WorldWideScience

Sample records for gold silicides

  1. Palladium silicide - a new contact for semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Totterdell, D.H.J.

    1981-11-01

    Silicide layers can be used as low resistance contacts in semiconductor devices. The formation of a metal rich palladium silicide Pd 2 Si is discussed. A palladium film 100A thick is deposited at 300 0 C and the resulting silicide layer used as an ohmic contact in an n + p silicon detector. This rugged contact has electrical characteristics comparable with existing evaporated gold contacts and enables the use of more reproducible bonding techniques. (author)

  2. Refractory silicides for integrated circuits

    International Nuclear Information System (INIS)

    Murarka, S.P.

    1980-01-01

    Transition metal silicides have, in the past, attracted attention because of their usefulness as high temperature materials and in integrated circuits as Schottky barrier and ohmic contacts. More recently, with the increasing silicon integrated circuits (SIC) packing density, the line widths get narrower and the sheet resistance contribution to the RC delay increases. The possibility of using low resistivity silicides, which can be formed directly on the polysilicon, makes these silicides highly attractive. The usefulness of a silicide metallization scheme for integrated circuits depends, not only on the desired low resistivity, but also on the ease with which the silicide can be formed and patterned and on the stability of the silicides throughout device processing and during actual device usage. In this paper, various properties and the formation techniques of the silicides have been reviewed. Correlations between the various properties and the metal or silicide electronic or crystallographic structure have been made to predict the more useful silicides for SIC applications. Special reference to the silicide resistivity, stress, and oxidizability during the formation and subsequent processing has been given. Various formation and etching techniques are discussed

  3. Surface morphology of erbium silicide

    International Nuclear Information System (INIS)

    Lau, S.S.; Pai, C.S.; Wu, C.S.; Kuech, T.F.; Liu, B.X.

    1982-01-01

    The surface of rare-earth silicides (Er, Tb, etc.), formed by the reaction of thin-film metal layers with a silicon substrate, is typically dominated by deep penetrating, regularly shaped pits. These pits may have a detrimental effect on the electronic performance of low Schottky barrier height diodes utilizing such silicides on n-type Si. This study suggests that contamination at the metal-Si or silicide-Si interface is the primary cause of surface pitting. Surface pits may be reduced in density or eliminated entirely through either the use of Si substrate surfaces prepared under ultrahigh vacuum conditions prior to metal deposition and silicide formation or by means of ion irradiation techniques. Silicide layers formed by these techniques possess an almost planar morphology

  4. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  5. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Science.gov (United States)

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  6. Reprocessing of LEU silicide fuel at Dounreay

    International Nuclear Information System (INIS)

    Cartwright, P.

    1996-01-01

    UKAEA have recently reprocessed two LEU silicide fuel elements in their MTR fuel reprocessing plant at Dounreay. The reprocessing was undertaken to demonstrate UKAEA's commitment to the world-wide research reactor communities future needs. Reprocessing of LEU silicide fuel is seen as a waste treatment process, resulting in the production of a liquid feed suitable for conditioning in a stable form of disposal. The uranium product from the reprocessing can be used as a blending feed with the HEU to produce LEU for use in the MTR cycle. (author)

  7. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  8. Ion induced segregation in gold nanostructured thin films on silicon

    International Nuclear Information System (INIS)

    Ghatak, J.; Satyam, P.V.

    2008-01-01

    We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au 2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 x 10 13 , 1 x 10 14 and 5 x 10 14 ions cm -2 at a high beam flux of 6.3 x 10 12 ions cm -2 s -1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 x 10 13 ions cm -2 ) transport has been found to be associated with the formation of gold silicide (Au 5 Si 2 ). At a high fluence value of 5 x 10 14 ions cm -2 , disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.

  9. Irradiation behavior of miniature experimental uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk from, on the order of 7 x 10 20 cm -3 , far short of the approximately 20 x 10 20 cm -3 goal established for the RERTR program. The purpose of the irradiation experiments on silicide fuels on the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix

  10. Solvent extraction studies of RERTR silicide fuels

    International Nuclear Information System (INIS)

    Gouge, Anthony P.

    1983-01-01

    Uranium silicide fuels, which are candidate RERTR fuel compositions, may require special considerations in solvent extraction reprocessing. Since Savannah River Plant may be reprocessing RERTR fuels as early as 1985, studies have been conducted at Savannah River Laboratory to demonstrate the solvent extraction behavior of this fuel. Results of solvent extraction studies with both unirradiated and irradiated fuel are presented along with the preliminary RERTR solvent extraction reprocessing flow sheet for Savannah River Plant. (author)

  11. Uranium silicide activities at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Noel, W.W.; Freim, J.B.

    1983-01-01

    Babcock and Wilcox, Naval Nuclear Fuel Division (NNFD) in conjunction with Argonne National Laboratory (ANL) is actively involved in the Reduced Enrichment Research Test Reactor (RERTR) Program to produce low enriched fuel elements for research reactors. B and W and ANL have undertaken a joint effort in which NNFD will fabricate two low enriched uranium (LEU), Oak Ridge Reactor (ORR) elements with uranium silicide fuel furnished by ANL. These elements are being fabricated for irradiation testing at Oak Ridge National Laboratory (ORNL). Concurrently with this program, NNFD is developing and implementing the uranium silicide and uranium aluminide fuel fabrication technology. NNFD is fabricating the uranium silicide ORR elements in a two-phase program, Development and Production. To summarize: 1. Full size fuel plates can be made with U 3 SiAl but the fabricator must prevent oxidation of the compact prior to hot roll bonding; 2. Providing the ANL U 3 Si x irradiation results are successful, NNFD plans to provide two ORR elements during February 1983; 3. NNFD is developing and implementing U 3 Si x and UAI x fuel fabrication technology to be operational in 1983; 4. NNFD can supply U 3 O 8 high enriched uranium (HEU) or low enriched uranium (LEU) research reactor elements; 5. NNFD is capable of providing high quality, cost competitive LEU or HEU research reactor elements to meet the needs of the customer

  12. Room temperature ferromagnetic gadolinium silicide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hadimani, Magundappa Ravi L.; Gupta, Shalabh; Harstad, Shane; Pecharsky, Vitalij; Jiles, David C.

    2018-03-06

    A particle usable as T1 and T2 contrast agents is provided. The particle is a gadolinium silicide (Gd5Si4) particle that is ferromagnetic at temperatures up to 290 K and is less than 2 .mu.m in diameter. An MRI contrast agent that includes a plurality of gadolinium silicide (Gd.sub.5Si.sub.4) particles that are less than 1 .mu.m in diameter is also provided. A method for creating gadolinium silicide (Gd5Si4) particles is also provided. The method includes the steps of providing a Gd5Si4 bulk alloy; grinding the Gd5Si4 bulk alloy into a powder; and milling the Gd5Si4 bulk alloy powder for a time of approximately 20 minutes or less.

  13. Silicide/Silicon Heterointerfaces, Reaction Kinetics and Ultra-short Channel Devices

    Science.gov (United States)

    Tang, Wei

    , and that limits transport parameter extraction from SB-FETs using the conventional field-effect transconductance measurements. In addition to application of silicide in Si NW devices, the fundamental materials science of Ni-Si reaction is also of interest, and in-situ TEM has been shown to be a useful tool in obtaining dynamical phase transformation information and therefore providing insights into the new phase formation process. By using in-situ TEM techniques, a new gold catalyzed solid-liquid-solid (SLS) silicide phase growth mechanism in Si NWs is observed for the first time, which shows the liquid mediating growth can be also used in synthesis of metallic silicide nanowires. SLS is analogous to the VLS in both being liquid-mediated, but is fundamentally different in terms of nucleation and mass transport. In our SLS growth at 700 ºC, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through Si NW into the pre-existing Au particle at the tip. Upon supersaturation of both Ni and Si in Au, octahedral shape of Ni disilicide phase nucleates in the middle of the Au liquid alloy, which thereafter sweeps through the Si NW and transform Si into NiSi2. Dissolution of Si by Au(Si,Ni) liquid mediating layer and growth of NiSi2 are shown to proceed in different manners. Using in-situ TEM technique, we also have the chance to present direct evidence that Si (111) twin boundaries and Si grain boundaries on Si NW surface can be efficient heterogeneous nucleation site for the silicide growth. By analyzing the nucleation site favorability, unlike other typical FCC materials like Cu or Si, we infer (111) twin defects in NiSi2 may have high interfacial energy. These results may provide valuable insights into the MOSFET source/drain (S/D) contact silicide formation process when defects are either unintentionally formed during the process or intentionally introduced to engineering the strain along the channel.

  14. Molybdenum silicide based materials and their properties

    International Nuclear Information System (INIS)

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-01-01

    Molybdenum disilicide (MoSi 2 ) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm 3 ). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi 2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi 2 -based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed

  15. Subsurface contributions in epitaxial rare-earth silicides

    Energy Technology Data Exchange (ETDEWEB)

    Luebben, Olaf; Shvets, Igor V. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College, Dublin (Ireland); Cerda, Jorge I. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, Madrid (Spain); Chaika, Alexander N. [Institute of Solid State Physics, RAS, Chernogolovka (Russian Federation)

    2015-07-01

    Metallic thin films of heavy rare-earth silicides epitaxially grown on Si(111) substrates have been widely studied in recent years because of their appealing properties: unusually low values of the Schottky barrier height, an abrupt interface, and a small lattice mismatch. Previous studies also showed that these silicides present very similar atomic and electronic structures. Here, we examine one of these silicides (Gd{sub 3}Si{sub 5}) using scanning tunneling microscopy (STM) image simulations that go beyond the Tersoff-Hamann approach. These simulations strongly indicate an unusual STM depth sensitivity for this system.

  16. Production of Mo-99 using low-enriched uranium silicide

    International Nuclear Information System (INIS)

    Hutter, J.C.; Srinivasan, B.; Vicek, M.; Vandegrift, G.F.

    1994-01-01

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl x alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U 3 Si 2 miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed

  17. Rare earth silicide nanowires on silicon surfaces

    International Nuclear Information System (INIS)

    Wanke, Martina

    2008-01-01

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti Γ point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi 2 -monolayer and the Dy 3 Si 5 -multilayer on the Si(111) surface are investigated in comparison to the known ErSi 2 /Si(111) and Er 3 Si 5 /Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the vector k parallel space is elliptical at the anti M points, while the hole pocket at the anti Γ point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas of the sample surface, which are oriented

  18. Far-infrared spectroscopy of thermally annealed tungsten silicide films

    International Nuclear Information System (INIS)

    Amiotti, M.; Borghesi, A.; Guizzetti, G.; Nava, F.; Santoro, G.

    1991-01-01

    The far-infrared transmittance spectrum of tungsten silicide has been observed for the first time. WSi 2 polycrystalline films were prepared by coevaporation and chemical-vapour deposition on silicon wafers, and subsequently thermally annealed at different temperatures. The observed structures are interpreted, on the basis of the symmetry properties of the crystal, such as infrared-active vibrational modes. Moreover, the marked lineshape dependence on annealing temperature enables this technique to analyse the formation of the solid silicide phases

  19. Determination of accurate metal silicide layer thickness by RBS

    International Nuclear Information System (INIS)

    Kirchhoff, J.F.; Baumann, S.M.; Evans, C.; Ward, I.; Coveney, P.

    1995-01-01

    Rutherford Backscattering Spectrometry (RBS) is a proven useful analytical tool for determining compositional information of a wide variety of materials. One of the most widely utilized applications of RBS is the study of the composition of metal silicides (MSi x ), also referred to as polycides. A key quantity obtained from an analysis of a metal silicide is the ratio of silicon to metal (Si/M). Although compositional information is very reliable in these applications, determination of metal silicide layer thickness by RBS techniques can differ from true layer thicknesses by more than 40%. The cause of these differences lies in how the densities utilized in the RBS analysis are calculated. The standard RBS analysis software packages calculate layer densities by assuming each element's bulk densities weighted by the fractional atomic presence. This calculation causes large thickness discrepancies in metal silicide thicknesses because most films form into crystal structures with distinct densities. Assuming a constant layer density for a full spectrum of Si/M values for metal silicide samples improves layer thickness determination but ignores the underlying physics of the films. We will present results of RBS determination of the thickness various metal silicide films with a range of Si/M values using a physically accurate model for the calculation of layer densities. The thicknesses are compared to scanning electron microscopy (SEM) cross-section micrographs. We have also developed supporting software that incorporates these calculations into routine analyses. (orig.)

  20. Recent Advances in Nb-silicide in-situ composites

    International Nuclear Information System (INIS)

    Bewlay, B.P.; Jackson, M.R.; Subramanian, P.R.; Briant, C.L.

    2001-01-01

    In-situ composites based on Nb silicides have great potential for future high-temperature applications. These Nb-silicide composites combine a ductile Nb-based matrix with high-strength silicides. With the appropriate combination of alloying elements, such as Ti, Hf, Cr, AI, it is possible to achieve a promising balance of fracture toughness, high-temperature creep performance, and oxidation resistance. This paper will describe the effect of volume fraction of silicide on microstructure, high-temperature creep performance, and oxidation resistance. The ratio of Nb:(W+Ti) is critical in determining both creep rate and oxidation performance. If this ratio goes below ∼1.5, the creep rate increases substantially. In more complex silicide-based systems, other intermetallics, such as laves phases and a boron-rich T-2 phase, are added for oxidation resistance. To understand the role of each phase on the creep resistance and oxidation performance of these composites, we determined the creep and oxidation behavior of the individual phases and composites at temperatures up to 1200 o C. These data allow quantification of the load-bearing capability of the individual phases in the Nb-silicide based in-situ composites. (author)

  1. Influence of impurities on silicide contact formation

    International Nuclear Information System (INIS)

    Kazdaev, Kh.R.; Meermanov, G.B.; Kazdaev, R.Kh.

    2002-01-01

    Research objectives of this work are to investigate the influence of light impurities implantation on peculiarities of the silicides formation in molybdenum monocrystal implanted by silicon, and in molybdenum films sputtered on silicon substrate at subsequent annealing. Implantation of the molybdenum samples was performed with silicon ions (90 keV, 5x10 17 cm -2 ). Phase identification was performed by X ray analysis with photographic method of registration. Analysis of the results has shown the formation of the molybdenum silicide Mo 3 Si at 900 deg. C. To find out the influence of impurities present in the atmosphere (C,N,O) on investigated processes we have applied combined implantation. At first, molybdenum was implanted with ions of the basic component (silicon) and then -- with impurities ions. Acceleration energies (40keV for C, 45 keV for N and 50 keV for O) were chosen to obtain the same distribution profiles for basic and impurities ions. Ion doses were 5x10 17 cm -2 for Si-ions and 5x10 16 cm -2 - for impurities. The most important results are reported here. The first, for all three kinds of impurities the decreased formation temperatures of the phase Mo 3 Si were observed; in the case of C and N it was ∼100 deg. and in the case of nitrogen - ∼200 deg. Further, simultaneously with the Mo 3 Si phase, the appearance of the rich-metal phase Mo 5 Si 3 was registered (not observed in the samples without additional implantation). In case of Mo/Si-structure, the implantation of the impurities (N,O) was performed to create the peak concentration (∼4at/%) located in the middle of the molybdenum film (∼ 150nm) deposited on silicon substrate. Investigation carried out on unimplanted samples showed the formation of the silicide molybdenum MoSi 2 , observed after annealing at temperatures 900/1000 deg. C, higher than values 500-600 deg. C reported in other works. It is discovered that electrical conductivity of Mo 5 Si 3 -films synthesized after impurities

  2. Phase transformations in Higher Manganese Silicides

    Energy Technology Data Exchange (ETDEWEB)

    Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.

  3. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  4. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  5. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  6. Irradiation behavior of experimental miniature uranium silicide fuel plates

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Neimark, L.A.; Mattas, R.F.

    1983-01-01

    Uranium silicides, because of their relatively high uranium density, were selected as candidate dispersion fuels for the higher fuel densities required in the Reduced Enrichment Research and Test Reactor (RERTR) Program. Irradiation experience with this type of fuel, however, was limited to relatively modest fission densities in the bulk form, on the order of 7 x 10 20 cm -3 , far short of he approximately 20 x 10 20 cm -3 goal established for the RERTR Program. The purpose of the irradiation experiments on silicide fuels in the ORR, therefore, was to investigate the intrinsic irradiation behavior of uranium silicide as a dispersion fuel. Of particular interest was the interaction between the silicide particles and the aluminum matrix, the swelling behavior of the silicide particles, and the maximum volume fraction of silicide particles that could be contained in the aluminum matrix. The first group of experimental 'mini' fuel plates have recently reached the program's goal burnup and are in various stages of examination. Although the results to date indicate some limitations, it appears that within the range of parameters examined thus far the uranium silicide dispersion holds promise for satisfying most of the needs of the RERTR Program. The twelve experimental silicide dispersion fuel plates that were irradiated to approximately their goal exposure show the 30-vol % U 3 Si-Al plates to be in a stage of relatively rapid fission-gas-driven swelling at a fission density of 2 x 10 20 cm -3 . This fuel swelling will likely result in unacceptably large plate-thickness increases. The U 3 Si plates appear to be superior in this respect; however, they, too, are starting to move into the rapid fuel-swelling stage. Analysis of the currently available post irradiation data indicates that a 40-vol % dispersed fuel may offer an acceptable margin to the onset of unstable thickness changes at exposures of 2 x 10 21 fission/cm 3 . The interdiffusion between fuel and matrix

  7. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  8. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  9. Nickel silicide formation in silicon implanted nickel

    Science.gov (United States)

    Rao, Z.; Williams, J. S.; Pogany, A. P.; Sood, D. K.; Collins, G. A.

    1995-04-01

    Nickel silicide formation during the annealing of very high dose (≥4.5×1017 ions/cm2) Si implanted Ni has been investigated, using ion beam analytical techniques, electron microscopy, and x-ray diffraction analysis. An initial amorphous Si-Ni alloy, formed as a result of high dose ion implantation, first crystallized to Ni2Si upon annealing in the temperature region of 200-300 °C. This was followed by the formation of Ni5Si2 in the temperature region of 300-400 °C and then by Ni3Si at 400-600 °C. The Ni3Si layer was found to have an epitaxial relationship with the substrate Ni, which was determined as Ni3Si∥Ni and Ni3Si∥Ni for Ni(100) samples. The minimum channeling yield in the 2 MeV He Rutherford backscattering and channeling spectra of this epitaxial layer improved with higher annealing temperatures up to 600 °C, and reached a best value measured at about 8%. However, the epitaxial Ni3Si dissolved after long time annealing at 600 °C or annealing at higher temperatures to liberate soluble Si into the Ni substrate. The epitaxy is attributed to the excellent lattice match between the Ni3Si and the Ni. The annealing behavior follows the predictions of the Ni-Si phase diagram for this nickel-rich binary system.

  10. Characterization of uranium silicide powder using XRD

    International Nuclear Information System (INIS)

    Garcia, Rafael H.L.; Saliba-Silva, Adonis M.; Carvalho, Elita F.U.; Lima, Nelson B.; Ichikawa, Rodrigo U.; Martinez, Luiz G.

    2013-01-01

    Uranium silicide (U 3 Si 2 ) is an intermetallic used as nuclear fuel in most modern MTR - Materials Test Reactor. Dispersed in aluminum, this fuel allows high uranium densities, up to 4.8 gU/cm 3 . At IPEN, the fabrication of fuel elements based on U 3 Si 2 for the IEA-R1 reactor is carried out in the Nuclear Fuel Center (CCN), by vacuum induction melting of uranium and silicon, followed by grinding. Before employed in a nuclear reactor, U 3 Si 2 must be submitted to a strict quality control, which includes granulometry, density, X-ray radiography for dispersion homogeneity, chemical and crystallographic characterization. Concerning phase composition for a qualified fuel, the fraction of U 3 Si 2 should be higher than 80wt.%. Aiming at the development of a routine methodology for quantification of phases via analysis of XRD data using the Rietved method, six samples from two production baths of CCN were submitted to X-ray diffraction. The data were analyzed using software GSAS and line profile analysis methods. The results suggest that fusion product have preferred orientation and grinding step is important for a better refinement. (author)

  11. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  12. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  13. Magnesium silicide production and silane synthesis on its basis

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Mukashev, F.A.; Manakov, S.M.; Francev, U.V.; Kalblanbekov, B.M.; Akhter, P.; Abbas, M.; Hussain, A.

    2003-01-01

    We had developed an alternative method of production of magnesium silicide with use of ferroalloys of silicon. Magnesium silicide is raw material for silane synthesis. The essence of the method consist of sintering FS -75 (ferrosilicium with 75 % of silicon and 25 % of iron, made by ferroalloy factories) with metal magnesium at temperature of 650 deg. C. The X-ray analysis has shown formation of magnesium silicide. That is further used for synthesis of silane. The output of silane is 60 % in respect of the contents of silicon. After removing the water vapors the mass-spectrometer analysis has estimated the purity of silane as 99.95 % with no detection of phosphine and diborane. (author)

  14. TiSi2 integrity within a doped silicide process step

    International Nuclear Information System (INIS)

    Crean, G.M.; Cole, P.D.; Stoemenos, J.

    1993-01-01

    Degradation of arsenic implanted titanium silicide (TiSi 2 ) thin films as a result of thermal processing for shallow junction formation is investigated. Significant arsenic diffusion from the silicide overlayer into the silicon substrate has been detected by Rutherford Backscattering Spectrometry at drive-in temperatures > 1,050 C. Cross-sectional transmission electron micrographs have shown the silicide film become increasingly non-uniform as the thermal budget increases, ultimately leading to discontinuities forming in the silicide film. This observed degradation of the titanium silicide film is also supported by sheet resistance measurements which show the film to degrade significantly above a threshold thermal budget

  15. Morphology of Si/tungsten-silicides/Si interlayers

    International Nuclear Information System (INIS)

    Theodore, N.; Secco d'Aragona, F.; Blackstone, S.

    1992-01-01

    Tungsten and tungsten-silicides are of interest for semiconductor technology because of their refractory nature, low electrical-resistivity and high electromigration-resistance. This paper presents the first formation of buried tungsten-silicide layers in silicon, by proximity adhesion. The interlayers, created by a combination of chemical vapor-deposition (CVD) and proximity-adhesion were studied using transmission electron-microscopy (TEM). The behavior of the layers in the presence and absence of an adjacent silicon-dioxide interlayer was also investigated. Buried silicide layers were successfully formed with or without the adjacent silicon-dioxide. The silicide formed continuous layers with single grains encompassing the width of the interlayer. Individual grains were globular, with cusps at grain boundaries. This caused interlayer-thicknesses to be non-uniform, with lower thickness values being present at the cusps. Occasional voids were observed at grain-boundary cusps. The voids were smaller and less frequent in the presence of an adjacent oxide-layer, due to flow of the oxide during proximity adhesion. Electron-diffraction revealed a predominance of tungsten-disilicide in the interlayers, with some free tungsten being present. Stresses in the silicide layers caused occasional glide dislocations to propagate into the silicon substrate beneath the interlayers. The dislocations propagate only ∼100 nm into the substrate and therefore should not be detrimental to use of the buried layers. Occasional precipitates were observed at the end of glide-loops. These possibly arise due to excess tungsten from the interlayer diffusion down the glide dislocation to finally precipitate out as tungsten-silicide

  16. Oxidation behavior of molybdenum silicides and their composites

    International Nuclear Information System (INIS)

    Natesan, K.; Deevi, S. C.

    2000-01-01

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo 5 Si 3 alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi 2 -Si 3 N 4 composites that contained 20--80 vol.% Si 3 N 4 were evaluated at 500--1,400 C

  17. Formation of silicides in a cavity applicator microwave system

    International Nuclear Information System (INIS)

    Thompson, D.C.; Kim, H.C.; Alford, T.L.; Mayer, J.W.

    2003-01-01

    Metal silicides of nickel and cobalt are formed in a cavity applicator microwave system with a magnetron power of 1200 W and a frequency of 2.45 GHz. X-ray diffraction, Rutherford backscattering spectrometry, and four-point-probe measurements are used to identify the silicide phase present and layer thicknesses. Additional processing confirmed that the products attained from heating by microwaves do not differ appreciably from those attained in heating by thermal processes. Materials properties are used to explain microwave power absorption and demonstrate how to tailor a robust process in which thin film reactions can be attained and specific products isolated

  18. Making of fission 99Mo from LEU silicide(s): A radiochemists' view

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Wolterbeek, H.Th.

    2005-01-01

    The present-day industrial scale production of 99 Mo is fission based and involves thermal-neutron irradiation in research reactors of highly enriched uranium (HEU, > 20 % 235 U) containing targets, followed by radiochemical processing of the irradiated targets resulting in the final product: a 99 Mo containing chemical compound of molybdenum. In 1978 a program (RERTR) was started to develop a substitute for HEU reactor fuel i.e. a low enriched uranium (LEU, 235 U) one. In the wake of that program studies were undertaken to convert HEU into LEU based 99 Mo production. Both new targets and radiochemical treatments leading to 99 Mo compounds were proposed. One of these targets is based on LEU silicide, U 3 Si 2 . Present paper aims at comparing LEU U 3 Si 2 and LEU U 3 Si with another LEU target i.e. target material and arriving at some preferences pertaining to 99 Mo production. (author)

  19. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  20. The electronic structure of 4d and 5d silicides

    NARCIS (Netherlands)

    Speier, W.; Kumar, L.; Sarma, D.D.; Groot, R.A. de; Fuggle, J.C.

    1989-01-01

    A systematic experimental and theoretical study of the electronic structure of stoichiometric silicides with Nb, Mo, Ta and W is presented. We have employed x-ray photoemission and bremsstrahlung isochromat spectroscopy as experimental techniques and interpreted the measured data by calculation of

  1. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  2. Texture in thin film silicides and germanides: A review

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: bob.deschutter@ugent.be; De Keyser, K.; Detavernier, C. [Department of Solid State Sciences, Ghent University, Ghent (Belgium); Lavoie, C. [IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (United States)

    2016-09-15

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi{sub 2}, C54-TiSi{sub 2}, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si{sub 1−x}Ge{sub x} in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  3. Texture in thin film silicides and germanides: A review

    International Nuclear Information System (INIS)

    De Schutter, B.; De Keyser, K.; Detavernier, C.; Lavoie, C.

    2016-01-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi_2, C54-TiSi_2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si_1_−_xGe_x in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  4. Texture in thin film silicides and germanides: A review

    Science.gov (United States)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  5. Evaluation of anomalies during nickel and titanium silicide formation using the effective heat of formation mode

    CSIR Research Space (South Africa)

    Pretorius, R

    1993-11-01

    Full Text Available , as well as the observed sequence of growth of different silicide phases, are not in agree- ment with thermodynamic considerations [26]. In the case of the nickel silicides Ni,Si is nearly always found to be the first... to determine how the oxygen content in the silicon affects phase formation. We also show how the anomalous behaviour of titanium and nickel silicide formation can be explained thermodynamically by using the ?effective heat...

  6. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  7. A study of CoSix silicide formed by recoil implantation

    International Nuclear Information System (INIS)

    Kwok, H.L.

    1989-01-01

    This work investigated the formation of CoSi x silicides on n-Si by recoil implantation through a thin cobalt layer using an inert gas ion beam. The results suggest the formation of a very shallow (35 to 45 nm) silicide surface layer under the specific conditions of preparation. The surface layer resistivity was comparable to values reported for Co 2 Si and CoSi, although below the surface, the resistivity decreased. This appeared to suggest a change-over from cobalt-rich silicides near the surface to a more conducting silicide (CoSi 2 ) at the interface. (author)

  8. Analysis of reactivity accidents of the RSG-GAS core with silicide fuel

    International Nuclear Information System (INIS)

    Tukiran

    2002-01-01

    The fuels of RSG-GAS reactor is changed from uranium oxide to uranium silicide. For time being, the fuel of RSG-GAS core are mixed up between oxide and silicide fuels with 250 gr of loading and 2.96 g U/cm 3 of density, respectively. While, silicide fuel with 300 gr of loading is still under research. The advantages of silicide fuels are can be used in high density, so that, it can be stayed longer in the core at higher burn-up, therefore, the length of cycle is longer. The silicide fuel in RSG-GAS core is used in step-wise by using mixed up core. Firstly, it is used silicide fuel with 250 gr of loading and then, silicide fuel with 300 gr of loading (3.55 g U/cm 3 of density). In every step-wise of fuel loading must be analysed its safety margin. In this occasion, it is analysed the reactivity accident of RSG-GAS core with 300 gr of silicide fuel loading. The calculation was done by using POKDYN code which available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. From all cases which were have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 gr silicide fuel loading

  9. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  10. RA-3 core with uranium silicide fuel elements

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2000-01-01

    Following on with studies on uranium silicide fuel elements, this paper reports some comparisons between the use of standard ECN [U 3 O 8 ] fuel elements and type P-06 [from U 3 Si 2 ] fuel elements in the RA-3 core.The first results showed that the calculated overall mean burn up is in agreement with that reported for the facility, which gives more confidence to the successive ones. Comparing the mentioned cores, the silicide one presents several advantages such as: -) a mean burn up increase of 18 %; -) an extraction burn up increase of 20 %; -) 37.4 % increase in full power days, for mean burn up. All this is meritorious for this fuel. Moreover, grouped and homogenized libraries were prepared for CITVAP code that will be used for planning experiments and other bidimensional studies. Preliminary calculations were also performed. (author)

  11. Secondary neutral mass spectrometry depth profile analysis of silicides

    International Nuclear Information System (INIS)

    Beckmann, P.; Kopnarski, M.; Oechsner, H.

    1985-01-01

    The Direct Bombardment Mode (DBM) of Secondary Neutral Mass Spectrometry (SNMS) has been applied for depth profile analysis of two different multilayer systems containing metal silicides. Due to the extremely high depth resolution obtained with low energy SNMS structural details down to only a few atomic distances are detected. Stoichiometric information on internal oxides and implanted material is supplied by the high quantificability of SNMS. (Author)

  12. Fracture of niobium-base silicide coated alloy

    International Nuclear Information System (INIS)

    Davydova, A.D.; Zotov, Yu.P.; Ivashchenko, O.V.; Kushnareva, N.P.; Yarosh, I.P.

