WorldWideScience

Sample records for gold nanocrystals assembled

  1. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  2. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (alcohols were used to study the effect of size and morphological control over the nanocrystals. Techniques including X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy are used to examine crystallinity and morphology. Chapter 3. By investigating the self-assembly of cadmium selenide-gold (CdSe-Au) nanoparticle mixtures by transmission electron microscopy after solvent evaporation, the effect of solvents in the formation process of CdSe-Au binary nanoparticle superlattices (BNSLs) was studied. 1-dodecanethiol was found to be critical in generating conditions necessary for superlattice formation, prior to the other factors that likely determine structure, highlighting the dual role of this organic polar molecule as both ligand and high boiling point/crystallization solvent. The influence of thiol was investigated under various concentrations (and also

  3. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  4. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  5. Synthesis of highly faceted multiply twinned gold nanocrystals stabilized by polyoxometalates

    International Nuclear Information System (INIS)

    Yuan Junhua; Chen Yuanxian; Han Dongxue; Zhang Yuanjian; Shen Yanfei; Wang Zhijuan; Niu Li

    2006-01-01

    A novel and facile chemical synthesis of highly faceted multiply twinned gold nanocrystals is reported. The gold nanocrystals are hexagonal in transmission electron microscopy and icosahedral in scanning electron microscopy. Phosphotungstic acid (PTA), which was previously reduced, serves as a reductant and stabilizer for the synthesis of gold nanocrystals. The PTA-gold nanocomposites are quite stable in aqueous solutions, and electrochemically active towards the hydrogen evolution reaction

  6. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  7. Passivation effects in B doped self-assembled Si nanocrystals

    International Nuclear Information System (INIS)

    Puthen Veettil, B.; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-01-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes

  8. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.; Luria, Justin; Hyun, Byung-Ryool; Bartnik, Adam C.; Sun, Liangfeng; Lim, Yee-Fun; Marohn, John A.; Wise, Frank W.; Hanrath, Tobias

    2010-01-01

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  9. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.

    2010-05-12

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  10. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  11. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multidentate-Protected Colloidal Gold Nanocrystals: pH Control of Cooperative Precipitation and Surface Layer Shedding

    Science.gov (United States)

    Kairdolf, Brad A.; Nie, Shuming

    2011-01-01

    Colloidal gold nanocrystals with broad size tunability and unusual pH-sensitive properties have been synthesized by using multidentate polymer ligands. Containing both carboxylic functional groups and sterically hindered aliphatic chains, the multidentate ligands are able to both reduce gold precursors and to stabilize gold nanoclusters during nucleation and growth. The “as-synthesized” nanocrystals are protected by an inner coordinating layer and an outer polymer layer, and are soluble in water and polar solvents. When the solution pH is lowered by just 0.6 units (from pH 4.85 to 4.25), the particles undergo a dramatic cooperative transition from being soluble to insoluble, allowing rapid isolation, purification, and redispersion of the multidentate-protected nanocrystals. A surprise finding is that when a portion of the surface carboxylate groups is neutralized by protonation, the particles irreversibly shed their outer polymer layer and become soluble in nonpolar organic solvents. Further, the multidentate polymer coatings are permeable to small organic molecules, in contrast to tightly packed self-assembled monolayers of alkanethiols on gold. These insights are important towards the design of “smart” imaging and therapeutic nanoparticles that are activated by small pH changes in the tumor interstitial space or endocytic organelles. PMID:21510704

  13. Reversible modulation of CsPbBr3 perovskite nanocrystal/gold nanoparticle heterostructures.

    Science.gov (United States)

    Chen, Shanshan; Lyu, Danya; Ling, Tao; Guo, Weiwei

    2018-04-19

    A facile strategy is illustrated to reversibly modulate CsPbBr3 perovskite nanocrystal/Au nanoparticle heterostructures with the reversible formation and fragmentation of gold nanoparticles anchored to the corners and surface of CsPbBr3 perovskite nanocrystals. The modulation process was performed under ambient conditions and could be conducted for cycles.

  14. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  15. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene

    International Nuclear Information System (INIS)

    Hassan, Mohammad L.; Moorefield, Charles M.; Elbatal, Hany S.; Newkome, George R.; Modarelli, David A.; Romano, Natalie C.

    2012-01-01

    Highlights: ► Surfaces of cellulose nanocrystals were modified with terpyridine ligands. ► Fluorescent nanocrystals could be obtained via self-assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals. ► Further self-assembly of azide-functionalized terpyridine onto the fluorescent cellulose nanocrystals was possible to obtain nanocellulosic material with expected use in bioimaging. - Abstract: Due to their natural origin, biocompatibility, and non-toxicity, cellulose nanocrystals are promising candidates for applications in nanomedicine. Highly fluorescent nanocellulosic material was prepared via surface modification of cellulose nanocrystals with 2,2′:6′,2″-terpyridine side chains followed by supramolecular assembly of terpyridine-modified perylene dye onto the terpyridine-modified cellulose nanocrystals (CTP) via Ru III /Ru II reduction. The prepared terpyridine-modified cellulose-Ru II -terpyridine-modified perylene (CTP-Ru II -PeryTP) fluorescent nanocrystals were characterized using cross-polarized/magic angle spin 13 C nuclear magnetic resonance (CP/MAS 13 C NMR), Fourier transform infrared (FTIR), UV–visible, and fluorescence spectroscopy. In addition, further self-assembly of terpyridine units with azide functional groups onto CTP-Ru II -PeryTP was possible via repeating the Ru III /Ru II reduction protocol to prepare supramolecular fluorescent nanocrystals with azide functionality (CTP-Ru II -PeryTP-Ru II -AZTP). The prepared derivative may have potential application in bio-imaging since the terminal azide groups can be easily reacted with antigens via “Click” chemistry reaction.

  16. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  17. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    Science.gov (United States)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  18. Assembly of Ge nanocrystals on SiO2 via a stress-induced dewetting process

    International Nuclear Information System (INIS)

    Sutter, E; Sutter, P

    2006-01-01

    We use epitaxial Ge islands on silicon-on-insulator (001) to initiate and drive the dewetting of the ultrathin ( 2 layer and transforms the Ge islands into oxide-supported, electrically isolated, Ge-rich nanocrystals. We investigate the process of dewetting and demonstrate that it can be used for the controlled assembly of nanocrystals-from isolated single ones to dense arrays

  19. Assembling a Lasing Hybrid Material With Supramolecular Polymers and Nanocrystals

    National Research Council Canada - National Science Library

    Li, Leiming

    2003-01-01

    .... In the system containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid material forming an ultraviolet lasing medium with a lower threshold relative to pure ZnO nanocrystals.

  20. Metal Halide Perovskite Supercrystals: Gold-Bromide Complex Triggered Assembly of CsPbBr3 Nanocubes.

    Science.gov (United States)

    Wang, Kun-Hua; Yang, Jun-Nan; Ni, Qian-Kun; Yao, Hong-Bin; Yu, Shu-Hong

    2018-01-16

    Using nanocrystals as "artificial atoms" to construct supercrystals is an interesting process to explore the stacking style of nanoscale building blocks and corresponding collective properties. Various types of semiconducting supercrystals have been constructed via the assembly of nanocrystals driven by the entropic, electrostatic, or van der Waals interactions. We report a new type of metal halide perovskite supercrystals via the gold-bromide complex triggered assembly of newly emerged attractive CsPbBr 3 nanocubes. Through introducing gold-bromide (Au-Br) complexes into CsPbBr 3 nanocubes suspension, the self-assembly process of CsPbBr 3 nanocubes to form supercrystals was investigated with the different amount of Au-Br complexes added to the suspensions, which indicates that the driven force of the formation of CsPbBr 3 supercrystals included the van der Waals interactions among carbon chains and electrostatic interactions between Au-Br complexes and surfactants. Accordingly, the optical properties change with the assembly of CsPbBr 3 nanocubes and the variation of mesoscale structures of supercrystals with heating treatment was revealed as well, demonstrating the ionic characteristics of CsPbBr 3 nanocrystals. The fabricated CsPbBr 3 supercrystal presents a novel type of semiconducting supercrystals that will open an avenue for the assembly of ionic nanocrystals.

  1. Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals

    International Nuclear Information System (INIS)

    Guo Shaojun; Wang Yuling; Wang Erkang

    2007-01-01

    Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl 4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (∼25 nm)

  2. Engineering Gold Nanorod-Based Plasmonic Nanocrystals for Optical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-09-01

    Plasmonic nanocrystals have a unique ability to support localized surface plasmon resonances and exhibit rich and intriguing optical properties. Engineering plasmonic nanocrystals can maximize their potentials for specific applications. In this dissertation, we developed three unprecedented Au nanorod-based plasmonic nanocrystals through rational design of the crystal shape and/or composition, and successfully demonstrated their applications in light condensation, photothermal conversion, and surface-enhanced Raman spectroscopy (SERS). The “Au nanorod-Au nanosphere dimer” nanocrystal was synthesized via the ligand-induced asymmetric growth of a Au nanosphere on a Au nanorod. This dimeric nanostructure features an extraordinary broadband optical absorption in the range of 400‒1400nm, and it proved to be an ideal black-body material for light condensation and an efficient solar-light harvester for photothermal conversion. The “Au nanorod (core) @ AuAg alloy (shell)” nanocrystal was built through the epitaxial growth of homogeneously alloyed AuAg shells on Au nanorods by precisely controlled synthesis. The resulting core-shell structured, bimetallic nanorods integrate the merits of the AuAg alloy with the advantages of anisotropic nanorods, exhibiting strong, stable and tunable surface plasmon resonances that are essential for SERS applications in a corrosive environment. The “high-index faceted Au nanorod (core) @ AuPd alloy (shell)” nanocrystal was produced via site-specific epitaxial growth of AuPd alloyed horns at the ends of Au nanorods. The AuPd alloyed horns are bound with high-index side facets, while the Au nanorod concentrates an intensive electric field at each end. This unique configuration unites highly active catalytic sites with strong SERS sites into a single entity and was demonstrated to be ideal for in situ monitoring of Pd-catalyzed reactions by SERS. The synthetic strategies developed here are promising towards the fabrication of

  3. Precipitation of lamellar gold nanocrystals in molten polymers

    International Nuclear Information System (INIS)

    Palomba, M.; Carotenuto, G.

