravenously into mice, and their half-lives and final destinations were determined via photometric analysis, light microscopy (LM, and transmission electron microscopy. The TEG particles had a long half-life (~400 minutes that was not influenced by splenectomy. After 500 minutes of injection, TEG particles were found in kidney proximal tubule cell vesicles and in spleen red and white pulp. The particles induced apoptosis in the spleen red pulp but not in white pulp or the kidney. Some of the TEG particles appeared to have undergone ligand exchange reactions that increased their charge. The TEG particles were shown to be resistant to nonspecific protein adsorption, as judged by gel electrophoresis and column chromatography. These results demonstrate that naturally monodisperse, small-sized gold nanoparticles coated with TEG have long in vivo plasma half-lives, are minimally toxic, and are resistant to protein adsorption. This suggests that a TEG coating should be considered as an alternative to a polyethylene glycol coating, which is polydisperse and of much larger size. Keywords

  11. Optimization study of direct morphology observation by cold field emission SEM without gold coating.

    Science.gov (United States)

    He, Dan; Fu, Cheng; Xue, Zhigang

    2018-06-01

    Gold coating is a general operation that is generally applied on non-conductive or low conductive materials, during which the morphology of the materials can be examined by scanning electron microscopy (SEM). However, fatal deficiencies in the materials can result in irreversible distortion and damage. The present study directly characterized different low conductive materials such as hydroxyapatite, modified poly(vinylidene fluoride) (PVDF) fiber, and zinc oxide nanopillar by cold field emission scanning electron microscopy (FE-SEM) without a gold coating. According to the characteristics of the low conductive materials, various test conditions, such as different working signal modes, accelerating voltages, electron beam spots, and working distances, were characterized to determine the best morphological observations of each sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo

    Directory of Open Access Journals (Sweden)

    Roma-Rodrigues C

    2016-06-01

    Full Text Available Catarina Roma-Rodrigues,1 Amelie Heuer-Jungemann,2 Alexandra R Fernandes,1 Antonios G Kanaras,2 Pedro V Baptista1 1UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal; 2Institute for Life Sciences, Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK Abstract: In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing or ought to be contravened, as in cancer development. Keywords: angiogenesis activators, antiangiogenic, CAM assay, gold nanoparticles, peptide-coated gold nanoparticles, vascular development

  13. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  14. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    Science.gov (United States)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  15. Development of cube textured Ni-W alloy substrates used for coated conductors

    DEFF Research Database (Denmark)

    Suo, Hongli; Ma, Lin; Gao, Mangmang

    2014-01-01

    It is considered as a challenge for RABiTS route to get cube textured Ni-W alloy substrates with high mechanical and magnetic properties for coated conductors. The works of our group in recent years are summarized about different Ni-W substrates with high W content and composite tapes made by RABiTS...

  16. A fully MEMS-compatible process for 3D high aspect ratio micro coils obtained with an automatic wire bonder

    International Nuclear Information System (INIS)

    Kratt, K; Badilita, V; Burger, T; Wallrabe, U; Korvink, J G

    2010-01-01

    We report the fabrication of 3D micro coils made with an automatic wire bonder. Using standard MEMS processes such as spin coating and UV lithography on silicon and Pyrex® wafers results in high aspect ratio SU-8 posts with diameters down to 100 µm that serve as mechanical stabilization yokes for the coils. The wire bonder is employed to wind 25 µm insulated gold wire around the posts in an arbitrary (e.g. solenoidal) path, yielding arrays of micro coils. Each micro coil is bonded directly on-chip, so that loose wire ends are avoided and, compared to other winding methods, coil re-soldering is unnecessary. The manufacturing time for a single coil is about 200 ms, and although the process is serial, it is batch fabrication compatible due to the high throughput of the machine. Despite the speed of manufacture we obtain high manufacturing precision and reliability. The micro air-core solenoids show an RF quality factor of over 50 when tested at 400 MHz. We present a flexible coil making method where the number of windings is only limited by the post height. The coil diameter is restricted by limits defined by lithography and the mechanical strength of the posts. Based on this technique we present coils ranging from 100 µm diameter and 1 winding up to 1000 µm diameter and 20 windings

  17. Synthesis of TiC/W core–shell nanoparticles by precipitate-coating process

    International Nuclear Information System (INIS)

    Xia Min; Yan Qingzhi; Xu Lei; Zhu Lingxu; Guo Hongyan; Ge Changchun

    2012-01-01

    Graphical abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core-shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core-shell nanoparticles with different cores. Abstract: Well-dispersed titanium carbide/tungsten (TiC/W) core–shell nanoparticles with high-purity and uniform diameters were firstly synthesized by precipitate-coating process. The as-synthesized nanoparticles were characterized by X-ray diffraction (XRD), Filed-emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM), energy dispersive spectrum (EDS). Results revealed that the as-synthesized nanoparticles possess uniform diameters about 100 nm, and high purity. TEM and the corresponding FFT images demonstrate that TiC nanoparticles were well-encapsulated by W shells. Such unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core–shell nanoparticles with different cores.

  18. High performance W-AIN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Chu Zhang [The University of Sydney (Australia). School of Physics; Shen, Y.G. [City University of Hong Kong (Hong Kong). Department of Manufacturing Engineering and Engineering Management

    2004-01-25

    High solar performance W-AIN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric functions and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80{sup o}C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80{sup o}C have been achieved for deposited W-AlN cermet solar coatings. (author)

  19. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  20. Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites

    International Nuclear Information System (INIS)

    Song Haiyang; Zha Xinwei

    2010-01-01

    The effects of nickel coating on the mechanical behaviors of armchair single-walled carbon nanotubes (SWCNTs) and their embedded gold matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of SWCNTs obviously decrease after nickel coating. For armchair SWCNTs, the decreased ratio of the Young's moduli of SWCNTs with smaller radius is larger than that of SWCNTs with larger radius. A comparison is made between the response to Young's modulus of a composite with parallel embedded nanotube and the response of a composite with vertically embedded nanotube. The results show that the uncoated SWCNT can enhance the Young's modulus of composite under the condition of parallel embedment, but such improvement disappears under the condition of vertical embedment because the interaction between SWCNT and gold matrix is too weak for effective load transfer. However, the nickel-coated SWCNT can indeed significantly improve the composite behavior.

  1. Failure modes observed on worn surfaces of W-C-Co sputtered coatings

    International Nuclear Information System (INIS)

    Ramalho, A.; Cavaleiro, A.; Miranda, A.S.; Vieira, M.T.

    1993-01-01

    During scratch testing, the indenter gives rise to a distribution of stresses similar to that observed in tribocontacts. In this work, r.f.-sputtered W-C-Co coatings deposited from sintered WC + Co (6, 10 and 15 wt.% Co) at various substrate biases were scratched and tested tribologically and the morphology of the damaged surfaces was analysed. The cobalt content of the coatings is the main factor determining their tribological characteristics. The failure modes observed on the worn pin-on-disc tested surfaces are explained and compared with those obtained by scratch testing. In spite of it not being possible to establish quantitative results for the wear resistance of W-C-Co coatings from scratch testing, an estimation can be performed based on the observation of the failure modes in the scratch track. Thus scratch testing can be used to predict the tribological behaviour of coated surfaces. This possibility can reduce the number and cost of tribological tests. (orig.)

  2. In vivo integrity of polymer-coated gold nanoparticles

    Science.gov (United States)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  3. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  4. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  5. Design of the coolant system for the Large Coil Test Facility pulse coils

    International Nuclear Information System (INIS)

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls

  6. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    Science.gov (United States)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  7. Design study of coated conductor direct drive wind turbine generator for small scale demonstration

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Jensen, Bogi Bech

    2012-01-01

    We have investigated the properties of a superconducting direct drive generator suitable for demonstration in a small scale 11 kW wind turbine. The engineering current density of the superconducting field windings is based on properties of coated conductors wound into coils holding of the order 68...

  8. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-03-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  10. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.; Hammami, Mohamed Amen; Croissant, Jonas G.; Omar, Haneen; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M.

    2017-01-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  11. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    International Nuclear Information System (INIS)

    Deram, V.; Turrell, S.; Darque-Ceretti, E.; Aucouturier, M.

    2006-01-01

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy

  12. High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi-Chu [School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Shen, Y.G. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong (Hong Kong)

    2004-01-25

    High solar performance W-AlN cermet solar coatings were designed using a numerical computer model and deposited experimentally. In the numerical calculations aluminium oxynitride (AlON) was used as ceramic component. The dielectric function and then complex refractive index of W-AlON cermet materials were calculated using the Sheng's approximation. The layer thickness and W metal volume fraction were optimised to achieve maximum photo-thermal conversion efficiency for W-AlON cermet solar coatings on an Al reflector with a surface AlON ceramic anti-reflection layer. Optimisation calculations show that the W-AlON cermet solar coatings with two and three cermet layers have nearly identical solar absorptance, emittance and photo-thermal conversion efficiency that are much better than those for films with one cermet layer. The optimised calculated AlON/W-AlON/Al solar coating film with two cermet layers has a high solar absorptance of 0.953 and a low hemispherical emittance of 0.051 at 80C for a concentration factor of 2. The AlN/W-AlN/Al solar selective coatings with two cermet layers were deposited using two metal target direct current magnetron sputtering technology. During the deposition of W-AlN cermet layer, both Al and W targets were run simultaneously in a gas mixture of argon and nitrogen. By substrate rotation a multi-sub-layer system consisting of alternating AlN ceramic and W metallic sub-layers was deposited that can be considered as a macro-homogeneous W-AlN cermet layer. A solar absorptance of 0.955 and nearly normal emittance of 0.056 at 80C have been achieved for deposited W-AlN cermet solar coatings.

  13. End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays

    International Nuclear Information System (INIS)

    Peckys, Diana B; De Jonge, Niels; Simpson, Michael L; McKnight, Timothy E

    2008-01-01

    We report the effective and site-specific binding of long double stranded (ds)DNA to high aspect ratio carbon nanofiber arrays. The carbon nanofibers were first coated with a thin gold layer to provide anchorage for two controllable binding methods. One method was based on the direct binding of thiol end-labeled dsDNA. The second and enhanced method used amine end-labeled dsDNA bound with crosslinkers to a carboxyl-terminated self-assembled monolayer. The bound dsDNA was first visualized with a fluorescent, dsDNA-intercalating dye. The specific binding onto the carbon nanofiber was verified by a high resolution detection method using scanning electron microscopy in combination with the binding of neutravidin-coated fluorescent microspheres to the immobilized and biotinylated dsDNA. Functional activity of thiol end-labeled dsDNA on gold-coated nanofiber arrays was verified with a transcriptional assay, whereby Chinese hamster lung cells (V79) were impaled upon the DNA-modified nanofibers and scored for transgene expression of the tethered template. Thiol end-labeled dsDNA demonstrated significantly higher expression levels than nanofibers prepared with control dsDNA that lacked a gold-binding end-label. Employing these site-specific and robust techniques of immobilization of dsDNA onto nanodevices can be of advantage for the study of DNA/protein interactions and for gene delivery applications.

  14. Enhanced lifetime characteristics in flexible polymer light-emitting devices by encapsulation of epoxy/silica-coated gold nanoparticles resin (ESGR)

    International Nuclear Information System (INIS)

    Chiu, Pin-Hsiang; Huang, Chien-Jung; Yang, Cheng-Fu; Meen, Teen-Hang; Wang, Yeong-Her

    2010-01-01

    This paper reports the effects of a new multilayer encapsulation for the lifetime of flexible PLEDs on plastic substrate. The multilayer encapsulation consisted of a novel epoxy/silica-coated gold nanoparticles resin (ESGR) as the pre-encapsulation layer and a SiO 2 layer as the encapsulation cap. The ESGR was prepared by mixing UV-curable epoxy resin and powders of silica-coated gold nanoparticles. The silica-coated gold nanoparticles is a necessity because the epoxy resin is not a good moisture barrier. The flexible PLEDs with multilayer encapsulation exhibited no dark spots after being stored for over 300 h at 25 deg. C and 60% relative humidity. Also, the operational half-luminance decay time of device was 1360 h, seven times longer than that of a device without encapsulation. These results confirmed that the multilayer encapsulation, which restricted the moisture that penetrated into the devices, could be applied to the encapsulation of flexible PLEDs.

  15. Design of a high field uniformity electromagnet for Penning trap

    International Nuclear Information System (INIS)

    Itteera, Janvin; Singh, Kumud; Teotia, Vikas; Ukarde, Priti; Malhotra, Sanjay; Taly, Y.K.; Joshi, Manoj; Rao, Pushpa

    2013-01-01

    An ion trap (Penning trap) facility is being developed at BARC for spectroscopy studies. This requires the design of an iron core electromagnet capable of generating high magnetic fields (∼1.7T) at the centre of an 88 mm long air gap. This electromagnet provides the requisite dipole magnetic field which when superimposed on the electrostatic quadrupoles ensures a stable trapping of ions. To conduct high precision spectroscopy studies, we need to ensure a high degree of magnetic field uniformity ( 3 volume (Trap zone). Various pole shoe profiles were studied and modelled, FEM simulation of the same were conducted to compute the magnetic field intensity and field uniformity. Owing to the large air gap and requirement of high field intensity in the GFR, the exciting coils need to handle high current densities, which require water cooled systems. Double Pan-Cake coil design is selected for powering the magnet. Electrical, thermal and hydraulic designs of the coils are completed and a prototype double pancake coil was fabricated and tested for verifying the electrical and thermal parameter. The spatial field homogeneity is achieved by shimming the pole tip. Temporal stability of magnet requires a highly stable power supply for exciting the coils and its stability class is derived from FEM simulations. This paper discusses the electromagnetic design and development of the penning trap magnet being developed at BARC. (author)

  16. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones.

    Science.gov (United States)

    Sheetz, M P; Baumrind, N L; Wayne, D B; Pearlman, A L

    1990-04-20

    Formation of the nervous system requires that neuronal growth cones follow specific paths and then stop at recognition signals, sensed at the growth cone's leading edge. We used antibody-coated gold particles viewed by video-enhanced differential interference contrast microscopy to observe the distribution and movement of two cell surface molecules, N-CAM and the 2A1 antigen, on growth cones of cultured cortical neurons. Gold particles are occasionally transported forward at 1-2 microns/s to the leading edge where they are trapped but continue to move. Concentration at the edge persists after cytochalasin D treatment or ATP depletion, but active movements to and along edges cease. We also observed a novel outward movement of small cytoplasmic aggregates at 1.8 microns/s in filopodia. We suggest that active forward transport and trapping involve reversible attachment of antigens to and transport along cytoskeletal elements localized to edges of growth cones.

  17. Microstructure Changes of ZrO{sub 2}/W/Mo Coating Layers on Graphite after Heat Treatment at 2100 ℃

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Gyu Baek; Choe, Kyeong Hwan; Cho, Gue Serb [Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Kim, Sang Sub [Inha University, Incheon (Korea, Republic of)

    2016-08-15

    A tungsten coating was deposited onto a graphite substrate using the atmospheric plasma spraying (APS) technique. In order to increase the adhesion strength between the metallic tungsten(W) and graphite, a molybdenum (Mo) interlayer was pre-deposited onto the graphite surface by utilizing the APS technique. Also, after deposition of a APS-W coating, a zirconia (ZrO{sub 2}) was deposited onto the W coating layer. For the APS process, argon and helium were used as the plasma-forming gases, and argon was used as the shield gas to protect the plasma from oxidation. After the APS coating process, heat exposure treatment was performed at 2100 ℃ for 360 h within a sapphire single crystal-growing furnace in order to evaluate the thermal stability of the coatings. After heat treatment, the ZrO{sub 2}/W/Mo coating layers were bound with the graphite without any peeling off. The microvickers hardness of the APS-W coating layer was increased after heat treatment due to the formation of carbides. Also, carbide phases such as Mo{sub 2}C, WC, ZrC and Mo{sub 3}C{sub 2} were identified by XRD diffraction and EDS analysis, by analyzing the depths below the coating surface. It was considered that the Mo interlayer served as a good buffer layer between the APS-W coating and the graphite after the heat exposure treatment because the lattice structure of the molybdenum carbide was similar to that of the graphite.

  18. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    Science.gov (United States)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken

  19. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (470 Building, Puspiptek, Serpong, Indonesia 15313) (Indonesia)

    2016-04-19

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  20. Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Radka Gromnicova

    Full Text Available The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.

  1. Synthesis and characterization of polyaniline coated gold nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, Siti Nurzulaiha Mohd; Kamarun, Dzaraini; Zaki, Hamizah; Kamarudin, Mohamad Shukri [Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Thomas, Sabu; Kalarikkal, Nandakumar [International and Inter University Centre of Nanoscience and Nanotechnoogy, Mahatma Ghandi University, Priyadarsini Hills Kottayam, Kerala India-686560 (India)

    2015-08-28

    Considerable attention has been drawn during the last two decades to prepare nanocomposites consists of conducting polymer and noble metal due to their potential ability to generate a new class of material with novel optical, chemical, electronic or mechanical properties for various applications. In this work, an attempt has been made to synthesize nanocomposite of polyaniline (PANI) coated with gold nanoparticles (AuNPs) chemically with various types of surfactants such as polyvinylpyrrolidone (PVP), and sodium dodecyl sulphate (SDS) which act as stabilizing agents to help in stabilization of the PANI/Gold nanocomposites system. The synthesized nanocomposites were characterized by UV-Visible, field emission scanning electron microscope (FESEM) and particle size analyzer (PSA). The formation of finger like structure can be seen in the FESEM images when the AuNPs were incorporated into the polymer matrix. The EDX data showed that 18.66% and 12.67% of AuNPs atoms were present in the composite system thus proved the incorporation of AuNPs into the polymer matrix. A small red shift of the absorption peak in the UV-Vis of both PANI/AuNPs composites system may be due to the incorporation of AuNPs in the PANI matrix.

  2. Synthesis and characterization of polyaniline coated gold nanocomposites

    International Nuclear Information System (INIS)

    Zuber, Siti Nurzulaiha Mohd; Kamarun, Dzaraini; Zaki, Hamizah; Kamarudin, Mohamad Shukri; Thomas, Sabu; Kalarikkal, Nandakumar

    2015-01-01

    Considerable attention has been drawn during the last two decades to prepare nanocomposites consists of conducting polymer and noble metal due to their potential ability to generate a new class of material with novel optical, chemical, electronic or mechanical properties for various applications. In this work, an attempt has been made to synthesize nanocomposite of polyaniline (PANI) coated with gold nanoparticles (AuNPs) chemically with various types of surfactants such as polyvinylpyrrolidone (PVP), and sodium dodecyl sulphate (SDS) which act as stabilizing agents to help in stabilization of the PANI/Gold nanocomposites system. The synthesized nanocomposites were characterized by UV-Visible, field emission scanning electron microscope (FESEM) and particle size analyzer (PSA). The formation of finger like structure can be seen in the FESEM images when the AuNPs were incorporated into the polymer matrix. The EDX data showed that 18.66% and 12.67% of AuNPs atoms were present in the composite system thus proved the incorporation of AuNPs into the polymer matrix. A small red shift of the absorption peak in the UV-Vis of both PANI/AuNPs composites system may be due to the incorporation of AuNPs in the PANI matrix

  3. Highly hard yet toughened bcc-W coating by doping unexpectedly low B content

    KAUST Repository

    Yang, Lina; Zhang, Kan; Wen, Mao; Hou, Zhipeng; Gong, Chen; Liu, Xucheng; Hu, Chaoquan; Cui, Xiaoqiang; Zheng, Weitao

    2017-01-01

    of improved hardness (2 × larger than pure W) and superior toughness (higher crack formation threshold compared to pure W). We believe this is an innovative sight to design new generation of transition-metal-based multifunctional coatings. Besides, our results

  4. Trapped field properties of a Y–Ba–Cu–O bulk by pulsed field magnetization using a split coil inserted by iron yokes with various geometries and electromagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K., E-mail: t2216017@iwate-u.ac.jp [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Ainslie, M.D. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom); Fujishiro, H.; Naito, T. [Department of Physical Science and Materials Engineering, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Shi, Y-H.; Cardwell, D.A. [Bulk Superconductivity Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2017-05-15

    Highlights: • The trapped field characteristics of a standard Y–Ba–Cu–O bulk magnetized by PFM was investigated using a split coil with three kinds of iron yokes inserted in the bores of coil,both experimentally and numerically. • Numerical results encourage better understanding of the role of yoke, including the typical behavior of the magnetic flux, such as a flux jump during PFM. • A higher saturation magnetic flux density of the yoke material was effective to reduce flux flow in the descending stage of the pulsed field. • A conductivity of the yoke material also acts to reduce the velocity of the flux intruding the bulk because of eddy currents that flow in the yoke that oppose the magnetization, which reduces the temperature rise in the bulk. - Abstract: We have investigated, both experimentally and numerically, the trapped field characteristics of a standard Y–Ba–Cu–O bulk of 30 mm in diameter and 14 mm in thickness magnetized by pulsed field magnetization (PFM) using a split coil, in which three kinds of iron yoke are inserted in the bore of the coil: soft iron with a flat surface, soft iron with a taper, and permendur (50Fe + 50Co alloy) with a flat surface. The highest trapped field, B{sub Tmax}, of 2.93 T was achieved at 40 K in the case of the permendur yoke, which was slightly higher than that obtained for the flat soft iron or the tapered soft iron yokes, and was much higher than 2.20 T in the case without the yoke. The insertion effect of the yoke on the trapped field characteristics was also investigated using numerical simulations. The results suggest that the saturation magnetic flux density, B{sub sat}, of the yoke acts to reduce the flux flow due to its hysteretic magnetization curve and the higher electrical conductivity, σ, of the yoke material also acts to suppress the flux increase rate. A flux jump (or flux leap) can be reproduced in the ascending stage of PFM using numerical simulation, using an assumption of relatively

  5. Trapping a magnetic field of 7.9 T using a bulk magnet fabricated from stack of coated conductors

    International Nuclear Information System (INIS)

    Tamegai, T.; Hirai, T.; Sun, Y.; Pyon, S.

    2016-01-01

    Highlight: • A bulk magnet is fabricated using double stack of coated conductors (CC). • Magneto-optical imaging of the CC confirmed its homogeneity. • The fabricated bulk magnet has successfully trapped a magnetic field of 7.9 T. • The trapped magnetic field is consistent with the magnetic induction calculated from J_c(B) characteristics of the CC. - Abstract: We have fabricated a bulk magnet using double stack, each 130 layers, of short segments of coated conductors (CCs). The bulk magnet is magnetized by field-cooling in a magnetic field of 9 T down to 4.2 K. After reducing the magnetic field down to zero, we have successfully trapped a magnetic field of 7.9 T at the centre of the double stack. The magnetic field profile of the bulk magnet is calculated by fully considering the J_c(B) characteristics of the short segment of the CC. The trapped magnetic field values measured by Hall probes at three locations near the centre of the double stacks agree reasonably well with the calculated magnetic induction.

  6. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  7. Pulsed-Field Magnetization Properties of Bulk Superconductors by Employment of Vortex-Type Coils

    Science.gov (United States)

    Deng, Z.; Shinohara, N.; Miki, M.; Felder, B.; Tsuzuki, K.; Watasaki, M.; Kawabe, S.; Taguchi, R.; Izumi, M.

    Vortex-type magnetizing coils are gaining more and more attention to activate bulk superconductors in pulsed-field magnetization (PFM) studies, compared with solenoid-type ones. Following existing reports, we present experimental results of the different penetration patterns of magnetic flux between the two kinds of coils. It was found that the magnetic flux will primarily penetrate inside the bulk from the upper and lower surfaces by using vortex coils, rather than from the periphery in the case of solenoid coils. Moreover, the bulk submitted to a small pulsed-field excitation exhibits a similar field profile as the excitation field (convex or concave shape); a phenomenon named field memory effect. The use of vortex- or solenoid-type coils in PFM will pose an influence on the initial flux penetration patterns during the flux trapping processes, but both coils can finally excite the best conical trapped field shape of the bulk.

  8. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters

    Science.gov (United States)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  9. Coiled-coil forming peptides for the induction of silver nanoparticles

    International Nuclear Information System (INIS)

    Božič Abram, Sabina; Aupič, Jana; Dražić, Goran; Gradišar, Helena; Jerala, Roman

    2016-01-01

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  10. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  11. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  12. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  13. Effect of complexing agents and pH on microstructure and tribological properties of Co-W coatings produced by double pulse electrodeposition

    International Nuclear Information System (INIS)

    Su Fenghua; Liu Cansen; Huang Ping

    2012-01-01

    The Co-W coatings were produced by double pulse electrodeposition from aqueous bath with cobalt sulphate and sodium tungstate. Effect of complexing agent and pH value in the plating bath on the microstructure, morphology and hardness of the electrodeposited Co-W coatings were investigated using an X-ray diffraction (XRD), scanning electron microscope (SEM) and a Vickers hardness tester, respectively. The friction and wear properties of the Co-W coatings deposited from different baths were evaluated with a ball-on-disk UMT-3MT tribometer. The correlation among the electrodepositing condition that varied with the complexing agent or pH value, the microstructure and the tribological properties of the deposited Co-W coatings were discussed. The results show that the complexing agent and pH value significantly affect the microstructure and tribological properties of the electrodeposited Co-W coatings. The sodium citrate is the best complexing agent to improve the tribological properties of the electrodeposited Co-W coatings at pH 6.0, followed by the sodium gluconate. The Co-W coatings electrodeposited from the near neutral bath can obtain better tribological properties than those deposited from strong acid or strong alkaline bath. The differences of the tribological properties for Co-W coatings from different baths were attributed to their different hardness, crystal structure and morphological characterizations, which can be optimized by the electrodepositing condition, i.e., the complexing agent and pH value in bath.

  14. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

    Directory of Open Access Journals (Sweden)

    Christina Rosman

    2014-12-01

    Full Text Available In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  15. Lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings produced by pulse plating

    DEFF Research Database (Denmark)

    Panagopoulos, C. N.; Papachristos, V. D.; Christoffersen, Lasse

    2000-01-01

    The lubricated sliding wear behaviour of Ni-P-W multilayered alloy coatings sliding against hardened steel discs was studied, in a pin-on-disc set-up. The multilayered coatings had been deposited on mild steel pins by pulse plating and they consisted of ternary Ni-P-W layers of high and low W con...... lubrication regimes. The wear mechanisms in each lubrication regime were studied and in mixed lubrication regime, the effect of normal load and sliding speed on wear volume and friction coefficient was also studied. (C) 2000 Elsevier Science S.A. All rights reserved....

  16. Final Test of the W7-X Control Coils Power Supply and its Integration into the Overall Control Environment

    International Nuclear Information System (INIS)

    Fuellenbach, F.; Rummel, T.; Pingel, S.; Laqua, H.; Mueller, I.; Jauregi, E.

    2006-01-01

    In order to be able to vary the magnetic configuration of WENDELSTEIN 7-X (W7-X) at the plasma edge and allow sweeping of the power across the divertor target plates 10 '' control coils '' are installed inside the plasma vessel behind the baffle plates of the divertor. The coils are made of a hollow copper profile with eight turns each. The dimensions of the coils are 2,05 m x 0,35 m x 0,35 m with a three dimensional shape to fit into the narrow space between the baffles and the wall of the plasma vessel. Each of the ten coils is supplied by independent power supplies each providing bi-directionally a direct current of 2500 A with high accuracy and low ripple. To allow sweeping the power deposition from the plasma across the target plates the power supplies provide an alternating current of up to 625 A with frequencies up to 20 Hz which is synchronised between the ten supplies in order to maintain the symmetry of the magnetic field. The total output current of a power supply is a superposition of a direct current and an alternating current, where both parts have to be independently adjustable. JEMA, Spain provided the complete set of power supplies which are based on 10 independent four-quadrant power supplies with a link rectifier and includes a cooling water unit, a dedicated distribution and a central control and visualization system. All ten power supply units and auxiliary systems have meanwhile been installed and finally tested at the W7-X site in Greifswald. The paper focuses on the results of the final tests and measures to integrate the power supply system to the overall control system including the central PLC and PC's for experiment control, data acquisition- and security systems. (author)

  17. Split coil made of (RE)BCO pancake coils for IC(B) anisotropy measurements of superconductors

    International Nuclear Information System (INIS)

    Frolek, L; Pardo, E; Gömöry, F; Šouc, J; Pitel, J

    2014-01-01

    Measurement of the I c (B) anisotropy is standard characterization of superconducting tapes, wires or cables. This contribution presents a split coil consisting on two superconducting pancake coils in order to generate the magnetic field necessary for this kind of measurement. Both coils were made using (RE)BCO – based second generation (2G) coated conductor tape with cross section 0.1 mm × 12 mm. The individual turns of the tape were insulated by a fiberglass tape without impregnation. These coils have identical inner and outer diameter and number of turns. Their inner and outer diameters are 50 mm and 80 mm, respectively, and they have 62 turns. The length of conductor in each coil is approximately 13 m. The distance between both pancake coils is 22 mm. Individual coils and the complete split coil were characterized in liquid nitrogen bath. Their parameters, like the critical currents, E(I) characteristics and magnetic field of complete split coil, were measured and interpreted. The split coil can be used up to magnetic fields of 210 mT. The length between the potential taps on the sample can be up to 20 mm, while the magnetic field decrease is lower than 1% on this length.

  18. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu Ziming; Sun Hongjing; Gao Faming, E-mail: fmgao@ysu.edu.cn; Hou Li; Li Na [Yanshan University, Key Laboratory of Applied Chemistry (China)

    2012-12-15

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe-Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe-Au process.

  19. Synthesis and magnetic property of T4 virus-supported gold-coated iron ternary nanocomposite

    Science.gov (United States)

    Xu, Ziming; Sun, Hongjing; Gao, Faming; Hou, Li; Li, Na

    2012-12-01

    Herein, we present a novel method based on the use of the symmetrical T4 bacteriophage capsid as a scaffold for preparing the gold-coated iron ternary core/shell nanostructure. Results showed that the thick gold shell was obtained to effectively protect Fe core from oxidation. Magnetic measurements showed that the nanocomposites were superparamagnetic at room temperature with a blocking temperature of about 35 K. At 3 K, its coercivity of 1142.86 Oe was larger than the existing experimental values. The magnetic property of Au/T4 was also tested, demonstrating the source of the magnetic sample arising from the Fe core only. The absorption spectrum of the Fe@Au/T4 complex was measured and compared with gold/virus. Different thickness gold shells were controlled in the synthesis by tuning the Au salt addition. On the basis of results and discussion, we further speculated the general growing mechanism of the template-supported Fe@Au process.

  20. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    CERN Document Server

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Kurchaninov, L; Jonsell, S; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antipr...

  1. Gold nanolayer and nanocluster coatings induced by heat treatment and evaporation technique

    Czech Academy of Sciences Publication Activity Database

    Schaub, A.; Slepička, P.; Kašpárková, I.; Malinský, Petr; Macková, Anna; Švorčík, V.

    2013-01-01

    Roč. 8, MAY (2013), s. 248 ISSN 1931-7573 R&D Projects: GA ČR(CZ) GAP108/10/1106; GA ČR GA106/09/0125 Institutional support: RVO:61389005 Keywords : glass substrate * gold coating * nanostructure * surface properties * thermal annealing Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.524, year: 2012 http://www.nanoscalereslett.com/content/pdf/1556-276X-8-249.pdf

  2. Micro-coil NMR to monitor optimization of the reconstitution conditions for the integral membrane protein OmpW in detergent micelles

    International Nuclear Information System (INIS)

    Stanczak, Pawel; Zhang Qinghai; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2012-01-01

    Optimization of aqueous solutions of the integral membrane protein (IMP) OmpW for NMR structure determination has been monitored with micro-coil NMR, which enables the acquisition of NMR spectra using only micrograms of protein and detergent. The detergent 30-Fos (2-undecylphosphocholine) was found to yield the best 2D [ 15 N, 1 H]-TROSY correlation NMR spectra of [ 2 H, 15 N]-labeled OmpW. For the OmpW structure determination we then optimized the 30-Fos concentration, the sample temperature and long-time stability, and the deuteration level of the protein. Some emerging guidelines for reconstitution of β-barrel integral membrane proteins in structural biology are discussed.