    1990-01-01

    Mechanical properties and character of fracture of Nb-W-Mo-Zr-C alloy composition with complex by composition and structure silicide coating under different states of stage-by-stage coating are studied. Structural features, character of fracture from ductile to quasibrittle transcrystalline one and, respectively, the composition plasticity level are defined by interrelation of fracture processes in coating, matrix plastic flow and possibility and way of stress relaxation on their boundary

  13. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  14. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofmann, G.L.; Ryu, Woo-Seog

    1991-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and micro structural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide dispersion fuel. (orig.)

  15. Detailed analysis of uranium silicide dispersion fuel swelling

    International Nuclear Information System (INIS)

    Hofman, G.L.; Ryu, Woo-Seog.

    1989-01-01

    Swelling of U 3 Si and U 3 Si 2 is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs

  16. Chemical vapor deposition of tetraboron silicide whiskers

    International Nuclear Information System (INIS)

    Motozima, Seizi; Sugiyama, Kozoh; Takahashi, Yasutaka

    1975-01-01

    Growth conditions of B 4 Si whiskers were investigated at the temperature range of 1000 - 1100 0 C. Optimum composition of halides was determined as BCl 3 /SiCl 4 =2 - 0.5, and BCl 3 =1 - 6 vol%, SiCl 4 =1 - 7 vol%. Gold had an excellent impurity effect with optimum concentration of 20 - 50 μg/cm 2 on whisker growth, and gave wool like whiskers of 0.1 - 1 μ in thickness and 0.5 - 2 mm in length. B 4 Si whisker growth was explained in terms of a tip VLS mechanism, for a drop-like deposit of impurity was observed on each tip. (auth.)

  17. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  18. Neutronic Analysis and Radiological Safety of RSG-GAS Reactor on 300 Grams Uranium Silicide Core

    International Nuclear Information System (INIS)

    Pande Made Udiyani; Lily Suparlina; Rokhmadi

    2007-01-01

    As starting of usage silicide U 250 g fuel element in the core of RSG-GAS and will be continued with usage of silicide U 300 g fuel element, hence done beforehand neutronic analyse and radiological safety of RSG-GAS. Calculation done by ORIGEN2.1 code to calculate source term, and also by PC-COSYMA code to calculate radiological safety of radioactive dispersion from RSG-GAS. Calculation of radioactive dispersion done at condition of reactor is postulated be happened an accident of LOCA causing one fuel element to melt. Neutronic analysis indicate that silicide U 250 g full core shall to be operated beforehand during 625 MWD before converted to silicide U 300 g core. During operation of transition core with mixture of silicide U 250 g and 300 g, all parameter fulfill criterion of safety Designed Balance core of silicide U 300 g will be reached at the time of fifth full core. Result of calculation indicate that through mixture core of silicide U 250 and 300 g proposed can form silicide U 300 g balance core of reactor RSG-GAS safely. Calculation of radiology safety by deterministic for silicide U 300 g balance core, and accident postulation which is equal to core of silicide U 250 g yield output in the form of radiation activity (radionuclide concentration in the air and deposition on the ground), radiation dose (collective and individual), radiation effect (short- and long-range), which accepted by society in each perceived sector. Result of calculation indicated that dose accepted by society is not pass permitted boundary for public society if happened accident. (author)

  19. Exploitation of a self-limiting process for reproducible formation of ultrathin Ni1-xPtx silicide films

    International Nuclear Information System (INIS)

    Zhang Zhen; Zhu Yu; Rossnagel, Steve; Murray, Conal; Jordan-Sweet, Jean; Yang, Bin; Gaudet, Simon; Desjardins, Patrick; Kellock, Andrew J.; Ozcan, Ahmet; Zhang Shili; Lavoie, Christian

    2010-01-01

    This letter reports on a process scheme to obtain highly reproducible Ni 1-x Pt x silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on the initial Pt fraction.

  20. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  1. Immobilization of Uranium Silicide in Sintered Iron-Phosphate Glass

    International Nuclear Information System (INIS)

    Mateos, Patricia; Russo, Diego; Rodriguez, Diego; Heredia, A; Sanfilippo, M.; Sterba, Mario

    2003-01-01

    This work is a continuation of a previous one performed in vitrification of uranium silicide in borosilicate and iron-silicate glasses, by sintering.We present the results obtained with an iron-phosphate glass developed at our laboratory and we compare this results with those obtained with the above mentioned glasses. The main objective was to develop a method as simple as possible, so as to get a monolithic glass block with the appropriate properties to be disposed in a deep geological repository.The thermal transformation of the uranium silicide was characterized by DTA/TG analysis and X-ray diffraction.We determined the evolution of the crystalline phases and the change in weight.Calcined uranium silicide was mixed with natural U 3 O 8 , the amount of U 3 O 8 was calculated to simulate an isotopic dilution of 4%.This material was mixed with powdered iron-phosphate glass (in wt.%: 64,9 P 2 O 5 ; 22,7 Fe 2 O 3 ; 8,1 Al 2 O 3 ; 4,3 Na 2 O) in different proportions (in wt%): 7%, 10% y 15%.The powders were pressed and sintered at temperatures between 585 y 670 °C. Samples of the sintered pellet were prepared for the lixiviation tests (MCC-1P: monolithic samples; deionised water; 90° C; 7, 14 and 28 days).The samples showed a quite good durability (0,6 g.m -2 .day -1 ), similar to borosilicate glasses.The microstructure of the glass samples showed that the uranium particles are much better integrated to the glass matrix in the iron-phosphate glasses than in the borosilicate or iron-silicate glasses.We can conclude that the sintered product obtained could be a good alternative for the immobilization of nuclear wastes with high content of uranium, as the ones arising from the conditioning of research reactors spent fuels

  2. Neutronic calculations of PARR-1 cores using LEU silicide fuel

    International Nuclear Information System (INIS)

    Arshad, M.; Bakhtyar, S.; Hayat, T.; Salahuddin, A.

    1991-08-01

    Detailed neutronic calculations have been carried out for different PARR-1 cores utilizing low enriched uranium (LEU) silicide fuel and operating at an upgraded power of 9 MW. The calculations include the search for critical loadings in open and stall ends of the pool, neutronic analysis of the first full equilibrium core and calculations cores. The burnup study of inventory have also been carried out. Further, the reactivity coefficients of the first full power operation core are evaluated for use in the accident analysis. 14 figs. (author)

  3. Postirradiation analysis of experimental uranium-silicide dispersion fuel plates

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1985-01-01

    Low-enriched uranium silicide dispersion fuel plates were irradiated to maximum burnups of 96% of 235 U. Fuel plates containing 33 v/o U 3 Si and U 3 Si 2 behaved very well up to this burnup. Plates containing 33 v/o U 3 Si-Al pillowed between 90 and 96% burnup of the fissile atoms. More highly loaded U 3 Si-Al plates, up to 50 v/o were found to pillow at lower burnups. Plates containing 40 v/o U 3 Si showed an increase swelling rate around 85% burnup. 5 refs., 10 figs

  4. Progress in doping of ruthenium silicide (Ru2Si3)

    International Nuclear Information System (INIS)

    Vining, C.B.; Allevato, C.E.

    1992-01-01

    This paper reports that ruthenium silicide (Ru 2 Si 3 ) is currently under development as a promising thermoelectric material suitable for space power applications. Key to realizing the potentially high figure of merit values of this material is the development of appropriate doping techniques. In this study, manganese and iridium have been identified as useful p- and n-type dopants, respectively. Resistivity values have been reduced by more than 3 orders of magnitude. Anomalous Hall effect results, however, complicate interpretation of some of the results and further effort is required to achieve optimum doping levels

  5. Microstructure and mechanical properties of molybdenum silicides with Al additions

    International Nuclear Information System (INIS)

    Rosales, I.; Bahena, D.; Colin, J.

    2007-01-01

    Several molybdenum silicides alloys with different aluminum additions were produced by the arc-cast method. Microstructure observed in the alloys presented a variation of the precipitated second phase respect to the aluminum content. Evaluation of the compressive behavior at high temperature of the alloys shows an important improvement in its ductility, approximately of 20%. Fracture toughness was increased proportionally with Al content. In addition at room temperature the alloys show a better mechanical behavior in comparison with the sample unalloyed. In general, Al additions result to be a good alternative to improve the resistance of these intermetallic alloys. The results are interpreted on the base of the analysis of second phase strengthening

  6. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  7. Structural and electronic properties of rare-earth silicide thin films at Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Dues, Christof; Schmidt, Wolf Gero; Sanna, Simone [Lehrstuhl fuer Theoretische Physik, Universitaet Paderborn (Germany)

    2016-07-01

    Rare-earth (RE) silicides thin films on silicon surfaces are currently of high interest. They grow nearly defect-free because of the small lattice mismatch, and exhibit very low Schottky-barriers on n-type silicon. They even give rise to the self-organized formation of RE silicide nanowires on the Si(001) and vicinal surfaces. Depending on the amount of deposited RE atoms, a plethora of reconstructions are observed for the RE silicide. While one monolayer leads to the formation of a 1 x 1-reconstruction, several monolayer thick silicides crystallize in a √(3) x √(3) R30 {sup circle} superstructure. Submonolayer RE deposition leads to different periodicities. In this work we investigate the formation of RE silicides thin films on Si(111) within the density functional theory. The energetically favored adsorption site for RE adatoms is determined calculating the potential energy surface. As prototypical RE, Dysprosium is used. Additional calculations are performed for silicides formed by different RE elements. We calculate structural properties, electronic band structures and compare measured and simulated STM images. We consider different terminations for the 5 x 2 reconstruction occurring in the submonolayer regime and investigate their stability by means of ab initio thermodynamics. The same method is employed to predict the stable silicide structure as a function of the deposited RE atoms.

  8. Influence of IR-laser irradiation on α-SiC-chromium silicides ceramics

    International Nuclear Information System (INIS)

    Vlasova, M.; Marquez Aguilar, P.A.; Resendiz-Gonzalez, M.C.; Kakazey, M.; Bykov, A.; Gonzalez Morales, I.

    2005-01-01

    This project investigated the influence of IR-laser irradiation (λ = 1064 nm, P = 240 mW) on composite ceramics SiC-chromium silicides (CrSi 2 , CrSi, Cr 5 Si 3 ) by methods of X-ray diffraction, electron microscopy, atomic force microscopy, and X-ray microanalysis. Samples were irradiated in air. It was established that a surface temperature of 1990 K was required to melt chromium silicides, evaporate silicon from SiC, oxidize chromium silicides, and enrich superficial layer by carbon and chromium oxide

  9. Fuel cycle cost comparisons with oxide and silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. The status of the development and demonstration of the oxide and silicide fuels are presented in several papers in these proceedings. Routine utilization of these fuels with the uranium densities considered here requires that they are successfully demonstrated and licensed. Thermal-hydraulic safety margins, shutdown margins, mixed cores, and transient analyses are not addressed here, but analyses of these safety issues are in progress for a limited number of the most promising design options. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data is presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed. All safety criteria for the reactor with these fuel element designs need to be satisfied as well. With LEU oxide fuel, 31 g U/cm{sup 3} 1 and 0.76 mm--thick fuel meat, elements with 18-22 plates 320-391 g {sup 235}U) result in the same or lower total costs than with the HEU element 23 plates, 280 g {sup 235}U). Higher LEU loadings (more plates per element) are needed for larger excess reactivity requirements. However, there is little cost advantage to using more than 20 of these plates per element. Increasing the fuel meat thickness from 0.76 mm to 1.0 mm with 3.1 g U/cm{sup 3} in the design with 20 plates per element could result in significant cost reductions if the

  10. Prediction of barrier inhomogeneities and carrier transport in Ni-silicided Schottky diode

    International Nuclear Information System (INIS)

    Saha, A.R.; Dimitriu, C.B.; Horsfall, A.B.; Chattopadhyay, S.; Wright, N.G.; O'Neill, A.G.; Maiti, C.K.

    2006-01-01

    Based on Quantum Mechanical (QM) carrier transport and the effects of interface states, a theoretical model has been developed to predict the anomalous current-voltage (I-V) characteristics of a non-ideal Ni-silicided Schottky diode at low temperatures. Physical parameters such as barrier height, ideality factor, series resistance and effective Richardson constant of a silicided Schottky diode were extracted from forward I-V characteristics and are subsequently used for the simulation of both forward and reverse I-V characteristics using a QM transport model in which the effects of interface state and bias dependent barrier reduction are incorporated. The present analysis indicates that the effects of barrier inhomogeneity caused by incomplete silicide formation at the junction and the interface states may change the conventional current transport process, leading to anomalous forward and reverse I-V characteristics for the Ni-silicided Schottky diode

  11. NMOS contact resistance reduction with selenium implant into NiPt silicide

    Science.gov (United States)

    Rao, K. V.; Khaja, F. A.; Ni, C. N.; Muthukrishnan, S.; Darlark, A.; Lei, J.; Peidous, I.; Brand, A.; Henry, T.; Variam, N.; Erokhin, Y.

    2012-11-01

    A 25% reduction in NMOS contact resistance (Rc) was achieved by Selenium implantation into NiPt silicide film in VIISta Trident high-current single-wafer implanter. The Trident implanter is designed for shallow high-dose implants with high beam currents to maintain high throughput (for low CoO), with improved micro-uniformity and no energy contamination. The integration of Se implant was realized using a test chip dedicated to investigating silicide/junction related electrical properties and testable after silicidation. The silicide module processes were optimized, including the pre-clean (prior to RF PVD NiPt dep) and pre- and post-implant anneals. A 270°C soak anneal was used for RTP1, whereas a msec laser anneal was employed for RTP2 with sufficient process window (800-850°C), while maintaining excellent junction characteristics without Rs degradation.

  12. Further data of silicide fuel for the LEU conversion of JMTR

    International Nuclear Information System (INIS)

    Saito, M.; Futamura, Y.; Nakata, H.; Ando, H.; Sakurai, F.; Ooka, N.; Sakakura, A.; Ugajin, M.; Shirai, E.

    1990-01-01

    Silicide fuel data for the safety assessment of the JMTR LEU fuel conversion are being measured. The data include fission product release, thermal properties, behaviour under accident conditions, and metallurgical characteristics. The methods used in the experiments are discussed. Results of fission products release at high temperature are described. The release of iodine from the silicide fuel is considerably lower than for U-Al alloy fuel

  13. Evaluation of the oxide and silicide fuels reactivity in the RSG-GAS core

    International Nuclear Information System (INIS)

    S, Tukiran; M S, Tagor; S, Lily; Pinem, S.

    2000-01-01

    Fuel exchange of The RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is, 250 gr, 2.98 gr/cm 3 , and 19.75 % respectively, will be performed in-step wise. In every cycle of exchange with 5/l mode, it is needed to evaluate the parameter of reactor core operation. One of the important operation parameters is fuel reactivity that gives effect to the core reactivity. The experiment was performed at core no. 36, BOC, low power which exist 2 silicide fuels. The evaluation was done based on the RSG-GAS control rod calibration consisting of 40 fuels and 8 control rod.s. From 40 fuels in the core, there are 2 silicide fuels, RI-225/A-9 and RI-224/C-3. For inserting 2 silicide fuels, the reactivity effect to the core must be know. To know this effect , it was performed fuels reactivity experiment, which based on control rod calibration. But in this case the RSG-GAS has no other fresh oxide fuel so that configuration of the RSG-GAS core was rearranged by taking out the both silicide fuels and this configuration is used as reference core. Then silicide fuel RI-224 was inserted to position F-3 replacing the fresh oxide fuel RI-260 so the different reactivity of the fuels is obtained. The experiment result showed that the fuel reactivity change is in amount of 12.85 cent (0.098 % ) The experiment result was compared to the calculation result, using IAFUEL code which amount to 13.49 cent (0.103 %) The result showed that the reactivity change of oxide to silicide fuel is small so that the fuel exchange from uranium oxide to uranium silicide in the first step can be done without any significant change of the operation parameter

  14. Information for irradiation and post-irradiation of the silicide fuel element prototype P-07

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Included in the 'Silicides' Project, developed by the Nuclear Fuels Department of the National Atomic Energy Commission (CNEA), it is foreseen the qualification of this type of fuel for research reactors in order to be used in the Argentine RA-3 reactor and to confirm the CNEA as an international supplier. The paper presents basic information on several parameters corresponding to the new silicide prototype, called P-07, to be taken into account for its irradiation, postirradiation and qualification. (author)

  15. Thermoelectric characteristics of Pt-silicide/silicon multi-layer structured p-type silicon

    International Nuclear Information System (INIS)

    Choi, Wonchul; Jun, Dongseok; Kim, Soojung; Shin, Mincheol; Jang, Moongyu

    2015-01-01

    Electric and thermoelectric properties of silicide/silicon multi-layer structured devices were investigated with the variation of silicide/silicon heterojunction numbers from 3 to 12 layers. For the fabrication of silicide/silicon multi-layered structure, platinum and silicon layers are repeatedly sputtered on the (100) silicon bulk substrate and rapid thermal annealing is carried out for the silicidation. The manufactured devices show ohmic current–voltage (I–V) characteristics. The Seebeck coefficient of bulk Si is evaluated as 195.8 ± 15.3 μV/K at 300 K, whereas the 12 layered silicide/silicon multi-layer structured device is evaluated as 201.8 ± 9.1 μV/K. As the temperature increases to 400 K, the Seebeck coefficient increases to 237.2 ± 4.7 μV/K and 277.0 ± 1.1 μV/K for bulk and 12 layered devices, respectively. The increase of Seebeck coefficient in multi-layered structure is mainly attributed to the electron filtering effect due to the Schottky barrier at Pt-silicide/silicon interface. At 400 K, the thermal conductivity is reduced by about half of magnitude compared to bulk in multi-layered device which shows the efficient suppression of phonon propagation by using Pt-silicide/silicon hetero-junctions. - Highlights: • Silicide/silicon multi-layer structured is proposed for thermoelectric devices. • Electric and thermoelectric properties with the number of layer are investigated. • An increase of Seebeck coefficient is mainly attributed the Schottky barrier. • Phonon propagation is suppressed with the existence of Schottky barrier. • Thermal conductivity is reduced due to the suppression of phonon propagation

  16. Kinetics of nickel silicide growth in silicon nanowires: From linear to square root growth

    International Nuclear Information System (INIS)

    Yaish, Y. E.; Beregovsky, M.; Katsman, A.; Cohen, G. M.

    2011-01-01

    The common practice for nickel silicide formation in silicon nanowires (SiNWs) relies on axial growth of silicide along the wire that is initiated from nickel reservoirs at the source and drain contacts. In the present work the silicide intrusions were studied for various parameters including wire diameter (25-50 nm), annealing time (15-120 s), annealing temperature (300-440 deg. C), and the quality of the initial Ni/Si interface. The silicide formation was investigated by high-resolution scanning electron microscopy, high-resolution transmission electron microscopy (TEM), and atomic force microscopy. The main part of the intrusion formed at 420 deg. C consists of monosilicide NiSi, as was confirmed by energy dispersive spectroscopy STEM, selected area diffraction TEM, and electrical resistance measurements of fully silicided SiNWs. The kinetics of nickel silicide axial growth in the SiNWs was analyzed in the framework of a diffusion model through constrictions. The model calculates the time dependence of the intrusion length, L, and predicts crossover from linear to square root time dependency for different wire parameters, as confirmed by the experimental data.

  17. Attempt to produce silicide fuel elements in Indonesia

    International Nuclear Information System (INIS)

    Soentono, S.; Suripto, A.

    1991-01-01

    After the successful experiment to produce U 3 Si 2 powder and U 3 Si 2 -Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using x -Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U 3 Si 2 -Al fuel elements, having similar specifications to the ones of U 3 O 8 -Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal (∝50%) and above normal burn-up. (orig.)

  18. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  19. Characterization of tungsten silicides formed by rapid thermal annealing

    International Nuclear Information System (INIS)

    Siegal, M.; Santiago, J.J.; VanDerSpiegel, J.

    1986-01-01

    Tungsten silicide samples were formed by sputter depositing 80 nm W metal onto (100) oriented, 5 ohm-cm Si wafers. After deposition, the samples were fast radiatively processed in an RTA system using quartz-halogen tungsten lamps as radiation sources for time intervals ranging from 20 to 60s under high vacuum. Films processed at 22-25 W/cm 2 radiation with the film side of the samples oriented away from the lamps result in films which are metallic or cloudy in color, and have mixed composition as evidenced by x-ray diffraction (W, W 5 Si 3 and WSi 2 ). Films processed with the film side oriented toward the lamps show the occurrence of a phase transformation clearly nucleated at the film edge

  20. Development of molecular dynamics potential for uranium silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianguo; Zhang, Yongfeng; Hales, Jason D.

    2016-09-01

    Use of uranium–silicide (U-Si) in place of uranium dioxide (UO2) is one of the promising concepts being proposed to increase the accident tolerance of nuclear fuels. This is due to a higher thermal conductivity than UO2 that results in lower centerline temperatures. U-Si also has a higher fissile density, which may enable some new cladding concepts that would otherwise require increased enrichment limits to compensate for their neutronic penalty. However, many critical material properties for U-Si have not been determined experimentally. For example, silicide compounds (U3Si2 and U3Si) are known to become amorphous under irradiation. There was clear independent experimental evidence to support a crystalline to amorphous transformation in those compounds. However, it is still not well understood how the amorphous transformation will affect on fuel behavior. It is anticipated that modeling and simulation may deliver guidance on the importance of various properties and help prioritize experimental work. In order to develop knowledge-based models for use at the engineering scale with a minimum of empirical parameters and increase the predictive capabilities of the developed model, inputs from atomistic simulations are essential. First-principles based density functional theory (DFT) calculations will provide the most reliable information. However, it is probably not possible to obtain kinetic information such as amorphization under irradiation directly from DFT simulations due to size and time limitations. Thus, a more feasible way may be to employ molecular dynamics (MD) simulation. Unfortunately, so far no MD potential is available for U-Si to discover the underlying mechanisms. Here, we will present our recent progress in developing a U-Si potential from ab initio data. This work is supported by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program funded by the U.S. Department of Energy, Office of Nuclear Energy.

  1. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  2. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    International Nuclear Information System (INIS)

    Saha, A.R.; Chattopadhyay, S.; Bose, C.; Maiti, C.K.

    2005-01-01

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region

  3. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)]. E-mail: ars.iitkgp@gmail.com; Chattopadhyay, S. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India); School of Electrical, Electronics and Computer Engineering, University of Newcastle, Newcastle upon Tyne (United Kingdom); Bose, C. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Calcutta 700032 (India); Maiti, C.K. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)

    2005-12-05

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region.

  4. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  5. Reclamation and reuse of LEU silicide fuel from manufacturing scrap

    International Nuclear Information System (INIS)

    Gale, G.R.; Pace, B.W.; Evans, R.S.

    2004-01-01

    In order to provide an understanding of the organization which is the sole supplier of United States plate type research and test reactor fuel and LEU core conversions, a brief description of the structure and history is presented. Babcock and Wilcox (B and W) is a part of McDermott International, Inc. which is a large diversified corporation employing over 20,000 people primarily in engineering and construction for the off-shore oil and power generation industries throughout the world. B and W provides many energy related products requiring precision machining and high quality systems. This is accomplished by using state-of-the-art equipment, technology and highly skilled people. The RTRFE group within B and W has the ability to produce various complexly shaped fuel elements with a wide variety of fuels and enrichments. B and W RTRFE has fabricated over 200,000 plates since 1981 and gained the diversified experience necessary to satisfy many customer requirements. This accomplishment was possible with the support of McDermott International and all of its resources. B and W has always had a commitment to high quality and integrity. This is apparent by the success and longevity (125 years) of the company. A lower cost to convert cores to LEU provides direct support to RERTR and demonstrates Babcock and Wilcox's commitment to the program. As a supporter of RERTR reactor conversion from HEU to LEU, B and W has contributed a significant amount of R and D money to improve the silicide fuel process which ultimately lowers the LEU core costs. In the most recent R and D project, B and W is constructing a LEU silicide reclamation facility to re-use the unirradiated fuel scrap generated from the production process. Remanufacturing use of this fuel completes the fuel cycle and provides a contribution to LEU cores by reducing scrap inventory and handling costs, lowering initial purchase of fuel due to increasing the process yields, and lowering the replacement costs. This

  6. Capacitance-voltage characterization of fully silicided gated MOS capacitor

    International Nuclear Information System (INIS)

    Wang Baomin; Ru Guoping; Jiang Yulong; Qu Xinping; Li Bingzong; Liu Ran

    2009-01-01

    This paper investigates the capacitance-voltage (C-V) measurement on fully silicided (FUSI) gated metal-oxide-semiconductor (MOS) capacitors and the applicability of MOS capacitor models. When the oxide leakage current of an MOS capacitor is large, two-element parallel or series model cannot be used to obtain its real C-V characteristic. A three-element model simultaneously consisting of parallel conductance and series resistance or a four-element model with further consideration of a series inductance should be used. We employed the three-element and the four-element models with the help of two-frequency technique to measure the Ni FUSI gated MOS capacitors. The results indicate that the capacitance of the MOS capacitors extracted by the three-element model still shows some frequency dispersion, while that extracted by the four-element model is close to the real capacitance, showing little frequency dispersion. The obtained capacitance can be used to calculate the dielectric thickness with quantum effect correction by NCSU C-V program. We also investigated the influence of MOS capacitor's area on the measurement accuracy. The results indicate that the decrease of capacitor area can reduce the dissipation factor and improve the measurement accuracy. As a result, the frequency dispersion of the measured capacitance is significantly reduced, and real C-V characteristic can be obtained directly by the series model. In addition, this paper investigates the quasi-static C-V measurement and the photonic high-frequency C-V measurement on Ni FUSI metal gated MOS capacitor with a thin leaky oxide. The results indicate that the large tunneling current through the gate oxide significantly perturbs the accurate measurement of the displacement current, which is essential for the quasi-static C-V measurement. On the other hand, the photonic high-frequency C-V measurement can bypass the leakage problem, and get reliable low-frequency C-V characteristic, which can be used to

  7. Microstructure and mechanical properties of metal/oxide and metal/silicide interfaces

    International Nuclear Information System (INIS)

    Shaw, L.; Miracle, D.; Abbaschian, R.

    1995-01-01

    Fracture energies of Al 2 O 3 /Nb interfaces and MoSi 2 /Nb interfaces with and without Al 2 O 3 coating were measured using sandwich-type chevron-notched specimens. The relations between the mechanical properties, microstructures, types of bonds at the interface and processing routes were explored. The fracture energy of the Al 2 O 3 /Nb interface was determined to be 9 J/m 2 and changed to 16 J/m 2 when Nb was pre-oxidized before the formation of the Al 2 O 3 /Nb interface. The fracture energy of the MoSi 2 /Nb interface could not be determined directly because of the formation of the interfacial compounds. However, the fracture energy at the MoSi 2 /Nb interfacial region was found to depend on the interfacial bond strength, roughness of interfaces and microstructure of interfacial compounds. The interfacial fracture energies of Al 2 O 3 with silicides, MoSi 2 , Nb 5 Si 3 , or (Nb, Mo)Si 2 were estimated to be about 16 J/m 2 , while the interfacial fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m 2 . The measured fracture energies between two silicides or between Nb and a silicide were larger than 34 J/m 2 . The measured fracture energies of the various interfaces are discussed in terms of the interfacial microstructures and types of bonds at the interfaces

  8. Improvement of Silicide Coating Method as Diffusion Barrier for U-Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-Mo-Ti alloy powders were coated with silicide layers. The coating process was improved when compared to the previous coating in terms of the ball milling and heat treatment conditions. Subsequently, silicide coated U-Mo-Ti powders and pure aluminum powders were mixed and made into a compact for the annealing test. The compacts were annealed at 550 .deg. C for 2hr, and characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). 1. Uniform, homogeneous, thickness controllable silicide layers were successfully coated on the surface of U-7wt%Mo-1wt%Ti powders. 2. U{sub 3}Si, U{sub 3}Si{sub 2} silicide layers formed on the surface of U-7wt%Mo-1wt%Ti powders, and were identified by XRD and EDS analyses.

  9. Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air-water mixture

    NARCIS (Netherlands)

    Kuznetsov, S.A.; Kuznetsova, S.V.; Rebrov, E.V.; Mies, M.J.M.; Croon, de M.H.J.M.; Schouten, J.C.

    2005-01-01

    The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atm. in the 850-1050 DegC temp. range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide

  10. Neutronic design of mixed oxide-silicide cores for the core conversion of rsg-gas reactor

    International Nuclear Information System (INIS)

    Sembiring, Tagor Malem; Tukiran; Pinem surian; Febrianto

    2001-01-01

    The core conversion of rsg-gas reactor from an all-oxide (U 3 O 8 -Al) core, through a series of mixed oxide-silicide core, to an all-silicide (U 3 Si 2 -Al) core for the same meat density of 2.96 g U/cc is in progress. The conversion is first step of the step-wise conversion and will be followed by the second step that is the core conversion from low meat density of silicide core, through a series of mixed lower-higher density of silicide core, to an all-higher meat density of 3.55 g/cc core. Therefore, the objectives of this work is to design the mixed cores on the neutronic performance to achieve safety a first full-silicide core for the reactor with the low uranium meat density of 2.96gU/cc. The neutronic design of the mixed cores was performed by means of Batan-EQUIL-2D and Batan-3DIFF computer codes for 2 and 3 dimension diffusion calculation, respectively. The result shows that all mixed oxide-silicide cores will be feasible to achieve safety a fist full-silicide core. The core performs the same neutronic core parameters as those of the equilibrium silicide core. Therefore, the reactor availability and utilization during the core conversion is not changed

  11. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  12. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Energy Technology Data Exchange (ETDEWEB)

    Mondon, A., E-mail: andrew.mondon@ise.fraunhofer.de [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany); Wang, D. [Karlsruhe Nano Micro Facility (KNMF), H.-von-Helmholz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Zuschlag, A. [Universität Konstanz FB Physik, Jacob-Burckhardt-Str. 27, D-78464 Konstanz (Germany); Bartsch, J.; Glatthaar, M.; Glunz, S.W. [Fraunhofer ISE, Heidenhofst. 2, D-79110 Freiburg (Germany)

    2014-12-30

    Highlights: • Adhesion of metallization of fully plated nickel–copper contacts on silicon solar cells can be achieved by formation of nickel silicide at the cost of degraded cell performance. • Understanding of silicide growth mechanisms and controlled growth may lead to high performance together with excellent adhesion. • Silicide formation is well known from CMOS production from PVD-Ni on flat surfaces. Yet the deposition methods and therefore layer characteristics and the surface topography are different for plated metallization. • TEM analysis is performed for differently processed samples. • A nickel silicide growth model is created for plated Ni on textured silicon solar cells. - Abstract: In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel–silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide

  13. Irradiation of an uranium silicide prototype in RA-3 reactor

    International Nuclear Information System (INIS)

    Calabrese, R.; Estrik, G.; Notari, C.