    2016-01-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  4. Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals

    International Nuclear Information System (INIS)

    Naseri, N.; Azimirad, R.; Akhavan, O.; Moshfegh, A.Z.

    2010-01-01

    In this investigation, the effect of gold nanocrystals on the electrochromical properties of sol-gel Au doped WO 3 thin films has been studied. The Au-WO 3 thin films were dip-coated on both glass and indium tin oxide coated conducting glass substrates with various gold concentrations of 0, 3.2 and 6.4 mol%. Optical properties of the samples were studied by UV-visible spectrophotometry in a range of 300-1100 nm. The optical density spectra of the films showed the formation of gold nanoparticles in the films. The optical bandgap energy of Au-WO 3 films decreased with increasing the Au concentration. Crystalline structure of the doped films was investigated by X-ray diffractometry, which indicated formation of gold nanocrystals in amorphous WO 3 thin films. X-ray photoelectron spectroscopy (XPS) was used to study the surface chemical composition of the samples. XPS analysis indicated the presence of gold in metallic state and the formation of stoichiometric WO 3 . The electrochromic properties of the Au-WO 3 samples were also characterized using lithium-based electrolyte. It was found that doping of Au nanocrystals in WO 3 thin films improved the coloration time of the layer. In addition, it was shown that variation of Au concentration led to color change in the colored state of the Au-WO 3 thin films.

  5. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qinyi; Guest, Jeffrey R. [Center; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), and experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.

  6. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    Science.gov (United States)

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.

  7. Rigid Biopolymer Nanocrystal Systems for Controlling Multicomponent Nanoparticle Assembly and Orientation in Thin Film Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer [Univ. of Colorado, Boulder, CO (United States)

    2016-10-31

    We have discovered techniques to synthesize well-defined DN conjugated nanostructures that are stable in a wide variety of conditions needed for DNA mediated assembly. Starting from this, we have shown that DNA can be used to control the assembly and integration of semiconductor nanocrystals into thin film devices that show photovoltaic effects.

  8. X-ray structural analysis of two-dimensional assembling lead sulfide nanocrystals of different sizes

    Science.gov (United States)

    Ushakova, Elena V.; Golubkov, Valery V.; Litvin, Aleksandr P.; Parfenov, Peter S.; Cherevkov, Sergei A.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2016-08-01

    We report on the structural investigation of self-organized assemblies of PbS nanocrystals (NCs) of different sizes, which were deposited on a glass substrate or embedded in a porous matrix. Regardless of the NC size and the type of the substrate and matrix, the assemblies were ordered in two-dimensional superlattices with densely packed NCs.

  9. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  10. In situ microscopy of the self-assembly of branched nanocrystals in solution

    Science.gov (United States)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  11. Temperature-induced assembly of semiconductor nanocrystals into fractal architectures and thermoelectric power properties in Au/Ge bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Li Quanbao; Wang Jian; Jiao Zheng [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Shek, Chan-Hung; Lawrence Wu, C.M.; Lai, Joseph K.L. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chen Zhiwen, E-mail: cnzwchen@yahoo.com.cn [Shanghai Applied Radiation Institute, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2011-08-15

    Highlights: > Ge fractal architectures were achieved by temperature-induced assembly. > The appearance of fractal architectures influences the thermoelectric power. > But it has little effect on the resistivity. > The values of the superlocalization exponent were within 1.22 {<=} {xi} {<=} 1.29. > It was higher than expected for two-dimension fractal system. - Abstract: Fractal architectures of semiconductor nanocrystals were successfully achieved by temperature-induced assembly of semiconductor nanocrystals in gold/germanium (Au/Ge) bilayer films. New assessment strategies of fractal architectures are of fundamental importance in the development of micro/nano-devices. Temperature-dependent properties including resistivity and thermoelectric power (TEP) of Au/Ge bilayer films with self-similar fractal patterns were investigated in detail. Experimental results indicated that the microstructure of Au film plays an important role in the characteristics of Au/Ge bilayer films after annealing and the crystallization processes of amorphous Ge accompany by fractal formation of Ge nanocrystals via temperature-induced assembly. The appearance of fractal architectures has significantly influence on the TEP but little effect on the resistivity of the annealed bilayer film. By analysis of the data, we found that the values of superlocalization exponent are within 1.22 {<=} {xi} {<=} 1.29, which are higher than expected for two-dimension fractal systems. The results provided possible evidence for the superlocalization on fractal architectures in Au/Ge bilayer films. The TEP measurements are considered a more effective method than the conductivity for investigating superlocalization in a percolating system.

  12. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    Science.gov (United States)

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  13. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai; Zhang, Lianbin; Hedhili, Mohamed N.; Zhang, Hongnan; Wang, Peng

    2013-01-01

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so

  14. Synthesis, characterization and self-assembly with gold nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    characterization and self-assembly with gold nanoparticles. JUN-BO LI. 1, ... gold surface lead to the enhancement of device prop- erties. 36,37 ... Reactions were monitored by thin-layer ..... plasmon (SP) absorption band (figure 5) of TOAB-.

  15. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  16. Trisoctahedral gold nanocrystal: A promising candidate for the study of plasmonics using cathodoluminescence

    International Nuclear Information System (INIS)

    Maity, Achyut; Maiti, Arpan; Satpati, Biswarup; Chini, Tapas Kumar

    2016-01-01

    We study plasmon assisted luminescence from an isolated single trisoctahedral (TOH) gold (Au) nanocrystal using cathodoluminescence (CL) spectroscopy and imaging in a field emission scanning electron microscope (FESEM). The site specific e-beam excitation reveals a double peaked spectrum with the localized surface plasmon resonance (LSPR) at 540 nm and 660 nm and a single resonant peaked spectrum at 560 nm. The spatial variation of the plasmon assisted luminescence was strongest at the apex points as well as at the edges and corners.

  17. Electronic structure and self-assembly of cross-linked semiconductor nanocrystal arrays

    International Nuclear Information System (INIS)

    Steiner, Dov; Azulay, Doron; Aharoni, Assaf; Salant, Assaf; Banin, Uri; Millo, Oded

    2008-01-01

    We studied the electronic level structure of assemblies of InAs quantum dots and CdSe nanorods cross-linked by 1,4-phenylenediamine molecules using scanning tunneling spectroscopy. We found that the bandgap in these arrays is reduced with respect to the corresponding ligand-capped nanocrystal arrays. In addition, a pronounced sub-gap spectral structure commonly appeared which can be attributed to unpassivated nanocrystal surface states or associated with linker-molecule-related levels. The exchange of the ligands by the linker molecules also affected the structural array properties. Most significantly, clusters of close-packed standing CdSe nanorods were formed

  18. Gold Nanoparticles Assembly on Silicon and Gold Surfaces: Mechanism, Stability and Efficiency in Diclofenac Biosensing

    OpenAIRE

    Ben Haddada , Maroua; Hübner , Maria; Casale , Sandra; Knopp , Dietmar; Niessner , Reinhard; Salmain , Michele; Boujday , Souhir

    2016-01-01

    International audience; We investigated the assembly of Gold nanoparticles (AuNPs) on Gold and Silicon sensors with two final objectives: (i) understanding the factors governing the interaction and (ii) building up a nanostructured piezoelectric immunosensor for diclofenac, a small-sized pharmaceutical pollutant. Different surface chemistries were devised to achieve AuNPs assembly on planar substrates. These surface chemistries included amines to immobilize AuNPs via electrostatic interaction...

  19. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  20. Surface mediated assembly of small, metastable gold nanoclusters

    Science.gov (United States)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  1. Preparation and characterization of gold nanocrystals and nanomultilayer mirrors for X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Slieh, Jawad

    2009-03-01

    In order to make possible studies on the dynamics of protein molecules in their natural environment Sasaki has developed in the last years a new X-ray diffraction procedure. In this procedure, which is called dynamical X-ray tracking (DXT), the diffraction occurs not directly on the protein molecule, but on a nanomirror rigidly bound to the protein molecule. Measured is hereby the time variation od the alignment of the nanocrystal, which is determined by means of the position of the Laue-diffraction points. By means of these position variations statements on structure variations of the studied protein can be derived with a high spatial accuracy in the time domain. The scientific aim of this thesis is the construction of a DXT measuring place as well as the preparation of the requireds nanocrystalline X-ray diffracting protein labels including their characterization. First a short survey about the foundations of the X radiation and their interactions with matter, especially under regardment of X-ray diffraction on crystals, is given. The measuring methods for the determination of the crystal alignment as well as the vertical and lateral crystal size are presented. In the following chapter a comprehensive survey about the different devices and analysis methods used for the fabrication and characterization of gold crystals is presented. Additionally with precise technical statements the self-constructed MBE apparature is described. This apparature has the purpose to fabricate gold nanocrystals by means of the molecular-beam-epitaxy (MBE) procedure. In the fourth chapter the construction of the DXT laboratory are presented and its beam profile in the focus, its divergence, and its beam spectrum determined. Based on this in the fifth chapter the study of the radiation damage of 2 cysteine-peroxyredoxine (2CP) proteins and the detection of this radiation damage without Au colloids and with Au colloids are presented. The main content of the sixth chapter is the precise

  2. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  3. Density-controllable nonvolatile memory devices having metal nanocrystals through chemical synthesis and assembled by spin-coating technique

    International Nuclear Information System (INIS)

    Wang Guangli; Chen Yubin; Shi Yi; Pu Lin; Pan Lijia; Zhang Rong; Zheng Youdou

    2010-01-01

    A novel two-step method is employed, for the first time, to fabricate nonvolatile memory devices that have metal nanocrystals. First, size-averaged Au nanocrystals are synthesized chemically; second, they are assembled into memory devices by a spin-coating technique at room temperature. This attractive approach makes it possible to tailor the diameter and control the density of nanocrystals individually. In addition, processes at room temperature prevent Au diffusion, which is a main concern for the application of metal nanocrystal-based memory. The experimental results, both the morphology characterization and the electrical measurements, reveal that there is an optimum density of nanocrystal monolayer to balance between long data retention and a large hysteresis memory window. At the same time, density-controllable devices could also feed the preferential emphasis on either memory window or retention time. All these facts confirm the advantages and novelty of our two-step method. (semiconductor devices)

