Energy Technology Data Exchange (ETDEWEB)
Mohammadzadeh, Saeideh [Center of Microtechnologies, Chemnitz University of Technology, Chemnitz (Germany); Streiter, Reinhard; Gessner, Thomas [Center of Microtechnologies, Chemnitz University of Technology, Chemnitz (Germany); Fraunhofer Research Institution for Electronic Nano Systems, ENAS, Chemnitz (Germany)
2009-07-01
Quantum point contacts have attracted significant attention with continuing miniaturization of nanoscale electronic components for the two past decades. In present work, we study the electronic transport properties of copper and gold quantum point contacts using the non-equilibrium Green's function technique on the density functional tight binding method for modelling the geometry dependent I-V characteristics. The copper and gold quantum point contacts are sandwiched between cognate (001) electrodes and the electronic current is deduced according to the Landauer formulation to study the effect of the quantum point contact length scales and geometry defects on the electronic transport properties. The transmission coefficients, conductance and the voltage drop characteristics are calculated as well.
International Nuclear Information System (INIS)
Mandyla, Spyridoula P.; Tsogas, George Z.; Vlessidis, Athanasios G.; Giokas, Dimosthenis L.
2017-01-01
Highlights: • A new method has been developed to determine gold nanoparticles in water samples. • Extraction was achieved by cloud point extraction. • A nano-hybrid assembly between AuNPs and dithiol-coated quantum dots was formulated. • Detection was accomplished at pico-molar levels by second-order light scattering. • The method was selective against ionic gold and other nanoparticle species. - Abstract: This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmol L −1 levels), recoveries (>80%) and reproducibility (<9%). Compared to other methods employing molecular spectrometry for metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment.
Energy Technology Data Exchange (ETDEWEB)
Mandyla, Spyridoula P.; Tsogas, George Z.; Vlessidis, Athanasios G.; Giokas, Dimosthenis L., E-mail: dgiokas@cc.uoi.gr
2017-02-05
Highlights: • A new method has been developed to determine gold nanoparticles in water samples. • Extraction was achieved by cloud point extraction. • A nano-hybrid assembly between AuNPs and dithiol-coated quantum dots was formulated. • Detection was accomplished at pico-molar levels by second-order light scattering. • The method was selective against ionic gold and other nanoparticle species. - Abstract: This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmol L{sup −1} levels), recoveries (>80%) and reproducibility (<9%). Compared to other methods employing molecular spectrometry for metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment.
Mandyla, Spyridoula P; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L
2017-02-05
This work presents a new method for the sensitive and selective determination of gold nanoparticles in water samples. The method combines a sample preparation and enrichment step based on cloud point extraction with a new detection motif that relies on the optical incoherent light scattering of a nano-hybrid assembly that is formed by hydrogen bond interactions between gold nanoparticles and dithiotreitol-functionalized CdS quantum dots. The experimental parameters affecting the extraction and detection of gold nanoparticles were optimized and evaluated to the analysis of gold nanoparticles of variable size and surface coating. The selectivity of the method against gold ions and other nanoparticle species was also evaluated under different conditions reminiscent to those usually found in natural water samples. The developed method was applied to the analysis of gold nanoparticles in natural waters and wastewater with satisfactory results in terms of sensitivity (detection limit at the low pmolL -1 levels), recoveries (>80%) and reproducibility (metal nanoparticle analysis, the developed method offers improved sensitivity and it is easy-to-operate thus providing an additional tool for the monitoring and the assessment of nanoparticles toxicity and hazards in the environment. Copyright Â© 2016 Elsevier B.V. All rights reserved.
Unconventional Quantum Critical Points
Xu, Cenke
2012-01-01
In this paper we review the theory of unconventional quantum critical points that are beyond the Landau's paradigm. Three types of unconventional quantum critical points will be discussed: (1). The transition between topological order and semiclassical spin ordered phase; (2). The transition between topological order and valence bond solid phase; (3). The direct second order transition between different competing orders. We focus on the field theory and universality class of these unconventio...
Fixed points of quantum operations
International Nuclear Information System (INIS)
Arias, A.; Gheondea, A.; Gudder, S.
2002-01-01
Quantum operations frequently occur in quantum measurement theory, quantum probability, quantum computation, and quantum information theory. If an operator A is invariant under a quantum operation φ, we call A a φ-fixed point. Physically, the φ-fixed points are the operators that are not disturbed by the action of φ. Our main purpose is to answer the following question. If A is a φ-fixed point, is A compatible with the operation elements of φ? We shall show in general that the answer is no and we shall give some sufficient conditions under which the answer is yes. Our results will follow from some general theorems concerning completely positive maps and injectivity of operator systems and von Neumann algebras
Fixed points of quantum gravity
Litim, D F
2003-01-01
Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Fixed point algebras for easy quantum groups
DEFF Research Database (Denmark)
Gabriel, Olivier; Weber, Moritz
2016-01-01
Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author,we prove...... that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group S+ n,the free orthogonal quantum group O+ n and the quantum reflection groups Hs+ n. Our fixed point......-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups,which are related to Hopf-Galois extensions....
Controlling superconductivity by tunable quantum critical points.
Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson
2015-03-04
The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.
Spotlighting quantum critical points via quantum correlations at finite temperatures
International Nuclear Information System (INIS)
Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo
2011-01-01
We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.
Quantum entanglement and fixed-point bifurcations
International Nuclear Information System (INIS)
Hines, Andrew P.; McKenzie, Ross H.; Milburn, G.J.
2005-01-01
How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state--the ground state--achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation
Detecting quantum critical points using bipartite fluctuations.
Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn
2012-03-16
We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.
Fermion-induced quantum critical points
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-01-01
A unified theory of quantum critical points beyond the conventional Landau?Ginzburg?Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau?Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such t...
Exceptional points in open quantum systems
International Nuclear Information System (INIS)
Mueller, Markus; Rotter, Ingrid
2008-01-01
Open quantum systems are embedded in the continuum of scattering wavefunctions and are naturally described by non-Hermitian Hamilton operators. In the complex energy plane, exceptional points appear at which two (or more) eigenvalues of the Hamilton operator coalesce. Although they are a countable set of single points in the complex energy plane and therefore of measure zero, they determine decisively the dynamics of open quantum systems. A powerful method for the description of open quantum systems is the Feshbach projection operator formalism. It is used in the present paper as a basic tool for the study of exceptional points and of the role they play for the dynamics of open quantum systems. Among others, the topological structure of the exceptional points, the rigidity of the phases of the eigenfunctions in their vicinity, the enhancement of observable values due to the reduced phase rigidity and the appearance of phase transitions are considered. The results are compared with existing experimental data on microwave cavities. In the last section, some questions being still unsolved, are considered
Interplay of quantum and classical fluctuations near quantum critical points
International Nuclear Information System (INIS)
Continentino, Mucio Amado
2011-01-01
For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff = d + z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension d c there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ = νz between the shift exponent ψ of the critical line and the crossover exponent νz, for d + z > d c by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP. (author)
Dynamical Response near Quantum Critical Points.
Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William
2017-02-03
We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.
Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films
Directory of Open Access Journals (Sweden)
Qian Haoliang
2015-11-01
Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.
Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach
International Nuclear Information System (INIS)
Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.
2007-01-01
We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Quantum Triple Point and Quantum Critical End Points in Metallic Magnets.
Belitz, D; Kirkpatrick, T R
2017-12-29
In low-temperature metallic magnets, ferromagnetic (FM) and antiferromagnetic (AFM) orders can exist, adjacent to one another or concurrently, in the phase diagram of a single system. We show that universal quantum effects qualitatively alter the known phase diagrams for classical magnets. They shrink the region of concurrent FM and AFM order, change various transitions from second to first order, and, in the presence of a magnetic field, lead to either a quantum triple point where the FM, AFM, and paramagnetic phases all coexist or a quantum critical end point.
Universal signatures of fractionalized quantum critical points.
Isakov, Sergei V; Melko, Roger G; Hastings, Matthew B
2012-01-13
Ground states of certain materials can support exotic excitations with a charge equal to a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive unusual quantum phase transitions. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we establish the existence of such an exotic critical point, called XY*. We measure a highly nonclassical critical exponent η = 1.493 and construct a universal scaling function of winding number distributions that directly demonstrates the distinct topological sectors of an emergent Z(2) gauge field. The universal quantities used to establish this exotic transition can be used to detect other fractionalized quantum critical points in future model and material systems.
Supersymmetric quantum mechanics under point singularities
International Nuclear Information System (INIS)
Uchino, Takashi; Tsutsui, Izumi
2003-01-01
We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed
Quantum optics with single nanodiamonds flying over gold films: Towards a Robust quantum plasmonics
Energy Technology Data Exchange (ETDEWEB)
Mollet, O.; Drezet, A.; Huant, S. [Institut Néel, CNRS and Université Joseph Fourier, BP 166, F-38042 Grenoble (France)
2013-12-04
A nanodiamond (ND) hosting nitrogen-vacancy (NV) color centers is attached on the apex of an optical tip for near-field microscopy. Its fluorescence is used to launch surface plasmon-polaritons (SPPs) in a thin polycrystalline gold film. It is shown that the quantum nature of the initial source of light is preserved after conversion to SPPs. This opens the way to a deterministic quantum plasmonics, where single SPPs can be injected at well-defined positions in a plasmonic device produced by top-down approaches.
Dimensional reduction at a quantum critical point
Sebastian, S. E.; Harrison, N.; Batista, C. D.; Balicas, L.; Jaime, M.; Sharma, P. A.; Kawashima, N.; Fisher, I. R.
2006-06-01
Competition between electronic ground states near a quantum critical point (QCP)-the location of a zero-temperature phase transition driven solely by quantum-mechanical fluctuations-is expected to lead to unconventional behaviour in low-dimensional systems. New electronic phases of matter have been predicted to occur in the vicinity of a QCP by two-dimensional theories, and explanations based on these ideas have been proposed for significant unsolved problems in condensed-matter physics, such as non-Fermi-liquid behaviour and high-temperature superconductivity. But the real materials to which these ideas have been applied are usually rendered three-dimensional by a finite electronic coupling between their component layers; a two-dimensional QCP has not been experimentally observed in any bulk three-dimensional system, and mechanisms for dimensional reduction have remained the subject of theoretical conjecture. Here we show evidence that the Bose-Einstein condensate of spin triplets in the three-dimensional Mott insulator BaCuSi2O6 (refs 12-16) provides an experimentally verifiable example of dimensional reduction at a QCP. The interplay of correlations on a geometrically frustrated lattice causes the individual two-dimensional layers of spin-½ Cu2+ pairs (spin dimers) to become decoupled at the QCP, giving rise to a two-dimensional QCP characterized by linear power law scaling distinctly different from that of its three-dimensional counterpart. Thus the very notion of dimensionality can be said to acquire an `emergent' nature: although the individual particles move on a three-dimensional lattice, their collective behaviour occurs in lower-dimensional space.
Detection of quantum critical points by a probe qubit.
Zhang, Jingfu; Peng, Xinhua; Rajendran, Nageswaran; Suter, Dieter
2008-03-14
Quantum phase transitions occur when the ground state of a quantum system undergoes a qualitative change when an external control parameter reaches a critical value. Here, we demonstrate a technique for studying quantum systems undergoing a phase transition by coupling the system to a probe qubit. It uses directly the increased sensibility of the quantum system to perturbations when it is close to a critical point. Using an NMR quantum simulator, we demonstrate this measurement technique for two different types of quantum phase transitions in an Ising spin chain.
Quantum field theory of point particles and strings
Hatfield, Brian
1992-01-01
The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.
A Novel Quantum Dots-Based Point of Care Test for Syphilis
Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang
2010-05-01
One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening.
Fixed points of quantum gravity in extra dimensions
International Nuclear Information System (INIS)
Fischer, Peter; Litim, Daniel F.
2006-01-01
We study quantum gravity in more than four dimensions with renormalisation group methods. We find a non-trivial ultraviolet fixed point in the Einstein-Hilbert action. The fixed point connects with the perturbative infrared domain through finite renormalisation group trajectories. We show that our results for fixed points and related scaling exponents are stable. If this picture persists at higher order, quantum gravity in the metric field is asymptotically safe. We discuss signatures of the gravitational fixed point in models with low scale quantum gravity and compact extra dimensions
Nanomechanical displacement sensing using a quantum point contact
International Nuclear Information System (INIS)
Cleland, A.N.; Aldridge, J.S.; Driscoll, D.C.; Gossard, A. C.
2002-01-01
We describe a radio frequency mechanical resonator that includes a quantum point contact, defined using electrostatic top gates. We can mechanically actuate the resonator using either electrostatic or magnetomotive forces. We demonstrate the use of the quantum point contact as a displacement sensor, operating as a radio frequency mixer at the mechanical resonance frequency of 1.5 MHz. We calculate a displacement sensitivity of about 3x10 -12 m/Hz 1/2 . This device will potentially permit quantum-limited displacement sensing of nanometer-scale resonators, allowing the quantum entanglement of the electronic and mechanical degrees of freedom of a nanoscale system
Vector boson excitations near deconfined quantum critical points.
Huh, Yejin; Strack, Philipp; Sachdev, Subir
2013-10-18
We show that the Néel states of two-dimensional antiferromagnets have low energy vector boson excitations in the vicinity of deconfined quantum critical points. We compute the universal damping of these excitations arising from spin-wave emission. Detection of such a vector boson will demonstrate the existence of emergent topological gauge excitations in a quantum spin system.
Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops
Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu
2014-01-01
The correspondence between exotic quantum holonomy that occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expressions of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, are obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher order EP, which is broken i...
Gold/diamond nanohybrids for quantum sensing applications
Energy Technology Data Exchange (ETDEWEB)
Tsai, Pei-Chang; Chen, Oliver Y.; Tzeng, Yan-Kai; Hui, Yuen Yung; Chang, Ming-Shien [Academia Sinica, Institute of Atomic and Molecular Sciences, Taipei (China); Guo, Jiun You; Wu, Chih-Che [National Chi Nan University, Department of Applied Chemistry, Puli, Nantou (China); Chang, Huan-Cheng [Academia Sinica, Institute of Atomic and Molecular Sciences, Taipei (China); National Taiwan University of Science and Technology, Department of Chemical Engineering, Taipei (China)
2015-12-15
Recent advances in quantum technology have demonstrated the potential use of negatively charged nitrogen-vacancy (NV{sup -}) centers in diamond for temperature and magnetic sensing at sub-cellular levels. Fluorescent nanodiamonds (FNDs) containing high-density ensembles of NV{sup -} centers are appealing for such applications because they are inherently biocompatible and non-toxic. Here, we show that FNDs conjugated with gold nanorods (GNRs) are useful as a combined nanoheater and nanothermometer for highly localized hyperthermia treatment using near-infrared (NIR) lasers as the heating source. A temperature rise of ∝10 K can be readily achieved at a NIR laser power of 0.4 mW in cells. The technique is compatible with the presence of static magnetic fields and allows for simultaneous temperature and magnetic sensing with nanometric spatial resolution. To elucidate the nanoscale heating process, numerical simulations are conducted with finite element analysis, providing an important guideline for the use of this new tool for active and high-precision control of temperature under diverse environmental conditions. (orig.)
Mathematical models for quantum point contact spectroscopy
International Nuclear Information System (INIS)
Exner, P.; Seba, P.
1986-01-01
Two mathematical models intended to describe the point contact spectroscopical experiments are constructed. It adds a new item to the list of recently discovered applications of the self-adjoint extension theory
Black holes as critical point of quantum phase transition.
Dvali, Gia; Gomez, Cesar
We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.
Black Holes as Critical Point of Quantum Phase Transition
Dvali, Gia
2014-01-01
We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.
Universal Postquench Prethermalization at a Quantum Critical Point
Gagel, Pia; Orth, Peter P.; Schmalian, Jörg
2014-11-01
We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive nonequilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are: (i) a power law rise of order and correlations after an initial collapse of the equilibrium state and (ii) a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches.
Exceptional points and quantum correlations in precise measurements
International Nuclear Information System (INIS)
Thilagam, A
2012-01-01
We examine the physical manifestations of exceptional points and passage times in a two-level system which is subjected to quantum measurements and which admits a non-Hermitian description. Using an effective Hamiltonian acting in the two-dimensional space spanned by the evolving initial and final states, the effects of highly precise quantum measurements in which the monitoring device interferes significantly with the evolution dynamics of the monitored two-level system is analyzed. The dynamics of a multipartite system consisting of the two-level system, a source of external potential and the measurement device is examined using correlation measures such as entanglement and non-classical quantum correlations. Results show that the quantum correlations between the monitored (monitoring) systems is considerably decreased (increased) as the measurement precision nears the exceptional point, at which the passage time is half of the measurement duration. The results indicate that the underlying mechanism by which the non-classical correlations of quantum systems are transferred from one subsystem to another may be better revealed via use of geometric approaches. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops.
Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu
2014-04-01
The correspondence between exotic quantum holonomy, which occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expression of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, is obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher-order EP, which is broken into lower-order EPs with the application of small perturbations. The stability of exotic holonomy against such bifurcation is demonstrated.
Current-voltage curves of gold quantum point contacts revisited
DEFF Research Database (Denmark)
Hansen, K.; Nielsen, S K.; Brandbyge, Mads
2000-01-01
clean ultra-high-vacuum conditions at room temperature. The I - V curves are found to he almost linear in contrast to previous reports. Tight-binding calculations of I - V curves for one- and two-atom contacts are in excellent agreement with our measurements. On the other hand, clearly nonlinear I - V...
Proximity of iron pnictide superconductors to a quantum tricritical point.
Giovannetti, Gianluca; Ortix, Carmine; Marsman, Martijn; Capone, Massimo; van den Brink, Jeroen; Lorenzana, José
2011-07-19
In several materials, unconventional superconductivity appears nearby a quantum phase transition where long-range magnetic order vanishes as a function of a control parameter like charge doping, pressure or magnetic field. The nature of the quantum phase transition is of key relevance, because continuous transitions are expected to favour superconductivity, due to strong fluctuations. Discontinuous transitions, on the other hand, are not expected to have a similar role. Here we determine the nature of the magnetic quantum phase transition, which occurs as a function of doping, in the iron-based superconductor LaFeAsO(1-x)F(x). We use constrained density functional calculations that provide ab initio coefficients for a Landau order parameter analysis. The outcome is intriguing, as this material turns out to be remarkably close to a quantum tricritical point, where the transition changes from continuous to discontinuous, and several susceptibilities diverge simultaneously. We discuss the consequences for superconductivity and the phase diagram.
Quantum correction to conductivity close to ferromagnetic quantum critical point in two dimensions
International Nuclear Information System (INIS)
Paul, I.; Pepin, C.; Narozhny, B.N.; Maslov, D.L.
2005-05-01
We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the cross-over between diffusive and ballistic regimes of quantum interference effects occurs at a temperature T* 1/τγ(E F τ) 2 where γ is the parameter associated with the Landau damping of the spin fluctuations, τ is the impurity scattering time, and E F is the Fermi energy. For a generic choice of parameters, T* is smaller than the nominal crossover scale 1/τ. In the ballistic quantum critical regime, the conductivity behaves as T 1/3 . (author)
Two-point functions in (loop) quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca; Oriti, Daniele [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); Gielen, Steffen [Max-Planck-Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany); DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2011-07-01
We discuss the path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions, with particular but non-exclusive reference to loop quantum cosmology (LQC). Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Two-point functions in (loop) quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca; Gielen, Steffen; Oriti, Daniele, E-mail: calcagni@aei.mpg.de, E-mail: gielen@aei.mpg.de, E-mail: doriti@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, D-14476 Golm (Germany)
2011-06-21
The path-integral formulation of quantum cosmology with a massless scalar field as a sum-over-histories of volume transitions is discussed, with particular but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with the relativistic particle, we give a complete overview of the possible two-point functions, pointing out the choices involved in their definitions, deriving their vertex expansions and the composition laws they satisfy. We clarify the origin and relations of different quantities previously defined in the literature, in particular the tie between definitions using a group averaging procedure and those in a deparametrized framework. Finally, we draw some conclusions about the physics of a single quantum universe (where there exist superselection rules on positive- and negative-frequency sectors and different choices of inner product are physically equivalent) and multiverse field theories where the role of these sectors and the inner product are reinterpreted.
Thermal conductivity at a disordered quantum critical point
International Nuclear Information System (INIS)
Hartnoll, Sean A.; Ramirez, David M.; Santos, Jorge E.
2016-01-01
Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T 0.3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.
A magnetically induced quantum critical point in holography
Gursoy, U.; Gnecchi, A.; Toldo, C.; Papadoulaki, O.
We investigate quantum critical points in a 2+1 dimensional gauge theory at finite chemical potential χ and magnetic field B. The gravity dual is based on 4D NN = 2 Fayet-Iliopoulos gauged supergravity and the solutions we consider — that are constructed analytically — are extremal, dyonic,
Electron self-trapping at quantum and classical critical points
Auslender, M.I.; Katsnelson, M.I.
2006-01-01
Using Feynman path integral technique estimations of the ground state energy have been found for a conduction electron interacting with order parameter fluctuations near quantum critical points. In some cases only singular perturbation theory in the coupling constant emerges for the electron ground
Multiply Degenerate Exceptional Points and Quantum Phase Transitions
Czech Academy of Sciences Publication Activity Database
Borisov, D.; Růžička, František; Znojil, Miloslav
2015-01-01
Roč. 54, č. 12 (2015), s. 4293-4305 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum mechanics * Cryptohermitian observbles * spectra and pseudospectra * real exceptional points * phase transitions Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015
Origin of chaos near critical points of quantum flow.
Efthymiopoulos, C; Kalapotharakos, C; Contopoulos, G
2009-03-01
The general theory of motion in the vicinity of a moving quantum nodal point (vortex) is studied in the framework of the de Broglie-Bohm trajectory method of quantum mechanics. Using an adiabatic approximation, we find that near any nodal point of an arbitrary wave function psi there is an unstable point (called the X point) in a frame of reference moving with the nodal point. The local phase portrait forms always a characteristic pattern called the "nodal-point- X -point complex." We find general formulas for this complex as well as necessary and sufficient conditions of validity of the adiabatic approximation. We demonstrate that chaos emerges from the consecutive scattering events of the orbits with nodal-point- X -point complexes. The scattering events are of two types (called type I and type II). A theoretical model is constructed yielding the local value of the Lyapunov characteristic numbers in scattering events of both types. The local Lyapunov characteristic number scales as an inverse power of the speed of the nodal point in the rest frame, implying that it scales proportionally to the size of the nodal-point- X -point complex. It is also an inverse power of the distance of a trajectory from the X point's stable manifold far from the complex. This distance plays the role of an effective "impact parameter." The results of detailed numerical experiments with different wave functions, possessing one, two, or three moving nodal points, are reported. Examples are given of regular and chaotic trajectories, and the statistics of the Lyapunov characteristic numbers of the orbits are found and compared to the number of encounter events of each orbit with the nodal-point- X -point complexes. The numerical results are in agreement with the theory, and various phenomena appearing at first as counterintuitive find a straightforward explanation.
Partial dynamical symmetry at critical points of quantum phase transitions.
Leviatan, A
2007-06-15
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
Partial Dynamical Symmetry at Critical Points of Quantum Phase Transitions
International Nuclear Information System (INIS)
Leviatan, A.
2007-01-01
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei
Zero-point energy in early quantum theory
International Nuclear Information System (INIS)
Milonni, P.W.; Shih, M.-L.
1991-01-01
In modern physics the vacuum is not a tranquil void but a quantum state with fluctuations having observable consequences. The present concept of the vacuum has its roots in the zero-point energy of harmonic oscillators and the electromagnetic field, and arose before the development of the formalism of quantum mechanics. This article discusses these roots in the blackbody research of Planck and Einstein in 1912--1913, and the relation to Bose--Einstein statistics and the first indication of wave--particle duality uncovered by Einstein's fluctuation formula. Also considered are the Einstein--Stern theory of specific heats, which invoked zero-point energy in a way which turned out to be incorrect, and the experimental implications of zero-point energy recognized by Mulliken and Debye in vibrational spectroscopy and x-ray diffraction
International Nuclear Information System (INIS)
Fei, Wenjuan; Chen, Feifei; Sun, Li; Li, Qianhua; Wu, Ying; Yang, Jianping
2014-01-01
We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng•mL −1 , with a detection limit as low as 67 pg•mL −1 . The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays. (author)
Anomalous Integer Quantum Hall Effect in the Ballistic Regime with Quantum Point Contacts
Wees, B.J. van; Willems, E.M.M.; Harmans, C.J.P.M.; Beenakker, C.W.J.; Houten, H. van; Williamson, J.G.; Foxon, C.T.; Harris, J.J.
1989-01-01
The Hall conductance of a wide two-dimensional electron gas has been measured in a geometry in which two quantum point contacts form controllable current and voltage probes, separated by less than the transport mean free path. Adjustable barriers in the point contacts allow selective population and
Two-point entanglement near a quantum phase transition
International Nuclear Information System (INIS)
Chen, Han-Dong
2007-01-01
In this work, we study the two-point entanglement S(i, j), which measures the entanglement between two separated degrees of freedom (ij) and the rest of system, near a quantum phase transition. Away from the critical point, S(i, j) saturates with a characteristic length scale ξ E , as the distance |i - j| increases. The entanglement length ξ E agrees with the correlation length. The universality and finite size scaling of entanglement are demonstrated in a class of exactly solvable one-dimensional spin model. By connecting the two-point entanglement to correlation functions in the long range limit, we argue that the prediction power of a two-point entanglement is universal as long as the two involved points are separated far enough
Universal post-quench prethermalization at a quantum critical point
Orth, Peter P.; Gagel, Pia; Schmalian, Joerg
2015-03-01
We consider an open system near a quantum critical point that is suddenly moved towards the critical point. The bath-dominated diffusive non-equilibrium dynamics after the quench is shown to follow scaling behavior, governed by a critical exponent that emerges in addition to the known equilibrium critical exponents. We determine this exponent and show that it describes universal prethermalized coarsening dynamics of the order parameter in an intermediate time regime. Implications of this quantum critical prethermalization are a powerlaw rise of order and correlations after an initial collapse of the equilibrium state and a crossover to thermalization that occurs arbitrarily late for sufficiently shallow quenches. [1] P. Gagel, P. P. Orth, J. Schmalian, Phys.Rev. Lett. (in press) arXiv:1406.6387
The quantum nonlinear Schroedinger model with point-like defect
International Nuclear Information System (INIS)
Caudrelier, V; Mintchev, M; Ragoucy, E
2004-01-01
We establish a family of point-like impurities which preserve the quantum integrability of the nonlinear Schroedinger model in 1+1 spacetime dimensions. We briefly describe the construction of the exact second quantized solution of this model in terms of an appropriate reflection-transmission algebra. The basic physical properties of the solution, including the spacetime symmetry of the bulk scattering matrix, are also discussed. (letter to the editor)
Geometric Frustration and Dimensional Reduction at a Quantum Critical Point
Batista, C. D.; Schmalian, J.; Kawashima, N.; Sengupta, P.; Sebastian, S. E.; Harrison, N.; Jaime, M.; Fisher, I. R.
2007-06-01
We show that the spatial dimensionality of the quantum critical point associated with Bose-Einstein condensation at T=0 is reduced when the underlying lattice comprises layers coupled by a frustrating interaction. Our theoretical predictions for the critical behavior correspond very well with recent measurements in BaCuSi2O6 [ S. E. Sebastian et al., Nature (London)NATUAS0028-0836 441, 617 (2006)].
Quantum electrodynamics and light rays. [Two-point correlation functions
Energy Technology Data Exchange (ETDEWEB)
Sudarshan, E.C.G.
1978-11-01
Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references.
Universal postquench coarsening and aging at a quantum critical point
Gagel, Pia; Orth, Peter P.; Schmalian, Jörg
2015-09-01
The nonequilibrium dynamics of a system that is located in the vicinity of a quantum critical point is affected by the critical slowing down of order-parameter correlations with the potential for novel out-of-equilibrium universality. After a quantum quench, i.e., a sudden change of a parameter in the Hamiltonian, such a system is expected to almost instantly fall out of equilibrium and undergo aging dynamics, i.e., dynamics that depends on the time passed since the quench. Investigating the quantum dynamics of an N -component φ4 model coupled to an external bath, we determine this universal aging and demonstrate that the system undergoes a coarsening, governed by a critical exponent that is unrelated to the equilibrium exponents of the system. We analyze this behavior in the large-N limit, which is complementary to our earlier renormalization-group analysis, allowing in particular the direct investigation of the order-parameter dynamics in the symmetry-broken phase and at the upper critical dimension. By connecting the long-time limit of fluctuations and response, we introduce a distribution function that shows that the system remains nonthermal and exhibits quantum coherence even on long time scales.
Superuniversal transport near a (2 +1 ) -dimensional quantum critical point
Rose, F.; Dupuis, N.
2017-09-01
We compute the zero-temperature conductivity in the two-dimensional quantum O (N ) model using a nonperturbative functional renormalization-group approach. At the quantum critical point we find a universal conductivity σ*/σQ (with σQ=q2/h the quantum of conductance and q the charge) in reasonable quantitative agreement with quantum Monte Carlo simulations and conformal bootstrap results. In the ordered phase the conductivity tensor is defined, when N ≥3 , by two independent elements, σA(ω ) and σB(ω ) , respectively associated with SO (N ) rotations which do and do not change the direction of the order parameter. Whereas σA(ω →0 ) corresponds to the response of a superfluid (or perfect inductance), the numerical solution of the flow equations shows that limω→0σB(ω ) /σQ=σB*/σQ is a superuniversal (i.e., N -independent) constant. These numerical results, as well as the known exact value σB*/σQ=π /8 in the large-N limit, allow us to conjecture that σB*/σQ=π /8 holds for all values of N , a result that can be understood as a consequence of gauge invariance and asymptotic freedom of the Goldstone bosons in the low-energy limit.
Impurities near an antiferromagnetic-singlet quantum critical point
International Nuclear Information System (INIS)
Mendes-Santos, T.; Costa, N. C.; Batrouni, G.
2017-01-01
Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. We examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined “impurity susceptibility” χimp, using exact quantum Monte Carlo simulations. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1. Furthermore, we show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.
Emergent symmetry and dimensional reduction at a quantum critical point
Schmalian, J.; Batista, C. D.
2008-03-01
We show that the spatial dimensionality of the quantum critical point associated with Bose-Einstein condensation at T=0 is reduced when the underlying lattice comprises a set of layers coupled by a frustrating interaction. For this purpose, we use an heuristic mean field approach that is complemented and justified by a more rigorous renormalization group analysis. Due to the presence of an emergent symmetry, i.e., a symmetry of the ground state that is absent in the underlying Hamiltonian, a three-dimensional interacting Bose system undergoes a chemical potential tuned quantum phase transition that is strictly two-dimensional. Our theoretical predictions for the critical temperature as a function of the chemical potential correspond very well with recent measurements in BaCuSi2O6 .
Interaction-dependent instability of quantum-point contact detector for charge-qubit: exact theorem
Skorobagatko, Gleb A.
2017-01-01
The low-temperature limit of charge qubit decoherence due to its Coulomb interaction with electrons tunneling through Luttinger liquid quantum-point contact (QPC) is investigated. The study is focused on quantum detector properties of Luttinger liquid QPC. Efficiency of Luttinger liquid qurrent-carrying quantum point-contact (QPC) as quantum detector for the coupled charge qubit quantum state is characterized by the ratio of decoherence time and the acquisition of information time and how bot...
Structure and applications of point form relativistic quantum mechanics
International Nuclear Information System (INIS)
Klink, W.H.
2003-01-01
The framework of point form relativistic quantum mechanics is used to construct mass and current operators for hadronic systems with finite degree of freedom. For the point form all of the interactions are in the four-momentum operator and, since Lorentz transformations are kinematic, the theory is manifestly covariant. In the Bakamjian-Thomas version of the point form the four-momentum operator is written as a product of the four-velocity operator and mass operator, where the mass operator is the sum of free and interacting mass operators. Interacting mass operators can be constructed from vertices, matrix elements of local field operators evaluated at the space-time point zero, where the states are eigenstates of the four-velocity. Applications include the study of the spectra and widths of vector mesons, viewed as bound states of quark-antiquark pairs. Besides mass operators, current operators are needed to compute form factors. Form factors are matrix elements of current operators on mass operator eigenstates and are often calculated with one-body current operators (in the point form this is called the point form spectator approximation); but in a properly relativistic theory there must also be many-body current operators. Minimal currents needed to satisfy current conservation in the presence of hadronic interactions (called dynamically determined currents) are shown to be easily calculated in the point form. (author)
Rounding by disorder of first-order quantum phase transitions: emergence of quantum critical points.
Goswami, Pallab; Schwab, David; Chakravarty, Sudip
2008-01-11
We give a heuristic argument for disorder rounding of a first-order quantum phase transition into a continuous phase transition. From both weak and strong disorder analysis of the N-color quantum Ashkin-Teller model in one spatial dimension, we find that, for N > or =3, the first-order transition is rounded to a continuous transition and the physical picture is the same as the random transverse field Ising model for a limited parameter regime. The results are strikingly different from the corresponding classical problem in two dimensions where the fate of the renormalization group flows is a fixed point corresponding to N-decoupled pure Ising models.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Wave chaos in quantum systems with point interaction
International Nuclear Information System (INIS)
Albeverio, S.; Seba, P.
1991-01-01
The authors study perturbations H of the quantized version H 0 of integrable Hamiltonian systems by point interactions. They relate the eigenvalues of H to the zeros of a certain meromorphic function ξ. Assuming the eigenvalues of H 0 are Poisson distributed, they get detailed information on the joint distribution of the zeros of ξ and give bounds on the probability density for the spacings of eigenvalues of H. Their results confirm the wave chaos phenomenon, as different from the quantum chaos phenomenon predicted by random matrix theory
International Nuclear Information System (INIS)
John, Jisha; Thomas, Lincy; Kurian, Achamma; George, Sajan D.