    1996-01-01

    The factibility of irradiation of an uranium silicide (U 3 Si 2 ) prototype in the RA-3 reactor was studied. The standard RA-3 fuel element uses U 3 O 8 as fissible material. The enrichment of both standard and prototype is the same: 20% U 235 and also the frame geometry and number of plates is identical. The differences are in the plate dimensions and the fissile content which is higher in the prototype. The cooling conditions of the core allow the insertion of the prototype in any core position, even near the water trap, if the overall power is kept below 5Mw. Nevertheless, the recommendation was to begin irradiation near the periphery and later on move the prototype towards more central positions in order to increase the burnup rate. The prototype was effectively introduced in a peripheral position and the thermal fluxes were measured between plates with the foil activation technique. These were also evaluated with the fuel management codes and a reasonable agreement was found. (author). 5 refs., 3 figs., 3 tabs

  14. Milling uranium silicide powder for dispersion nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, E.; Silva, D.G.; Souza, J.A.B.; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2009-07-01

    Full text: Uranium silicide (U3Si2) is presently considered the best fuel qualified so far in terms of uranium loading and performance. Stability of the U3Si2 fuel with uranium density of 4.8 g/cm3 was confirmed by burnup stability tests performed during the Reduced Enrichment for Research and Test Reactors (RERTR) program. This fuel was chosen to compose the first core of the new Brazilian Multipurpose Research Reactor (RMB), planned to be constructed in the next years. This new reactor will consume bigger quantities of U3Si2 powder, when compared with the small consumption of the IEA-R1 research reactor of IPEN-CNEN/SP, the unique MTR type research reactor operating in the country. At the present time, the milling operation of U3Si2 ingots is made manually. In order to increase the powder production capacity, the manual milling must be replaced by an automated procedure. This paper describes a new milling machine and procedure developed to produce U3Si2 powder with higher efficiency. (author)

  15. Mixing of Al into uranium silicides reactor fuels

    International Nuclear Information System (INIS)

    Ding, F.R.; Birtcher, R.C.; Kestel, B.J.; Baldo, P.M.

    1996-11-01

    SEM observations have shown that irradiation induced interaction of the aluminum cladding with uranium silicide reactor fuels strongly affects both fission gas and fuel swelling behaviors during fuel burn-up. The authors have used ion beam mixing, by 1.5 MeV Kr, to study this phenomena. RBS and the 27 Al(p, γ) 28 Si resonance nuclear reaction were used to measure radiation induced mixing of Al into U 3 Si and U 3 Si 2 after irradiation at 300 C. Initially U mixes into the Al layer and Al mixes into the U 3 Si. At a low dose, the Al layer is converted into UAl 4 type compound while near the interface the phase U(Al .93 Si .07 ) 3 grows. Under irradiation, Al diffuses out of the UAl 4 surface layer, and the lower density ternary, which is stable under irradiation, is the final product. Al mixing into U 3 Si 2 is slower than in U 3 Si, but after high dose irradiation the Al concentration extends much farther into the bulk. In both systems Al mixing and diffusion is controlled by phase formation and growth. The Al mixing rates into the two alloys are similar to that of Al into pure uranium where similar aluminide phases are formed

  16. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  17. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Science.gov (United States)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  18. Analysis of impurity effect on Silicide fuels of the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran-Surbakti

    2003-01-01

    Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)

  19. Self-organized patterns along sidewalls of iron silicide nanowires on Si(110) and their origin

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debolina; Mahato, J. C.; Bisi, Bhaskar; Dev, B. N., E-mail: msbnd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2014-11-10

    Iron silicide (cubic FeSi{sub 2}) nanowires have been grown on Si(110) by reactive deposition epitaxy and investigated by scanning tunneling microscopy and scanning/transmission electron microscopy. On an otherwise uniform nanowire, a semi-periodic pattern along the edges of FeSi{sub 2} nanowires has been discovered. The origin of such growth patterns has been traced to initial growth of silicide nanodots with a pyramidal Si base at the chevron-like atomic arrangement of a clean reconstructed Si(110) surface. The pyramidal base evolves into a comb-like structure along the edges of the nanowires. This causes the semi-periodic structure of the iron silicide nanowires along their edges.

  20. Evaluation Of Oxide And Silicide Mixed Fuels Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem; Suparlina, Lily

    2000-01-01

    Fuel exchange of the RSG-GAS reactor core from uranium oxide to uranium silicide in the same loading, density, and enrichment, that is 250 gr, 2.98 gr/cm 3 , and 19.75%, respectively, will be performed in-step wise. In every cycle of exchange with 5/1 mode, it is needed to evaluate the parameter of reactor core operation. The parameters of the reactor operation observed are criticality mass of fuels, reactivity balance, and fuel reactivity that give effect to the reactor operation. The evaluation was done at beginning of cycle of the first and second transition core with compared between experiment and calculation results. The experiments were performed at transition core I and II, BOC, and low power. At transition core I, there are 2 silicide fuels (RI-224 and R1-225) in the core and then, added five silicide fuels (R1-226, R1-252, R1-263, and R1-264) to the core, so that there are seven silicide fuels in the transition core II. The evaluation was done based on the experiment of criticality, control rod calibration, fuel reactivity of the RSG-GAS transition core. For inserting 2 silicide fuels in the transition core I dan 7 fuels in the transition core II, the operation of RSG-GAS core fulfilled the safety margin and the parameter of reactor operation change is not occur drastically in experiment and calculation results. So that, the reactor was operated during 36 days at 15 MW, 540 MWD at the first transition core. The general result showed that the parameter of reactor operation change is small so that the fuel exchange from uranium oxide to uranium silicide in the next step can be done

  1. A Study on Silicide Coatings as Diffusion barrier for U-7Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Kim, Sung Hwan; Lee, Kyu Hong; Jeong, Yong Jin; Kim, Ki Nam; Park, Jong Man; Lee, Chong Tak [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Gamma phase U-Mo alloys are regarded as one of the promising candidates for advanced research reactor fuel when it comes to the irradiation performance. However, it has been reported that interaction layer formation between the UMo alloys and Al matrix degrades the irradiation performance of U-Mo dispersion fuel. The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at 900 .deg. C for 1hr. U-Mo alloy powder was mixed with MoSi{sub 2}, Si and ZrSi{sub 2} powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. Silicide coated U-Mo powders and characterized using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and X-ray diffractometer (XRD). The ZrSi{sub 2} coating layers has a thickness of about 1∼ 2μm. The surface of a silicide coated particle was very rough and silicide powder attached to the surface of the coating layer. 3. The XRD analysis of the coating layers showed that, they consisted of compounds such as U3Si{sub 2}, USi{sub 2}.

  2. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U{sub 3}Si{sub 5} mixed layer while U{sub 3}Si{sub 2} acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness.

  3. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    International Nuclear Information System (INIS)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam

    2015-01-01

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U 3 Si 5 mixed layer while U 3 Si 2 acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness

  4. Formation of copper silicides by high dose metal vapor vacuum arc ion implantation

    International Nuclear Information System (INIS)

    Rong Chun; Zhang Jizhong; Li Wenzhi

    2003-01-01

    Si(1 1 1) was implanted by copper ions with different doses and copper distribution in silicon matrix was obtained. The as-implanted samples were annealed at 300 and 540 deg. C, respectively. Formation of copper silicides in as-implanted and annealed samples were studied. Thermodynamics and kinetics of the reaction were found to be different from reaction at copper-silicon interface that was applied in conventional studies of copper-silicon interaction. The defects in silicon induced by implantation and formation of copper silicides were recognized by Si(2 2 2) X-ray diffraction (XRD)

  5. The influence of alloying on the phase formation sequence of ultra-thin nickel silicide films and on the inheritance of texture

    Science.gov (United States)

    Geenen, F. A.; Solano, E.; Jordan-Sweet, J.; Lavoie, C.; Mocuta, C.; Detavernier, C.

    2018-05-01

    The controlled formation of silicide materials is an ongoing challenge to facilitate the electrical contact of Si-based transistors. Due to the ongoing miniaturisation of the transistor, the silicide is trending to ever-thinner thickness's. The corresponding increase in surface-to-volume ratio emphasises the importance of low-energetic interfaces. Intriguingly, the thickness reduction of nickel silicides results in an abrupt change in phase sequence. This paper investigates the sequence of the silicides phases and their preferential orientation with respect to the Si(001) substrate, for both "thin" (i.e., 9 nm) and "ultra-thin" (i.e., 3 nm) Ni films. Furthermore, as the addition of ternary elements is often considered in order to tailor the silicides' properties, additives of Al, Co, and Pt are also included in this study. Our results show that the first silicide formed is epitaxial θ-Ni2Si, regardless of initial thickness or alloyed composition. The transformations towards subsequent silicides are changed through the additive elements, which can be understood through solubility arguments and classical nucleation theory. The crystalline alignment of the formed silicides with the substrate significantly differs through alloying. The observed textures of sequential silicides could be linked through texture inheritance. Our study illustrates the nucleation of a new phase drive to reduce the interfacial energy at the silicide-substrate interface as well as at the interface with the silicide which is being consumed for these sub-10 nm thin films.

  6. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  7. Irradiation behavior of uranium-silicide dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Neimark, L.A.

    1984-01-01

    This paper describes and analyzes the irradiation behavior of experimental fuel plates containing U 3 Si, U 3 Si-1.5 w/o Al, and U 3 Si 2 particulate fuel dispersed and clad in aluminum. The fuel is nominally 19.9%-enriched 235 U and the fuel volume fraction in the central ''meat'' section of the plates is approximately 33%. Sets of fuel plates were removed from the Oak Ridge Research reactor at burnup levels of 35, 83, and 94% 235 U depletion and examined at the Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory. The results of the examination may be summarized as follows. The dimensional stability of the U 3 Si 2 and pure U 3 Si fuel was excellent throughout the entire burnup range, with uniform plate thickness increases up to a maximum of 4 mils at the highest burnup level (94% 235 U depletion). This corresponds to a meat volume increase of 11%. The swelling was partially due to solid fission products but to a larger extent to fission gas bubbles. The fission gas bubbles in U 3 Si 2 were small (submicrometer size) and very uniformly distributed, indicating great stability. To a large extent this was also the case for U 3 Si; however, larger bubbles ( 3 Si-1.5 w/o Al fuel became unstable at the higher burnup levels. Fission gas bubbles were larger than in the other two fuels and were present throughout the fuel particles. At 94% 235 U depletion, the formation of fission gas bubbles with diameters up to 20 mils caused the plates to pillow. It is proposed that aluminum in U 3 Si destabilizes fission gas bubble formation to the point of severe breakaway swelling in the prealloyed silicide fuel. (author)

  8. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    International Nuclear Information System (INIS)

    Matthews, Christopher; Andersson, Anders David Ragnar; Unal, Cetin

    2017-01-01

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can cause collisions in the bubble that result in gas atoms being knocked back into the grain. This so called ''re-solution'' event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.

  9. Analysis Of Core Management For The Transition Cores Of RSG-GAS Reactor To Full-Silicide Core

    International Nuclear Information System (INIS)

    Malem Sembiring, Tagor; Suparlina, Lily; Tukiran

    2001-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 g U/cc is still doing. At the end of 2000, the reactor has been operated for 3 transition cores which is the mixed core of oxide-silicide. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 10 transition cores to achieve a full-silicide core. The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters such as excess reactivity and shutdown margin. The measurement of the core parameters was carried out using the method of compensation of couple control rods. The experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safety to a full-silicide core

  10. The Accident Analysis Due to Reactivity Insertion of RSG GAS 3.55 g U/cc Silicide Core

    International Nuclear Information System (INIS)

    Endiah Puji-Hastuti; Surbakti, Tukiran

    2004-01-01

    The fuels of RSG-GAS reactor was changed from uranium oxide with 250 g U of loading or 2.96 g U/cc of fuel loading to uranium silicide with the same loading. The silicide fuels can be used in higher density, staying longer in the reactor core and hence having a longer cycle length. The silicide fuel in RSG-GAS core was made up in step-wise by using mixed up core Firstly, it was used silicide fuel with 250 g U of loading and then, silicide fuel with 300 g U of loading (3.55 g U/cc of fuel loading). In every step-wise of fuel loading, it must be analyzed its safety margin. In this occasion, the reactivity accident of RSG-GAS core with 300 g U of silicide fuel loading is analyzed. The calculation was done using EUREKA-2/RR code available at P2TRR. The calculation was done by reactivity insertion at start up and power rangers. The worst case accident is transient due to control rod with drawl failure at start up by means of lowest initial power (0.1 W), either in power range. From all cases which have been done, the results of analysis showed that there is no anomaly and safety margin break at RSG-GAS core with 300 g U silicide fuel loading. (author)

  11. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si{sub 1-x}C{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Ho; Chang, Hyun-Jin [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Min, Byoung-Gi [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of); Ko, Dae-Hong [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)], E-mail: dhko@yonsei.ac.kr; Cho, Mann-Ho [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Sohn, Hyunchul [Department of Ceramic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Tae-Wan [Jusung Engineering Co., Ltd., 49, Neungpyeong-ri, Opo-eup, Gwangju-Si, Kyunggi-do 464-892 (Korea, Republic of)

    2008-12-05

    We investigated the silicide formation in Ni/epi-Si{sub 1-x}C{sub x} systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si{sub 1-x}C{sub x}/Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si{sub 1-x}C{sub x} systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si{sub 1-x}C{sub x} system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films.

  12. Thermal stability of Ni-Pt-Ta alloy silicides on epi-Si1-xCx

    International Nuclear Information System (INIS)

    Yoo, Jung-Ho; Chang, Hyun-Jin; Min, Byoung-Gi; Ko, Dae-Hong; Cho, Mann-Ho; Sohn, Hyunchul; Lee, Tae-Wan

    2008-01-01

    We investigated the silicide formation in Ni/epi-Si 1-x C x systems. Ni-Pt and Ni-Pt-Ta films were deposited on epi-Si 1-x C x /Si substrates by DC magnetron sputtering and processed at various temperatures. The sheet resistance of the silicide from the Ni alloy/epi-Si 1-x C x systems was maintained at low values compared to that from Ni/Si systems. By TEM and EDS analyses, we confirmed the presence of a Pt alloy layer at the top of the Ni-silicide layer. The stability of the silicide layer in the Ni alloy/epi-Si 1-x C x system is explained by not only the Pt rich layer on the top of the Ni-silicide layer, but also by the presence of a small amount of Pt in the Ni-silicide layer or at the grain boundaries. And both the thermal stability and the morphology of silicide were greatly improved by the addition of Ta in Ni-Pt films

  13. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  14. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R; Hanna, Amir N; Kutbee, Arwa T; Gumus, Abdurrahman; Hussain, Muhammad Mustafa

    2018-01-01

    the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2

  15. Pilot plant production at Riso of LEU silicide fuel for the Danish reactor DR3

    International Nuclear Information System (INIS)

    Toft, P.; Borring, J.; Adolph, E.

    1988-01-01

    A pilot plant for fabricating LEU silicide fuel elements has been established at Riso National Laboratory. Three test elements for the Danish reactor DR3 have been fabricated, based on 19.88% enriched U 3 Si 2 powder that has been purchased elsewhere. The pilot plant has been set up and 3 test elements fabricated without any major difficulties

  16. Role of Ti 3 Al/silicides on tensile properties of Timetal 834 at ...

    Indian Academy of Sciences (India)

    Extremely fine coherent precipitates of ordered Ti3Al and relatively coarse incoherent precipitates of 2 silicide exist together in the near -titanium alloy, Timetal 834, in the dual phase matrix of primary and transformed . In order to assess the role of these precipitates, three heat treatments viz. WQ, WQ–A and WQ–OA, ...

  17. Core-hole effects in the x-ray-absorption spectra of transition-metal silicides

    NARCIS (Netherlands)

    WEIJS, PJW; CZYZYK, MT; VANACKER, JF; SPEIER, W; GOEDKOOP, JB; VANLEUKEN, H; HENDRIX, HJM; DEGROOT, RA; VANDERLAAN, G; BUSCHOW, KHJ; WIECH, G; FUGGLE, JC

    1990-01-01

    We report systematic differences between the shape of the Si K x-ray-absorption spectra of transition-metal silicides and broadened partial densities of Si p states. We use a variety of calculations to show that the origin of these discrepancies is the core-hole potential appropriate to the final

  18. Cross-Bridge Kelvin Resistor (CBKR) structures for silicide-semiconductor junctions characterization

    NARCIS (Netherlands)

    Stavitski, N.; van Dal, M.J.H.; Klootwijk, J.H.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2006-01-01

    Analyzing the contact geometry factors for the conventional CBKR structures, it appeared that the contact geometries conventionally used for the metal-to-silicide contact resistance measurements were not always satisfactory to reveal the specific contact resistance values. To investigate these

  19. X-ray-emission studies of chemical bonding in transition-metal silicides

    NARCIS (Netherlands)

    Weijs, P.J.W.; Leuken, H. van; Groot, R.A. de; Fuggle, J.C.; Reiter, S.; Wiech, G.; Buschow, K.H.J.

    1991-01-01

    We present Si L2,3 emission-band spectra of a series of 3d and 4d transition-metal (TM) silicides, together wtih Si K emission-band spectra of four 3d TM disilicides. The data are compared with augmented-spherical-wave density-of-states (DOS) calculations, and good agreement is found. The trends we

  20. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  1. Waste Photovoltaic Panels for Ultrapure Silicon and Hydrogen through the Low-Temperature Magnesium Silicide.

    Czech Academy of Sciences Publication Activity Database

    Dytrych, Pavel; Bumba, Jakub; Kaštánek, František; Fajgar, Radek; Koštejn, Martin; Šolcová, Olga

    Roč. 56, č. 45 ( 2017 ), s. 12863-12869 ISSN 0888-5885 R&D Projects: GA ČR GA15-14228S Institutional support: RVO:67985858 Keywords : magnesium silicide * waste photovoltaic panels * ultrapure silicon Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.843, year: 2016

  2. High pressure studies on uranium and thorium silicide compounds: Experiment and theory

    DEFF Research Database (Denmark)

    Yagoubi, S.; Heathman, S.; Svane, A.

    2013-01-01

    The actinide silicides ThSi, USi and USi2 have been studied under high pressure using both theory and experiment. High pressure synchrotron X-ray diffraction experiments were performed on polycrystalline samples in diamond anvil cells at room temperature and for pressures up to 54, 52 and 26 GPa...

  3. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Lützenkirchen-Hecht, D. [Fachbereich C - Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Hübner, R.; Grenzer, J.; Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  4. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  5. Electron spectroscopy in the X-ray range for occupied and free levels and the application to transition metal silicides

    International Nuclear Information System (INIS)

    Speier, W.

    1988-03-01

    Intermetallic compounds of transition metals are investigated by means of XPS, Bremsstrahlung Isochromate Spectroscopy and XAS. Occupied and free levels are characterized and moreover a systematic overview over the electronic structure of the transition element silicides is given. (BHO)

  6. Evaluation of In-Core Fuel Management for the Transition Cores of RSG-GAS Reactor to Full-Silicide Core

    International Nuclear Information System (INIS)

    S, Tukiran; MS, Tagor; P, Surian

    2003-01-01

    The core conversion of RSG-GAS reactor from oxide to silicide core with meat density of 2.96 gU/cc has been done. The core-of RSG-GAS reactor has been operated full core of silicide fuels which is started with the mixed core of oxide-silicide start from core 36. Based on previous work, the calculated core parameter for the cores were obtained and it is needed 9 transition cores (core 36 - 44) to achieve a full-silicide core (core 45). The objective of this work is to acquire the effect of the increment of the number of silicide fuel on the core parameters. Conversion core was achieved by transition cores mixed oxide-silicide fuels. Each transition core is calculated and measured core parameter such as, excess reactivity and shutdown margin. Calculation done by Batan-EQUIL-2D code and measurement of the core parameters was carried out using the method of compensation of couple control rods. The results of calculation and experiment shows that the excess reactivity trends lower with the increment of the number of silicide fuel in the core. However, the shutdown margin is not change with the increment of the number of silicide fuel. Therefore, the transition cores can be operated safely to a full-silicide core

  7. Reactivity And Neutron Flux At Silicide Fuel Element In The Core Of RSG-GAS

    International Nuclear Information System (INIS)

    Hamzah, Amir

    2000-01-01

    In order to 4.8 and 5.2 gr U/cm exp 3 loading of U 3 Si 2 --Al fuel plates characterization, he core reactivity change and neutron flux depression had been done. Control rod calibration method was used to reactivity change measurement and neutron flux distribution was measured using foil activation method. Measurement of insertion of A-type of testing fuel element with U-loading above cannot be done due to technical reason, so the measurement using full type silicide fuel element of 2.96 gr U/cm exp 3 loading. The reactivity change measurement result of insertion in A-9 and C-3 is + 2.67 cent. The flux depression at silicide fuel in A-9 is 1.69 times bigger than oxide and in C-3 is 0.68 times lower than oxide

  8. Babcock and Wilcox plate fabrication experience with uranium silicide spherical fuel

    International Nuclear Information System (INIS)

    Todd, Lawrence E.; Pace, Brett W.

    1996-01-01

    This report is written to present the fuel fabrication experience of Babcock and Wilcox using atomized spherical uranium silicide powder. The intent is to demonstrate the ability to fabricate fuel plates using spherical powder and to provide useful information proceeding into the next phase of work using this type of fuel. The limited quantity of resources- spherical powder and time, did not allow for much process optimizing in this work scope. However, the information contained within provides optimism for the future of spherical uranium silicide fuel plate fabrication at Babcock and Wilcox.The success of assembling fuel elements with spherical powder will enable Babcock and Wilcox to reduce overall costs to its customers while still maintaining our reputation for providing high quality research and test reactor products. (author)

  9. The formation of magnetic silicide Fe{sub 3}Si clusters during ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, N. [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Zhikharev, V., E-mail: valzhik@mail.ru [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Gumarov, G. [Zavoiskii Physico-Technical Institute of Russian Academy of Sciences, 10/7 Sibirskii trakt st., Kazan 420029 (Russian Federation)

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe{sub 3}Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  10. The formation of magnetic silicide Fe3Si clusters during ion implantation

    Science.gov (United States)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  11. RA-3 reactor core with uranium silicide fuel elements P-07 type

    International Nuclear Information System (INIS)

    Abbate, Maximo J.; Sbaffoni, Maria M.

    2003-01-01

    Following the studies on the utilization of fuel elements (FE) containing uranium silicide, core of the RA-3 was analyzed with several calculation models. At first, the present situation, i.e. the core charged with normal FE (U 3 O 8 ), has been analyzed to validate the simulation methodology comparing with experimental results and to establish reference data to 5 and 10 MW able to be compared with future new situations. Also, CITVAP's nuclear data libraries to be used in irradiation experiment planning were completed. The results were satisfactory and were applied to the study of the core containing P-07 FE [U 3 Si 2 ], in face of a future core change. Comparing with the performance of the U 3 O 8 FE, the silicides ones show the following advantages: - average burnup: 45 % greater; -extraction burnup increase 12 %; and, -the residence time [in full power days] could be a 117 % greater. (author)

  12. The formation of magnetic silicide Fe3Si clusters during ion implantation

    International Nuclear Information System (INIS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-01-01

    A simple two-dimensional model of the formation of magnetic silicide Fe 3 Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field

  13. A long-term ultrahigh temperature application of layered silicide coated Nb alloy in air

    Science.gov (United States)

    Sun, Jia; Fu, Qian-Gang; Li, Tao; Wang, Chen; Huo, Cai-Xia; Zhou, Hong; Yang, Guan-Jun; Sun, Le

    2018-05-01

    Nb-based alloy possessed limited application service life at ultrahigh temperature (>1400 °C) in air even taking the effective protective coating strategy into consideration for last decades. In this work a long duration of above 128 h at 1500 °C in air was successfully achieved on Nb-based alloy thanked to multi-layered silicide coating. Through optimizing interfaces, the MoSi2/NbSi2 silicide coating with Al2O3-adsorbed-particles layer exhibited three-times higher of oxidation resistance capacity than the one without it. In MoSi2-Al2O3-NbSi2 multilayer coating, the Al2O3-adsorbed-particles layer playing as an element-diffusion barrier role, as well as the formed porous Nb5Si3 layer as a stress transition zone, contributed to the significant improvement.

  14. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    International Nuclear Information System (INIS)

    Galkin, N.G.; Galkin, K.N.; Dotsenko, S.A.; Goroshko, D.L.; Shevlyagin, A.V.; Chusovitin, E.A.; Chernev, I.M.

    2017-01-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  15. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  16. Optical anisotropy of quasi-1D rare-earth silicide nanostructures on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, S., E-mail: sandhya.chandola@isas.de [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Speiser, E.; Esser, N. [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Appelfeller, S.; Franz, M.; Dähne, M. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2017-03-31

    Highlights: • Reflectance anisotropy spectroscopy (RAS) is capable of distinguishing optically between the semiconducting wetting layer and the metallic nanowires of rare earth (Tb and Dy) silicide nanostructures grown on vicinal Si(001). • The spectra of the wetting layer show a distinctive line shape with a large peak appearing at 3.8 eV, which is assigned to the formation of 2 × 3 and 2 × 4-like subunits of the 2 × 7 reconstruction. The spectra of the metallic nanowires show peaks at the E{sub 1} and E{sub 2} transitions of bulk Si which is assigned to strong substrate strain induced by the nanowires. • The optical anisotropy of the Tb nanowires is larger than for the Dy nanowires, which is related to the preferential formation of more strained bundles as well as larger areas of clean Si surfaces in the case of Tb. • RAS is shown to be a powerful addition to surface science techniques for studying the formation of rare-earth silicide nanostructures. Its surface sensitivity and rapidity of response make it an ideal complement to the slower but higher resolution of scanning probes of STM and AFM. - Abstract: Rare earth metals are known to interact strongly with Si(001) surfaces to form different types of silicide nanostructures. Using STM to structurally characterize Dy and Tb silicide nanostructures on vicinal Si(001), it will be shown that reflectance anisotropy spectroscopy (RAS) can be used as an optical fingerprint technique to clearly distinguish between the formation of a semiconducting two-dimensional wetting layer and the metallic one-dimensional nanowires. Moreover, the distinctive spectral features can be related to structural units of the nanostructures. RAS spectra of Tb and Dy nanostructures are found to show similar features.

  17. Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

    International Nuclear Information System (INIS)

    Ball, G.; Pond, R.; Hanan, N.; Matos, J.

    1995-01-01

    This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions

  18. Techno-economic study on conversion of SAFARI-1 to LEU silicide fuel

    International Nuclear Information System (INIS)

    Ball, G.; Malherbe, F.J.

    2004-01-01

    This paper marks the conclusion of the techno-economic study into the conversion of SAFARI-1 reactor in South Africa to LEU silicide fuel. Several different fuel types were studied and their characteristics compared to the current HEU fuel. The technical feasibility of operating SAFARI-1 with the different fuels as well as the overall economic impact of the fuels is discussed and conclusions drawn.(author)

  19. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing

    International Nuclear Information System (INIS)

    Cheroux, L.

    2001-01-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  20. Formation of (Nd,Y)-silicides by sequential channeled implantation of Y and Nd ions

    International Nuclear Information System (INIS)

    Jin, S.; Bender, H.; Wu, M.F.; Vantomme, A.; Langouche, G.

    2000-01-01

    A buried hexagonal Nd 0.32 Y 0.68 Si 1.7 layer is formed by a sequential implantation of Y and Nd ions into (1 1 1)-oriented silicon wafers. The orientation relationship between the epitaxial Nd 0.32 Y 0.68 Si 1.7 and the silicon is (0 0 0 1) Nd 0.32 Y 0.68 Si 1.7 //(1 1 1) Si with Nd 0.32 Y 0.68 Si 1.7 // Si . High temperature annealing (1000 deg. C) results in a gradual transition into an orthorhombic ternary (Nd,Y)-silicide. Between the orthorhombic (Nd,Y)-silicide and the Si a preferential orientation relationship exists: (1 1 0) orth //(1 1(bar) 0) Si with orth // Si . However, as not all orthorhombic silicide grains follow this epitaxial relationship, the minimum yield in the Rutherford backscattering spectrometry (RBS) spectrum increases compared to the results after a low temperature annealing

  1. Formation of (Nd,Y)-silicides by sequential channeled implantation of Y and Nd ions

    Science.gov (United States)

    Jin, S.; Bender, H.; Wu, M. F.; Vantomme, A.; Langouche, G.

    2000-03-01

    A buried hexagonal Nd0.32Y0.68Si1.7 layer is formed by a sequential implantation of Y and Nd ions into (1 1 1)-oriented silicon wafers. The orientation relationship between the epitaxial Nd0.32Y0.68Si1.7 and the silicon is (0 0 0 1)Nd0.32Y0.68Si1.7//(1 1 1)Si with Nd0.32Y0.68Si1.7//Si. High temperature annealing (1000°C) results in a gradual transition into an orthorhombic ternary (Nd,Y)-silicide. Between the orthorhombic (Nd,Y)-silicide and the Si a preferential orientation relationship exists: (1 1 0)orth//(1 1¯ 0)Si with orth//Si. However, as not all orthorhombic silicide grains follow this epitaxial relationship, the minimum yield in the Rutherford backscattering spectrometry (RBS) spectrum increases compared to the results after a low temperature annealing.

  2. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  3. Multi-layered silicides coating for vanadium alloys for generation IV reactors

    International Nuclear Information System (INIS)

    Mathieu, S.; Chaia, N.; Vilasi, M.; Le Flem, M.