  4. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  5. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  6. Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices

    Science.gov (United States)

    Malfavon-Ochoa, Mario

    This dissertation presents new insight into the ability of small molecule passivated NCs to achieve intimate approach distances, despite being well passivated, while developing guiding principles in the area of ligand mediated microstructure control and the resulting macroscopic optical and electronic properties that close packing of high quality NCs enables. NC ligand coverage will be characterized quantitatively through thermogravimetric analysis (TGA), and qualitatively by photoluminescence and electroluminescence, in the case of functional devices; illustrating the importance of practitioner dependent control of ligand coverage through variations in the dispersion precipitation purification procedure. A unique examination of the relative contribution of energy and charge transfer in NC LEDs will demonstrate the ability to achieve charge transfer, at a level competitive with energy transfer, to well passivated NCs at various wt% loading in a polymer matrix. The observation of potential dependent recombination zones within an active layer further suggest novel, NC surface passivation mediated control of blend microstructure during solution processing towards the development of a bi-continuous network. Next, NC self-assembly and resulting microstructure dependent optical and electronic properties will be examined through electroluminescence and high-resolution transmission electron microscopy (TEM) micrographs of functional NC/polymer bulk heterojunction LEDs. The joint characterization of NC optical properties, and self-assembly microstructure provide a deeper understanding of the significant and inseparable effects of minimal changes in NC surface passivation on structure and function, and emphasize the potential to rely on strongly passivating ligands to control physical properties and processing parameters concurrently towards higher efficiency devices via low cost processing. Finally, micro-contact printing of blazed transmission gratings, using stable

  7. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Science.gov (United States)

    Yavuz, Adem; Sohrabnia, Nima; Yilmaz, Ayşen; Danışman, M. Fatih

    2017-08-01

    Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  8. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  9. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    International Nuclear Information System (INIS)

    Yao Hui; Yi Changqing; Tzang Chihung; Zhu Junjie; Yang Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures

  10. Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts.

    Science.gov (United States)

    Zhang, Zhen; Sèbe, Gilles; Wang, Xiaosong; Tam, Kam C

    2018-02-15

    pH-responsive poly(4-vinylpyridine) (P4VP) grafted cellulose nanocrystals (P4VP-g-CNC) were prepared by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) and subsequently used to stabilize gold nanoparticles (Au NPs) as efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol (4NP). The presence of P4VP brushes on the CNC surface controlled the growth of Au NPs yielding smaller averaged diameter compared to Au NPs deposited directly on pristine CNC. The catalytic performances of pristine Au NPs, Au@CNC and Au@P4VP-g-CNC were compared by measuring the turnover frequency (TOF) for the catalytic reduction of 4NP. Compared to pristine Au NPs, the catalytic activity of Au@CNC and Au@P4VP-g-CNC were 10 and 24 times better. Moreover, the Au@P4VP-g-CNC material could be recovered via flocculation at pH>5, and the recycled nanocatalyst remained highly active. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Amperometric Immunosensor Based on a Protein A/Deposited Gold Nanocrystals Modified Electrode for Carbofuran Detection

    Directory of Open Access Journals (Sweden)

    Xia Sun

    2011-12-01

    Full Text Available In this paper, an amperometric immunosensor modified with protein A/deposited gold nanocrystals (DpAu was developed for the ultrasensitive detection of carbofuran residues. First, DpAu were electrodeposited onto the Au electrode surface to absorb protein A (PA and improve the electrode conductivity. Then PA was dropped onto the surface of DpAu film, used for binding antibody Fc fragments. Next, anti-carbofuran monoclonal antibody was immobilized on the PA modified electrode. Finally, bovine serum albumin (BSA was employed to block the possible remaining active sites avoiding any nonspecific adsorption. The fabrication procedure of the immunosensor was characterized by electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV, respectively. With the excellent electroconductivity of DpAu and the PA’s oriented immobilization of antibodies, a highly efficient immuno-reaction and detection sensitivity could be achieved. The influences of the electrodeposition time of DpAu, pH of the detection solution and incubation time on the current response of the fabricated immunosensor were investigated. Under optimized conditions, the current response was proportional to the concentration of carbofuran which ranged from 1 to 100 ng/mL and 100 ng/mL to 100 μg/mL. The detection limit was 0.1924 ng/mL. The proposed carbofuran immnuosensor exhibited high specificity, reproducibility, stability and regeneration performance, which may open a new door for ultrasensitive detection of carbofuran residues in vegetables and fruits.

  12. Optical Manipulation of Shape-Morphing Elastomeric Liquid Crystal Microparticles Doped with Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. R.; Evans, J. S.; Lee, T.; Senyuk, B.; Keller, P.; He, S. L.; Smalyukh, I. I.

    2012-06-11

    We demonstrate facile optical manipulation of shape of birefringent colloidal microparticles made from liquid crystal elastomers. Using soft lithography and polymerization, we fabricate elastomeric microcylinders with weakly undulating director oriented on average along their long axes. These particles are infiltrated with gold nanospheres acting as heat transducers that allow for an efficient localized transfer of heat from a focused infrared laser beam to a submicrometer region within a microparticle. Photothermal control of ordering in the liquid crystal elastomer using scanned beams allows for a robust control of colloidal particles, enabling both reversible and irreversible changes of shape. Possible applications include optomechanics, microfluidics, and reconfigurable colloidal composites with shape-dependent self-assembly.

  13. Well-dispersed gold nanowire suspension for assembly application

    International Nuclear Information System (INIS)

    Xu Cailing; Zhang Li; Zhang Haoli; Li Hulin

    2005-01-01

    A method for fabricating well-dispersed nanowire suspension has been demonstrated in the paper. Thin gold nanowires were prepared by template synthesis, and then functionalized with sulphonate group-terminated thiols before suspended in different solvents. The degree of aggregation of the obtained suspension was evaluated with transmission electron microscopy (TEM) and UV-vis spectroscopy. It was found that the degree of aggregation was predominated by the solvents, and the best degree of dispersion was obtained when isopropyl alcohol (IPA) was used as the solvent. The gold nanowires from the suspension can be selectively assembled onto chemically patterned substrates. This well-dispersed nanowire suspension is potentially useful for fabricating novel nanodevices

  14. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Mohamad, Abu Bakar; M Zain, M F; Awang, Nor Asikin; Mohd Hir, Zul Adlan

    2017-02-10

    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H 2 SO 4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. {331}-Faceted trisoctahedral gold nanocrystals: synthesis, superior electrocatalytic performance and highly efficient SERS activity

    Science.gov (United States)

    Song, Yahui; Miao, Tingting; Zhang, Peina; Bi, Cuixia; Xia, Haibing; Wang, Dayang; Tao, Xutang

    2015-04-01

    We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities.We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by

  16. Synthesis and shape control of copper tin sulphide nanocrystals and formation of gold-copper tin sulphide hybrid nanostructures

    International Nuclear Information System (INIS)

    Kruszynska, Marta; Parisi, Juergen; Kolny-Olesiak, Joanna

    2014-01-01

    Hexagonal prismatic Cu 3 SnS 4 nanoparticles and nanorods were synthesized by a hot-injection procedure. Changing the reaction conditions leads to the formation of different shapes. When oleylamine is used as a solvent, hexagonal prismatic particles are obtained, while a reaction in octadecene results in the formation of nanorods. The growth process of copper tin sulphide starts with the formation of djurleite copper sulphide seeds. Their reaction with Sn 4+ ions leads to the formation of Cu 3 SnS 4 . These Cu 3 SnS 4 nanocrystals form Au-Cu 3 SnS 4 hybrid nanostructures by reaction with gold seeds.

  17. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection.

    Science.gov (United States)

    Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin

    2018-05-14

    Fibers with self-assembled photonic structures are of special interest for their unique photonic properties and potential applications in smart textile industry. Inspired by nature, photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNC) and the fibers show tunable brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective reflection color of the composite fibers in polarized condition shows a typical red-shift tendency with the increase of the PVA content, which is attributed to the increased helical pitch of the CNC. Furthermore, polarized angle can also alter the reflected colors. Owing to the excellent selective reflection properties under polarized condition, CNC-based photonic fibers are promising as the next-generation smart fibers, applied in the fields of specific display and sensing. © 2018 IOP Publishing Ltd.

  18. Enhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents.

    Science.gov (United States)

    Bruckner, Johanna R; Kuhnhold, Anja; Honorato-Rios, Camila; Schilling, Tanja; Lagerwall, Jan P F

    2016-09-27

    Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 μm to less than 1 μm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials.

  19. Linker-mediated assembly of gold nanoparticles into multimeric motifs

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Mateusz; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland); Szymczak, Piotr [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ulica Hoza 69, 00-681 Warsaw (Poland); Thompson, Damien, E-mail: mc@ifpan.edu.pl [Tyndall National Institute, Lee Maltings, University College Cork, Cork (Ireland)

    2011-11-04

    We present a theoretical description of linker-mediated self-assembly of gold nanoparticles (Au-NP). Using mesoscale simulations with a coarse-grained model for the Au NPs and dirhenium-based linker molecules, we investigate the conditions under which large clusters can grow and construct a phase diagram that identifies favorable growth conditions in terms of floating and bound linker concentrations. The findings can be considered as generic, as we expect other NP-linker systems to behave in a qualitatively similar way. In particular, we also discuss the case of antibody-functionalised Au NPs connected by the C-reactive proteins (CRPs). We extract some general rules for NP linking that may aid the production of size- and shape-specific NP clusters for technology applications.

  20. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Nimai C [Singapore-MIT Alliance, Manufacturing Systems and Technology Programme, Nanyang Technological University, 65 Nanyang Drive, 637460 (Singapore); Shin, Kwanwoo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsoo-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)], E-mail: ncnayak@gmail.com

    2008-07-02

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism.