2016-01-01
The interaction of dye molecules with differently shaped nanoparticles is of great interest owing to the potential applications in areas of bioimaging, sensing and photodynamic therapy (biology) as well as solar cells (photonics) applications. For such applications, noble metallic nanoparticles are commonly employed to either enhance or quench the luminescence of a nearby fluorophore. However, in most of the studies, the dye concentration is limited to avoid self-quenching. This paper reports the influence of differently shaped gold nanoparticles (spherical, bean and star), prepared via green synthesis, on the emission behavior as well as on the fluorescence quantum yield of fluorescein dye at concentrations for which self-quenching occurs. The emission behavior is probed via laser based steady state fluorescence whereas quantum yield is measured using a dual beam laser based thermal lens technique. The experimentally observed fluorescence quenching with a concomitant increase in thermal lens signal in the vicinity of nanoparticles are explained in terms of nonradiative energy transfer between the donor and the acceptor. Further, the influence of pH of the prepared gold nanofluid on the absorption, emission as well as quantum yield are also accounted. These studies elucidate that even at high concentrations of dye, the gold nanoparticle and its shape clearly influences the optical properties of nearby dye molecules and thus can be exploited for future applications. - Highlights: • Green synthesis of differently shaped gold nanoparticles. • Tailoring emission properties of fluorescein with respect to nanoparticle concentration and shape. • Tailoring the quantum yield of highly concentrated fluorescein with nanoparticles.
Nair, Lakshmi V; Nazeer, Shaiju S; Jayasree, Ramapurath S; Ajayaghosh, Ayyappanpillai
2015-06-23
Fluorescence imaging assisted photodynamic therapy (PDT) is a viable two-in-one clinical tool for cancer treatment and follow-up. While the surface plasmon effect of gold nanorods and nanoparticles has been effective for cancer therapy, their emission properties when compared to gold nanoclusters are weak for fluorescence imaging guided PDT. In order to address the above issues, we have synthesized a near-infrared-emitting gold quantum cluster capped with lipoic acid (L-AuC with (Au)18(L)14) based nanoplatform with excellent tumor reduction property by incorporating a tumor-targeting agent (folic acid) and a photosensitizer (protoporphyrin IX), for selective PDT. The synthesized quantum cluster based photosensitizer PFL-AuC showed 80% triplet quantum yield when compared to that of the photosensitizer alone (63%). PFL-AuC having 60 μg (0.136 mM) of protoporphyrin IX was sufficient to kill 50% of the tumor cell population. Effective destruction of tumor cells was evident from the histopathology and fluorescence imaging, which confirm the in vivo PDT efficacy of PFL-AuC.
Scanning gate spectroscopy of a quantum Hall island near a quantum point contact
Hackens, Benoit; Martins, Frederico; Faniel, Sebastien; Bayot, Vincent; Rosenow, Bernd; Desplanque, Ludovic; Wallart, Xavier; Pala, Marco; Sellier, Hermann; Huant, Serge
2013-03-01
We report on low temperature (100 mK) scanning gate experiments performed at high magnetic field (around 10 T) on a mesoscopic device patterned in an InGaAs/InAlAs heterostructure. Magnetotransport measurements yield signatures of ultra-small Quantum Hall Islands (QHI) formed by closed quantum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to locate and probe a single QHI near a quantum point contact. The presence of Coulomb diamonds in the local spectroscopy confirms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.
Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.
Fradkin, Eduardo; Moore, Joel E
2006-08-04
The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.
On the many saddle points description of quantum black holes
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano, E-mail: cristiano.germani@physik.uni-muenchen.de
2014-06-02
Considering two dimensional gravity coupled to a CFT, we show that a semiclassical black hole can be described in terms of two Liouville theories matched at the horizon. The black hole exterior corresponds to a space-like while the interior to a time-like Liouville theory. This matching automatically implies that a semiclassical black hole has an infinite entropy. The path integral description of the time-like Liouville theory (the Black Hole interior) is studied and it is found that the correlation functions of the coupled CFT-gravity system are dominated by two (complex) saddle points, even in the semiclassical limit. We argue that this system can be interpreted as two interacting Bose–Einstein condensates constructed out of two degenerate quantum states. In AdS/CFT context, the same system is mapped into two interacting strings intersecting inside a three-dimensional BTZ black hole.
Directory of Open Access Journals (Sweden)
Arūnas Jagminas
2017-08-01
Full Text Available Biocompatible superparamagnetic iron oxide nanoparticles (NPs through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules. In this study, we present a way for a simple and reliable decoration the surface of magnetic NPs with gold quantum dots (QDs containing more than 13.5% of Au+. Emphasis is put on the synthesis of magnetic NPs by co-precipitation using the amino acid methionine as NP growth-stabilizing agent capable to later reduce and attach gold species. The surface of these NPs can be further conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM, atomic force microscopy (AFM, FTIR spectroscopy, inductively coupled plasma mass spectroscopy (ICP-MS, and X-ray photoelectron spectroscopy (XPS of as-formed CoFe2O4 NPs before and after decoration with gold QDs were applied.
Energy scales and magnetoresistance at a quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a Chernova street, Syktyvkar, 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole, 45-052 (Poland)
2009-03-02
The magnetoresistance (MR) of CeCoIn{sub 5} is notably different from that in many conventional metals. We show that a pronounced crossover from negative to positive MR at elevated temperatures and fixed magnetic fields is determined by the scaling behavior of quasiparticle effective mass. At a quantum critical point (QCP) this dependence generates kinks (crossover points from fast to slow growth) in thermodynamic characteristics (like specific heat, magnetization, etc.) at some temperatures when a strongly correlated electron system transits from the magnetic field induced Landau-Fermi liquid (LFL) regime to the non-Fermi liquid (NFL) one taking place at rising temperatures. We show that the above kink-like peculiarity separates two distinct energy scales in QCP vicinity - low temperature LFL scale and high temperature one related to NFL regime. Our comprehensive theoretical analysis of experimental data permits to reveal for the first time new MR and kinks scaling behavior as well as to identify the physical reasons for above energy scales.
Simulations of quantum transport in nanoscale systems: application to atomic gold and silver wires
DEFF Research Database (Denmark)
Mozos, J.L.; Ordejon, P.; Brandbyge, Mads
2002-01-01
. The potential drop profile and induced electronic current (and therefore the conductance) are obtained from first principles. The method takes into account the atomic structure of both the nanoscale structure and the semi-infinite electrodes through which the potential is applied. Non-equilibrium Green......'s function techniques are used to calculate the quantum conductance. Here we apply the method to the study of the electronic transport in wires of gold and silver with atomic thickness. We show the results of our calculations, and compare with some of the abundant experimental data on these systems....
Li, Yuan; Chopra, Nitin
2015-07-01
A simple technique for patterning multilayer graphene shell encapsulated gold nanoparticles (GNPs) on the silicon substrate and their further surface decoration with semiconducting quantum dots (QDs) is reported. This leads to the fabrication of a novel silicon electrode decorated with GNP-QD hybrids or heterostructures. The morphology, structure, and composition of the GNPs and GNP-QD heterostructures were evaluated using microscopic and spectroscopic techniques. The heterostructures decorated silicon electrode was also evaluated for the electronic and electrochemical properties. The results showed that the electrical characteristics of the silicon substrate were significantly improved by decorating with GNPs and quantum dots. Furthermore, GNP-QD heterostructure electrode was observed to show significantly increased electrochemical charge transfer activity.
Energy Technology Data Exchange (ETDEWEB)
Qian, Jing [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); School of Chemistry and Chemical Engineering, Jiangsu University, Zhengjiang 212013 (China); Wang, Chengquan [Changzhou College of Information Technology, Changzhou 213164 (China); Pan, Xiaohu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Liu, Songqin, E-mail: liusq@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)
2013-02-06
Graphical abstract: A Förster resonance energy transfer system by using polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor for sensitive detection of tumor marker was proposed. Highlights: ► A homogeneous immunosensing strategy based on FRET for detection of tumor marker was proposed. ► Close of QDs and AuNPs allow the occurrence of quenching the photoluminescence of nano-bio-probes. ► Signal quenching was monitored by a self-developed image analyzer. ► The fluorometric assay format is attractive for widespread carcinoma screening and even field use. -- Abstract: A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL{sup −1} for CEA, with a detection limit of 0.3 ng mL{sup −1}. The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers.
International Nuclear Information System (INIS)
Qian, Jing; Wang, Chengquan; Pan, Xiaohu; Liu, Songqin
2013-01-01
Graphical abstract: A Förster resonance energy transfer system by using polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor for sensitive detection of tumor marker was proposed. Highlights: ► A homogeneous immunosensing strategy based on FRET for detection of tumor marker was proposed. ► Close of QDs and AuNPs allow the occurrence of quenching the photoluminescence of nano-bio-probes. ► Signal quenching was monitored by a self-developed image analyzer. ► The fluorometric assay format is attractive for widespread carcinoma screening and even field use. -- Abstract: A novel homogeneous immunoassay based on Förster resonance energy transfer for sensitive detection of tumor, e.g., marker with carcinoembryonic antigen (CEA), was proposed. The assay was consisted of polyclonal goat anti-CEA antibody labeled luminescent CdTe quantum dots (QDs) as donor and monoclonal goat anti-CEA antibody labeled gold nanoparticles (AuNPs) as acceptor. In presence of CEA, the bio-affinity between antigen and antibody made the QDs and AuNPs close enough, thus the photoluminescence (PL) quenching of CdTe QDs occurred. The PL properties could be transformed into the fluorometric variation, corresponding to the target antigen concentration, and could be easily monitored and analyzed with the home-made image analysis software. The fluorometric results indicated a linear detection range of 1–110 ng mL −1 for CEA, with a detection limit of 0.3 ng mL −1 . The proposed assay configuration was attractive for carcinoma screening or single sample in point-of-care testing, and even field use. In spite of the limit of available model analyte, this approach could be easily extended to detection of a wide range of biomarkers
Transport of ultracold atoms through a quantum point contact
HäUsler, Samuel; Lebrat, Martin; Husmann, Dominik; Corman, Laura; Krinner, Sebastian; Grenier, Charles; Brantut, Jean-Philippe; Esslinger, Tilman
2017-04-01
We explore transport of neutral particles through a quantum point contact with tunable interactions. The contact is optically imprinted onto the center of a cigar-shaped cloud of fermionic lithium 6 atoms connected to macroscopic reservoirs on each side. We create a particle, spin or temperature bias between the reservoirs and measure the induced conductance. At weak attractive interactions we observe quantized particle conductance at multiples of 1/h, an upper bound for Fermi liquid reservoirs. Upon increasing attraction the plateaus contineously increase to non-universal values as high as 4/h before the gas becomes superfluid. At stronger interactions, the plateaus in the particle conductance disappear while spin transport is suppressed, signaling the emergence of superfluid pairing. The anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the strongly attractive gas. Complementary to particle and spin transport we study the thermoelectric response to a temperature gradient between the reservoirs. We observe that resonant interactions strongly modify the particle and energy evolution compared to the weakly attractive case.
Correlations in quantum systems and branch points in the complex plane
Rotter, I.
2001-01-01
Branch points in the complex plane are responsible for avoided level crossings in closed and open quantum systems. They create not only an exchange of the wave functions but also a mixing of the states of a quantum system at high level density. The influence of branch points in the complex plane on the low-lying states of the system is small.
Universal Entanglement Entropy in 2D Conformal Quantum Critical Points
Energy Technology Data Exchange (ETDEWEB)
Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah
2008-12-05
We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.
Readout of a single electron spin in a double quantum dot using a quantum point contact
International Nuclear Information System (INIS)
Zhang Jianping; Ouyang Shihua; You, J Q; Lam, C.-H.
2008-01-01
We study the dynamics of a single electron spin in a double quantum dot (DQD) and its readout via a quantum point contact (QPC). We model the system microscopically and derive rate equations for the reduced electron density matrix of the DQD. Two cases with one and two electrons in the DQD are studied. In the one-electron case, with different Zeeman splittings in the two dots, the electron spin states are distinctly characterized by a constant and an oscillatory current through the QPC. In the two-electron case, the readout of the spin state of the electron in one of the dots called the qubit dot is essentially similar after considering hyperfine interactions between the electrons and the nuclear spins of the host materials and a uniform magnetic field applied to the DQD. Moreover, to ensure that an electron is properly injected into the qubit dot, we propose to determine the success of the electron injection from the variations of the QPC current after applying an oscillating magnetic field to the qubit dot
Quantum nodal points as fingerprints of classical chaos
International Nuclear Information System (INIS)
Leboeuf, P.; Voros, A.
1992-08-01
Semiclassical analysis of the individual eigenfunctions in a quantum system is presented, especially when the classical dynamics is chaotic and the quantum bound states are considered. Quantum maps have emerged as ideal dynamical models for basic studies, with their ability to exhibit classical chaos within a single degree of freedom. On the other hand, phase space techniques have become recognized as extremely powerful for describing quantum states. It is argued that representations of eigenfunctions are essential for semiclassical analysis. An explicit realization of that program in one degree is overviewed, in which the crucial ingredient is a phase-space parametrization of 1-d wave-functions. (K.A.) 44 refs.; 6 figs
Itinerant density instability at classical and quantum critical points
Feng, Yejun; van Wezel, Jasper; Flicker, Felix; Wang, Jiyang; Silevitch, D. M.; Littlewood, P. B.; Rosenbaum, T. F.
2015-03-01
Itinerant density waves are model systems for studying quantum critical behavior. In both the model spin- and charge-density-wave systems Cr and NbSe2, it is possible to drive a continuous quantum phase transition with critical pressures below 10 GPa. Using x-ray diffraction techniques, we are able to directly track the evolution of the ordering wave vector Q across the pressure-temperature phase diagram. We find a non-monotonic dependence of Q on pressure. Using a Landau-Ginsburg theoretical framework developed by McMillan for CDWs, we evaluate the importance of the physical terms in driving the formation of ordered states at both the thermal and quantum phase transitions. We find that the itinerant instability is the deciding factor for the emergent order, which is further influenced by the critical fluctuations in both the thermal and quantum limits.
Fermionic quantum critical point of spinless fermions on a honeycomb lattice
International Nuclear Information System (INIS)
Wang, Lei; Corboz, Philippe; Troyer, Matthias
2014-01-01
Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)
Fermi-surface collapse and dynamical scaling near a quantum-critical point
Friedemann, Sven; Oeschler, Niels; Wirth, Steffen; Krellner, Cornelius; Geibel, Christoph; Steglich, Frank; Paschen, Silke; Kirchner, Stefan; Si, Qimiao
2010-01-01
Quantum criticality arises when a macroscopic phase of matter undergoes a continuous transformation at zero temperature. While the collective fluctuations at quantum-critical points are being increasingly recognized as playing an important role in a wide range of quantum materials, the nature of the underlying quantum-critical excitations remains poorly understood. Here we report in-depth measurements of the Hall effect in the heavy-fermion metal YbRh2Si2, a prototypical system for quantum criticality. We isolate a rapid crossover of the isothermal Hall coefficient clearly connected to the quantum-critical point from a smooth background contribution; the latter exists away from the quantum-critical point and is detectable through our studies only over a wide range of magnetic field. Importantly, the width of the critical crossover is proportional to temperature, which violates the predictions of conventional theory and is instead consistent with an energy over temperature, E/T, scaling of the quantum-critical single-electron fluctuation spectrum. Our results provide evidence that the quantum-dynamical scaling and a critical Kondo breakdown simultaneously operate in the same material. Correspondingly, we infer that macroscopic scale-invariant fluctuations emerge from the microscopic many-body excitations associated with a collapsing Fermi-surface. This insight is expected to be relevant to the unconventional finite-temperature behavior in a broad range of strongly correlated quantum systems. PMID:20668246
Quantum Mechanical Calculation of the Heat of Solution and Residual Resistance of Gold in Silver
Huang, Kun
An attempt is made to calculate the heat of solution of gold in silver on the basis of-the quantum theory-of metals. These two metals are chosen because they have the same atomic volume, and therefore are the simplest case. The steps in the argument are as follows : Suppose that a gold atom replaces a silver atom in the lattice. Then, to a certain approximation, one can represent the substitution of the silver ion by a gold ion, in its effect on the electrons, by a " potential hole " of depth ΔE and radius r0. This potential hole will alter the energy of the conduction electrons. To a first approximation the change in energy is just ΔE, which would give zero heat of mixing. A second-order term of order (ΔE)2/EF always gives a positive heat of mixing ; EF is here the Fermi energy. This term is calculated exactly by wave-mechanical methods ; it gives 0.69 ev. per atom. The same calculation- shows, however, that there is a concentration of charge in the gold atom in excess of that in the surrounding silver atoms ; this alters the potential in which the electrons move, so that a self-consistent calculation is required to obtain the true energy. For this the labour required would be almost prohibitive; therefore we use instead the Thomas-Fermi method and obtain 0.45 ev. We thus find 0.15 ev. per atom for the heat of solution, which compares well with the observed value 0.13 ev. With the help of the potential obtained with the Thomas-Fermi method the residual resistance of gold in silver is found to be 0.16 micro ohm cm. for 1% solution. The considerable discrepancy as compared with the experimental value 0.38 seems closely connected with very similar discrepancies found in other theoretical work on temperature resistance of the noble metals.
International Nuclear Information System (INIS)
Zhang, Zhihong; Duan, Fenghe; He, Linghao; Peng, Donglai; Yan, Fufeng; Jia, Chunxiao; Wang, Minghua; Zong, Wei
2016-01-01
A nanocomposite consisting of zinc sulfide quantum dots and polyaniline (ZnSQD-PANI) was placed on a gold electrode along with antibody against clenbuterol to give an amperometric immunosensor for clenbuterol. Compared to the use of pristine PANI, the electrode modified with the ZnSQD-PANI nanocomposite adsorbs clenbuterol antibody much better and therefore exhibits higher sensitivity to clenbuterol. The biosensor, when operated at a working potential of 0.21 V (vs. Ag/AgCl), displays a detection limit as low as 5.5 pg⋅mL −1 and works over the 0.01 to 10 ng⋅mL −1 concentration range. Related species such as salbutamol and ractopamine, urine components such as urea and uric acid, and the ions Ca(II), Na(I), and K(I) do not interfere. (author)
Samanta, Anirban; Zhou, Yadong; Zou, Shengli; Yan, Hao; Liu, Yan
2014-09-10
The dependence of quantum dot (QD) fluorescence emission on the proximity of 30 nm gold nanoparticles (AuNPs) was studied with controlled interparticle distances ranging from 15 to 70 nm. This was achieved by coassembling DNA-conjugated QDs and AuNPs in a 1:1 ratio at precise positions on a triangular-shaped DNA origami platform. A profound, long-range quenching of the photoluminescence intensity of the QDs was observed. A combination of static and time-resolved fluorescence measurements suggests that the quenching is due to an increase in the nonradiative decay rate of QD emission. Unlike FRET, the energy transfer is inversely proportional to the 2.7th power of the distance between nanoparticles with half quenching at ∼28 nm. This long-range quenching phenomena may be useful for developing extended spectroscopic rulers in the future.
ac-dc voltage profile and four point impedance of a quantum driven system
Foieri, Federico; Arrachea, Liliana
2010-09-01
We investigate the behavior of the time-dependent voltage drop in a periodically driven quantum conductor sensed by weakly coupled dynamical voltages probes. We introduce the concepts of ac-dc local voltage and four point impedance in an electronic system driven by ac fields. We discuss the properties of the different components of these quantities in a simple model of a quantum pump, where two ac voltages oscillating with a phase lag are applied at the walls of a quantum dot.
Exponential spreading and singular behavior of quantum dynamics near hyperbolic points.
Iomin, A
2013-05-01
Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of quantum dynamics is obtained, and conditions for this realization are analyzed.
Raval, Dhyey; Tripathi, Brijesh; Ray, Abhijit
2018-02-01
This article reports gold nanoparticle (Au-NP) induced absorption enhancement in hydrothermally synthesized titanium dioxide nanorods (TiO2-NRs) with a possibility of the deposition of hybrid nanostructures on the transparent substrates. The localized surface plasmon resonance (LSPR) and hot electron transfer behaviour of Au-NPs attached to the TiO2-NRs has been correlated to their photocatalytic response. The photocurrent enhancement observed in amperometric studies has been explained on the basis of excess electron density in the conduction band of TiO2 due to hot electron transfer from the attached Au-NPs (size in the range of 3 to 44 nm). The quantum mechanical calculation of the electron transmission probability from the resonant Au-NP to the conduction band of TiO2-NR has been presented with respect to the wavelength of the incident spectrum. Further, the role of Au-NP size dependent electron work function has been correlated to the electron transmission probability. This study provides a quantum mechanical explanation to the better response of Au-NPs/TiO2-NRs system for photo-catalytic device applications. [Figure not available: see fulltext.
Error tolerance in an NMR implementation of Grover's fixed-point quantum search algorithm
International Nuclear Information System (INIS)
Xiao Li; Jones, Jonathan A.
2005-01-01
We describe an implementation of Grover's fixed-point quantum search algorithm on a nuclear magnetic resonance quantum computer, searching for either one or two matching items in an unsorted database of four items. In this algorithm the target state (an equally weighted superposition of the matching states) is a fixed point of the recursive search operator, so that the algorithm always moves towards the desired state. The effects of systematic errors in the implementation are briefly explored
Pleskova, S N; Mikheeva, E R
2011-08-01
Inhibition of neutrophilic granulocyte metabolism under the effect of semiconductor quantum points was demonstrated. The status of the oxidative system was evaluated by the NBT test, nonoxidative status by the lysosomal cationic test. It was found that quantum points in a dose of 0.1 mg/ml irrespective of their core and composition of coating significantly inhibited oxygen-dependent and oxygen-independent metabolism of neutrophilic granulocytes.
Some exact results for the two-point function of an integrable quantum field theory
International Nuclear Information System (INIS)
Creamer, D.B.; Thacker, H.B.; Wilkinson, D.
1981-02-01
The two point correlation function for the quantum nonlinear Schroedinger (delta-function gas) model is studied. An infinite series representation for this function is derived using the quantum inverse scattering formalism. For the case of zero temperature, the infinite coupling (c → infinity) result of Jimbo, Miwa, Mori and Sato is extended to give an exact expression for the order 1/c correction to the two point function in terms of a Painleve transcendent of the fifth kind
Rectifiable PT -symmetric Quantum Toboggans with Two Branch Points
Directory of Open Access Journals (Sweden)
M. Znojil
2010-01-01
Full Text Available Certain complex-contour (a.k.a. quantum-toboggan generalizations of Schroedinger’s bound-state problem are reviewed and studied in detail. Our key message is that the practical numerical solution of these atypical eigenvalue problems may perceivably be facilitated via an appropriate complex change of variables which maps their multi-sheeted complex domain of definition to a suitable single-sheeted complex plane.
Universal conductance and conductivity at critical points in integer quantum Hall systems.
Schweitzer, L; Markos, P
2005-12-16
The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, and , respectively. In the second-lowest Landau band, a critical conductance is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value . We argue that this difference is due to the multifractal structure of critical wave functions, a property that should generically show up in the conductance at quantum critical points.
The features of ballistic electron transport in a suspended quantum point contact
International Nuclear Information System (INIS)
Shevyrin, A. A.; Budantsev, M. V.; Bakarov, A. K.; Toropov, A. I.; Pogosov, A. G.; Ishutkin, S. V.; Shesterikov, E. V.
2014-01-01
A suspended quantum point contact and the effects of the suspension are investigated by performing identical electrical measurements on the same experimental sample before and after the suspension. In both cases, the sample demonstrates conductance quantization. However, the suspended quantum point contact shows certain features not observed before the suspension, namely, plateaus at the conductance values being non-integer multiples of the conductance quantum, including the “0.7-anomaly.” These features can be attributed to the strengthening of electron-electron interaction because of the electric field confinement within the suspended membrane. Thus, the suspended quantum point contact represents a one-dimensional system with strong electron-electron interaction
Theory of finite-entanglement scaling at one-dimensional quantum critical points.
Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E
2009-06-26
Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.
Investigating the cut points of CCQ, CAT and MMRC according to gold 2013 with SGRQ as standard
Alma, H.; De Jong, C.; Jelusic, D.; Wittmann, M.; Schuler, M.; Schultz, K.; Tsiligianni, I.; Kocks, J.; Van Der Molen, T.
2014-01-01
Rationale In the Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2013 strategy document, assessment of symptoms is advised to be performed by the Clinical COPD Questionnaire (CCQ), COPD Assessment Test (CAT), or modified Medical Research Council (mMRC). Cut points of resp. CCQ≥1,
Quantum critical point in high-temperature superconductors
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl
2009-02-02
Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.
Quantum mechanics for mathematicians nonlinear PDEs point of view
Komech, A
2005-01-01
We expose the Schrödinger quantum mechanics with traditional applications to Hydrogen atom. We discuss carefully the experimental and theoretical background for the introduction of the Schrödinger, Pauli and Dirac equations, as well as for the Maxwell equations. We explain in detail all basic theoretical concepts. We explain all details of the calculations and mathematical tools: Lagrangian and Hamiltonian formalism for the systems with finite degree of freedom and for fields, Geometric Optics, the Hamilton-Jacobi equation and WKB approximation, Noether theory of invariants including the theorem on currents, four conservation laws (energy, momentum, angular momentum and charge), Lie algebra of angular momentum and spherical functions, scattering theory (limiting amplitude principle and limiting absorption principle), the Lienard-Wiechert formulas, Lorentz group and Lorentz formulas, Pauli theorem and relativistic covariance of the Dirac equation, etc. We give a detailed oveview of the conceptual development...
Shot Noise Suppression in a Quantum Point Contact with Short Channel Length
International Nuclear Information System (INIS)
Jeong, Heejun
2015-01-01
An experimental study on the current shot noise of a quantum point contact with short channel length is reported. The experimentally measured maximum energy level spacing between the ground and the first excited state of the device reached up to 7.5 meV, probably due to the hard wall confinement by using shallow electron gas and sharp point contact geometry. The two-dimensional non-equilibrium shot noise contour map shows noise suppression characteristics in a wide range of bias voltage. Fano factor analysis indicates spin-polarized transport through a short quantum point contact. (paper)
Exceptional points near first- and second-order quantum phase transitions.
Stránský, Pavel; Dvořák, Martin; Cejnar, Pavel
2018-01-01
We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first- and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.
Area law for fixed points of rapidly mixing dissipative quantum systems
International Nuclear Information System (INIS)
Brandão, Fernando G. S. L.; Cubitt, Toby S.; Lucia, Angelo; Michalakis, Spyridon; Perez-Garcia, David
2015-01-01
We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free
Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas
2018-01-12
Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.
Adsorption kinetics of WS2 quantum dots onto a polycrystalline gold surface.
Ozhukil Valappil, Manila; Roopesh, Mekkat; Alwarappan, Subbiah; Pillai, Vijayamohanan K
2018-04-18
In this work, we report the adsorption kinetics of electrochemically synthesized WS2 quantum dots (ca. 3 nm) onto a polycrystalline gold electrode. Langmuir adsorption isotherm approach was employed to explore the temperature and adsorbate concentration dependence of experimentally calculated equilibrium constant of adsorption (Keq) and free energy for adsorption (ΔGads). Subsequently, we extract other thermodynamic parameters such as adsorption rate constant (Kads), desorption rate constant (Kd), the enthalpy of adsorption (ΔHads) and the entropy of adsorption (ΔSads). Our findings indicate that ΔGads is temperature dependent and ca. -1.74 kcal mol-1, ΔHads = -10.697 kcal mol-1 and ΔSads = -30 cal/(mol.K). These investigations on the contribution of the enthalpic and entropic forces to the total free energy of this system underscore the role of entropic forces on the stability of the WS2 QDs monolayer and provide new thermodynamic insights into other TMDQDs monolayers as well.
Capacitance and conductance of mesoscopic systems connected by quantum point contacts
DEFF Research Database (Denmark)
Flensberg, Karsten
1993-01-01
We study the transport properties of quantum dots and quantum point contacts in the Coulomb blockade regime and in the limit where the quantum point contact has nearly fully transmitting channels. Using a transformation to a multichannel Tomonaga-Luttinger-type model, we find the scaling behavior...... of the junction close to pinchoff. It is shown that the junction scales to an insulating junction. We find a crossover between a low-temperature regime with Coulomb blockade to a high-temperature regime where the quantum charge fluctuations are dominant. The crossover temperature between these regimes is given...... by Tc∼U[1-G0/NGH]N/2, where U are the bare charging energy, G0 is the nominal conductance, N is the number of channels, and GH=e2/h....
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
2016-01-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for BSPT state, while either charge insulator/spin insulator or cha...
Ferromagnetic Spin Coupling as the Origin of 0.7 Anomaly in Quantum Point Contacts
Aryanpour, K.; Han, J. E.
2008-01-01
We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that $0.7(2e^{2}/h)$ anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incohe...
Zero-field quantum critical point in CeCoIn5.
Tokiwa, Y; Bauer, E D; Gegenwart, P
2013-09-06
Quantum criticality in the normal and superconducting states of the heavy-fermion metal CeCoIn5 is studied by measurements of the magnetic Grüneisen ratio ΓH and specific heat in different field orientations and temperatures down to 50 mK. A universal temperature over magnetic field scaling of ΓH in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state, the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.
Interference Effects in a Tunable Quantum Point Contact Integrated with an Electronic Cavity
Yan, Chengyu; Kumar, Sanjeev; Pepper, Michael; See, Patrick; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint
2017-08-01
We show experimentally how quantum interference can be produced using an integrated quantum system comprising an arch-shaped short quantum wire (or quantum point contact, QPC) of 1D electrons and a reflector forming an electronic cavity. On tuning the coupling between the QPC and the electronic cavity, fine oscillations are observed when the arch QPC is operated in the quasi-1D regime. These oscillations correspond to interference between the 1D states and a state which is similar to the Fabry-Perot state and suppressed by a small transverse magnetic field of ±60 mT . Tuning the reflector, we find a peak in resistance which follows the behavior expected for a Fano resonance. We suggest that this is an interesting example of a Fano resonance in an open system which corresponds to interference at or near the Ohmic contacts due to a directly propagating, reflected discrete path and the continuum states of the cavity corresponding to multiple scattering. Remarkably, the Fano factor shows an oscillatory behavior taking peaks for each fine oscillation, thus, confirming coupling between the discrete and continuum states. The results indicate that such a simple quantum device can be used as building blocks to create more complex integrated quantum circuits for possible applications ranging from quantum-information processing to realizing the fundamentals of complex quantum systems.
The critical point of quantum chromodynamics through lattice and ...
Indian Academy of Sciences (India)
Abstract. This talk discusses methods of extending lattice computations at ﬁnite temperature into regions of ﬁnite chemical potential, and the conditions under which such results from the lattice may be compared to experiments. Such comparisons away from a critical point are absolutely essential for quantitative use of lattice ...
Electrochemiluminescent detection of Pb{sup 2+} by graphene/gold nanoparticles and CdSe quantum dots
Energy Technology Data Exchange (ETDEWEB)
Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan
2016-12-01
Highlights: • An ECL sensor was fabricated based on the distance dependent between CdSe QDs and gold nanoparticles. • The ssDNA strands rich in G bases adopt the G4 conformation when Pb{sup 2+} is present in detection system. • AuNPs/RGO composite improved the performance of electron transfer of sensor. • The ECL sensor was used to detect Pb{sup 2+} concentration in an actual water sample with high sensitivity and selectivity. - Abstract: A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold−sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb{sup 2+}. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10{sup −10} to 10{sup −8} mol/L (R = 0.9819) with a detection limit of 10{sup −10} mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.
Energy Technology Data Exchange (ETDEWEB)
Gu Zhiguo; Yang Shuping [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.net [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Sun Xiulan [School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang Guangli [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Fang Yinjun [Zhejiang Zanyu Technology Co., Ltd., Hangzhou 310009 (China); Liu Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)
2011-10-30
Graphical abstract: We first reported an ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since promising their electrocatalytic synergy towards glucose was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M) and fast response time (0.045 s). - Abstract: The paper reported an ultrasensitive electrochemical biosensor for glucose which was based on CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Since efficient electron transfer between glucose oxidase and the electrode was achieved, the biosensor showed high sensitivity (5762.8 nA nM{sup -1} cm{sup -2}), low detection limit (S/N = 3) (3 x 10{sup -12} M), fast response time (0.045 s), wide calibration range (from 1 x 10{sup -11} M to 1 x 10{sup -8} M) and good long-term stability (26 weeks). The apparent Michaelis-Menten constant of the glucose oxidase on the medium, 5.24 x 10{sup -6} mM, indicates excellent bioelectrocatalytic activity of the immobilized enzyme towards glucose oxidation. Moreover, the effects of omitting graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle were also investigated. The result showed sensitivity of the biosensor is 7.67-fold better if graphene-gold nanocomposite, CdTe-CdS core-shell quantum dot and gold nanoparticle are used. This could be ascribed to improvement of the conductivity between graphene nanosheets due to introduction of gold nanoparticles, ultrafast charge transfer from CdTe-CdS core-shell quantum dot to graphene nanosheets and gold nanoparticle due to unique electrochemical properties of the CdTe-CdS core-shell quantum dot and good biocompatibility of gold nanoparticle for glucose oxidase. The biosensor is of best sensitivity in all glucose
Some exact results for the two-point function of an integrable quantum field theory
International Nuclear Information System (INIS)
Creamer, D.B.; Thacker, H.B.; Wilkinson, D.
1981-01-01
The two-point correlation function for the quantum nonlinear Schroedinger (one-dimensional delta-function gas) model is studied. An infinite-series representation for this function is derived using the quantum inverse-scattering formalism. For the case of zero temperature, the infinite-coupling (c→infinity) result of Jimbo, Miwa, Mori, and Sato is extended to give an exact expression for the order-1/c correction to the two-point function in terms of a Painleve transcendent of the fifth kind
Conductance enhancement in quantum-point-contact semiconductor-superconductor devices
DEFF Research Database (Denmark)
Mortensen, Asger; Jauho, Antti-Pekka; Flensberg, Karsten
1999-01-01
We present numerical calculations of the conductance of an interface between a phase-coherent two-dimensional electron gas and a superconductor with a quantum point contact in the normal region. Using a scattering matrix approach we reconsider the geometry of De Raedt, Michielsen, and Klapwijk...... [Phys. Rev. B 50, 631 (1994)] which was studied within the time-dependent Bogoliubov-de Gennes formalism. We find that the factor-of-2 enhancement of the conductance G(NS) compared to the normal state conductance GN for ideal interfaces may be suppressed for interfaces with a quantum point contact...
Spectral analysis of growing graphs a quantum probability point of view
Obata, Nobuaki
2017-01-01
This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectr...
Muñoz-Rosas, Ana Luz; Rodríguez-Gómez, Arturo; Alonso-Huitrón, Juan Carlos
2018-03-22
Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs) to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD) in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC)-sputtering technique, and an aluminum doped zinc oxide thin film (AZO) which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL) enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL) enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.