  3. Metallization of Kevlar fibers with gold.

    Science.gov (United States)

    Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G

    2011-06-01

    Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society

  4. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer

    Science.gov (United States)

    Kaveh, M.; Gao, Q.; Jagadish, C.; Ge, J.; Duscher, G.; Wagner, H. P.

    2016-12-01

    Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq3) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ˜10 nm thick Au coating but without an Alq3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq3 coated NWs.

  5. Faraday rotation enhancement of gold coated Fe2O3 nanoparticles: comparison of experiment and theory.

    Science.gov (United States)

    Dani, Raj Kumar; Wang, Hongwang; Bossmann, Stefan H; Wysin, Gary; Chikan, Viktor

    2011-12-14

    Understanding plasmonic enhancement of nanoscale magnetic materials is important to evaluate their potential for application. In this study, the Faraday rotation (FR) enhancement of gold coated Fe(2)O(3) nanoparticles (NP) is investigated experimentally and theoretically. The experiment shows that the Faraday rotation of a Fe(2)O(3) NP solution changes from approximately 3 rad/Tm to 10 rad/Tm as 5 nm gold shell is coated on a 9.7 nm Fe(2)O(3) core at 632 nm. The results also show how the volume fraction normalized Faraday rotation varies with the gold shell thickness. From the comparison of experiment and calculated Faraday rotation based on the Maxwell-Garnett theory, it is concluded that the enhancement and shell dependence of Faraday rotation of Fe(2)O(3) NPs is a result of the shifting plasmon resonance of the composite NP. In addition, the clustering of the NPs induces a different phase lag on the Faraday signal, which suggests that the collective response of the magnetic NP aggregates needs to be considered even in solution. From the Faraday phase lag, the estimated time of the full alignment of the magnetic spins of bare (cluster size 160 nm) and gold coated NPs (cluster size 90 nm) are found to be 0.65 and 0.17 μs. The calculation includes a simple theoretical approach based on the Bruggeman theory to account for the aggregation and its effect on the Faraday rotation. The Bruggeman model provides a qualitatively better agreement with the experimentally observed Faraday rotation and points out the importance of making a connection between component properties and the average "effective" optical behavior of the Faraday medium containing magnetic nanoparticles. © 2011 American Institute of Physics

  6. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  7. Citric acid-coated gold nanoparticles for visual colorimetric recognition of pesticide dimethoate

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Aqib Iqbal; Walia, Shanka; Acharya, Amitabha, E-mail: amitabhachem@gmail.com, E-mail: amitabha@ihbt.res.in [CSIR-Institute of Himalayan Bioresource Technology, Biotechnology Division (India)

    2016-08-15

    A colorimetric chemo-sensor based on citric acid-coated gold NPs (C-GNP) showed a linear increase in fluorescence intensity with increasing concentration of pesticide dimethoate (DM). The limit of detection was found to be between ~8.25± 0.3 and 20 ± 9.5 ppm. The increase in fluorescence intensity was suggested to have originated from the soft–soft interaction between C-GNPs and DM via sulfur group which is absent in pesticide dicofol (DF). Similar studies with citric acid-coated silver NPs (C-SNPs) did not result any change in the fluorescence intensity. The microscopic studies suggested aggregation of C-GNPs in the presence of DM but not in case of DF.Graphical Abstract.

  8. Vacuum Plasma Spraying W-coated Reduced Activation Structural Steels for Fusion Plasma Facing Components

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Tungsten (W) and its alloys are considered as candidate materials for plasma facing materials of the first wall and diverter components in fusion reactor systems because of high sputtering resistance and low tritium retention in a fusion environment. Therefore, it is considered that the joining between W and reduced activation structural steels, and its evaluation, are critical issues for the development of fusion reactors. However, the joining between these materials is a very challenging process because of significant differences in their physical properties, particularly the mismatch of coefficients of thermal expansion (CTE). For instance, the CTE of pure W is known to be about 4.3Χ10{sup -6}K{sup -1}; however, that of martensitic steels reaches over three times, about 12-14Χ10{sup -6}K{sup -1} at room temperature even up to 373K. Nevertheless, several joining techniques have been developed for joining between W and structural steels, such as a vapor deposition method, brazing and diffusion bonding. Meanwhile, vacuum plasma spraying (VPS) is supposed to be one of the prospective methods to fabricate a sufficient W layer on the steel substrates because of the coating of a large area with a relatively high fabricating rate. In this study, the VPS method of W powders on reduced activation steels was employed, and its microstructure and hardness distribution were investigated. ODS ferritic steels and F82H steel were coated by VPS-W, and the microstructure and hardness distribution were investigated. A microstructure analysis revealed that pure W was successfully coated on steel substrates by the VPS process without an intermediate layer, in spite of a mismatch of the CTE between dissimilar materials. After neutron irradiation, irradiation hardening significantly occurred in the VPSW. However, the hardening of VPS-W was lesser than that of bulk W irradiated HFIR at 773K. Substrate materials, ODS ferritic steels, and F82H steel, did not show irradiation hardening

  9. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deram, V. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France) and Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France)]. E-mail: virginie.deram@ensmp.fr; Turrell, S. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France); Darque-Ceretti, E. [Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France); Aucouturier, M. [Centre de Recherche et de Restauration des Musees de France, UMR CNRS 171, Palais du Louvre, Porte des Lions, 14 quai F. Mitterrand, 75001 Paris Cedex (France)

    2006-09-25

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy.

  10. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Laboratório de Instrumentação Nuclear; Carvalho, M.L. [Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa (Portugal); Zanatta, E.M. [Museu Imperial, Petropolis, RJ (Brazil). Laboratório de Conservação e Restauração; Cesareo, R., E-mail: rc.nardes@gmail.com [Instituto de Matemática e Física, Universidade de Sassari (Italy)

    2017-07-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  11. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    International Nuclear Information System (INIS)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T.; Lopes, R.T.; Zanatta, E.M.

    2017-01-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  12. Coating of gold nanoparticles for medical application: UV-VIS

    Science.gov (United States)

    Martínez Espinosa, Juan Carlos; Ramírez, Nayem Amtanus Chequer; Funes Oliva, Luis Enrique; Córdova Fraga, Teodoro; Bernal Alvarado, Jesús; Reyes Pablo, Aldelmo; Núñez, Anita Rosa Elvira

    2014-11-01

    The use of nanostructured materials has gained strength in recent years in the biomedical area; new applications such as the detection of components in living cells have been used in pharmaceutical area, specifically to study the interaction of various antitumor drugs in living tissues, the detection of genes that are closely related to some type of cancer, as well as the detections of protein biomarkers for diseases also have been studied in various research laboratories around of the world. In this work, we characterize the variation of the absorbance of gold nanoparticles (GNPs) coated with different concentration of Bovine Serum Albumin (BSA) protein. We use GNPS of 60 nm of the trademark-TED PELLA, the BSA protein trademark of Sigma Aldrich and based on that proposed protocol by Chithrani et al., 2009 with purposes to obtain an alternative model to determine the optimal stability of the nanoparticles coated with the protein. The colloidal solutions were prepared with BSA at different concentrations (0.25, 0.5, 0.75 and 1% M/V), and were centrifuged at 15,000 rpm for 90 minutes (centrifuge Model Z383K) and a constant temperature of 25 °C. All the spectra sets were obtained within the range from 400 to 700 nm using an UV-VIS spectrophotometer (Thermo Scientific Model 51118650). The results showed a R2 of 0.99 for an exponential curve correlation between the concentration of BSA, and the absorbance measured. We found at higher concentrations of BSA, there is a decrease in the intensity of the absorption spectra in the plasmon resonance. This preliminary model obtained can be used in the stabilization of gold nanoparticles with different proteins of biomedical interest in future experiments and support for functionalization of GNPs with specific membrane markers.

  13. Conserved residues in the coiled-coil pocket of human immunodeficiency virus type 1 gp41 are essential for viral replication and interhelical interaction

    International Nuclear Information System (INIS)

    Mo Hongmei; Konstantinidis, Alex K.; Stewart, Kent D.; Dekhtyar, Tatyana; Ng, Teresa; Swift, Kerry; Matayoshi, Edmund D.; Kati, Warren; Kohlbrenner, William; Molla, Akhteruzzaman

    2004-01-01

    The human immunodeficiency virus type 1 (HIV-1) gp41 plays an important role in mediating the fusion of HIV with host cells. During the fusion process, three N-terminal helices and three C-terminal helices pack in an anti-parallel direction to form a six-helix bundle. X-ray crystallographic analysis of the gp41 core demonstrated that within each coiled-coil interface, there is a deep and large pocket, formed by a cluster of residues in the N-helix coiled-coil. In this report, we systematically analyzed the role of seven conserved residues that are either lining or packing this pocket on the infectivity and interhelical interaction using novel approaches. Our results show that residues L568, V570, W571, and K574 of the N-helix that are lining the side chain and right wall of the pocket are important for establishing a productive infection. Mutations V570A and W571A completely abolished replication, while replication of the L568A and K574A mutants was significantly attenuated relative to wild type. Similarly, residues W628, W631, and I635 of the C-helix that insert into the pocket are essential for infectivity. The impaired infectivity of these seven mutants is in part attributed to the loss in binding affinity of the interhelical interaction. Molecular modeling of the crystal structure of the coiled-coil further shows that alanine substitution of those residues disrupts the hydrophobic interaction between the N- and C-helix. These results suggest that the conserved residues in the coiled-coil domain play a key role in HIV infection and this coiled-coil pocket is a good target for development of inhibitors against HIV. In addition, our data indicate that the novel fluorescence polarization assay described in this study could be valuable in screening for inhibitors that block the interhelical interaction and HIV entry

  14. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    Science.gov (United States)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  15. Reductive trapping of [(OC){sub 5}W-W(CO){sub 5}]{sup 2-} in a mixed-valent Sm{sup II/III} calix[4]pyrrolide sandwich

    Energy Technology Data Exchange (ETDEWEB)

    Deacon, Glen B.; Guo, Zhifang [School of Chemistry, Monash University, VIC (Australia); Junk, Peter C.; Wang, Jun [College of Science and Engineering, James Cook University, Townsville, QLD (Australia)

    2017-07-10

    Reduction of tungsten hexacarbonyl by the divalent samarium(II) complex [Sm{sub 2}(N{sub 4}Et{sub 8})(thf){sub 4}] ((N{sub 4}Et{sub 8}){sup 4-}=meso-octaethylcalix[4]pyrrolide) in toluene at ambient temperature gave the remarkable heteronuclear mixed-valent samarium(II/III)/tungsten complex [{(thf)_2Sm"I"I(N_4Et_8)Sm"I"I"I(thf)}{sub 2}{(μ-OC)_2W_2(CO)_8}], which features the trapping of a rare [W{sub 2}(CO){sub 10}]{sup 2-} anion with an unsupported W-W bond. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    Science.gov (United States)

    Schlicke, Hendrik; Schröder, Jan H.; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-07-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  17. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    International Nuclear Information System (INIS)

    Schlicke, Hendrik; Schroeder, Jan H; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-01-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  18. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, H. [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Simchi, A., E-mail: simchi@sharif.edu [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Imani, M. [Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Costa, B.F.O. [CEMDRX, Department of Physics, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2012-11-15

    by nano-emulsion procedure at w=23, [Fe]=2.12 M, and [NH{sub 4}OH]=30%. Under this condition, NPs with dimension of 9{+-}3 nm and magnetic saturation of 54 emu/g are obtained. The synthesized SPIONs exhibited acceptable biocompatibility, >80% viability after 24 h incubation in L929 cells at concentrations <0.1 mg/mL. Black-Right-Pointing-Pointer Conformal coating of SPIONs by a gold shell ({approx}4 nm) was performed and confirmed by various analytical techniques including, TEM, SPR, XRD, and XPS. VSM study showed a decrease in the magnetic saturation in expense of an increase in the coercivity due to the non-magnetic nature of the shell and coarser NPs. In spite of that, the presence of gold favours immobilization of affinity ligands on the surface of SPIONs for biomedical applications.

  19. Amplitude correlation analysis of W7-AS Mirnov-coil array data and other transport relevant diagnostics

    International Nuclear Information System (INIS)

    Pokol, G.; Por, G.; Zoletnik, S.; Basse, N.P.

    2005-01-01

    This work is based on the amplitude correlation analysis of the signals from a poloidal Mirnov-coil array on the Wendelstein 7 - Advanced Stellarator (W7-AS). The motivation behind this work is an earlier finding, that changes in the RMS amplitude of Mirnov-coil signals are correlated with the amplitude of small scale density turbulence measured by CO2 Laser Scattering. Based on this and other measurements, the hypothesis was set, that some of the magnetic fluctuations are caused by transient MHD modes excited by large turbulent structures. The statistical dependencies between the power modulations of different eigenmodes can provide information about the statistics of these structures. Our amplitude correlation method is based on linear continuous time-frequency representations of the signal, we use Short-Time Fourier Transformation (STFT) with Gabor-atoms to map the signal onto the time-frequency plane, as two dimensional power density distributions. From these transforms we can recover the power modulation of different frequency bands. Provided the selection of the resolution of the transforms and the limits of the frequency bands were correct, the time series calculated this way resembles the original power fluctuation of the selected eigenmode. The only distortion introduced is a convolution smoothing by the time-window used in the transformation. Detailed correlation analysis between different bandpowers of the Mirnov-coil array signals were carried out and presented in bad and good confinement states. In order to reveal the true structure and cause of magnetic fluctuations Mirnov-coil diagnostic signals were also compared with Lithium beam and CO2 Laser Scattering measurements. In our analysis we have found, that there was a strong and systematic difference in the cross-correlations of power bands between different confinement states. (author)

  20. Highly hard yet toughened bcc-W coating by doping unexpectedly low B content

    KAUST Repository

    Yang, Lina

    2017-08-18

    Either hardness or toughness has been the core interest in scientific exploration and technological pursuit for a long time. However, it is still a big challenge to enhance the hardness and toughness at the same time, since the improvement of one side is always at the expense of the other one. Here, we have succeeded in dealing with this pair of conflict based on tungsten (W) coating by doping boron (B) via magnetron co-sputtering. The results reveal that the introduction of low concentrations of B (6.3 at. %), in the doping regime, leads to the formation of W(B) supersaturated solid solution with refined grains. Meanwhile, the doping-induced higher compressive stress, higher H/E* and denser microstructure result in a surprising combination of improved hardness (2 × larger than pure W) and superior toughness (higher crack formation threshold compared to pure W). We believe this is an innovative sight to design new generation of transition-metal-based multifunctional coatings. Besides, our results are applicable for industrial application because it can be realized by simple manufacturing approaches, e.g. magnetron sputtering technology.

  1. Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Toor, Anju, E-mail: atoor@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); So, Hongyun, E-mail: hyso@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Pisano, Albert P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093 (United States)

    2017-08-31

    Highlights: • Ligand-modified gold NP/SU-8 nanocomposites were synthesized and demonstrated. • Particle agglomeration and dispersion were characterized with different NPs concentration. • Nanocomposites showed higher average dielectric permittivity compared to SU-8 only. • Relatively lower dielectric loss (average 0.09 at 1 kHz) was achieved with 10 % w/w NPs. - Abstract: This article reports the enhanced dielectric properties of a photodefinable polymer nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of the dielectric permittivity and loss tangent on the particle concentration, and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  2. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  3. Multipactor suppression by micro-structured gold/silver coatings for space applications

    Science.gov (United States)

    Nistor, Valentin; González, Luis A.; Aguilera, Lydya; Montero, Isabel; Galán, Luis; Wochner, Ulrich; Raboso, David

    2014-10-01

    The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of Ku-band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4-6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were diminished by 25% with respect to the values attained in the tests of the standard anti-multipactor coating, Alodine.

  4. Tornado type closed magnetic trap for an ECR source

    CERN Document Server

    Abramova, K B; Voronin, A V; Zorin, V G

    1999-01-01

    We propose to use a Tornado type closed magnetic trap for creation of a source of mul-ticharged ions with plasma heating by microwave radiation. Plasma loss in closed traps is deter-mined by diffusion across the magnetic field, which increases substantially plasma confinement time as compared to the classical mirror trap [1]. We propose to extract ions with the aid of additional coils which partially destroy the closed structure of the magnetic lines in the trap, but don not influence the total confinement time. This allows for producing a controlled plasma flux that depends on the magnetic field of the additional coil. The Tornado trap also possesses merits such as an opportunity to produce high magnetic fields up to 3 T, which makes possible heating and confinement of plasma with a high density of electrons; plasma stability to magneto-hydrodynamic perturbations because the magnetic field structure corresponds to the "min B" configuration; and relatively low costs. All estimates and calculations were carrie...

  5. The cutting properties and wear of the knives with DLC and W-DLC coatings, deposited by PVD methods, applied for wood and wood-based materials machining

    OpenAIRE

    M. Pancielejko; A. Czyżniewski; A. Gilewicz; V. Zavaleyev; W. Szymański

    2012-01-01

    Purpose: Performance of DLC and W-DLC coated woodworking knives was investigated. The results of testing DLC and W-DLC coating properties as well as the results of life-time tests in the form of wear of HSS and HM knives with these coatings is presents.Design/methodology/approach: DLC coating was deposited by MCVA method, and W-DLC coating was deposited by pulsed RMS. Tests of knives coated with DLC and W-DLC as uncoated ones was made by machining: MDF board, pinewood slats and floorboard - u...

  6. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    International Nuclear Information System (INIS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  7. Nano-magnetite coated with gold: alternative oncological therapy with magnetic hyperthermia

    International Nuclear Information System (INIS)

    Cordova F, T.; Jimenez G, O.; Basurto I, G.; Martinez E, J. C.

    2017-10-01

    Localized hyperthermia performed through the use of nanoparticles is one of the most promising procedures for the cancer treatment. In this work, the synthesis of magnetite nanoparticles (Fe 2 O 3 ) was carried out using the thermal decomposition method. Subsequently, these nanoparticles were coated with gold and suspended in aqueous phase. As a result, nanoparticles capable of being heated by the application of an alternating magnetic field or through the use of infrared radiation were obtained. As an additional feature, these nanoparticles are biocompatible thanks to their golden coating. The synthesized nanoparticles can be functionalized by the conjugation of a molecule (aptamer, antibody, peptide, etc.) whose target is a cancer cell in order to adhere to it the nanoparticle-marker complex, to subsequently carry out a heating with the objective of induce cell death. In conclusion, the synthesized nanoparticles allow providing an alternative treatment for cancer through the use of localized hyperthermia, either using magnetic or infrared heating. (Author)

  8. A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles.

    Science.gov (United States)

    Ai Tran, Hoang Ngoc; Sousa, Fernanda; Moda, Fabio; Mandal, Subhra; Chanana, Munish; Vimercati, Chiara; Morbin, Michela; Krol, Silke; Tagliavini, Fabrizio; Legname, Giuseppe

    2010-12-01

    Gold nanoparticles coated with oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and polystyrenesulfonate, were examined for potential inhibition of prion protein aggregation and prion (PrPSc) conversion and replication. Different coatings, finishing with a positive or negative layer, were tested, and different numbers of layers were investigated for their ability to interact and reduce the accumulation of PrPSc in scrapie prion infected ScGT1 and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle concentration in the picomolar range. Finally, incubation periods of prion-infected mice treated with nanomolar concentrations of gold nanoparticles were significantly longer compared to untreated controls.

  9. Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Dolatshahi-Pirouz, A; Jensen, Thomas Hartvig Lindkjær; Kolind, Kristian

    2011-01-01

    In order to identify the cellular mechanisms leading to the biocompatibility of hydroxyapatite implants, we studied the interaction of human bone marrow derived stromal (mesenchymal) stem cells (hMSCs) with fibronectin-coated gold (Au) and hydroxyapatite (HA) surfaces. The adsorption of fibronectin...

  10. Considerations against a force compensated coil

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1988-08-01

    The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the sources balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation between structural mass M and stored energy E, M ≥/rho/E/σ/sub w/, that is valid for all magnetic systems is developed, where /rho/ is the density of the structure and σ/sub w/ is the working stress in the structure. 12 refs., 2 figs

  11. Considerations against a force compensated coil

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1988-08-01

    The cost of structural components in a large superconducting coil may well exceed the coil and cryostat cost. As a result, the idea of constructing a system composed of two different coil types assembled in such a way that the forces balance and reduce the total structural requirement is oft proposed. A suitable geometry has never been found for the fundamental reason that there can be no force compensated solution. In this paper, the general problem is presented and an analysis of the energy stored and stresses produced in the structure are described in a fundamental way. Finally, the relation between structural mass M and stored energy E, M ≥ /rho/E/σ/sub w/, that is valid for all magnetic systems is developed, where /rho/ is the density of the structure and σ/sub w/ is the working stress in the structure. 8 refs., 2 figs

  12. Current contact device for a superconducting magnet coil

    International Nuclear Information System (INIS)

    Hieronymus, H.

    1987-01-01

    The invention concerns a current supply device for a superconducting magnet coil to be shortcircuited, with a separating device per coil end, which contains a fixed cooled contact and a moving contact connected to a power supply device and a mechanical actuating device for closing and opening the contacts. When closing the heated contact on to the cooled contact, relatively large quantities of heat can be transferred to the cooled contact and therefore to the connected superconducting coil end and can cause normal conduction there. The invention therefore provides that the mass ratio of the cooled contact to the moving contact is at least 5:1, preferably at least 10:1, and that the cooled contact part is provided, at the end away from the contact area, with means for increasing the area, for example cooling fins and is connected to the coil end has a thermal resistance between the contact area and the coil end of at least 0.2 k/W, preferably at least 0.5 k/W per 1000 A of current to be transmitted. (orig.) [de

  13. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Yu, Ping; Balslev, Søren

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5 x 10(6) atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  14. High uniformity magnetic coil for search of neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Perez Galvan, A., E-mail: apg@caltech.edu [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Plaster, B. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506 (United States); Boissevain, J.; Carr, R.; Filippone, B.W.; Mendenhall, M.P.; Schmid, R. [W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, 91125 (United States); Alarcon, R.; Balascuta, S. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2011-12-21

    We present in this article a prototype magnetic coil that has been developed for a new search for the electric dipole moment of the neutron at the Spallation Neutron Source at Oak Ridge National Laboratory. The gradients of the magnetic field generated by the coil have been optimized to reduce known systematic effects and to yield long polarization lifetimes of the trapped particles sampling the highly uniform magnetic field. Measurements of the field uniformity of this prototype magnetic coil are also presented.

  15. A Study on the Corrosion and Wear Behavior of Electrodeposited Ni-W-P Coating

    Science.gov (United States)

    Lee, Hung Bin; Wu, Meng Yen

    2017-10-01

    In this study, the tribocorrosion of electroplated Ni-W-P alloy coating (3.9 to 4.3 at. pct W and 13.1 to 14.7 at. pct P) on a cylindrical copper substrate was investigated using a block-on-ring tester. The wear and corrosion performance of the coating and their synergic effect were measured at different overpotentials. Under simple immersion corrosion conditions with an increasing overpotential from open-circuit potential to +400 mVSCE, the surface of the coating initially showed no obvious corrosion, eventually developing pitting holes that subsequently enlarged and showing the spreading of cracks. The corrosion products were a mixture of NiO, WO3, and phosphate, and the corroded surface was P-rich, porous, and less crystalline than the pristine coating. Corrosion and mechanical wear had little influence on tribocorrosion at low overpotential values. However, the synergic effect drastically became stronger at high overpotentials. The surface was full of large pitting holes and grooves. The weight loss due to the corrosion component increased linearly with the overpotential but was limited in comparison with the wear component, which was the main cause of weight loss. On the other hand, the friction coefficient first increased and then decreased with an increase in overpotential. Both the surface morphology of the corroded coating and the thickness of the corrosion oxide play important roles in this friction characteristic.

  16. Multipactor suppression by micro-structured gold/silver coatings for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, Valentin, E-mail: valentin.nistor@uam.es [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); González, Luis A. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Aguilera, Lydya; Montero, Isabel [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Galán, Luis [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Wochner, Ulrich [Tesat Spacecom GmbH and Co. KG,Gerberstr. 49, D-71522 Backnang (Germany); Raboso, David [European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), 2200 AG Noordwijk (Netherlands)

    2014-10-01

    Highlights: • Total suppression of the multipactor effect was achieved for a specific configuration of a high RF power K{sub u}-band waveguide. • Secondary emission of electrons was decreased by surfaces of high aspect ratio. • Simple techniques were used in the manufacturing of metallic microscopical rough coatings. • Surface analysis of the treatment was performed. • The RF insertion losses were improved with respect to Alodine, the standard coating for space applications. - Abstract: The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of K{sub u}-band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4–6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were

  17. Multipactor suppression by micro-structured gold/silver coatings for space applications

    International Nuclear Information System (INIS)

    Nistor, Valentin; González, Luis A.; Aguilera, Lydya; Montero, Isabel; Galán, Luis; Wochner, Ulrich; Raboso, David

    2014-01-01

    Highlights: • Total suppression of the multipactor effect was achieved for a specific configuration of a high RF power K u -band waveguide. • Secondary emission of electrons was decreased by surfaces of high aspect ratio. • Simple techniques were used in the manufacturing of metallic microscopical rough coatings. • Surface analysis of the treatment was performed. • The RF insertion losses were improved with respect to Alodine, the standard coating for space applications. - Abstract: The secondary electron emission (SEE) from materials used in high power RF devices in space is the main trigger and sustaining mechanism of the resonant avalanche electron discharge known as the multipactor effect. It limits the attainable power of those devices. During recent decades, some scientific research has been focused on material properties for obtaining anti-multipactor coatings of low secondary emission yield (SEY). The European Space Agency (ESA) is leading a technological research on a new approach based on surface roughness that might perform as a kind of blackbody or Faraday cage effect. A multilayer coating structure was adopted for fulfilling the stringent requirements of the space. The surface of a standard silver plating was modified by a two-step treatment. First, a wet chemically etching process created a roughness of high aspect ratio, in the scale of microns. Secondly, the surface was coated with a protective 2 μm overlayer of gold, using magnetron sputtering. This anti-multipactor coating has been tested on several types of K u -band WR75 waveguide transformers and band-pass filters, with excellent results. The multipactor effect was suppressed for two waveguides, even when applying the maximum available power levels. As for the other final four, the increase of multipactor power level was in the range of 4–6 dB. These results were obtained after more than one year of air exposure. In spite of the strong roughness, the insertion losses were

  18. Deposition and cyclic oxidation behavior of a protective (Mo,W)(Si,Ge) 2 coating on Nb-base alloys

    International Nuclear Information System (INIS)

    Mueller, A.; Wang, G.

    1992-01-01

    A multicomponent diffusion coating has been developed to protect Nb-base alloys from high-temperature environmental attach. A solid solution of molybdenum and tungsten disilicide (Mo, W)Si 2 , constituted the primary coating layer which supported a slow-growing protective silica scale in service. Germanium additions were made during the coating process to improve the cyclic oxidation resistance by increasing the thermal expansion coefficient of the vitreous silica film formed and to avoid pesting by decreasing the viscosity of the protective film. In this paper, the development of the halide-activated pack cementation coating process to produce this (Mo,W)(Si,Ge) 2 coating on Nb-base alloys is described. The results of cyclic oxidation for coupons coated under different conditions in air at 1370 degrees C are presented. Many coupons have successfully passed 200 1 h cyclic oxidation tests at 1370 degrees C with weight-gain values in the range of 1.2 to 1.6 mg/cm 2

  19. Epoxy resin casting of trim coils for superconducting cyclotron

    International Nuclear Information System (INIS)

    Hajra, D.P.; Sarkar, S.C.; Saha, Subimal; Chaudhuri, J.; Bhandari, R.K.

    2006-01-01

    The life of any magnet depends on the soundness of the coil insulation, its aging properties and initial and final endurance limitations. The insulation of water-cooled trim coils for superconducting cyclotron is made of glass fibre tape with heat cured unfilled epoxy resin combination. This type of insulation has been selected to achieve excellent stability against thermal and electromagnetic stresses, tight dimensional control, good dielectric strength, non-hygroscopic and considerably low vapour-pressure as it will be inside rough vacuum. The process development and the difficulties encountered for appropriate selection of epoxy resin combination, potting, vacuum process, curing cycle, control of coil dimension to achieve a sound coil absolutely free from cracks, trapped air and voids has been discussed. (author)

  20. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    International Nuclear Information System (INIS)

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-01-01

    Graphical abstract: - Highlights: • Thin layers of gold were deposited on glass substrate. • Layers were modified by two different ligands, 1,4-dithiothreitol and L-glutathione. • Red shift of SPR band was observed in spectra after modification of Au by thiols. • Charge transfer between Au and S atoms leads to ferromagnetic behaviour of samples. - Abstract: In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV–vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers

  1. Development and testing of 140 GHz absorber coatings for the water baffle of W7-X cryopumps

    International Nuclear Information System (INIS)

    Floristan, Miriam; Mueller, Philipp; Gebhardt, Andreas; Killinger, Andreas; Gadow, Rainer; Cardella, Antonio; Li, Chuanfei; Stadler, Reinhold; Zangl, Guenter; Hirsch, Matthias; Laqua, Heinrich P.; Kasparek, Walter

    2011-01-01

    Due to the relatively high strayfield radiation (140 GHz) from the electron cyclotron radio frequency heating system to which the W7-X cryopumps are expected to be subjected, coating systems acting as an efficient absorber for 140 GHz radiation have been developed for the water-cooled baffle shield in order to reduce the thermal load on the liquid N shield and the liquid He cryopanel. Several types of oxide ceramic coatings were applied on planar copper substrates by Atmospheric Plasma Spraying. The influence of the process parameters on the coating properties and microwave absorbing capability was analysed. It was found that film thickness and microstructure of the sprayed coatings have a significant influence on microwave absorption behaviour. For Al 2 O 3 /TiO 2 coatings, absorption values over 90% were obtained for the 140 GHz probing beam. After optimisation of the coating structure for maximum microwave absorption, the coating procedure was adapted by special robot trajectories to the complex water baffle geometry. The selected spray parameters and kinematics were then used for the complete coating of four mock-ups, which have been tested in the W7-X strayfield test facility Mistral. The mock-ups showed absorption values of 75%.

  2. Development and testing of 140 GHz absorber coatings for the water baffle of W7-X cryopumps

    Energy Technology Data Exchange (ETDEWEB)

    Floristan, Miriam, E-mail: miriam.floristan@gsame.uni-stuttgart.de [Graduate School for advanced Manufacturing Engineering (GSaME), Universitaet Stuttgart (Germany); Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universitaet Stuttgart, Allmandring 7 b, D-70569 Stuttgart (Germany); Mueller, Philipp; Gebhardt, Andreas; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universitaet Stuttgart, Allmandring 7 b, D-70569 Stuttgart (Germany); Cardella, Antonio [European Commission c/o Wendelstein 7X, Boltzmannstasse 2, D-85748 Garching (Germany); Li, Chuanfei; Stadler, Reinhold; Zangl, Guenter; Hirsch, Matthias; Laqua, Heinrich P. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Assoc., Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kasparek, Walter [Institut fuer Plasmaforschung, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2011-10-15

    Due to the relatively high strayfield radiation (140 GHz) from the electron cyclotron radio frequency heating system to which the W7-X cryopumps are expected to be subjected, coating systems acting as an efficient absorber for 140 GHz radiation have been developed for the water-cooled baffle shield in order to reduce the thermal load on the liquid N shield and the liquid He cryopanel. Several types of oxide ceramic coatings were applied on planar copper substrates by Atmospheric Plasma Spraying. The influence of the process parameters on the coating properties and microwave absorbing capability was analysed. It was found that film thickness and microstructure of the sprayed coatings have a significant influence on microwave absorption behaviour. For Al{sub 2}O{sub 3}/TiO{sub 2} coatings, absorption values over 90% were obtained for the 140 GHz probing beam. After optimisation of the coating structure for maximum microwave absorption, the coating procedure was adapted by special robot trajectories to the complex water baffle geometry. The selected spray parameters and kinematics were then used for the complete coating of four mock-ups, which have been tested in the W7-X strayfield test facility Mistral. The mock-ups showed absorption values of 75%.