    2012-01-01

    The halide-activated pack-cementation technique was employed to fabricate a diffusion coating that is resistant both to isothermal and to cyclic oxidation in air at 650 degrees C on the surface of the V-4Cr-4Ti vanadium alloy that is a potential core component of future nuclear systems. A thermodynamic assessment determined the deposit conditions in terms of master alloy, activator, filler and temperature. The partial pressures of the main gaseous species (SiCl 4 , SiCl 2 and VCl 2 ) in the pack were calculated with the master alloy Si and the mixture VSi 2 + Si. The VSi 2 + Si master alloy was used to limit vanadium loss from the surface. The obtained coating consisted of multi-layered V x Si y silicides with an outer layer of VSi 2 . This silicide developed a protective layer of silica at 650 degrees C in air and was not susceptible to the pest phenomenon, unlike other refractory silicides (MoSi 2 , NbSi 2 ). We suggest that VSi 2 exhibits no risk of rapid degradation in the gas fast reactor (GFR) conditions. (authors)

  4. Safeguarding subcriticality during loading and shuffling operations in the higher density of the RSG-GAS's silicide core

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2003-01-01

    The core conversion program of the RSG-GAS reactor is to convert the all-oxide to all-silicide core. The silicide equilibrium core with fuel meat density of 3.55 gU cm -3 is an optimal core for RSG-GAS reactor and it can significantly increase the operation cycle length from 25 to 32 full power days. Nevertheless, the subcriticality of the shutdown core and the shutdown margin are lower than of the oxide core. Therefore, the deviation of subcriticality condition in the higher silicide core caused by the fuel loading and shuffling error should be reanalysed. The objective of this work is to analyse the sufficiency of the subcriticality condition of the shutdown core to face the worst condition caused by an error during loading and shuffling operations. The calculations were carried out using the 2-dimensional multigroup neutron diffusion code of Batan-FUEL. In the fuel handling error, the calculated results showed that the subcriticality condition of the shutdown higher density silicide equilibrium core of RSG-GAS can be maintained. Therefore, all fuel management steps are fixed in the present reactor operation manual can be applied in the higher silicide equilibrium core of RSG-GAS reactor. (author)

  5. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    International Nuclear Information System (INIS)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O'Neill, Anthony; Horsfall, Alton; Goss, Jonathan; Cumpson, Peter

    2013-01-01

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  6. Post-pulse detail metallographic examinations of low-enriched uranium silicide plate-type miniature fuel

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1991-10-01

    Pulse irradiation at Nuclear Safety Research Reactor (NSRR) was performed using low-enriched (19.89 w% 235 U) unirradiated silicide plate-type miniature fuel which had a density of 4.8 gU/cm 3 . Experimental aims are to understand the dimensional stability and to clarify the failure threshold of the silicide plate-type miniature fuel under power transient conditions through post-pulse detail metallographic examinations. A silicide plate-type miniature fuel was loaded into an irradiation capsule and irradiated by a single pulse. Deposited energies given in the experiments were 62, 77, 116 and 154 cal/g·fuel, which lead to corresponding peak fuel plate temperatures, 201 ± 28degC, 187 ± 10degC, 418 ± 74degC and 871 ± 74degC, respectively. Below 400degC, reliability and dimensional stability of the silicide plate fuel was sustained, and the silicide plate fuel was intact. Up to 540degC, wall-through intergranular crackings occurred in the Al-3%Mg alloy cladding. With the increase of the temperature, the melting of the aluminum cladding followed by recrystallization, the denudation of fuel core and the plate-through intergranular cracking were observed. With the increase of the temperature beyond 400degC, the bowing of fuel plate became significant. Above the temperature of 640degC molten aluminum partially reacted with the fuel core, partially flowed downward under the influence of surface tension and gravity, and partially formed agglomerations. Judging from these experimental observations, the fuel-plate above 400degC tends to reduce its dimensional stability. Despite of the apparent silicide fuel-plate failure, neither generation of pressure pulse nor that of mechanical energy occurred at all. (J.P.N.)

  7. Quantitative EPMA of Nano-Phase Iron-Silicides in Apollo 16 Lunar Regolith

    Science.gov (United States)

    Gopon, P.; Fournelle, J.; Valley, J. W.; Pinard, P. T.; Sobol, P.; Horn, W.; Spicuzza, M.; Llovet, X.; Richter, S.

    2013-12-01

    Until recently, quantitative EPMA of phases under a few microns in size has been extremely difficult. In order to achieve analytical volumes to analyze sub-micron features, accelerating voltages between 5 and 8 keV need to be used. At these voltages the normally used K X-ray transitions (of higher Z elements) are no longer excited, and we must rely of outer shell transitions (L and M). These outer shell transitions are difficult to use for quantitative EPMA because they are strongly affected by different bonding environments, the error associated with their mass attenuation coefficients (MAC), and their proximity to absorption edges. These problems are especially prevalent for the transition metals, because of the unfilled M5 electron shell where the Lα transition originates. Previous studies have tried to overcome these limitations by using standards that almost exactly matched their unknowns. This, however, is cumbersome and requires accurate knowledge of the composition of your sample beforehand, as well as an exorbitant number of well characterized standards. Using a 5 keV electron beam and utilizing non-standard X-ray transitions (Ll) for the transition metals, we are able to conduct accurate quantitative analyses of phases down to ~300nm. The Ll transition in the transition metals behaves more like a core-state transition, and unlike the Lα/β lines, is unaffected by bonding effects and does not lie near an absorption edge. This allows for quantitative analysis using standards do not have to exactly match the unknown. In our case pure metal standards were used for all elements except phosphorus. We present here data on iron-silicides in two Apollo 16 regolith grains. These plagioclase grains (A6-7 and A6-8) were collected between North and South Ray Craters, in the lunar highlands, and thus are associated with one or more large impact events. We report the presence of carbon, nickel, and phosphorus (in order of abundance) in these iron-silicide phases

  8. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    International Nuclear Information System (INIS)

    Sears, D.F.; Wood, J.C.; Berthiaume, L.C.; Herbert, L.N.; Schaefer, J.D.

    1985-01-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released 85 Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary 85 Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  9. Silicon-germanium and platinum silicide nanostructures for silicon based photonics

    Science.gov (United States)

    Storozhevykh, M. S.; Dubkov, V. P.; Arapkina, L. V.; Chizh, K. V.; Mironov, S. A.; Chapnin, V. A.; Yuryev, V. A.

    2017-05-01

    This paper reports a study of two types of silicon based nanostructures prospective for applications in photonics. The first ones are Ge/Si(001) structures forming at room temperature and reconstructing after annealing at 600°C. Germanium, being deposited from a molecular beam at room temperature on the Si(001) surface, forms a thin granular film composed of Ge particles with sizes of a few nanometers. A characteristic feature of these films is that they demonstrate signs of the 2 x 1 structure in their RHEED patterns. After short-term annealing at 600°C under the closed system conditions, the granular films reconstruct to heterostructures consisting of a Ge wetting layer and oval clusters of Ge. A mixed type c(4x2) + p(2x2) reconstruction typical to the low-temperature MBE (Tgr Ge. The other type of the studied nanostructures is based on Pt silicides. This class of materials is one of the friendliest to silicon technology. But as silicide film thickness reaches a few nanometers, low resistivity becomes of primary importance. Pt3Si has the lowest sheet resistance among the Pt silicides. However, the development of a process of thin Pt3Si films formation is a challenging task. This paper describes formation of a thin Pt3Si/Pt2Si structures at room temperature on poly-Si films. Special attention is paid upon formation of poly-Si and amorphous Si films on Si3N4 substrates at low temperatures.

  10. The fabrication and performance of Canadian silicide dispersion fuel for test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D F; Wood, J C; Berthiaume, L C; Herbert, L N; Schaefer, J D

    1985-07-01

    Fuel fabrication effort is now concentrated on the commissioning of large-scale process equipment, defining product specifications, developing a quality assurance plan, and setting up a mini-computer material accountancy system. In the irradiation testing program, full-size NRU assemblies containing 20% enriched silicide dispersion fuel have been Irradiated successfully to burnups in the range 65-80 atomic percent. Irradiations have also been conducted on mini-elements having 1.2 mm diameter holes In their mid-sections, some drilled before irradiation and others after irradiation to 22-83 atomic percent burnup. Uranium was lost to the coolant in direct proportion to the surface area of exposed core material. Pre-irradiation in the intact condition appeared to reduce in-reactor corrosion. Fuel cores developed for the NRU reactor are dimensionally very stable, swelling by only 6-8% at the very high burnup of 93 atomic percent. Two important factors contributing to this good performance are cylindrical clad restraint and coarse silicide particles. Thermal ramping tests were conducted on irradiated silicide aspersion fuels. Small segments of fuel cores released {sup 85}Kr starting at about 520 deg. C and peaking at about 680 deg C. After a holding period of 1 hour at 720 deg. C a secondary {sup 85}Kr peak occurred during cooling (at about 330 deg. C) probably due to thermal contraction cracking. Whole mini-elements irradiated to 93 atomic percent burnup were also ramped thermally, with encouraging results. After about 0.25 h at 530 deg. C the aluminum cladding developed very localized small blisters, some with penetrating pin-hole cracks preventing gross pillowing or ballooning. (author)

  11. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    International Nuclear Information System (INIS)

    Singh, S.; Solak, H.; Cerrina, F.

    1997-01-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi 2 exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 μΩ-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 μΩ-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick open-quotes as isclose quotes industrial samples

  12. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Solak, H.; Cerrina, F. [Univ. of Wisconsin-Madison, Stoughton, WI (United States)] [and others

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  13. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    International Nuclear Information System (INIS)

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  14. The series production in a standardized fabrication line for silicide fuels and commercial aspects

    International Nuclear Information System (INIS)

    Wehner, E.L.; Hassel, H.W.

    1987-01-01

    NUKEM has been responsible for the development and fabrication of LEU fuel elements for MTR reactors under the frame of the German AF program since 1979. The AF program is part of the international RERTR efforts, which were initiated by the INFCE Group in 1978. This paper describes the actual status of development and the transition from the prototype to the series production in a standardized manufacturing line for silicide fuels at NUKEM. Technical provisions and a customer oriented standardized product range aim at an economized manufacturing. (Author)

  15. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.; Gumus, A.; Kutbee, A. T.; Wehbe, N.; Ahmed, S. M.; Ghoneim, M. T.; Lee, K. -T.; Rogers, J. A.; Hussain, M. M.

    2016-01-01

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  16. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  17. Estimations on uranium silicide fuel prototypes for their irradiation and postirradiation

    International Nuclear Information System (INIS)

    Sbaffoni, Maria M.

    2000-01-01

    The 'Silicide' project includes the qualification of this type of research reactor fuel to be used i.e. in the Argentine RA-3 and to confirm CNEA's role as an international supplier. The present paper shows complementary basic information for P-04 prototype post-irradiation, which is already under way, and some parameter values related to the new P-06 prototype to be taken into account for planning its irradiation and post-irradiation. The reliability of these values has been evaluated through comparison with experimental results. The reported results contribute, also, to a parallel study on the nuclear data libraries used in calculations for this type of reactor. (author)

  18. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  19. Effect of Utilization of Silicide Fuel with the Density 4.8 gU/cc on the Kinetic Parameters of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Setiyanto; Sembiring, Tagor M.; Pinem, Surian

    2007-01-01

    Presently, the RSG-GAS reactor using silicide fuel element of 2.96 gU/cc. For increasing reactor operation time, its planning to change to higher density fuel. The kinetic calculation of silicide core with density 4.8 gU/cc has been carried out, since it has an influence on the reactor operation safety. The calculated kinetic parameters are the effective delayed neutron fraction, the delayed neutron decay constant, prompt neutron lifetime and feedback reactivity coefficient very important for reactor operation safety. the calculation is performed in 2-dimensional neutron diffusion-perturbation method using modified Batan-2DIFF code. The calculation showed that the effective delayed neutron fraction is 7. 03256x10 -03 , total delay neutron time constant is 7.85820x10 -02 s -1 and the prompt neutron lifetime is 55.4900 μs. The result of prompt neutron lifetime smaller 10 % compare with silicide fuel of 4.8 gU/cc. The calculated results showed that all of the feedback reactivity coefficient silicide core 4.8 gU/cc is negative. Totally, the feedback reactivity coefficient of silicide fuel of 4.8 gU/cc is 10% less than that of silicide fuel of 2.96 gU/cc. The results shown that kinetic parameters result decrease compared with the silicide core with density 2.96 gU/cc, but no significant influence in the RSG-GAS reactor operation. (author)

  20. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  1. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  2. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (<1 μm) in the fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  3. Prospect of Uranium Silicide fuel element with hypostoichiometric (Si ≤3.7%)

    International Nuclear Information System (INIS)

    Suripto, A.; Sardjono; Martoyo

    1996-01-01

    An attempt to obtain high uranium-loading in silicide dispersion fuel element using the fabrication technology applicable nowadays can reach Uranium-loading slightly above 5 gU/cm 3 . It is difficult to achieve a higher uranium-loading than that because of fabricability constraints. To overcome those difficulties, the use of uranium silicide U 3 Si based is considered. The excess of U is obtained by synthesising U 3 Si 2 in Si-hypostoichiometric stage, without applying heat treatment to the ingot as it can generate undesired U 3 Si. The U U will react with the matrix to form U al x compound, that its pressure is tolerable. This experiment is to consider possibilities of employing the U 3 Si 2 as nuclear fuel element which have been performed by synthesising U 3 Si 2 -U with the composition of 3.7 % weigh and 3 % weigh U. The ingot was obtained and converted into powder form which then was fabricated into experimental plate nuclear fuel element. The interaction between free U and Al-matrix during heat-treatment is the rolling phase of the fuel element was observed. The study of the next phase will be conducted later

  4. CEMS Investigations of Fe-Silicide Phases Formed by the Method of Concentration Controlled Phase Selection

    Energy Technology Data Exchange (ETDEWEB)

    Moodley, M. K.; Bharuth-Ram, K. [University of Durban-Westville, Physics Department (South Africa); Waal, H. de; Pretorius, R. [University of Stellenbosch, Physics Department (South Africa)

    2002-03-15

    Conversion electron Moessbauer spectroscopy (CEMS) measurements have been made on Fe-silicide samples formed using the method of concentration controlled phase selection. To prepare the samples a 10 nm layer of Fe{sub 30}M{sub 70} (M=Cr, Ni) was evaporated onto Si(100) surfaces, followed by evaporation of a 60 nm Fe layer. Diffusion of the Fe into the Si substrate and the formation of different Fe-Si phases was achieved by subjecting the evaporated samples to a series of heating stages, which consisted of (a) a 10 min anneal at 800 deg. C plus etch of the residual surface layer, (b) a further 3 hr anneal at 800 deg. C, (c) a 60 mJ excimer laser anneal to an energy density of 0.8 J/cm{sup 2}, and (d) a final 3 hr anneal at 800 deg. C. CEMS measurements were used to track the Fe-silicide phases formed. The CEMS spectra consisted of doublets which, based on established hyperfine parameters, could be assigned to {alpha}- or {beta}-FeSi{sub 2} or cubic FeSi. The spectra showed that {beta}-FeSi{sub 2} had formed already at the first annealing stage. Excimer laser annealing resulted in the formation of a phase with hyperfine parameters consistent with those of {alpha}-FeSi{sub 2}. A further 3 hr anneal at 800 deg. C resulted in complete reversal to the semiconducting {beta}-FeSi{sub 2} phase.

  5. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, C.; Zhang, K. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Brüsewitz, C.; Vetter, U. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4001 (South Africa)

    2015-12-01

    Highlights: • We study the formation of self-organized nanoscale dot and ripple patterns on Si. • Patterns are created by keV noble gas ion irradiation and simultaneous {sup 57}Fe co-deposition. • Ion-induced phase separation and the formation of a-FeSi{sub 2} is identified as relevant process. - Abstract: The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  6. Impact of Nickel silicide Rear Metallization on Series Resistance of Crystalline Silicon Solar Cells

    KAUST Repository

    Bahabry, Rabab R

    2018-01-11

    The Silicon-based solar cell is one of the most important enablers toward high efficiency and low-cost clean energy resource. Metallization of silicon-based solar cells typically utilizes screen printed silver-Aluminium (Ag-Al) which affects the optimal electrical performance. To date, metal silicide-based ohmic contacts are occasionally used as an alternative candidate only to the front contact grid lines in crystalline silicon (c-Si) based solar cells. In this paper, we investigate the electrical characteristics of nickel mono-silicide (NiSi)/Cu-Al ohmic contact on the rear side of c-Si solar cells. We observe a significant enhancement in the fill factor of around 6.5% for NiSi/Cu-Al rear contacts leading to increasing the efficiency by 1.2% compared to Ag-Al. This is attributed to the improvement of the parasitic resistance in which the series resistance decreased by 0.737 Ω.cm². Further, we complement experimental observation with a simulation of different contact resistance values, which manifests NiSi/Cu-Al rear contact as a promising low-cost metallization for c-Si solar cells with enhanced efficiency.

  7. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  8. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  9. Influence of iron and beryllium additions on heat resistance of silicide coatings on TsMB-30 molybdenum alloy

    International Nuclear Information System (INIS)

    Zajtseva, A.L.; Fedorchuk, N.M.; Lazarev, Eh.M.; Korotkov, N.A.

    1985-01-01

    Alloying of titanium modified silicide coatings on TsMB-30 molybdenum alloy with iron or beryllium is stated to improve their protective properties. Coatings with low content of alloying elements have the best protective properties. Service life of coatings is determined by the formed oxide film and phase transformations taking place in the coating

  10. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  11. Towards the improvement of the oxidation resistance of Nb-silicides in situ composites: A solid state diffusion approach

    International Nuclear Information System (INIS)

    Mathieu, S.; Knittel, S.; François, M.; Portebois, L.; Mathieu, S.; Vilasi, M.

    2014-01-01

    Highlights: •Local equilibrium is attained during oxidation at phase boundaries (steady state conditions). •A solid state diffusion model explains the oxidation mechanism of Nb-silicides composites. •The Nb ss fraction is not the only parameters governing the oxidation rate of Nb-silicides. •Aluminium increases the thermodynamic activity of Si in the Nb-silicides composites. •The results indicate the need to develop a Nb–Ti–Hf–Al–Cr–Si thermodynamic database. -- Abstract: The present study focuses on the oxidation mechanism of Nb-silicide composites and on the effect of the composition on the oxidation rate at 1100 °C. A theoretical approach is proposed based on experimental results and used to optimise the oxidation resistance. The growth model based on multiphase diffusion was experimentally tested and confirmed by manufacturing seven composites with different compositions. It was also found that the effect of the composition has to be evaluated at 1100 °C within a short time duration (50 h), where the oxide scale and the internal oxidation zone both grow according to parabolic kinetics

  12. Influence of Al addition on phase transformation and thermal stability of nickel silicides on Si(0 0 1)

    International Nuclear Information System (INIS)

    Huang, Shih-Hsien; Twan, Sheng-Chen; Cheng, Shao-Liang; Lee, Tu; Hu, Jung-Chih; Chen, Lien-Tai; Lee, Sheng-Wei

    2014-01-01

    Highlights: ► The presence of Al slows down the Ni 2 Si–NiSi phase transformation but significantly promotes the NiSi 2−x Al x formation. ► The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. ► The Ni 0.91 Al 0.09 /Si system exhibits remarkably improved thermal stability, even after high temperature annealing for 1000 s. ► The relationship between microstructures, electrical property, and thermal stability of Ni(Al) silicides is discussed. -- Abstract: The influence of Al addition on the phase transformation and thermal stability of Ni silicides on (0 0 1)Si has been systematically investigated. The presence of Al atoms is found to slow down the Ni 2 Si–NiSi phase transformation but significantly promote the NiSi 2−x Al x formation during annealing. The behavior of phase transformation strongly depends on the Al concentration of the initial Ni 1−x Al x alloys. Compared to the Ni 0.95 Pt 0.05 /Si and Ni 0.95 Al 0.05 /Si system, the Ni 0.91 Al 0.09 /Si sample exhibits remarkably enhanced thermal stability, even after high temperature annealing for 1000 s. The relationship between microstructures, electrical property, and thermal stability of Ni silicides is discussed to elucidate the role of Al during the Ni 1−x Al x alloy silicidation. This work demonstrated that thermally stable Ni 1−x Al x alloy silicides would be a promising candidate as source/drain (S/D) contacts in advanced complementary metal–oxide-semiconductor (CMOS) devices

  13. Core conversion study from silicide to molybdenum fuel in the Indonesian 30 MW multipurpose reactor G.A. Siwabessy (RSG-GAS)

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2005-01-01

    This paper describes the core conversion from silicide to molybdenum core through a series of silicide (2.96 gU cm -3 ) - molybdenum (3.55 gUcm -3 ) mixed transition cores for the Indonesian 30 MW-Multipurpose G.A. Siwabessy (RSGGAS) reactor. The core calculations are carried out using the two-dimensional multigroup neutron diffusion method code of Batan-EQUIL-2D. The calculated results showed that the proposed silicide-molybdenum mixed transition cores, using the same refueling/reshuffling scheme, meet the safety criteria and it can be used in safely converting from an all-silicide core to an all-molybdenum core. (author)

  14. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  15. Purification in the interaction between yttria mould and Nb-silicide-based alloy during directional solidification: A novel effect of yttrium

    International Nuclear Information System (INIS)

    Ma, Limin; Tang, Xiaoxia; Wang, Bin; Jia, Lina; Yuan, Sainan; Zhang, Hu

    2012-01-01

    Nb-silicide-based alloys were directionally solidified in yttria moulds. As a result of thermal dissociation of yttria, the alloys were slightly contaminated with oxygen, which caused a competitive oxidation between yttrium and hafnium. The addition of 0.15 at.% yttrium reduced the oxygen increment by 42%, because the buoyant inclusions concentrated around the top surface. The yttrium addition caused a significant purification of the interaction between the yttria mould and the Nb-silicide-based alloys during the directional solidification.

  16. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  17. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  18. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  19. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique

    International Nuclear Information System (INIS)

    Chang Jian-Guang; Wu Chun-Bo; Ji Xiao-Li; Ma Hao-Wen; Yan Feng; Shi Yi; Zhang Rong

    2012-01-01

    We investigate the leakage current of ultra-shallow Ni-silicided SiGe/Si junctions for 45 nm CMOS technology using a Si cap layer and the pre-amorphization implantation (PAI) process. It is found that with the conventional Ni silicide method, the leakage current of a p + (SiGe)—n(Si) junction is large and attributed to band-to-band tunneling and the generation-recombination process. The two leakage contributors can be suppressed quite effectively when a Si cap layer is added in the Ni silicide method. The leakage reduction is about one order of magnitude and could be associated with the suppression of the agglomeration of the Ni germano-silicide film. In addition, the PAI process after the application of a Si cap layer has little effect on improving the junction leakage but reduces the sheet resistance of the silicide film. As a result, the novel Ni silicide method using a Si cap combined with PAI is a promising choice for SiGe junctions in advanced technology. (cross-disciplinary physics and related areas of science and technology)

  20. Interaction of copper metallization with rare-earth metals and silicides

    International Nuclear Information System (INIS)

    Molnar, G. L.; Peto, G.; Zsoldos, E.; Horvath, Z. E.

    2001-01-01

    Solid-phase reactions of copper films with underlying gadolinium, erbium, and erbium - silicide layers on Si(100) substrates were investigated. For the phase analysis, x-ray diffraction and cross-sectional transmission electron microscopy were used. In the case of Cu/Gd/Si(100), an orthorhombic GdSi 2 formed, and, at higher temperatures, copper aggregated into islands. Annealed Cu/Er/Si(100) samples resulted in a hexagonal Er 5 Si 3 phase. In the Cu/ErSi 2-x /Si system, the copper catalyzes the transformation of the highly oriented hexagonal ErSi 2-x phase into hexagonal Er 5 Si 3 . Diverse phase developments of the samples with Gd and Er are based on reactivity differences of the two rare-earth metals. [copyright] 2001 American Institute of Physics

  1. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    Science.gov (United States)

    Siegal, Michelle F.; Martínez-Miranda, L. J.; Santiago-Avilés, J. J.; Graham, W. R.; Siegal, M. P.

    1994-02-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 Å. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 Å. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films.

  2. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    International Nuclear Information System (INIS)

    Siegal, M.F.; Martinez-Miranda, L.J.; Santiago-Aviles, J.J.; Graham, W.R.; Siegal, M.P.

    1994-01-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 A. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 A. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films

  3. Safety analysis of RSG-GAS Silicide core using one line cooling system

    International Nuclear Information System (INIS)

    Endiah-Puji-Hastuti

    2003-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor has been determined and to continuing this program, steady state and transient analysis were done. The analysis was done by means of a core thermal hydraulic code, COOLOD-N, and PARET. The codes solves core thermal hydraulic equation at steady state conditions and transient, respectively. By using silicide core data and coast down flow rate as the input, thermal hydraulics parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results of steady state and transient analysis, maximum permissible power for this operation was obtained as much as 17.1 MW

  4. The fabrication of metal silicide nanodot arrays using localized ion implantation

    International Nuclear Information System (INIS)

    Han, Jin; Kim, Tae-Gon; Min, Byung-Kwon; Lee, Sang Jo

    2010-01-01

    We propose a process for fabricating nanodot arrays with a pitch size of less than 25 nm. The process consists of localized ion implantation in a metal thin film on a Si wafer using a focused ion beam (FIB), followed by chemical etching. This process utilizes the etching resistivity changes of the ion beam irradiated region that result from metal silicide formation by ion implantation. To control the nanodot diameter, a threshold ion dose model is proposed using the Gaussian distribution of the ion beam intensities. The process is verified by fabricating nanodots with various diameters. The mechanism of etching resistivity is investigated via x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES).

  5. Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Abhaya, S; Amarendra, G; Gopalan, Padma; Reddy, G L N; Saroja, S

    2004-01-01

    The transformation of Pd/Si to Pd 2 Si/Si is studied using Auger electron spectroscopy over a wide temperature range of 370-1020 K. The Pd film gets totally converted to Pd 2 Si upon annealing at 520 K, and beyond 570 K, Si starts segregating on the surface of silicide. It is found that the presence of surface oxygen influences the segregation of Si. The time evolution study of Si segregation reveals that segregation kinetics is very fast and the segregated Si concentration increases as the temperature is increased. Scanning electron microscopy measurements show that Pd 2 Si is formed in the form of islands, which grow as the annealing temperature is increased

  6. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  7. Contributions to the preparation of 241americium metal and a few 241americium silicides

    International Nuclear Information System (INIS)

    Wittmann, F.D.

    1980-01-01

    In order to take a closer look at the americium-silicon system, three further silicides of americium: Am 5 Si 3 , Am 2 Si 3 and AmSi 2 were prepared in addition to the already known americium monosilicide and starting from the knowledge gained from the latters preparation. Radiographic investigations were carried out into the temperature region of 900 0 C. They showed no change of structure in the three compounds. It was possible to prepare residue-free americium metal by reducing AmF 3 with Si, whereby the SiF 4 formed can be easily separated off as volatile compound, and the Am metal is brought into a very pure form by sublimation suitable for spectrochemical investigations. Attempts to prepare binary germanides and gallides of 241 americium were unsuccessful. (RB) [de

  8. First-principles investigations of the physical properties of binary uranium silicide alloys

    International Nuclear Information System (INIS)

    Yang, Jin; Long, Jianping; Yang, Lijun; Li, Dongmei

    2013-01-01

    Graphical abstract: Total density of states for USi 2 . Display Omitted -- Abstract: The structural, elastic properties and the Debye temperature of binary Uranium Silicide (U-Si) alloys are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). The ground states properties are found to agree with the available experimental data. The mechanical properties like shear modulus, Young’s modulus, Poisson’s ratio σ and ratio B/G are also calculated. Finally, The averaged sound velocity (v m ), the longitudinal sound velocity (v l ), transverse sound velocity (v t ) and the Debye temperature (θ D ) are obtained. However, the theoretical values are slightly different from few existed experiment data because the latter was obtained at room temperature while the former one at 0 K

  9. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  10. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  11. Burn-up analysis of uranium silicide fuels 20% 235U, in the LFR facility

    International Nuclear Information System (INIS)

    Amor, Ricardo A.; Bouza, Edgardo; Cabrejas, Julian L.; Devida, Claudio A.; Gil, Daniel A.; Stankevicius, Alejandro; Gautier, Eduardo; Garavaglia, Ricardo N.; Lobo, Alfredo

    2003-01-01

    The LFR Facility is a laboratory designed and constructed with a Hot-Cells line, a Globe-Box and a Fume-Hood, all of them suited to work with radioactive materials such as samples of irradiated silicide MTR fuel elements. A series of dissolutions of this material was performed. From the resulting solutions, two fractions were separated by HPLC. One contained U + Pu, and other the fission product Nd. The concentrations of these elements were obtained by isotopic dilution and mass spectrometry (IDMS). It is concluded that this technique is very powerful and accurate when properly applied, and makes the validation of burn-up calculation codes possible. It is worth remarking the Lfr capacity to carry on different Research and Development (R + D) tasks in the Nuclear Fuel Cycle field. (author)

  12. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  13. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Rouillard, F., E-mail: fabien.rouillard@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-02-15

    Highlights: • Oxidation protection is due to the formation of a pure silica layer. • V–4Cr–4Ti with V{sub x}Si{sub y} silicide coating withstands 400 1-h cycles (1100 °C-T{sub amb}) in air. • Three-point flexure testing at 950 °C and 75 MPa does not induce coating breakdown. • No delamination between coating and substrate is observed in any test. - Abstract: V–4Cr–4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi{sub 2} coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi{sub 2} coating has mechanical properties compatible with the V–4Cr–4Ti alloy for SFR applications.

  14. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  15. Oxidation-resistant Ge-doped silicide coating on Cr-Cr2Nb alloys by pack cementation

    International Nuclear Information System (INIS)

    He Yirong

    1997-01-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on Cr-Cr 2 Nb alloys in a single processing step. The morphology and composition of the coating depended both on the pack composition and processing schedule and also on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi 2 and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. Under cyclic and isothermal oxidation conditions, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation and from pesting by the formation of a Ge-doped silica film. (orig.)

  16. Optical metrology of Ni and NiSi thin films used in the self-aligned silicidation process

    International Nuclear Information System (INIS)

    Kamineni, V. K.; Bersch, E. J.; Diebold, A. C.; Raymond, M.; Doris, B. B.