Directory of Open Access Journals (Sweden)
Ana Luz Muñoz-Rosas
2018-03-01
Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.
Peltier Coefficient and Photon-Assisted Tunnelling in Quantum Point Contact
International Nuclear Information System (INIS)
Arafa, H. Aly
2008-01-01
We present the Peltier coefficient and thermal transport in quantum point contact (QPC), under the influence of external fields and different temperatures. Also we obtain the oscillations of the Peltier coefficient in external fields. Numerical calculations of the Peltier coefficient are performed at different applied voltages, amplitudes and temperatures. The obtained results are consistent with the experimental data in the literature
Visualising Berry phase and diabolical points in a quantum exciton-polariton billiard.
Estrecho, E; Gao, T; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Truscott, A G; Ostrovskaya, E A
2016-11-25
Diabolical points (spectral degeneracies) can naturally occur in spectra of two-dimensional quantum systems and classical wave resonators due to simple symmetries. Geometric Berry phase is associated with these spectral degeneracies. Here, we demonstrate a diabolical point and the corresponding Berry phase in the spectrum of hybrid light-matter quasiparticles-exciton-polaritons in semiconductor microcavities. It is well known that sufficiently strong optical pumping can drive exciton-polaritons to quantum degeneracy, whereby they form a macroscopically populated quantum coherent state similar to a Bose-Einstein condensate. By pumping a microcavity with a spatially structured light beam, we create a two-dimensional quantum billiard for the exciton-polariton condensate and demonstrate a diabolical point in the spectrum of the billiard eigenstates. The fully reconfigurable geometry of the potential walls controlled by the optical pump enables a striking experimental visualization of the Berry phase associated with the diabolical point. The Berry phase is observed and measured by direct imaging of the macroscopic exciton-polariton probability densities.
Breakup of a Stoner model for the two-dimensional ferromagnetic quantum critical point
Dzero, M.; Gor'kov, L. P.
2004-03-01
Generalization of the results by A. V. Chubukov et al. [Phys. Rev. Lett. 90, 077002 (2003)] leads to the conclusion that the ferromagnetic quantum critical point cannot be described by a Stoner model because of a strong interplay between the paramagnetic fluctuations and the Cooper channel, at least in two dimensions.
Point group invariants in the Uqp(u(2)) quantum algebra picture
International Nuclear Information System (INIS)
Kibler, M.
1993-07-01
Some consequences of a qp-quantization of a point group invariant developed in the enveloping algebra of SU(2) are examined. A set of open problems concerning such invariants in the U qp (u(2)) quantum algebra picture is briefly discussed. (author) 18 refs
'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings
International Nuclear Information System (INIS)
Meleshenko, Peter A.; Klinskikh, Alexander F.
2011-01-01
We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.
Wang, Xuefeng; Andrews, Lester; Willmann, Knut; Brosi, Felix; Riedel, Sebastian
2012-10-15
Noble with a difference: Matrix-isolation experiments and quantum-chemical calculations have led to the characterization of two new compounds, namely first open-shell binary gold fluoride, AuF(2), and a NeAuF complex. Moreover, ArAuF, AuF(3), Au(2)F(6), and monomeric AuF(5) have been produced and identified under cryogenic conditions in neon and argon matrices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluctuation theorem for a double quantum dot coupled to a point-contact electrometer
Energy Technology Data Exchange (ETDEWEB)
Golubev, D. [Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Utsumi, Y. [Department of Physics Engineering, Faculty of Engineering, Mie University, Tsu, Mie, 514-8507 (Japan); Marthaler, M. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Schön, G. [Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany and Institut für Nanotechnologie, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)
2013-12-04
Motivated by recent experiments on the real-time single-electron counting through a semiconductor GaAs double quantum dot (DQD) by a nearby quantum point contact (QPC), we develop the full-counting statistics of coupled DQD and QPC system. By utilizing the time-scale separation between the dynamics of DQD and QPC, we derive the modified master equation with tunneling rates depending on the counting fields, which fulfill the detailed fluctuation theorem. Furthermore, we derive universal relations between the non-linear corrections to the current and noise, which can be verified in experiments.
Ferromagnetic spin coupling as the origin of 0.7 anomaly in quantum point contacts.
Aryanpour, K; Han, J E
2009-02-06
We study one-dimensional itinerant electron models with ferromagnetic coupling to investigate the origin of the 0.7 anomaly in quantum point contacts. Linear conductance calculations from the quantum Monte Carlo technique for spin interactions of different spatial range suggest that 0.7(2e;{2}/h) anomaly results from a strong interaction of low-density conduction electrons to ferromagnetic fluctuations formed across the potential barrier. The conductance plateau appears due to the strong incoherent scattering at high temperature when the electron traversal time matches the time scale of dynamic ferromagnetic excitations.
Regularity and chaos at critical points of first-order quantum phase transitions
International Nuclear Information System (INIS)
Macek, M.; Leviatan, A.
2011-01-01
We study the interplay between regular and chaotic dynamics at the critical point of a generic first-order quantum phase transition in an interacting boson model of nuclei. A classical analysis reveals a distinct behavior of the coexisting phases in a broad energy range. The dynamics is completely regular in the deformed phase and, simultaneously, strongly chaotic in the spherical phase. A quantum analysis of the spectra separates the regular states from the irregular ones, assigns them to particular phases, and discloses persisting regular rotational bands in the deformed region.
Matter fields near quantum critical point in (2+1)-dimensional U(1) gauge theory
International Nuclear Information System (INIS)
Liu Guozhu; Li Wei; Cheng Geng
2010-01-01
We study chiral phase transition and confinement of matter fields in (2+1)-dimensional U(1) gauge theory of massless Dirac fermions and scalar bosons. The vanishing scalar boson mass, r=0, defines a quantum critical point between the Higgs phase and the Coulomb phase. We consider only the critical point r=0 and the Coulomb phase with r>0. The Dirac fermion acquires a dynamical mass when its flavor is less than certain critical value N f c , which depends quantitatively on the flavor N b and the scalar boson mass r. When N f f c , the matter fields carrying internal gauge charge are all confined if r≠0 but are deconfined at the quantum critical point r=0. The system has distinct low-energy elementary excitations at the critical point r=0 and in the Coulomb phase with r≠0. We calculate the specific heat and susceptibility of the system at r=0 and r≠0, which can help to detect the quantum critical point and to judge whether dynamical fermion mass generation takes place.
Quantum mechanics of a free particle on a plane with an extracted point
International Nuclear Information System (INIS)
Kowalski, K.; Podlaski, K.; Rembielinski, J.
2002-01-01
A detailed study of a quantum free particle on a pointed plane is presented in this paper. In particular, some questions posed in the very recent paper by M. A. Cirone et al, Phys. Rev. A 65, 022101 (2002) are clarified. Namely, the topological effects related to extracting a point from a plane are indicated. The proposed results are introduced concerning self-adjoint extensions of operators describing the free particle on a pointed plane as well as the role played by discrete symmetries in the analysis of such extensions
Singularity structure of the two-point function in quantum field theory in curved spacetime, II
International Nuclear Information System (INIS)
Fulling, S.A.; Narcowich, F.J.; Wald, R.M.
1981-01-01
We prove that, for a massive, scalar, quantum field in a wide class of static spacetimes, the two-point function has singularity structure of the Hadamard form. In particular, this implies that the point-splitting renormalization prescription is well defined in these spacetimes. As a corollary of this result and a previous result of Fulling, Sweeny, and Wald, we show that in an arbitrary globally hyperbolic spacetime there always exists a large class of states for which the singular part of the two-point function has the Hadamard form. In addition, we prove that, for a closed universe which is both initially and finally static, the S-matrix exists
The Unicellular State as a Point Source in a Quantum Biological System
Directory of Open Access Journals (Sweden)
John S. Torday
2016-05-01
Full Text Available A point source is the central and most important point or place for any group of cohering phenomena. Evolutionary development presumes that biological processes are sequentially linked, but neither directed from, nor centralized within, any specific biologic structure or stage. However, such an epigenomic entity exists and its transforming effects can be understood through the obligatory recapitulation of all eukaryotic lifeforms through a zygotic unicellular phase. This requisite biological conjunction can now be properly assessed as the focal point of reconciliation between biology and quantum phenomena, illustrated by deconvoluting complex physiologic traits back to their unicellular origins.
Measurement Back-Action in Quantum Point-Contact Charge Sensing
Directory of Open Access Journals (Sweden)
Bruno Küng
2010-06-01
Full Text Available Charge sensing with quantum point-contacts (QPCs is a technique widely used in semiconductor quantum-dot research. Understanding the physics of this measurement process, as well as finding ways of suppressing unwanted measurement back-action, are therefore both desirable. In this article, we present experimental studies targeting these two goals. Firstly, we measure the effect of a QPC on electron tunneling between two InAs quantum dots, and show that a model based on the QPC’s shot-noise can account for it. Secondly, we discuss the possibility of lowering the measurement current (and thus the back-action used for charge sensing by correlating the signals of two independent measurement channels. The performance of this method is tested in a typical experimental setup.
Wang, Qian; Qin, Pinquan; Wang, Wen-ge
2015-10-01
Based on an analysis of Feynman's path integral formulation of the propagator, a relative criterion is proposed for validity of a semiclassical approach to the dynamics near critical points in a class of systems undergoing quantum phase transitions. It is given by an effective Planck constant, in the relative sense that a smaller effective Planck constant implies better performance of the semiclassical approach. Numerical tests of this relative criterion are given in the XY model and in the Dicke model.
Quantum critical point and entanglement in a matrix-product ground state
Tribedi, Amit; Bose, Indrani
2007-04-01
In this paper, we study the entanglement properties of a spin-1 model, the exact ground state of which is given by a matrix product (MP) state. The model exhibits a critical point transition at a parameter value a=0 . The longitudinal and transverse correlation lengths are known to diverge as a→0 . We use three different entanglement measures S(i) (the one-site von Neumann entropy), S(i,j) (the two-body entanglement), and G(2,n) (the generalized global entanglement) to determine the entanglement content of the MP ground state as the parameter a is varied. The entanglement length, associated with S(i,j) , is found to diverge in the vicinity of the quantum critical point a=0 . The first derivative of the entanglement measure E [=S(i),S(i,j)] with respect to the parameter a also diverges. The first derivative of G(2,n) with respect to a does not diverge as a→0 but attains a maximum value at a=0 . At the quantum critical point itself all three entanglement measures become zero. We further show that multipartite correlations are involved in the quantum phase transitions at a=0 .
Regulator dependence of fixed points in quantum Einstein gravity with R 2 truncation
Nagy, S.; Fazekas, B.; Peli, Z.; Sailer, K.; Steib, I.
2018-03-01
We performed a functional renormalization group analysis for the quantum Einstein gravity including a quadratic term in the curvature. The ultraviolet non-gaussian fixed point and its critical exponent for the correlation length are identified for different forms of regulators in case of dimension 3. We searched for that optimized regulator where the physical quantities show the least regulator parameter dependence. It is shown that the Litim regulator satisfies this condition. The infrared fixed point has also been investigated, it is found that the exponent is insensitive to the third coupling introduced by the R 2 term.
Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point
Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng
2017-12-01
Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.
Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids.
Gao, T; Li, G; Estrecho, E; Liew, T C H; Comber-Todd, D; Nalitov, A; Steger, M; West, K; Pfeiffer, L; Snoke, D W; Kavokin, A V; Truscott, A G; Ostrovskaya, E A
2018-02-09
We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.
Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluids
Gao, T.; Li, G.; Estrecho, E.; Liew, T. C. H.; Comber-Todd, D.; Nalitov, A.; Steger, M.; West, K.; Pfeiffer, L.; Snoke, D. W.; Kavokin, A. V.; Truscott, A. G.; Ostrovskaya, E. A.
2018-02-01
We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.
Han, Heyou; Cai, Yawen; Liang, Jiangong; Sheng, Zonghai
2007-06-01
The interaction of water-soluble CdSe quantum dots (QDs) with gold (Au) nanoparticles was investigated by ultraviolet visible absorption spectroscopy. The results showed that the aggregation of Au nanoparticles was induced by CdSe QDs. The influences of factors such as the size of Au nanoparticles, acidity, buffer concentration and the concentration ratio of the CdSe QDs to Au nanoparticles were each investigated. The comparison of two different particle sizes (16 and 25 nm) of Au nanoparticles that interact with CdSe QDs in the solution showed that the aggregation of small Au nanoparticles (16 nm) is easier than that of big Au nanoparticles (25 nm). At pH 7.0 phosphate buffer solution (0.02 M), the optimal molar ratio of CdSe:Au is about 3100:1 according to calculations.
Neutral modes' edge state dynamics through quantum point contacts
Energy Technology Data Exchange (ETDEWEB)
Ferraro, D; Magnoli, N [Dipartimento di Fisica, Universita di Genova, INFN, Via Dodecaneso 33, 16146 Genova (Italy); Braggio, A; Sassetti, M [Dipartimento di Fisica, Universita di Genova, CNR-INFM LAMIA, Via Dodecaneso 33, 16146 Genova (Italy)], E-mail: ferraro@ge.infn.it
2010-01-15
The dynamics of neutral modes for fractional quantum Hall states is investigated for a quantum point contact geometry in the weak-backscattering regime. The effective field theory introduced by Fradkin-Lopez for edge states in the Jain sequence is generalized to the case of propagating neutral modes. The dominant tunnelling processes are identified also in the presence of non-universal phenomena induced by interactions. The crossover regime in the backscattering current between tunnelling of single-quasiparticles and of agglomerates of p-quasiparticles is analysed. We demonstrate that higher-order cumulants of the backscattering current fluctuations are a unique resource to study quantitatively the competition between different carrier charges. We find that propagating neutral modes are a necessary ingredient in order to explain this crossover phenomenon.
Fingerprints of bosonic symmetry protected topological state in a quantum point contact
Zhang, Rui-Xing; Liu, Chao-Xing
In this work, we study the transport through a quantum point contact for two-channel interacting helical liquids that exist at the edge of a bilayer graphene under a strong magnetic field. We identify ``smoking gun'' transport signatures to distinguish bosonic symmetry protected topological (BSPT) state from fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge insulator/spin conductor phase is found for a weak repulsive interaction in the BSPT state, while either charge insulator/spin insulator or charge conductor/spin conductor phase is expected for the two-channel QSH state. In the strong interaction limit, shot noise measurement for the BSPT state is expect to reveal charge-2e instanton tunneling, in comparison with the charge-e tunneling in the two-channel QSH phase.
Fingerprints of a Bosonic Symmetry-Protected Topological State in a Quantum Point Contact
Zhang, Rui-Xing; Liu, Chao-Xing
2017-05-01
In this work, we study the transport through a quantum point contact for bosonic helical liquid that exists at the edge of a bilayer graphene under a strong magnetic field. We identify "smoking gun" transport signatures to distinguish a bosonic symmetry-protected topological (BSPT) state from a fermionic two-channel quantum spin Hall (QSH) state in this system. In particular, a novel charge-insulator-spin-conductor phase is found for the BSPT state, while either the charge-insulator-spin-insulator or the charge-conductor-spin-conductor phase is expected for the two-channel QSH state. Consequently, a simple transport measurement will reveal the fingerprint of bosonic topological physics in bilayer graphene systems.
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)
2013-01-25
Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.
The resolution of point sources of light as analyzed by quantum detection theory
Helstrom, C. W.
1972-01-01
The resolvability of point sources of incoherent light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Resolution of point sources of light as analyzed by quantum detection theory.
Helstrom, C. W.
1973-01-01
The resolvability of point sources of incoherent thermal light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.
Quantum effects on Lagrangian points and displaced periodic orbits in the Earth-Moon system
Battista, Emmanuele; Dell'Agnello, Simone; Esposito, Giampiero; Simo, Jules
2015-01-01
Recent work in the literature has shown that the one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., at the Lagrangian libration points of stable equilibrium the planetoid is not exactly at equal distance from the two bodies of large mass, but the Newtonian values of its coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a theoretical...
Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation
DEFF Research Database (Denmark)
Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed
2014-01-01
Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size...... of QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using...
Soliton phase near antiferromagnetic quantum critical point in Q1D conductors
Gor'kov, L. P.; Grigoriev, P. D.
2005-08-01
In frameworks of a nesting model for Q1D organic conductors at the antiferromagnetic (SDW) quantum critical point, the first-order transition separates the metallic state from the soliton phase having periodic domain structure. The low-temperature phase diagram also displays a 2nd-order transition line between the soliton and the uniformly gapped SDW phases. The results agree with the phase diagram of (TMTSF)2PF6 near critical pressure (Vuletic T. et al., Eur. Phys. J. B 25 (2002) 319). The detection of the 2nd-order transition line is discussed. We comment on superconductivity at low temperature.
Measurement of gamma quantum interaction point in plastic scintillator with WLS strips
Energy Technology Data Exchange (ETDEWEB)
Smyrski, J., E-mail: smyrski@if.uj.edu.pl [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Gorgol, M.; Jasińska, B. [Department of Nuclear Methods, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin (Poland); Kajetanowicz, M.; Kamińska, D.; Korcyl, G. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); Kowalski, P. [Świerk Computing Centre, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Krzemień, W. [High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Cracow (Poland); and others
2017-04-11
The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a {sup 22}Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.
Quantum integrability for three-point functions of maximally supersymmetric Yang-Mills theory.
Gromov, Nikolay; Vieira, Pedro
2013-11-22
Quantum corrections to three-point functions of scalar single trace operators in planar N=4 Super-Yang-Mills theory are studied using integrability. At one loop, we find new algebraic structures that not only govern all two-loop corrections to the mixing of the operators but also automatically incorporate all one-loop diagrams correcting the tree-level Wick contractions. Speculations about possible extensions of our construction to all loop orders are given. We also match our results with the strong coupling predictions in the classical (Frolov-Tseytlin) limit.
Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.
Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele
2016-06-16
One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.
Sakuraba, Takao
The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A
Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore
2016-12-21
New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.
International Nuclear Information System (INIS)
Val’kov, V. V.; Zlotnikov, A. O.
2013-01-01
Mechanisms of the appearance of anomalous properties experimentally observed at the transition through the quantum critical point in rare-earth intermetallides have been studied. Quantum phase transitions are induced by the external pressure and are manifested as the destruction of the long-range antiferromagnetic order at zero temperature. The suppression of the long-range order is accompanied by an increase in the area of the Fermi surface, and the effective electron mass is strongly renormalized near the quantum critical point. It has been shown that such a renormalization is due to the reconstruction of the quasiparticle band, which is responsible for the formation of heavy fermions. It has been established that these features hold when the coexistence phase of antiferromagnetism and superconductivity is implemented near the quantum critical point.
Magnetic-field control of quantum critical points of valence transition.
Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques
2008-06-13
We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd.
Singularity of the London penetration depth at quantum critical points in superconductors.
Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir
2013-10-11
We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As(1-x)P(x))2 [K. Hashimoto et al., Science 336, 1554 (2012)].
Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point
Kastrinakis, George
2018-01-01
We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ) , due to critical fluctuations, is peaked at zero momentum q=0 . Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.
De Grandi, C.; Polkovnikov, A.
Dynamics in closed systems recently attracted a lot of theoretical interest largely following experimental developments in cold atom systems (see e.g., [1] for a review). Several spectacular experiments already explored different aspects of non-equilibrium dynamics in interacting many-particle systems [2-8]. Recent theoretical works in this context focused on various topics, for instance: connection of dynamics and thermodynamics [9-11 M. Rigol, unpublished], dynamics following a sudden quench in low dimensional systems [11-23, L. Mathey and A. Polkovnikov, unpublished; A. Iucci and M.A. Cazalilla,unpublished], adiabatic dynamics near quantum critical points [24-37, D. Chowdhury et al., unpublished; K. Sengupta and D. Sen, unpublished; A.P. Itin and P. Törmä, unpublished; F. Pollmann et al., unpublished] and others. Though there is still very limited understanding of the generic aspects of non-equilibrium quantum dynamics, it has been recognized that such issues as integrability, dimensionality, universality (near critical points) can be explored to understand the non-equilibrium behavior of many-particle systems in various specific situations.
Phillips, Nicholas G.; Hu, B. L.
2000-10-01
We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.
Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu
2018-01-01
The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.
Ahmed, Syed Rahin; Mogus, Jack; Chand, Rohit; Nagy, Eva; Neethirajan, Suresh
2018-04-30
An optoelectronic sensor is a rapid diagnostic tool that allows for an accurate, reliable, field-portable, low-cost device for practical applications. In this study, template-free In situ gold nanobundles (Au NBs) were fabricated on an electrode for optoelectronic sensing of fowl adenoviruses (FAdVs). Au NB film was fabricated on carbon electrodes working area using L(+) ascorbic acid, gold chroloauric acid and poly-l-lysine (PLL) through modified layer-by-layer (LbL) method. A scanning electron microscopic (SEM) image of the Au NBs revealed a NB-shaped Au structure with many kinks on its surface, which allow local electric field enhancement through light-matter interaction with graphene quantum dots (GQDs). Here, GQDs were synthesized through an autoclave-assisted method. Characterization experiments revealed blue-emissive, well-dispersed GQDs that were 2-3nm in size with the fluorescence emission peak of GQDs located at 405nm. Both Au NBs and GQDs were conjugated with target FAdVs specific antibodies that bring them close to each other with the addition of target FAdVs through antibody-antigen interaction. At close proximity, light-matter interaction between Au NBs and QDs produces a local electric signal enhancement under Ultraviolet-visible (UV-visible) light irradiation that allows the detection of very low concentrations of target virus even in complex biological media. A proposed optoelectronic sensor showed a linear relationship between the target FAdVs and the electric signal up to 10 Plaque forming unit (PFU)/mL with a limit of detection (LOD) of 8.75 PFU/mL. The proposed sensing strategy was 100 times more sensitive than conventional ELISA method. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Yan, Xu [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Li, Hongxia [School of Pharmacy, Jilin University, Changchun 130021 (China); Li, Yang [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Su, Xingguang, E-mail: suxg@jlu.edu.cn [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)
2014-12-10
Highlights: • The RF-QDs were fabricated by two different QDs using layer-by-layer assembly methods. • The PL intensity of RF-QDs could be quenched by AuNPs based on inner-filter effect. • Acetamiprid can adsorb on AuNPs led to the PL intensity of RF-QDs recover properly. • AuNPs serve a dual function as fluorescence quencher and colorimetric reporter in the sensor. - Abstract: In this work, we develop a simple and rapid sensing method for the visual and fluorescent detection of acetamiprid (AC) based on the inner-filter effect (IFE) of gold nanoparticles (AuNPs) on ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs based dual-emission nanosensor was fabricated by assembling green emissive QDs (QDs{sub 539} {sub nm}, λ{sub em} = 539 nm) on the surface of red emissive QDs (QDs{sub 661} {sub nm}, λ{sub em} = 661 nm)-doped silica microspheres. The photoluminescence (PL) intensity of RF-QDs could be quenched by AuNPs based on IFE. Acetamiprid can adsorb on the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on RF-QDs was weakened and the PL intensity of RF-QDs was recovered accordingly. Under the optimized conditions, the PL intensity of the RF-QDs/AuNPs system was proportional to the concentration of AC in the range of 0.025–5.0 μg mL{sup −1}, with a detection limit of 16.8 μg L{sup −1}. The established method had been used for AC detection in environmental and agricultural samples with satisfactory results.
Energy Technology Data Exchange (ETDEWEB)
Foubert, Astrid, E-mail: astrid.foubert@hotmail.com; Beloglazova, Natalia V.; De Saeger, Sarah
2017-02-22
Quantum dots (QDs) and colloidal gold nanoparticles (CG) were evaluated as labels for multiplex lateral flow immunoassay (LFIA) for determination of mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T2/HT2-toxin (T2/HT2) in cereal matrices. Both developed assays were based on the same immunoreagents (except for the labels), therefore their analytical characteristics could be objectively compared. For both LFIAs antigens (DON-ovalbumin (OVA), ZEN-OVA and T2-OVA) and rabbit anti-mouse immunoglobulin were immobilized on a nitrocellulose membrane as three test lines and one control line, respectively. Depending on the LFIA, monoclonal antibodies (mAb) against DON, ZEN and T2 were conjugated with CdSeS/ZnS QDs or CG. T2 and HT2 were detected by one test line (T2-OVA) with an anti-T2 mAb which showed 110% cross-reactivity with HT2. Both tests were developed in accordance with the legal limits and were developed in such a way that they had the same cut-off limits of 1000 μg kg{sup −1}, 80 μg kg{sup −1} and 80 μg kg{sup −1} for DON, ZEN and T2/HT2, respectively in order to allow a correct comparison. Applicability of these assays was demonstrated by analysis of naturally contaminated wheat samples. The results demonstrate that both the LFIAs can be used as rapid, cost-effective and convenient qualitative tool for on-site screening for simultaneous detection of DON, ZEN and HT2/T2 in wheat without special instrumentation. However, the QD-based LFIA consumed less immunoreagents and was more sensitive and economically beneficial. In addition, the results were easier to interpret, resulting in a lower false negative rate (<5%) which was in good agreement with Commission Decision 2002/657/EC regarding the performance of analytical methods intended for screening purposes. - Highlights: • Development of colloidal gold- and quantum dot-based multiplex lateral flow immunoassay. • Lateral flow immunoassays allow simultaneous detection of four mycotoxins.
Lilly, G Daniel; Lee, Jaebeom; Kotov, Nicholas A
2010-10-14
Dynamic self-assembled structures of nanoparticles can be produced using predominantly electrostatic interactions. Such assemblies were made from large, positively charged Au metal nanoparticles surrounded by an electrostatically bound cloud of smaller, negatively charged CdSe/ZnS or CdTe quantum dots. At low concentrations they are topologically similar to double electric layers of ions and corona-like assemblies linked by polymer chains. They can also be compared to the topological arrangement of some planetary systems in space. The great advantages of the cloud assemblies are (1) their highly dynamic nature compared to more rigid covalently bound assemblies, (2) simplicity of preparation, and (3) exceptional versatility in components and resulting optical properties. Photoluminescence intensity enhancement originating from quantum resonance between excitons and plasmons was observed for CdSe/ZnS quantum dots, although CdTe dots displayed emission quenching. To evaluate more attentively their dynamic behavior, emission data were collected for the cloud-assemblies with different ratios of the components and ionic strengths of the media. The emission of the system passes through a maximum for 80 QDs ∶ 1 Au NP as determined by the structure of the assemblies and light absorption conditions. Ionic strength dependence of luminescence intensity contradicts the predictions based on the Gouy-Chapman theory and osmotic pressure at high ionic strengths due to formation of larger chaotic colloidally stable assemblies. "Cloud" assemblies made from different nanoscale components can be used both for elucidation of most fundamental aspects of nanoparticle interactions, as well as for practical purposes in sensing and biology.
Roldán, J. B.; Miranda, E.; González-Cordero, G.; García-Fernández, P.; Romero-Zaliz, R.; González-Rodelas, P.; Aguilera, A. M.; González, M. B.; Jiménez-Molinos, F.
2018-01-01
A multivariate analysis of the parameters that characterize the reset process in Resistive Random Access Memory (RRAM) has been performed. The different correlations obtained can help to shed light on the current components that contribute in the Low Resistance State (LRS) of the technology considered. In addition, a screening method for the Quantum Point Contact (QPC) current component is presented. For this purpose, the second derivative of the current has been obtained using a novel numerical method which allows determining the QPC model parameters. Once the procedure is completed, a whole Resistive Switching (RS) series of thousands of curves is studied by means of a genetic algorithm. The extracted QPC parameter distributions are characterized in depth to get information about the filamentary pathways associated with LRS in the low voltage conduction regime.
Energy Technology Data Exchange (ETDEWEB)
Shu, Fu-Wen [Institute for Advanced Physics Mathematics, Zhejiang University of Technology,Hangzhou 310032 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University,Nanchang 330031 (China); Lin, Kai [Institute for Advanced Physics Mathematics, Zhejiang University of Technology,Hangzhou 310032 (China); Instituto de Física, Universidade de São Paulo,CP 66318, 05315-970, São Paulo (Brazil); Wang, Anzhong [Institute for Advanced Physics Mathematics, Zhejiang University of Technology,Hangzhou 310032 (China); GCAP-CASPER, Physics Department, Baylor University,Waco, TX 76798-7316 (United States); Wu, Qiang [Institute for Advanced Physics Mathematics, Zhejiang University of Technology,Hangzhou 310032 (China)
2014-04-08
In this paper, we study static vacuum solutions of quantum gravity at a fixed Lifshitz point in (2+1) dimensions, and present all the diagonal solutions in closed forms in the infrared limit. The exact solutions represent spacetimes with very rich structures: they can represent generalized BTZ black holes, Lifshitz space-times or Lifshitz solitons, in which the spacetimes are free of any kind of space-time singularities, depending on the choices of the free parameters of the solutions. We also find several classes of exact static non-diagonal solutions, which represent similar space-time structures as those given in the diagonal case. The relevance of these solutions to the non-relativistic Lifshitz-type gauge/gravity duality is discussed.
Rueda, A.
1985-01-01
That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.
Multi-Valued Logic Gates based on Ballistic Transport in Quantum Point Contacts
Seo, M.; Hong, C.; Lee, S.-Y.; Choi, H. K.; Kim, N.; Chung, Y.; Umansky, V.; Mahalu, D.
2014-01-01
Multi-valued logic gates, which can handle quaternary numbers as inputs, are developed by exploiting the ballistic transport properties of quantum point contacts in series. The principle of a logic gate that finds the minimum of two quaternary number inputs is demonstrated. The device is scalable to allow multiple inputs, which makes it possible to find the minimum of multiple inputs in a single gate operation. Also, the principle of a half-adder for quaternary number inputs is demonstrated. First, an adder that adds up two quaternary numbers and outputs the sum of inputs is demonstrated. Second, a device to express the sum of the adder into two quaternary digits [Carry (first digit) and Sum (second digit)] is demonstrated. All the logic gates presented in this paper can in principle be extended to allow decimal number inputs with high quality QPCs.
Dimensional reduction at the BEC quantum critical point in BaCuSi2O6.
Sebastian, Suchitra; Fisher, Ian; Harrison, Neil; Jaime, Marcelo; Sharma, Peter; Batista, Cristian; Balicas, Luis; Kawashima, Naoki
2006-03-01
We present results on the magnetic spin dimer system BaCuSi2O6, which can be tuned across a Bose-Einstein condensation (BEC) quantum critical point (QCP) to an ordered BEC of spins by applying an external magnetic field. Experimental results reveal a continuous crossover in critical scaling behaviour near the QCP from 3d to 2d BEC universality, indicating that dimensionality itself is an emergent property at the QCP of this particle density-tuneable BEC. Geometrical frustration leading to inter-layer decoupling is identified as the mechanism responsible for this unique manifestation of a lower dimensional QCP in the 3d BaCuSi2O6 spin system. While the theoretical concept of dimensional reduction has been extensively discussed in many different contexts as a route to low dimensionality in bulk materials, this is the first experimental realisation of dimensionally reduced criticality.
Anomalous transport phenomena in CeCoIn{sub 5} close to quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Onari, S. [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan)]. E-mail: onari@fcs.coe.nagoya-u.ac.jp; Kontani, H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Tanaka, Y. [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan)
2007-03-15
Various transport coefficients show striking deviations from conventional Fermi-liquid behaviors in many electron systems which are close to antiferromagnetic (AF) quantum critical points (QCP). For example, Hall coefficients and Nernst coefficients in three-dimensional heavy fermion CeCoIn{sub 5} and CeCu{sub 6-x}Au{sub x} increase remarkably at low temperatures. These temperature dependences are too strong to explain in terms of the relaxation time approximation. To elucidate the origin of these anomalous transport phenomena in three-dimensional systems, we study the role of current vertex corrections (CVC) based on the fluctuation exchange (FLEX) approximation. We find that the Hall coefficient and the Nernst coefficient strongly increase due to the CVC in the vicinity of the AF QCP, even in three-dimensional systems.
Lateral-electric-field-induced spin polarization in a suspended GaAs quantum point contact
Pokhabov, D. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Shevyrin, A. A.; Bakarov, A. K.; Shklyaev, A. A.
2018-02-01
The conductance of a GaAs-based suspended quantum point contact (QPC) equipped with lateral side gates has been experimentally studied in the absence of the external magnetic field. The half-integer conductance plateau ( 0.5 ×2 e2/h ) has been observed when an asymmetric voltage between the side gates is applied. The appearance of this plateau has been attributed to the spin degeneracy lifting caused by the spin-orbit coupling associated with the lateral electric field in the asymmetrically biased QPC. We have experimentally demonstrated that, despite the relatively small g-factor in GaAs, the observation of the spin polarization in the GaAs-based QPC became possible after the suspension due to the enhancement of the electron-electron interaction and the effect of the electric field guiding. These features are caused by a partial confinement of the electric field lines within a suspended semiconductor layer with a high dielectric constant.
Tricritical Points and Reentry in the Quantum Hopfield Neural-Network Model
Xi, Qin; Ma, YuQiang
2000-09-01
We examine a quantum Hopfield neural-network model in the presence of trimodal random transverse fields and random neuronal thresholds within the method of statistical physics. We use the Trotter decomposition to map the problem into an equivalent classical random Hopfield-type Ising model and obtain phase transitions between the ferromagnetic retrieval and the paramagnetic phases. The influence of competition between the diluted random transverse fields and the diluted random thresholds on the system is discussed, and some interesting results such as tricritical points and reentrance are analyzed. The project supported by the Fifth Fok Ying-Tung Foundation and the Trans-Century Training Programme Foundation for the Talents by the State Education Commission of China
Gattenlöhner, S; Hannes, W-R; Ostrovsky, P M; Gornyi, I V; Mirlin, A D; Titov, M
2014-01-17
We explore the longitudinal conductivity of graphene at the Dirac point in a strong magnetic field with two types of short-range scatterers: adatoms that mix the valleys and "scalar" impurities that do not mix them. A scattering theory for the Dirac equation is employed to express the conductance of a graphene sample as a function of impurity coordinates; an averaging over impurity positions is then performed numerically. The conductivity σ is equal to the ballistic value 4e2/πh for each disorder realization, provided the number of flux quanta considerably exceeds the number of impurities. For weaker fields, the conductivity in the presence of scalar impurities scales to the quantum-Hall critical point with σ≃4×0.4e2/h at half filling or to zero away from half filling due to the onset of Anderson localization. For adatoms, the localization behavior is also obtained at half filling due to splitting of the critical energy by intervalley scattering. Our results reveal a complex scaling flow governed by fixed points of different symmetry classes: remarkably, all key manifestations of Anderson localization and criticality in two dimensions are observed numerically in a single setup.