  3. Rare earth effect on microstructure, mechanical and tribological properties of CoCrW coatings

    International Nuclear Information System (INIS)

    Zhang Zhenyu; Lu Xinchun; Han Baolei; Luo Jianbin

    2007-01-01

    Eight different CoCrW coatings doped with rare earth oxide were deposited by supersonic plasma spraying (SPS). Environmental scanning electron microscopy, microhardness tester, X-ray diffractometer, and self-developed tribometer for high temperature were employed to investigate the properties of sprayed coatings. The results show that rare earth can refine the microstructure effectively, and make the element distribution uniform, which leads to the increase of average microhardness and the corresponding decrease of fluctuation range of sectioned surface of SPS coatings. Furthermore, the rare earth can reduce the friction coefficient between the SPS coating and glass during the sliding process at about 973 K largely, and the mechanism of anti-friction is also discussed

  4. The trapping of K and Na atoms by a clean W(110) surface. Dynamic trajectory calculations. ch.3

    International Nuclear Information System (INIS)

    Hurkmans, A.; Overbosch, E.G.; Los, J.

    1976-01-01

    The fraction of K and Na atoms which are initially trapped by a clean W(110) surface has been measured as a function of incident energy (0.5 < approximately Esub(i) < approximately 15 eV) at several angles of incidence. At the same time the desorption energies Qsub(i) of the trapped potassium and sodium atoms were measured: Qsub(i) = 2.05 +- 0.02 eV and Qsub(i) = 2.60 +- 0.04 eV respectively. The measured trapping probabilities can be described well by Trillings 'partially screened spherical cap' model, except fos the small angles of incidence. Dynamic trajectory calculations were performed for a particle scattered from a diatomic molecule to explain the screening and the descrepancy at normal incidence. The calculations give good quantitative agreement with the measured trapping probability at small angles both for potassium and sodium atoms and show that simultaneous interaction with two adjacent surface atoms affects the trapping particularly at small angles of incidence. (Auth.)

  5. Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xu, Qian [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Wang, Chuanqi; Zhang, Xiaowei [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-02-05

    Highlights: • Ni60CuMoW coatings were fabricated by mechanical vibration assisted laser cladding hybrid process. • The maximum micro-hardness of the coating with mechanical vibration increases by 16%. • The mass loss and friction coefficient of the coating decreases by 17% and 16%, respectively. • The E{sub corr} positive shifts 1134.9 mV and i{sub corr} decreases by nearly one order of magnitude. • The ideal vibration parameters is vibration frequency 200 Hz and vibration amplitude 140 μm. - Abstract: Ni60CuMoW composite coatings were fabricated on 45 medium carbon steel using mechanical vibration assisted laser cladding surface modification processing. The microstructure, element distribution, phase composition, microhardness, wear and corrosion resistance of cladding coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), hardness tester, friction and wear apparatus and electrochemical workstation. The results indicate that the microstructure of M{sub 23}C{sub 6} (Cr{sub 23}C{sub 6} or (Fe, Ni){sub 23}C{sub 6}) carbide dispersion strengthening phase is uniformly distributed in eutectic (Ni, Fe) phase. The in-situ BCr and MoC compounds distribute in lamellar structure Fe{sub 3}B and dendrite Fe{sub 3}Ni{sub 3}Si, and some new W{sub 2}C phases also generated in Ni60CuMoW coating. In addition, the coarse dendrite has been replaced by some fine grain structure at the bonding interface. The fine grain hard phase makes the average microhardness of cladding coating increase from 720 to 835 HV{sub 0.5}. Under the condition of 200 Hz mechanical vibration frequency, the wear mass loss and friction coefficient of Ni60CuMoW coating are 7.6 mg and 0.068, 17% and 16% lower than the coating without mechanical vibration, respectively. The corrosion potential of cladding coating with mechanical vibration increases by 1134.9 mV and the corrosion current density decreases by nearly one order of

  6. PATINA Network - Performance of coil coating in natural atmospheres of Ibero-America

    Directory of Open Access Journals (Sweden)

    Rosales, B. M.

    2003-12-01

    Full Text Available The research work performed on 12 coil coating materials in the frame of the PATINA Network (Anticorrosive Protection in the Atmosphere sponsored by CYTED is discussed. It includs the task accomplished by Science and Technology institutions of Ibero-America on formulations supplied by different prcoduction Sector companies from the participating countries, between 1996 and 2000. Coil coating schemes were exposed outdoors, according to ISO 2810 standards, in 9 ambient conditions of the MICAT (Ibero-American Test Stations Network, CYTED. The protective characteristics on the steel base metal was determined as a function of time, following ISO 4628 and ASTM D 3274 standards. Electrochemical impedance spectroscopy (EIS was applied on various materials after 1, 2, 3 years and 42 months exposure, to evaluate the weathering effect in different atmospheric conditions.

    Se discute el trabajo realizado sobre 12 diferentes recubrimientos para banda continua en el marco de la Red PATINA (Protección Anticorrosiva en la Atmósfera, patrocinada por el CYTED. Incluye las actividades llevadas a cabo por instituciones de Ciencia y Técnica de Iberoamérica, sobre distintas formulaciones provistas por empresas productoras de los países participantes, entre 1996 y 1999. Se expusieron a la intemperie, en distintas condiciones ambientales de la Red de Estaciones MICAT, CYTED, siguiendo la norma ISO 2810, recubrimientos de diferentes formulaciones. Se evaluaron las características protectoras sobre el acero de base en función de los parámetros medio-ambientales y los tiempos de exposición programados, según la normas ISO 4628, 4623 y ASTM D 3274. Se aplicaron dos esquemas de protección orgánicos sobre las muestras de acero, otros cuatro sobre muestras de acero previamente protegido con Zn y otros seis sobre acero galvanizado (2 y recubierto con galvalume (4, con y sin incisión en cada esquema hasta llegar el acero. Se discuten los resultados obtenidos

  7. Comparison of Some Mechanical and Physical Methods for Measurement of Residual Stresses in Brush-Plated Nickel Hardened Gold and Silver Coatings

    Directory of Open Access Journals (Sweden)

    Harri LILLE

    2016-05-01

    Full Text Available Hard gold and silver are applied in coating owing to their high hardness, good wear and corrosion resistance for engineering application (e.g. on generators slip rings, sliding contacts and small machine parts and are typically plated on copper (mostly, brass and bronze. The studied nickel-hardened gold and silver coatings were brush plated on open thin-walled copper ring substrates. Residual stresses in the coatings were calculated from the curvature changes of the substrates. Biaxial intrinsic residual stresses were also determined by nanoindentation testing and by the X-ray technique. The values of the residual stresses represented tensile stresses and when determined by the techniques used they were comparable within a maximum limit of measurement uncertainty. These stresses relax; the dependence of relaxation time was approximated by a linear-fractional function.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7439

  8. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods

    Science.gov (United States)

    Jokerst, Jesse V.; Thangaraj, Mridhula; Gambhir, Sanjiv S.

    2014-03-01

    Imaging is crucial for stem cell therapy to monitor the location(s), numbers, and state of the implanted cells. Real-time imaging in particular can ensure proper cell delivery for best engraftment. However, established imaging tools such as MRI are limited by their temporal resolution for guidance during delivery. In contrast, photoacoustic imaging is ideally suited for real time, image-guided therapy. Here, we use silica-coated gold nanorods as photoacoustic contrast agents and deploy them to image and quantitate mesenchymal stem cells during implant into the muscle tissue of live mice. Silica-coated gold nanorods (SiGNRs) were created with standard methods and loaded into mesenchymal stem cells (MSCs) without transfection agents. There was no significant (pmuscle tissue to simulate a muscular dystrophy patient. Mice (N=5) treated with these SiGNRlabeled MSCs exhibited no adverse events and implants up to 5 mm deep were easily visualized. The in vivo detection limit was 90,000 cells in a 100 uL bolus in mouse thigh muscle. Here, the B-mode signal is useful for orienting the treatment area and visualizing the delivery catheter while the photoacoustic mode offers cell-specific content. The photoacoustic signal was validated with histology a long-term fluorescent tracking dye after MSC transplant.

  9. Structural characterization and comparison of iridium, platinum and gold/palladium ultra-thin film coatings for STM of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Sebring, R.; Arendt, P.; Imai, B.; Bradbury, E.M.; Gatewood, J. [Los Alamos National Lab., NM (United States); Panitz, J. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Yau, P. [Univ. of California, Davis, CA (United States)

    1997-10-30

    Scanning tunneling microscopy (STM) is capable of atomic resolution and is ideally suited for imaging surfaces with uniform work function. A biological sample on a conducting substrate in air does not meet this criteria and requires a conductive coating for stable and reproducible STM imaging. In this paper, the authors describe the STM and transmission electron microscopy (TEM) characterization of ultra-thin ion-beam sputtered films of iridium and cathode sputtered gold/palladium and platinum films on highly ordered pyrolytic graphite (HOPG) which were developed for use as biomolecule coatings. The goals were the development of metal coatings sufficiently thin and fine grained that 15--20 {angstrom} features of biological molecules could be resolved using STM, and the development of a substrate/coating system which would allow complementary TEM information to be obtained for films and biological molecules. The authors demonstrate in this paper that ion-beam sputtered iridium on highly ordered pyrolytic graphite (HOPG) has met both these goals. The ion-beam sputtered iridium produced a very fine grained (< 10 {angstrom}) continuous film at 5--6 {angstrom} thickness suitable for stable air STM imaging. In comparison, cathode sputtered platinum produced 16 {angstrom} grains with the thinnest continuous film at 15 {angstrom} thickness, and the sputtered gold/palladium produced 25 {angstrom} grains with the thinnest continuous film at 18 {angstrom} thickness.

  10. Localization and mobility of glucose-coated gold nanoparticles within the brain.

    Science.gov (United States)

    Gromnicova, Radka; Yilmaz, Canan Ugur; Orhan, Nurcan; Kaya, Mehmet; Davies, Heather; Williams, Phil; Romero, Ignacio A; Sharrack, Basil; Male, David

    2016-03-01

    To identify the localization of glucose-coated gold nanoparticles within cells of the brain after intravascular infusion which may point to the mechanism by which they cross the blood-brain barrier. Tissue distribution of the nanoparticles was measured by inductively-coupled-mass spectrometry and localization within the brain by histochemistry and electron microscopy. Nanoparticles were identified within neurons and glial cells more than 10 μm from the nearest microvessel within 10 min of intracarotid infusion. Their distribution indicated movement across the endothelial cytosol, and direct transfer between cells of the brain. The rapid movement of this class of nanoparticle (brain demonstrates their potential to carry therapeutic biomolecules or imaging reagents.

  11. Optical trapping of nanoparticles with significantly reduced laser powers by using counter-propagating beams (Presentation Recording)

    Science.gov (United States)

    Zhao, Chenglong; LeBrun, Thomas W.

    2015-08-01

    Gold nanoparticles (GNP) have wide applications ranging from nanoscale heating to cancer therapy and biological sensing. Optical trapping of GNPs as small as 18 nm has been successfully achieved with laser power as high as 855 mW, but such high powers can damage trapped particles (particularly biological systems) as well heat the fluid, thereby destabilizing the trap. In this article, we show that counter propagating beams (CPB) can successfully trap GNP with laser powers reduced by a factor of 50 compared to that with a single beam. The trapping position of a GNP inside a counter-propagating trap can be easily modulated by either changing the relative power or position of the two beams. Furthermore, we find that under our conditions while a single-beam most stably traps a single particle, the counter-propagating beam can more easily trap multiple particles. This (CPB) trap is compatible with the feedback control system we recently demonstrated to increase the trapping lifetimes of nanoparticles by more than an order of magnitude. Thus, we believe that the future development of advanced trapping techniques combining counter-propagating traps together with control systems should significantly extend the capabilities of optical manipulation of nanoparticles for prototyping and testing 3D nanodevices and bio-sensing.

  12. Surface interactions of a W-DLC-coated biomedical AISI 316L stainless steel in physiological solution.

    Science.gov (United States)

    Antunes, Renato A; de Lima, Nelson Batista; Rizzutto, Márcia de Almeida; Higa, Olga Zazuco; Saiki, Mitiko; Costa, Isolda

    2013-04-01

    The corrosion stability of a W-DLC coated surgical AISI 316L stainless steel in Hanks' solution has been evaluated. Particle induced X-ray emission (PIXE) measurements were performed to evaluate the incorporation of potentially bioactive elements from the physiological solution. The film structure was analyzed by X-ray diffractometry and micro-Raman spectroscopy. The wear behavior was assessed using the sphere-on-disc geometry. The in vitro biocompatibility of the W-DLC film was evaluated by cytotoxicity tests. The corrosion resistance of the stainless steel substrate decreased in the presence of the PVD layer. EIS measurements suggest that this behavior was closely related to the corrosion attack through the coating pores. PIXE measurements revealed the presence of Ca and P in the W-DLC film after immersion in Hanks' solution. This result shows that the PIXE technique can be applied to identify and evaluate the incorporation of bioactive elements by W-DLC films. The film showed good wear resistance and biocompatibility.

  13. Coatings synthesised by the pulsed laser ablation of a B{sub 4}C/W{sub 2}B{sub 5} ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Tadadjeu Sokeng, I., E-mail: ifriky@tlabs.ac.za [Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville campus, PO Box 1906, Bellville, 7530 (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Ngom, B.D. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Laboratoire de Photonique et de Nanofrabrication, Groupes de physique du Solide et Sciences des Matriaux (GPSSM), Facult des sciences et Techniques Universit Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar, Fann Dakar (Senegal); Msimanga, M. [iThemba LABS Gauten, Private Bag 11, WITS 2050 Johannesburg (South Africa); Nuru, Z.Y.; Kotsedi, L.; Maaza, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Van Zyl, R.R. [Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville campus, PO Box 1906, Bellville, 7530 (South Africa)

    2015-10-30

    A pellet of B{sub 4}C/W{sub 2}B{sub 5} ceramic composite was characterised and subjected to pulsed laser ablation for the deposition of coatings on corning glass substrates. We reports an attempt to produce coatings from B{sub 4}C/W{sub 2}B{sub 5} by pulsed laser deposition (PLD). The thermal, electric and mechanical properties of B{sub 4}C/W{sub 2}B{sub 5} suggest that coatings synthesised from this composite can be used for space applications. The samples were characterised using X-ray Diffraction, Atomic Force Microscopy and Heavy Ion Elastic Recoil Detection Analysis. The characterisation of the samples deposited on soda lime corning glass showed that the laser energy used in this PLD was enough to obtain non amorphous coatings formed by some alteration of the tungsten carbide crystal lattice at room temperature, and that there was no stoichiometry transfer as would be expected from PLD. The coating also showed space applicable features worth investigating. - Highlights: • B{sub 4}C/W{sub 2}B{sub 5} ceramic composite was ablated for deposition on corning glass subtrates. • Non-amorphous coating was obtained at room temperature. • There was no stoichiometry transfer as would be expected from Pulsed Laser Deposition.

  14. Polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors

    Science.gov (United States)

    Li, Du; Shi, Xiangyang; Jin, Dayong

    2016-12-01

    The advancement of biocompatible nanoplatforms with dual functionalities of diagnosis and therapeutics is strongly demanded in biomedicine in recent years. In this work, we report the synthesis and characterization of polydopamine (pD)-coated gold nanostars (Au NSs) for computed tomography (CT) imaging and enhanced photothermal therapy (PTT) of tumors. Au NSs were firstly formed via a seed-mediated growth method and then stabilized with thiolated polyethyleneimine (PEI-SH), followed by deposition of pD on their surface. The formed pD-coated Au NSs (Au-PEI@pD NSs) were well characterized. We show that the Au-PEI@pD NSs are able to convert the absorbed near-infrared laser light into heat, and have strong X-ray attenuation property. Due to the co-existence of Au NSs and the pD, the light to heat conversion efficiency of the NSs can be significantly enhanced. These very interesting properties allow their uses as a powerful theranostic nanoplatform for efficient CT imaging and enhanced phtotothermal therapy of cancer cells in vitro and the xenografted tumor model in vivo. With the easy functionalization nature enabled by the coated pD shell, the developed pD-coated Au NSs may be developed as a versatile nanoplatform for targeted CT imaging and PTT of different types of cancer.

  15. Project W-314 Polyurea Special Protective Coating (SPC) Test Report Chemical Compatibility and Physical Characteristics Testing

    International Nuclear Information System (INIS)

    MAUSER, R.W.

    2001-01-01

    This Engineering Test report outlines the results obtained from testing polyurea on its decon factor, tank waste compatibility, and adhesion strength when subjected to a high level of gamma radiation. This report is used in conjunction with RPP-7187 Project W-314 Pit Coatings Repair Requirements Analysis, to document the fact polyurea meets the project W-314 requirements contained in HNF-SD-W314-PDS-005 and is therefore an acceptable SPC for use in W-314 pit refurbishments

  16. Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gibbon-Walsh, Kristoff [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Salauen, Pascal, E-mail: Salaun@liv.ac.uk [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom); Berg, Constant M.G. van den, E-mail: Vandenberg@liv.ac.uk [Department of Earth and Ocean Sciences, University of Liverpool, Liverpool L69 3GP (United Kingdom)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Determination of arsenic(V) in water of neutral pH. Black-Right-Pointing-Pointer An unusual redox couple of elemental Mn/As{sup V} reduces As{sup V} to As{sup III}. Black-Right-Pointing-Pointer Novel manganese coated gold microwire electrode. - Abstract: Direct electrochemical determination of arsenate (As{sup V}) in neutral pH waters is considered impossible due to electro-inactivity of As{sup V}. As{sup III} on the other hand is readily plated as As{sup 0} on a gold electrode and quantified by anodic stripping voltammetry (ASV). We found that the reduction of As{sup V} to As{sup III} was mediated by elemental Mn on the electrode surface in a novel redox couple in which 2 electrons are exchanged causing the Mn to be oxidised to Mn{sup II}. Advantage is taken of this redox couple to enable for the first time the electrochemical determination of As{sup V} in natural waters of neutral pH including seawater by ASV using a manganese-coated gold microwire electrode. Thereto Mn is added to excess ({approx}1 {mu}M Mn) to the water leading to a Mn coating during the deposition of As on the electrode at a deposition potential of -1.3 V. Deposition of As{sup 0} from dissolved As{sup V} caused elemental Mn to be re-oxidised to Mn{sup II} in a 1:1 molar ratio providing evidence for the reaction mechanism. The deposited As{sup V} is subsequently quantified using an ASV scan. As{sup III} interferes and should be quantified separately at a more positive deposition potential of -0.9 V. Combined inorganic As is quantified after oxidation of As{sup III} to As{sup V} using hypochlorite. The microwire electrode was vibrated during the deposition step to improve the sensitivity. The detection limit was 0.2 nM As{sup V} using a deposition time of 180 s.

  17. Improving detection tools for emerald ash borer (Coleoptera: Buprestidae): comparison of multifunnel traps, prism traps, and lure types at varying population densities.

    Science.gov (United States)

    Crook, Damon J; Francese, Joseph A; Rietz, Michael L; Lance, David R; Hull-Sanders, Helen M; Mastro, Victor C; Silk, Peter J; Ryall, Krista L

    2014-08-01

    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) that has caused devastating mortality since it was first identified in North America in 2002. In 2012, we conducted field trapping assays that tested the efficacy of purple prism and fluon-coated green multifunnel (Lindgren funnel) traps. Traps were baited with combinations of several lures that were previously shown to be attractive to A. planipennis: manuka oil--a sesquiterpene-rich oil, (3Z)-hexenol--a green leaf volatile, or (3Z)-dodecen-12-olide [= (3Z)-lactone], a sex pheromone. Eighty-nine blocks (trap lines) were tested throughout nine states along the outer edges of the currently known A. planipennis infestation in North America. Trap catch was highest on fluon-coated green multifunnel traps, and trap detections at sites with low A. planipennis population density ranged from 72 to 76% for all trap and lure types tested. (3Z)-hexenol and (3Z)-lactone baited traps functioned as well as (3Z)-hexenol and manuka oil-baited traps. Independent of the lure used, detection rates on green fluon-coated multifunnel traps were comparable with glued purple prism traps in areas with low A. planipennis population densities.

  18. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-01-01

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  19. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-15

    Highlights: • We propose a novel REBCO coil structure which applies thermoplastic resin. • The thermoplastic resin bonds the coil winding and cooling plates. • The adhesiveness of the resin is strong enough to withstand the thermal stress. • The thermoplastic resin does not cause the degradation because of its high viscosity. • We successfully made a full-scale racetrack REBCO coil with the thermoplastic resin. - Abstract: The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40–50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  20. Antimatter Plasmas in a Multipole Trap for Antihydrogen

    CERN Document Server

    Andresen, G B; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-01

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.

  1. Antimatter plasmas in a multipole trap for antihydrogen.

    Science.gov (United States)

    Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2007-01-12

    We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.

  2. Spectra of W19 +-W32 + observed in the EUV region between 15 and 55 Å with an electron-beam ion trap

    Science.gov (United States)

    Sakaue, H. A.; Kato, D.; Yamamoto, N.; Nakamura, N.; Murakami, I.

    2015-07-01

    We present extreme ultraviolet spectra of highly charged tungsten ions (W19 +-W32 + ) in the wavelength range of 15 -55 Å obtained with a compact electron-beam ion trap (CoBIT) and a grazing-incidence spectrometer at the National Institute for Fusion Science. The electron energy dependence of the spectra was investigated for electron energies from 490 to 1320 eV . Identification of the observed lines was aided by collisional-radiative (CR) modeling of CoBIT plasma. Good quantitative agreement was obtained between the CR-modeling results and the experimental observations. The ion charge dependence of the 6 g -4 f ,5 g -4 f ,5 f -4 d ,5 p -4 d , and 4 f -4 d transition wavelengths were measured.

  3. The search for low photodesorption coatings

    International Nuclear Information System (INIS)

    Foerster, C.L.; Korn, G.

    1990-01-01

    Low photo desorption (PSD) from surfaces of vacuum chambers increases the beam lifetime and reduces the cost of the pumping system of any storage ring. In compact rings where all radiated power (∼10 kW) is incident on a few meters only, low PSD and good thermal conductivity of photon absorbers are of particular importance. An experimental chamber in which one meter long bars can be exposed to white photon beam with 500 eV critical energy has been built and installed on the U10B beamline in the VUV ring at the NSLS. Several reference bars made of high purity copper and a TiN coating on copper have been measured. Subsequent runs will include gold coating on copper, aluminum (200 degree C baked), diamond coating on copper and uncoated beryllium bars. In this paper the desorption coefficients will be measured and compared. 6 refs., 4 figs

  4. Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap

    Science.gov (United States)

    Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan

    2016-04-01

    In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.

  5. Evolution of structure and mechanical properties of hard yet fracture resistant W-B-C coatings with varying C/W ratio

    Czech Academy of Sciences Publication Activity Database

    Alishahi, M.; Mirzaei, S.; Souček, P.; Zábranský, L.; Buršíková, V.; Stupavska, M.; Peřina, Vratislav; Balázsi, K.; Czigany, Z.; Vašina, P.

    2018-01-01

    Roč. 340, č. 4 (2018), s. 103-111 ISSN 0257-8972 R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : magnetron sputtering * W-B-C * microstructure * hardness * fracture resistance Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.589, year: 2016

  6. Assessment of modified gold surfaced titanium implants on skeletal fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2013-01-01

    shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration...... and increase mechanical fixation. Cylindrical porous coated Ti-6Al4V implants partially coated with metallic gold were inserted in the proximal region of the humerus in ten canines and control implants without gold were inserted in contralateral humerus. Observation time was 4 weeks. Biomechanical push out...

  7. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    Science.gov (United States)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified Au

  8. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    International Nuclear Information System (INIS)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung; Choi, Mina; Han, Beom Seok; Shin, Hyung-Seon; Hong, Jin; Chung, Bong Hyun; Jeong, Jayoung; Cho, Myung-Haing

    2010-01-01

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesenteric lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (∼ 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.

  9. Performance of the Conduction-Cooled LDX Levitation Coil

    Science.gov (United States)

    Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.

    2004-06-01

    The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.

  10. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  11. Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Romuald Intartaglia

    2016-09-01

    Full Text Available Colloidal gold nanoparticles are a widespread nanomaterial with many potential applications, but their aggregation in suspension is a critical issue which is usually prevented by organic surfactants. This solution has some drawbacks, such as material contamination and modifications of its functional properties. The gold nanoparticles presented in this work have been synthesized by ultra-fast laser ablation in liquid, which addresses the above issues by overcoating the metal nanoparticles with an oxide layer. The main focus of the work is in the characterization of the oxidized gold nanoparticles, which were made first in solution by means of dynamic light scattering and optical spectroscopy, and then in dried form by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and finally by surface potential measurements with atomic force microscopy. The light scattering assessed the nanoscale size of the formed particles and provided insight in their stability. The nanoparticles’ size was confirmed by direct imaging in transmission electron microscopy, and their crystalline nature was disclosed by X-ray diffraction. The X-ray photoelectron spectroscopy showed measurements compatible with the presence of surface oxide, which was confirmed by the surface potential measurements, which are the novel point of the present work. In conclusion, the method of laser ablation in liquid for the synthesis of gold nanoparticles has been presented, and the advantage of this physical approach, consisting of coating the nanoparticles in situ with gold oxide which provides the required morphological and chemical stability without organic surfactants, has been confirmed by using scanning Kelvin probe microscopy for the first time.

  12. pH induced protein-scaffold biosynthesis of tunable shape gold nanoparticles

    International Nuclear Information System (INIS)

    Zhang Xiaorong; He Xiaoxiao; Wang Kemin; Ren Fang; Qin Zhihe

    2011-01-01

    In this paper, a pH-inductive protein-scaffold biosynthesis of shape-tunable crystalline gold nanoparticles at room temperature has been developed. By simple manipulation of the reaction solution's pH, anisotropic gold nanoparticles including spheres, triangles and cubes could be produced by incubating an aqueous solution of sodium tetrachloroaurate with Dolichomitriopsis diversiformis biomasses after immersion in ultrapure Millipore water overnight. A moss protein with molecular weight of about 71 kDa and pI of 4.9 was the primary biomolecule involved in the biosynthesis of gold nanoparticles. The secondary configuration of the proteins by CD spectrum implied that the moss protein could display different secondary configurations including random coil, α-helix and intermediate conformations between random coil and α-helix for the experimental pH solution. The growth process of gold nanoparticles further showed that the moss protein with different configurations provided the template scaffold for the shape-controlled biosynthesis of gold nanoparticles. The constrained shape of the gold nanoparticles, however, disappeared in boiled moss extract. The gold nanoparticles with designed morphology were successfully reconstructed using the moss protein purified from the gold nanoparticles. Structural characterizations by SEM, TEM and SAED showed that the triangular and cubic gold nanoparticles were single crystalline.

  13. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  14. Magnet system of the ''AMBAL'' experimental trap with ambipolar mirrors

    International Nuclear Information System (INIS)

    Dimov, G.I.; Lysyanskij, P.B.; Tadber, M.V.; Timoshin, I.Ya.; Shrajner, K.K.

    1982-01-01

    A magnet system of the ''AMBAL'' ambipolar trap under construction is described. The trap magnetic field configuration, geometry of the main coils and diagram of the whole device magnet system are outlined. Drift surface cross sections in the equatorial plane of the ring mirror device, in the median plane and at different distances from the trap median plane are presented. The magnet system design is described in brief

  15. Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles

    International Nuclear Information System (INIS)

    Hao Yuzhi; Chen Jie; Yang Xiaoyang; Huang Min; He Chuan; Song, Steven; Cui Mingyang

    2012-01-01

    Recently, there has been a lot of interest in using gold nanoparticles (GNPs) for biomedical applications due to their biocompatibility. To increase GNP cell uptake and circulation half-life, and to improve its bio-distribution in vivo, we chose to coat GNPs with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (POPG) and polyethylene glycol (PEG). Two different methods were used to synthesize POPG-GNPs or PEG-GNPs, but the resulting nanoparticle sizes and morphologies were similar. Under the same incubation conditions, POPG-GNPs can be uptaken quicker than PEG-GNPs by cells—specifically, the maximum uptake was 8 h versus 16 h after incubation. In addition, the uptake amount of POPG-GNPs was more than that of PEG-GNPs. The uptake processes were confirmed by SEM and TEM images. The main reason for the greater uptake of POPG-GNPs can be attributed to the structural similarities between the POPG coating and the cell membrane as well as GNP aggregation. (paper)

  16. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    Science.gov (United States)

    Burt, Eric A. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor); Larsen, Kameron (Inventor); Tjoelker, Robert L. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  17. Influence of PEG coating on optical and thermal response of gold nanoshperes and nanorods

    Science.gov (United States)

    Chen, Qin; Ren, Yatao; Qi, Hong; Ruan, Liming

    2018-06-01

    PEGylation is widely applied as a surface modification method for nanoparticles in biomedical applications to improve their biological properties, including biocompatibility and immunogenicity. In most of its biomedical applications, nanoparticles are served as optical or thermal contrast agents. Therefore, the impact of poly (ethylene glycol) (PEG) coating thickness on the optical and thermal properties of nanoparticles needs to be further investigated. In the present work, we studied two kinds of commonly used nanoparticles, including nanosphere and nanorod. The temperature and electric fields are obtained for nanoparticles with different PEG coating thicknesses. It is found that the change of PEG coating thickness on gold nanospheres only has impact on the absolute value of maximum absorption and scattering efficiencies, which barely influences the LSPR wavelength λmax and other optical and thermal characteristics. In contrast, for nanorod, the maximum efficiencies are barely influenced by the variation of PEG coating thickness. On the other hand, the localized surface plasmon resonance wavelength has an evident red shift with the increasing of PEG coating thickness. The maximum absorption efficiency is a way to evaluate the energy dissipation rate, which decides the scale of the heat source induced by nanoparticles. These findings are crucial for the accurate prediction of optical and thermal properties of nanoparticles in biomedical application. The present work also presents a possible way to manipulate the optical and thermal behaviors of nanoparticles in the application of biomedicine without changing the morphology of nanoparticles.

  18. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    Science.gov (United States)

    2016-02-13

    magnet wires with insulating coating for rectangular surface coils. The wires are formed into four one turn 145mm x 32mm rectangular coils...switchable array, RF magnetic field, NQR, MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic ...grid array. This achieves the switchable array configuration. Later, investigations will have circuit controlled multiplexer for switching to

  19. Ultraviolet-B radiation causes tendril coiling in Pisum sativum

    International Nuclear Information System (INIS)

    Brosché, M.; Strid, A.

    2000-01-01

    Low dose UV-B radiation (UV-B BE,300 = 0.1 W m -2 ), but neither UV-A radiation, ozone and NaCl stress, nor wounding, caused tendril coiling in Pisum sativum. This coiling occurred with both attached and detached tendrils and can be used as a specific UV-B stress marker in pea

  20. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck

    2016-01-01

    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized for actu......This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...... designs requires approximately 20 W on average and may be realized in 20 mm × Ø 22.5 mm (height × diameter) for a 20 kW pressure chamber. The optimization is carried out using the multi-objective Generalized Differential Evolu-tion optimization algorithm GDE3 which successfully handles constrained multi-objective...

  1. Antibacterial and Tribological Performance of Carbonitride Coatings Doped with W, Ti, Zr, or Cr Deposited on AISI 316L Stainless Steel

    Science.gov (United States)

    Yao, Sun-Hui; Su, Yen-Liang; Lai, Yu-Cheng

    2017-01-01

    Carbonitride (CNx) coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC) coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr) were prepared on biograde AISI 316L stainless steel (SS316L) substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability. PMID:29039782

  2. Antibacterial and Tribological Performance of Carbonitride Coatings Doped with W, Ti, Zr, or Cr Deposited on AISI 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Sun-Hui Yao

    2017-10-01

    Full Text Available Carbonitride (CNx coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr were prepared on biograde AISI 316L stainless steel (SS316L substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability.

  3. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    Science.gov (United States)

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.