  1. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    International Nuclear Information System (INIS)

    Nayak, Nimai C; Shin, Kwanwoo

    2008-01-01

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism

  2. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A. [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  3. Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications

    DEFF Research Database (Denmark)

    Rey, Antje; Billardon, Guillaume; Loertscher, Emanuel

    2013-01-01

    target substrate, thus establishing a platform for a variety of nanoscale electronic and optical applications ranging from molecular electronics to optical and plasmonic devices. As a first example, electrical measurements are performed on contacted gold nanorod chains before and after their immersion......We demonstrate a method to assemble gold nanorods highly deterministically into a chain formation by means of directed capillary assembly. This way we achieved straight chains consisting of end-to-end aligned gold nanorods assembled in one specific direction with well-controlled gaps of similar...... to 6 nm between the individual constituents. We determined the conditions for optimum quality and yield of nanorod chain assembly by investigating the influence of template dimensions and assembly temperature. In addition, we transferred the gold nanorod chains from the assembly template onto a Si/SiO2...

  4. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    Science.gov (United States)

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  5. Designing and building nanowires: directed nanocrystal self-assembly into radically branched and zigzag PbS nanowires

    International Nuclear Information System (INIS)

    Xu Fan; Ma Xin; Gerlein, L Felipe; Cloutier, Sylvain G

    2011-01-01

    Lead sulfide nanowires with controllable optoelectronic properties would be promising building blocks for various applications. Here, we report the hot colloidal synthesis of radically branched and zigzag nanowires through self-attachment of star-shaped and octahedral nanocrystals in the presence of multiple surfactants. We obtained high-quality single-crystal nanowires with uniform diameter along the entire length, and the size of the nanowire can be tuned by tailoring the reaction parameters. This slow oriented attachment provides a better understanding of the intricacies of this complex nanocrystal assembly process. Meanwhile, these self-assembled nanowire structures have appealing lateral conformations with narrow side arms or highly faceted edges, where strong quantum confinement can occur. Consequently, the single-crystal nanowire structures exhibit strong photoluminescence in the near-infrared region with a large blue-shift compared to the bulk material.

  6. Electron transport within transparent assemblies of tin-doped indium oxide colloidal nanocrystals

    Science.gov (United States)

    Grisolia, J.; Decorde, N.; Gauvin, M.; Sangeetha, N. M.; Viallet, B.; Ressier, L.

    2015-08-01

    Stripe-like compact assemblies of tin-doped indium oxide (ITO) colloidal nanocrystals (NCs) are fabricated by stop-and-go convective self-assembly (CSA). Systematic evaluation of the electron transport mechanisms in these systems is carried out by varying the length of carboxylate ligands protecting the NCs: butanoate (C4), octanoate (C8) and oleate (C18). The interparticle edge-to-edge distance L0, along with a number of carbon atoms in the alkyl chain of the coating ligand, are deduced from small-angle x-ray scattering (SAXS) measurements and exhibit a linear relationship with a slope of 0.11 nm per carbon pair unit. Temperature-dependent resistance characteristics are analyzed using several electron transport models: Efros-Shklovskii variable range hopping (ES-VRH), inelastic cotunneling (IC), regular island array and percolation. The analysis indicated that the first two models (ES-VRH and IC) fail to explain the observed behavior, and that only simple activated transport takes place in these systems under the experimental conditions studied (T = 300 K to 77 K). Related transport parameters were then extracted using the regular island array and percolation models. The effective tunneling decay constant βeff of the ligands and the Coulomb charging energy EC are found to be around 5.5 nm-1 and 25 meV, respectively, irrespective of ligand lengths. The theoretical tunneling decay constant β calculated using the percolation model is in the range 9 nm-1. Electromechanical tests on the ITO nanoparticle assemblies indicate that their sensitivities are as high as ˜30 and remain the same regardless of ligand lengths, which is in agreement with the constant effective βeff extracted from regular island array and percolation models.

  7. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  8. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    Science.gov (United States)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  9. Synthesis and shape control of copper tin sulphide nanocrystals and formation of gold-copper tin sulphide hybrid nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kruszynska, Marta; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research Lab.

    2014-08-15

    Hexagonal prismatic Cu{sub 3}SnS{sub 4} nanoparticles and nanorods were synthesized by a hot-injection procedure. Changing the reaction conditions leads to the formation of different shapes. When oleylamine is used as a solvent, hexagonal prismatic particles are obtained, while a reaction in octadecene results in the formation of nanorods. The growth process of copper tin sulphide starts with the formation of djurleite copper sulphide seeds. Their reaction with Sn{sup 4+} ions leads to the formation of Cu{sub 3}SnS{sub 4}. These Cu{sub 3}SnS{sub 4} nanocrystals form Au-Cu{sub 3}SnS{sub 4} hybrid nanostructures by reaction with gold seeds.

  10. Designing Selectivity in Metal-Semiconductor Nanocrystals: Synthesis, Characterization, and Self-Assembly

    Science.gov (United States)

    Pavlopoulos, Nicholas George

    This dissertation contains six chapters detailing recent advances that have been made in the synthesis and characterization of metal-semiconductor hybrid nanocrystals (HNCs), and the applications of these materials. Primarily focused on the synthesis of well-defined II-VI semiconductor nanorod (NR) and tetrapod (TP) based constructs of interest for photocatalytic and solar energy applications, the research described herein discusses progress towards the realization of key design rules for the synthesis of functional semiconductor nanocrystals (NCs). As such, a blend of novel synthesis, advanced characterization, and direct application of heterostructured nanoparticles are presented. The first chapter is a review summarizing the design, synthesis, properties, and applications of multicomponent nanomaterials composed of disparate semiconductor and metal domains. By coupling two compositionally distinct materials onto a single nanocrystal, synergistic properties can arise that are not present in the isolated components, ranging from self-assembly to photocatalysis. For semiconductor nanomaterials, this was first realized in the ability to tune nanomaterial dimensions from 0-D quantum dot (QD) structures to cylindrical (NR) and branched (TP) structures by exploitation of advanced colloidal synthesis techniques and understandings of NC facet reactivities. The second chapter is focused on the synthesis and characterization of well-defined CdSe-seeded-CdS (CdSe CdS) NR systems synthesized by overcoating of wurtzite (W) CdSe quantum dots with W-CdS shells. 1-dimensional NRs have been interesting constructs for applications such as solar concentrators, optical gains, and photocatalysis. Through synthetic control over CdSe CdS NR systems, materials with small and large CdSe seeds were prepared, and for each seed size, multiple NR lengths were prepared. Through transient absorption studies, it was found that band alignment did not affect the efficiency of charge localization

  11. SERS-barcoded colloidal gold NP assemblies as imaging agents for use in biodiagnostics

    Science.gov (United States)

    Dey, Priyanka; Olds, William; Blakey, Idriss; Thurecht, Kristofer J.; Izake, Emad L.; Fredericks, Peter M.

    2014-03-01

    There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

  12. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Da; Lee, Jim Yang, E-mail: cheleejy@nus.edu.sg [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 (Singapore)

    2011-09-02

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo{sub 2}O{sub 4} nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo{sub 2}O{sub 4} nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo{sub 2}O{sub 4} nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo{sub 2}O{sub 4} nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo{sub 2}O{sub 4} demonstrated excellent reversible lithium ion storage properties and a specific capacity ({approx}800 mAh g{sup -1}) much higher than that of carbon (typically {approx} 350 mAh g{sup -1}).

  13. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    International Nuclear Information System (INIS)

    Deng, Da; Lee, Jim Yang

    2011-01-01

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo 2 O 4 nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo 2 O 4 nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo 2 O 4 nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo 2 O 4 nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo 2 O 4 demonstrated excellent reversible lithium ion storage properties and a specific capacity (∼800 mAh g -1 ) much higher than that of carbon (typically ∼ 350 mAh g -1 ).

  14. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.; Choi, Joshua J.; Bian, Kaifu; Fitting Kourkoutis, Lena; Smilgies, Detlef-M.; Thompson, Michael O.; Hanrath, Tobias

    2011-01-01

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC

  15. Self-Assembly on Gold and Graphene for Molecular Electronics

    DEFF Research Database (Denmark)

    Reeler, Nini Elisabeth Abildgaard

    In this work, different bottom-up approaches were pursued to develop a method to mass produce dimers of gold nanorods (AuNRs) or large gold nanoparticles (AuNPs) bridged by a conducting molecule for later use in a device. Two types of AuNPs with a size of 3-5 nm and 50-75 nm respectively were syn...

  16. Glucose Oxidase Catalyzed Self-Assembly of Bioelectroactive Gold Nanostructures

    Science.gov (United States)

    2010-01-01

    polymer matrix), however, electrons generated at the FAD/FADH2 active site of glucose oxidase (GOx) must tunnel ca. 15 through the protein shell...described as a surface bound thiolate [33]. Recently, the presence of free thiol groups has been proposed as a mechanism for gold reduction in pure enzymes...simultaneously [38]. The oxidative polymerization of the amines proceeds simulta- neously with the formation of gold nanoparticles such that the polymerized amine

  17. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles

    International Nuclear Information System (INIS)

    Smoak, Evan M; Carlo, Andrew D; Fowles, Catherine C; Banerjee, Ipsita A

    2010-01-01

    Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA 3 ) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA 3 -amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 deg. C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.

  18. Self-assembly of Fe3O4 nanocrystal-clusters into cauliflower-like architectures: Synthesis and characterization

    International Nuclear Information System (INIS)

    Zhu Luping; Liao Guihong; Bing Naici; Wang Linlin; Xie Hongyong

    2011-01-01

    Large-scale cauliflower-like Fe 3 O 4 architectures consist of well-assembled magnetite nanocrystal clusters have been synthesized by a simple solvothermal process. The as-synthesized Fe 3 O 4 samples were characterized by XRD, XPS, FT-IR, SEM, TEM, etc. The results show that the samples exhibit cauliflower-like hierarchical microstructures. The influences of synthesis parameters on the morphology of the samples were experimentally investigated. Magnetic properties of the Fe 3 O 4 cauliflower-like hierarchical microstructures have been detected by VSM at room temperature, showing a relatively low saturation magnetization of 65 emu/g and an enhanced coercive force of 247 Oe. - Graphical Abstract: Cauliflower-like Fe 3 O 4 architectures consist of well-assembled magnetite nanocrystal clusters have been synthesized by a simple solvothermal process, using FeCl 3 .6H 2 O and EDA as the starting materials. Highlights: → Cauliflower-like Fe 3 O 4 architectures were successfully prepared by a simple solvothermal route. → The cauliflower-like Fe 3 O 4 architectures have a size in the range of 200-300 nm. → They show a low saturation magnetization of 65 emu/g and an enhanced coercive force of 247 Oe. → These Fe 3 O 4 architectures may have potential applications in catalysis and biological fields.