Yang, Dong; Ma, Jianzhong; Zhang, Qinlu; Li, Ningning; Yang, Jiangcun; Raju, Paul Ananda; Peng, Mingli; Luo, Yanling; Hui, Wenli; Chen, Chao; Cui, Yali
2013-07-16
Immediate response for disease control relies on simple, inexpensive, and sensitive diagnostic tests, highly sought after for timely and accurate test of various diseases, including infectious diseases. Composite Fe3O4/Au nanoparticles have attracted considerable interest in diagnostic applications due to their unique physical and chemical properties. Here, we developed a simple coating procedure for gold magnetic nanoparticles (GMNs) with poly(acrylic acid) (PAA). PAA-coated GMNs (PGMNs) were stable and monodispersed and characterized by Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscopy, UV-visible scanning spectrophotometry, thermogravimetric analysis, and Zetasizer methodologies. For diagnostic application, we established a novel lateral flow immunoassay (LFIA) strip test system where recombinant Treponema pallidum antigens (r-Tp) were conjugated with PGMNs to construct a particle probe for detection of anti-Tp antibodies. Intriguingly, the particle probes specifically identified Tp antibodies with a detection limitation as low as 1 national clinical unit/mL (NCU/mL). An ample pool of 1020 sera samples from three independent hospitals were obtained to assess our PGMNs-based LFIA strips, which exhibited substantially high values of sensitivity and specificity for all clinical tests (higher than 97%) and, therefore, proved to be a suitable approach for syphilis screening at a point-of-care test manner.
Alarfaj, Nawal Ahmad; El-Tohamy, Maha Farouk; Oraby, Hesham Farouk
2018-04-11
The clinical detection of carbohydrate antigen 19-9 (CA 19-9), a tumor marker in biological samples, improves and facilitates the rapid screening and diagnosis of pancreatic cancer. A simple, low cost, fast, and green synthesis method to prepare a viable carbon quantum dots/gold (CQDs/Au) nanocomposite fluorescence immunosensing solution for the detection of CA 19-9 was reported. The present method is conducted by preparing glucose-derived CQDs using a microwave-assisted method. CQDs were employed as reducing and stabilizing agents for the preparation of a CQDs/Au nanocomposite. The immobilized anti-CA 19-9-labeled horseradish peroxidase enzyme (Ab-HRP) was anchored to the surface of a CQDs/Au nanocomposite by a peptide interaction between the carboxylic and amine active groups. The CA 19-9 antigen was trapped by another monoclonal antibody that was coated on the surface of microtiter wells. The formed sandwich capping antibody-antigen-antibody enzyme complex had tunable fluorescence properties that were detected under excitation and emission wavelengths of 420 and 530 nm. The increase in fluorescence intensities of the immunoassay sensing solution was proportional to the CA 19-9 antigen concentration in the linear range of 0.01-350 U mL -1 and had a lower detection limit of 0.007 U mL -1 . The proposed CQDs/Au nanocomposite immunoassay method provides a promising tool for detecting CA 19-9 in human serum.
Baron, Marco
2012-02-06
Dinuclear N-heterocyclic dicarbene gold(I) complexes of general formula [Au 2(RIm-Y-ImR) 2](PF 6) 2 (R = Me, Cy; Y = (CH 2) 1-4, o-xylylene, m-xylylene) have been synthesized and screened for their luminescence properties. All the complexes are weakly emissive in solution whereas in the solid state some of them show significant luminescence intensities. In particular, crystals or powders of the complex with R = Me, Y = (CH 2) 3 exhibit an intense blue emission (λ max = 450 nm) with a high quantum yield (Φ em = 0.96). The X-ray crystal structure of this complex is characterized by a rather short intramolecular Au•••Au distance (3.272 Ǻ). Time dependent density functional theory (TDDFT) calculations have been used to calculate the UV/vis properties of the ground state as well as of the first excited state of the complex, the latter featuring a significantly shorter Au•••Au distance. © 2012 American Chemical Society.
Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield
Soldan, Giada
2016-04-10
A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29(BDT)12(TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-xAux(BDT)12(TPP)4, x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster.
International Nuclear Information System (INIS)
Cherepanov, V. V.; Fedorovich, R. D.; Kiyayev, O. E.; Naumovets, A. G.; Nechytaylo, V. B.; Tomchuk, P. M.; Viduta, L. V.
2014-01-01
A method of preparation of a linear close-packed array of point-like light sources based on a nanocomposite of gold nanoparticles and tetracene is proposed. Ordered system of microleads to the light sources with packing density up to 1000 mm −1 consists of linear conducting chains of cobalt nanoparticles self-assembled in a magnetic field. The electroluminescence from the gold-tetracene nanocomposite occurs in the visible range typical of organic light-emitting field-effect transistors based on tetracene. A theoretical substantiation of the possibility of excitation of tetracene molecules by hot electrons emitted from the gold nanoparticles is suggested and compared with other possible physical mechanisms
A periodic point-based method for the analysis of Nash equilibria in 2 x 2 symmetric quantum games
International Nuclear Information System (INIS)
Schneider, David
2011-01-01
We present a novel method of looking at Nash equilibria in 2 x 2 quantum games. Our method is based on a mathematical connection between the problem of identifying Nash equilibria in game theory, and the topological problem of the periodic points in nonlinear maps. To adapt our method to the original protocol designed by Eisert et al (1999 Phys. Rev. Lett. 83 3077-80) to study quantum games, we are forced to extend the space of strategies from the initial proposal. We apply our method to the extended strategy space version of the quantum Prisoner's dilemma and find that a new set of Nash equilibria emerge in a natural way. Nash equilibria in this set are optimal as Eisert's solution of the quantum Prisoner's dilemma and include this solution as a limit case.
THz spectroscopy of one-dimensional Ising chain compound CoNb2O6 near the quantum critical point
Viirok, Johan; Hüvonen, D.; Rõõm, T.; Nagel, U.; Morris, C. M.; Koohpayeh, S. M.; McQueen, T. M.; Armitage, N. P.; Krizan, J.; Cava, R. J.
One-dimensional Ising spin chain is a novel example of an interacting quantum many body system. The Ising chain in a transverse field is a good candidate to study quantum phase transitions because its low dimensionality increases its tendency to exhibit interesting quantum effects. We studied the one-dimensional ferromagnetic Ising chain material CoNb2O6 using far infrared spectroscopy in high magnetic fields up to 17 T and down to 0.3 K using a dilution refrigerator. Special attention is paid to the spectral region near the quantum critical point near 5.5 T. Research sponsored by the Estonian Ministry of Education and Research (IUT23-3) and Estonian Ministry of Education and Research and the European Regional Development Fund project TK134.
Tonkikh, A A; Polyakov, N K; Tsyrlin, G E; Kryzhanovskaya, N V; Sizov, D S; Ustinov, V M
2002-01-01
The possibility of obtaining the long-wave photoluminescence (up to 1.65 mu m at the room temperature) from the InGaAs/GaAs heterostructures is demonstrated. These structures are obtained through the method of the low-temperature molecular beam epitaxy on the basis of two approaches: growth of the InAs quantum points at the low growth rate and growth of the In sub 0 sub . sub 5 Ga sub 0 sub . sub 5 As quantum wells under the conditions of the III group elements excess
Magnification of signatures of a topological phase transition by quantum zero point motion
Lopes, Pedro L. e. S.; Ghaemi, Pouyan
2015-08-01
We show that the zero point motion of a vortex in superconducting doped topological insulators leads to significant changes in the electronic spectrum at the topological phase transition in this system. This topological phase transition is tuned by the doping level, and the corresponding effects are manifest in the density of states at energies which are on the order of the vortex fluctuation frequency. Although the electronic energy gap in the spectrum generated by a stationary vortex is but a small fraction of the bulk superconducting gap, the vortex fluctuation frequency may be much larger. As a result, this quantum zero point motion can induce a discontinuous change in the spectral features of the system at the topological vortex phase transition to energies which are well within the resolution of scanning tunneling microscopy. This discontinuous change is exclusive to superconducting systems in which we have a topological phase transition. Moreover, the phenomena studied in this paper present effects of Magnus forces on the vortex spectrum which are not present in the ordinary s -wave superconductors. Finally, we demonstrate explicitly that the vortex in this system is equivalent to a Kitaev chain. This allows for the mapping of the vortex fluctuating scenario in three dimensions into similar one-dimensional situations in which one may search for other novel signatures of topological phase transitions.
Coupling a point-like mass to quantum gravity with causal dynamical triangulations
Energy Technology Data Exchange (ETDEWEB)
Khavkine, I; Loll, R; Reska, P, E-mail: i.khavkine@uu.n, E-mail: r.loll@uu.n, E-mail: p.m.reska@uu.n [Spinoza Institute and Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht (Netherlands)
2010-09-21
We present a possibility of coupling a point-like, non-singular, mass distribution to four-dimensional quantum gravity in the nonperturbative setting of causal dynamical triangulations (CDT). In order to provide a point of comparison for the classical limit of the matter-coupled CDT model, we derive the spatial volume profile of the Euclidean Schwarzschild-de Sitter space glued to an interior matter solution. The volume profile is calculated with respect to a specific proper-time foliation matching the global time slicing present in CDT. It deviates in a characteristic manner from that of the pure-gravity model. The appearance of coordinate caustics and the compactness of the mass distribution in lattice units put an upper bound on the total mass for which these calculations are expected to be valid. We also discuss some of the implementation details for numerically measuring the expectation value of the volume profiles in the framework of CDT when coupled appropriately to the matter source.
Directory of Open Access Journals (Sweden)
Miaole Hou
2016-05-01
Full Text Available The timely detection of gold foil damage in gold-overlaid stone carvings and the associated maintenance of these relics pose several challenges to both the research and heritage protection communities internationally. This paper presents a new method for detecting gold foil damage by making use of multi-temporal 3D LiDAR point clouds. By analyzing the errors involved in the detection process, a formula is developed for calculation of the damage detection threshold. An improved division method for the linear octree that only allocates memory to the non-blank nodes, is proposed, which improves storage and retrieval efficiency for the point clouds. Meanwhile, the damage-occurrence regions are determined according to Hausdorff distances. Using a triangular mesh, damaged regions can be identified and measured in order to determine the relic’s total damaged area. Results demonstrate that this method can effectively detect gold foil damage in stone carvings. The identified surface area of damaged regions can provide the information needed for subsequent restoration and protection of relics of this type.
Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.
2018-02-01
The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.
Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact
International Nuclear Information System (INIS)
Karadi, C.; Lawrence Berkeley Lab., CA
1995-09-01
The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO x /Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic. 133 refs., 49 figs
Measuring the distance from saddle points and driving to locate them over quantum control landscapes
International Nuclear Information System (INIS)
Sun, Qiuyang; Riviello, Gregory; Rabitz, Herschel; Wu, Re-Bing
2015-01-01
Optimal control of quantum phenomena involves the introduction of a cost functional J to characterize the degree of achieving a physical objective by a chosen shaped electromagnetic field. The cost functional dependence upon the control forms a control landscape. Two theoretically important canonical cases are the landscapes associated with seeking to achieve either a physical observable or a unitary transformation. Upon satisfaction of particular assumptions, both landscapes are analytically known to be trap-free, yet possess saddle points at precise suboptimal J values. The presence of saddles on the landscapes can influence the effort needed to find an optimal field. As a foundation to future algorithm development and analyzes, we define metrics that identify the ‘distance’ from a given saddle based on the sufficient and necessary conditions for the existence of the saddles. Algorithms are introduced utilizing the metrics to find a control such that the dynamics arrive at a targeted saddle. The saddle distance metric and saddle-seeking methodology is tested numerically in several model systems. (paper)
Fluctuations in a superconducting quantum critical point of multi-band metals
Energy Technology Data Exchange (ETDEWEB)
Ramires, A [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, Niteroi, RJ, 24.210-340 (Brazil); Continentino, M A, E-mail: mucio@cbpf.br [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)
2011-03-30
In multi-band metals quasi-particles arising from different atomic orbitals coexist at a common Fermi surface. Superconductivity in these materials may appear due to interactions within a band (intra-band) or among the distinct metallic bands (inter-band). Here we consider the suppression of superconductivity in the intra-band case due to hybridization. The fluctuations at the superconducting quantum critical point (SQCP) are obtained by calculating the response of the system to a fictitious space- and time-dependent field, which couples to the superconducting order parameter. The appearance of superconductivity is related to the divergence of a generalized susceptibility. For a single-band superconductor this coincides with the Thouless criterion. For fixed chemical potential and large hybridization, the superconducting state has many features in common with breached pair superconductivity with unpaired electrons at the Fermi surface. The T = 0 phase transition from the superconductor to the normal state is in the universality class of the density-driven Bose-Einstein condensation. For a fixed number of particles and in the strong coupling limit, the system still has an instability to the normal state with increasing hybridization.
Pressure induced superconductor quantum critical point in multi-band systems
Energy Technology Data Exchange (ETDEWEB)
Padilha, Igor T. [Instituto de Fisica, Universidade Federal Fluminense, Campus da Praia Vermelha, 24210-346 Niteroi, RJ (Brazil); Continentino, Mucio A. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil)], E-mail: mucio@if.uff.br
2009-10-15
In multi-band superconductors as inter-metallic systems and heavy fermions, external pressure can reduce the critical temperature and eventually destroy superconductivity driving these systems to the normal state. In many cases this transition is continuous and is associated with a superconducting quantum critical point (SQCP). In this work we study a two-band superconductor in the presence of hybridization V. This one-body mixing term is due to the overlap of the different wave-functions. It can be tuned by external pressure and turns out as an important control parameter to study the phase diagram and the nature of the phase transitions. We use a BCS approximation and include both inter- and intra-band attractive interactions. For negligible inter-band interactions, as hybridization (pressure) increases we find a SQCP separating a superconductor from a normal state at a critical value of the hybridization V{sub c}. We obtain the behavior of the electronic specific heat close to the SQCP and the shape of the critical line as V approaches V{sub c}.
The Occurrence of Anomalous Conductance Plateaus and Spin Textures in Quantum Point Contacts
Wan, J.; Cahay, M.; Debray, P.; Newrock, R.
2010-03-01
Recently, we used a NEGF formalism [1] to provide a theoretical explanation for the experimentally observed 0.5G0 (G0=2e^2/h) plateau in the conductance of side-gated quantum point contacts (QPCs) in the presence of lateral spin-orbit coupling (LSOC) [2]. We showed that the 0.5G0 plateau appears in the QPCs without any external magnetic field as a result of three ingredients: an asymmetric lateral confinement, a LSOC, and a strong electron-electron (e-e) interaction. In this report, we present the results of simulations for a wide range of QPC dimensions and biasing parameters showing that the same physics predicts the appearance of other anomalous plateaus at non-integer values of G0, including the well-known 0.7G0 anomaly. These features are related to a plethora of spin textures in the QPC that depend sensitively on material, device, biasing parameters, temperature, and the strength of the e-e interaction. [1] J. Wan, M. Cahay, P. Debray, and R.S. Newrock, Phys. Rev. B 80, 155440 (2009). [2] P. Debray, S.M. Rahman, J. Wan, R.S. Newrock, M. Cahay, A.T. Ngo, S.E. Ulloa, S.T. Herbert, M. Muhammad, and M. Johnson, Nature Nanotech. 4, 759 (2009).
Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact
Energy Technology Data Exchange (ETDEWEB)
Karadi, Chandu [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1995-09-01
The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlO_{x}Nb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic.
A single quantum dot-based biosensor for DNA point mutation assay.
Tang, Wei; Zhu, Guichi; Liang, Li; Zhang, Chun-Yang
2015-09-07
Sensitive and selective detection of point mutation is essential to molecular biology research and early clinical diagnosis. Here, we demonstrate a single quantum dot (QD)-based biosensor for DNA point mutation assay. In this assay, a mutant target (G/C) remains unchanged after the endonuclease treatment, and the polymerase chain reaction (PCR) may be initiated with the assistance of primers and polymerase, generating a large number of mutant targets. The amplified mutant targets can be captured by biotinylated probes during the process of denaturation and annealing, and Cy5-dGTP may be assembled into the biotinylated probe with the catalysis of polymerase, leading to the formation of Cy5-labeled biotinylated probes. The Cy5-labeled biotinylated probes can be further assembled onto the QD surface to obtain a Cy5-DNA-QD complex, resulting in the generation of fluorescence resonance energy transfer (FRET) between the QD donor and the Cy5 receptor. The mutant targets can be quantitatively evaluated by the measurement of Cy5 counts by total internal reflection fluorescence (TIRF) microscopy. While in the presence of wild-type targets (T/A), no Cy5-dGTP can be assembled into the biotinylated probe due to the presence of a mismatch and consequently no FRET is observed. This single QD-based biosensor exhibits high sensitivity with a detection limit of 5.3 aM (or 32 copies) and can even discriminate as low as 0.01% variant frequency from the mixture of mutant targets and wild-type ones. Importantly, this biosensor can be used for genomic analysis in human lung cancer cells, and may be further applied for an early clinical diagnosis and personalized medicine.
Marocico, Cristian A; Zhang, Xia; Bradley, A Louise
2016-01-14
We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform an investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green's tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r(-6) regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor
Directory of Open Access Journals (Sweden)
Agus Wahidi
2017-03-01
Full Text Available This research is experimental, using first class learning a quantum model of learning with concept maps media and the second media using real environments by power point presentation. The population is all class XI Science, number 2 grade. The sampling technique is done by purposive random sampling. Data collection techniques to test for cognitive performance and memory capabilities, with a questionnaire for creativity. Hypothesis testing using three-way ANOVA different cells with the help of software Minitab 15.Based on the results of data processing, concluded: (1 there is no influence of the quantum model of learning with media learning concept maps and real environments for learning achievement chemistry, (2 there is a high impact memory ability and low on student achievement, (3 there is no the effect of high and low creativity in student performance, (4 there is no interaction learning model quantum media learning concept maps and real environments with memory ability on student achievement, (5 there is no interaction learning model quantum media learning concept maps and real environments with creativity of student achievement, (6 there is no interaction memory skills and creativity of student achievement, (7 there is no interaction learning model quantum media learning concept maps and real environments, memory skills, and creativity on student achievement.
All-electrical nonlinear fano resonance in coupled quantum point contacts
Xiao, Shiran
This thesis is motivated by recent interest in the Fano resonance (FR). As a wave-interference phenomenon, this resonance is of increasing importance in optics, plasmon-ics, and metamaterials, where its ability to cause rapid signal modulations under variation of some suitable parameter makes it desirable for a variety of applications. In this thesis, I focus on a novel manifestation of this resonance in systems of coupled quantum point contacts (QPCs). The major finding of this work is that the FR in this system may be ma-nipulated by applying a nonlinear DC bias to the system. Under such conditions, we are able to induce significant distortions of resonance lineshape, providing a pathway to all-electrical manipulation of the FR. To interpret this behavior we apply a recently-developed model for a three-path FR, involving an additional "intruder" continuum. We have previously used this model to account for the magnetic-field induced distortions of the FR observed in coupled QPCs, and show here that this model also provides a frame-work for understanding the observed nonlinear behavior. Our work therefore reveals a new manifestation of the FR that can be sensitively tailored by external control, a finding that may eventually allow the application of this feature to nanoelectronics. Since the in-terference scheme involves in this thesis is a completely general one, it should be broadly applicable across a variety of different wave-based systems, including those in both pho-tonics and electronics and opening up the possibility of new applications in areas such as chemical and biological sensing and secure communications.
The Casimir Effect from the Point of View of Algebraic Quantum Field Theory
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio, E-mail: claudio.dappiaggi@unipv.it; Nosari, Gabriele [Università degli Studi di Pavia, Dipartimento di Fisica (Italy); Pinamonti, Nicola [Università di Genova, Dipartimento di Matematica (Italy)
2016-06-15
We consider a region of Minkowski spacetime bounded either by one or by two parallel, infinitely extended plates orthogonal to a spatial direction and a real Klein-Gordon field satisfying Dirichlet boundary conditions. We quantize these two systems within the algebraic approach to quantum field theory using the so-called functional formalism. As a first step we construct a suitable unital ∗-algebra of observables whose generating functionals are characterized by a labelling space which is at the same time optimal and separating and fulfils the F-locality property. Subsequently we give a definition for these systems of Hadamard states and we investigate explicit examples. In the case of a single plate, it turns out that one can build algebraic states via a pull-back of those on the whole Minkowski spacetime, moreover inheriting from them the Hadamard property. When we consider instead two plates, algebraic states can be put in correspondence with those on flat spacetime via the so-called method of images, which we translate to the algebraic setting. For a massless scalar field we show that this procedure works perfectly for a large class of quasi-free states including the Poincaré vacuum and KMS states. Eventually Wick polynomials are introduced. Contrary to the Minkowski case, the extended algebras, built in globally hyperbolic subregions can be collected in a global counterpart only after a suitable deformation which is expressed locally in terms of a *-isomorphism. As a last step, we construct explicitly the two-point function and the regularized energy density, showing, moreover, that the outcome is consistent with the standard results of the Casimir effect.
Foubert, Astrid; Beloglazova, Natalia V; De Saeger, Sarah
2017-02-22
Quantum dots (QDs) and colloidal gold nanoparticles (CG) were evaluated as labels for multiplex lateral flow immunoassay (LFIA) for determination of mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T2/HT2-toxin (T2/HT2) in cereal matrices. Both developed assays were based on the same immunoreagents (except for the labels), therefore their analytical characteristics could be objectively compared. For both LFIAs antigens (DON-ovalbumin (OVA), ZEN-OVA and T2-OVA) and rabbit anti-mouse immunoglobulin were immobilized on a nitrocellulose membrane as three test lines and one control line, respectively. Depending on the LFIA, monoclonal antibodies (mAb) against DON, ZEN and T2 were conjugated with CdSeS/ZnS QDs or CG. T2 and HT2 were detected by one test line (T2-OVA) with an anti-T2 mAb which showed 110% cross-reactivity with HT2. Both tests were developed in accordance with the legal limits and were developed in such a way that they had the same cut-off limits of 1000 μg kg -1 , 80 μg kg -1 and 80 μg kg -1 for DON, ZEN and T2/HT2, respectively in order to allow a correct comparison. Applicability of these assays was demonstrated by analysis of naturally contaminated wheat samples. The results demonstrate that both the LFIAs can be used as rapid, cost-effective and convenient qualitative tool for on-site screening for simultaneous detection of DON, ZEN and HT2/T2 in wheat without special instrumentation. However, the QD-based LFIA consumed less immunoreagents and was more sensitive and economically beneficial. In addition, the results were easier to interpret, resulting in a lower false negative rate (<5%) which was in good agreement with Commission Decision 2002/657/EC regarding the performance of analytical methods intended for screening purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Interedge backscattering in buried split-gate-defined graphene quantum point contacts
Xiang, Shaohua; Mreńca-Kolasińska, Alina; Miseikis, Vaidotas; Guiducci, Stefano; Kolasiński, Krzysztof; Coletti, Camilla; Szafran, Bartłomiej; Beltram, Fabio; Roddaro, Stefano; Heun, Stefan
2016-10-01
Quantum Hall effects offer a formidable playground for the investigation of quantum transport phenomena. Edge modes can be deflected, branched, and mixed by designing a suitable potential landscape in a two-dimensional conducting system subject to a strong magnetic field. In the present work, we demonstrate a buried split-gate architecture and use it to control electron conduction in large-scale single-crystal monolayer graphene grown by chemical vapor deposition. The control of the edge trajectories is demonstrated by the observation of various fractional quantum resistances, as a result of a controllable interedge scattering. Experimental data are successfully modeled both numerically and analytically within the Landauer-Büttiker formalism. Our architecture is particularly promising and unique in view of the investigation of quantum transport via scanning probe microscopy, since graphene constitutes the topmost layer of the device. For this reason, it can be approached and perturbed by a scanning probe down to the limit of mechanical contact.
Directory of Open Access Journals (Sweden)
Dominique Placko
2016-10-01
Full Text Available The distributed point source method, or DPSM, developed in the last decade has been used for solving various engineering problems—such as elastic and electromagnetic wave propagation, electrostatic, and fluid flow problems. Based on a semi-analytical formulation, the DPSM solution is generally built by superimposing the point source solutions or Green’s functions. However, the DPSM solution can be also obtained by superimposing elemental solutions of volume sources having some source density called the equivalent source density (ESD. In earlier works mostly point sources were used. In this paper the DPSM formulation is modified to introduce a new kind of ESD, replacing the classical single point source by a family of point sources that are referred to as quantum sources. The proposed formulation with these quantum sources do not change the dimension of the global matrix to be inverted to solve the problem when compared with the classical point source-based DPSM formulation. To assess the performance of this new formulation, the ultrasonic field generated by a circular planer transducer was compared with the classical DPSM formulation and analytical solution. The results show a significant improvement in the near field computation.
Bandyopadhyay, Pradipta
2008-04-07
The efficiency of the two-surface monte carlo (TSMC) method depends on the closeness of the actual potential and the biasing potential used to propagate the system of interest. In this work, it is shown that by combining the basin hopping method with TSMC, the efficiency of the method can be increased by several folds. TSMC with basin hopping is used to generate quantum mechanical trajectory and large number of stationary points of water clusters.
Directory of Open Access Journals (Sweden)
John G. Bruno
2014-04-01
Full Text Available Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655 are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection.
Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M
2008-01-01
We revisit the reactivity of trapped pure gold (Au(n)+, n cluster cations (Ag(m)Au(n)+, m + n adsorption sites, associated vibrational frequencies) of CO to the noble metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 adsorption sites and pre-screen favorable isomers.
International Nuclear Information System (INIS)
Girling, C.A.; Peterson, P.J.
1980-01-01
Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants
Tribedi, Amit; Bose, Indrani
2009-01-01
We consider a two-chain, spin- (1)/(2) antiferromagnetic Heisenberg spin ladder in an external magnetic field H . The spin ladder is known to undergo second-order quantum phase transitions (QPTs) at two critical values Hc1 and Hc2 of the magnetic field. There are now known examples of strongly coupled (where the rung exchange interaction is much stronger than the nearest-neighbor intrachain exchange interaction) organic ladder compounds in which QPTs have been experimentally observed. In this paper, we investigate whether well-known bipartite entanglement meaures such as one-site von Neumann entropy, two-site von Neumann entropy, and concurrence develop special features close to the quantum critical points. As suggested by an earlier theorem, the first derivatives of the measures with respect to magnetic field are expected to diverge as H→Hc1 and H→Hc2 . Based on numerical diagonalization data and a mapping of the strongly coupled ladder Hamiltonian onto the XXZ chain Hamiltonian, for which several analytical results are known, we find that the derivatives of the entanglement measures diverge as H→Hc2 but remain finite as H→Hc1 . The reason for this discrepancy is analyzed. We further calculate two recently proposed quantum information theoretic measures, the reduced fidelity and reduced fidelity susceptibility, and show that these measures provide appropriate signatures of the QPTs occuring at the critical points H=Hc1 and H=Hc2 .
Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe3
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; Canfield, Paul C.
2018-01-01
We report the temperature-pressure-magnetic-field phase diagram of the ferromagnetic Kondo-lattice CeTiGe3 determined by means of electrical resistivity measurements. Measurements up to ˜5.8 GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe3 orders ferromagnetically at TC=14 K. Application of pressure suppresses TC, but a pressure-induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p >4.1 GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower-temperature phase being fully suppressed above 5.3 GPa. The critical pressures for the presumed quantum phase transitions are p1≅4.1 GPa and p2≅5.3 GPa. Above 4.1 GPa, application of magnetic field shows a tricritical point evolving into a wing-structure phase with a quantum tricritical point at 2.8 T at 5.4 GPa, where the first-order antiferromagnetic-ferromagnetic transition changes into the second-order antiferromagnetic-ferromagnetic transition.
International Nuclear Information System (INIS)
Wattuhewa, G.
1990-01-01
This study of the interaction of slow, multi-charged ions with surfaces made use a laser operated ion source (LOIS) at the University of Arkansas. The diameter of the focused beam at the target surface was approximately 100μm producing a power density estimated to be grater than 10 11 W/cm 2 . The intense radiation field heated the target resulting in production of a plasma which included multi-charged ions with kinetic energies near several hundred eV per charge. The plasma ions enter a 180 degree electrostatic analyzer which separated them according to their kinetic energy to charge ratio. The resulting ion pulses were then allowed to impinge to charge ratio. The resulting ion pulses were then allowed to impinge on a gold surface. Auger-ejected electrons were energy analyzed by the retarding potential method. The present work determined the end-point energies of electrons ejected during the neutralization of slow, multi-charged carbon and aluminum ions near a gold surface. Analysis of the end-point energies that neutralization is stepwise where a captured electron cascades through the energy levels of the once neutralized ion. losing its energy through excitation of the other conduction band electrons. The end-point Auger electrons are produced in the last stages of this energy-loss ladder when the singly neutralized ion is near ground state. There is no evidence of exchange reactions taking place in these last stages or that multiple capture processes are important in producing end-point electrons. The end-point electrons, however, may not be the electrons that would best reflect such processes, since the neutralization energy per captured electron is reduced by each capture event
Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency
Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.
2011-01-01
Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin
Detection and Control of Spin-Orbit Interactions in a GaAs Hole Quantum Point Contact
Srinivasan, A.; Miserev, D. S.; Hudson, K. L.; Klochan, O.; Muraki, K.; Hirayama, Y.; Reuter, D.; Wieck, A. D.; Sushkov, O. P.; Hamilton, A. R.
2017-04-01
We investigate the relationship between the Zeeman interaction and the inversion-asymmetry-induced spin-orbit interactions (Rashba and Dresselhaus SOIs) in GaAs hole quantum point contacts. The presence of a strong SOI results in the crossing and anticrossing of adjacent spin-split hole subbands in a magnetic field. We demonstrate theoretically and experimentally that the anticrossing energy gap depends on the interplay between the SOI terms and the highly anisotropic hole g tensor and that this interplay can be tuned by selecting the crystal axis along which the current and magnetic field are aligned. Our results constitute the independent detection and control of the Dresselhaus and Rashba SOIs in hole systems, which could be of importance for spintronics and quantum information applications.
Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E
2011-07-08
Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.
DEFF Research Database (Denmark)
Aramburu, José Antonio; García-Fernández, Pablo; García Lastra, Juan Maria
2016-01-01
that the anomalous positive g∥ shift (g∥−g0=0.065) measured at T=20 K obeys the superposition of the |3 z2−r2⟩ and |x2−y2⟩ states driven by quantum effects associated with the zero-point motion, a mechanism first put forward by O'Brien for static Jahn–Teller systems and later extended by Ham to the dynamic Jahn......–Teller case. To our knowledge, this is the first genuine Jahn–Teller system (i.e. in which exact degeneracy exists at the high-symmetry configuration) exhibiting a compressed equilibrium geometry for which large quantum effects allow experimental observation of the effect predicted by O'Brien. Analysis...
Directory of Open Access Journals (Sweden)
A.S. Jahanlou
2015-04-01
Full Text Available Introduction & Objective: In the year 2000, Gallagher presented a new classification for body mass on the basis of the Percentile of Body Fat (PBF, age, and sex. The World Health Organization defines gold standard for obesity as PBF>25% in men and >35% in women. The primary purpose of the study was to evaluate the accuracy of Gallagher’s classification in detecting overweightness and obesity on the basis of WHO gold standard cutoff points. Materials & Methods: In this cross sectional- descriptive study the sample consisted of 20163 adults. Body composition measures were obtained, using the Bioelectrical Impedance Analysis (BIA. The detection of obesity was done by computing sensitivity, specificity, Positive Predictive Power (PPV and Negative Predictive Power (NPV for various age and sex groups. Results: There were 14270 women and 5893 men, ranging in age from 18 to 85 years, who participated in the study between 2009 and 2014. On the basis of Gallagher’s classification, 2549 (43.2% men and 2992 (21% women were obese. The WHO gold standard cutoff points showed that 7126 (49.9% women and 3208 men (54.4% met the criteria for being classified as obese. The sensitivity ranged from 53.9% to 100% in males and 38% to 85% in females. The range of specificity among males was from 99.4% to 100%; it was 100% among females. The NPV ranged from 29.8% to 100% in males and 14.1% to 84.3% in females.The PPV ranged from 99.8% to 100 in males and it was 100% in females. Among females, the increase in age was associated with decrease in sensitivity and NPV. Conclusion: Gallagher’s classification is accurate in detecting overweightness and obesity among males between the ages of 18 and 40; however, it is questionable among females. (Sci J Hamadan Univ Med Sci 2015; 22 (1:48-54
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
International Nuclear Information System (INIS)
den Hartog, S.G.; van Wees, B.J.; Klapwijk, T.M.; Nazarov, Y.V.; Borghs, G.
1997-01-01
We have investigated the superconducting-phase-modulated reduction in the resistance of a ballistic quantum point contact (QPC) connected via a disordered two-dimensional electron gas (2DEG) to superconductors. We show that this reduction is caused by coherent Andreev backscattering of holes through the QPC, which increases monotonically by reducing the bias voltage to zero. In contrast, the magnitude of the phase-dependent resistance of the disordered 2DEG displays a nonmonotonic reentrant behavior versus bias voltage. copyright 1997 The American Physical Society
Normalizability analysis of the generalized quantum electrodynamics from the causal point of view
Bufalo, R.; Pimentel, B. M.; Soto, D. E.
2017-09-01
The causal perturbation theory is an axiomatic perturbative theory of the S-matrix. This formalism has as its essence the following axioms: causality, Lorentz invariance and asymptotic conditions. Any other property must be showed via the inductive method order-by-order and, of course, it depends on the particular physical model. In this work we shall study the normalizability of the generalized quantum electrodynamics in the framework of the causal approach. Furthermore, we analyze the implication of the gauge invariance onto the model and obtain the respective Ward-Takahashi-Fradkin identities.
Kang, Wei Cherng Malvin; Wong, Yen Lynn; Piotrowski, Marek; Teo, Woon Pei J.; He, Shuai; Kah, James C.