  4. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite-silicone insulation coating

    Science.gov (United States)

    Li, Wangchang; Wang, Wei; Lv, Junjun; Ying, Yao; Yu, Jing; Zheng, Jingwu; Qiao, Liang; Che, Shenglei

    2018-06-01

    This paper investigates the structure and magnetic properties of Ni-Cu-Zn ferrite-silicone coated iron-based soft magnetic composites (SMCs). Scanning electron microscopy coupled with a energy-dispersive spectroscopy (EDS) analysis revealed that the Ni-Cu-Zn ferrite and silicone resin were uniformly coated on the surface of iron powders. By controlling the composition of the coating layer, low total core loss of 97.7 mW/cm3 (eddy current loss of 48 mW/cm3, hysteresis loss of 49.7 mW/cm3, measured at 100 kHz and 0.02 T) and relatively high effective permeability of 72.5 (measured at 100 kHz) were achieved. In addition, the as-prepared SMCs displayed higher electrical resistivity, good magnetic characteristics over a wide range of frequencies (20-200 kHz) and ideal the D-C bias properties (more than 75% at H = 50 Oe). Furthermore, higher elastic modulus and hardness of SMCs, which means that the coating layer has good mechanical properties and is not easily damaged during the pressing process, were obtained in this paper. The results of this work indicate that the Ni-Cu-Zn ferrite-silicone coated SMCs have desirable properties which would make them suitable for application in the fields of the electric-magnetic switching devices, such as inductance coils, transformer cores, synchronous electric motors and resonant inductors.

  5. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    Science.gov (United States)

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  6. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity.

    Science.gov (United States)

    Pagno, Carlos H; Costa, Tania M H; de Menezes, Eliana W; Benvenutti, Edilson V; Hertz, Plinho F; Matte, Carla R; Tosati, Juliano V; Monteiro, Alcilene R; Rios, Alessandro O; Flôres, Simone H

    2015-04-15

    Active biofilms of quinoa (Chenopodium quinoa, W.) starch were prepared by incorporating gold nanoparticles stabilised by an ionic silsesquioxane that contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group. The biofilms were characterised and their antimicrobial activity was evaluated against Escherichiacoli and Staphylococcusaureus. The presence of gold nanoparticles produces an improvement in the mechanical, optical and morphological properties, maintaining the thermal and barrier properties unchanged when compared to the standard biofilm. The active biofilms exhibited strong antibacterial activity against food-borne pathogens with inhibition percentages of 99% against E. coli and 98% against S. aureus. These quinoa starch biofilms containing gold nanoparticles are very promising to be used as active food packaging for the maintenance of food safety and extension of the shelf life of packaged foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  8. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju

    2017-04-15

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  9. Optimizing analysis of W-AlN cermet solar absorbing coatings

    International Nuclear Information System (INIS)

    Zhang Qichu

    2001-01-01

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al 2 O 3 ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350 0 C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al 2 O 3 anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal infrared reflector

  10. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qichu [School of Physics, University of Sydney, NSW (Australia)

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup 0}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350 deg. C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  11. Optimizing analysis of W-AlN cermet solar absorbing coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Chu Zhang [University of Sydney, NSW (Australia). School of Physics

    2001-11-07

    The layer thickness and tungsten metal volume fraction of W-AlN cermet solar selective absorbing coatings on a W, Cu or Al infrared reflector with a surface aluminium oxynitride (AlON) or Al{sub 2}O{sub 3} ceramic anti-reflector layer were optimized using physical modelling calculations. Due to limited published data for the refractive index of AlN, and likely oxygen contamination during reactive sputtering of AlN ceramic materials, AlON was used as the ceramic component and the published value of its refractive index was employed. The dielectric function and then the complex refractive index of W-AlON cermet materials were calculated using the Ping Sheng approximation. The downhill simplex method in multi-dimensions was used in the numerical calculation to achieve maximum photo-thermal conversion efficiency at 350{sup o}C under a concentration factor of 30 for a solar collector tube. Optimization calculation results show that the initial graded (ten-step layers) cermet films all converge to something close to a three-layer film structure, which consists of a low metal volume fraction cermet layer on a high metal volume fraction cermet layer on a metallic infrared reflector with a surface ceramic anti-reflection layer. The optimized three-layer solar coatings have a high solar absorptance of 0.95 for AlON and 0.96 for the Al{sub 2}O{sub 3} anti-reflection layer, and a low hemispherical emittance of 0.073 at 350{sup o}C. For the optimized three-layer films the solar radiation is efficiently absorbed internally and by phase interference. Thermal loss is very low for optimized three-layer films due to high reflectance values in the thermal infrared wavelength range and a very sharp edge between low solar reflectance and high thermal infrared reflectance. The high metal volume fraction cermet layer has a metal-like optical behaviour in the thermal infrared wavelength range and makes the largest contribution to the increase of emittance compared with that of the metal

  12. A simple gold-coated microstructure fiber polarization filter in two communication windows

    Science.gov (United States)

    Feng, Xinxing; Li, Shuguang; Du, Huijing; Zhang, Yinan; Liu, Qiang

    2018-03-01

    A polarization filter is designed at two communication windows of 1310 and 1550 nm based on microstructured optical fiber. The model has four large diameter air holes and two gold-coated air holes. The influence of the geometrical parameters of the photonic crystal fiber on the performance of the polarization filter is analyzed by the finite element method. The numerical simulation shows that when the fiber length is 300 μm, the corresponding extinction ratio is 209.7 dB and 179.8 dB, the bandwidth of extinction ratio (ER) better than 20 dB is 150 nm and 350 nm at the communication wavelength of 1310 nm and 1550 nm.

  13. Controlling spin flips of molecules in an electromagnetic trap

    Science.gov (United States)

    Reens, David; Wu, Hao; Langen, Tim; Ye, Jun

    2017-12-01

    Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.

  14. Fabrication of the Textured Ni-9.3at.%W Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Suo, H. L.; Grivel, Jean-Claude

    2011-01-01

    It is difficult to obtain a sharp cube texture in the Ni-9.3at.% W substrate used for coated conductors due to its low stacking fault energy. In this paper, the traditional cold rolling procedure was optimized by introducing an intermediate recovery annealing. The deformation texture has been imp...

  15. The influence of substrate temperature on properties of APS and VPS W coatings

    Czech Academy of Sciences Publication Activity Database

    Kovářík, O.; Haušild, P.; Siegl, J.; Chráska, Tomáš; Matějíček, Jiří; Pala, Zdeněk; Boulos, M.

    2015-01-01

    Roč. 268, April (2015), s. 7-14 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : Plasma spray * Substrate temperature * W * Hardness * Coating modulus * Thermal conductivity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S0257897214006409#

  16. Microstructure, texture and magnetic properties of Ni-Cu-W substrates for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Andersen, Niels Hessel

    2013-01-01

    concentrations of copper, increasing the Cu-content to 10 at% and 15 at% leads to increased frequencies of annealing twins in the cube-textured matrix. It is suggested that the (Ni 95W5)100-xCux alloy with x=5 at% Cu may be a good candidate material for using as a substrate for coated conductors. © 2012 Elsevier...

  17. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    Science.gov (United States)

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  18. Magnetic field stabilization in THe-Trap

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Sebastian; Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2012-07-01

    THe-Trap is a Penning trap mass spectrometer dedicated to measure the {sup 3}H to {sup 3}He mass ratio aiming to a relative mass uncertainty better than 10{sup -11}. The most vital prerequisite for this measurement is a stable magnetic field: The relative temporal fluctuations during a measurement cycle of typically 1 hour, should be better than 10{sup -11}. The 5.26 T field is provided by a superconducting magnet. Unfortunately, the materials within the cryostat have a temperature-dependent susceptibility which necessitates a temperature stabilization. The stabilization is achieved by controlling the liquid helium level above the traps, and by keeping the pressure of the liquid helium constant. An important part of the system is the pressure reference, which is stable at a 0.04 Pa level. In addition to the stabilization of the field fluctuations within the cryostat itself, a system to cancel external fluctuations is set up consisting of a passive coil with a shielding factor of up to 180 build into the cryostat. Furthermore, a Helmholtz coil pair is placed around the cryostat. The compensation signal is provided by a custom-built flux-gate magnetometer. Technical details about the stabilization systems are given.

  19. Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles

    International Nuclear Information System (INIS)

    Treuel, Lennart; Malissek, Marcelina; Grass, Stefan; Diendorf, Jörg; Mahl, Dirk; Meyer-Zaika, Wolfgang; Epple, Matthias

    2012-01-01

    When nanoparticles (NPs) come into contact with biological fluids, proteins, and other biomolecules interact with their surface. Upon exposure to biological fluids a layer of proteins adsorbs onto their surface, the so-called protein corona, and interactions of biological systems with NPs are therefore mediated by this corona. Here, interactions of serum albumin with silver and gold NPs were quantitatively investigated using circular dichroism spectroscopy. Moreover, surface enhanced Raman spectroscopy was used for further elucidation of protein binding to silver surfaces. The decisive role of poly(vinylpyrrolidone), coatings on the protein adsorption was quantitatively described for the first time and the influential role of the polymer coatings is discussed. Research in nanotoxicology may benefit from such molecular scale data as well as scientific approaches seeking to improve nanomedical applications by using a wide range of polymer surface coatings to optimize biological transport and medical action of NPs.

  20. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  1. Grafting of gold nanoparticles on polyethyleneterephthalate using dithiol interlayer

    International Nuclear Information System (INIS)

    Reznickova, A.; Kolska, Z.; Zaruba, K.; Svorcik, V.

    2014-01-01

    Two different procedures of grafting of polyethyleneterephthalate (PET), modified by plasma treatment, with gold nanoparticles (nanospheres) are studied. In the first procedure the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with gold nanoparticles. In the second one the PET foil was grafted with gold nanoparticles previously coated by the same dithiol. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Gold nanoparticles were characterized by ultraviolet–visible spectroscopy. The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma activated PET and it mediates subsequent grafting of the gold nanoparticles. - Highlights: • Two different techniques were used for coating of PET with gold nanoparticles. • Grafted GNPs were characterized by XPS, FTIR, UV–vis, zeta potential, AFM. • More effective coating is achieved by deposition of GNPs earlier grafted with thiol. • The studied structures may have potential application in electronics or biomedicine

  2. ECRH scenarios with selective heating of trapped/passing electrons in the W7-X Stellarator

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2015-01-01

    Full Text Available Using specific features of the magnetic equilibrium in the W7-X stellarator, the ECRH scenarios with combined X2 and X3 modes are discussed. The RF beams for operation with X2 and X3 modes need to be launched from low- and, via the remote steering launcher, high-field-side, respectivaly, in the different crosssections of the device where the maximum and minimum of the magnetic field located. The aim is to explore the possibility of selective heating of the different classes of electrons, passing and trapped, by changing direction of the beam for X3 or switching between the beams for X2 and X3 launched from the different ports. The numerical predictions for this kind of experiments in W7-X are performed by coupled transport and ray tracing codes

  3. Growth of silver-coated gold nanoshells with enhanced linear and nonlinear optical responses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ya-Fang; Wang, Jia-Hong; Ma, Liang; Nan, Fan; Cheng, Zi-Qiang; Zhou, Li, E-mail: zhouli@whu.edu.cn; Wang, Qu-Quan, E-mail: qqwang@whu.edu.cn [Wuhan University, Department of Physics, Key Laboratory of Artificial Miro- and Nano-structures of the Ministry of Education, and School of Physics and Technology (China)

    2015-03-15

    Silver-coated gold nanoshells with 1,4-BDT molecules as the spacer (Ag/BDT/Au) were synthesized on the surface of SiO{sub 2} nanospheres. The surface plasmon resonance of Au/SiO{sub 2} and Ag/BDT/Au/SiO{sub 2} nanoparticles with single and double shells were tuned by adjusting the thickness of Au and Ag nanoshells. The enhanced local field in the gap of Au and Ag shells is demonstrated by measuring Raman scattering and nonlinear refraction. The results show that the Raman intensity is enhanced by 17 times and the nonlinear refractive index is enhanced by 30 % due to the growth of Ag shells.

  4. Development of a new superfluid helium ultra-cold neutron source and a new magnetic trap for neutron lifetime measurements

    International Nuclear Information System (INIS)

    Leung, Kent Kwan Ho

    2013-01-01

    The development of an Ultra-Cold Neutron (UCN) source at the Institut Laue-Langevin (ILL) based on super-thermal down-scattering of a Cold Neutron (CN) beam in superfluid 4 He is described. A continuous flow, self-liquefying 3 He cryostat was constructed. A beryllium coated prototype converter vessel with a vertical, window-less extraction system was tested on the PF1b CN beam at the ILL. Accumulation measurements with a mechanical valve, and continuous measurements with the vessel left open, were made. The development of a new magnetic UCN trap for neutron lifetime (τ β ) measurements is also described. A 1.2 m long octupole made from permanent magnets, with a bore diameter of 94 mm and surface field of 1.3 T, was assembled. This will be combined with a superconducting coil assembly and used with vertical confinement of UCN by gravity. A discussion of the systematic effects, focussing on the cleaning of above-threshold UCNs, is given. The possibility of detecting the charged decay products is also discussed. UCN storage experiments with the magnetic array and a fomblin-coated piston were performed on PF2 at the ILL. These measurements studied depolarization, spectrum cleaning, and loss due to material reflections in the trap experimentally.

  5. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-01

    The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  6. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junbo, E-mail: Lijunbo@haust.edu.cn [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China); Wu, Wenlan [Henan University of Science and Technology, School of Medicine (China); Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China)

    2017-03-15

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB) coating gold nanoparticles (PEG-b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  7. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Science.gov (United States)

    Li, Junbo; Wu, Wenlan; Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan

    2017-03-01

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol- b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG- b-PAMPImB) coating gold nanoparticles (PEG- b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  8. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  9. MULTILAYER COATINGS Ti/TiN, Cr/CrN AND W/WN DEPOSITED BY MAGNETRON SPUTTERING FOR IMPROVEMENT OF ADHESION TO BASE MATERIALS

    Directory of Open Access Journals (Sweden)

    Jakub Horník

    2015-12-01

    Full Text Available The paper deals with evaluation of single and multilayer layer PVD coatings based on Cr and Ti widely used in tool application. Additionally, W and WN based coating which are not so widespread were designed and deposited as functionally graded material. The coatings properties were evaluated from the point of view of hardness and adhesion. The hardness measuring was carried out using nanoindentation method. The scratch test was performed to test adhesion. Moreover, the presence of metallic interlayer in functionally graded materials further increases the coating adhesion by gradually approaching its composition to the substrate. Coatings consisting of W and WN have showed very good adhesion. With regard to the results of the scratch test, the multilayer coatings of CrN, TiN and WN have increased adhesion and can be assumed to have their protective function improved. Results will be appliedin development of functionally graded layers for functionally graded materials.

  10. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d < 2 nm)

    Science.gov (United States)

    Martin, Matthew N.; Li, Dawei; Dass, Amala; Eah, Sang-Kee

    2012-06-01

    An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning.An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning. Electronic supplementary information (ESI) available: Experimental details of gold nanocluster synthesis and mass-spectrometry. See DOI: 10.1039/c2nr30890h

  11. Supercritical CO2-Assisted Spray Drying of Strawberry-Like Gold-Coated Magnetite Nanocomposites in Chitosan Powders for Inhalation

    Directory of Open Access Journals (Sweden)

    Marta C. Silva

    2017-01-01

    Full Text Available Lung cancer is one of the leading causes of death worldwide. Therefore, it is of extreme importance to develop new systems that can deliver anticancer drugs into the site of action when initiating a treatment. Recently, the use of nanotechnology and particle engineering has enabled the development of new drug delivery platforms for pulmonary delivery. In this work, POXylated strawberry-like gold-coated magnetite nanocomposites and ibuprofen (IBP were encapsulated into a chitosan matrix using Supercritical Assisted Spray Drying (SASD. The dry powder formulations showed adequate morphology and aerodynamic performances (fine particle fraction 48%–55% and aerodynamic diameter of 2.6–2.8 µm for deep lung deposition through the pulmonary route. Moreover, the release kinetics of IBP was also investigated showing a faster release of the drug at pH 6.8, the pH of lung cancer. POXylated strawberry-like gold-coated magnetite nanocomposites proved to have suitable sizes for cellular internalization and their fluorescent capabilities enable their future use in in vitro cell based assays. As a proof-of-concept, the reported results show that these nano-in-micro formulations could be potential drug vehicles for pulmonary administration.

  12. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy

    Science.gov (United States)

    Tu, Ting-Yu; Yang, Shu-Jyuan; Wang, Chung-Hao; Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Drug delivery systems combined multimodal therapy strategies are very promising in cancer theranostic applications. In this work, a new drug-delivery vehicles based on human serum albumin (HSA)-coated gold nanorods (GNR/PSS/HSA NPs) was developed. The success of coating was verified by transmission electron microscopy (TEM), zeta potential and fourier transform infrared spectroscopy (FTIR). Furthermore, it is demonstrated that doxorubicin (DOX) is successfully loaded among multilayered gold nanorods by the electrostatic and hydrophobic force, and DOX@GNR/PSS/HSA NPs were highly biocompatible and stable in various physiological solutions. The NPs possess strong absorbance in nearinfrared (NIR) region, and high photothermal conversion efficiency for outstanding photothermal therapy applications. A bimodal drug release triggered by proteinase or NIR irradiation has been revealed, resulting in a significant chemotherapeutic effect in tumor sites because of the preferential drug accumulation and triggered release. Importantly, the in vitro and in vivo experiments demonstrated that DOX@GNR/PSS/HSA NPs, which combined photothermal and chemotherapy for cancer therapy, revealing a remarkably superior synergistic anticancer effect over either monotherapy. All these results suggested a considerable potential of DOX@GNR/PSS/HSA NPs nano-platform for antitumor therapy.

  13. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  14. Breast MRI at 7 Tesla with a bilateral coil and robust fat suppression.

    Science.gov (United States)

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2014-03-01

    To develop a bilateral coil and fat suppressed T1-weighted sequence for 7 Tesla (T) breast MRI. A dual-solenoid coil and three-dimensional (3D) T1w gradient echo sequence with B1+ insensitive fat suppression (FS) were developed. T1w FS image quality was characterized through image uniformity and fat-water contrast measurements in 11 subjects. Signal-to-noise ratio (SNR) and flip angle maps were acquired to assess the coil performance. Bilateral contrast-enhanced and unilateral high resolution (0.6 mm isotropic, 6.5 min acquisition time) imaging highlighted the 7T SNR advantage. Reliable and effective FS and high image quality was observed in all subjects at 7T, indicating that the custom coil and pulse sequence were insensitive to high-field obstacles such as variable tissue loading. 7T and 3T image uniformity was similar (P=0.24), indicating adequate 7T B1+ uniformity. High 7T SNR and fat-water contrast enabled 0.6 mm isotropic imaging and visualization of a high level of fibroglandular tissue detail. 7T T1w FS bilateral breast imaging is feasible with a custom radiofrequency (RF) coil and pulse sequence. Similar image uniformity was achieved at 7T and 3T, despite different RF field behavior and variable coil-tissue interaction due to anatomic differences that might be expected to alter magnetic field patterns. Copyright © 2013 Wiley Periodicals, Inc.

  15. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    International Nuclear Information System (INIS)

    Fulcrand, R; Jugieu, D; Escriba, C; Bancaud, A; Bourrier, D; Boukabache, A; Gué, A M

    2009-01-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules

  16. Development of a flexible microfluidic system integrating magnetic micro-actuators for trapping biological species

    Science.gov (United States)

    Fulcrand, R.; Jugieu, D.; Escriba, C.; Bancaud, A.; Bourrier, D.; Boukabache, A.; Gué, A. M.

    2009-10-01

    A flexible microfluidic system embedding microelectromagnets has been designed, modeled and fabricated by using a photosensitive resin as structural material. The fabrication process involves the integration of micro-coils in a multilayer SU-8 microfluidic system by combining standard electroplating and dry films lamination. This technique offers numerous advantages in terms of integration, biocompatibility and chemical resistance. Various designs of micro-coils, including spiral, square or serpentine wires, have been simulated and experimentally tested. It has been established that thermal dissipation in micro-coils depends strongly on the number of turns and current density but remains compatible with biological applications. Real-time experimentations show that these micro-actuators are efficient in trapping magnetic micro-beads without any external field source or a permanent magnet and highlight that the size of microfluidic channels has been adequately designed for optimal trapping. Moreover, we trap magnetic beads in less than 2 s and release them instantaneously into the micro-channel. The actuation solely relies on electric fields, which are easier to control than standard magneto-fluidic modules.

  17. Electrodeposition of gold nanoparticles on mesoporous TiO{sub 2} photoelectrode to enhance visible region photocurrent

    Energy Technology Data Exchange (ETDEWEB)

    Supriyono,; Krisnandi, Yuni Krisyuningsih; Gunlazuardi, Jarnuzi, E-mail: jarnuzi@ui.ac.id [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia)

    2016-04-19

    Electrodeposition of gold nanoparticles (Au NPs) on the mesoporous TiO{sub 2} photoelectrode to enchance visible region photocurrent have been investigated. Mesoporous TiO{sub 2} was prepared by a sol gel method and immobilized to the fluorine doped tin oxide (FTO) substrate by dip coating technique. Gold nanoparticles were electrodeposited on the TiO{sub 2} surface and the result FTO/TiO{sub 2}/Au was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-Vis diffuse reflectance spectroscopy (DRS), and X-ray diffraction (XRD). The generated photocurrent was evaluated with an electrochemical workstation (e-DAQ/e-recorder 401) using 60 W wolfram lamp as visible light source. The photoelectrochemical evaluation indicated that the presence of gold nanoparticles on TiO{sub 2} photoelectrode shall enhance the photocurrent up to 50%.

  18. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    Energy Technology Data Exchange (ETDEWEB)

    Hovsepian, Papken Eh., E-mail: p.hovsepian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Mandal, Paranjayee, E-mail: 200712mum@gmail.com [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Ehiasarian, Arutiun P., E-mail: a.ehiasarian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Sáfrán, G., E-mail: safran.gyorgy@ttk.mta.hu [Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thegeut 29-33 (Hungary); Tietema, R., E-mail: rtietema@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands); Doerwald, D., E-mail: ddoerwald@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands)

    2016-03-15

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS{sub 2} and MoS{sub 2}. • WS{sub 2} and MoS{sub 2} are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS{sub 2} and MoS{sub 2}, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  19. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    International Nuclear Information System (INIS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-01-01

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS 2 and MoS 2 . • WS 2 and MoS 2 are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS 2 and MoS 2 , where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  20. Limit analysis of narrow support elements in W7-X considering the serration effect of the stress-strain relation at 4 K

    International Nuclear Information System (INIS)

    Briani, E.; Gianini, C.; Lucca, F.; Marin, A.; Fellinger, J.; Bykov, V.

    2011-01-01

    The magnet support system of the Wendelstein 7-X (W7-X) fusion stellarator includes challenging components, called Narrow Support Elements (NSEs), placed between the Non Planar Coils (NPCs) at the inboard side and aimed at reducing deformation of the coils. NSEs are small contact elements, with special coating to reduce friction, that have to withstand high compressive and shear forces. The objective of this article is to demonstrate the structural reliability of the NSEs under electromagnetic loading (EML), taking into account in a conservative way the relevant material properties at cryogenic temperatures. To this purpose, an appropriate parametric local Finite Element (FE) model of one highly loaded NSE with its components (pad, pad frame and counter pad) and of a portion of the coils has been developed with ABAQUS code and isotropic elastic-plastic material model with hardening/softening has been used, in order to include the serration effect at 4 K. Different mechanical limit analyses have been performed including consecutive steps of shrink fitting the NSEs in the coils, cooling down to 4 K and gradual increasing of the coil displacements induced by the EML.

  1. Limit analysis of narrow support elements in W7-X considering the serration effect of the stress-strain relation at 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Briani, E., E-mail: erica.briani@ltcalcoli.it [L.T.Calcoli SaS, Piazza Prinetti 26/B, 23807, Merate (Saint Lucia) (Italy); Gianini, C.; Lucca, F.; Marin, A. [L.T.Calcoli SaS, Piazza Prinetti 26/B, 23807, Merate (Saint Lucia) (Italy); Fellinger, J.; Bykov, V. [MPI fur Plasmaphysik (IPP) Wendelsteinstrasse I, D-17491 Greifswald (Germany)

    2011-10-15

    The magnet support system of the Wendelstein 7-X (W7-X) fusion stellarator includes challenging components, called Narrow Support Elements (NSEs), placed between the Non Planar Coils (NPCs) at the inboard side and aimed at reducing deformation of the coils. NSEs are small contact elements, with special coating to reduce friction, that have to withstand high compressive and shear forces. The objective of this article is to demonstrate the structural reliability of the NSEs under electromagnetic loading (EML), taking into account in a conservative way the relevant material properties at cryogenic temperatures. To this purpose, an appropriate parametric local Finite Element (FE) model of one highly loaded NSE with its components (pad, pad frame and counter pad) and of a portion of the coils has been developed with ABAQUS code and isotropic elastic-plastic material model with hardening/softening has been used, in order to include the serration effect at 4 K. Different mechanical limit analyses have been performed including consecutive steps of shrink fitting the NSEs in the coils, cooling down to 4 K and gradual increasing of the coil displacements induced by the EML.

  2. Evaluation of coat uniformity and taste-masking efficiency of irregular-shaped drug particles coated in a modified tangential spray fluidized bed processor.

    Science.gov (United States)

    Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-01-01

    To explore the feasibility of coating irregular-shaped drug particles in a modified tangential spray fluidized bed processor (FS processor) and evaluate the coated particles for their coat uniformity and taste-masking efficiency. Paracetamol particles were coated to 20%, w/w weight gain using a taste-masking polymer insoluble in neutral and basic pH but soluble in acidic pH. In-process samples (5, 10 and 15%, w/w coat) and the resultant coated particles (20%, w/w coat) were collected to monitor the changes in their physicochemical attributes. After coating to 20%, w/w coat weight gain, the usable yield was 81% with minimal agglomeration (coat compared with the uncoated particles. A 15%, w/w coat was optimal for inhibiting drug release in salivary pH with subsequent fast dissolution in simulated gastric pH. The FS processor shows promise for direct coating of irregular-shaped drug particles with wide size distribution. The coated particles with 15% coat were sufficiently taste masked and could be useful for further application in orally disintegrating tablet platforms.

  3. Tuning the structural and optical properties of gold/silver nanoalloys prepared by laser ablation in liquids for ultra-sensitive spectroscopy and optical trapping

    Directory of Open Access Journals (Sweden)

    F. Neri

    2011-09-01

    Full Text Available The plasmon resonance of metallic Au/Ag alloys in the colloidal state was tuned from 400 nm to 500 nm using a laser irradiated technique, performed directly in the liquid state. Interesting optical nonlinearities, trapping effects and spectroscopic enhancements were detected as function of gold concentration in the nanoalloys. In particular a reduction of the limiting threshold was observed by increasing the gold amount. The SERS activity of the Au/Ag alloys was tested in liquid and in solid state in presence of linear carbon chains as probe molecules. The dependence of the increased Raman signals on the nanoparticle Au/Ag atomic ratio is presented and discussed. Finally preliminary studies and prospects for optical and Raman tweezers experiments are discussed.

  4. Data on rotating plasma operation in Tornado traps

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-01-01

    Rotating plasma operation in spiral coil 'Tornado' traps provides a unique combination of confinement and heating properties. Such a system consists of a closed and compact magnetic bottle to which the crossed-field technique can be applied, in absence of end insulators and their critical velocity limitation effect. This is expected to lead to the generation and heating of fully ionized plasmas within a large range of ion densities, temperatures, and rotational velocities. Provided that stable operation becomes possible at high temperatures and the effects due to the asymmetries of the spiral coil structure can be neglected, it is likely that Tornado traps can be used as strong neutron sources of moderately large dimensions and technically realizable parameter values. Some detailed data and operation ranges are outlined for the 'Tornado 650' device in Leningrad, and for a somewhat larger device which may be operated as a neutron source. (Auth.)

  5. Fabrication of gold nanoparticle arrays by block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao Ling

    2011-02-15

    Gold nanoparticle is one of the widely research objects in various fields including catalysis and biotechnology. Precise control of gold nanoparticles placement and their integration is essential to take full advantage of these unique properties for applications. An approach to self-assembling of gold nanoparticles (AuNPs) from reconstructed block copolymer was introduced. Highly ordered polystyrene-block-poly(2-vinylpyridine)(PS-b-P2VP) micellar arrays were obtained by solvent annealing. Subsequent immersion of the films in a preferential solvent for P2VP caused a reorganization of the film to generate a porous structure upon drying. PEG-coated AuNPs were spin-coated onto this reconstruction PS-b-P2VP template. When such films were exposed to toluene vapor-which is non-selective solvent for PEO and P2VP, AuNPs were drawn into those porous to form ordered arrays. Gold nanospheres with size 12±1.8 nm were synthesized by reducing HAuCl{sub 4} via sodium citrate. Gold nanorods (aspect ratio about 6) were prepared from seed-mediated surfactant capping wet chemical method and the aspect ratio is tunable by changing surfactant amount. PEG ligand is used to modify gold nanoparticle surface by removing the original surfactant (sodium citrate -gold nanospheres: CTAB-gold nanorods), which have affinity with certain block copolymer component. Once gold nanoparticle is modified with PEG thiol, they were spin coated onto PS-b-P2VP template, which was prepared by solvent annealing and surface reconstruction process. So gold nanoparticle array was fabricated by this self-assembling process. The same idea can be applied on other nanoparticles.

  6. Fabrication of gold nanoparticle arrays by block copolymer

    International Nuclear Information System (INIS)

    Chen, Xiao Ling

    2011-02-01

    Gold nanoparticle is one of the widely research objects in various fields including catalysis and biotechnology. Precise control of gold nanoparticles placement and their integration is essential to take full advantage of these unique properties for applications. An approach to self-assembling of gold nanoparticles (AuNPs) from reconstructed block copolymer was introduced. Highly ordered polystyrene-block-poly(2-vinylpyridine)(PS-b-P2VP) micellar arrays were obtained by solvent annealing. Subsequent immersion of the films in a preferential solvent for P2VP caused a reorganization of the film to generate a porous structure upon drying. PEG-coated AuNPs were spin-coated onto this reconstruction PS-b-P2VP template. When such films were exposed to toluene vapor-which is non-selective solvent for PEO and P2VP, AuNPs were drawn into those porous to form ordered arrays. Gold nanospheres with size 12±1.8 nm were synthesized by reducing HAuCl 4 via sodium citrate. Gold nanorods (aspect ratio about 6) were prepared from seed-mediated surfactant capping wet chemical method and the aspect ratio is tunable by changing surfactant amount. PEG ligand is used to modify gold nanoparticle surface by removing the original surfactant (sodium citrate -gold nanospheres: CTAB-gold nanorods), which have affinity with certain block copolymer component. Once gold nanoparticle is modified with PEG thiol, they were spin coated onto PS-b-P2VP template, which was prepared by solvent annealing and surface reconstruction process. So gold nanoparticle array was fabricated by this self-assembling process. The same idea can be applied on other nanoparticles

  7. Annealing relaxation of ultrasmall gold nanostructures

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Except serving as an excellent gift on proper occasions, gold finds applications in life sciences, particularly in diagnostics and therapeutics. These applications were made possible by gold nanoparticles, which differ drastically from macroscopic gold. Versatile surface chemistry of gold nanoparticles allows coating with small molecules, polymers, biological recognition molecules. Theoretical investigation of nanoscale gold is not trivial, because of numerous metastable states in these systems. Unlike elsewhere, this work obtains equilibrium structures using annealing simulations within the recently introduced PM7-MD method. Geometries of the ultrasmall gold nanostructures with chalcogen coverage are described at finite temperature, for the first time.