    2010-01-01

    The thickness-dependent optical properties of nickel metal and nickel monosilicide (NiSi) thin films, used for self-aligned silicidation process, were characterized using spectroscopic ellipsometry. The thickness-dependent complex dielectric function of nickel metal films is shown to be correlated with the change in Drude free electron relaxation time. The change in relaxation time can be traced to the change in grain boundary (GB) reflection coefficient and grain size. A resistivity based model was used as the complementary method to the thickness-dependent optical model to trace the change in GB reflection coefficient and grain size. After silicidation, the complex dielectric function of NiSi films exhibit non-Drude behavior due to superimposition of interband absorptions arising at lower frequencies. The Optical models of the complete film stack were refined using x-ray photoelectron spectroscopy, Rutherford backscattered spectroscopy, and x-ray reflectivity (XRR).

  17. Fuel element burnup measurements for the equilibrium LEU silicide RSG GAS (MPR-30) core under a new fuel management strategy

    International Nuclear Information System (INIS)

    Pinem, Surian; Liem, Peng Hong; Sembiring, Tagor Malem; Surbakti, Tukiran

    2016-01-01

    Highlights: • Burnup measurement of fuel elements comprising the new equilibrium LEU silicide core of RSG GAS. • The burnup measurement method is based on a linear relationship between reactivity and burnup. • Burnup verification was conducted using an in-house, in-core fuel management code BATAN-FUEL. • A good agreement between the measured and calculated burnup was confirmed. • The new fuel management strategy was confirmed and validated. - Abstract: After the equilibrium LEU silicide core of RSG GAS was achieved, there was a strong need to validate the new fuel management strategy by measuring burnup of fuel elements comprising the core. Since the regulatory body had a great concern on the safety limit of the silicide fuel element burnup, amongst the 35 burnt fuel elements we selected 22 fuel elements with high burnup classes i.e. from 20 to 53% loss of U-235 (declared values) for the present measurements. The burnup measurement method was based on a linear relationship between reactivity and burnup where the measurements were conducted under subcritical conditions using two fission counters of the reactor startup channel. The measurement results were compared with the declared burnup evaluated by an in-house in-core fuel management code, BATAN-FUEL. A good agreement between the measured burnup values and the calculated ones was found within 8% uncertainties. Possible major sources of differences were identified, i.e. large statistical errors (i.e. low fission counters’ count rates), variation of initial U-235 loading per fuel element and accuracy of control rod indicators. The measured burnup of the 22 fuel elements provided the confirmation of the core burnup distribution planned for the equilibrium LEU silicide core under the new fuel management strategy.

  18. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  19. Controlling the formation and stability of ultra-thin nickel silicides - An alloying strategy for preventing agglomeration

    Science.gov (United States)

    Geenen, F. A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C.

    2018-02-01

    The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of tc = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 ° C , thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of "thickness gradients," which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness tc. The results are discussed in the framework of classical nucleation theory.

  20. A Study on Characterization of Light-Induced Electroless Plated Ni Seed Layer and Silicide Formation for Solar Cell Application

    Science.gov (United States)

    Takaloo, Ashkan Vakilipour; Joo, Seung Ki; Es, Firat; Turan, Rasit; Lee, Doo Won

    2018-03-01

    Light-induced electroless plating (LIEP) is an easy and inexpensive method that has been widely used for seed layer deposition of Nickel/Copper (Ni/Cu)-based metallization in the solar cell. In this study, material characterization aspects of the Ni seed layer and Ni silicide formation at different bath conditions and annealing temperatures on the n-side of a silicon diode structure have been examined to achieve the optimum cell contacts. The effects of morphology and chemical composition of Ni film on its electrical conductivity were evaluated and described by a quantum mechanical model. It has been found that correlation exists between the theoretical and experimental conductivity of Ni film. Residual stress and phase transformation of Ni silicide as a function of annealing temperature were evaluated using Raman and XRD techniques. Finally, transmission line measurement (TLM) technique was employed to determine the contact resistance of Ni/Si stack after thermal treatment and to understand its correlation with the chemical-structural properties. Results indicated that low electrical resistive mono-silicide (NiSi) phase as low as 5 mΩ.cm2 was obtained.

  1. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    International Nuclear Information System (INIS)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios; Shervin, Shahab

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400–600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3–6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude–Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ∼0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor. (paper)

  2. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    Science.gov (United States)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  3. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  4. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States); Mei, Zhigang [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  5. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  6. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  7. Facts and Fantasies about Gold

    OpenAIRE

    Klement, Joachim

    2015-01-01

    Due to the increasing popularity of gold as an investment the demand for effective risk management techniques for gold investments has increased as well. In this paper we analyze several drivers of the price of gold that have been proposed in the past. Our analysis indicates that short-term volatility of the price of gold remains rather unpredictable with many of the explanations like the fund flows in physical gold ETF either unreliable or unstable over time. Our analysis suggests that there...

  8. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  9. The whole-core LEU silicide fuel demonstration in the JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  10. Status of core conversion with LEU silicide fuel in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  11. Status of core conversion with LEU silicide fuel in JRR-4

    International Nuclear Information System (INIS)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji

    1997-01-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10 13 (n/cm 2 /s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities

  12. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    Energy Technology Data Exchange (ETDEWEB)

    farahani, A.A.; Corradini, M.L. [Univ. of Wisconsi, Madison, WI (United States)

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  13. Oxidation behavior of niobium aluminide intermetallics protected by aluminide and silicide diffusion coatings

    International Nuclear Information System (INIS)

    Li, Y.; Soboyejo, W.; Rapp, R.A.

    1999-01-01

    The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb 3 Al-xTi-yCr) intermetallics is studied between 650 C and 850 C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 C. Alloying with Cr improves the isothermal oxidation resistance between 650 C and 850 C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 C to 850 C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings

  14. The Comparison Of Silicon Analysis For The Uranium Silicide Fuel Using Spectrophotometrical And Gravimetrical Methods

    International Nuclear Information System (INIS)

    Putro, P. K.; Suripto, A.; Putra, S.; Gunanjar

    1996-01-01

    The analysis of silicon content in the uranium silicide fuel spectro-photometrical and gravimetrical method have been performed. The nitrous oxide-acetylene was used in the atomic absorption spectrophotometry (AAS) on the wave length of 251.6 nm, and the mixture of ammonium hepta molybdate complexes and SnC1 2 as reductor were applied during analysis by UV-VIS spectrophotometry (UV-VIS) on the wave length of 757.5 mm. The reagent of HCLO 4 and HNO 3 were used for determining Si content by gravimetrical methods. The results of this comparison is as follows: the accuracy result is around 96.37 % + 0.24 % for the Si concentration up to 300 ppm (the AAS), is 138.60 % = 0.43 % for the Si concentration range between 0.1-1.5 ppm (UV-VIS), and is 51.13 % + 0.8 % for 1 gram of Si (gravimetry). The results also show that the lowest analytical error is obtained by AAS method

  15. Silicide formation by Ar/sup +/ ion bombardment of Pd/Si

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R Y; Whang, C N; Kim, H K; Smith, R J

    1988-08-01

    Palladium films, 45 nm thick, evaporated on to Si(111) were irradiated to various doses with 78 keV Ar/sup +/ ions to promote silicide formation. Rutherford backscattering spectroscopy (RBS) shows that intermixing has occurred across the Pd/Si interface at room temperature. The mixing behaviour is increased with dose which coincides well with the theoretical model of cascade mixing. The absence of deep RBS tails for palladium and the small area of this for silicon spectra indicate that short-range mixing occurs. From the calculated damage profiles computed with TRIM code, the dominant diffusion species is found to be silicon atoms in the Pd/Si system. It is also found that the initial compound formed by Ar/sup +/ irradiation is Pd/sub 2/Si which increases with dose. At a dose of 1 x 10/sup 16/ Ar/sup +/ cm/sup -2/, a 48 nm thickness of Pd/sub 2/Si was formed by ion-beam mixing at room temperature.

  16. Analysis Of Temperature Effects On Reactivity Of The Rsg-Gas Core Using Silicide Fuels

    International Nuclear Information System (INIS)

    Surbakti, Tukiran; Pinem, Surian

    2001-01-01

    RSG-GAS has been operating using new silicide fuels so that it is necessary to estimate and to measure the effect of temperature on reactivity of the core. The parameters to be determined due to temperature effect are reactivity coefficient of moderator temperature, temperature coefficient of fuel element and power reactivity coefficient. By doing a couple compensation method, determination of reactivity coefficient as well as the reactivity coefficient of moderator temperature can be obtained. Furthermore, coefficient of the reactivity was successfully estimated using the combination of WIMS-D4 and Batan-2DIFF. The cell calculation was done by using WIMS-D4 code to get macroscopic cross section and Batan-2DIFF code is used for core calculation. The calculation and experimental results of reactivity coefficient do not show any deviation from RSG-GAS safety margin. The results are -2,84 sen/ o C, -1,29 sen/MW and -0,64 sen/ o C for reactivity coefficients of temperature, power, fuel element and moderator temperature, respectively. All of 3 parameters are absolutely met with safety criteria

  17. Prompt Neutron Decay Constant Determination Of Silicide Transition Core Using Noise Method

    International Nuclear Information System (INIS)

    Jujuratisbela, Uju; Yulianto, Yusi Eko; Cahyana

    2001-01-01

    Chairman of BATAN had decided to replace the Oxide fuel element type of RSG-GAS into silicide element type step by step. The replacement will create core transitions. Kinetic characteristic of the transition cores have to be monitored in order to know the deviation of core behavior. For that reason, the kinetic parameters have to be measured. Prompt neutron decay constant (alpha) is one of the kinetic parameters that has to be monitored continuously in the transition cores. In order not to disturb the normal operation of reactor, alpha parameter should be measured by using noise analysis method. The voltage of neutron flux at power of 15 MW is connected to preamplifier and filter then to the Dynamic Signal Analyzer Version-2 and then the auto power spectral density (APSD) was determined by using Fast Fourier transform. From the APSD curve of each channel of JKT03, the cut off frequency of each channel can be determined by using linear regression technique such that the prompt neutron decay constant can be estimated

  18. Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy.

    Science.gov (United States)

    Szypryt, P; Meeker, S R; Coiffard, G; Fruitwala, N; Bumble, B; Ulbricht, G; Walter, A B; Daal, M; Bockstiegel, C; Collura, G; Zobrist, N; Lipartito, I; Mazin, B A

    2017-10-16

    We have fabricated and characterized 10,000 and 20,440 pixel Microwave Kinetic Inductance Detector (MKID) arrays for the Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARKNESS) and the MKID Exoplanet Camera (MEC). These instruments are designed to sit behind adaptive optics systems with the goal of directly imaging exoplanets in a 800-1400 nm band. Previous large optical and near-IR MKID arrays were fabricated using substoichiometric titanium nitride (TiN) on a silicon substrate. These arrays, however, suffered from severe non-uniformities in the TiN critical temperature, causing resonances to shift away from their designed values and lowering usable detector yield. We have begun fabricating DARKNESS and MEC arrays using platinum silicide (PtSi) on sapphire instead of TiN. Not only do these arrays have much higher uniformity than the TiN arrays, resulting in higher pixel yields, they have demonstrated better spectral resolution than TiN MKIDs of similar design. PtSi MKIDs also do not display the hot pixel effects seen when illuminating TiN on silicon MKIDs with photons with wavelengths shorter than 1 µm.

  19. Characterization of titanium silicide thin films by X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Morimoto, N.J.

    1987-01-01

    This thesis deals with characterization techniques of thin films by means of X-ray diffraction. This includes phase identification and residual stress, microstress and crystallite size calculations. The techniques developed were applied on the study of the titanium silicide formation obtained by means of Rapidy Thermal Processing (RTP) pf Ti films deposited on silicon substratum. The different phases were studied in relation with processing temperature and time in one and two anneling steps. The low resistivity TiSi 2 phase was observed for temperature of 700 0 C and higher. The experimental results indicate that the residual stress of TiSi 2 films doesn't vary significantly with the annealing conditions. On the other hand, the microstress is reduced with annealing time at 800 0 C, while the crystallite size is almost not affected. For the microstress and the crystallite size determination technique, two methods were implemented and compared. The Riella's method appeared to be very efficient, while the Gangulle's method seemed to be inadequate, because the results oscillate too much [pt

  20. Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Mueller, M.H.; Richardson, J.W. Jr.; Faber, J. Jr.

    1989-11-01

    Uranium silicides have been considered for use as reactor fuels in both high power and low enrichment applications. However, U 3 Si was found to become amorphous under irradiation and to become mechanically unstable to rapid growth by plastic flow. U 2 Si 2 appears to be stable against amorphization at low displacement rates, but the extent of this stability is uncertain. Although the mechanisms responsible for plastic flow in U 3 Si and other amorphous systems are unknown, as is the importance of crystal structure for amorphization, it may not be surprising that these materials amorphize, in light of the fact that many radioactive nuclide - containing minerals are known to metaminctize (lose crystallinity) under irradiation. The present experiment follows the detailed changes in the crystal structures of U 3 Si and U 3 Si 2 introduced by neutron bombardment and subsequent uranium fission at room temperature. U-Si seems the ideal system for a neutron diffraction investigation since the crystallographic and amorphous forms can be studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier-filtering of the non-crystalline scattering component

  1. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  2. Steady-state thermal hydraulic analysis and flow channel blockage accident analysis of JRR-3 silicide core

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-03-01

    JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)

  3. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  4. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@usp.br [Escola de Engenharia de Lorena, Universidade de São Paulo, Pólo Urbo-Industrial Gleba AI-6, 12602-810 Lorena, SP (Brazil); Portebois, L., E-mail: leo.portebois@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); David, N., E-mail: nicolas.david@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour, UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy, Cedex (France)

    2017-02-15

    To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF{sub 2} as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V{sub 3}Si, V{sub 5}Si{sub 3}, V{sub 6}Si{sub 5} and VSi{sub 2}) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10{sup −9} to 10{sup −13} cm{sup 2} s{sup −1}. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi{sub 2} layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum. - Highlights: • The pack cementation technique is implemented to study interdiffusion in V/Si and V-4Cr-4Ti/Si couples. • Interdiffusion coefficients of vanadium silicides were experimentally determined within the range 1100–1250 °C. • For either V/Si or V-4Cr-4Ti/Si couples, the VSi{sub 2} layer has the highest growth rate. • The Cr and Ti alloying elements mainly modified the V{sub 5}Si{sub 3} and V{sub 6}Si{sub 5} growth rate. • Numerical simulation allows for a confident assessment of the VSi{sub 2} coating lifetime on V-4Cr-4Ti.

  5. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  6. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  7. Loading rate and test temperature effects on fracture of in situ niobium silicide-niobium composites

    International Nuclear Information System (INIS)

    Rigney, J.D.; Lewandowski, J.J.

    1996-01-01

    Arc cast, extruded, and heat-treated in situ composites of niobium silicide (Nb 5 Si 3 ) intermetallic with niobium phases (primary--Nb p and secondary--Nb s ) exhibited high fracture resistance in comparison to monolithic Nb 5 Si 3 . In toughness tests conducted at 298 K and slow applied loading rates, the fracture process proceeded by the microcracking of the Nb 5 Si 3 and plastic deformation of the Nb p and Nb s phases, producing resistance-curve behavior and toughnesses of 28 MPa√m with damage zone lengths less than 500 microm. The effects of changes in the Nb p yield strength and fracture behavior on the measured toughnesses were investigated by varying the loading rates during fracture tests at both 77 and 298 K. Quantitative fractography was utilized to completely characterize each fracture surface created at 298 K in order to determine the type of fracture mode (i.e., dimpled, cleavage) exhibited by the Nb p . Specimens tested at either higher loading rates or lower test temperatures consistently exhibited a greater amount of cleavage fracture in the Nb p , while the Nb s always remained ductile. However, the fracture toughness values determined from experiments spanning six orders of magnitude in loading rate at 298 and 77 K exhibited little variation, even under conditions when the majority of Nb p phases failed by cleavage at 77 K. The changes in fracture mode with increasing loading rate and/or decreasing test temperature and their effects on fracture toughness are rationalized by comparison to existing theoretical models

  8. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides

    International Nuclear Information System (INIS)

    Chen, Xi; Shi, Li; Zhou, Jianshi; Goodenough, John B.

    2015-01-01

    Highlights: • The already low κ L of HMS can be suppressed further by decreasing the grain size. • The ball milling process can lead to the formation of secondary MnSi and W/C-rich phases. • The formation of the MnSi ad W/C rich phases is found to suppress the thermoelectric power factor. - Abstract: Bulk nanostructured higher manganese silicide (HMS) samples with different grain size are prepared by melting, subsequent ball milling (BM), and followed by spark plasma sintering (SPS). The effects of BM time on the microstructures and thermoelectric properties of these samples are investigated. It is found that BM effectively reduces the grain size to about 90 nm in the sample after SPS, which leads to a decrease in both the thermal conductivity and electrical conductivity. By prolonging the BM time, MnSi and tungsten/carbon-rich impurity phases are formed due to the impact-induced decomposition of HMS and contamination from the tungsten carbide jar and balls during the BM, respectively. These impurities result in a reduced Seebeck coefficient and increased thermal conductivity above room temperature. The measured size-dependent lattice thermal conductivities agree qualitatively with the reported calculation results based on a combined phonon and diffuson model. The size effects are found to be increasingly significant as temperature decreases. Because of the formation of the impurity phases and a relatively large grain size, the ZT values are not improved in the ball-milled HMS samples. These findings suggest the need of alternative approaches for the synthesis of pure HMS with further reduced grain size and controlled impurity doping in order to enhance the thermoelectric figure-of-merit of HMS via nanostructuring

  9. Development of silicide coating over molybdenum based refractory alloy and its characterization

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Banerjee, S.; Sharma, I.G.; Suri, A.K.

    2010-01-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2 , TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2 O 3 ), coating powder (Si) and activator (NH 4 Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 o C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 o C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  10. Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel

    International Nuclear Information System (INIS)

    Blumenfeld, P.E.

    1995-08-01

    Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR's uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ''hot segment'' analysis of narrow axial regions along the plate and ''hot streak'' analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about -7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square (χ 2 ) test for goodness of fit to normal distributions was not satisfied

  11. Electronic structure and bonding in the ternary silicide YNiSi3

    International Nuclear Information System (INIS)

    Sung, Gi Hong; Kang, Dae Bok

    2003-01-01

    An analysis of the electronic structure and bonding in the ternary silicide YNiSi 3 is made, using extended Hueckel tight-binding calculations. The YNiSi 3 structure consists of Ni-capped Si 2 dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of (Y 3+ )(Ni 0 )(Si 3 ) 3- for YNiSi 3 constitutes a good starting point to describe its electronic structure. Si atoms receive electrons form the most electropositive Y in YNiSi 3 , and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the π orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi 3 can be rewritten as (Y 3+ )(Ni 2- )(Si 2- )(Si-Si) + , making the Si 2 layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si 2 double layer possesses single bonds within a dimer with a partial double bond character. Stronger Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si 2 π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis

  12. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  13. Synthesis and characterization of β-phase iron silicide nano-particles by chemical reduction

    International Nuclear Information System (INIS)

    Sen, Sabyasachi; Gogurla, Narendar; Banerji, Pallab; Guha, Prasanta K.; Pramanik, Panchanan

    2015-01-01

    Graphical abstract: - Highlights: • β-FeSi 2 nano-particle was synthesized by reducing with Mg and by diluting with MgO. • XRD profile shows the iron di-silicide phase to be semiconducting β-FeSi 2 . • HRTEM and FESEM images indicate the β-FeSi 2 average particle size to be 60–70 nm. • Absorption, reflectance and PL spectroscopy show band gap to be direct 0.87 eV. • Nano-β-FeSi 2 is p-type with hole density of 4.38 × 10 18 cm −3 and mobility 8.9 cm 2 /V s. - Abstract: Nano-particles of β-FeSi 2 have been synthesized by chemical reduction of a glassy phase of [Fe 2 O 3 , 4SiO 2 ] by Mg-metal where MgO is used as diluent to prevent the agglomeration of nano crystallites into micro-particles and also act as a negative catalyst for the formation of other phases. The sample is characterized by XRD, FESEM, HRTEM, EDX, ultra-violet-visible-infrared and PL spectroscopy and electronic properties have been investigated by Hall measurement. XRD profile shows that the synthesized powder consists of purely β-FeSi 2 semiconducting phase. The average crystallite size of β-FeSi 2 is determined to be around 65.4 nm from XRD peaks as well as from FESEM also. The optical absorption and PL spectroscopy shows that synthesized β-FeSi 2 phase is a direct band gap semiconductor with a value of 0.87 eV. Hall measurements show that β-FeSi 2 nano-particles is p-type with hole concentration of 4.38 × 10 18 cm −3 and average hole mobility of 8.9 cm 2 /V s at 300 K

  14. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Shi, Li, E-mail: lishi@mail.utexas.edu [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Zhou, Jianshi; Goodenough, John B. [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States)

    2015-08-25

    Highlights: • The already low κ{sub L} of HMS can be suppressed further by decreasing the grain size. • The ball milling process can lead to the formation of secondary MnSi and W/C-rich phases. • The formation of the MnSi ad W/C rich phases is found to suppress the thermoelectric power factor. - Abstract: Bulk nanostructured higher manganese silicide (HMS) samples with different grain size are prepared by melting, subsequent ball milling (BM), and followed by spark plasma sintering (SPS). The effects of BM time on the microstructures and thermoelectric properties of these samples are investigated. It is found that BM effectively reduces the grain size to about 90 nm in the sample after SPS, which leads to a decrease in both the thermal conductivity and electrical conductivity. By prolonging the BM time, MnSi and tungsten/carbon-rich impurity phases are formed due to the impact-induced decomposition of HMS and contamination from the tungsten carbide jar and balls during the BM, respectively. These impurities result in a reduced Seebeck coefficient and increased thermal conductivity above room temperature. The measured size-dependent lattice thermal conductivities agree qualitatively with the reported calculation results based on a combined phonon and diffuson model. The size effects are found to be increasingly significant as temperature decreases. Because of the formation of the impurity phases and a relatively large grain size, the ZT values are not improved in the ball-milled HMS samples. These findings suggest the need of alternative approaches for the synthesis of pure HMS with further reduced grain size and controlled impurity doping in order to enhance the thermoelectric figure-of-merit of HMS via nanostructuring.

  15. Significant enhancement in thermoelectric performance of nanostructured higher manganese silicides synthesized employing a melt spinning technique.

    Science.gov (United States)

    Muthiah, Saravanan; Singh, R C; Pathak, B D; Avasthi, Piyush Kumar; Kumar, Rishikesh; Kumar, Anil; Srivastava, A K; Dhar, Ajay

    2018-01-25

    The limited thermoelectric performance of p-type Higher Manganese Silicides (HMS) in terms of their low figure-of-merit (ZT), which is far below unity, is the main bottle-neck for realising an efficient HMS based thermoelectric generator, which has been recognized as the most promising material for harnessing waste-heat in the mid-temperature range, owing to its thermal stability, earth-abundant and environmentally friendly nature of its constituent elements. We report a significant enhancement in the thermoelectric performance of nanostructured HMS synthesized using rapid solidification by optimizing the cooling rates during melt-spinning followed by spark plasma sintering of the resulting melt-spun ribbons. By employing this experimental strategy, an unprecedented ZT ∼ 0.82 at 800 K was realized in spark plasma sintered 5 at% Al-doped MnSi 1.73 HMS, melt spun at an optimized high cooling rate of ∼2 × 10 7 K s -1 . This enhancement in ZT represents a ∼25% increase over the best reported values thus far for HMS and primarily originates from a nano-crystalline microstructure consisting of a HMS matrix (20-40 nm) with excess Si (3-9 nm) uniformly distributed in it. This nanostructure, resulting from the high cooling rates employed during the melt-spinning of HMS, introduces a high density of nano-crystallite boundaries in a wide spectrum of nano-scale dimensions, which scatter the low-to-mid-wavelength heat-carrying phonons. This abundant phonon scattering results in a significantly reduced thermal conductivity of ∼1.5 W m -1 K -1 at 800 K, which primarily contributes to the enhancement in ZT.

  16. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings

    Science.gov (United States)

    Yeom, Hwasung; Lockhart, Cody; Mariani, Robert; Xu, Peng; Corradini, Michael; Sridharan, Kumar

    2018-02-01

    This study investigates steam corrosion of bulk ZrSi2, pure Si, and zirconium-silicide coatings as well as water quenching behavior of ZrSi2 coatings to evaluate its feasibility as a potential accident-tolerant fuel cladding coating material in light water nuclear reactor. The ZrSi2 coating and Zr2Si-ZrSi2 coating were deposited on Zircaloy-4 flats, SiC flats, and cylindrical Zircaloy-4 rodlets using magnetron sputter deposition. Bulk ZrSi2 and pure Si samples showed weight loss after the corrosion test in pure steam at 400 °C and 10.3 MPa for 72 h. Silicon depletion on the ZrSi2 surface during the steam test was related to the surface recession observed in the silicon samples. ZrSi2 coating (∼3.9 μm) pre-oxidized in 700 °C air prevented substrate oxidation but thin porous ZrO2 formed on the coating. The only condition which achieved complete silicon immobilization in the oxide scale in aqueous environments was the formation of ZrSiO4 via ZrSi2 coating oxidation in 1400 °C air. In addition, ZrSi2 coatings were beneficial in enhancing quenching heat transfer - the minimum film boiling temperature increased by 6-8% in the three different environmental conditions tested. During repeated thermal cycles (water quenching from 700 °C to 85 °C for 20 s) performed as a part of quench tests, no spallation and cracking was observed and the coating prevented oxidation of the underlying Zircaloy-4 substrate.

  17. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  18. Spectroscopic diagnostic of gold plasma

    International Nuclear Information System (INIS)

    Busquet, M.

    1986-01-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included [fr

  19. Spectroscopic diagnostic of gold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.

    1986-06-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included.

  20. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  1. Bioassisted Phytomining of Gold

    Science.gov (United States)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  2. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  3. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  4. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  5. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  6. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    International Nuclear Information System (INIS)

    Frigeri, P.A.; Nos, O.; Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J.

    2009-01-01

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  7. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    International Nuclear Information System (INIS)

    Chen, Shu; Lee, Stephen L.; André, Pascal

    2016-01-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  8. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu; Lee, Stephen L. [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); André, Pascal, E-mail: pjpandre@riken.jp [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); RIKEN, Wako 351-0198 (Japan); Department of Physics, CNRS-Ewha International Research Center (CERC), Ewha W. University, Seoul 120-750 (Korea, Republic of)

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  9. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  10. Ytterbium silicide (YbSi{sub 2}). A promising thermoelectric material with a high power factor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tanusilp, Sora-at; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); Nishide, Akinori [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Hayakawa, Jun [Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Kurosaki, Ken [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); JST, PRESTO, Kawaguchi, Saitama (Japan)

    2018-02-15

    Metal silicide-based thermoelectric (TE) materials have attracted attention in the past two decades, because they are less toxic, with low production cost and high chemical stability. Here, we study the TE properties of ytterbium silicide YbSi{sub 2} with a specific layered structure and the mixed valence state of Yb{sup 2+} and Yb{sup 3+}. YbSi{sub 2} exhibits large Seebeck coefficient, S, accompanied by high electrical conductivity, σ, leading to high power factor, S{sup 2}σ, of 2.2 mW m{sup -1} K{sup -2} at room temperature, which is comparable to those of state-of-the-art TE materials such as Bi{sub 2}Te{sub 3} and PbTe. Moreover, YbSi{sub 2} exhibits high Grueneisen parameter of 1.57, which leads to relatively low lattice thermal conductivity, κ{sub lat}, of 3.0 W m{sup -1} K{sup -1} at room temperature. The present study reveals that YbSi{sub 2} can be a good candidate of TE materials working near room temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Technical report: technical development on the silicide plate-type fuel experiment at nuclear safety research reactor

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Soyama, Kazuhiko; Ichikawa, Hiroki

    1991-08-01

    According to a reduction of fuel enrichment from 45 w/o 235 U to 20 w/o, an aluminide plate-type fuel used currently in the domestic research and material testing reactors will be replaced by a silicide plate-type one. One of the major concern arisen from this alternation is to understand the fuel behavior under simulated reactivity initiated accident (RIA) conditions, this is strongly necessary from the safety and licensing point of view. The in-core RIA experiments are, therefore, carried out at Nuclear Safety Research Reactor (NSRR) in Japan Atomic Energy Research Institute (JAERI). The silicide plate-type fuel consisted of the ternary alloy of U-Al-Si as a meat with uranium density up to 4.8 g/cm 3 having thickness by 0.51 mm and the binary alloy of Al-3%Mg as a cladding by thickness of 0.38 mm. Comparison of the physical properties of this metallic plate fuel with the UO 2 -zircaloy fuel rod used conventionally in commercial light water reactors shows that the heat conductivity of the former is of the order of about 13 times greater than the latter, however the melting temperature is only one-half (1570degC). Prior to in-core RIA experiments, there were some difficulties lay in our technical path. This report summarized the technical achievements obtained through our four years work. (J.P.N.)