2017-04-01
The ever-increasing spread and emergence of antibiotic resistance poses a serious threat to global public health. With the existence of Carbapenem-resistant Enterobacteriaceae (CRE) produced by the Klebsiella Pneumoniae bacteria, it renders the use of carbapenems, the last-resort class of β-lactam antibiotics, useless against combating against bacterial infections. Such infections reduce the ability to treat complex infections due to the lack of antibiotic options for treatment, leading to CRE-associated mortalities. Current methods of detection, like CarbaNP test and Modified Hodge's Test, have significant limitations in that the time taken for detection of carbapenemase activity ranges between hours to days, and are non-specific in detecting the specific phenotype, making it challenging to isolate patients rapidly and to devise appropriate treatment for infected patients. We propose a methodology by utilising Surface Enhanced Raman Spectroscopy (SERS) to study bacterial β-lactamase activity. This is done via the use of gold nanostars (AuNS), which have reported excellent SERS properties, conjugated with a β-lactam antibiotic ceftriaxole, as a proof-of-concept study to analyse the changes in the SERS spectra associated with cleavage of the β-lactam ring upon interaction with the New Delhi Metalloproteinase (NDM)- producing Escherichia coli (Class B β-lactamase). We are able to obtain detection of carbapenemase activity within 25 minutes, with the associated changes in SERS spectra being diminishing of SERS peaks at 1358cm-1 and 1495cm-1. This project can be further extended to study the activity of other classes of β-lactamases and other β-lactam antibiotics to improve this state of technology for potential adoption by healthcare institutions.
Fermi points and topological quantum phase transitions in a multi-band superconductor.
Puel, T O; Sacramento, P D; Continentino, M A
2015-10-28
The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. The Kitaev model plays a guiding role in the search for Majorana modes in condensed matter systems. Also, the sp-chain with an anti-symmetric mixing among the s and p bands is a paradigmatic example of a topological insulator with well understood properties. Interestingly, these models share the same universality class for their topological quantum phase transitions. In this work we study a two-band model of spinless fermions with attractive inter-band interactions. We obtain its zero temperature phase diagram, which presents a rich variety of phases including a Weyl superconductor and a topological insulator. The transition from the topological to the trivial superconducting phase has critical exponents different from those of Kitaev's model.
Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory
Energy Technology Data Exchange (ETDEWEB)
Miranda, E., E-mail: enrique.miranda@uab.cat; Suñé, J. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona (Spain); Mehonic, A.; Kenyon, A. J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)
2013-11-25
A simple analytic model for the electron transport through filamentary-type structures in Si-rich silica (SiO{sub x})-based resistive switches is proposed. The model is based on a mesoscopic description and is able to account for the linear and nonlinear components of conductance that arise from both fully and partially formed conductive channels spanning the dielectric film. Channels are represented by arrays of identical scatterers whose number and quantum transmission properties determine the current magnitude in the low and high resistance states. We show that the proposed model not only reproduces the experimental current-voltage (I-V) characteristics but also the normalized differential conductance (dln(I)/dln(V)-V) curves of devices under test.
Energy Technology Data Exchange (ETDEWEB)
Alvarez, J.J. [Escuela Universitaria de Informática, Universidad de Valladolid, 40005 Segovia (Spain); Gadella, M., E-mail: manuelgadella1@gmail.com [Department of FTAO, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid (Spain); Lara, L.P. [Departamento de Física, FCEIA, Universidad Nacional de Rosario, Avda. Pellegrini 250, Rosario (Argentina); Maldonado-Villamizar, F.H. [Departamento de Física, Centro de Investigación y Estudios Avanzados del IPN, 07360 México DF (Mexico)
2013-11-15
In the search for solvable or quasi-solvable models for resonances, we consider a one-dimensional potential, which is a harmonic oscillator for x<0, has a point potential at the origin of the form aδ(x)+bδ{sup ′}(x) and no interaction for x>0. After a study of this model, we add a mass jump at the origin and study the effect of the combination of the mass jump and the point potential. We obtain the behavior of resonances, bound and antibound states in terms of given parameters. In spite of the simplicity of the model, it shows quite interesting and unexpected features.
Energy Technology Data Exchange (ETDEWEB)
Cong, P. T., E-mail: t.pham@hzdr.de [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Postulka, L.; Wolf, B.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M., E-mail: michael.lang@physik.uni-frankfurt.de [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Well, N. van [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)
2016-10-14
Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.
Strong Coupling of a Quantum Oscillator to a Flux Qubit at Its Symmetry Point
Fedorov, A.; Feofanov, A.K.; Macha, P.; Forn-Díaz, P.; Harmans, C.J.P.M.; Mooij, J.E.
2010-01-01
A flux qubit biased at its symmetry point shows a minimum in the energy splitting (the gap), providing protection against flux noise. We have fabricated a qubit of which the gap can be tuned fast and have coupled this qubit strongly to an LC oscillator. We show full spectroscopy of the
Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.
1992-01-01
The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h
Belenov, É. M.; Danileĭko, M. V.; Derkach, V. E.; Romanenko, V. I.; Uskov, A. V.
1988-05-01
An investigation was made of the influence of submillimeter radiation emitted by an HCN laser operating at a frequency νl = 891 GHz on a superconducting point contact made of Nb3Sn. Three steps of the electric current were recorded. The experimental results indicated that such a contact could be used for frequency multiplication up to 3 THz.
Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy
Li, Tao E.; Nitzan, Abraham; Sukharev, Maxim; Martinez, Todd; Chen, Hsing-Ta; Subotnik, Joseph E.
2018-03-01
The dynamics of an electronic two-level system coupled to an electromagnetic field are simulated explicitly for one- and three-dimensional systems through semiclassical propagation of the Maxwell-Liouville equations. We consider three flavors of mixed quantum-classical dynamics: (i) the classical path approximation (CPA), (ii) Ehrenfest dynamics, and (iii) symmetrical quasiclassical (SQC) dynamics. Our findings are as follows: (i) The CPA fails to recover a consistent description of spontaneous emission, (ii) a consistent "spontaneous" emission can be obtained from Ehrenfest dynamics, provided that one starts in an electronic superposition state, and (iii) spontaneous emission is always obtained using SQC dynamics. Using the SQC and Ehrenfest frameworks, we further calculate the dynamics following an incoming pulse, but here we find very different responses: SQC and Ehrenfest dynamics deviate sometimes strongly in the calculated rate of decay of the transient excited state. Nevertheless, our work confirms the earlier observations by Miller [J. Chem. Phys. 69, 2188 (1978), 10.1063/1.436793] that Ehrenfest dynamics can effectively describe some aspects of spontaneous emission and highlights interesting possibilities for studying light-matter interactions with semiclassical mechanics.
Renormalized G-convolution of n-point functions in quantum field theory. I. The Euclidean case
International Nuclear Information System (INIS)
Bros, Jacques; Manolessou-Grammaticou, Marietta.
1977-01-01
The notion of Feynman amplitude associated with a graph G in perturbative quantum field theory admits a generalized version in which each vertex v of G is associated with a general (non-perturbative) nsub(v)-point function Hsup(nsub(v)), nsub(v) denoting the number of lines which are incident to v in G. In the case where no ultraviolet divergence occurs, this has been performed directly in complex momentum space through Bros-Lassalle's G-convolution procedure. The authors propose a generalization of G-convolution which includes the case when the functions Hsup(nsub(v)) are not integrable at infinity but belong to a suitable class of slowly increasing functions. A finite part of the G-convolution integral is then defined through an algorithm which closely follows Zimmermann's renormalization scheme. The case of Euclidean four-momentum configurations is only treated
LaCu6−xAgx : A promising host of an elastic quantum critical point
Energy Technology Data Exchange (ETDEWEB)
Poudel, Lekh [ORNL; Dela Cruz, Clarina R. [ORNL; Koehler, Michael R. [University of Tennessee, Knoxville (UTK); McGuire, Michael A. [ORNL; Keppens, Veerle [University of Tennessee, Knoxville (UTK); Mandrus, David [ORNL; Christianson, Andrew D. [ORNL
2018-05-01
Structural properties of LaCu6−xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6−xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6−xAgx.
Lanir, Assaf; Levi, Adam; Ori, Amos; Sela, Orr
2018-01-01
We derive explicit expressions for the two-point function of a massless scalar field in the interior region of a Reissner-Nordstrom black hole, in both the Unruh and the Hartle-Hawking quantum states. The two-point function is expressed in terms of the standard l m ω modes of the scalar field (those associated with a spherical harmonic Yl m and a temporal mode e-i ω t), which can be conveniently obtained by solving an ordinary differential equation, the radial equation. These explicit expressions are the internal analogs of the well-known results in the external region (originally derived by Christensen and Fulling), in which the two-point function outside the black hole is written in terms of the external l m ω modes of the field. They allow the computation of ⟨Φ2⟩ren and the renormalized stress-energy tensor inside the black hole, after the radial equation has been solved (usually numerically). In the second part of the paper, we provide an explicit expression for the trace of the renormalized stress-energy tensor of a minimally coupled massless scalar field (which is nonconformal), relating it to the d'Alembertian of ⟨Φ2⟩ren . This expression proves itself useful in various calculations of the renormalized stress-energy tensor.
DEFF Research Database (Denmark)
Gloos, K.; Utko, P.; Aagesen, M.
2006-01-01
We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...
Algebraic and analyticity properties of the n-point function in quantum field theory
International Nuclear Information System (INIS)
Bros, Jacques
1970-01-01
The general theory of quantized fields (axiomatic approach) is investigated. A systematic study of the algebraic properties of all the Green functions of a local field, which generalize the ordinary retarded and advanced functions, is presented. The notion emerges of a primitive analyticity domain of the n-point function, and of the existence of auxiliary analytic functions into which the various Green functions can be decomposed. Certain processes of analytic completion are described, and then applied to enlarging the primitive domain, particularly for the case n = 4; among the results the crossing property for all scattering amplitudes which involve two incoming and two outgoing particles is proved. (author) [fr
Quantum Critical Point and Entanglement in a Matrix Product Ground State
Tribedi, Amit; Bose, Indrani
2006-01-01
In this paper, we study the entanglement properties of a spin-1 model the exact ground state of which is given by a Matrix Product state. The model exhibits a critical point transition at a parameter value a=0. The longitudinal and transverse correlation lengths are known to diverge as a tends to zero. We use three different entanglement measures S(i) (the one-site von Neumann entropy), S(i,j) (the two-body entanglement) and G(2,n) (the generalized global entanglement) to determine the entang...
Heterostructures on the basis of GaAs with quantum points of InAs for photo-electric transformers
Directory of Open Access Journals (Sweden)
Maronchuk I. E.
2008-12-01
Full Text Available Heterostructures based on GaAs with InAs quantum dots obtained in the process of liquid-phase epitaxy by the method of pulse cooling of saturated solution in indium or heterostructures containing quantum dots in the area of the p–n-junction were much worse than control solar cells manufactured on the same structures but without quantum dots. Solar cells containing quantum dots in the p-region were slightly better than control solar cells.
International Nuclear Information System (INIS)
Torres-Torres, C; López-Suárez, A; Oliver, A; Can-Uc, B; Rangel-Rojo, R; Tamayo-Rivera, L
2015-01-01
The study of the third-order optical nonlinear response exhibited by a composite containing gold nanoparticles and silicon quantum dots nucleated by ion implantation in a high-purity silica matrix is presented. The nanocomposites were explored as an integrated configuration containing two different ion-implanted distributions. The time-resolved optical Kerr gate and z-scan techniques were conducted using 80 fs pulses at a 825 nm wavelength; while the nanosecond response was investigated by a vectorial two-wave mixing method at 532 nm with 1 ns pulses. An ultrafast purely electronic nonlinearity was associated to the optical Kerr effect for the femtosecond experiments, while a thermal effect was identified as the main mechanism responsible for the nonlinear optical refraction induced by nanosecond pulses. Comparative experimental tests for examining the contribution of the Au and Si distributions to the total third-order optical response were carried out. We consider that the additional defects generated by consecutive ion irradiations in the preparation of ion-implanted samples do not notably modify the off-resonance electronic optical nonlinearities; but they do result in an important change for near-resonant nanosecond third-order optical phenomena exhibited by the closely spaced nanoparticle distributions. (paper)
Wang, Jing; Han, Heyou; Jiang, Xiaochun; Huang, Liang; Chen, Lina; Li, Na
2012-06-05
Near-infrared electrochemiluminescence (NIR ECL) from quantum dots (QDs) has aroused particular attention. However, whether it is possible to achieve NIR ECL sensing has remained an open question. In this article, we reported a NIR ECL immunosensor with amplification techniques for ultrasensitive and selective determination of biomarker. In this sensing platform, NIR-emitting CdTe/CdS core(small)/shell(thick) QDs were first selected as NIR ECL emitters. The NIR ECL nanoprobe (SiO(2)-QD-Ab2) was designed by covalent assembly of goat antihuman IgG antibody (Ab2) on CdTe/CdS QDs tagged silica nanospheres. Gold nanoparticle-graphene nanosheet (Au-GN) hybrids were prepared by a sonication-induced self-assembly and served as an effective matrix for initial antibodies (Ab1) attachment. After a sandwich immunoreaction, the functionalized silica nanosphere labels were captured onto the glass carbon electrode surface. Integrating the dual amplification from the promoting electron transfer rate of Au-GN hybrids and the increasing QD loading of SiO(2)-QD-Ab2 labels, the NIR ECL response from CdTe/CdS QDs enhanced 16.8-fold compared to the unamplified protocol and successfully fulfilled the ultrasensitive detection of human IgG (HIgG) with a detection limit of 87 fg mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor HIgG level in human serum with satisfactory results obtained.
Wang, Lili; Zheng, Jing; Yang, Sheng; Wu, Cuichen; Liu, Changhui; Xiao, Yue; Li, Yinhui; Qing, Zhihe; Yang, Ronghua
2015-09-02
One main source of cyanide (CN(-)) exposure for mammals is through the plant consumption, and thus, sensitive and selective CN(-) detection in plants tissue is a significant and urgent work. Although various fluorescence probes have been reported for CN(-) in water and mammalian cells, the detection of endogenous biological CN(-) in plant tissue remains to be explored due to the high background signal and large thickness of plant tissue that hamper the effective application of traditional one-photo excitation. To address these issues, we developed a new two-photo excitation (TPE) nanosensor using graphene quantum dots (GQDs)/gold nanoparticle (AuNPs) conjugate for sensing and imaging endogenous biological CN(-). With the benefit of the high quenching efficiency of AuNPs and excellent two-photon properties of GQDs, our sensing system can achieve a low detection limit of 0.52 μM and deeper penetration depth (about 400 μm) without interference from background signals of a complex biological environment, thus realizing sensing and imaging of CN(-) in different types of plant tissues and even monitoring CN(-) removal in food processing. To the best of our knowledge, this is the first time for fluorescent sensing and imaging of CN(-) in plant tissues. Moreover, our design also provides a new model scheme for the development of two-photon fluorescent nanomaterial, which is expected to hold great potential for food processing and safety testing.
Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts
Tu, Xingchen
2014-11-21
© 2014 AIP Publishing LLC. Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions. In order to understand such feature, here we investigate the electronic transport and mechanical properties of clean and oxygen-doped silver atomic contacts by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Our calculations show that, unlike clean Ag single-atom contacts showing a conductance of 1 G0, the low-bias conductance of oxygen-doped Ag atomic contacts depends on the number of oxygen impurities and their binding configuration. When one oxygen atom binds to an Ag monatomic chain sandwiched between two Ag electrodes, the low-bias conductance of the junction always decreases. In contrast, when the number of oxygen impurities is two and the O-O axis is perpendicular to the Ag-Ag axis, the transmission coefficients at the Fermi level are, respectively, calculated to be 1.44 for the junction with Ag(111) electrodes and 1.24 for that with Ag(100) electrodes, both in good agreement with the measured value of ∼1.3 G0. The calculated rupture force (1.60 nN for the junction with Ag(111) electrodes) is also consistent with the experimental value (1.66 ± 0.09 nN), confirming that the measured ∼1.3 G0 conductance should originate from Ag single-atom contacts doped with two oxygen atoms in a perpendicular configuration.
Directory of Open Access Journals (Sweden)
A. W. Kinross
2014-07-01
Full Text Available The transverse field Ising chain model is ideally suited for testing the fundamental ideas of quantum phase transitions because its well-known T=0 ground state can be extrapolated to finite temperatures. Nonetheless, the lack of appropriate model materials hindered the past effort to test the theoretical predictions. Here, we map the evolution of quantum fluctuations in the transverse field Ising chain based on nuclear magnetic resonance measurements of CoNb_{2}O_{6}, and we demonstrate the finite-temperature effects on quantum criticality for the first time. From the temperature dependence of the ^{93}Nb longitudinal relaxation rate 1/T_{1}, we identify the renormalized classical, quantum critical, and quantum disordered scaling regimes in the temperature (T vs transverse magnetic field (h_{⊥} phase diagram. Precisely at the critical field h_{⊥}^{c}=5.25±0.15 T, we observe a power-law behavior, 1/T_{1}∼T^{−3/4}, as predicted by quantum critical scaling. Our parameter-free comparison between the data and theory reveals that quantum fluctuations persist up to as high as T∼0.4J, where the intrachain exchange interaction J is the only energy scale of the problem.
Kasahara, Yuichi; Iwasawa, T.; Shimizu, Y.; Shishido, H.; Shibauchi, T.; Vekhter, I.; Matsuda, Y.
2008-03-01
Quasi-two dimensional heavy Fermion CeIrIn5 involves two distinct superconducting domes in the phase diagram, which appear as a function of pressure or Rh substitution of Ir. In the analogy to CeCu2Si2, two distinct superconducting domes with different symmetry has been invoked. We report on the results of low-temperature thermal transport of CeIrIn5 in the second dome, which locates away from an antiferromagnetic quantum critical point. The thermal conductivity is measured under a magnetic field rotated with respect to the crystal axes, which give direct evidence for superconducting gap structure. Clear fourfold oscillation with minima at [110] and [1-10] directions is observed as rotating magnetic field within the basal ab-plane, while no oscillation is observed within the bc-plane. In sharp contrast to previous reports that suggested Eg symmetry with horizontal line node within the ab-plane [1], our results are most consistent with dx^2- y^2 symmetry with vertical line nodes along the c-axis. These results imply that two superconducting domes have the same gap symmetry which appears to be mediated by antiferromagnetic spin fluctuations. [1] H. Shakeripour et al., Phys. Rev. Lett. 99, 187004 (2007).
On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.
Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y
2014-03-26
We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.
Directory of Open Access Journals (Sweden)
E. Svanidze
2015-03-01
Full Text Available A quantum critical point (QCP occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid behavior, manifested in the logarithmic divergence of the specific heat both in the ferro-and the paramagnetic states, as well as linear temperature dependence of the low-temperature resistivity. With doping, critical scaling is observed close to the QCP, as the critical exponents δ, γ, and β have weak composition dependence, with δ nearly twice and β almost half of their respective mean-field values. The unusually large paramagnetic moment μ_{PM}∼1.3μ_{B}/F.U. is nearly composition independent. Evidence for strong spin fluctuations, accompanying the QCP at x_{c}=0.035±0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.
2012-03-01
WE RECOMMEND Transmitting and Receiving Signals SEP booklet transmits knowledge The New Quantum Age Understanding modern quantum theory The Art of Science and The Oxford Book of Modern Science Writing Anthologies bring science to life SEP Analogue/digital transmission unit Kit transmits signal between two points SEP Optical signal transmission set Optical kit shows light transmission Stars and their Spectra New book for teaching astrophysics WORTH A LOOK Gliding for Gold Take a journey through the physics of winter sports Radioactivity: A History of a Mysterious Science Book looks at history of radioactivity Voicebox: The Physics and Evolution of Speech TExploring the evolution of the voice WEB WATCH An interactive program with promise?
Energy Technology Data Exchange (ETDEWEB)
Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)
2016-07-27
In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while
Energy Technology Data Exchange (ETDEWEB)
Liu, Ziping; Liu, Hua; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn
2016-08-17
In this work, we report a novel label-free fluorescence “turn off-on” biosensor for lectin detection. The highly sensitive and selective sensing system is based on the integration of carboxymethyl chitosan (CM-CHIT), CuInS{sub 2} quantum dots (QDs) and Au nanoparticles (NPs). Firstly, CuInS{sub 2} QDs featuring carboxyl groups were directly synthesized via a hydrothermal synthesis method. Then, the carboxyl groups on the CuInS{sub 2} QDs surface were interacted with the amino groups (−NH{sub 2}), carboxyl groups (−COOH) and hydroxyl groups (−OH) within CM-CHIT polymeric chains via electrostatic interactions and hydrogen bonding to form CM-CHIT-QDs assemblies. Introduction of Au NPs could quench the fluorescence of CM-CHIT-QDs through electron and energy transfer. In the presence of lectin, lectin could bind exclusively with CM-CHIT-QDs by means of specific multivalent carbohydrate-protein interaction. Thus, the electron and energy transfer process between CM-CHIT-QDs and Au NPs was inhibited, and as a result, the fluorescence of CM-CHIT-QDs was effectively “turned on”. Under the optimum conditions, there was a good linear relationship between the fluorescence intensity ratio I/I{sub 0} (I and I{sub 0} were the fluorescence intensity of CM-CHIT-QDs-Au NPs in the presence and absence of lectin, respectively) and lectin concentration in the range of 0.2–192.5 nmol L{sup −1}, And the detection limit could be down to 0.08 nmol L{sup −1}. Furthermore, the proposed biosensor was employed for the determination of lectin in fetal bovine serum samples with satisfactory results. - Graphical abstract: A label-free fluorescence biosensor for highly sensitive detection of lectin based on the integration of carboxymethyl chitosan, CuInS{sub 2} quantum dots and gold nanoparticles. - Highlights: • A label-free near-infrared fluorescence “turn off-on” biosensor for detection of lectin was established. • The highly sensitive biosensor was based on the
Hu, Li-Ming; Luo, Kai; Xia, Jun; Xu, Guo-Mao; Wu, Cheng-Hui; Han, Jiao-Jiao; Zhang, Gang-Gang; Liu, Miao; Lai, Wei-Hua
2017-05-15
Label selection is a critical factor for improving the sensitivity of lateral flow assay. Time-resolved fluorescent nanobeads, fluorescent submicrospheres, quantum dots, and colloidal gold-based lateral flow assay (TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA) were first systematically compared for the quantitative detection of ractopamine in swine urine based on competitive format. The limits of detection (LOD) of TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA were 7.2, 14.7, 23.6, and 40.1pg/mL in swine urine samples, respectively. The sensitivity of TRFN-LFA was highest. In the quantitative determination of ractopamine (RAC) in swine urine samples, TRFN-LFA exhibited a wide linear range of 5pg/mL to 2500pg/mL with a reliable coefficient of correlation (R 2 =0.9803). Relatively narrow linear ranges of 10-500pg/mL (FM-LFA) and 25-2500pg/mL (QD-LFA and CG-LFA) were acquired. Approximately 0.005µg of anti-RAC poly antibody (pAb) was used in each TRFN-LFA test strip, whereas 0.02, 0.054, and 0.15µg of pAb were used in each of the FM-LFA, QD-LFA, and CG-LFA test strips, respectively. In addition, TRFN-LFA required the least RAC-BSA antigens and exhibited the shortest detection time compared with the other lateral flow assays. Analysis of the RAC in swine urine samples showed that the result of TRFN-LFA was consistent with that of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a commercial enzyme-linked immunosorbent assay (ELISA) kit. Copyright © 2016 Elsevier B.V. All rights reserved.
Rodzik-Czałka, Łucja; Lewandowska-Łańcucka, Joanna; Gatta, Viviana; Venditti, Iole; Fratoddi, Ilaria; Szuwarzyński, Michał; Romek, Marek; Nowakowska, Maria
2018-03-15
Fluorescence resonance energy transfer (FRET) system based on functionalized CdTe-guanine and AuNPs-cytosine bioconjugates for the model nucleobase - guanine detection was developed. Thioglycolic acid coated cadmium telluride quantum dots (QDs) conjugated with guanine and sodium 3-mercapto-1-propanesulfonate stabilized gold nanoparticles (AuNPs) capped by cytosine were obtained and fully characterized. Successful formation of the materials was confirmed by UV-Vis, fluorescence and FTIR spectroscopies. Composition of the conjugates was also characterized with elemental analysis and XPS. By employing a guanine-cytosine interaction the bonding between these complementary nucleobases attached to the nanoparticles leads to the formation of QDs-guanine-AuNPs-cytosine assembly, with the size about 7 nm as demonstrated using atomic force microscopy. That enables an effective FRET from functionalized QDs to AuNPs since both, the required distance and the spectral characteristics of donor-acceptor pair were secured. However, it was shown that in the presence of guanine-model molecule which inhibits the interaction between conjugated QDs and AuNPs the FRET is efficiently hampered. Thus monitoring the changes in the restoring fluorescence signal allows to assay the free guanine concentration. Importantly, we have demonstrated the sensitivity and selectivity of the obtained FRET-based system towards guanine. Moreover, in order to confirm the feasibility of the proposed material for nucleobase detection in the real biological samples the developed nanoparticles were also evaluated under simulated urine conditions. The presented strategy of FRET-based conjugated system preparation might be easily used for the development of another nucleobases selective detection and thus opens many possibilities for the determination of biomolecules in the real samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Fabrication of atomic-scale gold junctions by electrochemical plating using a common medical liquid
Umeno, A.; Hirakawa, K.
2005-04-01
Fabrication of nanometer-separated gold junctions has been performed using "iodine tincture," a medical liquid known as a disinfectant, as an etching/deposition electrolyte. In the gold-dissolved iodine tincture, gold electrodes were grown or eroded slowly enough to form quantum point contacts in an atomic scale. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at room temperature (e: the elementary charge, h: the Planck constant). Iodine tincture is a commercially available common material, which makes the fabrication process to be simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinarily strong acids.
Umeno, Akinori; Hirakawa, Kazuhiko
2005-06-01
Iodine tincture, a medical liquid familiar as a disinfectant, was introduced as an etching/deposition electrolyte for the fabrication of nanometer-separated gold electrodes. In the gold dissolved iodine tincture, the gold electrodes were grown or eroded slowly in atomic scale, enough to form quantum point contacts. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at the room temperature. The iodine tincture is a commercially available common material, which makes the fabrication process to be the simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinary strong acid. We expect this method to be a useful interface between single-molecular-scale structures and macroscopic opto-electronic devices.
Schuler, Michael; Whitsitt, Seth; Henry, Louis-Paul; Sachdev, Subir; Läuchli, Andreas M
2016-11-18
The low-energy spectra of many body systems on a torus, of finite size L, are well understood in magnetically ordered and gapped topological phases. However, the spectra at quantum critical points separating such phases are largely unexplored for (2+1)D systems. Using a combination of analytical and numerical techniques, we accurately calculate and analyze the low-energy torus spectrum at an Ising critical point which provides a universal fingerprint of the underlying quantum field theory, with the energy levels given by universal numbers times 1/L. We highlight the implications of a neighboring topological phase on the spectrum by studying the Ising* transition (i.e. the transition between a Z_{2} topological phase and a trivial paramagnet), in the example of the toric code in a longitudinal field, and advocate a phenomenological picture that provides qualitative insight into the operator content of the critical field theory.
McCarthy, Kimberly Ann
1990-01-01
Divisions in definitions of creativity have centered primarily on the working definition of discontinuity and the inclusion of intrinsic features such as unconscious processing and intrinsic motivation and reinforcement. These differences generally result from Cohen's two world views underlying theories of creativity: Organismic, oriented toward holism; or mechanistic, oriented toward cause-effect reductionism. The quantum world view is proposed which theoretically and empirically unifies organismic and mechanistic elements of creativity. Based on Goswami's Idealistic Interpretation of quantum physics, the quantum view postulates the mind -brain as consisting of both classical and quantum structures and functions. The quantum domain accesses the transcendent order through coherent superpositions (a state of potentialities), while the classical domain performs the function of measuring apparatus through amplifying and recording the result of the collapse of the pure mental state. A theoretical experiment, based on the 1980 Marcel study of conscious and unconscious word-sense disambiguation, is conducted which compares the predictions of the quantum model with those of the 1975 Posner and Snyder Facilitation and Inhibition model. Each model agrees that while conscious access to information is limited, unconscious access is unlimited. However, each model differently defines the connection between these states: The Posner model postulates a central processing mechanism while the quantum model postulates a self-referential consciousness. Consequently, the two models predict differently. The strength of the quantum model lies in its ability to distinguish between classical and quantum definitions of discontinuity, as well as clarifying the function of consciousness, without added assumptions or ad-hoc analysis: Consciousness is an essential, valid feature of quantum mechanisms independent of the field of cognitive psychology. According to the quantum model, through a
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2013-01-01
Roč. 336, SEP (2013), s. 98-111 ISSN 0003-4916 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : Non-Hermitian quantum Hamiltonian * exceptional point * phase transition * exactly solvable model Subject RIV: BE - Theoretical Physics Impact factor: 3.065, year: 2013 http://www.sciencedirect.com/science/article/pii/S0003491613001267
Energy Technology Data Exchange (ETDEWEB)
Wang, Yanying [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Xiangyang; Ye, Xiaoxue [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China); Wu, Kangbing [Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Tsunghsueh [Department of Chemistry, University of Wisconsin-Platteville, 1 University Plaza, Platteville, WI 53818-3099 (United States); Li, Chunya, E-mail: lichychem@163.com [Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074 (China)
2016-11-02
Gold nanorods (AuNRs) integrated with ZnCdHgSe near-infrared quantum dots (AuNRs-ZnCdHgSe QDs) were successfully synthesized and characterized by transmission electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. A glassy carbon electrode was decorated with the aforementioned AuNRs-ZnCdHgSe QDs nanocomposite, which provides a biocompatible interface for the subsequent immobilization of prostate specific antibody (anti-PSA). After being successively treated with glutaraldehyde vapor and bovine serum albumin solution, a photoelectrochemical immunosensing platform based on anti-PSA/AuNRs-ZnCdHgSe QDs/GCE was established. The photocurrent response of ZnCdHgSe QDs was tremendously improved by AuNRs due to the effect of resonance energy transfer which can be deduced from the dependence of the enhanced efficiency on the AuNRs with different length-to-diameter ratios and spectral absorption characteristics. A maximum photocurrent was obtained when the absorption spectrum of AuNRs matched well with the emission spectrum of ZnCdHgSe QDs. A photoelectrochemical immunosensor for prostate specific antigen (PSA) was achieved by monitoring the photocurrent variation. The photocurrent variation before and after being interacted with PSA solution exhibits a good linear relationship with the logarithm of its concentration (logc{sub PSA}) in the range from 1.0 pg mL{sup −1} to 50.0 ng mL{sup −1}. The detection limit of this photoelectrochemical immunosensor is able to reach 0.1 pg mL{sup −1} (S/N = 3). Determining PSA in clinical human serum was also demonstrated by using the developed anti-PSA(BSA)/AuNRs-ZnCdHgSe QDs/GCE electrode. The results were comparable with those obtained from an enzyme-linked immunosorbent assay method. - Highlights: • Nanocomposites based on AuNRs integration with ZnCdHgSe QDs were synthesized. • The photocurrent response of ZnCdHgSe QDs was improved by resonance energy transfer. • A photoelectrochemical
Joseph G. Haubrich
1998-01-01
The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.
Wong, Kin-Yiu; Gao, Jiali
2008-09-09
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property
Quantum teleportation for continuous variables and related quantum information processing
International Nuclear Information System (INIS)
Furusawa, Akira; Takei, Nobuyuki
2007-01-01
Quantum teleportation is one of the most important subjects in quantum information science. This is because quantum teleportation can be regarded as not only quantum information transfer but also a building block for universal quantum information processing. Furthermore, deterministic quantum information processing is very important for efficient processing and it can be realized with continuous-variable quantum information processing. In this review, quantum teleportation for continuous variables and related quantum information processing are reviewed from these points of view
Energy Technology Data Exchange (ETDEWEB)
dos Santos Coelho, Leandro [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil); Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)
2008-11-15
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature. (author)
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br; Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: viviana.mariani@pucpr.br
2008-11-15
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature.
Quantum Correlations Evolution Asymmetry in Quantum Channels
International Nuclear Information System (INIS)
Li Meng; Huang Yun-Feng; Guo Guang-Can
2017-01-01
It was demonstrated that the entanglement evolution of a specially designed quantum state in the bistochastic channel is asymmetric. In this work, we generalize the study of the quantum correlations, including entanglement and quantum discord, evolution asymmetry to various quantum channels. We found that the asymmetry of entanglement and quantum discord only occurs in some special quantum channels, and the behavior of the entanglement evolution may be quite different from the behavior of the quantum discord evolution. To quantum entanglement, in some channels it decreases monotonously with the increase of the quantum channel intensity. In some other channels, when we increase the intensity of the quantum channel, it decreases at first, then keeps zero for some time, and then rises up. To quantum discord, the evolution becomes more complex and you may find that it evolutes unsmoothly at some points. These results illustrate the strong dependence of the quantum correlations evolution on the property of the quantum channels. (paper)
Tribedi, Amit; Bose, Indrani
2008-01-01
We consider a two-chain, spin-1/2 antiferromagnetic Heisenberg spin ladder in an external magnetic field H. The spin ladder is known to undergo second order quantum phase transitions (QPTs) at two critical values, Hc1 and Hc2, of the magnetic field. There are now known examples of strongly coupled (rung exchange interaction much stronger than nearest-neighbour intrachain exchange interaction) organic ladder compounds in which QPTs have been experimentally observed. In this paper, we investiga...
Integer conductance quantization of gold atomic sheets
Kurui, Yoshihiko; Oshima, Yoshifumi; Okamoto, Masakuni; Takayanagi, Kunio
2008-04-01
Using a transmission electron microscope combined with a scanning tunneling microscope, we find that a gold (111) or (001) atomic sheet is formed between two gold electrodes. Simultaneous conductance measurements indicate a value in the vicinity of G0 ( =2e2/h : conductance quantum), 2G0 , 3G0 , and 4G0 . Each quantum number is equal to the number of atomic strands. First-principle calculations suggest that the atomic sheet should be deformed to explain this rule. It is likely that the gold atomic sheet is stabilized by an increment of the nonlocal bond because of the deformation.
Directory of Open Access Journals (Sweden)
Hong-Yun Zhang
2012-09-01
Full Text Available Quantum-behaved particle swarm optimization (QPSO is an efficient and powerful population-based optimization technique, which is inspired by the conventional particle swarm optimization (PSO and quantum mechanics theories. In this paper, an improved QPSO named SQPSO is proposed, which combines QPSO with a selective probability operator to solve the economic dispatch (ED problems with valve-point effects and multiple fuel options. To show the performance of the proposed SQPSO, it is tested on five standard benchmark functions and two ED benchmark problems, including a 40-unit ED problem with valve-point effects and a 10-unit ED problem with multiple fuel options. The results are compared with differential evolution (DE, particle swarm optimization (PSO and basic QPSO, as well as a number of other methods reported in the literature in terms of solution quality, convergence speed and robustness. The simulation results confirm that the proposed SQPSO is effective and reliable for both function optimization and ED problems.