  8. Effects of post annealing on the microstructure, mechanical properties and cavitation erosion behavior of arc-sprayed FeNiCrBSiNbW coatings

    International Nuclear Information System (INIS)

    Lin, Jinran; Wang, Zehua; Lin, Pinghua; Cheng, Jiangbo; Zhang, Xin; Hong, Sheng

    2015-01-01

    Highlights: • FeNiCrBSiNbW coatings were prepared by arc spraying process. • Microstructural changes of the coatings were investigated by TEM. • As-sprayed coating had higher cavitation erosion resistance than annealed coatings. • The mechanism for annealing-induced change in cavitation erosion was discussed. - Abstract: FeNiCrBSiNbW coatings were fabricated via arc spraying process and were subsequently annealed at 450, 550 and 650 °C for 1 h to study the effect of annealing treatment on the microstructure, mechanical properties and cavitation erosion behavior. Microstructure was studied using scanning and transmission electron microscopy. The results showed that oxides, fine crystalline particles and borides were formed after annealing at 650 °C. With increasing annealing temperature, the coatings showed reductions in porosity and fracture toughness, and an increase in microhardness. The cavitation erosion behavior of the coatings was investigated in distilled water. The results showed that the cavitation erosion resistance of the coatings decreased with increasing annealing temperature, and the as-sprayed coating exhibited the best cavitation erosion resistance among the four kinds of coatings. This was attributed to the good fracture toughness, high amorphous phase content and the absence of oxides in the as-sprayed coating

  9. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators

    Directory of Open Access Journals (Sweden)

    Sadeque Reza Khan

    2016-08-01

    Full Text Available High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8% than circular resonators (78.43% when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW to the load than the square coils (396 mW under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  10. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    Science.gov (United States)

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  11. 12 tesla test coil. Annual progress report

    International Nuclear Information System (INIS)

    1979-01-01

    The Plasma Fusion Center at MIT has been charged with responsibility for the design, development, fabrication and test operation of a Niobium-3-Tin Superconducting Test Coil. Research is described on DOE's 12 tesla coil demonstration program in which several one-meter diameter superconducting test coils will be inserted and tested in DOE's High Field Test Facility at the Lawrence Livermore Laboratories. The work was initiated at the start of FY 79. FY 79 saw the completion of our Preliminary Design and the initiation of three (3) subcontracts: (1) Westinghouse review of the Preliminary Design, (II) Supercon, Inc. development of a tubular copper matrix, Nb 3 Sn Superconductor and (III) Airco optimization of the LCP-W Nb 3 Sn superconductor for 12T service. In addition, Airco was charged with the production of a 1000 foot length of model 15,000A conductor. Coil winding exercises were initiated at the Everson Electric Company

  12. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keon Young [University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104 (United States); Ramaraj, B. [Research and Development Department, Central Institute of Plastics Engineering and Technology (CIPET), 630, Phase IV, GIDC, Vatva, Ahmedabad 382445 (India); Choi, Won Suk [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of); Yoon, Kuk Ro, E-mail: kryoon@hannam.ac.kr [Department of Chemistry, Hannam University, 461-6 Jeon min-dong, Yuseoung-gu, Daejeon 305-811 (Korea, Republic of)

    2013-11-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  13. Fabrication and metallization of 3D electrospun nanofiberous architecture with gold and silver coating for applications related to electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Park, Keon Young; Ramaraj, B.; Choi, Won Suk; Yoon, Kuk Ro

    2013-01-01

    We have engineered a metallic architecture with high surface area and ultralow density for applications related to electrochemical supercapacitors. This is achieved first by design and fabrication of new annular collector template for electrospinning process, then the extrusion of polystyrene (PS) nanofiber through the fabricated annulus collector template followed by electroless plating of nanofiber assembly with gold and silver. The resultant three dimensional structures were characterized by optical microscopy (OM), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The OM images suggest that the fabrication process causes the electrospun fibers to be hinged to one another, maximizing contact junctions enhancing mechanical stability. The coated structure has a superior surface area, is robust, and is freestanding – making it an attractive architectural design for an electrode. The SEM images show interlocking of nanofibers to one another, further indicating the potential application for this system as a high surface area, low density charge collector ideal for nanostructured growths. - Graphical abstract: A new annular collector template was designed and fabricated to create a 3D electrospun nanofiber assembly. This ultralight 3D architecture with high surface was electroless plated with silver and gold to assess its suitability for applications related to electrochemical supercapacitors. This structure is highly conductive leading us to believe that this product can be utilized as an alternate electrode charge collector. - Highlights: • A metallic architecture with high surface area and ultralow density was fabricated. • A new annular collector template for electrospinning was designed and fabricated. • Electrospun PS nanofibers with 3D structure were coated with silver and gold. • The coated structure is

  14. Cytosine-assisted synthesis of gold nanochains and gold nanoflowers for the construction of a microperoxidase-11 based amperometric biosensor for hydrogen peroxide

    International Nuclear Information System (INIS)

    Zhang, Qian-Li; Zhou, Dan-Ling; Wang, Ai-Jun; Qin, Su-Fang; Feng, Jiu-Ju; Li, Yong-Fang

    2014-01-01

    A simple method was developed for synthesis of network-like gold nanochains and gold nanoflowers in the presence of cytosine by reduction of tetrachloroauric acid with sodium borohydride and ascorbic acid, respectively. The resulting gold nanocrystals were coated with microperoxidase-11 via electrostatic interactions. Electrodes modified with protein-coated gold nanochains or nanoflowers display well-defined and quasi reversible redox peaks and enhanced high electrocatalytic activity toward the reduction of H 2 O 2 that is due to direct electron transfer to the protein. The effects were exploited for the amperometric detection of H 2 O 2 with a linear response from 0.5 μM to 0.13 mM (for the gold nanochains) and from 1.0 μM to 0.11 mM (for the gold nanoflowers), respectively. The sensor shows lower detection limit and faster response time than sensors based on the use of spherical gold nanoparticles. (author)

  15. The effect of ion irradiation and elevated temperature on the microstructure and the properties of C/W/C/B multilayer coating

    Energy Technology Data Exchange (ETDEWEB)

    Vlcak, Petr, E-mail: petr.vlcak@fs.cvut.cz

    2016-03-01

    Graphical abstract: - Highlights: • C/W/C/B multilayer PVD coating was treated by 45 keV nitrogen ion irradiation. • The effect of ion irradiation and elevated temperature on microstructure was analyzed. • Formation of new compounds and degradation of carbon fraction were observed. • The causes of the observed changes in surface properties were discussed. - Abstract: C/W/C/B multi-layer PVD coating with a layer period of 10 nm and 500 nm in thickness was irradiated with 45 keV N ions at fluence of 1 × 10{sup 17} cm{sup −2}. Ion irradiation was performed at room temperature or at an elevated temperature of 500 °C. The microstructure was investigated by X-ray diffraction, by X-ray photoelectron spectroscopy, and by Raman spectroscopy. The results showed that implanted N ions bond both with W atoms and with C atoms. N ion irradiation induced the formation of WC and WC{sub 1−x} phases. The energetic ions transformed the C bonds in defect sp{sup 2} and defect sp{sup 3} hybridizations, resulting in graphitization of the carbon fraction in the multilayer coating. Ion irradiation reduced the cohesive strength of the monolayers, reduced hardness of the C/W/C/B coating, increased its surface roughness and increased its friction coefficient. An elevated temperature during ion irradiation caused a better arrangement of the WC phase and further graphitization of the carbon fraction, in comparison with a coating treated by ion irradiation at room temperature. There is discussion of the causes of the observed changes in surface properties.

  16. Tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated photonic crystal fiber

    Science.gov (United States)

    Liu, Yingchao; Chen, Hailiang; Ma, Mingjian; Zhang, Wenxun; Wang, Yujun; Li, Shuguang

    2018-03-01

    We propose a tunable ultra-broadband polarization filter based on three-core resonance of the fluid-infiltrated and gold-coated high birefringent photonic crystal fiber (HB-PCF). Gold film was applied to the inner walls of two cladding air holes and surface plasmon polaritons were generated on its surface. The two gold-coated cladding air holes acted as two defective cores. As the phase matching condition was satisfied, light transmitted in the fiber core and coupled to the two defective cores. The three-core PCF supported three super modes in two orthogonal polarization directions. The coupling characteristics among these modes were investigated using the finite-element method. We found that the coupling wavelengths and strength between these guided modes can be tuned by altering the structural parameters of the designed HB-PCF, such as the size of the voids, thickness of the gold-films and liquid infilling pattern. Under the optimized structural parameters, a tunable broadband polarization filter was realized. For one liquid infilling pattern, we obtained a broadband polarization filter which filtered out the light in y-polarization direction at the wavelength of 1550 nm. For another liquid infilling pattern, we filtered out light in the x-polarization direction at the wavelength of 1310 nm. Our studies on the designed HB-PCF made contributions to the further devising of tunable broadband polarization filters, which are extensively used in telecommunication and sensor systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505175 and 61475134) and the Natural Science Foundation of Hebei Province (Grant Nos. F2017203110 and F2017203193).

  17. About stability of levitating states of superconducting myxini of plasma traps-galateas

    International Nuclear Information System (INIS)

    Bishaev, A.M.; Bush, A.A.; Denis'uk, A.I.; D'yakonitsa, O.Y.; Kamentsev, K.Y.; Kozintseva, M.V.; Kolesnikova, T.G.; Shapovalov, M.M.; Voronchenko, S.A.; Gavrikov, M.B.; Savelyev, V.V.; Smirnov, P.G.

    2015-01-01

    To develop a plasma trap with levitating superconducting magnetic coils it is necessary to carry out the search of their stable levitating states. With this purpose, based upon the superconductor property to conserve the trapped magnetic flux, in the uniform gravitational field the analytical dependence of the potential energy of one or two superconducting rings, having trapped the given magnetic fluxes, in the field of the fixed ring with the constant current from the coordinates of the free rings and the deflection angle of their axes from the common axis of the magnetic system has been obtained in the thin ring approximation. Under magnetic fluxes of the same polarity in coils the existence of the found from the calculations equilibrium levitating states for the manufactured HTSC rings stable relative to the vertical shifts of levitating rings and to the deflection angle of their axes from the vertical has been confirmed experimentally

  18. Multimodal imaging of lymph nodes and tumors using glycol-chitosan-coated gold nanoparticles (Conference Presentation)

    Science.gov (United States)

    Sun, In-Cheol; Dumani, Diego S.; Emelianov, Stanislav Y.

    2017-03-01

    A key step in staging cancer is the diagnosis of metastasis that spreads through lymphatic system. For this reason, researchers develop various methods of sentinel lymph node mapping that often use a radioactive tracer. This study introduces a safe, cost-effective, high-resolution, high-sensitivity, and real-time method of visualizing the sentinel lymph node: ultrasound-guided photoacoustic (US/PA) imaging augmented by a contrast agent. In this work, we use clearable gold nanoparticles covered by a biocompatible polymer (glycol chitosan) to enhance cellular uptake by macrophages abundant in lymph nodes. We incubate macrophages with glycol-chitosan-coated gold nanoparticles (0.05 mg Au/ml), and then fix them with paraformaldehyde solution for an analysis of in vitro dark-field microscopy and cell phantom. The analysis shows enhanced cellular uptake of nanoparticles by macrophages and strong photoacoustic signal from labeled cells in tissue-mimicking cell phantoms consisting gelatin solution (6 %) with silica gel (25 μm, 0.3%) and fixed macrophages. The in-vivo US/PA imaging of cervical lymph nodes in healthy mice (nu/nu, female, 5 weeks) indicates a strong photoacoustic signal from a lymph node 10 minutes post-injection (2.5 mg Au/ml, 80 μl). The signal intensity and the nanoparticle-labeled volume of tissue within the lymph node continues to increase until 4 h post-injection. Histological analysis further confirms the accumulation of gold nanoparticles within the lymph nodes. This work suggests the feasibility of molecular/cellular US/PA imaging with biocompatible gold nanoparticles as a photoacoustic contrast agent in the diagnosis of lymph-node-related diseases.

  19. Materials and techniques for coiling of cerebral aneurysms: how much scientific evidence do we have?

    International Nuclear Information System (INIS)

    Kurre, W.; Berkefeld, J.

    2008-01-01

    Since coils were approved for aneurysm treatment, materials and techniques developed rapidly. It still remains an open question whether one material or method is superior. This article reviews the literature on various coil types and treatment approaches assessing the scientific evidence of its use. Studies on aneurysm treatment with Guglielmi detachable platinum coils, bioactive coils, hydrogel coated coils, and complex designs as well as balloon- and stent-assisted techniques were retrieved by a PubMed database search from 1990 until May 2008. Data were analyzed in terms of aneurysm occlusion, permanent morbidity and mortality, recanalization, and retreatment. We also assessed the level of evidence of the published studies. Only the International Subarachnoid Aneurysm Trial provides level I evidence proving the superiority of endovascular over surgical therapy in ruptured aneurysms. Randomized trials comparing bioactive or hydrogel coated devices with bare coils are ongoing. Other studies were based on registries or case series mainly conducted without control groups. Morbidity, mortality, and initial occlusion rates appear similar for all devices. No clear evidence exists for the superiority of bioactive- or hydrocoils regarding long-term stability. It remains ambiguous whether morbidity and mortality rises with the use of balloons and stents. There is no evidence that routine use of balloons improves treatment durability. Mid-term results of stent-assisted coiling of complex aneurysms appear favorable. There is a lack of studies with a high level of evidence comparing different coiling materials and techniques. Case series and registries were not able to prove the superiority of any device or method. (orig.)

  20. Development of an YBCO coil with SSTC conductors for high field application

    Science.gov (United States)

    Shi, Y.; Liu, H. J.; Liu, F.; Tan, Y. F.; Jin, H.; Yu, M.; Lei, L.; Guo, L.; Hong, Z. Y.

    2018-07-01

    With the continuous reduction of the production costs and improvement of the transport performance, YBCO coated conductor is the most promising candidate for the high field magnet application due to its high irreversibility field and strong mechanical properties. Presently a stable production capacity of the YBCO conductors has been achieved by Shanghai Superconducting Technology Co., Ltd (SSTC) in China. Therefore, the demand in high field application with YBCO conductors is growing in China. This paper describes the design, fabrication and preliminary experiment of a solenoid coil with YBCO conductors supplied by SSTC to validate the possibility of high field application. Four same double pancakes were manufactured and assembled for the YBCO coil where the outer diameter and height was 54.3 and 48 mm respectively to match the dimensional limitation of the 14 T background magnets. The critical current (Ic) of YBCO conductors was obtained by measuring as a function of the applied field perpendicular to the YBCO conductor surface which provides the necessary input parameters for preliminary performance evaluation of the coil. Finally the preliminary test and discussion at 77 and 4.2 K were carried out. The consistency of four double pancakes Ic was achieved. The measured results indicate that the fabrication technology of HTS coil is reliable which gives the conference for the in-field test in high field application. This YBCO coil is the first demonstration of the SSTC YBCO coated conductors.

  1. An ultrasensitive chemiluminescence immunoassay for fumonisin B1 detection in cereals based on gold-coated magnetic nanoparticles.

    Science.gov (United States)

    Jie, Mingsha; Yu, Songcheng; Yu, Fei; Liu, Lie; He, Leiliang; Li, Yanqiang; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B; Wu, Yongjun

    2018-07-01

    In the present study, a novel highly sensitive magnetic enzyme chemiluminescence immunoassay (MECLIA) was developed to detect fumonisin B 1 (FB 1 ) in cereal samples. The gold-coated magnetic nanoparticles (Fe 3 O 4 @Au, GoldMag) were used as solid phase carrier to develop a competitive CLIA for detecting FB 1 , in which FB 1 in samples would compete with FB 1 -ovalbumin coated on the surface of Fe 3 O 4 @Au nanoparticles for binding with FB 1 antibodies. Successively, horseradish peroxidase labeled goat anti-rabbit IgG (HRP-IgG) was conjugated with FB 1 antibodies on the microplate. In substrate solution containing luminol and H 2 O 2 , HRP-IgG catalyzed luminol oxidation by H 2 O 2 , generating a high chemiluminescence signal. The FB 1 immune GoldMag particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and zeta potential analysis, etc. RESULTS: The concentrations and the reaction times of these immunoreagents were optimized to improve the performances of this method. The established method could detect as low as 0.027 ng mL -1 FB 1 from 0.05 ng mL -1 to 25 ng mL -1 , demonstrating little cross-reaction (less than 2.4%) with other structurally related compounds. The average intrassay relative SD (RSD) (n = 6) was 3.4% and the average interassay RSD (n = 6) was 5.4%. This method was successfully applied for the determination of FB 1 in corn and wheat and gave recoveries of between 98-110% and 91-105%, respectively. The results of the present study suggest that the MECLIA approach has potential application for high-throughput fumonisin screening in cereals. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  2. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI--a comparison with contrast-enhanced MRI

    DEFF Research Database (Denmark)

    Eshed, Iris; Krabbe, Simon; Østergaard, Mikkel

    2015-01-01

    post-contrast T1-weighted sequence was used as gold standard reference. RESULTS: Fair-good agreement (ICC=0.38--0.72) between the standard reference and the different STIR protocols (best agreement with extremity coil and small voxel size at 1.5 T). The accuracy for presence/absence of synovitis...... is only moderately reliable for assessing hand synovitis in RA, when contrast-enhanced MRI is considered the gold standard reference. Contrast injection, field strength and coil type influence synovitis assessment, and should be considered before performing MRI in clinical trials and practice. KEY POINTS...

  3. Corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K.

    2007-01-01

    The present work deals with evaluation of corrosion behaviour of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys. Corrosion behaviour of the coatings deposited on steel substrates was studied using polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution while their passivation behaviour was studied in 1N sulphuric acid solution. The corrosion resistance of Ni-W alloys increased with tungsten content up to 7.54 at.% and then decreased. In case of Ni-Fe-W alloys it increased with tungsten content up to 9.20 at.% and then decreased. The ternary alloy coatings exhibited poor corrosion resistance compared to binary alloy coatings due to preferential dissolution of iron from the matrix. Regardless of composition all the alloys exhibited passivation behaviour over a wide range of potentials due to the formation of tungsten rich film on the surface

  4. 3D-Printed external light traps for solar cells

    NARCIS (Netherlands)

    van Dijk, L.; Paetzold, U.W.; Blab, Gerhard; Marcus, E.A.P.; Oostra, A.J.; van de Groep, J.; Polman, A.; Schropp, R.E.I.; Di Vece, M.

    2015-01-01

    We demonstrate a universally applicable 3D-printed external light trap for solar cells. We placed a macroscopic external light trap made of smoothened, silver coated plastic at the sun-facing surface of different types of solar cells. The trap consists of a reflective parabolic concentrator on top

  5. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  6. Structure characterization of nanocrystalline Ni–W alloys obtained by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Indyka, P., E-mail: paulina.indyka@uj.edu.pl [Jagiellonian University, Faculty of Chemistry, 3 Ingardena St., 30-059 Krakow (Poland); Beltowska-Lehman, E.; Tarkowski, L.; Bigos, A. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); García-Lecina, E. [Surface Finishing Department, CIDETEC-IK4 – Centre for Electrochemical Technologies, P° Miramón 196, 20009 Donostia-San Sebastián (Spain)

    2014-03-25

    Highlights: • Ni–W alloy coatings were electrodeposited from an aqueous electrolyte solutions. • The microstructure was studied with respect to electrodeposition process parameters. • We report optimal plating conditions for crack-free, nanocrystalline Ni–W coatings. • Crystalline Ni–W coatings exhibited the phase structure of an α-Ni(W) solid solution. • Coatings revealed tensile residual stresses and weakly pronounced 〈1 1 0〉 fiber texture. -- Abstract: Ni–W coatings of different tungsten content (2–50 wt%) were electrodeposited on a steel substrates from an aqueous complex sulfate–citrate galvanic baths, under controlled hydrodynamic conditions in a Rotating Disk Electrode (RDE) system. The optimum conditions for the electrodeposition of crack-free, homogeneous nanocrystalline Ni–W coatings were determined on the basis of the microstructure investigation results. The XRD structural characterizations of Ni–W alloy coatings obtained under different experimental conditions were complemented by SEM and TEM analysis. Results of the study revealed that the main factor influencing the microstructure formation of the Ni–W coatings is the chemical composition of an electrolyte solution. X-ray and electron diffraction patterns of all nanocrystalline Ni–W coatings revealed mainly the fcc phase structure of an α-Ni(W) solid solution with a lattice parameter increased along with tungsten content. The use of additives in the plating bath resulted in the formation of equiaxial/quasifibrous, nanocrystalline Ni–W grains of an average size of about 10 nm. The coatings were characterized by relatively high tensile residual stresses (500–1000 MPa), depending on the electrodeposition conditions. Ni–W coatings exhibited weakly pronounced fiber type 〈1 1 0〉 crystallographic texture, consistent with the symmetry of the plating process. Coatings of the highest tungsten content 50 wt% were found to be amorphous.

  7. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  8. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  9. Designing stellarator coils by a modified Newton method using FOCUS

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-06-01

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  10. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    Science.gov (United States)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  11. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    International Nuclear Information System (INIS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-01-01

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed

  12. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Katsutoshi, E-mail: mizuno.katsutoshi.14@rtri.or.jp; Ogata, Masafumi; Hasegawa, Hitoshi

    2014-11-15

    Highlights: • Paraffin has a risk of losing thermal coupling during cooling down. • We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. • The coil is tightly bonded to cooling members by epoxy resin without the degradation. • We made a REBCO racetrack coil with the same outer dimension as the Maglev magnet. - Abstract: The REBCO coated conductor has been attracted attention because of its high current density in the presence of high magnetic field. If the coated conductor is applied to Maglev, the operational temperature of the on-board magnets will be over 40 K and energy consumption of cryocoolers will be reduced. That high operational temperature also means the absence of liquid helium. Therefore, reliable thermal coupling is desirable for cooling the coils. We propose an epoxy impregnated REBCO coil co-wound with PTFE tape. While the PTFE tape prevents the performance degradation of the coil, the epoxy resin bonds the coil to cooling members. We carried out three experiments to confirm that the coil structure which we propose has robust thermal coupling without the degradation. First, thermal resistances of paraffin and epoxy were measured varying the temperature from room temperature to 10 K. The measurement result indicates that paraffin has a risk of losing thermal coupling during cooling down. In another experiment, PTFE (polytetrafluoroethylene) tape insulator prevented performance degradation of a small epoxy impregnated REBCO coil, while another REBCO coil with polyimide tape showed clear performance degradation. Finally, we produced a racetrack REBCO coil with the same outer dimension as a Maglev on-board magnet coil. Although the racetrack coil was installed in a GFRP coil case and tightly bonded to the case by epoxy impregnation, any performance degradation was not observed.

  13. Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets

    CERN Document Server

    Parker, Brett

    2005-01-01

    BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics t...

  14. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2.

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-05

    A sensitive fluorescent detection platform for Hg 2+ was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800nm and a wide range of excitation (220-650nm) with the maxima at 413nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg 2+ over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg 2+ from the MSA, and the resultant strong coupling interaction between Hg 2+ and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg 2+ . This proposed strategy was also demonstrated the possibility to be used for Hg 2+ detection in water samples. Copyright © 2017. Published by Elsevier B.V.

  15. Mercaptosuccinic acid-coated NIR-emitting gold nanoparticles for the sensitive and selective detection of Hg2 +

    Science.gov (United States)

    Xiong, Xiaodong; Lai, Xiaoqi; Liu, Jinbin

    2018-01-01

    A sensitive fluorescent detection platform for Hg2 + was constructed based on mercaptosuccinic acid (MSA) coated near-infrared (NIR)-emitting gold nanoparticles (AuNPs). The thiolated mercaptosuccinic acid was employed as both reducing agent and surface coating ligand in a one-step synthesis of NIR-emitting AuNPs (MSA-AuNPs), which exhibited stable fluorescence with the maximum wavelength at 800 nm and a wide range of excitation (220-650 nm) with the maxima at 413 nm. The MSA coated NIR-emitting AuNPs showed a rapid fluorescence quenching toward Hg2 + over other metal ions with a limit of detection (LOD, 3δ) as low as 4.8 nM. The sensing mechanism investigation revealed that the AuNPs formed aggregation due to the "recognition" of Hg2 + from the MSA, and the resultant strong coupling interaction between Hg2 + and Au (I) to further quench the fluorescence of the AuNPs, which synergistically resulted in a highly sensitive and selective fluorescence response toward Hg2 +. This proposed strategy was also demonstrated the possibility to be used for Hg2 + detection in water samples.

  16. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics

    Science.gov (United States)

    Lin, Li-Sen; Yang, Xiangyu; Niu, Gang; Song, Jibin; Yang, Huang-Hao; Chen, Xiaoyuan

    2016-01-01

    A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the plasmonic coupling of the self-assembled gold nanoparticles and the interaction between GSPs and rGO endow rGO-GSPs with enhanced photothermal conversion properties, allowing rGO-GSPs to be used for sensitive photoacoustic detection and efficient photothermal ablation of tumours in vivo. This study provides a facile approach to prepare colloidal superparticles-graphene hybrid nanostructures and will pave the way toward the design and optimization of photothermal nanomaterials with improved properties for theranostic applications.A rational design of highly efficient photothermal agents that possess excellent light-to-heat conversion properties is a fascinating topic in nanotheranostics. Herein, we present a facile route to fabricate size-tunable reduced graphene oxide (rGO)-coated gold superparticles (rGO-GSPs) and demonstrate their dual-enhanced photothermal conversion properties for photoacoustic imaging and photothermal therapy. For the first time, graphene oxide (GO) was directly used as an emulsifying agent for the preparation of gold superparticles (GSPs) with near-infrared absorption by the emulsion method. Moreover, GO spontaneously deposited on the surface of GSPs could also act as the precursor of the rGO shell. Importantly, both the

  17. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  18. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors

    International Nuclear Information System (INIS)

    Bhuiyan, M S; Paranthaman, M; Sathyamurthy, S; Aytug, T; Kang, S; Lee, D F; Goyal, A; Payzant, E A; Salama, K

    2003-01-01

    We have grown epitaxial CeO 2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors using a newly developed metal organic decomposition (MOD) approach. Precursor solution of 0.25 M concentration was spin coated on short samples of Ni-3 at%W (Ni-W) substrates and heat-treated at 1100 C in a gas mixture of Ar-4%H 2 for 15 min. Detailed x-ray studies indicate that CeO 2 films have good out-of-plane and in-plane textures with full-width-half-maximum values of 5.8 deg. and 7.5 deg., respectively. High temperature in situ XRD studies show that the nucleation of CeO 2 films starts at 600 C and the growth completes within 5 min when heated at 1100 C. SEM and AFM investigations of CeO 2 films reveal a fairly dense microstructure without cracks and porosity. Highly textured YSZ barrier layers and CeO 2 cap layers were deposited on MOD CeO 2 -buffered Ni-W substrates using rf-magnetron sputtering. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A critical current, J c , of about 1.5 MA cm -2 at 77 K and self-field was obtained on YBCO (PLD)/CeO 2 (sputtered)/YSZ (sputtered)/CeO 2 (spin-coated)/Ni-W

  19. Simple atom trap in a conical hollow mirror: Numerical analysis

    International Nuclear Information System (INIS)

    Kim, J. A.; Lee, K. I.; Nha, H.; Noh, H. R.; Yoo, S. H.; Jhe, W

    1996-01-01

    We analyze the trap dynamic in a conical hollow (axicon) mirror system. Atom's trajectory is ring shaped if we move the coil (magnetic field) axis off the mirror axis and if we overlap these two axes trap cloud is ball shaped and it is consistent with experiment. We also make a simple comparison between 6-beam MOT and axicon MOT in the ball shaped case, and it shows that at low velocity limit the axicon MOT and typical 6-beam MOT have nearly same trap properties. The axicon trap may be useful as precooled atom source for many other atomic physics experiments such as cold atomic beam, atom funnel, and atom waveguide.

  20. Preparation of DNA/Gold Nanoparticle Encapsulated in Calcium Phosphate

    Directory of Open Access Journals (Sweden)

    Tomoko Ito

    2011-01-01

    Full Text Available Biocompatible DNA/gold nanoparticle complex with a protective calcium phosphate (CaP coating was prepared by incubating DNA/gold nanoparticle complex coated by hyaluronic acid in SBF (simulated body fluid with a Ca concentration above 2 mM. The CaP-coated DNA complex was revealed to have high compatibility with cells and resistance against enzymatic degradation. By immersion in acetate buffer (pH 4.5, the CaP capsule released the contained DNA complex. This CaP capsule including a DNA complex is promising as a sustained-release system of DNA complexes for gene therapy.

  1. Graphene-coated coupling coil for AC resistance reduction

    Science.gov (United States)

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  2. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  3. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    Science.gov (United States)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  4. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    Science.gov (United States)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  5. Investigation of nonplanar modular coil systems for stellarator fusion reactors

    International Nuclear Information System (INIS)

    Harmeyer, E.

    1988-12-01

    Steady-state stellarators constitute an important option for a future fusion reactor. The helical magnetic field required for plasma confinement can be produced by means of a set of modular nonplanar coils. In order to achieve optimum power density of the plasma, the magnetic flux density inside the torus is made as high as possible. State-of-the-art estimates allow values of the magnetic flux density on axis of B 0 = 4-7 T. The present report is concerned with investigations on modular nonplanar stellarator coil systems. Coil systems with poloidal periodicity l=2 and a coil system of the W VII-AS type with superposed l=0, 1, 2, 3 terms are treated. Furthermore, the parameters are simultaneously varied while keeping constant the ratios of certain magnitudes. In the parameter space of the geometric values and coil number the following quantities are evaluated: maximum magnetic flux density in the coil domain, stored magnetic energy of the coil system, magnetic force density distribution or magnetic forces, and mechanical stress distribution in the coils. Numerical methods are applied in the programme systems used for these calculations. The aim of the study is to determine an optimum regime for the above parameters. The numerical results are compared with those of analytical approximation solutions. (orig.)

  6. The energizing of a NMR superconducting coil by a superconducting rectifier

    International Nuclear Information System (INIS)

    Sikkenga, J.; ten Kate, H.H.J.; van der Klundert, L.J.M.; Knoben, J.; Kraaij, G.J.; Spuorenberg, C.J.G.

    1985-01-01

    NMR magnets require a good homogeneity within a certain volume and an excellent field stability. The homogeneity can be met using a superconducting shim coil system. The field stability requires a constant current, although in many cases the current decay time constant is too low, due to imperfections in the superconducting wire and joints. This can be overcome using a rectifier. The rectifier can also be used to load the coil. The combination and interaction of the superconducting NMR coil (2.0 Tesla and 0.35 m cold bore) and the rectifier (20 W / 1 kA) is tested. The safety of the system is discussed. The shim coil system can compensate the strayfield of the rectifier. The field decay compensation will be discussed

  7. Synthesis, model and stability of helically coiled carbon nanotubes

    DEFF Research Database (Denmark)

    Fejes, Dora; Raffai, Manuella; Hernadi, Klara

    2013-01-01

    . Our experiments focused on the production and development of catalysts for the synthesis of helically coiled CNTs (carbon nanotubes). The catalysts were tested in the decomposition of acetylene by CCVD (Catalytic Chemical Vapor Deposition) method. The carbon deposit was imaged by TEM (Transmission......Structural model of helically coiled carbon nanotubes is proposed. It is constructed by means of topological coordinate method. Relaxation and cohesive energy calculation are performed by molecular mechanics, using second-generation bond order potential for hydrocarbons introduced by D. W. Brenner...

  8. Coil winding pack FE-analysis for a HELIAS reactor

    International Nuclear Information System (INIS)

    Schauer, F.; Egorov, K.; Bykov, V.

    2011-01-01

    At the Max-Planck-Institut fuer Plasmaphysik (IPP) a reference design is being created of an upgraded five-periodic HELIAS type stellarator reactor which evolves from Wendelstein 7-X (W7-X) by scaling of the coil centre line geometries by a factor of four. This reactor type was extensively investigated at IPP with regard to physical characteristics and to some extent also to engineering issues. The upgrade concerns an increase of the induction at the plasma axis and correspondingly at the superconductor. The aim is to develop the reactor concept to a stage and such detail that major engineering problems are unveiled, and relevant comparisons with other concepts, including tokamaks, can be drawn in view of upcoming decisions concerning a DEMO reactor. Even though progress in plasma physics, and in particular future results of W7-X and other machines - particularly of ITER - will probably lead to somewhat different coil shapes, no principal changes of the reference design are expected. In this paper the option of a roll-formed square coil cable jacket is investigated. Detailed structural FE analysis of the coil winding pack demonstrates the feasibility of such a conductor which appears to be the most economical option. It also allows sufficient space for a cable current density very similar to that of the ITER TF coil with a similar overall winding pack cross section of ∼0.5 m 2 . Already existing Nb 3 Sn conductors could thus be safely applied in such a HELIAS reactor. Obvious progress of superconductor technology, particularly concerning Nb 3 Al, will be beneficial concerning savings of conductor material, ease of manufacture, higher operation temperature, etc.