  19. Perovskite nanocrystals: across-dimensional attachment, film-scale assembly on a flexible substrate and their fluorescence properties

    Science.gov (United States)

    Huang, Wenyi; Liu, Jiajia; Bai, Bing; Huang, Liu; Xu, Meng; Liu, Jia; Rong, Hongpan; Zhang, Jiatao

    2018-03-01

    Perovskite nanocrystals (NCs), which are a good fluorescence candidate with excellent photoelectric properties, have opened new avenues in the fabrication of highly efficient solar cells, light-emitting diodes (LEDs), and other optoelectronic devices. Further advances will rely on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional (3D) perovskites with architectural innovations. In this work, the perovskite film was fabricated on a flexible substrate using simple dip-coating technology and 3D assemblies of perovskite NCs were obtained through an attachment process. Original perovskite NCs had a rectangular or square morphology with high particle uniformity and the narrow and symmetric fluorescence emission peak was adjustable at 515-527 nm. The controllable self-assembly of the micron size cuboid-like 3D assembly had an apparent enhancement on peak (111) in the x-ray diffraction (XRD) pattern. Surface ligands not only play a role in the attachment process but also keep the independence of each NC in 3D assemblies. Such assembly of the perovskite film maintained the original perovskite NCs fluorescence emission peak and narrow full width at the half-maximum (FWHM), which is of great importance for the investigation of future devices.

  20. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO2, leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO2 nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ∼150 μA cm-2, which is the highest value ever reported in any plasmonic Au/TiO2 system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications. © 2012 American Chemical Society.

  1. Au279(SR)84: The Smallest Gold Thiolate Nanocrystal That Is Metallic and the Birth of Plasmon.

    Science.gov (United States)

    Sakthivel, Naga Arjun; Stener, Mauro; Sementa, Luca; Fortunelli, Alessandro; Ramakrishna, Guda; Dass, Amala

    2018-03-15

    We report a detailed study on the optical properties of Au 279 (SR) 84 using steady-state and transient absorption measurements to probe its metallic nature, time-dependent density functional theory (TDDFT) studies to correlate the optical spectra, and density of states (DOS) to reveal the factors governing the origin of the collective surface plasmon resonance (SPR) oscillation. Au 279 is the smallest identified gold nanocrystal to exhibit SPR. Its optical absorption exhibits SPR at 510 nm. Power-dependent bleach recovery kinetics of Au 279 suggests that electron dynamics dominates its relaxation and it can support plasmon oscillations. Interestingly, TDDFT and DOS studies with different tail group residues (-CH 3 and -Ph) revealed the important role played by the tail groups of ligands in collective oscillation. Also, steady-state and time-resolved absorption for Au 36 , Au 44 , and Au 133 were studied to reveal the molecule-to-metal evolution of aromatic AuNMs. The optical gap and transient decay lifetimes decrease as the size increases.

  2. Developing New Nanoprobes from Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  3. Ultrasmall Titania Nanocrystals and Their Direct Assembly into Mesoporous Structures Showing Fast Lithium Insertion

    Czech Academy of Sciences Publication Activity Database

    Szeifert, J. M.; Feckl, J. M.; Fattakhova-Rohlfing, D.; Liu, Y.; Kalousek, Vít; Rathouský, Jiří; Bein, T.

    2010-01-01

    Roč. 132, č. 36 (2010), s. 12605-12611 ISSN 0002-7863 R&D Projects: GA ČR GA104/08/0435 Institutional research plan: CEZ:AV0Z40400503 Keywords : nanocrystals * mesoporous structures * TiCl4 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.019, year: 2010

  4. Kinetic Assembly of Near-IR Active Gold Nanoclusters using Weakly Adsorbing Polymers to Control Size

    Science.gov (United States)

    Tam, Jasmine M.; Murthy, Avinash K.; Ingram, Davis R.; Nguyen, Robin; Sokolov, Konstantin V.; Johnston, Keith P.

    2013-01-01

    Clusters of metal nanoparticles with an overall size less than 100 nm and high metal loadings for strong optical functionality, are of interest in various fields including microelectronics, sensors, optoelectronics and biomedical imaging and therapeutics. Herein we assemble ~5 nm gold particles into clusters with controlled size, as small as 30 nm and up to 100 nm, which contain only small amounts of polymeric stabilizers. The assembly is kinetically controlled with weakly adsorbing polymers, PLA(2K)-b-PEG(10K)-b-PLA(2K) or PEG (MW = 3350), by manipulating electrostatic, van der Waals (VDW), steric, and depletion forces. The cluster size and optical properties are tuned as a function of particle volume fractions and polymer/gold ratios to modulate the interparticle interactions. The close spacing between the constituent gold nanoparticles and high gold loadings (80–85% w/w gold) produce a strong absorbance cross section of ~9×10−15 m2 in the NIR at 700 nm. This morphology results from VDW and depletion attractive interactions that exclude the weakly adsorbed polymeric stabilizer from the cluster interior. The generality of this kinetic assembly platform is demonstrated for gold nanoparticles with a range of surface charges from highly negative to neutral, with the two different polymers. PMID:20361735

  5. Nanoporous gold assembly of glucose oxidase for electrochemical biosensing

    DEFF Research Database (Denmark)

    Xiao, Xinxin; Ulstrup, Jens; Li, Hui

    2014-01-01

    Nanoporous gold (NPG) is composed of three-dimensional (3D) bicontinuous nanostructures with large surface area. Nano-channels inside NPG provide an ideal local environment for immobilization of enzyme molecules with expected stabilization of the protein molecules. In this work, glucose oxidase (...

  6. Development of gold based solder candidates for flip chip assembly

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...

  7. Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals

    KAUST Repository

    Zhang, Yang

    2013-01-01

    Semiconductor nanocrystals, especially their ordered assemblies, are promising materials for various applications. In this paper, we investigate the photoconductive behavior of sub-micron size, ordered three-dimensional (3D) assemblies of octapod-shaped CdSe/CdS nanocrystals that are contacted by overlay electron-beam lithography. The regular structure of the assemblies leads to photocurrent-voltage curves that can be described by the cold field electron emission model. Mapping of the photoconductivity versus excitation wavelength and bias voltage allows the extraction of the band gap and identification of the photoactive region in the voltage and spectral domain. These results have important implications for the understanding of photoconductive transport in similar systems. © 2013 The Royal Society of Chemistry.

  8. Gold nanocrystals in high-temperature superconducting films: Creation of pinning patterns of choice

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany); Stahl, Claudia; Treiber, Sebastian; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Christiani, Georg [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2013-07-01

    Many superconducting thin film devices require a spatially resolved current carrying capability due to different boundary conditions. On the one hand, the critical current density and the pinning of flux lines respectively should be high to reduce flux noise in the antenna regions of gradiometers; on the other hand, the critical current density of the Josephson junctions itself must not be too high to ensure a proper functionality. We report that adding gold nanoparticles during the preparation process of epitaxial YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films offers the possibility of creating spatially varying flux pinning properties, thus allowing to locally enhance the critical current density up to a factor of two. Magneto-optical investigations as well as transport measurements will be presented, indicating that an Au particle induced modification of the YBCO pinning properties allows the engineering of the critical current landscape on the sub-micrometre scale.

  9. Directing self-assembly of gold nanoparticles in diblock copolymer scaffold

    Science.gov (United States)

    Li, Qifang; He, Jinbo; Glogowski, Elizabeth; Emrick, Todd; Russell, Thomas

    2007-03-01

    A versatile hierarchical approach for directing self -assembly of gold nanostructures with size 2-3nm in diblock copolymer scaffolds is found. Diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) is used to form a regular scaffold of highly anisotropic, stripe-like domains, and controlled differential wetting by dichloromethane and thermal annealing guides gold nanoparticles with half hydrophilic ligand to aggregate selectively along the scaffold, producing highly organized metal nanostructures. In as-cast block-copolymer and gold nanoparticles thin films, micelle structure and gold nanoparticles random distribution on scaffold are typically observed. However, samples annealed in dichloromethane exhibit well-defined short-range ordered nanostructure with gold nanoparticles located at the interface of PS and P2VP nanoscale domain. After annealing at 170 C, the gold nanoparticles at interface migrated into the middle of P2VP phase and exhibited long-range ordered hierarchical structures. Synergistic interactions between the gold nanoparticles and the PS-b-P2VP caused an orientation of the microdomains normal to the film surface.

  10. Connecting the dots : shedding light on the self-assembly of semiconductor nanocrystals with synchrotron X-ray scattering techniques

    NARCIS (Netherlands)

    Geuchies, J.J.