  12. High-temperature oxidation of silicide-aluminide layer on the TiAl6V4 alloy prepared by liquid-phase siliconizing

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František

    2016-01-01

    Roč. 50, č. 2 (2016), s. 257-261 ISSN 1580-2949 Institutional support: RVO:61389021 Keywords : TiAl6V4 * silicides * high-temperature oxidation * liquid-phase silicon izing Subject RIV: JG - Metallurgy Impact factor: 0.436, year: 2016

  13. Phase analyses of silicide or nitride coated U–Mo and U–Mo–Ti particle dispersion fuel after out-of-pile annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Jeong [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Palancher, Hervé [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Ryu, Ho Jin, E-mail: hojinryu@kaist.ac.kr [Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong, Daejeon 305-701 (Korea, Republic of); Park, Jong Man; Nam, Ji Min [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Bonnin, Anne [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Honkimäki, Veijo [ESRF, 6, rue J. Horowitz, F-38000 Grenoble Cedex (France); Charollais, François [CEA, DEN, DEC, F-13108 Saint Paul Lez Durance Cedex (France); Lemoine, Patrick [CEA, DEN, DISN, 91191 Gif sur Yvette (France)

    2014-03-15

    Highlights: • Silicide or nitride layers were coated on atomized U–Mo or U–Mo–Ti powder. • The constituent phases after annealing were identified through high-energy XRD. • U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2} were identified in the silicide coating layers. • UN was identified for U–Mo particles and UN and U{sub 4}N{sub 7} formed on U–Mo–Ti particles. -- Abstract: The coating of silicide or nitride layers on U–7 wt%Mo or U–7 wt%Mo–1 wt%Ti particles has been proposed for the minimization of the interaction phase growth in U–Mo/Al dispersion fuel during irradiation. Out-of-pile annealing tests show reduced inter-diffusion by forming silicide or nitride protective layers on U–Mo and U–Mo–Ti particles. To characterize the constituent phases of the coated layers on U–Mo and U–Mo–Ti particles and the interaction phases of coated U–Mo and U–Mo–Ti particle dispersed Al matrix fuel, synchrotron X-ray diffraction experiments have been performed. It was identified that silicide coating layers consisted mainly of U{sub 3}Si{sub 5} and U{sub 4}Mo(Mo{sub x}Si{sub 1−x})Si{sub 2}, and nitride coating layers were composed of mainly UN and U{sub 4}N{sub 7}. The interaction phases obtained after annealing of coated U–Mo and U–Mo–Ti particle dispersion samples were identical to those found in U–Mo/Al–Si and U–Mo/Al systems. Nitride-coated particles showed less interaction formation than silicide-coated particles after annealing at 580 °C for 1 h owing to the higher susceptibility to breakage of the silicide coating layers during hot extrusion.

  14. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  15. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  16. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3

    International Nuclear Information System (INIS)

    Zhang, L.; Wu, J.

    1997-01-01

    Silicides are among those potential candidates for high temperature application because of their high melting temperature, low density and good oxidation resistance. Recent interest is focused on molybdenum silicides and titanium silicides. Extensive investigation has been carried out on MoSi 2 , yet comparatively less work was performed on titanium silicides such as Ti 5 Si 3 and Ti 3 and TiSi 2 which are of lower density than MoSi 2 . Fundamental understanding of the titanium silicides' properties for further evaluation their potential for practical application are thus needed. The thermal expansion coefficients and elastic moduli of intermetallic compounds are two properties important for evaluation as a first step. The thermal expansion determines the possible stress that might arise during cooling for these high melting point compounds, which is crucial to the preparation of defect free specimens; and the elastic moduli are usually reflections of the cohesion in crystal. In Frommeyer's work and some works afterwards, the coefficients of thermal expansion were measured on both polycrystalline and single crystal Ti 5 Si 3 . The elastic modulus of polycrystalline Ti 5 Si 3 was measured by Frommeyer and Rosenkranz. However, in the above works, the referred Ti 5 Si 3 was the binary one, no alloying effect has been reported on this matter. Moreover, the above parameters (coefficient of thermal expansion and elastic modulus) of Nb 5 Si 3 remain unreported so far. In this paper, the authors try to extend the knowledge of alloyed Ti 5 Si 3 compounds with Nb and Cr additions. Results on the coefficients of thermal expansion and elastic moduli of Ti 5 Si 3 compounds and Nb 5 Si 3 are presented and the discussion is focused on the alloying effect

  17. Effects of (Al,Ge) double doping on the thermoelectric properties of higher manganese silicides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Salta, Daniel; Zhang, Libin [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Weathers, Annie [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Zhou, Jianshi; Goodenough, John B.; Shi, Li [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-11-07

    Experiments and analysis have been carried out to investigate the effects of Al and (Al,Ge) doping on the microstructure and thermoelectric properties of polycrystalline higher manganese silicide (HMS) samples, which were prepared by solid-state reaction, ball milling, and followed by spark plasma sintering. It has been found that Al doping effectively increases the hole concentration, which leads to an increase in the electrical conductivity and power factor. By introducing the second dopant Ge into Al-doped HMS, the electrical conductivity is increased, and the Seebeck coefficient is decreased as a result of further increased hole concentration. The peak power factor is found to occur at a hole concentration between 1.8 × 10{sup 21} and 2.2 × 10{sup 21} cm{sup −3} measured at room temperature. The (Al,Ge)-doped HMS samples show lower power factors owing to their higher hole concentrations. The mobility of Mn(Al{sub 0.0035}Ge{sub y}Si{sub 0.9965-y}){sub 1.8} with y = 0.035 varies approximately as T{sup −3/2} above 200 K, suggesting acoustic phonon scattering is the dominant scattering mechanism. The thermal conductivity of HMS does not change appreciably by Al or (Al,Ge) doping. The maximum ZT of (Al,Ge)-doped HMS is 0.57 at 823 K, which is similar to the highest value found in the Al-doped HMS samples. The ZT values were reduced in the Mn(Al{sub 0.0035}Ge{sub y}Si{sub 0.9965-y}){sub 1.8} samples with high Ge concentration of y = 0.025 and 0.035, because of reduced power factor. In addition, a two-band model was employed to show that the hole contribution to the thermal conductivity dominates the bipolar and electron contributions for all samples from 300 to 823 K and accounts for about 12% of the total thermal conductivity at about 800 K.

  18. Effects of (Al,Ge) double doping on the thermoelectric properties of higher manganese silicides

    International Nuclear Information System (INIS)

    Chen, Xi; Salta, Daniel; Zhang, Libin; Weathers, Annie; Zhou, Jianshi; Goodenough, John B.; Shi, Li

    2013-01-01

    Experiments and analysis have been carried out to investigate the effects of Al and (Al,Ge) doping on the microstructure and thermoelectric properties of polycrystalline higher manganese silicide (HMS) samples, which were prepared by solid-state reaction, ball milling, and followed by spark plasma sintering. It has been found that Al doping effectively increases the hole concentration, which leads to an increase in the electrical conductivity and power factor. By introducing the second dopant Ge into Al-doped HMS, the electrical conductivity is increased, and the Seebeck coefficient is decreased as a result of further increased hole concentration. The peak power factor is found to occur at a hole concentration between 1.8 × 10 21 and 2.2 × 10 21  cm −3 measured at room temperature. The (Al,Ge)-doped HMS samples show lower power factors owing to their higher hole concentrations. The mobility of Mn(Al 0.0035 Ge y Si 0.9965-y ) 1.8 with y = 0.035 varies approximately as T −3/2 above 200 K, suggesting acoustic phonon scattering is the dominant scattering mechanism. The thermal conductivity of HMS does not change appreciably by Al or (Al,Ge) doping. The maximum ZT of (Al,Ge)-doped HMS is 0.57 at 823 K, which is similar to the highest value found in the Al-doped HMS samples. The ZT values were reduced in the Mn(Al 0.0035 Ge y Si 0.9965-y ) 1.8 samples with high Ge concentration of y = 0.025 and 0.035, because of reduced power factor. In addition, a two-band model was employed to show that the hole contribution to the thermal conductivity dominates the bipolar and electron contributions for all samples from 300 to 823 K and accounts for about 12% of the total thermal conductivity at about 800 K

  19. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  20. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  1. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  2. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires

    International Nuclear Information System (INIS)

    Zubkov, Evgeniy

    2013-01-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  3. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  4. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  5. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  6. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  7. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  8. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  9. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  10. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  11. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  12. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  13. Influence of layout parameters on snapback characteristic for a gate-grounded NMOS device in 0.13-μm silicide CMOS technology

    International Nuclear Information System (INIS)

    Jiang Yuxi; Li Jiao; Ran Feng; Cao Jialin; Yang Dianxiong

    2009-01-01

    Gate-grounded NMOS (GGNMOS) devices with different device dimensions and layout floorplans have been designed and fabricated in 0.13-μm silicide CMOS technology. The snapback characteristics of these GGNMOS devices are measured using the transmission line pulsing (TLP) measurement technique. The relationships between snapback parameters and layout parameters are shown and analyzed. A TCAD device simulator is used to explain these relationships. From these results, the circuit designer can predict the behavior of the GGNMOS devices under high ESD current stress, and design area-efficient ESD protection circuits to sustain the required ESD level. Optimized layout rules for ESD protection in 0.13-μm silicide CMOS technology are also presented. (semiconductor devices)

  14. Program description for the qualification of CNEA - Argentina as a supplier of LEU silicide fuel and post-irradiation examinations plan for the first prototype irradiated in Argentina

    International Nuclear Information System (INIS)

    Rugirello, Gabriel; Adelfang, Pablo; Denis, Alicia; Zawerucha, Andres; Marco, Agustin di; Guillaume, Eduardo; Sbaffoni, Monica; Lacoste, Pablo

    1998-01-01

    In this report we present a description of the ongoing and future stages of the program for the qualification of CNEA, Argentina, as a supplier of low enriched uranium silicide fuel elements for research reactor. Particularly we will focus on the characteristics of the future irradiation experiment on a new detachable prototype, the post-irradiation examinations (PIE) plan for the already irradiated prototype PO4 and an overview of the recently implemented PIE facilities and equipment. The program is divided in several steps, some of which have been already completed. It concludes: development of the uranium silicide fissile material, irradiation and PIE of several full-scale prototypes. Important investments have been already carried out in the facilities for the FE production and PIE. (author)

  15. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Science.gov (United States)

    Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.

    2014-11-01

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  16. In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Park, J.M.; Lee, K.H.; Yoo, B.O. [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ryu, H.J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ye, B. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2014-11-15

    U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.

  17. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  18. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies

    Science.gov (United States)

    Dobrzhinetskaya, Larissa; Mukhin, Pavel; Wang, Qin; Wirth, Richard; O'Bannon, Earl; Zhao, Wenxia; Eppelbaum, Lev; Sokhonchuk, Tatiana

    2018-06-01

    Here, we present studies of natural SiC that occurs in situ in tuff related to the Miocene alkaline basalt formation deposited in northern part of Israel. Raman spectroscopy, SEM and FIB-assisted TEM studies revealed that SiC is primarily hexagonal polytypes 4H-SiC and 6H-SiC, and that the 4H-SiC polytype is the predominant phase. Both SiC polytypes contain crystalline inclusions of silicon (Sio) and inclusions of metal-silicide with varying compositions (e.g. Si58V25Ti12Cr3Fe2, Si41Fe24Ti20Ni7V5Zr3, and Si43Fe40Ni17). The silicides crystal structure parameters match Si2TiV5 (Pm-3m space group, cubic), FeSi2Ti (Pbam space group, orthorhombic), and FeSi2 (Cmca space group, orthorhombic) respectively. We hypothesize that SiC was formed in a local ultra-reduced environment at respectively shallow depths (60-100 km), through a reaction of SiO2 with highly reducing fluids (H2O-CH4-H2-C2H6) arisen from the mantle "hot spot" and passing through alkaline basalt magma reservoir. SiO2 interacting with the fluids may originate from the walls of the crustal rocks surrounding this magmatic reservoir. This process led to the formation of SiC and accompanied by the reducing of metal-oxides to native metals, alloys, and silicides. The latter were trapped by SiC during its growth. Hence, interplate "hot spot" alkali basalt volcanism can now be included as a geological environment where SiC, silicon, and silicides can be found.

  19. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  20. Morphological and electrical properties of self-assembled iron silicide nanoparticles on Si(0 0 1) and Si(1 1 1) substrates

    International Nuclear Information System (INIS)

    Molnár, G.; Dózsa, L.; Erdélyi, R.; Vértesy, Z.; Osváth, Z.

    2015-01-01

    Highlights: • Epitaxial iron silicide nanostructures were grown on Si(1 1 1) and Si(0 0 1) substrates. • The size and shape of the particles are the function of the thickness and annealing. • The local current–voltage characteristics were measured by conductive AFM. • The different size and shape nanoparticles show similar I–V characteristics. • The tip current is dominated in few nm size sites, visible in the AFM phase image. - Abstract: Epitaxial iron silicide nanostructures are grown by solid phase epitaxy on Si(0 0 1) and Si(1 1 1), and by reactive deposition epitaxy on Si(0 0 1) substrates. The formation process is monitored by reflection high-energy electron diffraction. The morphology, size, and electrical properties of the nanoparticles are investigated by scanning electron microscopy, by electrically active scanning probe microscopy, and by confocal Raman spectroscopy. The results show that the shape, size, orientation, and density of the nanoobjects can be tuned by self-assembly, controlled by the lattice misfit between the substrates and iron silicides. The size distribution and shape of the grown nanoparticles depend on the substrate orientation, on the initial thickness of the evaporated iron, on the temperature and time of the annealing, and on the preparation method. The so-called Ostwald ripening phenomena, which state that the bigger objects develop at the expense of smaller ones, controls the density of the nanoparticles. Raman spectra show the bigger objects do not contain β-FeSi 2 phase. The different shape nanoparticles exhibit small, about 100 mV barrier compared to the surrounding silicon. The local leakage current of the samples measured by conductive AFM using a Pt coated Si tip is localized in a few nanometers size sites, and the sites which we assume are very small silicide nanoparticles or point defects.

  1. Evaluation Of Radioactivity Concentration In The Primary Cooling Water System Of The RSG-GAS During Operation With 30% Silicide Fuels

    International Nuclear Information System (INIS)

    Hartoyo, Unggul; Udiyani, P.M.; Setiawanto, Anto

    2001-01-01

    The evaluating radioactivity concentration in the primary cooling water of the RSG-GAS during operation with 30% silicide fuels has been performed. The method of the research is sampling of primary cooling water during operation of the reactor and calculation of its radioactivity concentration. Based on the data obtained from calculation, the identified nuclides in the water are, Mn-56, Sb-124, Sb-122 and Na-24, under the limit of safety value

  2. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  3. Analysis Influence of Mixing Gd2O3 in the Silicide Fuel Element to Core Excess Reactivity of RSG-GAS

    International Nuclear Information System (INIS)

    Susilo, Jati

    2004-01-01

    Gadolinium (Gd 2 O 3 ) is a burnable poison material mixed in the pin fuel element of the LWR core used to decrease core excess reactivity. In this research, analysis influence of mixing Gd 2 O 3 in the silicide fuel element to excess reactivity of the RSG-GAS core had been done. Equivalent cell of the equilibrium core developed by L.E.Strawbridge from Westing House Co. burn-up calculation has been done using SRAC-PIJ computer code achieve infinite multiplication factor (k x ). Value of Gd 2 O 3 concentration in the fuel element (pcm) showed by mass ratio of Gd 2 O 3 (gram) to that U 3 Si 2 (gram) times 10 5 , that is 0 pcm ∼ 100 pcm. From the calculation results analysis showed that Gd 2 O 3 concentration added should be considered. because a large number of Gd 2 O 3 will result in not achieving criticality at the Beginning Of Cycle. The maximum concentration of Gd 2 O 3 for RSG-GAS equilibrium fueled silicide 2.96 grU/cc is 80 pcm or 52.02 mgram/fuel plate. Maximum reduction of core excess reactivity due to mixing of Gd 2 O 3 in the RSG-GAS silicide fuels was around 1.502 %Δk/k, and hence not achieving the standard nominal excess reactivity for RSG-GAS core using high density of U 3 Si 2 -Al fuel. (author)

  4. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  5. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi2 coating) during clad quenching experiments is discussed in detail. Oxidation of bulk ZrSi2 was found to be negligible compared to Zircaloy-4 (a common Zr-alloy cladding material) and mechanical integrity of ZrSi2 was superior to that of bulk Zr2Si at high temperatures in ambient air. Very interesting and unique multi-nanolayered composite of ZrO2 and SiO2 were observed. Physical model for the oxidation has been proposed wherein Zr–Si–O mixture undergoes a spinodal phase decomposition into ZrO2 and SiO2, which is manifested as a nanoscale assembly of alternating layer of the two oxides. Steam corrosion at high pressure (10.3 MPa) led to weight loss of ZrSi2 and produced oxide scale with depletion of silicon, possibly attributed to volatile silicon hydroxide, gaseous silicon monoxide, and a solubility of silicon dioxide in water. Only Zircon phase (ZrSiO4) formed during oxidation of ZrSi2 at 1400°C in air, and allowed for immobilization silicon species in oxide scale in the aqueous environments. Zirconium-silicide coatings (on zirconium-alloy substrates) investigated in this study were deposited primarily using magnetron sputter deposition method and slurry method, although powder spray deposition processes cold spray and thermal spray methods were also investigated. The optimized ZrSi2 sputtered coating exhibited a highly protective nature at elevated temperatures in ambient air by mitigating oxygen permeation to the underlying zirconium alloy substrate. The high oxidation resistance of the coating has been shown to be due to nanocrystalline SiO2 and ZrSiO4 phases in the amorphous

  6. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  7. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  8. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  9. Temperature and thickness dependence of the grain boundary scattering in the Ni–Si silicide films formed on silicon substrate at 500 °C by RTA

    International Nuclear Information System (INIS)

    Utlu, G.; Artunç, N.; Selvi, S.

    2012-01-01

    Highlights: ► It is a systematic study of various thicknesses (18–290 nm) of Ni–Si silicide films. ► The temperature-dependent resistivity measurements of the films are studied. ► Resistivity variation of the films with temperature exhibits an unusual behavior. ► Parallel-resistor formula is reduced to Matthiessen's rule in this study. ► Reflection coefficients have been found in a wide temperature and thickness range. - Abstract: The temperature-dependent resistivity measurements of Ni–Si silicide films with 18–290 nm thicknesses are studied as a function of temperature and film thickness over the temperature range of 100–900 K. The most striking behavior is that the variation of the resistivity of the films with temperature exhibits an unusual behavior. The total resistivity of the Ni–Si silicide films in this work increases linearly with temperature up to a T m temperature, thereafter decreases rapidly and finally reaches zero. Our analyses have shown that in the temperature range of 100 to T m (K), parallel-resistor formula reduces to Matthiessen's rule and θ D Debye temperature becomes independent of the temperature for the given thickness range, whereas at high temperatures (above T m ) it increases slightly with thickness. θ D Debye temperature have been found to be about 400–430 K for the films. We have also shown that for temperature range of 100 to T m (K), linear variation of the resistivity of the silicide films with temperature has been caused from both grain-boundary scattering and electron–phonon scattering. That is why, resistivity data could have been analyzed in terms of the Mayadas–Schatzkes (M–S) model successfully. Theoretical and experimental values of reflection coefficients have been calculated by analyzing resistivity data using M–S model. According to our analysis, R increases with decreasing film thickness for a given temperature, while it is almost constant for the thickness range of 200–67 nm and 47

  10. In harmony with gold and uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profile is given on Mr Clive Knobbs as managing director of Harmony gold mine. From March 1 1983 he succeeded as deputy chairman of the group's gold and uranium division, and became the Rand Mines representative on the Gold Producers Committee and the Executive Committee of the Chamber of Mines. The article also takes a look at gold and uranium mining in general

  11. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  12. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  13. Gold--a controversial sensitizer

    DEFF Research Database (Denmark)

    Bruze, M; Andersen, Klaus Ejner

    1999-01-01

    allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... for the questioning may have been confusion in differentiating between contact allergy and allergic contact dermatitis. To arrive at a diagnosis of allergic contact dermatitis, 3 steps have, in principle, to be fulfilled: (i) establishment of contact allergy; (ii) demonstration of present exposure; (iii) assessment...

  14. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  15. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  16. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  17. FY 1997 report on the improvement of toughness of silicide system intermetallic compounds by complex texture; 1997 nendo chosa hokokusho (fukugo soshikika ni yoru silicide kei kinzokukan kagobutsu no kyojinsei kaizen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to develop new materials superior in both room- temperature ductility and high-temperature strength, the basic data on MoSi2 intermetallic compounds with complex texture were stored. Intermetallic compound is one of the promising candidates of new super heat-resistant materials superior to conventional super heat-resistant alloys, however, it is extremely poor in ductility at room temperature. Based on available information on isothermal sectional phase diagrams of ternary system (Mo-Si-X system) composed of Mo silicide and the third element (X), some alloy systems were selected in consideration of use of carbide and nitride stably existing as dispersed phase of deposits at high temperature. A knowledge on phase diagrams of ternary system specimens with various compositions was obtained through arc melting, X-ray diffraction and texture observation, and heat treatment conditions for obtaining target complex textures were also determined. Storage of the basic data suggested that improvement of the ductility is possible by forming fine texture through addition of the third element and teat treatment. 21 refs., 58 figs., 15 tabs.

  18. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  19. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  20. Characterisation of gold from Fiji

    OpenAIRE

    Naden, Jon; Henney, P.J.

    1995-01-01

    This is a study of the variation in chemistry and inclusion mineralogy of bedrock and placer gold from Fiji. It forms part of a large project, undertaking gold characterisation from a wide range of geological environments in Ecuador, Zimbabwe, Malaysia and Fiji. The work was carried out under the Overseas Development AdministratiodBritish Geological Survey Technology Development and Research programme (Project R5549) as part of the British Government’s provision of technical...

  1. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  2. A comparison of the metallurgical behaviour of dispersion fuels with uranium silicides and U6Fe as dispersants

    International Nuclear Information System (INIS)

    Nazare, S.

    1984-01-01

    In the past few years metallurgical studies have been carried out to develop fuel dispersions with U-densities up to 7.0 Mg U m -3 . Uranium silicides have been considered to be the prime candidates as dispersants; U 6 Fe being a potential alternative on account of its higher U-density. The objective of this paper is to compare the metallurgical behaviour of these two material combinations with regard to the following aspects: (1) preparation of the compounds U 3 Si, U 3 Si 2 and U 6 Fe; (2) powder metallurgical processing to miniature fuel element plates; (3) reaction behaviour under equilibrium conditions in the relevant portions of the ternary U-Si-Al and U-Fe-Al systems; (4) dimensional stability of the fuel plates after prolonged thermal treatment; (5) thermochemical behaviour of fuel plates at temperatures near the melting point of the cladding. Based on this data, the possible advantages of each fuel combination are discussed. (author)

  3. An overview of the oxidation performance of silicide diffusion coatings for vanadium-based alloys for generation IV reactors

    International Nuclear Information System (INIS)

    Chaia, N.; Mathieu, S.; Cozzika, T.; Rouillard, F.; Desgranges, C.; Courouau, J.L.; Petitjean, C.; David, N.; Vilasi, M.

    2013-01-01

    Highlights: ► Diffusion barrier to oxygen were manufactured by pack cementation diffusion process. ► The use of CrSi 2 + Si and TiSi 2 + Si as masteralloys increased the quality of the coating. ► Thermodynamic stability (coatings/vanadium) was obtained at the operating temperature. ► MSi 2 coatings developed low growing oxide scale in air and at low oxygen pressure. ► Coatings presented high compatibility with liquid sodium ( 2 ) for 360 h. - Abstract: This study focuses on the development of new protective coatings for the vanadium-based alloy V-4Cr-4Ti. Halide-activated pack-cementation (HAPC) technique was used to develop V x Si y multilayered diffusive silicide coatings. The outer layers (coatings) were formed of VSi 2 doped with 27 at.% Cr or TiSi 2 . These compounds exhibited a very low oxidation rate at 650 °C, both in air and at a low oxygen pressure (He, 5 ppm O 2 ). The coatings formed mainly of MSi 2 were found to be insensitive to pesting and largely unreactive to liquid sodium ( 2 ) during a 360 h compatibility test at 550 °C.

  4. Mechanical properties of thermoelectric n-type magnesium silicide synthesized employing in situ spark plasma reaction sintering

    Science.gov (United States)

    Muthiah, Saravanan; Singh, R. C.; Pathak, B. D.; Dhar, Ajay

    2017-07-01

    Thermoelectric devices employing magnesium silicide (Mg2Si) offer an inexpensive and non-toxic solution for green energy generation compared to other existing conventional thermoelectric materials in the mid-temperature range. However, apart from the thermoelectric performance, their mechanical properties are equally important in order to avoid the catastrophic failure of their modules during actual operation. In the present study, we report the synthesis of Mg2Si co-doped with Bi and Sb employing in situ spark plasma reaction sintering and investigate its broad range of mechanical properties. The mechanical properties of the sintered co-doped Mg2Si suggest a significantly enhanced value of hardness ~5.4  ±  0.2 GPa and an elastic modulus ~142.5  ±  6 GPa with a fracture toughness of ~1.71  ±  0.1 MPa  √m. The thermal shock resistance, which is one of the most vital parameter for designing thermoelectric devices, was found to be ~300 W m-1, which is higher than most of the other existing state-of-the-art mid-temperature thermoelectric materials. The friction and wear characteristics of sintered co-doped Mg2Si have been reported for the first time, in order to realize the sustainability of their thermoelectric modules under actual hostile environmental conditions.

  5. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  6. Annealing relaxation of ultrasmall gold nanostructures

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Except serving as an excellent gift on proper occasions, gold finds applications in life sciences, particularly in diagnostics and therapeutics. These applications were made possible by gold nanoparticles, which differ drastically from macroscopic gold. Versatile surface chemistry of gold nanoparticles allows coating with small molecules, polymers, biological recognition molecules. Theoretical investigation of nanoscale gold is not trivial, because of numerous metastable states in these systems. Unlike elsewhere, this work obtains equilibrium structures using annealing simulations within the recently introduced PM7-MD method. Geometries of the ultrasmall gold nanostructures with chalcogen coverage are described at finite temperature, for the first time.

  7. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  8. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  9. In situ atomic-level observation of the formation of platinum silicide at platinum-silicon oxide interfaces under electron irradiation

    Directory of Open Access Journals (Sweden)

    Takeshi Nagase

    2018-05-01

    Full Text Available In situ atomic-level observation of the formation of Pt2Si at Pt/SiOx interface by electronic excitation under electron irradiation was performed by using scanning transmission electron microscopy. Scanning of an electron-beam probe stimulates silicide formation at the Pt/SiOx interface; the change in the Pt column corresponding to Pt2Si formation with a crystallographic orientation of (001Pt//(001Pt2Si and [110]Pt//[110]Pt2Si was observed in high-angle annular dark-field images.

  10. Plasmonic Horizon in Gold Nanosponges.

    Science.gov (United States)

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  11. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  12. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  13. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  14. Newly synthesized MgAl2Ge2: A first-principles comparison with its silicide and carbide counterparts

    Science.gov (United States)

    Tanveer Karim, A. M. M.; Hadi, M. A.; Alam, M. A.; Parvin, F.; Naqib, S. H.; Islam, A. K. M. A.

    2018-06-01

    Using plane-wave pseudopotential density functional theory (DFT), the first-principle calculations are performed to investigate the structural aspects, mechanical behaviors and electronic features of the newly synthesized CaAl2Si2-prototype intermetallic compound, MgAl2Ge2 for the first time and the results are compared with those calculated for its silicide and carbide counterparts MgAl2Si2 and MgAl2C2. The calculated lattice constants agree fairly well with their corresponding experimental values. The estimated elastic tensors satisfy the mechanical stability conditions for MgAl2Ge2 along with MgAl2Si2 and MgAl2C2. The level of elastic anisotropy increases following the sequence of X-elements Ge → Si → C. MgAl2Ge2 and MgAl2Si2 are expected to be ductile and damage tolerant, while MgAl2C2 is a brittle one. MgAl2Ge2 and MgAl2Si2 should exhibit better thermal shock resistance and low thermal conductivity and accordingly these can be used as thermal barrier coating (TBC) materials. The Debye temperature of MgAl2Ge2 is lowest among three intermetallic compounds. MgAl2Ge2 and MgAl2Si2 should exhibit metallic conductivity; while the dual characters of weak-metals and semiconductors are expected for MgAl2C2. The values of theoretical Vickers hardness for MgAl2Ge2, MgAl2Si2, and MgAl2C2 are 3.3, 2.7, and 7.7 GPa, respectively, indicating that these three intermetallics are soft and easily machinable.

  15. Superconductivity in ternary rare earth transition metal silicides and germanides with the Sc5Co4Si10-type structure

    International Nuclear Information System (INIS)

    Berg, L.S.

    1986-01-01

    A systematic study of the superconducting and normal state properties of some ternary rare earth transition metal silicides and germanides of the Sc 5 Co 4 Si 10 0-type is reported. Low temperature heat capacity measurements indicate the presence of a complicated phonon density of states in these structurally complex compounds. A better description of the phonon spectrum of the high T/sub c/ materials Sc 5 Rh 4 Si 10 , Sc 5 Ir 4 Si 10 , and Y 5 Os 4 Ge 10 , given by a model proposed by Junod et al., is presented and discussed. The large values of ΔC/γ/sub n/T/sub c/ and the electron-phonon coupling constant for these high T/sub c/ compounds indicate that they are strong-coupled superconductors. Relative to other ternary superconductors, many of these materials have large Debye temperatures. DC electrical resistivity measurements on these compounds show resistivity behavior deviating from those exhibited by simple metals. The rho(T) data for Y 5 Ir 4 Si 10 , Lu 5 Ir 4 Si 10 , and Y 5 Os 4 Ge 10 , indicate the presence of anomalies. Static molar magnetic susceptibility measurements performed on these compounds indicate (1) a small effective magnetic moment of 0.26μ/sub B/ on the Co atom and (2) anomalous behaviors in the Lu 5 Rh 4 Si 10 , Lu 5 Ir 4 Si 10 , Y 5 Ir 4 Si 10 , Lu 5 Ir 4 Ge 10 , and Y 5 Rh 4 Ge 10 data. Lastly, upper critical magnetic field measurements were performed on Sc 5 Co 4 Si 10 , Sc 5 Rh 4 Si 10 , Sc 5 Ir 4 Si 10 , Lu 5 Rh 4 Si 10 , Lu 5 Ir 4 Si 10 , and Y 5 Os 4 Ge 10

  16. Ligations of Gold Atoms with Iron Porphyrin

    DEFF Research Database (Denmark)

    Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens

    Gold is an exotic material with d-electrons deciding electronic mappings andconfigurations of adsorbed molecules. The specific interaction of Au atoms and S-, Ncappedmolecules make gold nanoparticles widely applied in the medicine transport andimmunoassay. Density functional theory demonstrates t...

  17. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    . In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  18. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  19. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  20. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  1. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  2. Cancer caused by radioactive gold rings

    International Nuclear Information System (INIS)

    Callary, E.M.

    1989-01-01

    Two recent cases of skin cancer caused by radioactive gold rings are described. The gold was contaminated with radon daughters from hollow goldseeds used to hold radon, back in the 1930s or possibly later. Other radioactive gold rings are probably being worn. The Canadian AECB offers free testing

  3. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  4. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  5. Bimetallic low thermal-expansion panels of Co-base and silicide-coated Nb-base alloys for high-temperature structural applications

    International Nuclear Information System (INIS)

    Rhein, R.K.; Novak, M.D.; Levi, C.G.; Pollock, T.M.