  9. Coil and iron design for SSC 50 mm magnet

    International Nuclear Information System (INIS)

    Gupta, R.C.; Kahn, S.A.; Morgan, G.H.

    1990-01-01

    In this paper we present the design of the two dimensional coil and iron cross section, referred to as DSX201/W6733, for the 50 mm aperture dipole magnet being built at the Brookhaven National Laboratory for the Superconducting Super Collider (SSC). The computed values of the allowed field harmonics as a function of current, the quench performance predictions, the stored energy calculations, the effect of random errors on the coil placement and the Lorentz forces on the coil will be presented. The yoke has been optimized to reduce iron saturation effects on the field harmonics. We shall present the summary of this design which will include the expected overall performance of this cross section. 4 refs., 8 figs., 12 tabs

  10. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

    Directory of Open Access Journals (Sweden)

    Majid K. Abyaneh

    2016-06-01

    Full Text Available Herein, we present the formation of gold nanorods (GNRs on novel gold–poly(methyl methacrylate (Au–PMMA nanocomposite substrates with unprecedented growth control through the polymer molecular weight (Mw and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer Mw and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower Mw PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method.

  11. Studies on normal-conducting coils for Wendelstein VII-X

    International Nuclear Information System (INIS)

    Harmeyer, E.; Kisslinger, J.; Rau, F.; Sapper, J.; Wobig, H.

    1990-08-01

    For Wendelstein VII-X, the next step stellarator experiment at IPP Garching, a Helias configuration has been chosen. The goals of Wendelstein VII-X are to continue the development of the modular stellarator and to demonstrate the reactor capability of this stellarator line. The main data of the selected HS5-10 configuration with five field periods are: major radius R 0 = 5.5 m, magnetic induction B 0 = 3 T and stored magnetic energy W ≅ 0.6 GJ. For comparison with the superconducting coil system which is foreseen for Wendelstein VII-X, a pulsed water-cooled normal-conducting version has been designed in order to explore the limitations and restrictions of this approach. Limitations are the high ohmic power dissipated in the coils and the electric energy currently available at IPP. Normal-conducting coils would allow to apply the well-known techniques in manufactoring these coils, as successful in use in the Wendelstein VII-AS experiment. But these techniques are applicable also for the conductor proposed for the superconducting coils of Wendelstein VII-X. In this report the time-dependent current and resistance of the coil system circuit is considered; the electric power needed, the total dissipated energy, and the temperature rise of the coil copper is calculated. Scaling laws are derived and parameter studies are made by varying the geometrical dimensions of the system. (orig.)

  12. Micro-fabricated integrated coil and magnetic circuit and method of manufacturing thereof

    Science.gov (United States)

    Mihailovich, Robert E.; Papavasiliou, Alex P.; Mehrotra, Vivek; Stupar, Philip A.; Borwick, III, Robert L.; Ganguli, Rahul; DeNatale, Jeffrey F.

    2017-03-28

    A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil. Alternating magnetic layers and electrically insulating layers may be micro-fabricated and electroplated as a single and substantially continuous segment on or around the insulating material.

  13. Influence of the inductor shape, and the magnetization processes on a trapped magnetic flux in a superconducting bulk

    Energy Technology Data Exchange (ETDEWEB)

    Gony, B., E-mail: bashar.gony@univ-lorraine.fr; Linares, R.; Lin, Q.; Berger, K.; Douine, B.; Leveque, J.

    2014-08-15

    Highlights: • We tested two inductors: vortex coil and system of three coils. • The system of three coils is better than the vortex coil. • We presented and compared two processes of PFM method. • Similar results were found for the two processes. - Abstract: In this paper, we study the form of the inductor for producing a magnetic field in a superconductor bulk by using a method of PFM (Pulsed Field Magnetization). We tested two inductors: vortex coil and system of three coils, where we found the best results with the system of three coils. After that, we presented two processes for trapping a magnetic field in the bulk: direct magnetization and successive magnetization where we found similar results.

  14. Development of a REBCO HTS magnet for Maglev - repeated bending tests of HTS pancake coils -

    Science.gov (United States)

    Sugino, Motohikoa; Mizuno, Katsutoshi; Tanaka, Minoru; Ogata, Masafumi

    2018-01-01

    In the past study, two manufacturing methods were developed that can manufacture pancake coils by using REBCO coated conductors. It was confirmed that the conductors have no electric degradation that caused by the manufacturing method. The durability evaluation tests of the pancake coils were conducted as the final evaluation of the coil manufacturing method in this study. The repeated bending deformation was applied to manufactured pancake coils in the tests. As the results of these tests, it was confirmed that the pancake coils that were manufactured by two methods had the durability for the repeated bending deformation and the coils maintained the appropriate mechanical performance and electric performance. We adopted the fusion bonding method as the coil manufacturing method of the HTS magnet Furthermore, using the prototype pancake coil that was manufactured by the fusion bonding method as a test sample, the repeated bending test under the exited condition was conducted. Thus it was confirmed that the coil manufactured by the fusion bonding method has no degradation of the electricity performance and the mechanical properties even if the repeated bending deformation was applied under the exited condition.

  15. Random Surface Texturing of Silicon Dioxide Using Gold Agglomerates

    Science.gov (United States)

    2016-07-01

    a visual indicator of the formation of gold clusters on the SiO2 . The glass would make observing a color change in the gold film easier later in the...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A fabrication process for creating a silicon dioxide ( SiO2 ) light-trapping structure as part of...even distribution of irregular agglomerates, also known as “complete islanding”. By using these gold agglomerations as a metal mask, the SiO2 can be

  16. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  17. Generation of uniform magnetic field using a spheroidal helical coil structure

    International Nuclear Information System (INIS)

    Öztürk, Yavuz; Aktaş, Bekir

    2016-01-01

    Uniformity of magnetic fields are of great importance especially in magnetic resonance studies, namely in magnetic resonance spectroscopy applications (NMR, FMR, ESR, EPR etc.) and magnetic resonance imaging applications (MRI, FMRI). Field uniformity is also required in some other applications such as eddy current probes, magnetometers, magnetic traps, particle counters etc. Here we proposed a coil winding regime, which follows the surface of a spheroid (an ellipsoid of rotation); in light of previous theoretical studies suggesting perfect uniformity for a constant ampere per turn in the axial direction thereof. We demonstrated our theoretical results from finite element calculations suggesting 0.15% of field uniformity for the proposed structure, which we called a Spheroidal Helical Coil. (paper)

  18. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  19. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  20. Application of the integrated blanket-coil concept (IBC) to fusion reactors

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Steiner, D.; Mohanti, R.; Duggan, W.

    1987-01-01

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component and several unique applications to fusion reactor embodiments are identified. The proposed concept takes advantage of the fact that lithium is a good electrical conductor in addition to being a unique tritium-breeding material capable of energy recovery and transport at high temperatures. This concept, designated the ''integrated-blanket-coil (IBC) concept'' has the potential for: allowing fusion reactor embodiments which are easier to maintain; making fusion reactors more compact with an intrinsic ultra-high mass power density (net kW/sub E//metric tonne); and enhancing the tritium breeding potential for special coil applications such as ohmic heating and bean identation. By assuming a sandwich construction for the IBC walls (i.e., a layered combination of a thin wall of structural material, insulator and structural materials) the magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are modest and well below design limits. Possible unique applications of the IBC concept have been investigated and include the IBC concept applied to the poloidal field (PF) coils, toroidal field (TF) coils, divertor coils, ohmic heating (OH) coils, and identation coils for bean shaping

  1. The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji

    1997-03-01

    The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb 3 Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi) 3 Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)

  2. Super-low-frequency wireless power transfer with lightweight coils for passing through a stainless steel plate

    Science.gov (United States)

    Ishida, Hiroki; Kyoden, Tomoaki; Furukawa, Hiroto

    2018-03-01

    To achieve wireless power transfer (WPT) through a stainless-steel plate, a super-low frequency (SLF) was used as a resonance frequency. In our previous study of SLF-WPT, heavy coils were prepared. In this study, we designed lightweight coils using a WPT simulator that we developed previously. As a result, the weight was reduced to 1.69 kg from 11.9 kg, the previous coil weight. At a resonance frequency of 400 Hz, the transmission efficiency and output power of advanced SLF-WPT reached 91% and 426 W, respectively, over a transmission distance of 30 mm. Furthermore, 80% efficiency and 317 W output were achieved when transmitting power through a 1 mm-thick stainless-steel plate. This performance is much better than that in previous reports. We show using both calculations and experimental results that a power-to-weight ratio of 252 W/kg is possible even when using a 400 Hz power supply frequency.

  3. Nanoimprint lithography of light trapping patterns in sol-gel coatings for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Heijna, M.; Loffler, J.; Van Aken, B.B.; Soppe, W.J. [ECN Solar Energy, Petten (Netherlands); Borg, H.; Peeters, P. [OM and T, Eindhoven (Netherlands)

    2008-04-15

    For thin-film silicon solar cells, light trapping schemes are of uppermost importance to harvest all available sunlight. Typically, randomly textured TCO front layers are used to scatter the light diffusively in p-i-n cells on glass. Here, we investigate methods to texture the back contact with both random and periodic textures, for use in n-i-p cells on opaque foil. We applied an electrically insulating SiOx-polymer coating on a stainless steel substrate, and textured this barrier layer by nanoimprint. On this barrier layer the back contact is deposited for further use in the solar cell stack. Replication of masters with various random and periodic patterns was tested, and, using scanning electron microscopy, replicas were found to compare well with the originals. Masters with U-grooves of various sub micrometer widths have been used to investigate the optimal dimensions of regular patterns for light trapping in the silicon layers. Angular reflection distributions were measured to evaluate the light scattering properties of both periodic and random patterns. Diffraction gratings show promising results in scattering the light to specific angles, enhancing the total internal reflection in the solar cell.

  4. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression

    Science.gov (United States)

    Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun

    2017-08-01

    We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.

  5. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis

    International Nuclear Information System (INIS)

    Ezer, Muhsin; Elwood, Seth A.; Jones, Bradley T.; Simeonsson, Josef B.

    2006-01-01

    The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 μg/mL. The determined concentrations were 20.05 ± 2.60, 20.70 ± 2.27 and 20.60 ± 2.46 μg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible

  6. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis.

    Science.gov (United States)

    Ezer, Muhsin; Elwood, Seth A; Jones, Bradley T; Simeonsson, Josef B

    2006-06-30

    The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 microg/mL. The determined concentrations were 20.05+/-2.60, 20.70+/-2.27 and 20.60+/-2.46 microg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible.

  7. Ball-grid array architecture for microfabricated ion traps

    Science.gov (United States)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-05-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40Ca+ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171Yb+ ions in a second BGA trap.

  8. Ball-grid array architecture for microfabricated ion traps

    International Nuclear Information System (INIS)

    Guise, Nicholas D.; Fallek, Spencer D.; Stevens, Kelly E.; Brown, K. R.; Volin, Curtis; Harter, Alexa W.; Amini, Jason M.; Higashi, Robert E.; Lu, Son Thai; Chanhvongsak, Helen M.; Nguyen, Thi A.; Marcus, Matthew S.; Ohnstein, Thomas R.; Youngner, Daniel W.

    2015-01-01

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with 40 Ca + ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with 171 Yb + ions in a second BGA trap

  9. Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold

    NARCIS (Netherlands)

    Heffels, W.; Bastiaansen, C.W.M.; Caseri, W.R.; Smith, P.

    2000-01-01

    Polymer nanocomposites were prepd. by mixing ultrahigh-mol.-wt. polyethylene and gold colloids coated with a self-assembled monolayer of dodecanethiol. Subsequently, these materials were oriented by solid state drawing which induced the formation of uniaxially oriented arrays of gold particles. As a

  10. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    Science.gov (United States)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio

  11. Schiff Base Ligand Coated Gold Nanoparticles for the Chemical Sensing of Fe(III Ions

    Directory of Open Access Journals (Sweden)

    Abiola Azeez Jimoh

    2015-01-01

    Full Text Available New Schiff base-coated gold nanoparticles (AuNPs of type AuNP@L (where L: thiolated Schiff base ligand have been synthesized and characterized using various spectroscopic techniques. The AuNPs and AuNP@L were imaged by transmission electron microscopy (TEM and were confirmed to be well-dispersed, uniformly distributed, spherical nanoparticles with an average diameter of 8–10 nm. Their potential applications for chemosensing were investigated in UV-Vis and fluorescence spectroscopic studies. The AuNP@L exhibited selectivity for Fe3+ in an ethanol/water mixture (ratio 9 : 1 v/v. The absorption and emission spectral studies revealed a 1 : 1 binding mode for Fe3+, with binding constants of 8.5×105 and 2.9×105 M−1, respectively.

  12. Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Downey, Kate; Morgan, Veronica A.; Giles, Sharon L.; MacDonald, A.; DeSouza, Nandita M. [The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Cancer Imaging Centre, Surrey (United Kingdom); Attygalle, Ayoma D. [The Royal Marsden NHS Foundation Trust, Department of Histopathology, London (United Kingdom); Davis, M. [Kingston Hospital, Department of Gynaecology, Kingston-upon-Thames, Surrey (United Kingdom); Ind, Thomas E.J.; Shepherd, John H. [The Royal Marsden NHS Foundation Trust, Gynecology Unit, London (United Kingdom)

    2016-04-15

    To compare sensitivity and specificity of endovaginal versus external-array coil T2-W and T2-W + DWI for detecting and staging small cervical tumours. Optimised endovaginal and external array coil MRI at 3.0-T was done prospectively in 48 consecutive patients with stage Ia/Ib1 cervical cancer. Sensitivity/specificity for detecting tumour and parametrial extension against histopathology for a reading radiologist were determined on coronal T2-W and T2W + DW images. An independent radiologist also scored T2-W images without and with addition of DWI for the external-array and endovaginal coils on separate occasions >2 weeks apart. Cohen's kappa assessed inter- and intra-observer agreement. Median tumour volume in 19/38 cases positive on subsequent histology was 1.75 cm{sup 3}. Sensitivity, specificity, PPV, NPV were: reading radiologist 91.3 %, 89.5 %, 91.3 %, 89.5 %, respectively; independent radiologist T2-W 82.6 %, 73.7 %, 79.1 %, 77.8 % for endovaginal, 73.9 %, 89.5 %, 89.5 %, 73.9 % for external-array coil. Adding DWI improved sensitivity and specificity of endovaginal imaging (78.2 %, 89.5 %); adding DWI to external-array imaging improved specificity (94.7 %) but reduced sensitivity (66.7 %). Inter- and intra-observer agreement on T2-W + DWI was good (kappa = 0.67 and 0.62, respectively). Endovaginal coil T2-W MRI is more sensitive than external-array coil for detecting tumours <2 cm{sup 3}; adding DWI improves specificity of endovaginal imaging but reduces sensitivity of external-array imaging. (orig.)

  13. Simulation-Assisted Evaluation of Grinding Circuit Flowsheet Design Alternatives: Aghdarreh Gold Ore Processing Plant / Ocena Alternatywnych Schematów Technologicznych Procesu Rozdrabniania W Zakładach Przeróbki Rud Złota W Aghdarreh, Z Wykorzystaniem Metod Symulacji

    Science.gov (United States)

    Farzanegan, A.; Ghalaei, A. Ebtedaei

    2015-03-01

    The run of mine ore from Aghdarreh gold mine must be comminuted to achieve the desired degree of liberation of gold particles. Currently, comminution circuits include a single-stage crushing using a jaw crusher and a single-stage grinding using a Semi-Autogenous Grinding (SAG) mill in closed circuit with a hydrocyclone package. The gold extraction is done by leaching process using cyanidation method through a series of stirred tanks. In this research, an optimization study of Aghdarreh plant grinding circuit performance was done to lower the product particle size (P80) from 70 μm to approximately 40 μm by maintaining current throughput using modeling and simulation approach. After two sampling campaigns from grinding circuit, particle size distribution data were balanced using NorBal software. The first and second data sets obtained from the two sampling campaigns were used to calibrate necessary models and validate them prior to performing simulation trials using MODSIM software. Computer simulations were performed to assess performance of two proposed new circuit flowsheets. The first proposed flowsheet consists of existing SAG mill circuit and a new proposed ball mill in closed circuit with a new second hydrocyclone package. The second proposed flowsheet consists of existing SAG mill circuit followed by a new proposed ball mill in closed circuit with the existing hydrocyclone package. In all simulations, SAGT, CYCL and MILL models were selected to simulate SAG mill, Hydrocyclone packages and ball mill units. SAGT and MILL models both are based on population balance model of grinding process. CYCL model is based on Plitt's empirical model of classification process in hydrocyclone units. It was shown that P80 can be reduced to about 40 μm and 42 μm for the first and second proposed circuits, respectively. Based on capital and operational costs, it can be concluded that the second proposed circuit is a more suitable option for plant grinding flowsheet

  14. Thermal oxidation of tungsten-based sputtered coatings

    International Nuclear Information System (INIS)

    Louro, C.; Cavaleiro, A.

    1997-01-01

    The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO 3 and WO x phases detected in all the oxidized coatings, TiO 2 and NiWO 4 were also detected for W-Ti and W-Ni films, respectively. WO x was present as an inner protective compact layer covered by the porous WO 3 oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E a = 234 and 218 kJ/mol, respectively, as opposed to E a ∼ 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO 2 , and the formation of the external, more protective layer of NiWO 4 for W-N-Ni coatings

  15. Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2013-11-01

    Full Text Available Fe3O4 spheres with an average size of 273 nm were prepared in the presence of CTAB by a solvothermal method. The spheres were modified by a thin layer of SiO2, and then coated by mesoporous SiO2 (m-SiO2 films, by using TEOS as a precursor and CTAB as a soft template. The resulting m-SiO2/Fe3O4 spheres, with an average particle size of 320 nm, a high surface area (656 m2/g, and ordered nanopores (average pore size 2.5 nm, were loaded with gold nanoparticles (average size 3.3 nm. The presence of m-SiO2 coating could stabilize gold nanoparticles against sintering at 500 °C. The material showed better performance than a conventional Au/SiO2 catalyst in catalytic reduction of p-nitrophenol with NaBH4. It can be separated from the reaction mixture by a magnet and be recycled without obvious loss of catalytic activity. Relevant characterization by XRD, TEM, N2 adsorption-desorption, and magnetic measurements were conducted.

  16. CE-MS analysis of heroin and its basic impurities using a charged polymer-protected gold nanoparticle-coated capillary.

    Science.gov (United States)

    Zhang, Zhengxiang; Yan, Bo; Liu, Kelin; Liao, Yiping; Liu, Huwei

    2009-01-01

    The first application of charged polymer-protected gold nanoparticles (Au NPs) as semi-permanent capillary coating in CE-MS was presented. Poly(diallyldimethylammonium chloride) (PDDA) was the only reducing and stabilizing agent for Au NPs preparation. Stable and repeatable coating with good tolerance to 0.1 M HCl, methanol, and ACN was obtained via a simple rinsing procedure. Au NPs enhanced the coating stability toward flushing by methanol, improved the run-to-run and capillary-to-capillary repeatabilities, and improved the separation efficiency of heroin and its basic impurities for tracing geographical origins of illicit samples. Baseline resolution of eight heroin-related alkaloids was achieved on the PDDA-protected Au NPs-coated capillary under the optimum conditions: 120 mM ammonium acetate (pH 5.2) with addition of 13% methanol, separation temperature 20 degrees C, applied voltage -20 kV, and capillary effective length 60.0 cm. CE-MS analysis with run-to-run RSDs (n=5) of migration time in the range of 0.43-0.62% and RSDs (n=5) of peak area in the range of 1.49-4.68% was obtained. The established CE-MS method would offer sensitive detection and confident identification of heroin and related compounds and provide an alternative to LC-MS and GC-MS for illicit drug control.

  17. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    International Nuclear Information System (INIS)

    NIKROO, A; BAUGH, W; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Deuterium (D 2 ) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of ∼ 0.15 (micro)m/hr coatings with ∼ 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 (micro)m/hr, was considerably worse (∼ 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C

  18. Late-Hercynian intrusion-related gold deposits: An integrated model on the Tighza polymetallic district, central Morocco

    Science.gov (United States)

    Éric, Marcoux; Khadija, Nerci; Yannick, Branquet; Claire, Ramboz; Gilles, Ruffet; Jean-Jacques, Peucat; Ross, Stevenson; Michel, Jébrak

    2015-07-01

    Gold have been recently recognized in the Tighza (formerly Jebel Aouam) district, in the Hercynian belt of central Morocco. This district has long been known for its W mineralization, as well as major Pb-Ag-Zn, and minor Sb-Ba deposits, all geographically associated with late-Hercynian calc-alkaline magmatism. Gold mineralization in the district is mainly hosted by thick W-Au quartz veins located around the "Mine granite" small granitic plug. Within the veins, gold grade is highest (up to 70 g/t) close to the granite but rapidly decreases going outward from the granite, defining a perigranitic zoning. Anomalous gold grades have also been measured in hydrothermal skarn layers close to two other granitic plugs (Kaolin granite and Mispickel granite), associated with disseminated As-Fe sulfides. The paragenetic sequence for the W-Au quartz veins shows three stages: (1) an early oxidized stage with wolframite-scheelite associated with early quartz (Q1), (2) an intermediate Bi-As-Te-Mo-Au sulfide stage with loellingite, bismuth minerals and native gold with a later quartz (Q2), restricted to a narrow distance from the granite, and (3) a late lower temperature As-Cu-Zn-(Pb) stage with abundant massive pyrrhotite, arsenopyrite and sphalerite, locally forming independent veins ("pyrrhotite vein"). Both Q1 hyaline and Q2 saccharoidal gold-bearing quartz display aqua-carbonic fluids with minor H2S and Cu and an homogeneous composition (81 mole% H2O, 18 mole% CO2 and about 1 mole% NaCl). The trapping pressure is estimated to 1.5-2 kbar with temperature ranging from 300 to 350 °C. Q1 inclusions have exploded indicating an uplift of the Tighza block, that lead to saccharoidal Q2 quartz deposition with multiphase NaCl-saturated fluid inclusions. 40Ar/39Ar dating demonstrates that the "Mine granite", tungsten skarnoid, scheelite-molybdenite veins, and very likely gold-bearing veins are coeval, emplaced at 286 ± 1 Ma. Multiple and widespread metal sources are indicated by

  19. Development of a 5.1 T conduction-cooled YBCO coil composed of a stack of 12 single pancakes

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Hiroshi, E-mail: hiroshi17.miyazaki@toshiba.co.jp [Toshiba Corporation, Power Systems Company, 2-4 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iwai, Sadanori; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Urata, Masami; Ioka, Shigeru; Ishii, Yusuke [Toshiba Corporation, Power Systems Company, 2-4 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan)

    2013-01-15

    Highlights: ► We confirmed that performance of YBCO coil was improved by using APC wire. ► We made a conduction-cooled YBCO coil composed of a stack of 12 single pancakes. ► The coil had a central magnetic field as high as 5.1 T at 10 K. ► We also tested the coil operation in a 4 T background magnetic field. -- Abstract: We fabricated and tested a 5 T-class conduction-cooled high-temperature superconducting (HTS) coil composed of a stack of 12 single pancake coils wound with YBCO-coated conductors. The length of each single pancake coil was 25 m, and the inner diameter of the coil was 50 mm. The voltage–current characteristics were measured in liquid nitrogen and under conduction-cooled conditions at 10–60 K. At 10 K, the central magnetic field of the 12 stacked pancake coils was as high as 5.1 T at 305 A. We also tested the coil operation in a 4 T background magnetic field.

  20. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  1. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  2. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  3. Fabrication of 5 cm long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer on textured Ni-5%W substrate for YBCO coated conductors via dip-coating PACSD method

    Energy Technology Data Exchange (ETDEWEB)

    Lei, M.; Wang, W.T.; Pu, M.H.; Yang, X.S.; He, L.J. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia)

    2011-11-15

    Epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer for YBCO coated conductors was deposited via fluorine-free dip-coating CSD. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by carefully controlling the processing. YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via CSD approach. Five centimeters long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer for YBCO coated conductors was deposited via dip-coating polymer-assisted chemical solution deposition (PACSD) approach on bi-axially textured Ni-5%W (2 0 0) alloy substrate. The film formation and texture evolution were investigated using X-ray diffraction and scanning electron microscopy. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by way of carefully controlling the concentration of precursor solution, withdrawing speed, annealing temperature and dwelling time. On consideration of both microstructure and texture, epitaxial SCO single buffer layers were fabricated using precursor solution of 0.3 M cationic concentration, the withdrawing speed of 10 mm/min and heat treatment at 1100 deg. C in Ar-5%H{sub 2} mixture gas for 0.5 h. Epitaxial YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via dip-coating PACSD approach. The PACSD approach was a promising way to fabricate long and low-cost YBCO coated conductors.

  4. Measurement of the ductile to brittle transition temperature for waste tank cooling coils

    International Nuclear Information System (INIS)

    Wiersma, B.J.

    1992-09-01

    Charpy impact tests were conducted on ASTM A106 carbon steel archived from SRS waste tanks to determine the susceptibility of the cooling coils to brittle fracture during a seismic event. The highest ductile to brittle transition temperature measured was -5 degree F and, with the addition of a 30 degree F safety factor, the minimum safe operating temperature was determined to be 25 degree F. Calculations also showed that a pre-existing circumferential flaw that is 2.2in. long would be necessary to initiate brittle fracture of the pipe. These results demonstrate that the pipes will not be susceptible to brittle fracture if the cooling water inlet temperature is lowered to 50 degree F. Visual observation of the inner and outer walls of the pipe showed no localized attack or significant wall thinning. A 100--200 micron zinc coating is probably the reason for the lack of corrosion. A build-up of zinc slag occurred at pipe fittings where the weld had burned through. Although no attack was observed, the slag created several crevices which have the potential to trap the chromated water and initiate localized attack

  5. Controlled formation of metallic nanowires via Au nanoparticle ac trapping

    International Nuclear Information System (INIS)

    Bernard, L; Calame, M; Molen, S J van der; Liao, J; Schoenenberger, C

    2007-01-01

    Applying ac voltages, we trapped gold nanoparticles between micro-fabricated electrodes under well-defined conditions. We demonstrate that the nanoparticles can be controllably fused together to form homogeneous gold nanowires with pre-defined diameters and conductance values. Whereas electromigration is known to form a gap when a dc voltage is applied, this ac technique achieves the opposite, thereby completing the toolkit for the fabrication of nanoscale junctions

  6. Controlled formation of metallic nanowires via Au nanoparticle ac trapping

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, L; Calame, M; Molen, S J van der; Liao, J; Schoenenberger, C [Institute of Physics, University of Basel, CH-4056 Basel (Switzerland)

    2007-06-13

    Applying ac voltages, we trapped gold nanoparticles between micro-fabricated electrodes under well-defined conditions. We demonstrate that the nanoparticles can be controllably fused together to form homogeneous gold nanowires with pre-defined diameters and conductance values. Whereas electromigration is known to form a gap when a dc voltage is applied, this ac technique achieves the opposite, thereby completing the toolkit for the fabrication of nanoscale junctions.

  7. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI - a comparison with contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Eshed, Iris; Krabbe, Simon; Axelsen, Mette; Pedersen, Susanne Juhl; Oestergaard, Mikkel; Boeyesen, Pernille; Moeller, Jakob M.; Therkildsen, Flemming; Madsen, Ole Rintek

    2015-01-01

    To explore if the reliability of synovitis assessment by unenhanced MRI is influenced by different MRI field-strengths, coil types and image resolutions in RA patients. Forty-one RA patients and 12 healthy controls underwent hand MRI (wrist and 2 nd -5 th metacarpophalangeal joints) at 4 different field-strengths (0.23 T/0.6 T/1.5 T/3.0 T) on the same day. Seven protocols using a STIR sequence with different field-strengths, coils (flex coils/dedicated phased-array extremity coils) and resolution were applied and scored blindly for synovitis (OMERACT-RAMRIS method). A 1.5 T post-contrast T1-weighted sequence was used as gold standard reference. Fair-good agreement (ICC=0.38-0.72) between the standard reference and the different STIR protocols (best agreement with extremity coil and small voxel size at 1.5 T). The accuracy for presence/absence of synovitis was very high per person (0.80-1.0), and moderate-high per joint (0.63-0.85), whereas exact agreements on scores were moderate (0.50-0.66). The intrareader agreement (15 patients and 3 controls) on presence/absence of synovitis was very high (0.87-1.0). Unenhanced MRI using STIR sequence is only moderately reliable for assessing hand synovitis in RA, when contrast-enhanced MRI is considered the gold standard reference. Contrast injection, field strength and coil type influence synovitis assessment, and should be considered before performing MRI in clinical trials and practice. (orig.)

  8. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells.

    Science.gov (United States)

    Xia, Juan; Zhou, Junyu; Zhang, Ronggui; Jiang, Dechen; Jiang, Depeng

    2018-06-04

    In this communication, a gold-coated polydimethylsiloxane (PDMS) chip with cell-sized microwells was prepared through a stamping and spraying process that was applied directly for high-throughput electrochemiluminescence (ECL) analysis of intracellular glucose at single cells. As compared with the previous multiple-step fabrication of photoresist-based microwells on the electrode, the preparation process is simple and offers fresh electrode surface for higher luminescence intensity. More luminescence intensity was recorded from cell-retained microwells than that at the planar region among the microwells that was correlated with the content of intracellular glucose. The successful monitoring of intracellular glucose at single cells using this PDMS chip will provide an alternative strategy for high-throughput single-cell analysis. Graphical abstract ᅟ.

  9. Metal-coated optical fibers for high temperature sensing applications

    Science.gov (United States)

    Fidelus, Janusz D.; Wysokiński, Karol; Stańczyk, Tomasz; Kołakowska, Agnieszka; Nasiłowski, Piotr; Lipiński, Stanisław; Tenderenda, Tadeusz; Nasiłowski, Tomasz

    2017-10-01

    An novel low-temperature method was used to enhance the corrosion resistance of copper or gold-coated optical fibers. A characterization of the elaborated materials and reports on selected studies such as cyclic temperature tests together with tensile tests is presented. Gold-coated optical fibers are proposed as a component of optical fiber sensors working in oxidizing atmospheres under temperatures exceeding 900 °C.

  10. Building a better sticky trap: description of an easy-to-use trap and pole mount for quantifying the abundance of adult aquatic insects

    Science.gov (United States)

    Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2014-01-01

    Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.

  11. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    International Nuclear Information System (INIS)

    Spirou, S V; Tsialios, P; Loudos, G

    2015-01-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude. (paper)

  12. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    Science.gov (United States)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  13. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  14. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  15. Toward efficient modification of large gold nanoparticles with DNA

    NARCIS (Netherlands)

    Gill, R.; Göeken, Kristian L; Subramaniam, V.

    2014-01-01

    DNA-coated gold nanoparticles are one of the most researched nano-bio hybrid systems. Traditionally their synthesis has been a long and tedious process, involving slow salt addition and long incubation steps. This stems from the fact that both DNA and gold particles are negatively charged, therefore

  16. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  17. Ten years of cryo-magnetic W7-X test facility construction and operation

    International Nuclear Information System (INIS)

    Renard, B.; Dispau, G.; Donati, A.; Genini, L.; Gournay, J.F.; Kuster, O.; Molinie, F.; Schild, T.; Touzery, R.; Vieillard, L.; Walter, C.

    2011-01-01

    The construction, commissioning, and operation phases of the W7-X cryo-magnetic test facility in CEA Saclay lasted ten years. The large diversity of equipments called, specialties involved and problems solved attest the expertise that was required to operate the test facility and test the coils. Nearly one hundred cryogenic tests were performed on the seventy W7-X coils, at a rate always increasing, using two cryostats each holding two coils. This paper presents the test facility and its operation first, the cryogenic difficulties that were confronted with their solutions, the electro-magnetic difficulties encountered along with corrective actions, and finally the instrumentation and data acquisition aspects. (authors)

  18. Test results of the SMES model coil. Cool-down and thermal characteristics

    International Nuclear Information System (INIS)

    Hamada, Kazuya; Kato, Takashi; Kawano, Katsumi

    1998-01-01

    A model coil of a superconducting magnetic energy storage (SMES) device, which is a forced-cooled Nb-Ti coil, has been fabricated and a performance test at cryogenic temperatures has been carried out. The SMES model coil is composed of 4 dual pancakes and its total weight is 4.5 t. The applied conductors are cable-in-conduit conductors cooled by supercritical helium (SHe) at 4.5 K and 0.7 MPa. SHe is supplied to the SMES model coil and the structure by a reciprocating bellows pump. The test facility is located at the International Thermonuclear Experimental Reactor (ITER) common test facility, was constructed for the testing of an ITER central solenoid model coil. In the experiments, cool-down was finished within 10 days under controlled temperature differences in the SMES model coil. During cool-down and 4.5 K operation, pressure drop characteristics of the conductor were measured and the friction factor estimated. The pressure drop characteristics of the SMES model coil were in good agreement with those of the previous cable-in-conduit conductor. During static operation without current, the heat load and refrigerator operation conditions were measured. The heat load of the SMES model coil is 7.5 W, which is within the expected value. (author)

  19. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain.