    2017-01-01

    We studied the formation of two-dimensional crystals from nanocrystals using X-ray scattering techniques. Inside these nanocrystals, with sizes between 5-10 nm, the atoms are ordered in an atomic lattice. We use the nanocrystals as building blocks to create larger lattices in two dimensions. By

  11. Self-assembling layers created by membrane proteins on gold.

    Science.gov (United States)

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  12. Memory Effect of Metal-Oxide-Silicon Capacitors with Self-Assembly Double-Layer Au Nanocrystals Embedded in Atomic-Layer-Deposited HfO2 Dielectric

    International Nuclear Information System (INIS)

    Yue, Huang; Hong-Yan, Gou; Qing-Qing, Sun; Shi-Jin, Ding; Wei, Zhang; Shi-Li, Zhang

    2009-01-01

    We report the chemical self-assembly growth of Au nanocrystals on atomic-layer-deposited HfO 2 films aminosilanized by (3-Aminopropyl)-trimethoxysilane aforehand for memory applications. The resulting Au nanocrystals show a density of about 4 × 10 11 cm −2 and a diameter range of 5–8nm. The metal-oxide-silicon capacitor with double-layer Au nanocrystals embedded in HfO 2 dielectric exhibits a large C – V hysteresis window of 11.9V for ±11 V gate voltage sweeps at 1 MHz, a flat-band voltage shift of 1.5 V after the electrical stress under 7 V for 1 ms, a leakage current density of 2.9 × 10 −8 A/cm −2 at 9 V and room temperature. Compared to single-layer Au nanocrystals, the double-layer Au nanocrystals increase the hysteresis window significantly, and the underlying mechanism is thus discussed

  13. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    Science.gov (United States)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  14. Facile synthesis of “green” gold nanocrystals using cynarin in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Katircioğlu, Zeynep; Şakalak, Hüseyin [Department of Metallurgical and Materials Engineering, Selcuk University, Konya 42075 (Turkey); Nanobiotechnology Laboratory, Advanced Technology Research and Application Center, Selcuk University, Konya 42075 (Turkey); Ulaşan, Mehmet [Nanobiotechnology Laboratory, Advanced Technology Research and Application Center, Selcuk University, Konya 42075 (Turkey); Department of Chemistry, Selcuk University, Konya 42075 (Turkey); Gören, Ahmet Ceyhan, E-mail: ahmetceyhan.goren@tubitak.gov.tr [TÜBİTAK UME, Chemistry Group, Organic Chemistry Laboratories, 41470 Gebze, Kocaeli (Turkey); Yavuz, Mustafa Selman, E-mail: selmanyavuz@selcuk.edu.tr [Department of Metallurgical and Materials Engineering, Selcuk University, Konya 42075 (Turkey); Nanobiotechnology Laboratory, Advanced Technology Research and Application Center, Selcuk University, Konya 42075 (Turkey)

    2014-11-01

    Highlights: • The first time a remarkably simple, versatile, environmentally friendly, one-pot and biogenic fabrication and aqueous synthesis of monodisperse gold nanoparticles by using cynarin. • Cynarin as a reductant and capping agent. • Exclusion of extra reducing agents or reductant. • Fabrication of Pd and Ag nanoparticles using cynarin in aqueous media. - Abstract: Herein we describe a water-based protocol that generates Au nanoparticles (AuNPs) by mixing aqueous solutions of HAuCl4 and cynarin (a natural product extract from artichoke leaf). Based on the observations from {sup 1}H NMR spectrum of AuNPs, a polyol oxidation mechanism by metal ions which eventually results in AuNPs formation, is proposed. Basically, the aromatic alcohol groups (1,2-benzenediol) of cynarin are oxidized to α-hydroxy ketone intermediate product, and then further oxidized to the vicinal diketone final product while the Au{sup 3+} ions are reduced to its atomic form (Au{sup 0}) which leads the generation of Au nanoparticles. This new protocol has also been employed to prepare multiply twinned Pd nanoparticles and Ag cubical aggregates. Due to exclusion of organic solvent, surfactant, or stabilizer for all these synthesis, this protocol may provide a simple, versatile, and environmentally benign route to fabricate noble-metal nanoparticles having various compositions and morphologies.

  15. Facile synthesis of “green” gold nanocrystals using cynarin in an aqueous solution

    International Nuclear Information System (INIS)

    Katircioğlu, Zeynep; Şakalak, Hüseyin; Ulaşan, Mehmet; Gören, Ahmet Ceyhan; Yavuz, Mustafa Selman

    2014-01-01

    Highlights: • The first time a remarkably simple, versatile, environmentally friendly, one-pot and biogenic fabrication and aqueous synthesis of monodisperse gold nanoparticles by using cynarin. • Cynarin as a reductant and capping agent. • Exclusion of extra reducing agents or reductant. • Fabrication of Pd and Ag nanoparticles using cynarin in aqueous media. - Abstract: Herein we describe a water-based protocol that generates Au nanoparticles (AuNPs) by mixing aqueous solutions of HAuCl4 and cynarin (a natural product extract from artichoke leaf). Based on the observations from 1 H NMR spectrum of AuNPs, a polyol oxidation mechanism by metal ions which eventually results in AuNPs formation, is proposed. Basically, the aromatic alcohol groups (1,2-benzenediol) of cynarin are oxidized to α-hydroxy ketone intermediate product, and then further oxidized to the vicinal diketone final product while the Au 3+ ions are reduced to its atomic form (Au 0 ) which leads the generation of Au nanoparticles. This new protocol has also been employed to prepare multiply twinned Pd nanoparticles and Ag cubical aggregates. Due to exclusion of organic solvent, surfactant, or stabilizer for all these synthesis, this protocol may provide a simple, versatile, and environmentally benign route to fabricate noble-metal nanoparticles having various compositions and morphologies

  16. Mechanistic investigation into the spontaneous linear assembly of gold nanospheres

    KAUST Repository

    Yang, Miaoxin

    2010-01-01

    Understanding the mechanism of nanoparticle self-assembly is of critical significance for developing synthetic strategies for complex nanostructures. By encapsulating aggregates of Au nanospheres in shells of polystyrene-block- poly(acrylic acid), we prevent the dissociation and aggregation typically associated with the drying of solution samples on TEM/SEM substrates. In our study of the salt-induced aggregation of 2-naphthalenethiol-functionalized Au nanospheres in DMF, the trapping of the solution species under various experimental conditions permits new insights in the mechanism thereof. We provide evidence that the spontaneous linear aggregation in this system is a kinetically controlled process and hence the long-range charge repulsion at the "transition state" before the actual contact of the Au nanospheres is the key factor. Thus, the charge repulsion potential (i.e. the activation energy) a nanosphere must overcome before attaching to either end of a nanochain is smaller than attaching on its sides, which has been previously established. This factor alone could give rise to the selective end-on attachment and lead to the linear assembly of originally isotropic Au nanospheres. © 2010 the Owner Societies.

  17. Towards Crystals of Crystals of NanoCrystals : a Self-Assembly Study

    NARCIS (Netherlands)

    de Nijs, B.

    2014-01-01

    In this thesis several methods to synthesise monodisperse nanoparticles and how to self-assembled them within emulsion droplets are presented. The self-assembly behaviour of nanoparticles within the spherical confinement of emulsion droplets resulted in highly ordered crystalline supraparticles that

  18. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.

    2011-09-27

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC films relative to bulk-like PbSe films. We found that laser pulse fluences in the range of 30 to 200 mJ/cm2 create a processing window of opportunity where the NC film morphology goes through interesting transformations without large-scale coalescence of the NCs. NC coalescence can be mitigated by depositing a thin film of amorphous silicon (a-Si) on the NC film. Remarkably, pulsed laser annealing of the a-Si/PbSe NC films crystallized the silicon while NC morphology and translational order of the NC film are preserved. © 2011 American Chemical Society.

  19. DNA-mediated self-assembly of carbon nanotubes on gold

    International Nuclear Information System (INIS)

    Sanchez-Pomales, Germarie; Rivera-Velez, Nelson E; Cabrera, Carlos R

    2007-01-01

    This report presents the use of disulfide-modified single-stranded DNA (ssDNA) to form DNA self-assembled monolayers (SAMs) and mixed DNA-carbon nanotube (CNT) hybrids SAMs on gold substrates. Mixed DNA-CNT SAMs are composed of DNA, mercaptohexanol (MCH) and DNA-CNT aggregates. Both, DNA-CNT and DNA areas of the mixed SAMs were analyzed and compared to traditional DNA SAMs. The results suggest the formation of a more compact and densely packed monolayer of DNA-CNT in comparison with DNA. The use of DNA-CNT hybrids to form SAMs on gold substrates might represent a new approach to improve the immobilization of DNA strands on gold, and might therefore help with the development of enhanced DNA sensors

  20. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  1. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  2. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  3. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China); College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Fang, Jingyue, E-mail: fjynudt@aliyun.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Chang, Shengli; Qin, Shiqiao; Zhang, Xueao [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Xu, Hui, E-mail: cmpxhg@csu.edu.cn [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China)

    2017-02-05

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode. - Highlights: • The phenomenon of single-electron field emission in a transistor setting using self-assembled gold nanoparticles was investigated. • The transfer characteristics can be well explained by the model that is a combination of Coulomb blockage and field emission. • This transport mechanism is novel and may be used in many applications in field emission devices.

  4. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    Science.gov (United States)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  5. Solvothermal synthesis of size-tunable ZnFe{sub 2}O{sub 4} colloidal nanocrystal assemblies and their electrocatalytic activity towards hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruirui, E-mail: liurui1114@outlook.com; Lv, Meng, E-mail: lm199133@126.com; Wang, Qianbin, E-mail: material_wqb@163.com; Li, Hongliang, E-mail: lhl@qdu.edu.cn; Guo, Peizhi, E-mail: pzguo@qdu.edu.cn; Zhao, X.S., E-mail: chezxs@qdu.edu.cn

    2017-02-15

    Three ZnFe{sub 2}O{sub 4} colloidal nanocrystal assemblies (CNAs), namely CNA1, CNA2 and CNA3, have been synthesized solvothermally with the size of 560 nm, 460 nm and 330 nm and are formed by the self-assembly of primary nanocrystals with the crystallite sizes of 19.2 nm, 15.5 nm and 21.8 nm, respectively. It was found that CNA2 performed superparamagnetic behavior with a saturation magnetization value of 36.9 emu g{sup −1} while either CNA1 or CNA3 exhibited weak ferromagnetic with a small hysteresis loop and large saturation magnetization. Electrochemical sensing measurements toward the reduction of hydrogen peroxide showed that the peak currents of the CNAs in cyclic voltammograms showed a linear relationship with the concentration of hydrogen peroxide in the experimental conditions and the peak potentials were increased with the order of CNA3, CNA2 and CNA1. The formation mechanism of ZnFe{sub 2}O{sub 4} CNAs had been discussed based on the experimental data. The magnetism and electrocatalysis of the ZnFe{sub 2}O{sub 4} CNAs were supposed to be dependent on the size of primary nanoparticles and the structure of the CNAs. - Highlights: • Size-tunable ZnFe{sub 2}O{sub 4} colloidal nanocrystal assemblies were synthesized solvothermally. • Magnetic properties of ZnFe{sub 2}O{sub 4} assemblies are depended on the size and self-assembly of primary nanoparticles. • Electrocatalytic activity of ZnFe{sub 2}O{sub 4} assemblies is determined by their structure.