International Nuclear Information System (INIS)
Khots, Boris; Khots, Dmitriy
2014-01-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided
Robert J. Barro; Sanjay P. Misra
2013-01-01
From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...
Molecular dynamics simulations on the melting of gold nanoparticles
Qiao, Zhiwei; Feng, Haijun; Zhou, Jian
2014-01-01
Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615∼1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.
Quantum motion of a point particle in the presence of the Aharonov–Bohm potential in curved space
Energy Technology Data Exchange (ETDEWEB)
Silva, Edilberto O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, Maranhão (Brazil); Ulhoa, Sérgio C., E-mail: sc.ulhoa@gmail.com [Instituto de Física, Universidade de Brasília, 70910-900, Brasília, Distrito Federal (Brazil); Andrade, Fabiano M., E-mail: f.andrade@ucl.ac.uk [Department of Computer Science, University College London, WC1E 6BT London (United Kingdom); Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, Paraná (Brazil); Filgueiras, Cleverson, E-mail: cleversonfilgueiras@yahoo.com.br [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970, Campina Grande, Paraíba (Brazil); Departamento de Física (DFI), Universidade Federal de Lavras (UFLA), Caixa Postal 3037, 37200-000, Lavras, Minas Gerais (Brazil); Amorim, R.G.G., E-mail: ronniamorim@gmail.com [Instituto de Física, Universidade de Brasília, 70910-900, Brasília, Distrito Federal (Brazil); Faculdade Gama, Universidade de Brasília, Setor Leste (Gama), 72444-240, Brasília, Distrito Federal (Brazil)
2015-11-15
The nonrelativistic quantum dynamics of a spinless charged particle in the presence of the Aharonov–Bohm potential in curved space is considered. We chose the surface as being a cone defined by a line element in polar coordinates. The geometry of this line element establishes that the motion of the particle can occur on the surface of a cone or an anti-cone. As a consequence of the nontrivial topology of the cone and also because of two-dimensional confinement, the geometric potential should be taken into account. At first, we establish the conditions for the particle describing a circular path in such a context. Because of the presence of the geometric potential, which contains a singular term, we use the self-adjoint extension method in order to describe the dynamics in all space including the singularity. Expressions are obtained for the bound state energies and wave functions. -- Highlights: •Motion of particle under the influence of magnetic field in curved space. •Bound state for Aharonov–Bohm problem. •Particle describing a circular path. •Determination of the self-adjoint extension parameter.
Delefortrie, Quentin; Schatt, Patricia; Grimmelprez, Alexandre; Gohy, Patrick; Deltour, Didier; Collard, Geneviève; Vankerkhoven, Patrick
2016-02-01
Although colonoscopy associated with histopathological sampling remains the gold standard in the diagnostic and follow-up of inflammatory bowel disease (IBD), calprotectin is becoming an essential biomarker in gastroenterology. The aim of this work is to compare a newly developed kit (Liaison® Calprotectin - Diasorin®) and its two distinct extraction protocols (weighing and extraction device protocol) with a well established point of care test (Quantum Blue® - Bühlmann-Alere®) in terms of analytical performances and ability to detect relapses amongst a Crohn's population in follow-up. Stool specimens were collected over a six month period and were composed of control and Crohn's patients. Amongst the Crohn's population disease activity (active vs quiescent) was evaluated by gastroenterologists. A significant difference was found between all three procedures in terms of calprotectin measurements (weighing protocol=30.3μg/g (median); stool extraction device protocol=36.9μg/g (median); Quantum Blue® (median)=63; Friedman test, P value=0.05). However, a good correlation was found between both extraction methods coupled with the Liaison® analyzer and between the Quantum Blue® (weighing protocol/extraction device protocol Rs=0.844, P=0.01; Quantum Blue®/extraction device protocol Rs=0.708, P=0.01; Quantum Blue®/weighing protocol, Rs=0.808, P=0.01). Finally, optimal cut-offs (and associated negative predictive values - NPV) for detecting relapses were in accordance with above results (Quantum Blue® 183.5μg/g and NPV of 100%>extraction device protocol+Liaison® analyzer 124.5μg/g and NPV of 93.5%>weighing protocol+Liaison® analyzer 106.5μg/g and NPV of 95%). Although all three methods correlated well and had relatively good NPV in terms of detecting relapses amongst a Crohn's population in follow-up, the lack of any international standard is the origin of different optimal cut-offs between the three procedures. Copyright © 2015 The Canadian Society of
Choi, Youngsun; Hahn, Choloong; Yoon, Jae Woong; Song, Seok Ho; Berini, Pierre
2017-01-20
Time-asymmetric state-evolution properties while encircling an exceptional point are presently of great interest in search of new principles for controlling atomic and optical systems. Here, we show that encircling-an-exceptional-point interactions that are essentially reciprocal in the linear interaction regime make a plausible nonlinear integrated optical device architecture highly nonreciprocal over an extremely broad spectrum. In the proposed strategy, we describe an experimentally realizable coupled-waveguide structure that supports an encircling-an-exceptional-point parametric evolution under the influence of a gain saturation nonlinearity. Using an intuitive time-dependent Hamiltonian and rigorous numerical computations, we demonstrate strictly nonreciprocal optical transmission with a forward-to-backward transmission ratio exceeding 10 dB and high forward transmission efficiency (∼100%) persisting over an extremely broad bandwidth approaching 100 THz. This predicted performance strongly encourages experimental realization of the proposed concept to establish a practical on-chip optical nonreciprocal element for ultra-short laser pulses and broadband high-density optical signal processing.
Quantum channel construction with circuit quantum electrodynamics
Shen, Chao; Noh, Kyungjoo; Albert, Victor V.; Krastanov, Stefan; Devoret, M. H.; Schoelkopf, R. J.; Girvin, S. M.; Jiang, Liang
2017-04-01
Quantum channels can describe all transformations allowed by quantum mechanics. We adapt two existing works [S. Lloyd and L. Viola, Phys. Rev. A 65, 010101 (2001), 10.1103/PhysRevA.65.010101 and E. Andersson and D. K. L. Oi, Phys. Rev. A 77, 052104 (2008), 10.1103/PhysRevA.77.052104] to superconducting circuits, featuring a single qubit ancilla with quantum nondemolition readout and adaptive control. This construction is efficient in both ancilla dimension and circuit depth. We point out various applications of quantum channel construction, including system stabilization and quantum error correction, Markovian and exotic channel simulation, implementation of generalized quantum measurements, and more general quantum instruments. Efficient construction of arbitrary quantum channels opens up exciting new possibilities for quantum control, quantum sensing, and information processing tasks.
Lebedieva, Tetiana; Gubanov, Victor; Dovbeshko, Galyna; Pidhirnyi, Denys
2015-12-01
Different notations of graphene irreducible representations and optical modes could be found in the literature. The goals of this paper are to identify the correspondence between available notations, to calculate the optical modes of graphene in different points of the Brillouin zone, and to compare them with experimental data obtained by Raman and coherent anti-Stokes Raman scattering (CARS) spectroscopy. The mechanism of the resonance enhancement of vibration modes of the molecules adsorbed on graphene in CARS experiments is proposed. The possibility of appearance of the discrete breathing modes is discussed.
Efraín Sánchez Cabra
2003-01-01
On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...
Tognetti, Vincent; Joubert, Laurent; Raucoules, Roman; De Bruin, Theodorus; Adamo, Carlo
2012-06-07
In this paper, we extend the work of Popelier and Logothetis [J. Organomet. Chem. 1998, 555, 101] on the characterization of agosticity by considerably enlarging the set of the studied organometallic molecules. To this aim, 23 representative complexes have been considered, including all first line transition metals at various oxidation states and exhibiting four types of agosticity (α, β, γ, and δ). From these examples, the concepts of agostic atom, agostic bond, and agostic interaction are defined and discussed, notably by advocating Bader's analysis of the electron density. The nature and the local properties of the bond critical points are then investigated, and the relationships with the main geometric parameters of the complexes are particularly examined. Moreover, new local descriptors based on kinetic energy densities are developed in order to provide new tools for bond characterization.
Arakcheev, V. G.; Bagratashvili, Viktor N.; Valeev, A. A.; Gordienko, Vyacheslav M.; Kireev, Vyacheslav V.; Morozov, V. B.; Olenin, A. N.; Popov, Vladimir K.; Tunkin, V. G.; Yakovlev, D. V.
2004-01-01
The transformation of the Q-band of the low-frequency 1285-cm-1 component of the 2v2/v1 Fermi doublet of a CO2 molecule is studied in the critical point vicinity (Tc=31.03 °C, Pc=72.8 atm) by the CARS method. CARS spectra were recorded by changing pressure isothermically from 48 to 120 atm at several temperatures in the range between 25 and 36°C. At the temperature above 29°C, the pressure dependences of the Q-band width pass through the maximum, which exceeds by 40% —50% the typical Q-band width in the liquid phase. The position of the maximum shifts to higher pressures with increasing temperature. The inhomogeneous broadening of the Q-band is interpreted based on the cluster microstructure of a supercritical fluid.
Quantum optics for experimentalists
Ou, Zhe-Yu Jeff
2017-01-01
This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar.
Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás
2004-09-01
We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.
International Nuclear Information System (INIS)
Seligman, T.H.
1984-01-01
Some general points of view on the implication of chaotic behaviour of a classical Hamiltonian system for the corresponding quantum system are discussed. The relevance of spectral statistics emerges. Various results on this subject are reported that tend to support these considerations. Limitations of this point of view are discussed with particular attention to the question of localization
International Nuclear Information System (INIS)
Salamandra Martinez, Carlos
2004-01-01
The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization
International Nuclear Information System (INIS)
Andreani, C.; Romanelli, G.; Senesi, R.
2013-01-01
Highlights: • Joint Inelastic and Deep Inelastic Neutron Scattering study of proton n(p) in water. • Hardening and softening of vibrational frequencies observed across the melting point. • Small deviations from harmonic behavior of the proton dynamics are determined. - Abstract: We report new results of a combined analysis of previous Inelastic Neutron Scattering (INS) and Deep Inelastic Neutron Scattering (DINS) experiments on ice at T = 271 K and water at T = 285 K and T = 673 K. Proton quantum dynamics is discussed in terms of the total mean kinetic energy, 〈E K 〉, and its three principal direction components, 〈E K 〉 α (with α=x,y,z), the lineshape momentum distribution, n(p), and its harmonic lineshape components, n h (p). The results show that the single proton dynamics is ground-state dominated and that 〈E K 〉 x ,〈E K 〉 y and 〈E K 〉 z consist mainly of weighted averages of a mix of bending and librational, librational and stretching mean kinetic energy components, respectively. The stretching component 〈E K 〉 z is redshifted respect to its harmonic component due to additional network mode contributions and softening caused by anharmonicity. The n(p) lineshapes derived at the investigated temperature reflect the anisotropy and quasi-harmonic nature of proton motion in ice and water
Directory of Open Access Journals (Sweden)
J. K. Dong
2011-09-01
Full Text Available The in-plane resistivity ρ and thermal conductivity κ of the heavy-fermion superconductor Ce_{2}PdIn_{8} single crystals were measured down to 50 mK. A field-induced quantum critical point, occurring at the upper critical field H_{c2}, is demonstrated from the ρ(T∼T near H_{c2} and ρ(T∼T^{2} when further increasing the field. The large residual linear term κ_{0}/T at zero field and the rapid increase of κ(H/T at low field give evidence for nodal superconductivity in Ce_{2}PdIn_{8}. The jump of κ(H/T near H_{c2} suggests a first-order-like phase transition at low temperature. These results mimic the features of the famous CeCoIn_{5} superconductor, implying that Ce_{2}PdIn_{8} may be another interesting compound to investigate for the interplay between magnetism and superconductivity.
Photonics of 2D gold nanolayers on sapphire surface
Energy Technology Data Exchange (ETDEWEB)
Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation); Konovko, A. A.; Belov, I. V.; Gizetdinov, R. M.; Andreev, A. V. [Moscow State University (Russian Federation); Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)
2017-03-15
Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.
Duality quantum computer and the efficient quantum simulations
Wei, Shi-Jie; Long, Gui-Lu
2015-01-01
In this paper, we firstly briefly review the duality quantum computer. Distinctly, the generalized quantum gates, the basic evolution operators in a duality quantum computer are no longer unitary, and they can be expressed in terms of linear combinations of unitary operators. All linear bounded operators can be realized in a duality quantum computer, and unitary operators are just the extreme points of the set of generalized quantum gates. A d-slits duality quantum computer can be realized in...
Quantum discord and quantum phase transition in spin chains
Dillenschneider, Raoul
2008-01-01
Quantum phase transitions of the transverse Ising and antiferromagnetic XXZ spin S=1/2 chains are studied using quantum discord. Quantum discord allows the measure of quantum correlations present in many-body quantum systems. It is shown that the amount of quantum correlations increases close to the critical points. The observations are in agreement with the information provided by the concurrence which measures the entanglement of the many-body system.
Gold finger formation studied by high-resolution mass spectrometry and in silico methods
Laskay, Ü.A.; Garino, C.; Tsybin, Y.O.; Salassa, L.; Casini, A.
2015-01-01
High-resolution mass spectrometry and quantum mechanics/molecular mechanics studies were employed for characterizing the formation of two gold finger (GF) domains from the reaction of zinc fingers (ZF) with gold complexes. The influence of both the gold oxidation state and the ZF coordination sphere
Quantum computing and spintronics
International Nuclear Information System (INIS)
Kantser, V.
2007-01-01
Tentative to build a computer, which can operate according to the quantum laws, has leaded to concept of quantum computing algorithms and hardware. In this review we highlight recent developments which point the way to quantum computing on the basis solid state nanostructures after some general considerations concerning quantum information science and introducing a set of basic requirements for any quantum computer proposal. One of the major direction of research on the way to quantum computing is to exploit the spin (in addition to the orbital) degree of freedom of the electron, giving birth to the field of spintronics. We address some semiconductor approach based on spin orbit coupling in semiconductor nanostructures. (authors)
Hasanzadeh, Mohammad; Tagi, Solmaz; Solhi, Elham; Mokhtarzadeh, Ahad; Shadjou, Nasrin; Eftekhari, Aziz; Mahboob, Soltanali
2018-04-03
The accurate quantification of the level of breast cancer specific protein CA 15-3 in serum is crucial for cancer prognosis. This work, a novel and sensitive label-free immunoassay based on gold nanospear (Au NSs) electrochemically assembled onto thiolated graphene quantum dots (CysA/GQDs) for the detection of CA 15-3 antibodies. The CysA/Au NSs/GQDs hybrid interface provides a large surface area for the effective immobilization of CA 15-3 antigens, as well as it ascertains the bioactivity and stability of immobilized CA 15-3 antigens. Field emission scanning electron microscope (FE-SEM), and EDS photoelectron spectroscopies were used to monitor the sensor fabrication. Also, cyclic voltammetry was used to quantify the extent of Au NSs' surface coverage by CA 15-3 antigens. Square wave voltammetry (SWV) was employed to investigate the immunosensor fabrication and to monitor the binding events between CA 15-3 antigens-antibodies. Under optimized experimental conditions, the immunosensor displayed good sensitivity and specificity. The CA 15-3 were detected in a concentration as low as 0.11U/mL with a linear range from 0.16-125U/mL. The high sensitivity of the immunosensor may derive from the high loading of CA 15-3 antibodies on CysA/Au NSs/GQDs hybrid interface which increases the number of binding events. The method was successfully applied assay of the CA 15-3 in unprocessed human plasma samples. Also, proposed immunosensor was applied to the assay of CA 15-3 malignant cell line lysates (human breast adenocarcinoma cell line-MCF-7). Copyright © 2018. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Liu, Keke; Zhang, Jianrong; Liu, Qing; Huang, Haiping
2013-01-01
A novel amperometric enzyme immunosensor with amplified sensitivity for the determination of alpha-fetoprotein (AFP) was constructed with layer-by-layer assembly of ZnSe quantum dots (ZnSe QDs)/Azure I/gold nanoparticles (nanoAu)/poly (3,4-ethylenedioxythiophene) (PEDOT) on Pt electrode. Firstly, citrate coated nanoAu was immobilized on the PEDOT polymer film, which was electrochemically synthesized in ionic liquid electrolyte of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ]). Then, Azure I was immobilized on nanoAu/PEDOT composite matrix as a redox probe and was used to immobilize ZnSe QDs. Subsequently, AFP antibody (anti-AFP) was adsorbed onto the surface of ZnSe layer. Finally, horseradish peroxidase (HRP) was employed to block sites against nonspecific binding and amplify the current signal of the antigen–antibody reaction. The modification processes were characterized by cyclic voltammetry, scanning electron microscopy. The factors influenced the performances of the proposed immunosensors were studied in detail. Because of the synergism between Azure I and nanoAu/PEDOT to facilitate electron-transfer process, and the small diameter of ZnSe QDs favorable for stabilization of biological activity to a large extent, the immunosensor displayed a high sensitivity, fast analytical time, a relatively low detection limit of 1.1 fg/mL at 3 times of signal-to-noise ratio (S/N = 3), and a especially broad linear response to AFP in a ranges from 5 × 10 −5 to 250 ng/mL. Moreover, the selectivity, repeatability, and stability of the proposed immunosensor were acceptable
Energy Technology Data Exchange (ETDEWEB)
Mohammadi-Behzad, Leila [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Khodayar [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Barati, Ali [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholami, Akram [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)
2016-03-01
In the present paper, a new bisphosphoramidate derivative compound, 1, 4-bis(N-methyl)-benzene-bis(N-phenyl, N-benzoylphosphoramidate) (BMBPBP), was synthesized and used as a mediator for the electrocatalytic oxidation of olanzapine. The electro-oxidation of olanzapine at the surface of the BMBPBP/CdS-quantum dots/multi-walled carbon nanotubes (BMBPBP/CdS-QDs/MWCNTs) modified gold electrode was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. This sensor showed an excellent electrocatalytic oxidation activity toward olanzapine at less positive potential, pronounced current response, and good sensitivity. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) were determined for olanzapine oxidation, using the electrochemical approaches. Surface morphology and electrochemical properties of the prepared modified electrode were investigated by scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy techniques. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of olanzapine. Under optimized conditions, the calibration plot was linear in the concentration range of 20 nM to 100 μM and detection limit was found to be 6 nM. The proposed method was successfully applied to the determination of olanzapine in pharmaceuticals and human serum samples. - Highlights: • A highly sensitive sensor for OLZ determination was developed. • The sensor constructed based on immobilization of BMBPBP on CdS-QDs/MWCNTs Au electrode • The morphology of the modified electrode was examined by SEM. • The prepared sensor shows stable electrochemical behavior at a wide pH range. • The proposed sensor is used for trace determination of OLZ in real samples.
National Research Council Canada - National Science Library
Agarwal, G. S
2013-01-01
.... Focusing on applications of quantum optics, the textbook covers recent developments such as engineering of quantum states, quantum optics on a chip, nano-mechanical mirrors, quantum entanglement...
Directory of Open Access Journals (Sweden)
Boryshkevych Olena V.
2014-01-01
Full Text Available The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in the gold market during 1968 – 2013 and identifies main factors that determine the gold price. It identifies interconnection between the state of the gold market and financial markets of countries. The study showed that namely geopolitical and economic instability restricts the spectrum of financial assets for investing and gold is not only a safe investment object but also a profitable one.
Adsorption-induced restructuring of gold nanochains
DEFF Research Database (Denmark)
Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet
2002-01-01
The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the st......The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...... with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains...
Quantum gravity, shadow states, and quantum mechanics
Ashtekar, Abhay; Fairhurst, Stephen; Willis, Joshua L.
2002-01-01
A program was recently initiated to bridge the gap between the Planck scale physics described by loop quantum gravity and the familiar low energy world. We illustrate the conceptual problems and their solutions through a toy model: quantum mechanics of a point particle. Maxwell fields will be discussed in the second paper of this series which further develops the program and provides details.
International Nuclear Information System (INIS)
Beenakker, C W J
2005-01-01
Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The
Bény, Cédric
2018-02-01
We propose a method for stably removing noise from measurements of a quantum many-body system. The question is cast to a linear inverse problem by using a quantum Fischer information metric as figure of merit. This requires the ability to compute the adjoint of the noise channel with respect to the metric, which can be done analytically when the metric is evaluated at a Gaussian (quasi-free) state. This approach can be applied effectively to n-point functions of a quantum field theory. For translation invariant noise, this yields a stable deconvolution method on the first moments of the field which differs from what one would obtain from a purely classical analysis.
International Nuclear Information System (INIS)
Knapen, M.; Anink, D.; Donze, G.
2000-01-01
Solar systems seem a sustainable way of providing energy. But are nowadays PV-systems with materials like heavy metals sustainable? Is PV really environmentally sound with the actual efficiency? And what about solar collectors? This paper provides the answers and indicates improvement options for solar systems to make them more overall sustainable in the future. With Eco-Quantum, a simulation tool for analysing the environmental performance of buildings, the overall environmental profit of buildings with PV-systems and solar collectors is shown. It calculates the environmental effects during the entire life cycle of a complete building ('cradle to grave'). This includes the impact of energy and water use, maintenance during use phase, differences in durability of parts or construction needs, like adhesives and nails. The basis of Eco-Quantum is environmental life cycle assessment (LCA). IEA BCS Annex 31 indicated Eco-Quantum as one of the most sophisticated tools to calculate environment al performance of a build ing. The results of Eco-Quantum are the environmental indicators: Exhaustion of resources; Emissions; Energy and Waste. Options like PV and solar collectors are investigated in a reference building. On the one hand the energy during use is reduced by the options. On the other hand the environmental effects because of materials exhaustion of resources and emissions during production is increased as a consequence of additional material use. (au)
DEFF Research Database (Denmark)
Raaballe, J.; Grundy, B.D.
2002-01-01
of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...... value maximization forces the manager of high type to extract the gold.The implications are three-fold. First, all managers (except the lowest type) extract the gold too soon compared to the first-best policy of leaving the gold in the mine forever. Second, a manager of high type extracts the gold...... Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...
Coal-gold agglomeration: an alternative separation process in gold recovery
Energy Technology Data Exchange (ETDEWEB)
Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering
2009-07-01
Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.
International Nuclear Information System (INIS)
Mthethwa, Thandekile; Nyokong, Tebello
2015-01-01
Gold nanoparticles (spheres, rods and bipyramids) were synthesized. The nanocrystals were characterized by UV–visible spectrometry, transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The as prepared gold nanoparticles were then conjugated to a quaternized 2,(3)-tetra [2-(dimethylamino) ethanethio] substituted Al(OH) phthalocyanine (complex 1). The conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields and lifetimes. Conversely, an increase in the singlet oxygen quantum yields was observed for the conjugated complex 1 in the presence of AuNPs. - Highlights: • Gold nanoparticles (spheres, rods and bipyramids) were synthesized. • Gold nanoparticles were then conjugated to a quaternized ClAl phthalocyanine. • Conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields. • An increase in the singlet oxygen quantum yields was observed for the phthalocyanine in the presence of nanoparticles
Gold - Old Drug with New Potentials.
Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M
2018-01-01
Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Okane, T; Ohkochi, T; Takeda, Y; Fujimori, S-i; Yasui, A; Saitoh, Y; Yamagami, H; Fujimori, A; Matsumoto, Y; Sugi, M; Kimura, N; Komatsubara, T; Aoki, H
2009-05-29
Angle-resolved photoelectron spectroscopy in the Ce 3d-->4f excitation region was measured for the paramagnetic state of CeRu2Si2, CeRu2(Si0.82Ge0.18)2, and LaRu2Si2 to investigate the changes of the 4f electron Fermi surfaces around the quantum critical point. While the difference of the Fermi surfaces between CeRu2Si2 and LaRu2Si2 was experimentally confirmed, a strong 4f-electron character was observed in the band structures and the Fermi surfaces of CeRu2Si2 and CeRu2(Si0.82Ge0.18)2, consequently indicating a delocalized nature of the 4f electrons in both compounds. The absence of Fermi surface reconstruction across the critical composition suggests that SDW quantum criticality is more appropriate than local quantum criticality in CeRu2(Si1-xGex)2.
Skin contact with gold and gold alloys.
Rapson, W S
1985-08-01
3 types of reaction to gold merit discussion. First, there is the effect known as black dermographism, in which stroking with certain metals immediately produces well-defined black lines on the skin. Some gold alloys are amongst such metals. The evidence indicates that the effect is the result of impregnation of the skin with black metallic particles generated by mechanical abrasion of the metal by contaminants of the skin. There is no positive and unequivocal evidence of the ability of metals to mark uncontaminated skin so rapidly that it is possible to write upon it. Secondly there are the 2 related phenomena of the wear of gold jewelry, and the susceptibility to certain individuals to blackening of the skin where it is in contact with such jewelry. The occurrence of smudge, as it is often called, is not very common, but is brought to the attention of most jewelers from time to time. In extreme cases it may make it embarrassing for the person concerned to wear metallic jewelry. It would appear as if gold smudge also results mainly from mechanical abrasion of jewelry, though this may be aided and/or supplemented in some instances by corrosion of gold or gold alloy induced by certain components of the sweat. Finally, there is the question of true allergic responses to contact of the skin with gold and its alloys. Judging from the very few cases which have been recorded, such responses are extremely rare. Some recent observations on the reactions of metallic gold with amino acids and of reaction to contact of the skin with gold on the part of rheumatoid arthritis patients undergoing gold therapy, are, however, relevant in this connection.
Directory of Open Access Journals (Sweden)
Leonarda F. Liotta
2014-07-01
Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites
Quantum Bounded Symmetric Domains
Vaksman, L. L.
2008-01-01
This is Leonid Vaksman's monograph "Quantum bounded symmetric domains" (in Russian), preceded with an English translation of the table of contents and (a part) of the introduction. Quantum bounded symmetric domains are interesting from several points of view. In particular, they provide interesting examples for noncommutative complex analysis (i.e., the theory of subalgebras of C^*-algebars) initiated by W. Arveson.
Synthesis of gold nanoparticles with different atomistic structural characteristics
International Nuclear Information System (INIS)
Esparza, R.; Rosas, G.; Lopez Fuentes, M.; Sanchez Ramirez, J.F.; Pal, U.; Ascencio, J.A.; Perez, R.
2007-01-01
A chemical reduction method was used to produce nanometric gold particles. Depending on the concentration of the main reactant compound different nanometric sizes and consequently different atomic structural configurations of the particles are obtained. Insights on the structural nature of the gold nanoparticles are obtained through a comparison between digitally-processed experimental high-resolution electron microscopy images and theoretically-simulated images obtained with a multislice approach of the dynamical theory of electron diffraction. Quantum molecular mechanical calculations, based on density functional theory, are carried out to explain the relationships between the stability of the gold nanoparticles, the atomic structural configurations and the size of nanoparticles
Efficient light extraction from GaN LEDs using gold-coated ZnO nanoparticles
Alhadidi, A.
2015-11-01
We experimentally demonstrate the effect of depositing gold-coated ZnO nanoparticles on the surface of GaN multi-quantum well LED structures. We show that this method can significantly increase the amount of extracted light.
Quantum Noise from Reduced Dynamics
Vacchini, Bassano
2016-07-01
We consider the description of quantum noise within the framework of the standard Copenhagen interpretation of quantum mechanics applied to a composite system environment setting. Averaging over the environmental degrees of freedom leads to a stochastic quantum dynamics, described by equations complying with the constraints arising from the statistical structure of quantum mechanics. Simple examples are considered in the framework of open system dynamics described within a master equation approach, pointing in particular to the appearance of the phenomenon of decoherence and to the relevance of quantum correlation functions of the environment in the determination of the action of quantum noise.
Quantum repeated games revisited
International Nuclear Information System (INIS)
Frąckiewicz, Piotr
2012-01-01
We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable. (paper)
Gold and not so real gold in Medieval treatises
Directory of Open Access Journals (Sweden)
Srebrenka Bogovic-Zeskoski
2015-01-01
Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies
Scheme of thinking quantum systems
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field
Wilde, Mark M
2017-01-01
Developing many of the major, exciting, pre- and post-millennium developments from the ground up, this book is an ideal entry point for graduate students into quantum information theory. Significant attention is given to quantum mechanics for quantum information theory, and careful studies of the important protocols of teleportation, superdense coding, and entanglement distribution are presented. In this new edition, readers can expect to find over 100 pages of new material, including detailed discussions of Bell's theorem, the CHSH game, Tsirelson's theorem, the axiomatic approach to quantum channels, the definition of the diamond norm and its interpretation, and a proof of the Choi–Kraus theorem. Discussion of the importance of the quantum dynamic capacity formula has been completely revised, and many new exercises and references have been added. This new edition will be welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theo...
Quantum physics meets biology.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-12-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.
Parallel decoherence in composite quantum systems
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 79; Issue 2 ... Quantum decoherence; quantum Brownian motion; quantum structure; entanglement relativity. ... For the standard quantum Brownian motion (QBM) model, we point out the occurrence of simultaneous (parallel), mutually irreducible and autonomous ...
Directory of Open Access Journals (Sweden)
J. Ambjørn
1995-07-01
Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.
DEFF Research Database (Denmark)
Laustsen, Christoffer
2008-01-01
Introduction Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... in silico methods are here proposed for apoptosis studies and for AMG studies. Methods MR - heating of high concentration micrometer gold and low concentration nano gold. CSLM of ethidum bromide stained cell lines, with and witout gold and automated image processing. AMG gold uptake study...
Gold mineralogy and extraction
Energy Technology Data Exchange (ETDEWEB)
Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)
1998-12-15
Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.
International Nuclear Information System (INIS)
James, G.S.; Davidson, R.J.
1977-01-01
A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution
Scaling behavior near the itinerant ferromagnetic quantum critical point (FQCP) of NiCoCrx for 0.8
Sales, Brian; Jin, Ke; Bei, Hongbin; Nichols, John; Chisholm, Matthew; May, Andrew; McGuire, Michael
Low temperature magnetization, resistivity and heat capacity data are reported for the concentrated solid solution NiCoCrx as a function of temperature and magnetic field. In the quantum critical region the low field (0.001-0.01 T) magnetic susceptibility, Chi, diverges as T- 1 / 2 and the magnetization data exhibits T/B scaling from 0.001 2 Tesla, the crossover temperature from the QC to Fermi liquid regime is no longer linear in B, and is better described by B0.75. This scaling behavior is particularly accurate in describing the normalized magnetoresistance data [Rho(B,T)-Rho(0,T)]/T, which is equivalent to the ratio of relaxation rates associated with magnetic field and temperature TauT/TauB. The location of the QCP is sensitive to the composition x and the strain generated during synthesis. These medium-entropy alloys are interesting model systems to explore the role of chemical disorder at FQCP. Research supported by the DOE Office of Science, Materials Science and Engineering Division, and the Energy Dissipation to Defect Evolution EFRC.
Magnetism in nanocrystalline gold.
Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki
2013-08-27
While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.
Quantum walks, quantum gates, and quantum computers
International Nuclear Information System (INIS)
Hines, Andrew P.; Stamp, P. C. E.
2007-01-01
The physics of quantum walks on graphs is formulated in Hamiltonian language, both for simple quantum walks and for composite walks, where extra discrete degrees of freedom live at each node of the graph. It is shown how to map between quantum walk Hamiltonians and Hamiltonians for qubit systems and quantum circuits; this is done for both single-excitation and multiexcitation encodings. Specific examples of spin chains, as well as static and dynamic systems of qubits, are mapped to quantum walks, and walks on hyperlattices and hypercubes are mapped to various gate systems. We also show how to map a quantum circuit performing the quantum Fourier transform, the key element of Shor's algorithm, to a quantum walk system doing the same. The results herein are an essential preliminary to a Hamiltonian formulation of quantum walks in which coupling to a dynamic quantum environment is included
Two-point function of a d =2 quantum critical metal in the limit kF→∞ , Nf→0 with NfkF fixed
Säterskog, Petter; Meszena, Balazs; Schalm, Koenraad
2017-10-01
We show that the fermionic and bosonic spectrum of d =2 fermions at finite density coupled to a critical boson can be determined nonperturbatively in the combined limit kF→∞ ,Nf→0 with NfkF fixed. In this double scaling limit, the boson two-point function is corrected but only at one loop. This double scaling limit therefore incorporates the leading effect of Landau damping. The fermion two-point function is determined analytically in real space and numerically in (Euclidean) momentum space. The resulting spectrum is discontinuously connected to the quenched Nf→0 result. For ω →0 with k fixed the spectrum exhibits the distinct non-Fermi-liquid behavior previously surmised from the RPA approximation. However, the exact answer obtained here shows that the RPA result does not fully capture the IR of the theory.
Exploiting Locality in Quantum Computation for Quantum Chemistry.
McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-12-18
Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.
Red gold analysis by using gamma absorption tchnique
International Nuclear Information System (INIS)
Kurtoglu, A.; Tugrul, A.B.
2001-01-01
Gold is a valuable metal and also preferable materials for antique artefacts and some advanced technology products. It can be offered for the analysis of the gold as namely; neutron activation analysis, X-ray florescence technique, Auger spectroscopy, atomic absorption and wet chemistry. Some limitations exist in practice for these techniques, especially in the points of financial and applicability concepts. An advanced a practical technique is gamma absorption technique for the gold alloys. This technique is based on discontinuities in the absorption coefficient for gamma rays at corresponding to the electronic binding energies of the absorber. If irradiation is occurred at gamma absorption energy for gold, absorption rates of the red gold changes via the gold amounts in the alloy. Red gold is a basic and generally preferable alloy that has copper and silver additional of the gold in it. The gold amount defines as carat of the gold. Experimental studies were observed for four different carats of red gold; these are 8, 14, 18 and 22 carats. K-edge energy level of the gold is on 80 keV energy. So, Ba-133 radioisotope is preferred as the gamma source because of it has gamma energy peak in that energy. Experiments observed in the same geometry for all samples. NaI(Tl) detector and multichannel analyser were used for measurements. As a result of the experiments, the calibration curves could be drawn for red gold. For examine this curve, unknown samples are measured in experimental set and it can be determined the carat of it with the acceptability. So the red gold analysis can be observed non-destructively, easily and quickly by using the gamma absorption technique
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The
International Nuclear Information System (INIS)
Serot, B.D.