    Science.gov (United States)

    Alecci, M; Romanzetti, S; Kaffanke, J; Celik, A; Wegener, H P; Shah, N J

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides (1)H and (23)Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the (1)H frequency and a smaller co-planar loop tuned to the (23)Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned (23)Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the (23)Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent (1)H and (23)Na rat brain images showing good SNR ((23)Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ((23)Na: 1.25 x 1.25 x 5mm(3)) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  20. Sulfur-adlayer-coated gold electrode for the in vitro electrochemical detection of uric acid in urine.

    Science.gov (United States)

    Miah, Md Rezwan; Alam, Muhammad Tanzirul; Ohsaka, Takeo

    2010-06-11

    The present article demonstrates the electrochemical oxidation of uric acid (UA) at sulfur-adlayer-coated gold (S-Au) electrode in alkaline media. At S-Au electrode, UA oxidized at a significantly lower overpotential with a higher current density as compared to the bare Au electrode. The oxidation of UA at the S-Au electrode is highly selective in the presence of the other commonly existing bio-molecules in urine. The proposed electrochemical sensor not only exhibited good reproducibility, but also showed a fast amperometric response to UA in the concentration range of 0.0025-5 mM with a low detection limit of 0.4 microM. Copyright 2010. Published by Elsevier B.V.

  1. Demonstration of Corrosion-Resistant Coatings for Air-Conditioning Coils and Fins

    Science.gov (United States)

    2015-06-01

    3.89. DISCLAIMER: The contents of this report are not to be used for advertising , publication, or promotional purposes. Citation of trade names does...coils were then degreased with a pH-neutral detergent, to remove any manufac- turing oils and soiling, and then rinsed again. A chromate -free conversion

  2. Silane-coated magnetic nanoparticles with surface thiol functions for conjugation with gold nanostars

    KAUST Repository

    Pallavicini, Piersandro

    2015-11-10

    Small (d ∼ 8 nm) magnetite nanoparticles, FeONP, are prepared and coated with mercaptopropyl trimethoxysilane (MPTS) to form FeONP@MPTS. In the coating step controlled MPTS/FeONP molar ratios are used, ranging from 1 to 7.8 × 10. The total quantity of MPTS per FeONP is determined by SEM-EDS analysis and the average number of free, reactive -SH groups per FeONP is calculated by a colorimetric method. At very low molar ratios MPTS forms a submonolayer on the FeONP surface with all -SH free to react, while on increasing the MPTS/FeONP molar ratio the (CHO)Si- groups of MPTS polymerize, forming a progressively thicker shell, in which only a small fraction of the -SH groups, positioned on the shell surface, is available for further reaction. The MPTS shell reduces the magnetic interactions occurring between the magnetite cores, lowering the occurrence and strength of collective magnetic states, with FeONP@MPTS showing the typical behaviour expected for a sample with a mono-modal size distribution of superparamagnetic nanoparticles. Interaction of FeONP@MPTS with gold nanostars (GNS) was tested, using both FeONP@MPTS with a MPTS submonolayer and with increasing shell thickness. Provided that a good balance is used between the number of available -SH and the overall size of FeONP@MPTS, the free thiols of such nanoparticles bind GNS decorating their surface, as shown by UV-Vis spectroscopy and TEM imaging.

  3. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  4. Deuterium retention in molten salt electrodeposition tungsten coatings

    International Nuclear Information System (INIS)

    Zhou, Hai-Shan; Xu, Yu-Ping; Sun, Ning-Bo; Zhang, Ying-Chun; Oya, Yasuhisa; Zhao, Ming-Zhong; Mao, Hong-Min; Ding, Fang; Liu, Feng; Luo, Guang-Nan

    2016-01-01

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  5. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  6. Changes of incompletely embolized aneurysm with tungsten coils : an experimental study in dogs

    International Nuclear Information System (INIS)

    Yu, In Kyu; Han, Moon Hee; Kim, Sung Hyun; Won, Hyung Jin; Chang, Kee Hyun; Yeon, Kyung Mo; Choe, Ghee Young; Kim, Sam Soo

    1999-01-01

    To evaluate changes of residual aneurysms according to the size of aneurysmal neck and thrombogenicity of a tungsten coil after incomplete embolization of experimental lateral aneurysms. Eleven experimental lateral aneurysms with different aneurysmal neck size were created in the common carotid arteries of mongrel dogs. They were then divided into narrow-neck(n=3), wide-neck(n=6) and spontaneously thrombosed control(n=2) groups. After confirmation of aneurysmal patency, incomplete embolizations of varying degrees (about 30% to near total occlusion) were performed using 5mm-diameter tungsten coils. Angiography was performed immediately before and after, and one and six weeks after embolizations. The size of residual aneurysm was measured on each angiogram. After the last angiography embolized aneurysms were excised and examined under light and electron microscopes. On angiograms obtained 6 weeks after embolization, all residual narrow neck aneurysms were completely occluded, whereas in those with a wide-neck, therre was either no change (n=4) or a slight increase in size(n=2). On light microscopy, all narrow-neck aneurysms showed total organized fibrosis while all control aneurysms and half those with a wide neck showed unorganized thrombi. The embolized group showed a higher degree of organization in the aneurysmal cavity than did the control group. Neointima formation was seen in all embolized aneurysms, but no aneurysm showed foreign body reaction. On electron microscopy, uniform thickness of plasma coatings was noted on the surface of the tungsten coils. A wide-neck residual aneurysm may persist or increase in size, while one with a narrow-neck can be thrombosed after incomplete embolization with tungsten coils in a lateral aneurym. Careful consideration might be necessary in the embolization of wide-neck aneurysms. With plasma coatings on its surface and organized fibrosis, tungsten coil can be an useful for embolization of an aneurysm

  7. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  8. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI - a comparison with contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eshed, Iris [The Sheba Medical Center, Department of Diagnostic Imaging, Tel Hashomer (Israel); Tel Aviv University, Sackler School of Medicine, Tel Aviv (Israel); Krabbe, Simon; Axelsen, Mette; Pedersen, Susanne Juhl [Copenhagen University Hospital Glostrup, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen (Denmark); Oestergaard, Mikkel [Copenhagen University Hospital Glostrup, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen (Denmark); Copenhagen University Hospital Gentofte, Department of Rheumatology/C, Copenhagen (Denmark); Boeyesen, Pernille [Diakonhjemmet Hospital, Department of Rheumatology, Oslo (Norway); Moeller, Jakob M. [Copenhagen University Hospital at Herlev, Department of Radiology, Copenhagen (Denmark); Therkildsen, Flemming [Metropolitan University College, Copenhagen (Denmark); Madsen, Ole Rintek [Copenhagen University Hospital Gentofte, Department of Rheumatology/C, Copenhagen (Denmark)

    2015-04-01

    To explore if the reliability of synovitis assessment by unenhanced MRI is influenced by different MRI field-strengths, coil types and image resolutions in RA patients. Forty-one RA patients and 12 healthy controls underwent hand MRI (wrist and 2{sup nd}-5{sup th} metacarpophalangeal joints) at 4 different field-strengths (0.23 T/0.6 T/1.5 T/3.0 T) on the same day. Seven protocols using a STIR sequence with different field-strengths, coils (flex coils/dedicated phased-array extremity coils) and resolution were applied and scored blindly for synovitis (OMERACT-RAMRIS method). A 1.5 T post-contrast T1-weighted sequence was used as gold standard reference. Fair-good agreement (ICC=0.38-0.72) between the standard reference and the different STIR protocols (best agreement with extremity coil and small voxel size at 1.5 T). The accuracy for presence/absence of synovitis was very high per person (0.80-1.0), and moderate-high per joint (0.63-0.85), whereas exact agreements on scores were moderate (0.50-0.66). The intrareader agreement (15 patients and 3 controls) on presence/absence of synovitis was very high (0.87-1.0). Unenhanced MRI using STIR sequence is only moderately reliable for assessing hand synovitis in RA, when contrast-enhanced MRI is considered the gold standard reference. Contrast injection, field strength and coil type influence synovitis assessment, and should be considered before performing MRI in clinical trials and practice. (orig.)

  9. Integrated fiber-mirror ion trap for strong ion-cavity coupling

    International Nuclear Information System (INIS)

    Brandstätter, B.; Schüppert, K.; Casabone, B.; Friebe, K.; Stute, A.; Northup, T. E.; McClung, A.; Schmidt, P. O.; Deutsch, C.; Reichel, J.; Blatt, R.

    2013-01-01

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate

  10. Test results of a 5 kW fully superconducting homopolar motor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. K. [Woosuk University, Wanju (Korea, Republic of); Park, S. H.; Kim, Y.; Lee, S.; Joo, H. G.; Kim, W. S.; Choi, K. [Korea Polytechnic University,Siheong (Korea, Republic of); Hahm, S. Y. [Electrical Engineering and Science Research Institute,Seoul (Korea, Republic of)

    2013-05-15

    The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

  11. Test results of a 5 kW fully superconducting homopolar motor

    International Nuclear Information System (INIS)

    Lee, J. K.; Park, S. H.; Kim, Y.; Lee, S.; Joo, H. G.; Kim, W. S.; Choi, K.; Hahm, S. Y.

    2013-01-01

    The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

  12. Ammonia formation and W coatings interaction with deuterium/nitrogen plasmas in the linear device GyM

    Energy Technology Data Exchange (ETDEWEB)

    Laguardia, L., E-mail: laguardia@ifp.cnr.it [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Caniello, R.; Cremona, A. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Dellasega, D. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Politecnico di Milano, Dipartimento di Energia, Milan (Italy); Dell’Era, F.; Ghezzi, F.; Gittini, G.; Granucci, G.; Mellera, V.; Minelli, D.; Pallotta, F. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Passoni, M. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy); Politecnico di Milano, Dipartimento di Energia, Milan (Italy); Ricci, D.; Vassallo, E. [CNR, Istituto di Fisica del Plasma“P. Caldirola”, Milan (Italy)

    2015-08-15

    In this work results of the first D{sub 2}/N{sub 2} experiments in GyM, a linear device able to produce plasmas of interest for the ITER divertor (n{sub e} 5 ⋅ 10{sup 10} cm{sup −3}, Te 5 eV, ion flux 3–5 ⋅ 10{sup 20} m{sup −2}s{sup −1}) are presented. Plasmas simulating a N-seeding scenario have been performed to evaluate ammonia formation and its effect on exposed W coatings. The presence of ND emission lines in the plasma can be correlated with the formation of ammonia, further directly detected and quantified by chromatography analysis of the exhaust. Four different W specimens were exposed in GyM to a plasma fluence of 8.78 ⋅ 10{sup 23} m{sup −2}. XPS analysis evidenced the formation of W{sub x}N{sub y} layers with nitrogen concentration in the range of 1–10% depending on the initial morphology and structure of the W samples. In all analyzed cases, nitrogen was bound and retained within the first 6 nm below the surface and no further diffusion of N into the bulk was observed.

  13. Ball Aerospace SBMD Coating Test Results

    Science.gov (United States)

    Brown, Robert; Lightsey, Paul; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The Sub-scale Beryllium Mirror Demonstrator that was successfully tested to demonstrate cryogenic figuring of a bare mirror has been coated with a protected gold reflective surface and retested at cryogenic temperatures. Results showing less than 9 nm rms surface distortion attributable to the added coating are presented.

  14. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  15. Multi-technique characterization of gold electroplating on silver substrates for cultural heritage applications

    Science.gov (United States)

    Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.

    2017-09-01

    This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.

  16. MR angiography in the follow-up of coiled cerebral aneurysms after treatment with Guglielmi detachable coils

    International Nuclear Information System (INIS)

    Nome, T.; Bakke, S. J.; Nakstad, P. H.

    2002-01-01

    Purpose: Intra-arterial digital subtraction angiography (DSA) has been considered the gold standard examination in the follow-up of patients treated with Guglielmi detachable coils (GDCs). However, DSA is an invasive and expensive investigation and results in exposure to ionising radiation to both patient and operator. The aim of this study was to compare MR angiography (MRA) with DSA with regard to patency of the occlusion of aneurysms following GDC treatment. Material and Methods: We performed 75 MRA and DSA examinations on 51 patients treated with GDCs. The examinations were performed 3-36 months after embolisation and the interval between MRA and DSA was less than 1 week. Hard copies of both studies were interpreted retrospectively and independently for residual flow within the aneurysm, residual aneurysmal neck, and parent and branch vessel flow. Results: Patency status of parent and branch vessel flow was correctly identified with MRA in all patients except 1. The sensitivity of MRA in revealing residual flow within the aneurysm was 97%. The specificity in ruling out residual flow within the aneurysm was 91%. Conclusion: MRA may replace DSA in the long-term follow-up of coiled cerebral aneurysms. The initial follow-up examination should, however, include both modalities

  17. The electrical double layer on gold probed by electrokinetic and surface force measurements

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 m in diameter)

  18. Ac-loss measurement of coated conductors: The influence of the pick-up coil position

    International Nuclear Information System (INIS)

    Schmidt, Curt

    2008-01-01

    The ac-loss measurement by the magnetization method requires calibration for obtaining absolute values. A convenient way of calibration is the calorimetric measurement which yields, within the measuring accuracy, absolute loss values. In the magnetization measurement the hysteresis loop of sample magnetization which determines the losses is measured via the integration of magnetic flux penetrating a pick-up coil. The ratio of flux integral to magnetization integral and hence the calibration factor is however, for a given pick-up coil geometry, not exactly a constant, but depends on the magnetization current pattern within the sample. Especially for thin tapes in perpendicular external field this effect has to be taken into consideration in order to avoid miss measurements. The relation between measured flux and sample magnetization was calculated for special cases of magnetization current distribution in the sample as a function of the pick-up coil position. Furthermore calibration factors were measured as a function of the ac-field amplitude and the result compared with available theoretical models. A good agreement was found between experiment and theory

  19. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

    Directory of Open Access Journals (Sweden)

    Dickson Joseph

    2014-09-01

    Full Text Available The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles.

  20. Routine phasing of coiled-coil protein crystal structures with AMPLE

    Directory of Open Access Journals (Sweden)

    Jens M. H. Thomas

    2015-03-01

    Full Text Available Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallographic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  1. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    Science.gov (United States)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  2. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    Science.gov (United States)

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  3. Gelatin methacrylamide as coating material in cell culture.

    Science.gov (United States)

    Egger, Michael; Tovar, Günter E M; Hoch, Eva; Southan, Alexander

    2016-06-13

    Unmodified gelatin (uG) is widely used as a coating material in cell culture for improving surface properties. In this study, the authors investigated if gelatin methacrylamide (GM) with a medium degree of methacrylamide modification (GM1.5) and a high degree of methacrylamide modification (GM4) are equally suitable for this purpose. Therefore, gold surfaces were coated with uG, GM1.5, and GM4 by adsorption of the polymers on the surfaces. Coating success was confirmed by spectroscopic ellipsometry, contact angle measurements, surface plasmon resonance spectroscopy (SPRS), and atomic force microscopy (AFM). The authors found that upon adsorption of uG, GM1.5, a nd GM4 on gold, thin films with thicknesses of 2.95 nm, 2.50 nm, and 2.26 nm were formed. The coated surfaces showed advancing contact angles of 46° (uG and GM1.5) and 52° (GM4) without alteration of the surface roughness determined by AFM. Protein adsorption taking place on the coated surfaces was measured during contact of the surfaces with fetal calf serum by SPRS. Protein adsorption on the coated surfaces was reduced by the factor of 6.4 (uG), 5.4 (GM1.5), and 4.6 (GM4) compared to gold surfaces. Human fibroblasts cultured on the surfaces showed excellent viability shown by water soluble tetrazolium salt assay as well as live/dead staining with propidium iodide and fluorescein diacetate. No cytotoxic effects of the GM coated surfaces were observed, giving rise to the conclusion that GMs are suitable materials as coatings in cell culture.

  4. Developing optical traps for ultra-sensitive analysis

    International Nuclear Information System (INIS)

    Zhao, X.; Vieira, D.J.; Guckert, R.; Crane, S.

    1998-01-01

    The authors describe the coupling of a magneto-optical trap to a mass separator for the ultra-sensitive detection of selected radioactive species. As a proof of principle test, they have demonstrated the trapping of ∼ 6 million 82 Rb (t 1/2 = 75 s) atoms using an ion implantation and heated foil release method for introducing the sample into a trapping cell with minimal gas loading. Gamma-ray counting techniques were used to determine the efficiencies of each step in the process. By far the weakest step in the process is the efficiency of the optical trap itself (0.3%). Further improvements in the quality of the nonstick dryfilm coating on the inside of the trapping cell and the possible use of larger diameter laser beams are indicated. In the presence of a large background of scattered light, this initial work achieved a detection sensitivity of ∼ 4,000 trapped atoms. Improved detection schemes using a pulsed trap and gated photon detection method are outlined. Application of this technology to the areas of environmental monitoring and nuclear proliferation are foreseen

  5. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  6. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  7. Towards a wire-mediated coupling of trapped ions

    Science.gov (United States)

    Clark, Robert; Lee, Tony; Daniilidis, Nikos; Sankaranarayanan, S.; Häffner, Hartmut

    2008-03-01

    Most schemes for ion trap quantum computation rely upon the exchange of information between ion-qubits in the same trap region, mediated by their shared vibrational mode. An alternative way to achieve this coupling is via the image charges induced in a conducting wire that connects different traps. This was shown to be theoretically possible by Heinzen and Wineland in 1990, but some important practical questions have remained unaddressed. Among these are how the presence of such a wire modifies the motional frequencies and heating rates of trapped ions. We thus have realized this system as a 1 mm-scale planar segmented rf ion trap combined with an electrically floating gold wire of 25 microns diameter and length 1 cm. This wire is placed close to trapped ions using a set of piezoelectric nanopositioners. We present here experimental measurements of the motional frequencies and heating rates of a single trapped calcium ion as the wire is moved from 3.0 mm to 0.2 mm away from the ion. We discuss the implications of these results for achieving wire-mediated coupling in the present apparatus, as well as in future improved setups.

  8. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  9. A 5.9 tesla conduction-cooled coil composed of a stack of four single pancakes wound with YBCO wide tapes

    Science.gov (United States)

    Iwai, Sadanori; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Urata, Masami; Ioka, Shigeru; Ishii, Yusuke

    2013-11-01

    We have been developing a conduction-cooled coil wound with YBCO-coated conductors for HTS applications. Previously, we have fabricated a coil composed of a stack of 12 single pancakes wound with 4 mm-wide YBCO tapes. This coil had a central magnetic field as high as 5.1 T at 10 K under conduction-cooled conditions. In the present study, we fabricated and tested a coil composed of a stack of four single pancakes wound with 12 mm-wide YBCO tapes. The total size of the coil and the Jc value of the tapes were almost the same as those of the former coil. At 77 K, the voltage-current characteristics showed a high n-value of 24, confirming that the coil had no degradation. Furthermore, in a conduction-cooled configuration at 20 K to 60 K, the coil showed a high n-value of over 20. At 20 K, the central magnetic field reached 5.9 T at 903 A, which is 1.3-times higher than that of the former coil.

  10. Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures.

    Science.gov (United States)

    Carnicer, Artur; Arteaga, Oriol; Suñé-Negre, Josep M; Javidi, Bahram

    2016-10-01

    The counterfeiting of pharmaceutical products represents concerns for both industry and the safety of the general public. Falsification produces losses to companies and poses health risks for patients. In order to detect fake pharmaceutical tablets, we propose producing film-coated tablets with gold nanoparticle encoding. These coated tablets contain unique polarimetric signatures. We present experiments to show that ellipsometric optical techniques, in combination with machine learning algorithms, can be used to distinguish genuine and fake samples. To the best of our knowledge, this is the first report using gold nanoparticles encoded with optical polarimetric classifiers to prevent the counterfeiting of pharmaceutical products.

  11. Synthesis of gold and silver nanoparticles by electron irradiation at 5-15 keV energy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S K; Bogle, K A; Dhole, S D; Bhoraskar, V N [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune-411007 (India)

    2007-04-04

    Thin coatings ({approx}10 {mu}m) made from a mixture of polyvinyl alcohol (PVA) and HAuCl{sub 4} or PVA and AgNO{sub 3} on quartz plates were irradiated with 5-15 keV electrons, at room temperature. The electron energy was varied from coating to coating in the range of 5-15 keV, but electron fluence was kept constant at {approx}10{sup 15} e cm{sup -2}. Samples were characterized by the UV-vis, XRD, SEM and TEM techniques. The plasmon absorption peaks at {approx}511 and {approx}442 nm confirmed the formation of gold and silver nanoparticles in the respective electron-irradiated coatings. The XRD, SEM and TEM measurements reveal that the average size of the particles could be tailored in the range of 130-50 nm for gold and from 150-40 nm for silver by varying the electron energy in the range of 5-15 keV. These particles of gold and silver embedded in the polymer could also be separated by dissolving the coatings in distilled water.

  12. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  13. High resolution SEM imaging of gold nanoparticles in cells and tissues.

    Science.gov (United States)

    Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R

    2014-12-01

    The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high

  14. New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment

    Science.gov (United States)

    Qiu, Xiao-bin; Wen, Jian-kang; Huang, Song-tao; Yang, Hong-ying; Liu, Mei-lin; Wu, Biao

    2017-10-01

    To extract gold from a low-grade (13.43 g/t) and high-sulfur (39.94wt% sulfide sulfur) Carlin-type gold concentrate from the Nibao deposit, Guizhou, a bio-pretreatment followed by carbon-in-pulp (CIP) cyanide leaching process was used. Various methods were used to detect the low-grade gold in the concentrate; however, only time-of-flight secondary-ion mass spectrometry (TOF-SIMS) was successful. With bio-pretreatment, the gold recovery rate increased by approximately 70.16% compared with that obtained by direct cyanide leaching of the concentrate. Various attempts were made to increase the final gold recovery rate. However, approximately 20wt% of the gold was non-extractable. To determine the nature of this non-extractable gold, mineralogy liberation analysis (MLA), formation of secondary product during the bio-pretreatment, and the preg-robbing capacity of the carbonaceous matter in the ore were investigated. The results indicated that at least four factors affected the gold recovery rate: gold occurrence, tight junctions of gold-bearing pyrite with gangue minerals, jarosite coating of the ore, and the carbonaceous matter content.

  15. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    Science.gov (United States)

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  16. Experiment study on an inductive superconducting fault current limiter using no-insulation coils

    Science.gov (United States)

    Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.

    2018-03-01

    No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.

  17. Curing mechanism of flexible aqueous polymeric coatings.

    Science.gov (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  18. Deep cooling of optically trapped atoms implemented by magnetic levitation without transverse confinement

    Science.gov (United States)

    Li, Chen; Zhou, Tianwei; Zhai, Yueyang; Xiang, Jinggang; Luan, Tian; Huang, Qi; Yang, Shifeng; Xiong, Wei; Chen, Xuzong

    2017-05-01

    We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution. A final temperature as low as ˜ 6 nK is achieved in the optical trap, and the atomic density is decreased by nearly two orders of magnitude during the second stage of evaporative cooling. This deep cooling of optically trapped atoms holds promise for many applications, such as atomic interferometers, atomic gyroscopes, and magnetometers, as well as many basic scientific research directions, such as quantum simulations and atom optics.

  19. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  20. Monolithically integrated Helmholtz coils by 3-dimensional printing

    International Nuclear Information System (INIS)

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-01-01

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  1. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    Science.gov (United States)

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  2. Novel ion-imprinted polymer coated on nanoporous silica as a highly selective sorbent for the extraction of ultratrace quantities of gold ions from mine stone samples

    International Nuclear Information System (INIS)

    Ebrahimzadeh, H.; Moazzen, E.; Amini, M.; Sadeghi, O.

    2013-01-01

    We have developed a gold ion-imprinted polymer (GIP) by incorporating a dipyridyl ligand into an ethylene glycol dimethacrylate matrix which then was coated onto porous silica particles. The material was used for the selective extraction of ultratrace quantities of gold ion from mine stones, this followed by its quantitation by FAAS. The effects of concentration and volume of eluent, pH of the solution, flow rates of sample and eluent, and effect of potentially interfering ions, especially palladium and platinum, was investigated. The limit of detection is -1 , the precision (RSD%) is 1.03 %, and recoveries are >99 %. In order to show the high selectivity and efficiency of the new sorbent, the results were compared to those obtained with more simple sorbents possessing the same functional groups. The accuracy of the method was demonstrated by the accurate determination of gold ions in a certified reference material. To the best of our knowledge, there is no report so far on an imprint for gold ions that has such a selectivity over Pd(II) and Pt(II) ions. (author)

  3. Properties of tungsten coating deposited onto copper by high-speed atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jianjun, E-mail: huangjj@szu.edu.cn [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang Fan; Liu Ying; Jiang Shishou; Wang Xisheng; Qi Bing; Gao Liang [Applied Low Temperature Plasma Laboratory, College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China)

    2011-07-01

    Tungsten (W) coatings were fabricated on copper (Cu) by high-speed atmospheric plasma spray (HAPS) technique. The properties of the porosity, oxygen content, bonding strength and microhardness were measured. The results obtained indicated that the HAPS-W coating showed good properties particularly in terms of porosity and oxygen content. The porosity of the HAPS-W coating was 2.3% and the distribution of pore size diameter was mainly concentrated in the range of 0.01-1 {mu}m. The oxygen content of the coating measured by means of Nitrogen/Oxygen Determinator was about 0.10 wt.%. These initial results suggest that the HAPS-W coating has achieved the reported properties of the vacuum plasma spray (VPS) W coating. Compared with VPS, HAPS-W technique could provide a convenient and low cost way to obtain adequate W coatings for fusion applications.

  4. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  5. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    International Nuclear Information System (INIS)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B.F.O.

    2012-01-01

    .1 mg/mL. ► Conformal coating of SPIONs by a gold shell (∼4 nm) was performed and confirmed by various analytical techniques including, TEM, SPR, XRD, and XPS. VSM study showed a decrease in the magnetic saturation in expense of an increase in the coercivity due to the non-magnetic nature of the shell and coarser NPs. In spite of that, the presence of gold favours immobilization of affinity ligands on the surface of SPIONs for biomedical applications.

  6. Coil for a nuclear fusion device

    International Nuclear Information System (INIS)

    Kadotani, Kenzo.

    1975-01-01

    Object: To provide a thin nuclear fusion coil having good thermal insulation and insulating properties in which mica and glass materials are wound round conductors subjected to varnish treatment and hardened, which is then sealed into a metallic case along with negative gases of more than two atmospheric pressures. Structure: A plurality of conductors impregnated with varnish are hardened by a rare insulating layer, after which it is coated with a layer of mica not impregnated with varnish and a layer of glass substance and is then received into a metallic case and filled under pressure with negative gases at a pressure more than two atmospheric pressures. (Kamimura, M.)

  7. Recovery of total Hg from geological matrices: a methodological intercomparison study (W6)

    International Nuclear Information System (INIS)

    Bloom, N.S.; Vondergeest, E.J.; Preus, E.M.; Horvat, M.; Prosenc, N.; Kingston, S.; Apte, S.; Pobbs, C.

    2002-01-01

    Full text: Aqua regia is commonly used for the extraction of Hg from soils prior to cold vapor spectrometry, but mass balance studies suggested it is not sufficiently robust to recover all Hg from more recalcitrant materials such as crystalline ores. As a result, an intercomparison exercise was undertaken between the following methods: (a) aqua regia digestion (EPA 7471) followed by SnCl 2 reduction, gold trapping and CVAFS detection, (b) Teflon bomb digestion at 110 o C with a 10:5:2 HNO 3 + HF + HCl mixture followed by SnCl 2 reduction, gold trapping and CVAFS, (c) 800 o C pyrolysis with gold trapping and CVAAS detection (EPA 7473), and (d) NAA followed by radiochemical separations using oxidative combustion and gold trapping. All methods gave quantitative recoveries from soil and sediment CRMs, but only the HF/HCI/HNO 3 digestion gave quantitative recoveries in all media. Pyrolysis resulted in approximately 88 ± 10 % recovery, while aqua regia digestion resulted in only about 61 ± 24 % recovery in bauxite ores and residues. RNAA generally gave the best agreement with the HF based digestion, although in a significant number of samples, particularly bauxite ores, recoveries were as low as 50 %. Based on these findings, we recommend that bomb digestions which include the use HF be applied to the analysis of Hg in geological solids, unless the matrix is documented to be fully extractable by a less rigorous procedure. We suggest a reference value for Hg in bauxite reference material (NIST-600) of 79.0 ± 2.0 ng/g, based on the pooled results of three laboratories. (author)

  8. Enhanced Stability of Gold Magnetic Nanoparticles with Poly(4-styrenesulfonic acid-co-maleic acid): Tailored Optical Properties for Protein Detection

    Science.gov (United States)

    Zhang, Xiaomei; Zhang, Qinlu; Ma, Ting; Liu, Qian; Wu, Songdi; Hua, Kai; Zhang, Chao; Chen, Mingwei; Cui, Yali

    2017-09-01

    Gold magnetic nanoparticles (GoldMag) have attracted great attention due to their unique physical and chemical performances combining those of individual Fe3O4 and Au nanoparticles. Coating GoldMag with polymers not only increases the stability of the composite particles suspended in buffer but also plays a key role for establishing point-of-care optical tests for clinically relevant biomolecules. In the present paper, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), a negatively charged polyelectrolyte with both sulfonate and carboxylate anionic groups, was used to coat the positively charged GoldMag (30 nm) surface. The PSS-MA-coated GoldMag complex has a stable plasmon resonance adsorption peak at 544 nm. A pair of anti-D-dimer antibodies has been coupled on this GoldMag composite nanoparticle surface, and a target protein, D-dimer was detected, in the range of 0.3-6 μg/mL. The shift of the characteristic peak, caused by the assembly of GoldMag due to the formation of D-dimer-antibody sandwich bridges, allowed the detection.

  9. Gold coated copper artifacts from the Royal Tombs of Sipán (Huaca Rajada, Perù): manufacturing techniques and corrosion phenomena

    Science.gov (United States)

    Ingo, Gabriel M.; Bustamante, Angel D.; Alva, Walter; Angelini, Emma; Cesareo, Roberto; Gigante, Giovanni E.; Zambrano, Sandra Del Pilar A.; Riccucci, Cristina; Di Carlo, Gabriella; Parisi, Erica I.; Faraldi, Federica; Chero, Luis; Fabian, Julio S.