    2011-01-01

    Research highlights: → Low net thermal expansion bimetallic structural lattice constructed. → Temperatures on the order of 1000 deg. C reached. → Improved silicide coating for niobium alloy developed. - Abstract: The fabrication and high temperature performance of low thermal expansion bimetallic lattices composed of Co-base and Nb-base alloys have been investigated. A 2D sheet lattice with a coefficient of thermal expansion (CTE) lower than the constituent materials of construction was designed for thermal cycling to 1000 deg. C with the use of elastic-plastic finite element analyses. The low CTE lattice consisted of a continuous network of the Nb-base alloy C-103 with inserts of high CTE Co-base alloy Haynes 188. A new coating approach wherein submicron alumina particles were incorporated into (Nb, Cr, Fe) silicide coatings was employed for oxidation protection of the Nb-base alloy. Thermal gravimetric analysis results indicate that the addition of submicron alumina particles reduced the oxidative mass gain by a factor of four during thermal cycling, increasing lifetime. Bimetallic cells with net expansion of 6 x 10 -6 /deg. C and 1 x 10 -6 /deg. C at 1000 deg. C were demonstrated and their measured thermal expansion characteristics were consistent with analytical models and finite element analysis predictions.

  6. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  7. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  8. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  9. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  10. The heat capacity and entropy of the lithium silicides Li17Si4 and Li16.42Si4 in the temperature range from (2 to 873) K

    International Nuclear Information System (INIS)

    Thomas, Daniel; Zeilinger, Michael; Gruner, Daniel; Hüttl, Regina; Seidel, Jürgen; Wolter, Anja U.B.; Fässler, Thomas F.; Mertens, Florian

    2015-01-01

    Highlights: • High quality experimental heat capacities of the new lithium rich silicides Li 17 Si 4 and Li 16.42 Si 4 are reported. • Two different calorimeters have been used to cover the broad temperature range from (2 to 873) K. • Samples were prepared and characterized (XRD) by the original authors who firstly described these new silicide phases in 2013. • Supply of polynomial heat capacity functions for four temperature intervals. • Calculation of standard entropies and entropies of formation of the lithium silicides. - Abstract: This work presents the heat capacities and standard entropies of the recently described lithium rich silicide phases Li 17 Si 4 and Li 16.42 Si 4 as a function of temperature in the range from (2 to 873) K. The measurements were carried out using two different calorimeters. The heat capacities were determined in the range from T = (2 to 300) K by a relaxation technique using a Physical Properties Measurement System (PPMS) from Quantum Design, and in the range from T = (283 to 873) K by means of a Sensys DSC from Setaram applying the C p -by-step method. The experimental data are given with an accuracy of (1 to 2)% above T = 20 K and the error increases up to 7% below T = 20 K. The results of the measurements at low temperatures permit the calculation of additional thermodynamic parameters such as the standard entropy as well as the temperature coefficients of electronic and lattice contributions to the heat capacity. Additionally, differential scanning calorimetric (DSC) measurements were carried out to verify the phase transition temperatures of the studied lithium silicide phases. The results represent a significant contribution to the data basis for thermodynamic calculations (e.g. CALPHAD) and to the understanding of the phase equilibria in the (Li + Si) system, especially in the lithium rich region

  11. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  12. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-01-01

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni 2 (Mo,Cr) 4 (Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni 3 (Mo,Cr) 3 (Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal

  13. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  14. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  15. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  16. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  17. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...... images and then to reappear by changing the scanning force. By combining contact mode AFM imaging and local force measurements, the interaction between the nanobubbles and the probe can be analyzed and give information about the characteristics of nanobubbles. A model of the forces between the AFM probe...

  18. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf

  19. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  20. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  1. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  2. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  3. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U 3 O 8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U 3 O 8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  4. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  5. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  6. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  7. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  8. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  9. Geochemical indicators of gold ore fields

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.G.

    1995-01-01

    The principles of selection of indicators for genetic reconstructions and prognostic valuations of gold mineralization of diverse morphological and geochemical types have been substantiated. The neutron-activation analysis with radiochemical separation and detection limit of 1-10 -8 %, instrumental neutron-activation analysis and atomic-absorption analysis are the main methods of determination of gold low contents in the rocks, as well as diverse elements, including transition, rare earth elements and tellurium, in gold. 50 refs.; 1 fig.; 3 tabs

  10. Glyco-gold nanoparticles: synthesis and applications

    OpenAIRE

    Compostella, Federica; Pitirollo, Olimpia; Silvestri, Alessandro; Polito, Laura

    2017-01-01

    Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco ...

  11. Glyco-gold nanoparticles: synthesis and applications

    Directory of Open Access Journals (Sweden)

    Federica Compostella

    2017-05-01

    Full Text Available Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.

  12. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  13. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  14. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  15. Gold Rushes and mineral property rights allocation

    DEFF Research Database (Denmark)

    Sinding, Knud

    , is to handle the other projects that are generated by the "gold rush" informational externalities created by the initial discovery. At the core of the problems of dealing with a gold rush situation is both the informational externality and an institutional framework which is not designed to deal with large...... influxes of prospectors competing for a very limited area. This paper charts significant gold rush events in the mineral industry in recent decades and uses preliminary data on the areas impacted by these gold rushes to argue that many mineral tenure systems should be modified in order to be better able...

  16. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  17. Analysis of gamma dose for 4,8 gU/cm3 density silicide core at the RSG-GAS reactor using MCNP code

    International Nuclear Information System (INIS)

    Ardani

    2011-01-01

    Radiation safety analysis should be done following of substitution of fuel density of 2.96 gU/cc to density of 4,8 gU/cc silicide fuels for the RSG-GAS reactor. MCNP-5 code has been used to perform gamma dose calculation of the RSG-GAS reactor. Gamma radiation source at reactor consists of capture gamma rays, prompt fission gamma rays, and gamma rays of decay of fission and activation products. The strength of the prompt fission gamma rays is obtained by gamma releases of fission process of U-235 and reactor power of 30 MWt., during 46,6 days operation. Radiation dose is calculated at the experimental hall by detection point at the surface of outer of biological shielding and the operation hall by detection point at the top of the pool. The calculation is conducted at reactor on the normal operation and on the worst postulated accident causing the water level at the pool decreases. Calculation result shows that the biggest source strength of gamma rays come from the decay process. The highest calculated dose at the experiment hall is 4,07x10 -3 μSv/h, far from the maximum external dose permitted 25 μSv/h. The highest calculated dose at the operation hall is 19.98 μSv/h. Even though the calculated dose is still acceptable but this is close to the maximum permitted dose for worker. It concluded that loading of 4,8 gU/cc silicide fuel for the RSG-GAS still safe. (author)

  18. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  19. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  20. Geochemical methodology for gold prospect ion in Uruguay

    International Nuclear Information System (INIS)

    Spangenber, J.

    1987-01-01

    This work is about the history of gold prospection in Uruguay. In this study there are considered the geochemical aspects, the gold performance, the applicability to mining prospection and the gold prospection aluvionar

  1. Gold emissivities for hydrocode applications

    Science.gov (United States)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-10-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.

  2. Gold emissivities for hydrocode applications

    International Nuclear Information System (INIS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-01-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroes superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroes emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations

  3. Paper Money but a Gold Debt. Italy in the Gold Standard

    OpenAIRE

    Giuseppe Tattara; or consequences)

    2002-01-01

    During the 52 years between the Unification of the Kingdom of Italy and World War 1, the lira was legally convertible into metal for a limited period of time. Although not formally committed to gold, the lira exchange towards the gold standard countries proved remarkably stable, \\223shadowing\\224 gold. It is widely claimed that being one of the successful members of the gold standard circle entailed a number of advantages. If the lira was closely linked to gold, suggesting that there was only...

  4. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  5. Gold deposits of the southern Piedmont

    Science.gov (United States)

    Pardee, J.T.; Park, C.F.

    1948-01-01

    This report deals chiefly with the gold mines in the Southern Appalachian gold belt whose workings were accessible at the time of examination, but it also · summarizes available information concerning many mines that were not accessible. Most of the mines lie within a belt, 10 to 100 miles wide, that extends

  6. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  7. Ionization model for nickel-like gold

    International Nuclear Information System (INIS)

    Busquet, M.; Bruneau, J.

    1986-04-01

    Before we build an extensive population model for gold ionized 49 to 52 times, we have studied with a more simple model the effect of accounting for cascades (or dielectronic recombination) and Δn = 0 transitions. These transitions allow some understanding of typical feature of experimental gold spectra

  8. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  9. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  10. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Numerical simulations of nanostructured gold films

    DEFF Research Database (Denmark)

    Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.

    2017-01-01

    We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...

  12. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  13. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  14. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  15. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.

    Science.gov (United States)

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.

  16. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  17. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  18. Worth their weight in gold

    International Nuclear Information System (INIS)

    Van Ryssen, E.

    1986-01-01

    A radiotherapeutic method of treating tumours in, on and around the eye, developed and improved over more than a decade of research at the University of Cape Town's Medical School and at the city's Groote Schuur Hospital, has won worldwide recognition. A problem when irradiating eye tumours is that the rays can damage surrounding tissues. Professor Sealy's team overcome this problem by using tailor-made gold or stainless steel shields moulded indiridually to fit the curve of the eyeball of each patient. Depending on the location of the tumour, small radioactive seeds of iodine 125 are placed on the inner or outer curve of the shield in such a way that their rays are confined to the desired location. The number and position of the seeds is worked out to give the desired dose of radiation

  19. Gold nanoparticles: generation and characterization

    International Nuclear Information System (INIS)

    Dey, G.R.

    2013-07-01

    In this presentation we report the reduction of Au 3+ through chemical and free radical (e solv - ) reactions both in non-aqueous and aqueous media. In chemical reduction, the spectral nature in ascorbic acid (AA) and citric acid (CA) systems was different. The band intensity of gold nanoparticles was lower in AA system. While in free radical reaction, the yield of nanoparticles was pure i.e. free from excess reactants. Under the study 60-200 nm size nanoparticles were generated, which are inert to oxygen. Using pulse radiolysis technique, the initial rate for e solv - reaction with Au 3+ was determined to be 7.6 x 10 9 M -1 s -1 . (author)

  20. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  1. Intensification Behavior of Mercury Ions on Gold Cyanide Leaching

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-01-01

    Full Text Available Cyanidation is the main method used to extract gold from gold raw materials; however, a serious problem with this method is the low leaching rate. In order to improve gold leaching, the intensification behavior of mercury ions on gold cyanide leaching, for two types of materials, sulphide gold concentrate and oxide gold ore, was investigated. The results showed that mercury ions, with only a 10−5 M dosage, could significantly intensify leaching and gold recovery. The dissolution behavior of gold plate was also intensified by 10−5 M mercury ions. Microstructure analysis showed that mercury ions intensified the cyanidation corrosion of the gold surface, resulting in a loose structure, where a large number of deep ravines and raised particles were evident across the whole gold surface. The loose structure added contact surface between the gold and cyanide, and accelerated gold dissolution. Moreover, mercury ions obstructed the formation of insoluble products, such as AuCN, Au(OHCN, and Au(OHx, that lead to a passivation membrane on the gold surface, reducing contact between the gold and cyanide. These effects, brought about by mercury ions, change the structure and product of the gold surface during gold cyanidation and promote gold leaching.

  2. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  3. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  4. Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate

    Science.gov (United States)

    Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan

    Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.

  5. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  6. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  7. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  8. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  9. Nature vs. nurture: gold perpetuates "stemness".

    Science.gov (United States)

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  10. Urban artisanal gold shops and mercury emissions

    International Nuclear Information System (INIS)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G.

    2008-01-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs

  11. Microstructure and growth kinetics of nickel silicide ultra-thin films synthesized by solid-state reactions

    Science.gov (United States)

    Coia, Cedrik

    substrate is not a necessary condition for θ-Ni2Si to form. Activated CMOS dopants and alloying impurities delay the growth of all Ni-rich compounds and eventually suppress the formation of θ-Ni2Si possibly because of a limited solubility. Impurities implanted without subsequent re-crystallization anneals stabilize the compound partly through the presence of an amorphous interface, at least at the beginning of the reaction. A quantitative investigation of the growth kinetics of θ-Ni 2Si on undoped Si(001) reveals two distinct stages which are well described by a model incorporating 2D nucleation-controlled growth at the silicide/Si interface and the non-planar diffusion-controlled penetration of θ-Ni 2Si in the overlying delta-Ni2Si grains. Despite the very good fit of the model to our data, we cannot rule out the possibility that the second stage consists of a 1D diffusion-controlled planar growth during which the composition of the non-stoichiometric θ-Ni2Si changes. In F-doped samples, the second stage corresponds to a 1D diffusion-controlled growth in the absence of delta-Ni2Si and Ni, suggesting a possible compositional change during growth. The results presented in this thesis show that thanks to the use of powerful in situ monitoring techniques we have observed the kinetic competition between different growing compounds in the early stages of their growth. This competition has been predicted by many growth models, yet to our knowledge it has not been observed so far. We also have shown that this competition can lead to the lateral co-existence of several compounds in the same layer whereas most solid-state reaction models assume or require a layer-by-layer co-existence scheme. Finally, we show that the combination of (i) strong interfacial concentration gradients, (ii) structural similarities between delta-Ni 2Si, NiSi and θ-Ni2Si, and (iii) the ability of the latter to sustain vacancies and to nucleate in concentration gradients lead to a very peculiar

  12. Phytomining for Artisanal Gold Mine Tailings Management

    Directory of Open Access Journals (Sweden)

    Baiq Dewi Krisnayanti

    2016-08-01

    Full Text Available Mine tailings are generally disposed of by artisanal and small scale gold miners in poorly constructed containment areas and this leads to environmental risk. Gold phytomining could be a possible option for tailings management at artisanal and small-scale gold mining (ASGM locations where plants accumulate residual gold in their above ground biomass. The value of metal recovered from plants could offset some of the costs of environmental management. Getting gold into plants has been repeatedly demonstrated by many research groups; however, a simple working technology to get gold out of plants is less well described. A field experiment to assess the relevance of the technology to artisanal miners was conducted in Central Lombok, Indonesia between April and June 2015. Tobacco was planted in cyanidation tailings (1 mg/kg gold and grown for 2.5 months before the entire plot area was irrigated with NaCN to induce metal uptake. Biomass was then harvested (100 kg, air dried, and ashed by miners in equipment currently used to ash activated carbon at the end of a cyanide leach circuit. Borax and silver as a collector metal were added to the tobacco ash and smelted at high temperature to extract metals from the ash. The mass of the final bullion (39 g was greater than the mass of silver used as a collector (31 g, indicating recovery of metals from the biomass through the smelt process. The gold yield of this trial was low (1.2 mg/kg dry weight biomass concentration, indicating that considerable work must still be done to optimise valuable metal recovery by plants at the field scale. However, the described method to process the biomass was technically feasible, and represents a valid technique that artisanal and small-scale gold miners are willing to adopt if the economic case is good.

  13. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  14. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  15. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  16. The giant Kalgoorlie Gold Field revisited

    Directory of Open Access Journals (Sweden)

    Noreen Mary Vielreicher

    2016-05-01

    Direct timing constraints on gold mineralization indicate that Fimiston- and Mt Charlotte-style mineralization formed within a relative short period of time around 2.64 Ga, and, as such, support a model of progressive deformation of a rheologically heterogeneous rock package late in the structural history. Fluid characteristics, combined with the structural, metamorphic and absolute timing, support description of gold mineralization at the Golden Mile as orogenic and mesozonal, and this allows direct correlation with orogenic gold deposits worldwide, which classically formed during accretion along convergent margins throughout Earth history.

  17. Nondestructive analysis of the gold quarter liras

    International Nuclear Information System (INIS)

    Cakir, C.; Guerol, A.; Demir, L.; Sahin, Y.

    2009-01-01

    In this study, we have prepared seven Au-Cu standards in the concentration range of 18-24 (as carat) for nondestructive control of gold quarter liras. Some calibration curves for quantitative analysis of Au in the gold quarter liras that commercially present in Turkey have been plotted using these standard samples. The characteristic X-rays of Au and Cu emitted from these standard samples and the test sample with known composition are recorded by using a Ge(Li) detector. These calibration curves provide a nondestructive analysis of gold quarter liras with the uncertainties about 1.18%. (author)

  18. Refractory concentrate gold leaching: Cyanide vs. bromine

    Science.gov (United States)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  19. Gold's monetary roll will be strengthened - Plumbridge

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Delivering his Presidential address at the Chamber's annual general meeting, Mr Plumbridge said the gold market would enter a new phase and listed seven reasons why gold's monetary role would be strengthened. There was a dramatic increase in the demand for gold jewellery. He also forecasted that South African uranium production would again attain its former peak annual production of about 6000t. There is an essential need for a sustained growth in nuclear power and the prospects for uranium mining industry remain encouraging

  20. Gold nanoparticles extraction from dielectric scattering background

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  1. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  2. Nuclear analyses of the Pietroasa gold hoard

    International Nuclear Information System (INIS)

    Cojocaru, V.; Besliu, C.

    1999-01-01

    By means of nuclear analyses the concentrations of Au, Ag, Cu, Ir, Os, Pt, Co and Hg were measured in the 12 artifacts of the gold hoard discovered in 1837 at Pietroasa, Buzau country in Romania. The concentrations of the first four elements were used to compare different stylistic groups assumed by historians. Comparisons with gold nuggets from the old Dacian territory and gold Roman imperial coins were also made. A good agreement was found with the oldest hypothesis which considers that the hoard is represented by three styles appropriated mainly by the Goths. (author)

  3. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    Science.gov (United States)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  4. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    Science.gov (United States)

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  5. Effects of dissolucytotic gold ions on recovering brain lesions.

    Science.gov (United States)

    Danscher, Gorm; Larsen, Agnete

    2010-04-01

    Recent experimental research has shown that metallic gold releases charged gold atoms when placed intracerebrally and that the liberated gold ions affect inflammation in the brain. The observations suggest that metallic gold can be used as a safe suppressor of inflammation in the central nervous system.

  6. Electroplating of gold using a sulfite-based electrolyte

    NARCIS (Netherlands)

    Smalbrugge, E.; Jacobs, B.; Falcone, S.; Geluk, E.J.; Karouta, F.; Leijtens, X.J.M.; Besten, den J.H.

    2000-01-01

    Electroplating of gold is often used in optoelectronic and microelectronic devices for air-bridges, heat-sinks or gold-bumps for flip-chip techniques. The gold-cyanide electrolytes, which are commonly used in gold-electroplating, are toxic and attack resist patterns causing cracks during the plating

  7. Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions

    International Nuclear Information System (INIS)

    Rao, K.P.; Prasad, Y.V.R.K.

    2010-01-01

    Research highlights: Mechanical alloying of Ti and Al with small additions of Si and C was used to synthesize metastable phases, which were incorporated in Ti-Al matrices using powder metallurgy techniques. These metastable phases (or also called as precursors), at higher temperatures, transformed in situ into very fine hard reinforcements that develop coherent interface with the surrounding matrix. Typically, Ti5Si3 and TiC are the end products after the synthesis of composite. In this study, hot working behavior of such composites has been studied using the concepts of processing maps to identify the safe and best processing conditions that should be adopted while forming this composite. Also, kinetic analysis of hot deformation has been performed to identify the dominant deformation mechanism. The results are compared with that of base TiAl matrix. The powder metallurgy route offers the advantage of working the material at much lower temperatures compared to the traditional cast and forge route. - Abstract: A titanium aluminide alloy composite with in situ carbide and silicide dispersions has been synthesized by mixing 90% of matrix with elemental composition of 46Ti-46Al-4Nb-2Cr-2Mn and 10% precursor with composition 55Ti-27Al-12Si-6C prepared by mechanical alloying. The powder mixture was blended for 2 h followed by hot isostatic pressing (HIP) at 1150 deg. C for 4 h under a pressure of 150 MPa. In addition to TiAl alloy matrix, the microstructure of the HIP'ed billet showed a small volume fraction of Nb-rich intermetallic phase along with carbide and silicide dispersions formed in situ during HIP'ing. Cylindrical specimens from the HIP'ed billets were compressed at temperatures and strain rates in the ranges of 800-1050 deg. C and 0.0001-1 s -1 . The flow curves exhibited flow softening leading to a steady-state flow at strain rates lower than 0.01 s -1 while fracture occurred at higher strain rates. The processing map developed on the basis of flow stress at

  8. Neutronic Analysis of the RSG-GAS Compact Core without CIP Silicide 3.55 g U/cc and 4.8 g U/cc

    International Nuclear Information System (INIS)

    Jati S; Lily S; Tukiran S

    2004-01-01

    Fuel conversion from U 3 O 8 -Al to U 3 Si 2 -Al 2.96 g U/cc density in the RSG-GAS core had done successfully step by step since 36 th core until 44 th core. So that, since the 45 th core until now (48 th core) had been using full of silicide 2.96 g U/cc. Even though utilization program of silicide fuel with high density (3.55 g U/cc and 4.8 g U/cc) and optimize operation of RSG-GAS core under research. Optimalitation of core with increasing operation cycle have been analyzing about compact core. The mean of compact core is the RSG-GAS core with decrease number of IP or CIP position irradiation. In this research, the neutronic calculation to cover RSG-GAS core and RSG-GAS core without CIP that are using U 3 Si 2 -Al 2.96 g U/cc, 3.55 g U/cc and 4.8 g U/cc had done. Two core calculation done at 15 MW power using SRAC-ASMBURN code. The calculation result show that fuel conversion from 2.96 g U/cc density to 3.55 g U/cc and 4.8 g U/cc will increasing cycle length for both RSG-GAS core and RSG-GAS compact core without CIP. However, increasing of excess reactivity exceeded from nominal value of first design that 9.2%. Change of power peaking factor is not show significant value and still less than 1.4. Core fuelled with U 3 Si 2 -Al 4.8 g U/cc density have maximum discharge burn-up which exceeded from licensing value (70%). RSG-GAS compact core without CIP fuelled U 3 Si 2 -Al 2.96 g U/cc have longer cycle operation then RSG-GAS core and fulfil limitation neutronic parameter at the first design value. (author)

  9. A study on gold detection in Wenyu gold mine with XRF techniques

    International Nuclear Information System (INIS)

    Liu Liuchun

    1988-01-01

    A portable X ray fluorescence analyzer was used for detecting fluorcescent X rays from the elements associated with gold ores. Fe, As and Ni were chosen to be the indicator elements to analyse rock samples in Wenyu gold mine. Optimum indicators were determined, and it had proved to be successful to detect gold indirectly by measuring the yields of characteristic X rays of the elements. The method provided also valuable information on geology mapping and deposits forming environment

  10. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  11. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  12. EOP Gold Coral (Gerardia sp.) Growth Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gold coral (Gerardia sp.) trees that were inspected years earlier on Pisces submersible dives were revisited and their change in size measured. The fishery for...

  13. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco; Yapici, Tahir; Peinemann, Klaus-Viktor

    2014-01-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer

  14. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    standard Wilhelmy plate was used for surface pressure sensing. Multilayer ... carried out on a JEOL model 1200EX instrument operated at an accelerating voltage of ... the gold nanoparticles within domains (and reorganization of the domains ...

  15. A new route to gold nanoflowers

    Science.gov (United States)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  16. Deep gold mine fracture zone behaviour

    CSIR Research Space (South Africa)

    Napier, JAL

    1998-12-01

    Full Text Available The investigation of the behaviour of the fracture zone surrounding deep level gold mine stopes is detailed in three main sections of this report. Section 2 outlines the ongoing study of fundamental fracture process and their numerical...

  17. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...

  18. Adsorption-induced restructuring of gold nanochains

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet

    2002-01-01

    The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the st......The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...... with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains...

  19. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  20. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    thods of reduction of metal ions using plants or microorganisms are often ... have several advantages over bacteria, they are often pre- ferred. ... in static condition for a period of 7 days. ... work was focused on the production of intracellular gold.

  1. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  2. The Modern Monetary System and Gold

    Directory of Open Access Journals (Sweden)

    N N Rubtsov

    2013-12-01

    Full Text Available The article considers the nature of modern money, analyzes the mechanism of its creation, showing that it is basically generated by credit and the principle of partial bank reserve. The article draws comparative parallels between trade money based on gold and contemporary, credit money; the author quotes leading bankers and finance experts on the need for partial return to the principles of functioning of the gold standard as the most effective institute of regulating the monetary system in society.

  3. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  4. Synthesis of radioactive gold nanoparticle in surfactant medium

    International Nuclear Information System (INIS)

    Swadesh Mandal

    2014-01-01

    The present study describes the synthesis of radioactive gold nanoparticle in surfactant medium. Proton irradiated stable 197 Au and radioactive 198 Au were simultaneously used for production of radioactive gold nanoparticle. Face centered cubic gold nanoparticles with size of 4-50 nm were found in proton irradiated gold foil. However, the size of nanoparticle varies with pH using both stable and radioactive gold. (author)

  5. Study on Sumbawa gold recovery using centrifuge

    Science.gov (United States)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  6. Analysis on the Impact of the Fluctuation of the International Gold Prices on the Chinese Gold Stocks

    Directory of Open Access Journals (Sweden)

    Jiankang Jin

    2014-01-01

    Full Text Available Five gold stocks in Chinese Shanghai and Shenzhen A-share and Comex gold futures are chosen to form the sample, for the purpose of analysing the impact of the fluctuation of the international gold prices on the gold stocks in Chinese Shanghai and Shenzhen A-share. Using the methods of unit root test, Granger causality test, VAR model, and impulse response function, this paper has analysed the relationship between the price change of the international gold futures and the price fluctuation of gold stocks in Chinese Shanghai and Shenzhen comprehensively. The results suggest the fluctuation of the international gold futures has a strong influence on the domestic futures.

  7. Gold Nanocages for Biomedical Applications**

    Science.gov (United States)

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  8. Gold Nanocages for Biomedical Applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-10-17

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl(4). The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy.

  9. The Kolar Gold Field experiment

    International Nuclear Information System (INIS)

    Sreekantan, B.V.

    1982-01-01

    Meson theory was propounded to explain the nuclear force which holds neutrons and protons inside the nucleus. Subsequently, quark theory was put forward to bring some order into an enormously large number of fundamental particles discovered in the hadron family. These two theories are briefly explained. The gravitational force, the electromagnetic force, the weak nuclear force and the strong nuclear force are the basic forces which determine the behaviour of fundamental particles when they are in close proximity. If the last three of the above-mentioned four forces are one or just different aspects of a single force, quarks and leptons can be mingled in the same theoretical framework indicating the non-conservation of baryon number and the spontaneous decay of the proton into leptons. In order to test the last possibility i.e. proton decay, an experiment has been set up in the Kolar Gold Field at a depth of 2300 metres in India. 1650 gas proportional counters are sandwiched between iron plates. The total amount of iron in the form of iron plates and walls of the counters is 140 tons. In this experiment, nuclei of iron are serving as the source of protons and neutrons and the depth eliminates the background events which mimic proton decay. The amount of iron used in the experiment i.e. 140 tons is more than enough to obtain evidence of 10 proton decay events in a year, assuming that the lifetime of proton is 10 30 years or below. (M.G.B.)

  10. Curcumin: the Indian solid gold.

    Science.gov (United States)

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

  11. Synthesis, Characterization, and Mechanism of Formation of Janus-Like Nanoparticles of Tantalum Silicide-Silicon (TaSi2/Si

    Directory of Open Access Journals (Sweden)

    Andrey V. Nomoev

    2014-12-01

    Full Text Available Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi2/Si were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM, X-ray diffraction (XRD, selective area electron diffraction (SAED, and energy dispersive X-ray fluorescence (EDX analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi2/Si nanoparticles is discussed.

  12. Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)

    Science.gov (United States)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.

    2017-10-01

    In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.

  13. Irradiation of an uranium silicide prototype in RA-3 reactor; Irradiacion de un elemento combustible prototipo de siliciuro de uranio en el RA-3

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, R; Estrik, G; Notari, C [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Reactores y Centrales Nucleares

    1997-12-31

    The factibility of irradiation of an uranium silicide (U{sub 3} Si{sub 2}) prototype in the RA-3 reactor was studied. The standard RA-3 fuel element uses U{sub 3} O{sub 8} as fissible material. The enrichment of both standard and prototype is the same: 20% U{sub 235} and also the frame geometry and number of plates is identical. The differences are in the plate dimensions and the fissile content which is higher in the prototype. The cooling conditions of the core allow the insertion of the prototype in any core position, even near the water trap, if the overall power is kept below 5Mw. Nevertheless, the recommendation was to begin irradiation near the periphery and later on move the prototype towards more central positions in order to increase the burnup rate. The prototype was effectively introduced in a peripheral position and the thermal fluxes were measured between plates with the foil activation technique. These were also evaluated with the fuel management codes and a reasonable agreement was found. (author). 5 refs., 3 figs., 3 tabs.

  14. Subchronic inhalation toxicity of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Chung Yong

    2011-05-01

    Full Text Available Abstract Background Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME of gold nanoparticles remain unclear. Results The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males and 145 g (females, were divided into 4 groups (10 rats in each group: fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 μg/m3, middle-dose (2.36 × 105 particle/cm3, 0.38 μg/m3, and high-dose (1.85 × 106 particle/cm3, 20.02 μg/m3. The animals were exposed to gold nanoparticles (average diameter 4-5 nm for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH, and total protein were also monitored in a cellular bronchoalveolar lavage (BAL fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue

  15. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  16. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  17. Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madani

    2011-12-01

    Full Text Available This research aims to generate a favorability map for gold exploration at the Bulghah gold mine area using integration of geo-datasets within a GIS environment. Spatial data analyses and integration of different geo-datasets are carried out based on knowledge-driven and weighting technique. The integration process involves the weighting and scoring of different layers affecting the gold mineralization at the study area using the index overlay method within PCI Geomatica environment. Generation of the binary predictor maps for lithology, lineaments, faults and favorable contacts precede the construction of the favorability map. About 100 m buffer zones are generated for favorable contacts, lineaments and major faults layers. Internal weighting is assigned to each layer based on favorability for gold mineralization. The scores for lithology, major faults, lineaments and favorable contacts layers in the constructed favorability map are 50%, 25%, 10% and 15%, respectively. Final favorability map for the Bulghah gold mine area shows the recording of two new sites for gold mineralization located at the northern and southern extensions of tonalite–diorite intrusions. The northern new site is now exploited for gold from the Bulghah North mine. The southern new site is narrow and small; its rocks resemble those of the Bulghah gold mine.