1992-01-01
It is therefore essential to develop reliable nuclear models that go beyond the traditional non-relativistic many-body framework. The arguments for renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. The Walecka model, which contains neutrons, protons, and neutral scalar and vector mesons, is considered first as a simple example. The development is based on the relativistic mean-field and Hartree approximations, and their application to infinite matter and atomic nuclei. Some successes of this model are discussed, such as the nuclear equation of state, the derivation of the shell model, the prediction of nuclear properties throughout the periodic table, and the inclusion of zero-point vacuum corrections. The important concepts of Lorentz covariance and self-consistency are emphasized and the new dynamical features that arise in a relativistic many-body framework are highlighted. The computation of isoscalar magnetic moments is presented as an illustrative example. Calculations beyond the relativistic mean-field and Hartree approximations (for example, Dirac-Hartree-Fock and Dirac-Brueckner) are considered next, as well as recent efforts to incorporate the full role of the quantum vacuum in a consistent fashion. An extended model containing isovector pi and rho mesons is then developed; the dynamics is based on the chirally invariant linear sigma model. The difficulties in constructing realistic chiral descriptions of nuclear matter and nuclei are analysed, and the connection between the sigma model and the Walecka model is established. Finally, the relationship between quantum hadrodynamics and quantum chromodynamics is briefly addressed. (Author)
Hartle, James B.
2018-01-01
A quantum theory of the universe consists of a theory of its quantum dynamics and a theory of its quantum state The theory predicts quantum multiverses in the form of decoherent sets of alternative histories describing the evolution of the universe's spacetime geometry and matter content. These consequences follow: (a) The universe generally exhibits different quantum multiverses at different levels and kinds of coarse graining. (b) Quantum multiverses are not a choice or an assumption but ar...
Kolobov, Mikhail I
2007-01-01
Quantum Imaging is a newly born branch of quantum optics that investigates the ultimate performance limits of optical imaging allowed by the laws of quantum mechanics. Using the methods and techniques from quantum optics, quantum imaging addresses the questions of image formation, processing and detection with sensitivity and resolution exceeding the limits of classical imaging. This book contains the most important theoretical and experimental results achieved by the researchers of the Quantum Imaging network, a research programme of the European Community.
Wu, Lian-Ao; Lidar, Daniel A.
2005-01-01
When quantum communication networks proliferate they will likely be subject to a new type of attack: by hackers, virus makers, and other malicious intruders. Here we introduce the concept of "quantum malware" to describe such human-made intrusions. We offer a simple solution for storage of quantum information in a manner which protects quantum networks from quantum malware. This solution involves swapping the quantum information at random times between the network and isolated, distributed an...
Geometry of quantum computation with qutrits.
Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming
2013-01-01
Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.
Khrennikov, Andrei
2014-01-01
The present wave of interest in quantum foundations is caused by the tremendous development of quantum information science and its applications to quantum computing and quantum communication. It has become clear that some of the difficulties encountered in realizations of quantum information processing have roots at the very fundamental level. To solve such problems, quantum theory has to be reconsidered. This book is devoted to the analysis of the probabilistic structure of quantum theory, probing the limits of classical probabilistic representation of quantum phenomena.
Solar Cells Using Quantum Funnels
Kramer, Illan J.
2011-09-14
Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.
Bojowald, Martin
47334512188231993PhRvD..47.3345G10.1103/PhysRevD.47.3345Gell-Mann, M., Hartle, J.B.: Phys. Rev. D 47, 3345 (1993), gr-qc/9210010 24.FDowkerAKent1996J. Statist. Phys.82157513749291996JSP....82.1575D1042.8150710.1007/BF02183396Dowker, F., Kent, A.: J. Statist. Phys. 82, 1575 (1996), gr-qc/9412067 25.Dias, N.C., Mikovic, A, Prata, J.N.: J. Math. Phys. 47, 082101 (2006), hep-th/0507255 26.MBojowaldASkirzewski2006Rev. Math. Phys.1871322671131124.8201010.1142/S0129055X06002772Bojowald, M., Skirzewski, A.: Rev. Math. Phys. 18, 713 (2006), math-ph/0511043 27.MBojowaldBSandhöferASkirzewskiATsobanjan2009Rev. Math. Phys.2111124931141167.8102510.1142/S0129055X09003591Bojowald, M., Sandhöfer, B., Skirzewski, A., Tsobanjan, A.: Rev. Math. Phys. 21, 111 (2009), arXiv:0804.3365 28.JJHalliwellSWHawking1985Phys. Rev. D31817777877481985PhRvD..31.1777H10.1103/PhysRevD.31.1777Halliwell, J.J., Hawking, S.W.: Phys. Rev. D 31(8), 1777 (1985) 29.PDD'Eath2005Supersymmetric Quantum CosmologyCambridge University PressCambridgeD'Eath, P.D.: Supersymmetric Quantum Cosmology. Cambridge University Press, Cambridge (2005) 30.PVMoniz2010Quantum Cosmology - The Supersymmetric PerspectiveSpringerBerlinMoniz, P.V.: Quantum Cosmology—The Supersymmetric Perspective. Springer, Berlin(2010) 31.PDD'EathJJHalliwell1987Phys. Rev. D3511008785261987PhRvD..35.1100D10.1103/PhysRevD.35.1100D'Eath, P.D., Halliwell, J.J.: Phys. Rev. D 35, 1100 (1987) 32.TGold1962Am. J. Phys.304031962AmJPh..30..403G0105.2250110.1119/1.1942052Gold, T.: Am. J. Phys. 30, 403 (1962) 33.SWHawking1985Phys. Rev. D3224898114021985PhRvD..32.2489H10.1103/PhysRevD.32.2489Hawking, S.W.: Phys. Rev. D 32, 2489 (1985) 24.DNPage1985Phys. Rev. D3224968114031985PhRvD..32.2496P10.1103/PhysRevD.32.2496Page, D.N.: Phys. Rev. D 32, 2496 (1985) 35.BCarr2007Universe or Multiverse?Cambridge University PressCambridgeCarr, B.(ed.): Universe or Multiverse? Cambridge University Press, Cambridge (2007) 1.D.GiuliniCKieferE.JoosJKupschI.O.StamatescuH.D.Zeh1996Decoherence and
Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons
Kröger, H.
2003-01-01
We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.
From quantum dots to quantum circuits
International Nuclear Information System (INIS)
Ensslin, K.
2008-01-01
Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse
Single layer porous gold films grown at different temperatures
International Nuclear Information System (INIS)
Zhang Renyun; Hummelgard, Magnus; Olin, Hakan
2010-01-01
Large area porous gold films can be used in several areas including electrochemical electrodes, as an essential component in sensors, or as a conducting material in electronics. Here, we report on evaporation induced crystal growth of large area porous gold films at 20, 40 and 60 deg. C. The gold films were grown on liquid surface at 20 deg. C, while the films were grown on the wall of beakers when temperature increased to 40 and 60 deg. C. The porous gold films consisted of a dense network of gold nanowires as characterized by TEM and SEM. TEM diffraction results indicated that higher temperature formed larger crystallites of gold wires. An in situ TEM imaging of the coalescence of gold nanoparticles mimicked the process of the growth of these porous films, and a plotting of the coalescence time and the neck radius showed a diffusion process. The densities of these gold films were also characterized by transmittance, and the results showed film grown at 20 deg. C had the highest density, while the film grown at 60 deg. C had the lowest consistent with SEM and TEM characterization. Electrical measurements of these gold films showed that the most conductive films were the ones grown at 40 deg. C. The conductivities of the gold films were related to the amount of contamination, density and the diameter of the gold nanowires in the films. In addition, a gold film/gold nanoparticle hybrid was made, which showed a 10% decrease in transmittance during hybridization, pointing to applications as chemical and biological sensors.
Ballistic transport in gold [110] nanowire
Kurui, Yoshihiko; Oshima, Yoshifumi; Okamoto, Masakuni; Takayanagi, Kunio
2009-03-01
Conductance of gold nanowire elongated along the [110] direction (gold [110] nanowire) was measured during many breaking procedures, while simultaneously acquiring transmission electron microscope images. The conductance histogram exhibits a series of peaks whose conductance values increased nearly in steps of the conductance quantum, G0 =2e^2/h. However thick nanowires above 10G0 showed dequantization, where the increment was only 0.9G0. The structure for each peak was determined to be either an atomic sheet or a hexagonal prism. The number of conductance channels calculated for each atomic structure by first principles theory, coincided well with the peak index in the conductance histogram. The present study shows that the [110] nanowire behave as ballistic conductors, and a conductance peak appears whenever a conductance channel is opened.
Topological states on the gold surface.
Yan, Binghai; Stadtmüller, Benjamin; Haag, Norman; Jakobs, Sebastian; Seidel, Johannes; Jungkenn, Dominik; Mathias, Stefan; Cinchetti, Mirko; Aeschlimann, Martin; Felser, Claudia
2015-12-14
Gold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state. Based on band structure calculations, the Z2-type invariants of gold can be well-defined to characterize a TI. Further, our ARPES measurement validates TDSSs by detecting the dispersion of unoccupied surface states. The same TDSSs are also recognized on surfaces of other well-known noble metals (for example, silver, copper, platinum and palladium), which shines a new light on these long-known surface states.
Interpretations of Quantum Mechanics
Directory of Open Access Journals (Sweden)
Pickl Peter
2014-04-01
Full Text Available The problems of modern physics are man made. The Copenhagen version of quantum mechanics is formulated in a vague prosaic way, inconsistencies and paradoxes are the price. New interpretations try to solve the problem, however a reformulation rather than an interpretation is needed. In this manuscript I will point out, where the Copenhagen formulation of quantum mechanics is flawed and how one can make sense out of it. Then I will show, that it is possible to give a precise formulation of quantum mechanics without losing its compelling ability in describing experiments.
Interpretations of Quantum Mechanics
Pickl, Peter
2014-04-01
The problems of modern physics are man made. The Copenhagen version of quantum mechanics is formulated in a vague prosaic way, inconsistencies and paradoxes are the price. New interpretations try to solve the problem, however a reformulation rather than an interpretation is needed. In this manuscript I will point out, where the Copenhagen formulation of quantum mechanics is flawed and how one can make sense out of it. Then I will show, that it is possible to give a precise formulation of quantum mechanics without losing its compelling ability in describing experiments.
International Nuclear Information System (INIS)
Parish, R.V.; Cottrill, S.M.
1987-01-01
A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years
International Nuclear Information System (INIS)
Anon.
1990-01-01
The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum
International Nuclear Information System (INIS)
Reynaud, S.; Giacobino, S.; Zinn-Justin, J.
1997-01-01
This course is dedicated to present in a pedagogical manner the recent developments in peculiar fields concerned by quantum fluctuations: quantum noise in optics, light propagation through dielectric media, sub-Poissonian light generated by lasers and masers, quantum non-demolition measurements, quantum electrodynamics applied to cavities and electrical circuits involving superconducting tunnel junctions. (A.C.)
Lanzagorta, Marco
2011-01-01
This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w
Axially chiral allenyl gold complexes.
Johnson, Alice; Laguna, Antonio; Gimeno, M Concepción
2014-09-17
Unprecedented allenyl gold complexes have been achieved starting from triphenylpropargylphosphonium bromide. Two different coordination modes of the allene isomer of triphenylphosphoniumpropargylide to gold have been found depending on the gold oxidation state. Bromo-, pentafluorophenyl-, and triphenylphosphine-gold(I) allenyl complexes were prepared in which the α carbon coordinates to the gold(I) center. A chiral pentafluorophenyl-gold(III) allenyl complex with the gold atoms coordinated to the γ carbon was also prepared. All the complexes have been structurally characterized by X-ray diffraction showing the characteristic distances for a C═C═C unit.
International Nuclear Information System (INIS)
Stapp, H.P.
1988-12-01
Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs
Gold nanoprobes for theranostics
Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph
2011-01-01
Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586
DEFF Research Database (Denmark)
Neumann, Tim; Rasmussen, Mette; Ghith, Nermin
2013-01-01
To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....
Porous Gold Films Fabricated by Wet-Chemistry Processes
Directory of Open Access Journals (Sweden)
Aymeric Pastre
2016-01-01
Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.
Quantum Locality in Game Strategy.
Melo-Luna, Carlos A; Susa, Cristian E; Ducuara, Andrés F; Barreiro, Astrid; Reina, John H
2017-03-22
Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players' input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.
Reversible multi polyelectrolyte layers on gold nanoparticles
Djoumessi Lekeufack, Diane; Brioude, Arnaud; Lalatonne, Yoann; Motte, Laurence; Coleman, Anthony W.; Miele, Philippe
2012-06-01
Gold nanoparticles surface can be easily modified by different molecules such as polyelectrolytes. In a typical multilayer system made of polyethyleneimine and poly(styrene sulfonate)sodium alternated layers around gold nanoparticles, we have evaluated the interactions between the different layers and the relative strength of interfacial properties. By means of UV-Visible and FTIR spectroscopies, we have shown that due to its amine functionalities, the bonding of polyethyleneimine to gold particles is stronger than the one implied with the sulfonate anion in the PSS inducing a clean removal of this latter after the last polyethyleneimine deposition. Considering that polyethyleneimine is cytotoxic and that only weak covalent bonds are concerned in polyelectrolyte multilayer, this last point is of main importance since external degradation thus exposing polyethyleneimine sub-layer of multilayer films to in vivo tissue cells can occur by many ways.
Quantum Computer Games: Quantum Minesweeper
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Directory of Open Access Journals (Sweden)
Vukotić Veselin
2011-01-01
Full Text Available The globalization is breaking-down the idea of national state, which was the base for the development of economic theory which is dominant today. Global economic crisis puts emphasis on limited possibilities of national governments in solving economic problems and general problems of society. Does it also mean that globalization and global economic crisis points out the need to think about new economic theory and new understanding of economics? In this paper I will argue that globalization reveals the need to change dominant economic paradigm - from traditional economic theory (mainstream with macroeconomic stability as the goal of economic policy, to the “quantum economics“, which is based on “economic quantum” and immanent to the increase of wealth (material and non-material of every individual in society and promoting set of values immanent to the wealth increase as the goal of economic policy. Practically the question is how we can use global market for our development!
Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.
2016-01-01
Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511
Mielke, Steven L; Dinpajooh, Mohammadhasan; Siepmann, J Ilja; Truhlar, Donald G
2013-01-07
We present a procedure to calculate ensemble averages, thermodynamic derivatives, and coordinate distributions by effective classical potential methods. In particular, we consider the displaced-points path integral (DPPI) method, which yields exact quantal partition functions and ensemble averages for a harmonic potential and approximate quantal ones for general potentials, and we discuss the implementation of the new procedure in two Monte Carlo simulation codes, one that uses uncorrelated samples to calculate absolute free energies, and another that employs Metropolis sampling to calculate relative free energies. The results of the new DPPI method are compared to those from accurate path integral calculations as well as to results of two other effective classical potential schemes for the case of an isolated water molecule. In addition to the partition function, we consider the heat capacity and expectation values of the energy, the potential energy, the bond angle, and the OH distance. We also consider coordinate distributions. The DPPI scheme performs best among the three effective potential schemes considered and achieves very good accuracy for all of the properties considered. A key advantage of the effective potential schemes is that they display much lower statistical sampling variances than those for accurate path integral calculations. The method presented here shows great promise for including quantum effects in calculations on large systems.
Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation
Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo
2011-01-01
Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Dynamics of quantum discord in a quantum critical environment
International Nuclear Information System (INIS)
Xi Zhengjun; Li Yongming; Lu Xiaoming; Sun Zhe
2011-01-01
We study the dynamics of quantum discord (QD) of two qubits independently coupled to an Ising spin chain in a transverse field, which exhibits a quantum phase transition. For this model, we drive the corresponding Kraus operators, obtain the analytic results of QD and compare the dynamics of QD with the dynamics of relative entropy of entanglement nearby the critical point. It is shown that the impact of the quantum criticality environment on QD can be concentrated in a very narrow region nearby the critical point, so it supplies an efficient way to detect the critical points. In the vicinity of the critical point, the evolution of QD is shown to be more complicated than that of entanglement. Furthermore, we find that separable states can also be used to reflect the quantum criticality of the environment.
Invariant subsets under compact quantum group actions
Huang, Huichi
2012-01-01
We investigate compact quantum group actions on unital $C^*$-algebras by analyzing invariant subsets and invariant states. In particular, we come up with the concept of compact quantum group orbits and use it to show that countable compact metrizable spaces with infinitely many points are not quantum homogeneous spaces.
Open quantum random walk in terms of quantum Bernoulli noise
Wang, Caishi; Wang, Ce; Ren, Suling; Tang, Yuling
2018-03-01
In this paper, we introduce an open quantum random walk, which we call the QBN-based open walk, by means of quantum Bernoulli noise, and study its properties from a random walk point of view. We prove that, with the localized ground state as its initial state, the QBN-based open walk has the same limit probability distribution as the classical random walk. We also show that the probability distributions of the QBN-based open walk include those of the unitary quantum walk recently introduced by Wang and Ye (Quantum Inf Process 15:1897-1908, 2016) as a special case.
Quantum phase transitions in semilocal quantum liquids
Iqbal, Nabil; Liu, Hong; Mezei, Márk
2015-01-01
We consider several types of quantum critical phenomena from finite-density gauge-gravity duality which to different degrees lie outside the Landau-Ginsburg-Wilson paradigm. These include: (i) a "bifurcating" critical point, for which the order parameter remains gapped at the critical point, and thus is not driven by soft order parameter fluctuations. Rather it appears to be driven by "confinement" which arises when two fixed points annihilate and lose conformality. On the condensed side, there is an infinite tower of condensed states and the nonlinear response of the tower exhibits an infinite spiral structure; (ii) a "hybridized" critical point which can be described by a standard Landau-Ginsburg sector of order parameter fluctuations hybridized with a strongly coupled sector; (iii) a "marginal" critical point which is obtained by tuning the above two critical points to occur together and whose bosonic fluctuation spectrum coincides with that postulated to underly the "Marginal Fermi Liquid" description of the optimally doped cuprates.
Quantum toboggans with two branch points
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2008-01-01
Roč. 372, č. 5 (2008), s. 584-590 ISSN 0375-9601 R&D Projects: GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : anharmonic-oscillators * mechanics * potentials Subject RIV: BE - Theoretical Physics Impact factor: 2.174, year: 2008
Quantum computers and quantum computations
International Nuclear Information System (INIS)
Valiev, Kamil' A
2005-01-01
This review outlines the principles of operation of quantum computers and their elements. The theory of ideal computers that do not interact with the environment and are immune to quantum decohering processes is presented. Decohering processes in quantum computers are investigated. The review considers methods for correcting quantum computing errors arising from the decoherence of the state of the quantum computer, as well as possible methods for the suppression of the decohering processes. A brief enumeration of proposed quantum computer realizations concludes the review. (reviews of topical problems)
Quantum robots and quantum computers
Energy Technology Data Exchange (ETDEWEB)
Benioff, P.
1998-07-01
Validation of a presumably universal theory, such as quantum mechanics, requires a quantum mechanical description of systems that carry out theoretical calculations and systems that carry out experiments. The description of quantum computers is under active development. No description of systems to carry out experiments has been given. A small step in this direction is taken here by giving a description of quantum robots as mobile systems with on board quantum computers that interact with different environments. Some properties of these systems are discussed. A specific model based on the literature descriptions of quantum Turing machines is presented.
Triple Point Topological Metals
Directory of Open Access Journals (Sweden)
Ziming Zhu
2016-07-01
Full Text Available Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.
Size control synthesis of starch capped-gold nanoparticles
International Nuclear Information System (INIS)
Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.
2009-01-01
Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl 4 ] - solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl 4 ] - anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.
Schleich, W P; Mayr, E
1998-01-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as
Kiefer, Claus; Sandhoefer, Barbara
2008-01-01
We give an introduction into quantum cosmology with emphasis on its conceptual parts. After a general motivation we review the formalism of canonical quantum gravity on which discussions of quantum cosmology are usually based. We then present the minisuperspace Wheeler--DeWitt equation and elaborate on the problem of time, the imposition of boundary conditions, the semiclassical approximation, the origin of irreversibility, and singularity avoidance. Restriction is made to quantum geometrodyn...
GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF
Directory of Open Access Journals (Sweden)
Dirk Bax
2010-06-01
Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.
Origin of the transition voltage in gold–vacuum–gold atomic junctions
Wu, Kunlin
2012-12-13
The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. © 2013 IOP Publishing Ltd.
Quantum autoencoders for efficient compression of quantum data
Romero, Jonathan; Olson, Jonathan P.; Aspuru-Guzik, Alan
2017-12-01
Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.
International Nuclear Information System (INIS)
Sachdev, S.
1999-01-01
Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)
Decoherence in open quantum systems
International Nuclear Information System (INIS)
Isar, A.
2005-01-01
advantage of the superposition principle. The study of classicality using QD leads to a deeper understanding of the quantum origins of the classical world. Much work has still to be done even to settle the interpretational questions, not to speak about answering them. Nevertheless, as a result of the progress made in the last two decades, the quantum to classical transition has become a subject of experimental investigations, while previously it was mostly a domain of philosophy. The issue of quantum to classical transition points to the necessity of a better understanding of open quantum systems. The Lindblad theory provides a selfconsistent treatment of damping as a general extension of quantum mechanics
Coleman, Piers; Schofield, Andrew J
2005-01-20
As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.
Indian Academy of Sciences (India)
It was suggested that the dynamics of quantum systems could be used to perform computation in a much more efficient way. After this initial excitement, things slowed down for some time till 1994 when Peter Shor announced his polynomial time factorization algorithm 1 which uses quantum dynamics. The study of quantum ...
Indian Academy of Sciences (India)
quantum dynamics. The study of quantum systems for computation has come into its own since then. In this article we will look at a few concepts which make this framewor k so powerful. 2. Quantum Physics Basics. Consider an electron (say, in a H atom) with two energy levels (ground state and one excited state). In general ...
Indian Academy of Sciences (India)
In the first part of this article, we had looked at how quantum physics can be harnessed to make the building blocks of a quantum computer. In this concluding part, we look at algorithms which can exploit the power of this computational device, and some practical difficulties in building such a device. Quantum Algorithms.
International Nuclear Information System (INIS)
McDougall, G.J.; Hancock, R.D.
1980-01-01
The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation
DEFF Research Database (Denmark)
Jønsson, Jesper Bosse; Bryceson, Deborah Fahy
2009-01-01
African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...... are increasingly being noted, there is little analysis of miners' mobility patterns and material outcomes. In this article, on the basis of a sample survey and interviews at two gold-mining sites in Tanzania, we probe when and why miners leave one site in favour of another. Our findings indicate that movement...
International Nuclear Information System (INIS)
Landsberg, P.T.
1988-01-01
It is suggested that an oversight occurred in classical mechanics when time-derivatives of observables were treated on the same footing as the undifferentiated observables. Removal of this oversight points in the direction of quantum mechanics. Additional light is thrown on uncertainty relations and on quantum mechanics, as a possible form of a subtle statistical mechanics, by the formulation of a classical uncertainty relation for a very simple model. The existence of universal motion, i.e., of zero-point energy, is lastly made plausible in terms of a gravitational constant which is time-dependent. By these three considerations an attempt is made to link classical and quantum mechanics together more firmly, thus giving a better understanding of the latter
Feldbrugge, Job; Lehners, Jean-Luc; Turok, Neil
2017-05-01
We argue that the Lorentzian path integral is a better starting point for quantum cosmology than its Euclidean counterpart. In particular, we revisit the minisuperspace calculation of the Feynman path integral for quantum gravity with a positive cosmological constant. Instead of rotating to Euclidean time, we deform the contour of integration over metrics into the complex plane, exploiting Picard-Lefschetz theory to transform the path integral from a conditionally convergent integral into an absolutely convergent one. We show that this procedure unambiguously determines which semiclassical saddle point solutions are relevant to the quantum mechanical amplitude. Imposing "no-boundary" initial conditions, i.e., restricting attention to regular, complex metrics with no initial boundary, we find that the dominant saddle contributes a semiclassical exponential factor which is precisely the inverse of the famous Hartle-Hawking result.
ASCR Workshop on Quantum Computing for Science
Energy Technology Data Exchange (ETDEWEB)
Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.
Quantum dynamics of quantum bits
International Nuclear Information System (INIS)
Nguyen, Bich Ha
2011-01-01
The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)
Quantum transitions through cosmological singularities
Energy Technology Data Exchange (ETDEWEB)
Bramberger, Sebastian F.; Lehners, Jean-Luc [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm (Germany); Hertog, Thomas; Vreys, Yannick, E-mail: sebastian.bramberger@aei.mpg.de, E-mail: thomas.hertog@kuleuven.be, E-mail: jlehners@aei.mpg.de, E-mail: yannick.vreys@kuleuven.be [Institute for Theoretical Physics, KU Leuven, 3001 Leuven (Belgium)
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
Radiotracer investigation in gold leaching tanks
Energy Technology Data Exchange (ETDEWEB)
Dagadu, C.P.K., E-mail: dagadukofi@yahoo.co.uk [Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Akaho, E.H.K.; Danso, K.A. [Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra (Ghana); Stegowski, Z.; Furman, L. [Faculty of Physics and Applied Computer Science, AGH-UST, 30-059 Krakow (Poland)
2012-01-15
Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. - Highlights: Black-Right-Pointing-Pointer I-131 radioactive tracer is suitable for tracing the aqueous phase in gold ore slurry. Black-Right-Pointing-Pointer Online data collection is more convenient method for tracer monitoring in industrial process systems. Black-Right-Pointing-Pointer The tanks-in-series model with exchange between active and stagnant zones is suitable to describe the flow behavior of leaching tanks. Black-Right-Pointing-Pointer The radiotracer RTD technique could be used to validate design data after process intensification in gold leaching tanks.
Indian Academy of Sciences (India)
of the particle, one should be able to approximate the action of the potential as operating at a single location. In other words, one can regard the system as being free everywhere except in the vicinity of a single point. Every student of elementary quantum mechanics learns that such a system is described by a singular object ...
Indian Academy of Sciences (India)
Abstract. The existence of several exotic phenomena, such as duality and spectral anholonomy is pointed out in one-dimensional quantum wire with a single defect. The topological structure in the spectral space which is behind these phenomena is identiﬁed.
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-06-01
We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.
['Gold standard', not 'golden standard'
Claassen, J.A.H.R.
2005-01-01
In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same
Gold nanorods and nanospheroids for enhancing spontaneous emission
International Nuclear Information System (INIS)
Mohammadi, A; Sandoghdar, V; Agio, M
2008-01-01
We compute the radiative decay rate and the quantum efficiency for an emitter coupled to gold nanorods and nanospheroids using the body-of-revolution finite-difference time-domain method. We study these quantities as a function of the nanoparticle aspect ratio and volume, showing that large enhancements can be achieved with realistic parameters. Moreover, we find that nanospheroids exhibit better performances than nanorods for applications in the visible and near-infrared spectral range.
Gold nanorods and nanospheroids for enhancing spontaneous emission
Energy Technology Data Exchange (ETDEWEB)
Mohammadi, A [Department of Physics, Persian Gulf University, 75196 Bushehr (Iran, Islamic Republic of); Sandoghdar, V; Agio, M [Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich (Switzerland)], E-mail: mario.agio@phys.chem.ethz.ch
2008-10-15
We compute the radiative decay rate and the quantum efficiency for an emitter coupled to gold nanorods and nanospheroids using the body-of-revolution finite-difference time-domain method. We study these quantities as a function of the nanoparticle aspect ratio and volume, showing that large enhancements can be achieved with realistic parameters. Moreover, we find that nanospheroids exhibit better performances than nanorods for applications in the visible and near-infrared spectral range.
International Nuclear Information System (INIS)
Kouwenhoven, L.; Marcus, C.
1998-01-01
Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)
Smith, A.E.
1963-11-26
An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)
Waters, John K.
2012-01-01
In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…
DEFF Research Database (Denmark)
Jensen, Steffen Moltrup Ernø
For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...
Gold Nanoparticle Microwave Synthesis
International Nuclear Information System (INIS)
Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.
2016-01-01
At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.
Gold Nanoparticle Microwave Synthesis
Energy Technology Data Exchange (ETDEWEB)
Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2016-07-27
At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.
The physics of exceptional points
International Nuclear Information System (INIS)
Heiss, W D
2012-01-01
A short résumé is given about the nature of exceptional points (EPs) followed by discussions about their ubiquitous occurrence in a great variety of physical problems. EPs feature in classical as well as in quantum mechanical problems. They are associated with symmetry breaking for PT-symmetric Hamiltonians, where a great number of experiments has been performed, in particular in optics, and to an increasing extent in atomic and molecular physics. EPs are involved in quantum phase transition and quantum chaos; they produce dramatic effects in multichannel scattering, specific time dependence and more. In nuclear physics, they are associated with instabilities and continuum problems. Being spectral singularities they also affect approximation schemes. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels
Ahlswede, Rudolf; Bjelaković, Igor; Boche, Holger; Nötzel, Janis
2013-01-01
We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.
2010-01-01
... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable backs...
Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Moessbauerspectroscopy on Gold Ruby Glass
International Nuclear Information System (INIS)
Haslbeck, S.
2005-01-01
In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses
International Nuclear Information System (INIS)
Young, J.E.
1993-01-01
Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described
Gold Nanoparticles Cytotoxicity
Mironava, Tatsiana
Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent
Frustration and quantum criticality.
Vojta, Matthias
2018-03-15
This review article is devoted to the interplay between frustrated magnetism and quantum critical phenomena, covering both theoretical concepts and ideas as well as recent experimental developments in correlated-electron materials. The first part deals with local-moment magnetism in Mott insulators and the second part with frustration in metallic systems. In both cases, frustration can either induce exotic phases accompanied by exotic quantum critical points or lead to conventional ordering with unconventional crossover phenomena. In addition, the competition of multiple phases inherent to frustrated systems can lead to multi-criticality. © 2018 IOP Publishing Ltd.
Critical-Point Structure in Finite Nuclei
International Nuclear Information System (INIS)
Leviatan, A.
2006-01-01
Properties of quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Special emphasis is paid to the dynamics at the critical-point of a general first-order phase transition
Weak Measurement and Quantum Correlation
Indian Academy of Sciences (India)
Arun Kumar Pati
Quantum Information. These are resources which can be used to design quantum computer, quantum information processor, quantum communication and quantum information technology. Merging of quantum mechanics and information theory —quantum information science – with important developments like quantum.
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari
2016-01-01
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....
Gilbert, Gerald; Hamrick, Michael
2013-01-01
This book provides a detailed account of the theory and practice of quantum cryptography. Suitable as the basis for a course in the subject at the graduate level, it crosses the disciplines of physics, mathematics, computer science and engineering. The theoretical and experimental aspects of the subject are derived from first principles, and attention is devoted to the practical development of realistic quantum communications systems. The book also includes a comprehensive analysis of practical quantum cryptography systems implemented in actual physical environments via either free-space or fiber-optic cable quantum channels. This book will be a valuable resource for graduate students, as well as professional scientists and engineers, who desire an introduction to the field that will enable them to undertake research in quantum cryptography. It will also be a useful reference for researchers who are already active in the field, and for academic faculty members who are teaching courses in quantum information s...
Schäfer, T
2003-01-01
Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)
Extracellular mycosynthesis of gold nanoparticles using Fusarium solani
Gopinath, K.; Arumugam, A.
2014-08-01
The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.
'Quantum' tops and braiding matrices
International Nuclear Information System (INIS)
Nomura, Masao
1991-01-01
This article reviews the author's extension of Racah-Wigner algebras to representation theories of quantum group U q sl(2). The following points are stressed. 1. A class of solutions to Yang-Baxter (Y-B) relations for IRF model and for vertex model are described in terms of Quantum 3n-j symbols. 2. The quantum 3-j symbol is an asymptotic limit of the quantum 6-j symbol, which is a typical Wu-Kadanoff-Wegner transformation. 3. Another asymptotic limit of the quantum 6-j symbol produces the element of the braiding matrix R. 4. Transforming the generators J Z , J + and J - of U q sl(2) in symmetric forms is of importance to obtain quantum Wigner-Eckart theorem. 5. The quantum d-function, defined in terms of an operator expansion, is a solution to RT'T'' = T''T'R, and gives an eigenfunction of 'quantum symmetric tops. 6. The Q3-j symbol is understood in relationship with the quantum d-function, a well-known feature in theories of su(2). (author)
Radioactive gold ring dermatitis
Energy Technology Data Exchange (ETDEWEB)
Miller, R.A.; Aldrich, J.E. (Dalhousie Univ., Halifax, Nova Scotia (Canada))
1990-08-01
A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.
Radioactive gold ring dermatitis
International Nuclear Information System (INIS)
Miller, R.A.; Aldrich, J.E.
1990-01-01
A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy
International Nuclear Information System (INIS)
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
Barnett, Stephen M
2009-01-01
Quantum information- the subject- is a new and exciting area of science, which brings together physics, information theory, computer science and mathematics. "Quantum Information"- the book- is based on two successful lecture courses given to advanced undergraduate and beginning postgraduate students in physics. The intention is to introduce readers at this level to the fundamental, but offer rather simple, ideas behind ground-breaking developments including quantum cryptography,teleportation and quantum computing. The text is necessarily rather mathematical in style, but the mathema
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibard, J.; Joffre, M.
2008-01-01
All physics is quantum from elementary particles to stars and to the big-bang via semi-conductors and chemistry. This theory is very subtle and we are not able to explain it without the help of mathematic tools. This book presents the principles of quantum mechanics and describes its mathematical formalism (wave function, Schroedinger equation, quantum operators, spin, Hamiltonians, collisions,..). We find numerous applications in the fields of new technologies (maser, quantum computer, cryptography,..) and in astrophysics. A series of about 90 exercises with their answers is included. This book is based on a physics course at a graduate level. (A.C.)
International Nuclear Information System (INIS)
Rodgers, P.