    2013-12-01

    Twenty five years ago, close to the northern Peruvian town of Lambayeque (Huaca Rajada) beneath two large and eroded pyramids, built of adobe mud bricks, Professor Alva discovered the world-famous unlooted pre-Columbian burial chambers of the Royal Tombs of Sipan. The tombs contained a large amount of objects of exceptional artistic and historical value including the greatest intact number of gold and silver artefacts in the Americas to be considered one of the most important archaeological discoveries of the last century. Some copper based objects coated with thin layers of gold have been studied by means of the combined use of analytical techniques such as optical microscopy (OM), scanning electron microscopy coupled with energy dispersive X-ray micro-analysis (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) in order to identify the chemical composition and the manufacturing processes of the gold layer as well as the corrosion products formed during the long-term burial. The micro-chemical and structural results give useful information about the manufacturing techniques used by the Moche metalsmiths to modify the surface chemical composition of the coated artefacts likely based on the depletion gilding process carried out by oxidising the surface copper containing the noble metal and etching away the copper oxides. Furthermore, the results reveal that the main degradation agent is the ubiquitous chlorine and that copper has been almost completely transformed during the burial into mineral species giving rise to the formation of stratified structures constituted by different mineral phases such as cuprous oxide (Cu2O) and copper carbonates [azurite (Cu3(CO3)2(OH)2 and malachite (CuCO3Cu(OH)2)] as well as dangerous chlorine-based compounds such as nantokite (CuCl) and atacamite (Cu2(OH)3Cl) polymorphs. These information evidence the strict interaction of the alloying elements with the soil components as well as the occurrence of the

  10. Gold nanoparticles for cancer detection and treatment: The role of adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Oni, Y. [Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Hao, K. [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dozie-Nwachukwu, S.; Odusanya, O. S. [African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria); Sheda Science and Technology Complex (SHESTCO), Gwagwalada, Abuja, Federal Capital Territory (Nigeria); Obayemi, J.D. [African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria); Anuku, N. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Department of Chemistry and Chemical Technology, Bronx Community College, New York, New York 10453 (United States); Soboyejo, W. O. [Princeton Institute for Science and Technology of Materials (PRISM), Princeton University, 70 Prospect Street, Princeton, New Jersey 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); African University of Science and Technology (AUST), Kilometer 10, Airport Road, Abuja, Federal Capital Territory (Nigeria)

    2014-02-28

    This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using force microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia.

  11. Gold nanoparticles for cancer detection and treatment: The role of adhesion

    International Nuclear Information System (INIS)

    Oni, Y.; Hao, K.; Dozie-Nwachukwu, S.; Odusanya, O. S.; Obayemi, J.D.; Anuku, N.; Soboyejo, W. O.

    2014-01-01

    This paper presents the results of an experimental study of the effects of adhesion between gold nanoparticles and surfaces that are relevant to the potential applications in cancer detection and treatment. Adhesion is measured using a dip coating/atomic force microscopy (DC/AFM) technique. The adhesion forces are obtained for dip-coated gold nanoparticles that interact with peptide or antibody-based molecular recognition units (MRUs) that attach specifically to breast cancer cells. They include MRUs that attach specifically to receptors on breast cancer cells. Adhesion forces between anti-cancer drugs such as paclitaxel, and the constituents of MRU-conjugated Au nanoparticle clusters, are measured using force microscopy techniques. The implications of the results are then discussed for the design of robust gold nanoparticle clusters and for potential applications in localized drug delivery and hyperthermia

  12. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Hatano, Yuji; Shimada, Masashi; Buchenauer, Dean; Kolasinski, Robert; Merrill, Brad; Kondo, Sosuke; Hinoki, Tatsuya; Alimov, Vladimir Kh.

    2016-01-01

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  13. Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yasuhisa, E-mail: syoya@ipc.shizuoka.ac.jp [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Buchenauer, Dean; Kolasinski, Robert [Sandia National Laboratories, Livermore, CA 94551 (United States); Merrill, Brad [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Kondo, Sosuke; Hinoki, Tatsuya [Kyoto University, Gokasho, Uji 611-0011 (Japan); Alimov, Vladimir Kh. [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan)

    2016-12-15

    Highlights: • This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. • Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. • The distribution of defects throughout the sample also changes the shape of TDS spectrum. • Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. - Abstract: This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed.

  14. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.

    Science.gov (United States)

    Snoberger, Aaron; Brettrager, Evan J; Smith, David M

    2018-06-18

    Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.

  15. Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.

    Science.gov (United States)

    Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin

    2018-01-01

    The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.

  16. Measurement of heating coil temperature for e-cigarettes with a "top-coil" clearomizer.

    Science.gov (United States)

    Chen, Wenhao; Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A; Kumagai, Kazukiyo

    2018-01-01

    To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a "top-coil" clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3-6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such "top-coil" clearomizers. This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the

  17. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    Science.gov (United States)

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%.

  18. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    Science.gov (United States)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  19. Thermal-Fatigue Analysis of W-coated Ferritic-Martensitic Steel Mockup for Fusion Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Kim, Suk Kwon; Park, Seong Dae; Kim, Dong Jun [KAERI, Daejeon (Korea, Republic of); Moon, Se Yeon; Hong, Bong Guen [Chonbuk University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, commercial ANSYS-CFX for thermalhydraulic analysis and ANSYS-mechanical for the thermo-mechanical analysis are used to evaluate the thermal-lifetime of the mockup to determine the test conditions. Also, the Korea Heat Load Test facility with an Electron Beam (KoHLT-EB) will be used and its water cooling system is considered to perform the thermal-hydraulic analysis especially for considering the two-phase analysis with a higher heat flux conditions. Through the ITER blanket first wall (BFW) development project in Korea, the joining methods were developed with a beryllium (Be) layer as a plasma-facing material, a copper alloy (CuCrZr) layer as a heat sink, and type 316L austenitic stainless steel (SS316L) as a structural material. And joining methods were developed such as Be as an armor and FMS as a structural material, or W as an armor and FMS as a structural material were developed through the test blanket module (TBM) program. As a candidate of PFC for DEMO, a new W/FMS joining methods, W coating with plasma torch, have been developed. The HHF test conditions are found by performing a thermal-hydraulic and thermo-mechanical analysis with the conventional codes such as ANSYSCFX and .mechanical especially for considering the two-phase condition in cooling tube.

  20. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Science.gov (United States)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  1. Continuous Arsine Detection Using a Peltier-Effect Cryogenic Trap To Selectively Trap Methylated Arsines.

    Science.gov (United States)

    Chen, Guoying; Lai, Bunhong; Mao, Xuefei; Chen, Tuanwei; Chen, Miaomiao

    2017-09-05

    Hydride generation (HG) is an effective technique that eliminates interfering matrix species and enables hydride separation. Arsenic speciation analysis can be fulfilled by cryogenic trapping (CT) based on boiling points of resulting arsines using liquid nitrogen (LN 2 ) as a coolant. In this work, LN 2 was replaced by the thermoelectric effect using a cryogenic trap that consisted of a polytetrafluoroethylene (PTFE) body sandwiched by two Peltier modules. After the trap was precooled, the arsines flew along a zigzag channel in the body and reached a sorbent bed of 0.2 g of 15% OV-3 on Chromosorb W-AW-DMCS imbedded near the exit of the trap. CH 3 AsH 2 and (CH 3 ) 2 AsH were trapped, while AsH 3 , that passed the trap unaffected, was detected by atomic fluorescence spectrometry. Continuous operation led to enhanced throughput. For inorganic As, the limit of detection (LOD) was 1.1 ng/g and recovery was 101.0 ± 1.1%. Monomethylarsonic acid and dimethylarsinic acid did not interfere with 0.2 ± 1.2% and -0.3 ± 0.5% recoveries, respectively.

  2. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.

    Science.gov (United States)

    Lou, Tingting; Chen, Lingxin; Chen, Zhaopeng; Wang, Yunqing; Chen, Ling; Li, Jinhua

    2011-11-01

    A colorimetric, label-free, and nonaggregation-based silver coated gold nanoparticles (Ag/Au NPs) probe has been developed for detection of trace Cu(2+) in aqueous solution, based on the fact that Cu(2+) can accelerate the leaching rate of Ag/Au NPs by thiosulfate (S(2)O(3)(2-)). The leaching of Ag/Au NPs would lead to dramatic decrease in the surface plasmon resonance (SPR) absorption as the size of Ag/Au NPs decreased. This colorimetric strategy based on size-dependence of nanoparticles during their leaching process provided a highly sensitive (1.0 nM) and selective detection toward Cu(2+), with a wide linear detection range (5-800 nM) over nearly 3 orders of magnitude. The cost-effective probe allows rapid and sensitive detection of trace Cu(2+) ions in water samples, indicating its potential applicability for the determination of copper in real samples.

  3. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  4. Precursor-Less Coating of Nanoparticles in the Gas Phase

    Directory of Open Access Journals (Sweden)

    Tobias V. Pfeiffer

    2015-03-01

    Full Text Available This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nanoparticles using a type of physical vapor deposition (PVD at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing the aerosol through the spark zone using a hollow electrode configuration. The mixing process rapidly quenches the vapor, which condenses onto the core particles at a timescale of several tens of milliseconds in a manner that can be modeled as bimodal coagulation. Gold was deposited onto core nanoparticles consisting of silver or polystyrene latex, and silver was deposited onto gold nanoparticles. The coating morphology depends on the relative surface energies of the core and coating materials, similar to the growth mechanisms known for thin films: a coating made of a substance having a high surface energy typically results in a patchy coverage, while a coating material with a low surface energy will normally “wet” the surface of a core particle. The coated particles remain gas-borne, allowing further processing.

  5. Ripple Trap

    Science.gov (United States)

    2006-01-01

    3 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples. Conversely, the lava flow apparently acted as a trap for windblown materials, illustrated by the presence of the light-toned, wave-like texture over much of the flow. That the lava flow surface trapped windblown sand and granules better than the cratered plain indicates that the flow surface has a rougher texture at a scale too small to resolve in this image. Location near: 10.7oN, 204.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  6. Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng

    2014-08-01

    This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.

  7. Improving surface-enhanced Raman scattering effect using gold-coated hierarchical polystyrene bead substrates modified with postgrowth microwave treatment.

    Science.gov (United States)

    Yuen, Clement; Zheng, Wei; Huang, Zhiwei

    2008-01-01

    We report a novel postgrowth microwave heating implementation by selectively modifying hierarchical polystyrene (PS) bead substrates coated with gold (Au) films to effectively improve the surface-enhanced Raman scattering (SERS) effect on the analytes. The SERS signal of probe molecule rhodamine 6G (Rh 6G) on the microwave-treated Au-PS substrates can be improved by 10-fold, while the detection limit of Rh 6G in concentration can be enhanced by two orders of magnitude compared to the as-growth substrates. The high-quality SERS spectrum of saliva can also be acquired using the modified substrates, demonstrating the potential for the realization of the high-performance SERS substrates for biomedical applications.

  8. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe [FEMTO-ST, CNRS, UFC, 26 Chemin de l' Epitaphe, 25030 Besançon Cedex (France); Guérandel, Stéphane; Clercq, Emeric de [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2015-05-14

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and a microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.

  9. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    International Nuclear Information System (INIS)

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Guérandel, Stéphane; Clercq, Emeric de

    2015-01-01

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10 −9 /K in fractional unit. A hyperfine population lifetime, T 1 , and a microwave coherence lifetime, T 2 , of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed

  10. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  11. Synthesis and characterization of cobalt/gold bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Cheng, Guangjun; Hight Walker, Angela R.

    2007-01-01

    Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles

  12. A new RF transmit coil for foot and ankle imaging at 7T MRI.

    Science.gov (United States)

    Santini, Tales; Kim, Junghwan; Wood, Sossena; Krishnamurthy, Narayanan; Farhat, Nadim; Maciel, Carlos; Raval, Shailesh B; Zhao, Tiejun; Ibrahim, Tamer S

    2018-01-01

    A four-channel Tic-Tac-Toe (TTT) transmit RF coil was designed and constructed for foot and ankle imaging at 7T MRI. Numerical simulations using an in-house developed FDTD package and experimental analyses using a homogenous phantom show an excellent agreement in terms of B 1 + field distribution and s-parameters. Simulations performed on an anatomically detailed human lower leg model demonstrated an B 1 + field distribution with a coefficient of variation (CV) of 23.9%/15.6%/28.8% and average B 1 + of 0.33μT/0.56μT/0.43μT for 1W input power (i.e., 0.25W per channel) in the ankle/calcaneus/mid foot respectively. In-vivo B 1 + mapping shows an average B 1 + of 0.29μT over the entire foot/ankle. This newly developed RF coil also presents acceptable levels of average SAR (0.07W/kg for 10g per 1W of input power) and peak SAR (0.34W/kg for 10g per 1W of input power) over the whole lower leg. Preliminary in-vivo images in the foot/ankle were acquired using the T2-DESS MRI sequence without the use of a dedicated receive-only array. Copyright © 2017. Published by Elsevier Inc.

  13. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  14. An application of gold diffusion for defect investigation in silicon

    International Nuclear Information System (INIS)

    Feklisova, O.V.; Yakimov, E.B.

    2009-01-01

    The application of gold diffusion for defect investigation in Si is illustrated by the diffusion experiments carried out on crystals containing grown-in or specially introduced defects. The efficiency of gold diffusion experiments for monitoring the concentration and spatial distribution of these defects is shown. The effect of vacancy type defects on gold diffusion is illustrated by investigations of nitrogen-doped FZ Si and of Cz Si after rapid thermal annealing. In both these cases the gold depth profile is distinctive for trap limited diffusion. The effect of sinks for self-interstitials on gold diffusion is illustrated by the results obtained on the plastically deformed Si. It is shown that in silicon deformed at relatively low temperatures the gold diffusion is to a great extent determined by the defects in the dislocation trails while in high temperature deformed Si the sinks for self-interstitials are associated with dislocations themselves.

  15. Translocation of "rod-coil" polymers: probing the structure of single molecules within nanopores.

    Science.gov (United States)

    de Haan, Hendrick W; Slater, Gary W

    2013-01-25

    Using simulation and analytical techniques, we demonstrate that it is possible to extract structural information about biological molecules by monitoring the dynamics as they translocate through nanopores. From Langevin dynamics simulations of polymers exhibiting discrete changes in flexibility (rod-coil polymers), distinct plateaus are observed in the progression towards complete translocation. Characterizing these dynamics via an incremental mean first passage approach, the large steps are shown to correspond to local barriers preventing the passage of the coils while the rods translocate relatively easily. Analytical replication of the results provides insight into the corrugated nature of the free energy landscape as well as the dependence of the effective barrier heights on the length of the coil sections. Narrowing the width of the pore or decreasing the charge on either the rod or the coil segments are both shown to enhance the resolution of structural details. The special case of a single rod confined within a nanopore is also studied. Here, sufficiently long flexible sections attached to either end are demonstrated to act as entropic anchors which can effectively trap the rod within the pore for an extended period of time. Both sets of results suggest new experimental approaches for the control and study of biological molecules within nanopores.

  16. Proton-induced nanorod melting in a coating obtained from the pulsed laser ablation of W{sub 2}B{sub 5}/B{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Tadadjeu Sokeng, I., E-mail: ifriky@tlabs.ac.za [Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville Campus, PO Box 1906, Bellville 7530 (South Africa); Electron Microscopy Unit, University of the Western Cape, Private bag x17, Bellville 7535 (South Africa); Ngom, B.D. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Laboratoire de Photonique et de Nanofrabrication, Groupes de physique du Solide et Sciences des Matriaux (GPSSM), Facult des sciences et Techniques, Universit Cheikh Anta Diop de Dakar (UCAD), B.P. 25114 Dakar-Fann, Dakar (Senegal); Cummings, F. [Electron Microscopy Unit, University of the Western Cape, Private bag x17, Bellville 7535 (South Africa); Kotsedi, L. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Msimanga, M. [iThemba LABS Gauten, Private Bag 11, WITS 2050, Johannesburg (South Africa); Maaza, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); and others

    2015-02-01

    Highlights: • Coatings from ablated B{sub 4}C/W{sub 2}B{sub 5} were irradiated with 900 keV protons. • Nanorod clusters were observed to melt and disperse. • Uniformly shaped nanorods were observed to grow. • Lateral diffusion of energy and lateral dispersion of matter were observed. - Abstract: Coatings obtained from pulsed laser ablated W{sub 2}B{sub 5}/B{sub 4}C were irradiated with 900keV protons at fluences ranging from about 1×10{sup 15}protons/cm{sup 2} to about 4×10{sup 15}protons/cm{sup 2}. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to study the resulting structural effects. Clusters of nanorods were observed to disperse and reduce in number with increase in proton fluence. The atomic percentage of constituent elements were observed to vary with proton fluence, both within the nanorods and the film floor. Our results show that the structural effect of proton irradiation on the coating is lateral dispersion of matter.

  17. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  18. Data on rotating plasma operation in Tornado traps

    International Nuclear Information System (INIS)

    Lehnert, B.

    1976-01-01

    Rotating plasma operation in spiral coil 'Tornado' traps provides a unique combination of confinement and heating properties. Such a system consists of a closed and compact magnetic bottle to which the crossed-field technique can be applied, in absence of end insulators and their critical velocity limitation effect. This should make possible the generation and heating of fully ionized plasmas by simple means, within a large range of ion densities, temperatures, and rotational velocities. Provided that stable operation becomes possible at high temperatures, it is likely that Tornado traps can be used as strong neutron sources of moderately large dimensions and technically realizable parameter values. Some detailed data and operation ranges are given for the 'Tornado 650' device in Leningrad, and for a somewhat larger device to be operated as neutron source. (Auth.)

  19. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    Science.gov (United States)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most

  20. Room temperature trapping of stibine and bismuthine onto quartz substrates coated with nanostructured palladium for total reflection X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Vanesa; Costas-Mora, Isabel; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2015-05-01

    In this work, a novel method for determining Sb and Bi based on the trapping of their covalent hydrides onto quartz reflectors coated with immobilized palladium nanoparticles (Pd NPs) followed by total reflection X-ray fluorescence (TXRF) analysis is proposed. Pd NPs were synthesized by chemical reduction of the metal precursor using a mixture of water:ethanol as mild reducing agent. Silanization using 3-mercaptopropyltrimethoxysilane (MPTMS) was performed for the immobilization of Pd NPs onto the quartz substrates. Volatile hydrides (stibine and bismuthine) generated by means of a continuous flow system were flushed onto the immobilized Pd NPs and retained by catalytic decomposition. As a result of the high catalytic activity of the nanostructured film, trapping can be performed at ambient temperature with good efficiency. Limits of detection (LODs) were 2.3 and 0.70 μg L{sup −1} for Sb and Bi, respectively. Enrichment factors of 534 and 192 were obtained for Sb and Bi, respectively. The new method was applied for the analysis of several matrices (milk, soil, sediment, cutaneous powder). Recoveries were in the range of 98.4–101% for both elements with a relative standard deviation of 2.5% (N = 5). - Highlights: • A novel method for trapping covalent hydrides of antimony and bismuth is proposed. • Emphasis is placed on the application of Pd nanoparticles as trapping surface. • The nanostructured surface provides high catalytic activity at ambient temperature. • Analysis by total reflection X-ray fluorescence is performed. • Determination of Bi and Sb in different matrices is carried out.

  1. NCSX Trim Coil Design

    International Nuclear Information System (INIS)

    Kalish, M.; Brooks, A.; Rushinski, J.; Upcavage, R.

    2009-01-01

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure

  2. Field evaluation of the bio-efficacy of three pyrethroid based coils against wild populations of anthropophilic mosquitoes in Northern Tanzania

    Directory of Open Access Journals (Sweden)

    Shandala Msangi

    2010-01-01

    Full Text Available Aims: This study aims to assess the feeding inhibition and repellency effect of three brands of mosquito coils in experimental huts (East African design. Evaluated products were all pyrethroid-based mosquito coils - Kiboko; , Total; and Risasi; . Mosfly (0.1% D-allethrin was a positive control. Indoor resting behavior, feeding inhibition and induced exophily were measured as responses of burnt coil smoke in huts. Materials and methods: Resting mosquitoes were collected inside the huts, in window traps and verandah traps using mechanical aspirators. Identified to species level and sex. Results: A total of 1460 mosquitoes were collected, 58.9% (n=860 were Anopheles gambiae s.l while 41.1% (n=600 Culex quinquefasciatus. Indoor resting mosquitoes in all treated huts were significantly reduced than in negative control (DF=4, F=18.6, P < 0.001. Species found to rest indoors were not statistical different between the positive control (Mosfly coil and other three treated huts (DF=3, F=1.068, P=0.408. Cx.quinquefasciatus had significantly higher induced exophily in all treatments comparing to An.gambiae s.l (DF=1, F=5.34, P=0.050. Comparison between species (An.gambiae s.l and Cx. quinquefasciatus for the feeding inhibition among treated huts was not statistically significant (DF=1, F=0.062, P=0.810. Conclusion: Introduction of several personal protection measures will be ideal to supplement the existing gap in reducing the man vector contacts hence lowering the disease transmission.

  3. Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

    Directory of Open Access Journals (Sweden)

    Guandong Zhang

    2012-01-01

    Full Text Available Gold/chitosan nanocomposites were synthesized and evaluated as a therapeutic agent for the photothermal therapy. Gold nanoparticles (Au NPs with controllable optical absorption in the near infrared (NIR region were prepared by the reaction of chloroauric acid and sodium thiosulfate. To apply these particles to cancer therapy, the bare Au NPs were coated with chitosan (CS, O-carboxymethyl chitosan (CMCS, and a blend of CS and CMCS for utilizations in physiologic conditions. The surface properties, optical stability, and photothermal ablation efficiency on hepatocellular carcinoma cells (HepG2 and human dermal fibroblast cells (HDF demonstrate that these gold nanocomposites have great potential as a therapeutic agent in in vitro tests. The CS-coated nanocomposites show the highest efficiency for the photo-ablation on the HepG2 cells, and the CS and CMCS blended coated particles show the best discrimination between the cancer cell and normal cells. The well-controlled NIR absorption and the biocompatible surface of these nanocomposites allow low-power NIR laser activation and low-dosage particle injection for the cancer cell treatment.

  4. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity......, applicability to plasma-enhanced chemical vapor deposition (PECVD) of aligned CNT forests, and electrochemical performance are investigated. Experiments include culturing of NIH3T3 mouse embryonic fibroblast cells on TiW coated silicon scaffolds, CNT growth on TiW substrates with nickel catalyst, and cyclic...

  5. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  6. Dependence of the shape of graphene nanobubbles on trapped substance

    Science.gov (United States)

    Ghorbanfekr-Kalashami, H.; Vasu, K. S.; Nair, R. R.; Peeters, François M.; Neek-Amal, M.

    2017-06-01

    Van der Waals (vdW) interaction between two-dimensional crystals (2D) can trap substances in high pressurized (of order 1 GPa) on nanobubbles. Increasing the adhesion between the 2D crystals further enhances the pressure and can lead to a phase transition of the trapped material. We found that the shape of the nanobubble can depend critically on the properties of the trapped substance. In the absence of any residual strain in the top 2D crystal, flat nanobubbles can be formed by trapped long hydrocarbons (that is, hexadecane). For large nanobubbles with radius 130 nm, our atomic force microscopy measurements show nanobubbles filled with hydrocarbons (water) have a cylindrical symmetry (asymmetric) shape which is in good agreement with our molecular dynamics simulations. This study provides insights into the effects of the specific material and the vdW pressure on the microscopic details of graphene bubbles.

  7. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  8. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  9. Metal coated colloidosomes as carriers for an antibiotic

    Science.gov (United States)

    Sun, Qian; Zhao, Ziyan; Hall, Elizabeth A. H.; Routh, Alexander F.

    2018-06-01

    Colloidosomes are polymer shell microcapsules. They are stable and easy to prepare and have been used to encapsulate drugs for release at specific areas in the body. Traditional polymer shell capsules cannot totally seal drugs, since they are porous and small molecules diffuse through the polymer shell. In this paper, we report a method for encapsulating an antibiotic kanamycin using gold or silver coated colloidosomes. The colloidosomes are impermeable and can be triggered using ultrasound. To investigate the application of the capsules in a biological system, Escherichia Coli (E.coli) was chosen as a model organism. After triggering, the released antibiotic, as well as the metal shell fragments, kill E.coli. Both the silver and gold shells colloidosomes are toxic to this bacterial system and the gold coated colloidosomes can load a higher concentration of kanamycin.

  10. BOGDAŁÓW SEDIMENT TRAP OF DIRTY WATERS AS AN ECO-HYDROLOGICAL OBJECT

    Directory of Open Access Journals (Sweden)

    Mirosława Gilewska

    2015-11-01

    Full Text Available Sediment traps of dirty waters are, generally speaking, temporary hydrotechnical constructions associated with the purification of mine waters from mineral-organic suspensions. Once coal mining is finished and artificial supplies are cut off, such sediment traps – depending on hydrological and hydrotechnical conditions – undergo drainage or are utilised as water reservoirs. Drained sediment traps most commonly go through a period of self-generated reclamation – renaturalisation and become, similarly to water reservoirs, eco-hydrological objects. Bearing in mind the fact that the role of sediment traps is cleaning dirty waters, it seemed advisable to recognise the properties of sediments accumulated in them and to assess their impact on the arising plant communities. Two years after its closure, the entire area of the sediment trap (16 ha was subjected to soil science and phytosociological investigation. Differentiated moisture content and soil conditions of the sediment tank surface were favourable for the settlement of various species characterised by differing site requirements which conferred a completely new quality to this post-industrial land and its biodiversity. The invasion of herbaceous and woody plants indicates that despite the function of sediment tank played earlier in the brown coalmine infrastructure, the material which was accumulated in it provided a favourable habitat for the development of plant cover. It may be assumed that it can be attributed to a significant admixture of brown coal.

  11. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P

    1997-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  12. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P.

    1996-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  13. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    International Nuclear Information System (INIS)

    Taguchi, K; Sugiyama, J; Totsuka, M; Imanaka, S

    2012-01-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  14. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  15. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liang Guohai; Cai Shaoyu; Zhang Peng [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Peng Youyuan [Department of Chemistry, Quanzhou Normal University, Quanzhou 362000 (China); Chen Hui; Zhang Song [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Kong Jilie, E-mail: jlkong@fudan.edu.cn [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China)

    2011-03-18

    We describe a sensitive biosensing system combining magnetic relaxation switch diagnosis and colorimetric detection of human {alpha}-thrombin, based on the aptamer-protein interaction induced aggregation of Fe{sub 3}O{sub 4}-Au nanoparticles. To demonstrate the concept, gold-coated iron oxide nanoparticle was synthesized by iterative reduction of HAuCl{sub 4} onto the dextran-coated Fe{sub 3}O{sub 4} nanoparticles. The resulting core-shell structure had a flowerlike shape with pretty narrow size distribution (referred to as 'nanorose'). The two aptamers corresponding to human {alpha}-thrombin were conjugated separately to two distinct nanorose populations. Once a solution containing human {alpha}-thrombin was introduced, the nanoroses switched from a well dispersed state to an aggregated one, leading to a change in the spin-spin relaxation time (T{sub 2}) as well as the UV-Vis absorption spectra of the solution. Thus the qualitative and quantitative detection method for human {alpha}-thrombin was established. The dual-mode detection is clearly advantageous in obtaining a more reliable result; the detection range is widened as well. By using the dual-mode detection method, a detectable T{sub 2} change is observed with 1.0 nM human {alpha}-thrombin, and the detection range is from 1.6 nM to 30.4 nM.

  16. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.

    Science.gov (United States)

    Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J

    2016-04-06

    The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tribological study of novel metal-doped carbon-based coatings with enhanced thermal stability

    Science.gov (United States)

    Mandal, Paranjayee

    Low friction and high temperature wear resistant PVD coatings are in high demand for use on engine components, which operate in extreme environment. Diamond-like-carbon (DLC) coatings are extensively used for this purpose due to their excellent tribological properties. However, DLC degrades at high temperature and pressure conditions leading to significant increase in friction and wear rate even in the presence of lubricant. To withstand high working temperature and simultaneously maintain improved tribological properties in lubricated condition at ambient and at high temperature, both the transitional metals Mo and W are simultaneously introduced in a carbon-based coating (Mo-W-C) for the first time utilising the benefits of smart material combination and High Power Impulse Magnetron Sputtering (HIPIMS).This research includes development of Mo-W-C coating and investigation of thermal stability and tribological properties at ambient and high temperatures. The as-deposited Mo-W-C coating contains nanocrystalline almost X-ray amorphous structure and show dense microstructure, good adhesion with substrate (Lc -80 N) and high hardness (-17 GPa). During boundary lubricated sliding (commercially available engine oil without friction modifier used as lubricant) at ambient temperature, Mo-W-C coating outperforms commercially available state-of-the-art DLC coatings by providing significantly low friction (u- 0.03 - 0.05) and excellent wear resistance (no measurable wear). When lubricated sliding tests are carried out at 200°C, Mo-W-C coating provides low friction similar to ambient temperature, whereas degradation of DLC coating properties fails to maintain low friction coefficient.A range of surface analyses techniques reveal "in-situ" formation of solid lubricants (WS2 and M0S2) at the tribo-contacts due to tribochemically reactive wear mechanism at ambient and high temperature. Mo-W-C coating reacts with EP additives present in the engine oil during sliding to form WS2

  18. Population trapping: The mechanism for the lost resonance lines in Pm-like ions

    Science.gov (United States)

    Kato, Daiji; Sakaue, Hiroyuki A.; Murakami, Izumi; Nakamura, Nobuyuki

    2017-10-01

    We report a population kinetics study on line emissions of the Pm-like Bi22+ performed by using a collisional-radiative (CR) model. Population rates of excited levels are analyzed to explain the population trapping in the 4f135s2 state which causes the loss of the 5s - 5p resonance lines in emission spectra. Based on the present analysis, we elucidate why the population trapping is not facilitated for a meta-stable excited level of the Sm-like Bi21+. The emission line spectra are calculated for the Pm-like isoelectronic sequence from Au18+ through W13+ and compared with experimental measurements by electron-beam-ion-traps (EBITs). Structures of the spectra are similar for all of the cases except for calculated W13+ spectra. The calculated spectra are hardly reconciled with the measured W13+ spectrum using the compact electron-beam-ion-trap (CoBIT) [Phys. Rev. A 92 (2015) 022510].

  19. Nano-magnetite coated with gold: alternative oncological therapy with magnetic hyperthermia; Nanomagnetita recubierta de oro: terapia oncologica alternativa con hipertermia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Cordova F, T.; Jimenez G, O.; Basurto I, G. [Universidad de Guanajuato, Campus Leon, Division de Ciencias e Ingenierias, Loma del Bosque 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Martinez E, J. C., E-mail: theo@fisica.ugto.mx [IPN, Unidad Profesional Interdisciplinaria de Ingenieria Campus Guanajuato, Av. Mineral de Valenciana 200, Industrial Puerto Interior, 36275 Silao de la Victoria, Guanajuato (Mexico)

    2017-10-15

    Localized hyperthermia performed through the use of nanoparticles is one of the most promising procedures for the cancer treatment. In this work, the synthesis of magnetite nanoparticles (Fe{sub 2}O{sub 3}) was carried out using the thermal decomposition method. Subsequently, these nanoparticles were coated with gold and suspended in aqueous phase. As a result, nanoparticles capable of being heated by the application of an alternating magnetic field or through the use of infrared radiation were obtained. As an additional feature, these nanoparticles are biocompatible thanks to their golden coating. The synthesized nanoparticles can be functionalized by the conjugation of a molecule (aptamer, antibody, peptide, etc.) whose target is a cancer cell in order to adhere to it the nanoparticle-marker complex, to subsequently carry out a heating with the objective of induce cell death. In conclusion, the synthesized nanoparticles allow providing an alternative treatment for cancer through the use of localized hyperthermia, either using magnetic or infrared heating. (Author)

  20. A 5.9 tesla conduction-cooled coil composed of a stack of four single pancakes wound with YBCO wide tapes

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Sadanori, E-mail: sadanori.iwai@toshiba.co.jp; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Urata, Masami; Ioka, Shigeru; Ishii, Yusuke

    2013-11-15

    Highlights: •We made a coil composed of a stack of four single pancakes wound with YBCO wide tapes. •The coil had a central magnetic field as high as 5.9 T at 20 K. •The effect of the tape width on the central magnetic field was small near coil I{sub c}. •We confirmed that performance of YBCO coil was improved by using wider tape. -- Abstract: We have been developing a conduction-cooled coil wound with YBCO-coated conductors for HTS applications. Previously, we have fabricated a coil composed of a stack of 12 single pancakes wound with 4 mm-wide YBCO tapes. This coil had a central magnetic field as high as 5.1 T at 10 K under conduction-cooled conditions. In the present study, we fabricated and tested a coil composed of a stack of four single pancakes wound with 12 mm-wide YBCO tapes. The total size of the coil and the J{sub c} value of the tapes were almost the same as those of the former coil. At 77 K, the voltage–current characteristics showed a high n-value of 24, confirming that the coil had no degradation. Furthermore, in a conduction-cooled configuration at 20 K to 60 K, the coil showed a high n-value of over 20. At 20 K, the central magnetic field reached 5.9 T at 903 A, which is 1.3-times higher than that of the former coil.