  6. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis.

    Science.gov (United States)

    Li, Xiaoling; Wang, Zi; Li, Yanji; Bian, Kexin; Yin, Tian; Gao, Dawei

    2018-01-01

    As the widely use of gold nanoparticles (AuNPs) in drug delivery, the precise control on the size and morphology of the AuNPs is urgently required. In this scenario, traditional synthesis methods cannot meet current requirement because of their inherent defects. We have depicted here a novel method for fabricating monodispersed large size gold nanoparticles, based on the self-assembly of bacitracin. The AuNPs could be facilely, low-cost, and green synthesized with repeatability and controllability in this method. The Bac gold nanoparticles (Bac-AuNPs), composed by bacitracin core and gold shell, exhibited a spherical morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The mean diameter of the Bac-AuNPs was 89nm. The nanoparticles were mono-dispersed and the zeta potential of the nanoparticles was 4.1±0.64mV. Notably, in cell viability assay, the Bac-AuNPs showed less toxicity to HepG2 cells and HEK293 cells compared to small size AuNPs. Collectively, the size, rheological characteristic and the biocompatibility supported the use of the gold nanoparticles as intracellular delivery vehicles for drug delivery, especially for tumor therapy. And this study could provide a maneuverable, controllable and green strategy for the synthesis of AuNPs, which would be applied in disease diagnosis and therapy with biosafety. Copyright © 2017. Published by Elsevier B.V.

  7. Solvent-driven symmetry of self-assembled nanocrystal superlattices-A computational study

    KAUST Repository

    Kaushik, Ananth P.

    2012-10-29

    The preference of experimentally realistic sized 4-nm facetted nanocrystals (NCs), emulating Pb chalcogenide quantum dots, to spontaneously choose a crystal habit for NC superlattices (Face Centered Cubic (FCC) vs. Body Centered Cubic (BCC)) is investigated using molecular simulation approaches. Molecular dynamics simulations, using united atom force fields, are conducted to simulate systems comprised of cube-octahedral-shaped NCs covered by alkyl ligands, in the absence and presence of experimentally used solvents, toluene and hexane. System sizes in the 400,000-500,000-atom scale followed for nanoseconds are required for this computationally intensive study. The key questions addressed here concern the thermodynamic stability of the superlattice and its preference of symmetry, as we vary the ligand length of the chains, from 9 to 24 CH2 groups, and the choice of solvent. We find that hexane and toluene are "good" solvents for the NCs, which penetrate the ligand corona all the way to the NC surfaces. We determine the free energy difference between FCC and BCC NC superlattice symmetries to determine the system\\'s preference for either geometry, as the ratio of the length of the ligand to the diameter of the NC is varied. We explain these preferences in terms of different mechanisms in play, whose relative strength determines the overall choice of geometry. © 2012 Wiley Periodicals, Inc.

  8. Solvothermal Synthesis of Hierarchical Colloidal Nanocrystal Assemblies of ZnFe2O4 and Their Application in Water Treatment

    Directory of Open Access Journals (Sweden)

    Peizhi Guo

    2016-09-01

    Full Text Available Hierarchical colloidal nanocrystal assemblies (CNAs of ZnFe2O4 have been synthesized controllably by a solvothermal method. Hollow ZnFe2O4 spheres can be formed with the volume ratios of ethylene glycol to ethanol of 1:4 in the starting systems, while solid ZnFe2O4 CNAs are obtained by adjusting the volume proportion of ethylene glycol to ethanol from 1:2 to 2:1. Magnetometric measurement data showed that the ZnFe2O4 CNAs obtained with the volume ratios of 1:2 and 1:1 exhibited weak ferromagnetic behavior with high saturation magnetization values of 60.4 and 60.3 emu·g−1, respectively. However, hollow spheres showed a saturation magnetization value of 52.0 emu·g−1, but the highest coercivity among all the samples. It was found that hollow spheres displayed the best ability to adsorb Congo red dye among all the CNAs. The formation mechanisms of ZnFe2O4 CNAs, as well as the relationship between their structure, crystallite size, and properties were discussed based on the experimental results.

  9. Solvothermal Synthesis of Hierarchical Colloidal Nanocrystal Assemblies of ZnFe₂O₄ and Their Application in Water Treatment.

    Science.gov (United States)

    Guo, Peizhi; Lv, Meng; Han, Guangting; Wen, Changna; Wang, Qianbin; Li, Hongliang; Zhao, Xiusong

    2016-09-29

    Hierarchical colloidal nanocrystal assemblies (CNAs) of ZnFe₂O₄ have been synthesized controllably by a solvothermal method. Hollow ZnFe₂O₄ spheres can be formed with the volume ratios of ethylene glycol to ethanol of 1:4 in the starting systems, while solid ZnFe₂O₄ CNAs are obtained by adjusting the volume proportion of ethylene glycol to ethanol from 1:2 to 2:1. Magnetometric measurement data showed that the ZnFe₂O₄ CNAs obtained with the volume ratios of 1:2 and 1:1 exhibited weak ferromagnetic behavior with high saturation magnetization values of 60.4 and 60.3 emu·g -1 , respectively. However, hollow spheres showed a saturation magnetization value of 52.0 emu·g -1 , but the highest coercivity among all the samples. It was found that hollow spheres displayed the best ability to adsorb Congo red dye among all the CNAs. The formation mechanisms of ZnFe₂O₄ CNAs, as well as the relationship between their structure, crystallite size, and properties were discussed based on the experimental results.

  10. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami.

    Science.gov (United States)

    Yao, Guangbao; Li, Jiang; Chao, Jie; Pei, Hao; Liu, Huajie; Zhao, Yun; Shi, Jiye; Huang, Qing; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2015-03-02

    DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw-puzzle-like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide-functionalized AuNPs function as universal joint units for the one-pot assembly of parent DNA origami of triangular shape to form sub-microscale super-origami nanostructures. AuNPs anchored at predefined positions of the super-origami exhibited strong interparticle plasmonic coupling. This AuNP-mediated strategy offers new opportunities to drive macroscopic self-assembly and to fabricate well-defined nanophotonic materials and devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrogen production over Au-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalyst: Effects of molecular structure and chemical properties of hole scavengers

    International Nuclear Information System (INIS)

    Puangpetch, Tarawipa; Chavadej, Sumaeth; Sreethawong, Thammanoon

    2011-01-01

    Graphical abstract: Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability over the 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst. Display Omitted Research highlights: → The 1 wt.% Au-loaded mesoporous-assembled SrTiO 3 nanocrystal photocatalyst was synthesized. → The molecular structure and chemical properties of hole scavengers affected H 2 production rate. → Formic acid exhibited the highest photocatalytic H 2 production enhancement ability. -- Abstract: The hydrogen production via the photocatalytic water splitting under UV irradiation using different compounds as hole scavengers (including methanol, formic acid, acetic acid, propanoic acid, hydrochloric acid, and sulfuric acid) under a low concentration range ( 3 nanocrystal photocatalyst. The results indicated that the hydrogen production efficiency greatly depended on the molecular structure, chemical properties, and concentration of the hole scavengers. Formic acid, which is the smallest and completely-dissociated water-soluble carboxylic acid, exhibited the highest hydrogen production enhancement ability. The 2.5 vol.% aqueous formic acid solution system provided the highest photocatalytic hydrogen production rate.

  12. Gold and TiO2 Nanostructure Surfaces for Assembling of Electrochemical Biosensors

    International Nuclear Information System (INIS)

    Curulli, A.; Zane, D.

    2008-01-01

    Devices based on nano materials are emerging as a powerful and general class of ultrasensitive sensors for the direct detection of biological and chemical species. In this work, we report the preparation and the full characterization of nano materials such as gold nano wires and TiO 2 nano structured films to be used for assembling of electrochemical biosensors. Gold nano wires were prepared by electroless deposition within the pores of polycarbonate particle track-etched membranes (PMS). Glucose oxidase was deposited onto the nano wires using self-assembling monolayer as an anchor layer for the enzyme molecules. Finally, cyclic voltammetry was performed for different enzymes to test the applicability of gold nano wires as biosensors. Considering another interesting nano material, the realization of functionalized TiO 2 thin films on Si substrates for the immobilization of enzymes is reported. Glucose oxidase and horseradish peroxidase immobilized onto TiO 2 -based nano structured surfaces exhibited a pair of well-defined and quasi reversible voltammetric peaks. The electron exchange between the enzyme and the electrodes was greatly enhanced in the TiO 2 nano structured environment. The electrocatalytic activity of HRP and GOD embedded in TiO 2 electrodes toward H 2 O 2 and glucose, respectively, may have a potential perspective in the fabrication of third-generation biosensors based on direct electrochemistry of enzymes.

  13. Influence of Cetyltrimethylammonium Bromide on Gold Nanocrystal Formation Studied by in Situ Liquid Cell Scanning Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Canepa, Silvia A.; Sneed, Brian T.; Sun, Hongyu

    2018-01-01

    The synthesis of monodisperse size- and shape-controlled Au nanocrystals is often achieved with cetyltrimethylammonium bromide (CTAB) surfactant; however, its role in the growth of such tailored nanostructures is not well understood. To elucidate the formation mechanism(s) and evolution of the mo...

  14. Recovery and redispersion of gold nanoparticles using the self-assembly of a pH sensitive zwitterionic amphiphile.

    Science.gov (United States)

    Morita-Imura, Clara; Imura, Yoshiro; Kawai, Takeshi; Shindo, Hitoshi

    2014-11-04

    The pH-responsive self-assembly of zwitterionic amphiphile C16CA was expanded to the recovery of gold (Au) nanoparticles for environmentally friendly chemistry applications. Multilayered lamellae at pH ∼ 4 were successfully incorporated into nanoparticles by dispersion. Redispersion of nanoparticles was achieved under basic conditions by the transition of self-assembly.