1998-01-01
There is more to information than a string of ones and zeroes the ability of ''quantum bits'' to be in two states at the same time could revolutionize information technology. In the mid-1930s two influential but seemingly unrelated papers were published. In 1935 Einstein, Podolsky and Rosen proposed the famous EPR paradox that has come to symbolize the mysteries of quantum mechanics. Two years later, Alan Turing introduced the universal Turing machine in an enigmatically titled paper, On computable numbers, and laid the foundations of the computer industry one of the biggest industries in the world today. Although quantum physics is essential to understand the operation of transistors and other solid-state devices in computers, computation itself has remained a resolutely classical process. Indeed it seems only natural that computation and quantum theory should be kept as far apart as possible surely the uncertainty associated with quantum theory is anathema to the reliability expected from computers? Wrong. In 1985 David Deutsch introduced the universal quantum computer and showed that quantum theory can actually allow computers to do more rather than less. The ability of particles to be in a superposition of more than one quantum state naturally introduces a form of parallelism that can, in principle, perform some traditional computing tasks faster than is possible with classical computers. Moreover, quantum computers are capable of other tasks that are not conceivable with their classical counterparts. Similar breakthroughs in cryptography and communication followed. (author)
International Nuclear Information System (INIS)
Deutsch, D.
1992-01-01
As computers become ever more complex, they inevitably become smaller. This leads to a need for components which are fabricated and operate on increasingly smaller size scales. Quantum theory is already taken into account in microelectronics design. This article explores how quantum theory will need to be incorporated into computers in future in order to give them their components functionality. Computation tasks which depend on quantum effects will become possible. Physicists may have to reconsider their perspective on computation in the light of understanding developed in connection with universal quantum computers. (UK)
Tartakovskii, Alexander
2012-07-01
Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by
Holography, Quantum Geometry, and Quantum Information Theory
Directory of Open Access Journals (Sweden)
P. A. Zizzi
2000-03-01
Full Text Available Abstract: We interpret the Holographic Conjecture in terms of quantum bits (qubits. N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-Ã‚Â½ representation of SU(2, which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, and leads to a picture of the early inflationary universe in terms of quantum computation. A discrete micro-causality emerges, where the time parameter is being defined by the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set and we get a quantum history. A (bosonic Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.
Direct evidence of oxidized gold on supported gold catalysts.
Fu, L; Wu, N Q; Yang, J H; Qu, F; Johnson, D L; Kung, M C; Kung, H H; Dravid, V P
2005-03-10
Supported gold catalysts have drawn worldwide interest due to the novel properties and potential applications in industries. However, the origin of the catalytic activity in gold nanoparticles is still not well understood. In this study, time-of-flight secondary ion mass spectroscopy (TOF-SIMS) has been applied to investigate the nature of gold in Au (1.3 wt %)/gamma-Al2O3 and Au (2.8 wt %)/TiO2 catalysts prepared by the deposition-precipitation method. The SIMS spectrum of the supported gold catalysts presented AuO-, AuO2-, and AuOH- ion clusters. These measurements show direct evidence for oxidized gold on supported gold catalysts and may be helpful to gaining better understanding of the origin of the catalytic activity.
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Dyson, Freeman John
2007-01-01
Renowned physicist and mathematician Freeman Dyson is famous for his work in quantum mechanics, nuclear weapons policy and bold visions for the future of humanity. In the 1940s, he was responsible for demonstrating the equivalence of the two formulations of quantum electrodynamics Richard Feynman's diagrammatic path integral formulation and the variational methods developed by Julian Schwinger and Sin-Itiro Tomonoga showing the mathematical consistency of QED. This invaluable volume comprises the legendary, never-before-published, lectures on quantum electrodynamics first given by Dyson at Cornell University in 1951. The late theorist Edwin Thompson Jaynes once remarked "For a generation of physicists they were the happy medium: clearer and motivated than Feynman, and getting to the point faster than Schwinger . Future generations of physicists are bound to read these lectures with pleasure, benefiting from the lucid style that is so characteristic of Dyson's exposition.
Quantum computation with superconductors
Irastorza Gabilondo, Amaia
2017-01-01
Quantum computation using supercoducting qubits. Qubits are quantum bits used in quantum computers. Superconducting qubits are a strong option for building a quantum computer. But not just that, as they are macroscopic objects they question the limits of quantum physics.
Full Text Available ... OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point ... 24 hours a day. For young children whose home is a playground, it’s the best way to ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:
Quantum black hole: What is that?
International Nuclear Information System (INIS)
Berezin, Victor
2000-01-01
In this paper we are trying to explain our point of view on what a quantum black hole is. The ideas are based on the previous works by the author and his collaborators where the concrete models of quantum black holes were constructed. It is argued that the main feature of quantum black holes that would allow us to distinguish them from other quantum object is some specific quantum radiation. Such a radiation in the quasiclassical limit is just the Hawking evaporation if the change in the black hole mass due to radiation can be neglected
Quantum information. Teleportation - cryptography - quantum computer
International Nuclear Information System (INIS)
Koenneker, Carsten
2012-01-01
The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)
International Nuclear Information System (INIS)
Constantinescu, B.; Vasilescu, A.; Radtke, M.; Reinholz, U.
2009-01-01
The goal of the study is to verify if Transylvanian gold was used to manufacture Romanian archaeological objects using information related to trace elements: Sb, Te, Pb - recognized fingerprints for Carpathian Mountains mines and Sn characteristic for the panned river-bed (alluvional) gold. To solve these issues, samples (grains, nuggets,fine gold s and ) from various Transylvanian mines and rivers and some very small (few milligrams) fragments of archaeological objects are measured. During the experiment, point spectra for 22 natural gold samples from Tran sylvania and 18 m icronic s amples from archaeological objects were acquired at 34 keV excitation SR energy, using a spatially resolved SR-XRF set-up mounted for analyses at the hard X-ray beam line - BAMline at BESSY, Berlin. A summary for the characterization of Transylvanian native gold is the following: high (8 - 30%) Ag amounts and low (0.2 - 1%) Cu amounts; placer deposits (Valea Oltului, Stanija, Valea Pianului) contain as fingerprint Sn (150-300 ppm) - most probably from river bed cassiterite; primary deposits present as fingerprints Te (200-2000 ppm), Sb (150-300 ppm) - however, the samples are very inhomogeneous; primary deposit Sacaramb contains Te 0,25%, Sb (500 ppm), but also Sn ( 200 ppm); primary deposit Fizesti presents a big amount of Pb 1%, Sb (350 ppm), traces of Te and also Sn. As concerning the k oson d acian coins, the type w ith monogram i s made from refined (more than 97%) gold with no Sb, Te or Sn traces (remelted gold) and the type w ithout monogram i s clearly made from alluvial gold, partially combined with primary Transylvanian gold (Sn and Sb traces detected). A spectacular application of the micro-SR-XRF studies on native gold was the one of authentication of some recovered heritage artifacts: five Dacian gold bracelets exhibited at the National Museum of Romania's History, Bucharest. The Dacian multi-spiraled bracelets were made of gold; they belong to the classical period of the
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
Quantum ensembles of quantum classifiers.
Schuld, Maria; Petruccione, Francesco
2018-02-09
Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.
Quantum principles in field interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1986-01-01
The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions
Open quantum systems recent developments
Joye, Alain; Pillet, Claude-Alain
2006-01-01
Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge. Significant progress in the understanding of such systems has been made during the last decade. These books present in a self-contained way the mathematical theories involved in the modeling of such phenomena. They describe physically relevant models, develop their mathematical analysis and derive their physical implications. In Volume I the Hamiltonian description of quantum open systems is discussed. This includes an introduction to quantum statistical mechanics and its operator algebraic formulation, modular theory, spectral analysis and their applications to quantum dynamical systems. Volume II is dedicated to the Markovian formalism of classical and quantum open systems. A complete exposition of noise theory, Markov processes and stochastic differential...
Landahl, Andrew
2012-10-01
Quantum computers promise to exploit counterintuitive quantum physics principles like superposition, entanglement, and uncertainty to solve problems using fundamentally fewer steps than any conventional computer ever could. The mere possibility of such a device has sharpened our understanding of quantum coherent information, just as lasers did for our understanding of coherent light. The chief obstacle to developing quantum computer technology is decoherence--one of the fastest phenomena in all of physics. In principle, decoherence can be overcome by using clever entangled redundancies in a process called fault-tolerant quantum error correction. However, the quality and scale of technology required to realize this solution appears distant. An exciting alternative is a proposal called ``adiabatic'' quantum computing (AQC), in which adiabatic quantum physics keeps the computer in its lowest-energy configuration throughout its operation, rendering it immune to many decoherence sources. The Adiabatic Quantum Architectures In Ultracold Systems (AQUARIUS) Grand Challenge Project at Sandia seeks to demonstrate this robustness in the laboratory and point a path forward for future hardware development. We are building devices in AQUARIUS that realize the AQC architecture on up to three quantum bits (``qubits'') in two platforms: Cs atoms laser-cooled to below 5 microkelvin and Si quantum dots cryo-cooled to below 100 millikelvin. We are also expanding theoretical frontiers by developing methods for scalable universal AQC in these platforms. We have successfully demonstrated operational qubits in both platforms and have even run modest one-qubit calculations using our Cs device. In the course of reaching our primary proof-of-principle demonstrations, we have developed multiple spinoff technologies including nanofabricated diffractive optical elements that define optical-tweezer trap arrays and atomic-scale Si lithography commensurate with placing individual donor atoms with
Gold--a controversial sensitizer
DEFF Research Database (Denmark)
Bruze, M; Andersen, Klaus Ejner
1999-01-01
of clinical relevance, i.e., causing or aggravating a contact dermatitis. In this paper, these steps are discussed with regard to gold. With our present knowledge of contact allergy-allergic contact dermatitis, we do not recommend including gold sodium thiosulfate in the standard series. It should be applied......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9. Quantum Computing - Building Blocks of a Quantum Computer. C S Vijay Vishal Gupta. General Article Volume 5 Issue 9 September 2000 pp 69-81. Fulltext. Click here to view fulltext PDF. Permanent link:
Directory of Open Access Journals (Sweden)
Brando Bellazzini
2016-12-01
Full Text Available The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However, light scalars can appear in condensed matter systems when parameters (like the amount of doping are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper, we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in anti–de Sitter space. For both of these models, we consider the processes gg→ZZ and gg→hh, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.
Bellazzini, Brando; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John
2016-01-01
The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in AdS space. For both of these models we consider the processes $gg\\to ZZ$ and $gg\\to hh$, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.
Zhou, Haoyang; Sun, Xiaoming
2017-04-01
Bismuth minerals are commonly found in a wide range of gold deposits and could offer valuable information on the process of gold mineralization. This is because Bi minerals always show immediate association with gold and are sensitive to chemical-physical variations (Afifi et al., 1988). Specifically, native bismuth has a melting point of 271°C and could melt at lower temperatures when gold is added (Okamoto et al,, 1983). It has been verified that Bi melt could efficiently scavenge gold from hydrothermal fluids (Tooth et al., 2008, 2011). The Beiya deposit, situated in the Sanjiang Tethyan tectonic domain in the southwestern China, is one of the largest gold deposits in China 10.4 Moz Au @ 2.47g/t). Located along the contacts between a 36 Ma quartz syenite porphyry and the Triassic limestones, the deposit contains abundant massive Au-bearing magnetite ores, which are considered as a product of skarn mineralization. However, the pivotal processes accounting for the huge accumulation of gold resource at Beiya area are poorly constrained. In the massive magnetite ores, abundant native gold was observed to be present as submicron-scale inclusions hosted by magnetite (Zhou et al., 2017). We also noted that abundant Bi minerals occur within these ores (Zhou et al., 2016), which provide critical clues to reveal the processes of gold mineralization. An assemblage of Bi minerals, composed of native bismuth, maldonite and bismuthinite, is present as tiny inclusions in these Au-bearing magnetite grains. Mineralogical study illustrates the encapsulation of native bismuth and maldonite as melts during magnetite growth, which is also supported by the ore-forming temperatures over 300°C derived from previous fluid inclusions study (He et al., 2016). Our thermodynamic modeling demonstrates that Bi melts scavenged gold from hydrothermal fluids. Subsequently, sulfidation of Bi melts resulted in precipitation of gold, which was captured by growing magnetite. We thus propose that
Coecke, Bob
2010-01-01
Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the 'no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of 'quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is 'low-level'. In this review we present steps towards a diagrammatic 'high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports 'automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly
Energy Technology Data Exchange (ETDEWEB)
Hook, D W [Blackett Laboratory, Imperial College of Science Technology and Medicine, University of London, Prince Consort Road, London, SW7 2BW (United Kingdom)
2008-01-11
framework, and applications of the geometric approach. The first four chapters contain the standard mathematics required to understand the rest of the material presented: specific areas in colour theory, set theory, probability theory, differential geometry and projective geometry are all covered with an eye to the material that follows. Chapter 5 starts the first real discussion of quantum theory in GQS and serves as an elegant, succinct introduction to the geometry which underlies quantum theory. This may be the most worthwhile chapter for the casual reader who wants to understand the key ideas in this field. Chapter 6 builds on the discussion in Chapter 5, introducing a group theoretic approach to understand coherent states and Chapter 7 describes a geometric tool in the form of an approach to complex projective geometry called 'the stellar representation'. Chapter 8 returns to a more purely quantum mechanical discussion as the authors turn to study the space of density matrices. This chapter completes the discussion which started in Chapter 5. Chapter 9 begins the part of the book concerned with applications of the geometric approach. From this point on the book aims, specifically, to prepare the reader for the material in Chapter 15 beginning with a discussion on the purification of mixed quantum states. In the succeeding chapters a definite choice has been made to present a geometric approach to certain quantum information problems. For example, Chapter 10 contains an extremely well formulated discussion of measurement and positive operator-valued measures with several well illustrated examples and Chapter 11 reopens the discussion of density matrices. Entropy and majorization are again revisited in Chapter 12 in much greater detail than in previous chapters. Chapters 13 and 14 concern themselves with a discussion of various metrics and their relation to the problem of distinguishing between probability distributions and their suitability as probability
Schwabl, Franz
2007-01-01
This represents the introductory course which would precede and so complements the author's book on Advanced Quantum Mechanics. The new edition has been up-dated and thoroughly revised throughout and now includes many new or newly drawn figures which will facilitate an easier understanding of subtle topics. The book meets students' needs in providing detailed mathematical steps along the way, with worked examples and applications throughout the text, and many problems for the reader at the end of each chapter. It contains nonrelativistic quantum mechanics and a short treatment of the quantization of the radiation field. In addition to the essentials, topics such as the theory of measurement, the Bell inequality, decoherence, entanglement and supersymmetric quantum mechanics are discussed. "Any student wishing to develop mathematical skills and deepen their understanding of the technical side of quantum theory will find Schwabl's Quantum Mechanics very helpful". Contemporary Physics
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Kiefer, Claus
2012-01-01
The search for a quantum theory of the gravitational field is one of the great open problems in theoretical physics. This book presents a self-contained discussion of the concepts, methods and applications that can be expected in such a theory. The two main approaches to its construction - the direct quantisation of Einstein's general theory of relativity and string theory - are covered. Whereas the first attempts to construct a viable theory for the gravitational field alone, string theory assumes that a quantum theory of gravity will be achieved only through a unification of all the interactions. However, both employ the general method of quantization of constrained systems, which is described together with illustrative examples relevant for quantum gravity. There is a detailed presentation of the main approaches employed in quantum general relativity: path-integral quantization, the background-field method and canonical quantum gravity in the metric, connection and loop formulations. The discussion of stri...
Pearsall, Thomas P
2017-01-01
This textbook employs a pedagogical approach that facilitates access to the fundamentals of Quantum Photonics. It contains an introductory description of the quantum properties of photons through the second quantization of the electromagnetic field, introducing stimulated and spontaneous emission of photons at the quantum level. Schrödinger’s equation is used to describe the behavior of electrons in a one-dimensional potential. Tunneling through a barrier is used to introduce the concept of nonlocality of an electron at the quantum level, which is closely-related to quantum confinement tunneling, resonant tunneling, and the origin of energy bands in both periodic (crystalline) and aperiodic (non-crystalline) materials. Introducing the concepts of reciprocal space, Brillouin zones, and Bloch’s theorem, the determination of electronic band structure using the pseudopotential method is presented, allowing direct computation of the band structures of most group IV, group III-V, and group II-VI semiconducto...
Immunological properties of gold nanoparticles.
Dykman, Lev A; Khlebtsov, Nikolai G
2017-03-01
In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.
Bats, cyanide, and gold mining
Clark, Donald R.
1991-01-01
Although the boom days of prospectors and gold nuggets are long gone, modern technology enables gold to continue to be extracted from ore. Unfortunately, the extraction method has often been disastrous for bats and other wildlife, an issue I first became aware of in early 1989. Phone calls from Drs. Merlin Tuttle and Elizabeth Pierson, a BCI member and bat researcher from Berkeley, California, alerted me that bats were dying from apparent cyanide poisoning at gold mines in the western United States.
International Nuclear Information System (INIS)
Steane, Andrew
1998-01-01
The subject of quantum computing brings together ideas from classical information theory, computer science, and quantum physics. This review aims to summarize not just quantum computing, but the whole subject of quantum information theory. Information can be identified as the most general thing which must propagate from a cause to an effect. It therefore has a fundamentally important role in the science of physics. However, the mathematical treatment of information, especially information processing, is quite recent, dating from the mid-20th century. This has meant that the full significance of information as a basic concept in physics is only now being discovered. This is especially true in quantum mechanics. The theory of quantum information and computing puts this significance on a firm footing, and has led to some profound and exciting new insights into the natural world. Among these are the use of quantum states to permit the secure transmission of classical information (quantum cryptography), the use of quantum entanglement to permit reliable transmission of quantum states (teleportation), the possibility of preserving quantum coherence in the presence of irreversible noise processes (quantum error correction), and the use of controlled quantum evolution for efficient computation (quantum computation). The common theme of all these insights is the use of quantum entanglement as a computational resource. It turns out that information theory and quantum mechanics fit together very well. In order to explain their relationship, this review begins with an introduction to classical information theory and computer science, including Shannon's theorem, error correcting codes, Turing machines and computational complexity. The principles of quantum mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment described. The EPR-Bell correlations, and quantum entanglement in general, form the essential new ingredient which distinguishes quantum from
Wu, Nan; Zhang, Cong; Jin, Xing Ri; Zhang, Ying Qiao; Lee, YoungPak
2018-02-19
Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.
Quantum theory of measurements as quantum decision theory
International Nuclear Information System (INIS)
Yukalov, V I; Sornette, D
2015-01-01
Theory of quantum measurements is often classified as decision theory. An event in decision theory corresponds to the measurement of an observable. This analogy looks clear for operationally testable simple events. However, the situation is essentially more complicated in the case of composite events. The most difficult point is the relation between decisions under uncertainty and measurements under uncertainty. We suggest a unified language for describing the processes of quantum decision making and quantum measurements. The notion of quantum measurements under uncertainty is introduced. We show that the correct mathematical foundation for the theory of measurements under uncertainty, as well as for quantum decision theory dealing with uncertain events, requires the use of positive operator-valued measure that is a generalization of projection-valued measure. The latter is appropriate for operationally testable events, while the former is necessary for characterizing operationally uncertain events. In both decision making and quantum measurements, one has to distinguish composite nonentangled events from composite entangled events. Quantum probability can be essentially different from classical probability only for entangled events. The necessary condition for the appearance of an interference term in the quantum probability is the occurrence of entangled prospects and the existence of an entangled strategic state of a decision maker or of an entangled statistical state of a measuring device
The extractive metallurgy of gold
Energy Technology Data Exchange (ETDEWEB)
Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)
1998-12-15
Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.
The extractive metallurgy of gold
International Nuclear Information System (INIS)
Kongolo, K.; Mwema, M.D.
1998-01-01
Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied
Surface-stabilized gold nanocatalysts
Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN
2009-12-08
A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.
Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... see news reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The ...
Quantum censorship in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Pangon, V. [Frankfurt Institute for Advanced Studies, Universitaet Frankfurt, D-60438 Frankfurt am Main (Germany); Gesellschaft fuer Schwerionenforschung mbH, Planckstr. 1, D-64291 Darmstadt (Germany); Nagy, S. [Department of Theoretical Physics, University of Debrecen, Debrecen (Hungary); Polonyi, J., E-mail: polonyi@ires.in2p3.f [Strasbourg University, CNRS-IPHC, BP28 67037 Strasbourg Cedex 2 (France); Sailer, K. [Department of Theoretical Physics, University of Debrecen, Debrecen (Hungary)
2010-10-25
It is pointed out that increasingly attractive interactions, represented by partially concave local potential in the Lagrangian, may lead to the degeneracy of the blocked, renormalized action at the gliding cutoff scale by tree-level renormalization. A quantum counterpart of this mechanism is presented in the two-dimensional sine-Gordon model. The presence of Quantum Censorship is conjectured which makes the loop contributions pile up during the renormalization and thereby realize an approximate semiclassical effect.
A linearization of quantum channels
Crowder, Tanner
2015-06-01
Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.
Quantum physics a beginner's guide
Rae, Alastair I M
2005-01-01
As Alastair Rae points out in his introduction, ""quantum physics is not rocket science"". It may have gained a reputation as the theory that no one really understands, but its practical applications are all around us in everyday life. If it were not for quantum physics, computers would not function, metals would not conduct electricity, and the power stations that heat our homes would not produce energy. Assuming no prior scientific or mathematical knowledge, this clear and concise introduction provides a step-by-step guide to quantum theory, right from the very basic principles to the most c
Generalization of secure quantum information exchange to quantum ...
Indian Academy of Sciences (India)
Quantum entanglement makes possible many quantum information processing tasks, which are otherwise impossible in classical information theory. Quantum entanglement is widely used in quantum information processing tasks such as quantum teleportation. [5], quantum cryptography [6], quantum superdense coding [7], ...
International Nuclear Information System (INIS)
Clayton, C.G.; Wormald, M.R.
1981-01-01
A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)
31 CFR 100.4 - Gold coin and gold certificates in general.
2010-07-01
... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...
Proceedings of quantum field theory, quantum mechanics, and quantum optics
International Nuclear Information System (INIS)
Dodonov, V.V.; Man; ko, V.I.
1991-01-01
This book contains papers presented at the XVIII International Colloquium on Group Theoretical Methods in Physics held in Moscow on June 4-9, 1990. Topics covered include; applications of algebraic methods in quantum field theory, quantum mechanics, quantum optics, spectrum generating groups, quantum algebras, symmetries of equations, quantum physics, coherent states, group representations and space groups
Determination of Gold from Gold Matrix of North Western Nigeria ...
African Journals Online (AJOL)
The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...
International Nuclear Information System (INIS)
Basdevant, J.L.; Dalibart, J.
1997-01-01
This pedagogical book gives an initiation to the principles and practice of quantum mechanics. A large part is devoted to experimental facts and to their analysis: concrete facts, phenomena and applications related to fundamental physics, elementary particles, astrophysics, high-technology, semi-conductors, micro-electronics and lasers. The book is divided in 22 chapters dealing with: quantum phenomena, wave function and Schroedinger equation, physical units and measurements, energy quantification of some simple systems, Hilbert space, Dirac formalism and quantum mechanics postulates, two-state systems and ammonia Maser principle, bands theory and crystals conductibility, commutation of observables, Stern and Gerlach experiment, approximation methods, kinetic momentum in quantum mechanics, first description of atoms, 1/2 spin formalism and magnetic resonance, Lagrangian, Hamiltonian and Lorentz force in quantum mechanics, addition of kinetic momenta and fine and hyper-fine structure of atomic lines, identical particle systems and Pauli principle, qualitative physics and scale of size of some microscopic and macroscopic phenomena, systems evolution, collisions and cross sections, invariance and conservation laws, quantum mechanics and astrophysics, and historical aspects of quantum mechanics. (J.S.)
Cariolaro, Gianfranco
2015-01-01
This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: · development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; · general formulation of a transmitter–receiver system · particular treatment of the most popular quantum co...
Advancements in the Field of Quantum Dots
Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.
2012-08-01
Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C Language
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
Quantum Computers and Quantum Computer Languages: Quantum Assembly Language and Quantum C
Blaha, Stephen
2002-01-01
We show a representation of Quantum Computers defines Quantum Turing Machines with associated Quantum Grammars. We then create examples of Quantum Grammars. Lastly we develop an algebraic approach to high level Quantum Languages using Quantum Assembly language and Quantum C language as examples.
A quantum Goldman bracket in (2 + 1) quantum gravity
International Nuclear Information System (INIS)
Nelson, J E; Picken, R F
2008-01-01
In the context of quantum gravity for spacetimes of dimension (2 + 1), we describe progress in the construction of a quantum Goldman bracket for intersecting loops on surfaces. Using piecewise linear paths in R 2 (representing loops on the spatial manifold, i.e. the torus) and a quantum connection with noncommuting components, we review how holonomies and Wilson loops for two homotopic paths are related by phases in terms of the signed area between them. Paths rerouted at intersection points with other paths occur on the rhs of the Goldman bracket. To better understand their nature we introduce the concept of integer points inside the parallelogram spanned by two intersecting paths, and show that the rerouted paths must necessarily pass through these integer points
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
International Nuclear Information System (INIS)
Rae, A.I.M.
1981-01-01
This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)
Garrison, J C
2008-01-01
Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor
Lowe, John P
1993-01-01
Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,
Chowdhury, Sujaul
2014-01-01
This book presents comprehensive account of the course for undergraduate students with thorough and complete calculations. The book has been written with the notion that a wave is associated with a material particle i.e. wave and particle coexist. Heisenberg's uncertainty principle has been described in light of this. A chapter is dedicated to mathematical structure of Quantum Mechanics followed by applications to one-dimensional (1D) problems. Orbital and general angular momentum are treated in two separate chapters, the latter also treats addition of angular momentum. Quantum theory of scattering, matrix formulation of Quantum Mechanics variational method and WKB approximation method have also been discussed.
Lvovsky, A. I.; Sanders, B. C.; Tittel, W.
2010-01-01
Quantum memory is important to quantum information processing in many ways: a synchronization device to match various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a tool to convert heralded photons to photons-on-demand. In addition to quantum computing, quantum memory would be instrumental for the implementation of long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the m...
Activation analysis in gold industry
International Nuclear Information System (INIS)
Kist, A. A.
2003-01-01
Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.
Yi, Hangmo
2015-01-01
I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.
Quantum potentiality revisited
Jaeger, Gregg
2017-10-01
Heisenberg offered an interpretation of the quantum state which made use of a quantitative version of an earlier notion, , of Aristotle by both referring to it using its Latin name, potentia, and identifying its qualitative aspect with . The relationship between this use and Aristotle's notion was not made by Heisenberg in full detail, beyond noting their common character: that of signifying the system's objective capacity to be found later to possess a property in actuality. For such actualization, Heisenberg required measurement to have taken place, an interaction with external systems that disrupts the otherwise independent, natural evolution of the quantum system. The notion of state actualization was later taken up by others, including Shimony, in the search for a law-like measurement process. Yet, the relation of quantum potentiality to Aristotle's original notion has been viewed as mainly terminological, even by those who used it thus. Here, I reconsider the relation of Heisenberg's notion to Aristotle's and show that it can be explicated in greater specificity than Heisenberg did. This is accomplished through the careful consideration of the role of potentia in physical causation and explanation, and done in order to provide a fuller understanding of this aspect of Heisenberg's approach to quantum mechanics. Most importantly, it is pointed out that Heisenberg's requirement of an external intervention during measurement that disrupts the otherwise independent, natural evolution of the quantum system is in accord with Aristotle's characterization of spontaneous causation. Thus, the need for a teleological understanding of the actualization of potentia, an often assumed requirement that has left this fundamental notion neglected, is seen to be spurious. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Quantum potentiality revisited.
Jaeger, Gregg
2017-11-13
Heisenberg offered an interpretation of the quantum state which made use of a quantitative version of an earlier notion, [Formula: see text], of Aristotle by both referring to it using its Latin name, potentia , and identifying its qualitative aspect with [Formula: see text] The relationship between this use and Aristotle's notion was not made by Heisenberg in full detail, beyond noting their common character: that of signifying the system's objective capacity to be found later to possess a property in actuality. For such actualization, Heisenberg required measurement to have taken place, an interaction with external systems that disrupts the otherwise independent, natural evolution of the quantum system. The notion of state actualization was later taken up by others, including Shimony, in the search for a law-like measurement process. Yet, the relation of quantum potentiality to Aristotle's original notion has been viewed as mainly terminological, even by those who used it thus. Here, I reconsider the relation of Heisenberg's notion to Aristotle's and show that it can be explicated in greater specificity than Heisenberg did. This is accomplished through the careful consideration of the role of potentia in physical causation and explanation, and done in order to provide a fuller understanding of this aspect of Heisenberg's approach to quantum mechanics. Most importantly, it is pointed out that Heisenberg's requirement of an external intervention during measurement that disrupts the otherwise independent, natural evolution of the quantum system is in accord with Aristotle's characterization of spontaneous causation. Thus, the need for a teleological understanding of the actualization of potentia, an often assumed requirement that has left this fundamental notion neglected, is seen to be spurious.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
International Nuclear Information System (INIS)
Nguyen, Ba An
2006-01-01
Absolutely and asymptotically secure protocols for organizing an exam in a quantum way are proposed basing judiciously on multipartite entanglement. The protocols are shown to stand against common types of eavesdropping attack
Ladd, T D; Jelezko, F; Laflamme, R; Nakamura, Y; Monroe, C; O'Brien, J L
2010-03-04
Over the past several decades, quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit unique quantum properties? Today it is understood that the answer is yes, and many research groups around the world are working towards the highly ambitious technological goal of building a quantum computer, which would dramatically improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for quantum computation. However, it remains unclear which technology, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain the major challenges for the future.
Quantum correlator outside a Schwarzschild black hole
Buss, Claudia; Casals, Marc
2018-01-01
We calculate the quantum correlator in Schwarzschild black hole space-time. We perform the calculation for a scalar field in three different quantum states: Boulware, Unruh and Hartle-Hawking, and for points along a timelike circular geodesic. The results show that the correlator presents a global fourfold singularity structure, which is state-independent. Our results also show the different correlations in the three different quantum states arising in-between the singularities.
Heisenberg and the Interpretation of Quantum Mechanics
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Quantum correlator outside a Schwarzschild black hole
Directory of Open Access Journals (Sweden)
Claudia Buss
2018-01-01
Full Text Available We calculate the quantum correlator in Schwarzschild black hole space–time. We perform the calculation for a scalar field in three different quantum states: Boulware, Unruh and Hartle–Hawking, and for points along a timelike circular geodesic. The results show that the correlator presents a global fourfold singularity structure, which is state-independent. Our results also show the different correlations in the three different quantum states arising in-between the singularities.
String-localized quantum fields
International Nuclear Information System (INIS)
Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de
2009-01-01
Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)
CERN Bulletin
2013-01-01
On April Fools' Day, CERN Quantum Diaries blogger Pauline Gagnon held a giveaway of microscopic proportion. Up for grabs? Ten Higgs bosons, courtesy of CERN. Pauline announced the winners last week; let's see what they'll really be getting in the mail... Custom-made Particle Zoo Higgs bosons were sent out to the winners. Read more about the prize in the Quantum Diaries post "Higgs boson lottery: when CERN plays April Fools' jokes".
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Statistical separability and the impossibility of the superluminal quantum communication
International Nuclear Information System (INIS)
Zhang Qiren
2004-01-01
The authors analyse the relation and the difference between the quantum correlation of two points in space and the communication between them. The statistical separability of two points in the space is defined and proven. From this statistical separability, authors prove that the superluminal quantum communication between different points is impossible. To emphasis the compatibility between the quantum theory and the relativity, authors write the von Neumann equation of density operator evolution in the multi-time form. (author)
Quantum entanglement and quantum computational algorithms
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 56; Issue 2-3. Quantum entanglement ... Arvind. Quantum information processing Volume 56 Issue 2-3 February-March 2001 pp 357-365 ... The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum ...
Quantum Computation and Quantum Spin Dynamics
Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji
2001-01-01
We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum
Gold tailings as a source of waterborne uranium contamination of ...
African Journals Online (AJOL)
Dissolved uranium (U) from the tailings deposits of various gold mines in South Africa has been found to migrate via seepage and groundwater into adjacent streams. The extent of the associated non-point pollution depends on the concentration of U in the groundwater as well as the volume and rate of groundwater ...
International Nuclear Information System (INIS)
Hadjiivanov, L.; Todorov, I.
2015-01-01
Expository paper providing a historical survey of the gradual transformation of the 'philosophical discussions' between Bohr, Einstein and Schrödinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schrödinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect
Spin orbit coupling in graphene through gold intercalation
Mukherjee, Paromita; O'Farrell, Eoin; Tan, Jun You; Yeo, Yuting; Koon, G. K. W.; Özyilmaz, Barbaros; Watanabe, K.; Taniguchi, T.
Graphene has a very low value of spin orbit coupling. There have been several efforts to enhance the spin orbit interaction in graphene. Our previous work has provided clear evidence that spin orbit coupling can be induced in graphene through Rashba interaction with intercalated gold. By applying an additional electric field, this splitting can be increased or decreased depending on its relative direction with the internal electric field induced by gold in graphene. A large negative magnetoresistance due to an in-plane magnetic field has been observed which can be attributed to the fact that a magnetic moment is induced in gold due to spin-orbit coupling. Anomalous Hall Effect which decreases with an in-plane magnetic field further suggests the formation of a collective magnetic phase. We would like to further elaborate on the spin-orbit coupling in graphene using non local measurements. Hence, by intercalating graphene with gold, we can have a direct electric manipulation of the spin degrees of freedom and lead to its much awaited applications in spintronics, quantum computing. National University of Singapore, Singapore.
Realizing Controllable Quantum States
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara
Directory of Open Access Journals (Sweden)
Jakub Mielczarek
2017-01-01
Full Text Available This article addresses the issue of possible gravitational phase transitions in the early universe. We suggest that a second-order phase transition observed in the Causal Dynamical Triangulations approach to quantum gravity may have a cosmological relevance. The phase transition interpolates between a nongeometric crumpled phase of gravity and an extended phase with classical properties. Transition of this kind has been postulated earlier in the context of geometrogenesis in the Quantum Graphity approach to quantum gravity. We show that critical behavior may also be associated with a signature change in Loop Quantum Cosmology, which occurs as a result of quantum deformation of the hypersurface deformation algebra. In the considered cases, classical space-time originates at the critical point associated with a second-order phase transition. Relation between the gravitational phase transitions and the corresponding change of symmetry is underlined.
International Nuclear Information System (INIS)
Whittington, S G
2005-01-01
Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)
Quantum computing: Quantum advantage deferred
Childs, Andrew M.
2017-12-01
A type of optics experiment called a boson sampler could be among the easiest routes to demonstrating the power of quantum computers. But recent work shows that super-classical boson sampling may be a long way off.