  18. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  19. Beneficiation of the gold bearing ore by gravity and flotation

    Science.gov (United States)

    Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven

    2012-02-01

    Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.

  20. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  1. Moessbauer study of the chemical state of gold in gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.H.; Regnard, J.-R.

    1986-01-01

    Information on the chemical state of gold in gold ores has been obtained by 197 Au Moessbauer spectroscopy in cases where the state of this element cannot be determined by such standard methods as optical or electron microscopy. Ore concentrates consisting mainly of pyrite or arsenopyrite and roasted ore and matte samples were studied. The results yielded directly the respective amounts of metallic and chemically bound gold. Unless the gold is metallic, its chemical state in the ores turns out to be different from that in the minerals studied so far as reference materials. The chemical processes taking place during various treatments of the ores, such as roasting or leaching, can also be followed by Moessbauer spectroscopy. It is hoped that Moessbauer spectroscopy will eventually facilitate the development of more efficient methods of gold extraction

  2. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  3. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  4. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  5. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  6. Authentication of gold products by nuclear methods

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1985-01-01

    The falsification of valuable gold items is a threat to the authenticity of gold products. To solve this, there is a continuous search for reliable, practicle and cost-effective means of identifying forgeries. Because nuclear techniques as applied to elemental analysis have a high degree of specificity, are non-destructive and permit the availability of results within a relatively short time, a few of these techniques were investigated and reviewed in the article. Work on some promising methods in the author's laboratory is also discussed. Constraints such as those imposed by the time taken by the measurement, negligible residual activity within a relatively short time were also considered. The techniques that were investigated include: the transmission of electromagnetic radiation through a medium; scattering of electromagnetic radiation; x-ray fluorescence analysis; neutron activation analysis; activation by the inelastic scattering of gamma radiation; activation by the inelastic scattering of fast neutrons; absorption and scattering of fast neutrons; self-attenuation of gamma radiation. The shape of the object being investigated, should also be considered. It is concluded that a system based on the inelastic scattering of neutrons emitted by a 241 Am/Be source (halflife = 433 years) is practical and capable of authenticating gold and gold alloy coins such as Krugerrands. The feasibility study on the assaying of gold jewelry by means of nuclear methods also showed it to be impractical

  7. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  8. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Science.gov (United States)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  9. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  10. Gold prices: Analyzing its cyclical behavior

    Directory of Open Access Journals (Sweden)

    Martha Gutiérrez

    2013-07-01

    Full Text Available Gold is a commodity that is seen as a safe haven when a financial crisis strikes, but when stock markets are prosperous, these are more attractive investment alternatives, and so the gold cycle goes on and on. The DJIA/GF (Dow Jones Industrial Average and Gold Fix ratio is chosen to establish the evolution of gold prices in relation to the NYSE. This paper has two goals: to prove that the DJIA/GF ratio is strongly cyclical by using Fourier analysis and to set a predictive neural networks model to forecast the behavior of this ratio during 2011-2020. To this end, business cycle events like the Great Depression along with the 1970s crisis, and the 1950s boom along with the world economic recovery of the 1990s are contrasted in light of the mentioned ratio. Gold prices are found to evolve cyclically with a dominant period of 37 years and are mainly affected by energy prices, financial markets and macroeconomic indicators.

  11. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  12. Radiofrequency Heating Pathways for Gold Nanoparticles

    Science.gov (United States)

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  13. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  14. Precipitation of lamellar gold nanocrystals in molten polymers

    International Nuclear Information System (INIS)

    Palomba, M.; Carotenuto, G.

    2016-01-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  15. Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon

    Science.gov (United States)

    Vishiti, A.; Suh, C. E.; Lehmann, B.; Egbe, J. A.; Shemang, E. M.

    2015-11-01

    The Batouri area hosts lode-gold mineralization under several-m-thick lateritic cover. Pitting to bed rock on a geochemical Au anomaly defined from previous reconnaissance soil sampling identified five horizons ranging from saprock at the base to laterite at the top. Analysis of bulk samples from each horizon by fire assay shows that most of the horizons are barren although 119 ppb and 48 ppb Au values were obtained from one laterite horizon and one saprolite horizon, respectively, from two separate pits. All the horizons were panned and particulate gold was also recovered only from these two horizons. The gold grains from both horizons are morphologically and compositionally indistinguishable with rare quartz, pyrite and galena inclusions. The grains have irregular, sub-rounded, bean to elongated shapes and they show a remarkable core-rim zonation. Electron microprobe analysis of the grains recorded high gold content in the rims (86.3-100 wt%) and along fissures within the grains (95.1-100 wt%). The cores are relatively Ag rich (11.8-14 wt% Ag) while the rims (0.63-13.7 wt% Ag, most of the values fall within the lower limit of this range) and fissures (0.03-5.02 wt% Ag) are poor in Ag. The low Ag concentration in the rims and along fissures is attributed to preferential leaching of Ag; a process recognized in gold grains and platiniferous alloys from alluvia. The core composition of the grains is similar to that of primary gold composition in the bedrock. These results show that gold in the soil is relic particulate gold derived from the primary source with no evidence of secondary gold precipitation in the weathering cycle. In all the pits no horizon was systematically enriched in gold suggesting there has been no chemical remobilization of gold in this environment. Rather the dispersion of gold here is in the particulate form. Therefore combining particulate gold features with assay data is relevant to exploration in such tropical environments.

  16. Geomicrobial Optical Logging Detectors (GOLD)

    Science.gov (United States)

    Bramall, N. E.; Stoker, C. R.; Price, P. B.; Coates, J. D.; Allamandola, L. J.; Mattioda, A. L.

    2008-12-01

    to in situ processes. 4) Temperature and Oxygen Sensors: The ambient temperature will be recorded as well as the presence of oxygen. Oxygen presence can be measured using a fluorescence quenching fiber optic probe to avoid interference from other gases. We forsee that this technology will enable experiments including studies of gene transfer, microbial habitat, in situ stratigraphy and hydrological processes. In addition, though designed to scan borehole walls, GOLD could be used to scan core samples as they are recovered for rapid quantification and analysis in order to discover samples of particular interest that could then be prioritized for more in-depth, traditional analysis.

  17. Development of new ORIGEN2 data library sets for research reactors with light water cooled oxide and silicide LEU (20 w/o) fuels based on JENDL-3.3 nuclear data

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Sembiring, Tagor Malem

    2013-01-01

    Highlights: • We developed new ORIGEN2 data library sets for research reactors based on JENDL-3.3. • The sets cover oxide and silicide LEU fuels with meat density up to 4.74 g U/cm 3 . • Two kinds of data library sets are available: fuel region and non-fuel regions. • We verified the new data library sets with other codes. • We validated the new data library against a non-destructive test. -- Abstract: New sets of ORIGEN2 data library dedicated to research/testing reactors with light water cooled oxide and silicide LEU fuel plates based on JENDL-3.3 nuclear data were developed, verified and validated. The new sets are considered to be an extension of the most recent release of ORIGEN2.2UPJ code, i.e. the ORLIBJ33 library sets. The newly generated ORIGEN2 data library sets cover both oxide and silicide LEU fuels with fuel meat density range from 2.96 to 4.74 g U/cm 3 used in the present and future operation of the Indonesian 30 MWth RSG GAS research reactor. The new sets are expected applicable also for other research/testing reactors which utilize similar fuels or have similar neutron spectral indices. In addition to the traditional ORIGEN2 library sets for fuel depletion analyses in fuel regions, in the new data library sets, new ORIGEN2 library sets for irradiation/activation analyses were also prepared which cover all representative non-fuel regions of RSG GAS such as reflector elements, irradiation facilities, etc. whose neutron spectra are significantly softer than fuel regions. Verification with other codes as well as validation with a non-destructive test result showed promising results where a good agreement was confirmed

  18. Lime in gold and uranium mining

    International Nuclear Information System (INIS)

    Van Staden, C.M.

    1979-01-01

    In this article the author discusses the role of lime in gold and uranium extraction and looks more closely at the industry's efforts to improve the environment by vegetation of sand dumps and slimes dams. He then comes to the conclusion that lime has been and still is the most effective, practical and cheapest chemical that can be used in the South African gold and uranium mining industry to settle pulps, protect cyanide solutions, aid the vegetation of dumps and neutralise acidic waters and residues. The gold and uranium industry is very pollution concious, and in South Africa the importance of the role that lime plays in combating air and water pollution cannot be over emphasised

  19. Cancer nanotechnology: emerging role of gold nanoconjugates.

    Science.gov (United States)

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  20. Gold Nanospheres Dispersed Light Responsive Epoxy Vitrimers

    Directory of Open Access Journals (Sweden)

    Zhenhua Wang

    2018-01-01

    Full Text Available Vitrimers represent a new class of smart materials. They are covalently crosslinked like thermosets, yet they can be reprocessed like thermoplastics. The underlying mechanism is the rapid exchange reactions which form new bonds while breaking the old ones. So far, heating is the most widely used stimulus to activate the exchange reaction. Compared to heating, light not only is much more convenient to achieve remote and regional control, but can also offer fast healing. Gold nanospheres are excellent photothermal agents, but they are difficult to disperse into vitrimers as they easily aggregate. In this paper, we use polydopamine to prepare gold nanospheres. The resultant polydopamine-coated gold nanospheres (GNS can be well dispersed into epoxy vitrimers, endowing epoxy vitrimers with light responsivity. The composites can be reshaped permanently and temporarily with light at different intensity. Efficient surface patterning and healing are also demonstrated.

  1. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... of the device. At the same time, metal films of different thicknesses are needed for different applications and, since these films are polycrystalline, their internal properties and surface roughness can greatly vary from one thickness to another. In this work, we study, using atomic force microscopy...

  2. Microbially Induced Precipitation of Gold(0) Nanoparticles.

    Science.gov (United States)

    Roh, Yu; Kang, Serku; Park, Bitna; Kim, Yumi

    2015-01-01

    The objectives of this study were to synthesize gold nanoparticles by biomineralization using metal-reducing bacteria and to characterize their mineralogical properties. The metal-reducing bacteria were able to reduce Au(III) to Au(0) with organic fatty acids as electron donors, as indicated by the color change of the culture solution from colorless gold ions to black precipitates at 25 degrees C. XRD, SEM- and TEM-EDS analyses of the precipitates showed that Au(0) was precipitated and formed at either the cell membrane or extracellularly. The Au(0) nanoparticles were about 200 nm in size and ball-shaped. Biomineralization for elemental Au(0) nanoparticle synthesis may be useful for the recovery of natural gold in natural environments.

  3. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  4. Free gold recovery by coal-oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, W.; Petersen, F.W. [Cape Technikon Cape Town (South Africa). Dept. of Chemical Engineering

    2000-02-01

    The gold mining industry has mainly relied upon the use of highly polluting chemicals, such as mercury and cyanide to recover gold from its ores. The Coal Gold Agglomeration (CGA) process was developed some years ago and has the advantage in that gold is recovered by a procedure which has little or no negative impact on the environment. A gold ore containing liberated gold particles is contacted with coal-oil agglomerates, whereby the gold is recovered into the coal/oil phase. Laboratory scale batch tests were performed on an artificial mixture gold slurry and gold recoveries of up to 85% were found under optimized conditions. By recycling the coal/oil phase, it was found that the gold loading onto the agglomerates was increased. Tests performed on an industrial ore yielded slightly lower gold recoveries, and X-ray Diffraction (XRD) analysis on the coal/oil phase showed that minerals other than gold were recovered into this phase. A comparative study was conducted whereby the CGA process was compared to mercury amalgamation. Gold recoveries obtained through amalgamation were 15% lower than by the agglomeration process, which indicates that this process can be considered favourably as an alternative to amalgamation. 16 refs., 2 figs., 6 tabs.

  5. Size fraction assaying of gold bearing rocks (for gold extraction) by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D.K.; Adomako, D.

    2005-01-01

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite sample was determined as a function of particle size by using Instrumental Neutron Activation Analysis. The concentrations of gold for the corresponding particle sizes were 16.4 ± 0.17mg/kg for sizes <63μm; 161± 0.75 mg/kg for 63 - 125 μm, 0.53 + 0.03 mg/kg for 125 - 250 μm, 4.66± 0.07 mg/kg for 250 - 355 μm, 1.55 ± 0.06 for 355 - 425 μm, 0.80 ± 0.008 mg/kg for 425 -1000 μm, and 1.27 + 0.05 mg/kg for 1000-2000 μm. The average gold content in a 7.127 kg composite sample based on particle size found to be 3.08 mg/kg. (au)

  6. Major Brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, Charles H.; DeWitt, Ed; Maron, Marcos A.; Ladeira, Eduardo A.

    2001-07-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (>20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Carajás Mineral Province.

  7. Major brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  8. Gold nanowires and the effect of impurities

    Directory of Open Access Journals (Sweden)

    Novaes Frederico

    2006-01-01

    Full Text Available AbstractMetal nanowires and in particular gold nanowires have received a great deal of attention in the past few years. Experiments on gold nanowires have prompted theory and simulation to help answer questions posed by these studies. Here we present results of computer simulations for the formation, evolution and breaking of very thin Au nanowires. We also discuss the influence of contaminants, such as atoms and small molecules, and their effect on the structural and mechanical properties of these nanowires.

  9. Aneurysm, arachnoiditis and intrathecal Au (gold)

    International Nuclear Information System (INIS)

    Pence, D.M.; Kim, T.H.; Levitt, S.H.

    1990-01-01

    This report is a 20-year follow-up of 14 patients treated with external beam craniospinal irradiation and intrathecal gold (10-45 mCi) for medulloblastoma. Six of the patients died within 2 years of treatment from persistent disease. No patients are alive without complications. Six of eight surviving patients developed arachnoiditis and cauda equina syndrome within 5 to 10 years of treatment. Seven of eight survivors developed aneurysms and/or cerebrovascular accidents 9 to 20 years after treatment. Four of the cerebrovascular events were fatal. Intrathecal gold pools in the basal cisterns and cauda equina delivering an extremely inhomogeneous dose throughout the neuroaxis. Its use is discouraged

  10. Nuclear shape transition in light gold isotopes

    International Nuclear Information System (INIS)

    Wallmeroth, K.; Bollen, G.; Dohn, A.; Egelhof, P.; Kroenert, U.; Heyde, K.; Coster, C. de; Wood, J.L.; Kluge, H.J.; European Organization for Nuclear Research, Geneva; European Organization for Nuclear Research, Geneva

    1989-01-01

    The hyperfine structure and isotope shifts of short-lived gold isotopes with 185≤A≤190 and the 11/2 - isomer of 189 Au have been investigated by application of on-line resonance ionization mass spectroscopy. A detection efficiency of ε=10 -8 for gold atoms was observed at a background of about one event per 1000 laser shots. The deduced charge radii show a drastic change between A=187 and A=186 which is interpreted as an onset of strong deformation (β 2 ≅ 0.25) in 186 Au and 185 Au due to the influence of the π1h 9/2 intruder orbital. (orig.)

  11. Gold nanoparticle-pentacene memory-transistors

    OpenAIRE

    Novembre , Christophe; Guerin , David; Lmimouni , Kamal; Gamrat , Christian; Vuillaume , Dominique

    2008-01-01

    We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off sta...

  12. Spatially Correlated, Single Nanomaterial-Level Structural and Optical Profiling of Cu-Doped ZnO Nanorods Synthesized via Multifunctional Silicides

    Directory of Open Access Journals (Sweden)

    Johnson Truong

    2018-04-01

    Full Text Available We demonstrate a straightforward and effective method to synthesize vertically oriented, Cu-doped ZnO nanorods (NRs using a novel multipurpose platform of copper silicide nanoblocks (Cu3Si NBs preformed laterally in well-defined directions on Si. The use of the surface-organized Cu3Si NBs for ZnO NR growth successfully results in densely assembled Cu-doped ZnO NRs on each NB platform, whose overall structures resemble thick bristles on a brush head. We show that Cu3Si NBs can uniquely serve as a catalyst for ZnO NRs, a local dopant source of Cu, and a prepatterned guide to aid the local assembly of the NRs on the growth substrate. We also ascertain the crystalline structures, optical properties, and spectroscopic signatures of the Cu-doped ZnO NRs produced on the NBs, both at each module of NRs/NB and at their ensemble level. Subsequently, we determine their augmented properties relative to the pristine form of undoped ZnO NRs and the source material of Cu3Si NBs. We provide spatially correlated structural and optical data for individual modules of Cu-doped ZnO NRs assembled on a Cu3Si NB by resolving them along the different positions on the NB. Ensemble-averaged versus individual behaviors of Cu-doped ZnO NRs on Cu3Si NBs are then compared. We further discuss the potential impact of such ZnO-derived NRs on their relatively unexplored biological and biomedical applications. Our efforts will be particularly useful when exploiting each integrated module of self-aligned, Cu-doped ZnO NRs on a NB as a discretely addressable, active element in solid-state sensors and miniaturized luminescent bioprobes.

  13. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  14. The Ce-Ni-Si system as a representative of the rare earth-Ni-Si family: Isothermal section and new rare-earth nickel silicides

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-1, 119991 (Russian Federation); Knotko, A.V.; Garshev, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow, GSP-1, 119991 (Russian Federation); Faculty of Materials Science, Moscow State University, Leninskie Gory, House 1, Building 73, Moscow, GSP-1, 119991 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India); Quezado, S.; Malik, S.K. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, 59082-970 (Brazil)

    2016-11-15

    Si{sub 2}; while no appreciable solubility was observed for the other binary compounds of the Ce-Ni-Si system. As a prolongation of Rare Earth-Ni-Si system’s isostructural rows, LaNi{sub 7}Si{sub 6} and YNi{sub 6.6}Si{sub 6.1} (GdNi{sub 7}Si{sub 6}-type), ScNi{sub 6}Si{sub 6} (YCo{sub 6}Ge{sub 6}-type), NdNi{sub 6}Si{sub 6} (YNi{sub 6}Si{sub 6}-type), (Tb, Ho){sub 2}Ni{sub 15}Si{sub 2} (Th{sub 2}Zn{sub 17}-type), Nd{sub 2}Ni{sub 2.3}Si{sub 0.7} and Sm{sub 2}Ni{sub 2.2}Si{sub 0.8} (Mo{sub 2}NiB{sub 2}-type), Nd{sub 3}Ni{sub 2.55}Si{sub 1.45} (W{sub 3}CoB{sub 3}-type) and (Tb, Dy){sub 7}Ni{sub 50}Si{sub 19} (Y{sub 7}Ni{sub 49}Si{sub 20}-type) compounds were synthesized and investigated. Magnetic properties of the CeNi{sub 6}Si{sub 6}, CeNi{sub 7}Si{sub 6}, CeNi{sub 8.8}Si{sub 4.2}, Ce{sub 6}Ni{sub 7}Si{sub 4}, CeNi{sub 5}Si, Ce{sub 2}Ni{sub 2.5}Si{sub 0.5}, Nd{sub 2}Ni{sub 2.3}Si{sub 0.7} and Dy{sub 7}Ni{sub 50}Si{sub 19} compounds have also been investigated and are presented here. - Highlights: • Ce-Ni-Si isothermal section was obtained at 870/1070 K. • Twenty one known ternary cerium nickel silicides were confirmed in Ce-Ni-Si. • Five new cerium nickel silicides were detected in Ce-Ni-Si. • Eleven new rare earth nickel silicides were detected in R-Ni-Si. • Magnetic properties of eight rare earth nickel silicides were investigated.

  15. Modelling spatial anisotropy of gold concentration data using GIS ...

    Indian Academy of Sciences (India)

    Linear trends of anomalously high gold values in the Florida Canyon gold deposit, Nevada have been identified using a ... starting at 3500 ft above mean sea level (msl). Relatively high ..... by slower rise in semivariances for longer distance.

  16. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    gold-coated NAA is strongly quenched due to the strong plasmonic coupling. Keywords. Plasmon ... When coated by a thin film of gold, these templates can support surface plasmon resonance. ... 2.2 Equipment for characterization. Surface ...

  17. Hydrothermal Gold Mineralization and Structural Controls near May ...

    African Journals Online (AJOL)

    Mickiale

    controlled gold mineralized zones of gold near Workamba. .... consists of rounded to sub-rounded clasts of blue quartz eyes and varies in size from ... Based on the field observation, petrographic study and their cross cutting relationships; four.

  18. New progress of the study on uranium-gold association

    International Nuclear Information System (INIS)

    Feng Mingyue; Sun Zhifu

    1992-01-01

    Through the study on heavy minerals from the uraniferous granite-pegmatite it is found that nature gold is associated with uraninite, which provides the new information for the study on uranium-gold association and its metallogenesis

  19. New progress of the study on uranium-gold association

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Zhifu, Sun [Beijing Research Inst. of Uranium Geology (China)

    1992-07-01

    Through the study on heavy minerals from the uraniferous granite-pegmatite it is found that nature gold is associated with uraninite, which provides the new information for the study on uranium-gold association and its metallogenesis.

  20. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  1. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and...

  2. Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China

    Indian Academy of Sciences (India)

    Metallogenic epoch of the Jiapigou gold belt, Jilin Province, China: ... The Jiapigou gold belt is located on the northern margin of the North China Craton, and is one of the ... 29, Xueyuan Road, Beijing 100083, People's Republic of China.

  3. Albumin-gold-glutathione is a probable auranofin metabolite

    International Nuclear Information System (INIS)

    Shaw, C.F. III; Coffer, M.; Isab, A.A.

    1989-01-01

    The newly licensed gold drug, auranofin ((2,3,4,6-tetra-O-acetyl-β-1-D-gluco-pyranosato-S-)triethylphoshine-gold(I)) crosses cell membranes and enters cells which are inaccessible to parenteral gold drugs. In vivo, the triethylphosphine ligand and gold of auranofin, but not the thio-sugar moiety, accumulate in and subsequently efflux from red blood cells (RBCs). Extracellular albumin increases in the extent of gold efflux and acts as a gold binding site. The rate of efflux is first-order in RBC gold concentration. Studies using RBCs in which labelled [ 14 C]-glutathione is generated in situ incorporation of [ 14 C]- glycine demonstrate that glutathione also effluxes from the RBCs and forms a gold-glutathione-albumin complex. This may be the immunopharmacologically active complex

  4. Surface-enhanced Raman scattering on gold nanotrenches and nanoholes

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wong, Ka Chun; Syed, Ahad A.; Chen, Zong; Wang, Xianbin

    2012-01-01

    Dependent effects on edge-to-edge distance and incidence polarization in surface-enhanced Raman Scattering (SERS) were studied in detection of 4-mercaptopyridine (4-MPy) molecules absorbed on gold nanotrenches and nanoholes. The gold nanostructures

  5. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  6. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sun, G. M. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected.

  7. The Dy–Ni–Si system as a representative of the rare earth–Ni–Si family: Its isothermal section and new rare-earth nickel silicides

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow GSP-2, 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, Moscow GSP-2, 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Pani, M.; Provino, A.; Manfrinetti, P. [Institute SPIN-CNR and Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31, 16146 Genova (Italy)

    2014-11-15

    }Si{sub 24}, ∼Dy{sub 16}Ni{sub 62}Si{sub 22}, DyNi{sub 7}Si{sub 6}, Dy{sub 3}Ni{sub 8}Si, DyNi{sub 2}Si, ∼Dy{sub 40}Ni{sub 47}Si{sub 13} and ∼Dy{sub 5}Ni{sub 2}Si{sub 3}. Quasi–binary solid solutions were detected for Dy{sub 2}Ni{sub 17}, DyNi{sub 5}, DyNi{sub 7}, DyNi{sub 3}, DyNi{sub 2}, DyNi, DySi{sub 2} and DySi{sub 1.67}. The crystal structures and magnetic properties of new phases RNi{sub 7}Si{sub 6} (GdNi{sub 7}Si{sub 6}-type), R{sub 3}Ni{sub 8}Si (Ce{sub 3}Co{sub 8}Si-type), RNi{sub 2}Si (YPd{sub 2}Si-type) and R{sub 3}Ni{sub 12}Si{sub 4} (Gd{sub 3}Ru{sub 4}Al{sub 12}-type), with R=Y, Gd–Tm, are also reported. - Highlights: • Dy–Ni–Si isothermal section was obtained at 870 K/1070 K. • Twelve known ternary dysprosium nickel silicides were confirmed in Dy–Ni–Si. • Nine new dysprosium nickel silicides were detected in Dy–Ni–Si. • Seventeen new rare earth nickel silicides were detected in (Y, Gd–Tm)–Ni–Si. • Tb{sub 3}Ni{sub 8}Si, Dy{sub 3}Ni{sub 8}Si, Ho{sub 3}Ni{sub 12}Si{sub 4} and DyNi{sub 2}Si show ferromagnetic-like ordering.

  8. Formation of gold nanoparticles by glycolipids of Lactobacillus casei

    OpenAIRE

    Kikuchi, Fumiya; Kato, Yugo; Furihata, Kazuo; Kogure, Toshihiro; Imura, Yuki; Yoshimura, Etsuro; Suzuki, Michio

    2016-01-01

    Gold nanoparticles have particular properties distinct from those of bulk gold crystals, and such nanoparticles are used in various applications in optics, catalysis, and drug delivery. Many reports on microbial synthesis of gold nanoparticles have appeared. However, the molecular details (reduction and dispersion) of such synthesis remain unclear. In the present study, we studied gold nanoparticle synthesis by Lactobacillus casei. A comparison of L. casei components before and after addition...

  9. Using mineralogy to optimize gold recovery by direct cyanidation

    Science.gov (United States)

    Venter, D.; Chryssoulis, S. L.; Mulpeter, T.

    2004-08-01

    The complete and accurate gold deportments of direct cyanide leach residues provide a clear picture of the occurrence of unrecovered gold and identify causes for poor extraction. Based on the independent measurement of each form and carrier of unleached gold, opportunities for recovery optimization can be assessed more accurately by providing meaningful targets and can help identify the means to achieve such targets. In ten of 14 leach plants surveyed, 23% of the unrecovered gold could be extracted without finer grinding.

  10. Natural gold composition studied by proton activation analysis (PAA)

    International Nuclear Information System (INIS)

    Cojocaru, V.; Badica, T.; Popescu, I.V.

    2003-01-01

    The minor and trace element concentration of natural gold is essential for provenance studies of gold archaeological artifacts. In this work proton activation analysis is used in order to find what elements can be put into evidence in natural gold. For that purpose some gold nuggets from Romania were used. It was found that PAA is a good supplemental method to neutron activation analysis. (authors)

  11. Gold-coated nanoparticles for use in biotechnology applications

    Science.gov (United States)

    Berning, Douglas E [Los Alamos, NM; Kraus, Jr., Robert H.; Atcher, Robert W [Los Alamos, NM; Schmidt, Jurgen G [Los Alamos, NM

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  12. Protracted elimination of gold nanoparticles from mouse liver

    DEFF Research Database (Denmark)

    Sadauskas, Evaldas; Wallin, Håkan; Stoltenberg, Meredin

    2009-01-01

    The present study aims at revealing the fate of 40-nm gold nanoparticles after intravenous injections. The gold nanoparticles were traced histochemically with light and transmission electron microscopy using autometallographic (AMG) staining, and the gold content in the liver was determined with ...

  13. Quinone-Enriched Gold Nanoparticles in Bioelectrochemistry and Charge Storage

    DEFF Research Database (Denmark)

    Wagner, Michal; Qvortrup, Katrine; Tanner, David Ackland

    for merging gold nanoparticles with resultant anthraquinones include one-pot microwave assisted synthesis or after-mixing of separately prepared gold nanoparticles with selected compounds. The quinone-enriched gold nanoparticles can be transferred onto different electrode surfaces, thus enabling facile...

  14. Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry

    International Nuclear Information System (INIS)

    Dykman, Lev A; Bogatyrev, Vladimir A

    2007-01-01

    The review summarises data on the synthesis and functionalisation of gold nanoparticles and their applications in biological investigations. Particular attention is given to applications of colloidal gold in solid-phase assays, immunoassay and studies of biologically active compounds by vibrational spectroscopy. A special section deals with the use of gold nanoparticles as antigen carriers in immunisation.

  15. An experimental study on gold precipitation from leach solutions of ...

    African Journals Online (AJOL)

    This paper presents the results of the study dedicated to the determination of the optimum parameters for the electrolytic gold precipitation from thiourea leach solutions. The leaching was carried out using technogenic gold-bearing raw materials (gold-bearing sands) of the Far East of the Russian Federation. The study ...

  16. Crystal growth, structure and phase studies on gold halides

    NARCIS (Netherlands)

    Janssen, Eugenius Maria Wilhelmus Janssen

    1977-01-01

    Only very corrosive substances attack gold, the most noble metal. In this study the reactivity and the phase diagrams of gold with the halogens chlorine, bromine and iodine have been investigated. owing to the noble behaviour of gold, its halides are sensitive to heat; on heating they decompose into

  17. Preg-robbing of Gold by Carbonaceous Materials Encountered in ...

    African Journals Online (AJOL)

    Processing of gold from refractory ores containing carbonaceous materials (CM) poses challenges due to the ability of the CM to preg-rob dissolved gold. Depending on the type and maturity of CM encountered, preg-robbing of aurocyanide ion can lead to reduction in gold recovery ranging from a few percentages to more ...

  18. 76 FR 60355 - Gold Star Mother's and Family's Day, 2011

    Science.gov (United States)

    2011-09-28

    ... Gold Star Mother's and Family's Day, 2011 By the President of the United States of America A... grief their families carry we can never fully know. Gold Star mothers and families know the immeasurable... inspired by their strength and determination. Through heartbreaking loss, our Gold Star families continue...

  19. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    Science.gov (United States)

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Benchmarking Density Functionals for Chemical Bonds of Gold

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    Gold plays a major role in nanochemistry, catalysis, and electrochemistry. Accordingly, hundreds of studies apply density functionals to study chemical bonding with gold, yet there is no systematic attempt to assess the accuracy of these methods applied to gold. This paper reports a benchmark aga...