  15. One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties

    International Nuclear Information System (INIS)

    Yang Yong; Matsubara, Shigemasha; Nogami, Masayuki; Shi Jianlin; Huang Weiming

    2006-01-01

    The localized surface plasmon resonance (LSPR) is a collective oscillation of the nanoparticle conduction electrons. LSPR excitation in silver and gold nanoparticles produces strong extinction and scattering spectra that in recent years have been used for important sensing and spectroscopy applications. Tuning the optoelectronic properties by controlling coupled SP modes in metals is one of the major challenges in the area of metal nanomaterials. Here we develop a simple method to fabricate linear-chainlike aggregates of gold nanoparticles (so-called nanochains), tuning the linear optical properties in a wide wavelength range from visible to the near infrared. The aggregation behaviour and linear self-assembly mechanism of citrate-stabilized gold colloids as provoked by the addition of cetyltrimethylammonium bromide (CTAB) are also analysed. The CTAB with appropriate concentration serves as the 'glue' that can link the {100} facets of two neighbour Au NPs, which leads to an anisotropic distribution of the residual surface charge, and this extrinsic electric dipole formation is responsible for the linear organization of the gold NPs into short chains

  16. Adsorption characteristics of self-assembled thiol and dithiol layer on gold

    International Nuclear Information System (INIS)

    Tlili, A.; Abdelghani, A.; Aguir, K.; Gillet, M.; Jaffrezic-Renault, N.

    2007-01-01

    Monolayers of functional proteins are important in many fields related to pure and applied biochemistry and biophysics. The formation of extended uniform protein monolayers by single- or multiple-step self-chemisorption depends on the quality of the functionalized gold surface. The optical and the electrical properties of the 1-nonanethiol and 1,9-nonanedithiol deposited on gold with the self-assembled technique were investigated. We use cyclic voltammetry and impedance spectroscopy to characterize the insulating properties of the two layers. The analysis of the impedance spectra in terms of equivalent circuit of the gold/electrolyte and gold/SAM/electrolyte interface allows defining the thickness of the two thiols and the percentage of coverage area. Atomic force microscopy, contact angle measurement and Fourier transform infra-red spectroscopy have been used for homogeneity, hydrophobic properties and molecular structure of the formed thiols layer, respectively. The measured thickness with impedance spectroscopy fit well the results found with atomic force microscopy

  17. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.

    Science.gov (United States)

    Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M

    2004-05-15

    Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.

  18. Fabrication of molecular hybrid films of gold nanoparticle and polythiophene by covalent assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, Jayaraman, E-mail: jsu2@np.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Environmental & Water Technology Centre of Innovation, Ngee Ann Polytechnic, 599489 (Singapore); Dharmarajan, Rajarathnam [CERAR, University of South Australia, Mawson Lakes, SA 5095 (Australia); Srinivasan, M.P., E-mail: chesmp@nus.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore)

    2015-08-31

    This work demonstrates the fabrication of molecular hybrid films comprising gold nanoparticles (AuNPs) incorporated in covalently assembled, substituted polythiophene (poly(3-(2-bromoethoxy)ethoxymethylthiophene-2,5-diyl (PBrEEMT))) films by different surface chemistry routes. AuNPs are incorporated in the immobilized polythiophene matrix due to its affinity for amine and sulfur. The amount of AuNPs present depends on the nature of the incorporation, the extent of film coverage and interaction of thiophene and amine groups. PBrEEMT films functionalized with amine rich polyallylamine immobilize greater numbers of AuNPs due to more extensive gold–amine interactions. Covalent binding between AuNP and PBrEEMT films was accomplished by using pre-functionalised AuNPs (4-aminothiophenol functionalized AuNPs). Atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to study the morphology and chemical constituents of assembled films. These approaches will pave the way for developing facile methods for nanoparticle incorporation and will also facilitate direct interaction of nanoparticles with the conducting polymer matrix and enhance the electrical properties of the films. - Highlights: • Covalent molecular assembly enabled the fabrication of molecular hybrid films. • Monomeric and polymeric species were employed as intermediate linkers. • Adopted approaches facilitated the direct interaction of gold nanoparticle in films. • The amount of nanoparticle incorporation depended on the extent of film coverage.

  19. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains.

    Science.gov (United States)

    Xu, Liguang; Yin, Honghong; Ma, Wei; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-05-15

    Mercuric ions (Hg(2+)) mediate the transformation of single-stranded DNA to form double helical DNA by T-Hg(2+)-T interaction between base pairs. With this strategy, DNA modified gold nanoparticles (Au NPs) were assembled into chains which were displayed remarkable surface-enhanced Raman scattering (SERS) signal. Under optimized conditions, the length of gold nanochains was directly proportional to the mercuric ions concentrations over 0.001-0.5 ng mL(-1) and the limit of detection (LOD) in drinking water was as low as 0.45 pg mL(-1). With ultrasensitivity and excellent selectivity, this feasible and simple method is potentially as a promising tool for monitoring of mercury ions in food safety and environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    International Nuclear Information System (INIS)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-01-01

    Highlights: • CsPbBr_3 perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr_3 nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr_3 nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr_3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr_3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr_3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr_3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr_3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of

  1. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei, E-mail: awtang@bjtu.edu.cn

    2017-05-31

    Highlights: • CsPbBr{sub 3} perovskite nanocrystals have been synthesized in the presence of organic amines with different hydrocarbon length. • The photoluminescence of the CsPbBr{sub 3} nanocrystals is affected by the varying the carbon length of the organic amines. • The lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr{sub 3} nanocrystals. - Abstract: All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr{sub 3} nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr{sub 3} NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr{sub 3} NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55–80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr{sub 3} NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr{sub 3} NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the

  2. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    Science.gov (United States)

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  3. Selective DNA-Mediated Assembly of Gold Nanoparticles on Electroded Substrates

    Science.gov (United States)

    2008-06-01

    might use the Watson - Crick base-pairing of DNA as a means for ultrahigh-precision engineering is well- known.5,6 The idea is to use the highly specific...Selective DNA -Mediated Assembly of Gold Nanoparticles on Electroded Substrates K. E. Sapsford,†,‡,∇ D. Park,§ E. R. Goldman,‡ E. E. Foos,| S. A...electrodes via DNA hybridization. Protocols are demonstrated for maximizing selectivity and coverage using 15mers as the active binding agents. Detailed

  4. Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers

    Czech Academy of Sciences Publication Activity Database

    Zucchi, I. A.; Hoppe, C. E.; Galante, M. J.; Williams, R. J. J.; López-Quintela, M. A.; Matějka, Libor; Šlouf, Miroslav; Pleštil, Josef

    2008-01-01

    Roč. 41, č. 13 (2008), s. 4895-4903 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701 Grant - others:National Agency for the Promotion of Science and Technology(AR) PICT03-14738; Ministry of Science and Technology(ES) MAT2005-07554-C02-01 Institutional research plan: CEZ:AV0Z40500505 Keywords : self -assembly * gold nanoparticles * hierarchical structure * colloidal crystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008

  5. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters.

    Science.gov (United States)

    Bürgi, Thomas

    2015-10-14

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  6. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters

    Science.gov (United States)

    Bürgi, Thomas

    2015-09-01

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  7. Light-assisted, templated self-assembly of gold nanoparticle chains.

    Science.gov (United States)

    Jaquay, Eric; Martínez, Luis Javier; Huang, Ningfeng; Mejia, Camilo A; Sarkar, Debarghya; Povinelli, Michelle L

    2014-09-10

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.

  8. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    International Nuclear Information System (INIS)

    Kim, Sungwoo; Park, Jeongju; Cho, Jinhan

    2010-01-01

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-Au NP ), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-Au NP , which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-Au NP are structurally transformed into colloidal or network CAT-Au NP nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-Au NP induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and Au NP , and resultantly exhibit a highly catalytic activity toward H 2 O 2 .

  9. Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide

    International Nuclear Information System (INIS)

    Walker, David A; Gupta, Vinay K

    2008-01-01

    Directing the self-assembly of colloidal particles into nanostructures is of great interest in nanotechnology. Here, reversible end-to-end assembly of gold nanorods (GNR) is induced by pH-dependent changes in the secondary conformation of a disulfide-modified poly(L-glutamic acid) (SSPLGA). The disulfide anchoring group drives chemisorption of the polyacid onto the end of the gold nanorods in an ethanolic solution. A layer of poly(vinyl pyrrolidone) is adsorbed on the positively charged, surfactant-stabilized GNR to screen the surfactant bilayer charge and provide stability for dispersion of the GNR in ethanol. For comparison, irreversible end-to-end assembly using a bidentate ligand, namely 1,6-hexanedithiol, is also performed. Characterization of the modified GNR and its end-to-end linking behavior using SSPLGA and hexanedithiol is performed using dynamic light scattering (DLS), UV-vis absorption spectroscopy and transmission electron microscopy (TEM). Experimental results show that, in a colloidal solution of GNR-SSPLGA at a pH∼3.5, where the PLGA is in an α-helical conformation, the modified GNR self-assemble into one-dimensional nanostructures. The linking behavior can be reversed by increasing the pH (>8.5) to drive the conformation of the polypeptide to a random coil and this reversal with pH occurs rapidly within minutes. Cycling the pH multiple times between low and high pH values can be used to drive the formation of the nanostructures of the GNR and disperse them in solution.

  10. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    International Nuclear Information System (INIS)

    Wang Yi; Li Yuanfang; Zhao Xijuan; Huang Chengzhi; Chen Liqiang; Peng Li

    2010-01-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  11. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    Science.gov (United States)

    Wang, Yi; Chen, Li Qiang; Li, Yuan Fang; Zhao, Xi Juan; Peng, Li; Zhi Huang, Cheng

    2010-07-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  12. Facile preparation of luminescent and intelligent gold nanodots based on supramolecular self-assembly

    International Nuclear Information System (INIS)

    Shi Yunfeng; Li Sujuan; Zhou Yahui; Zhai Qingpan; Hu Mengyue; Cai Fensha; Du Jimin; Liang Jiamiao; Zhu Xinyuan

    2012-01-01

    A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated. (paper)

  13. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    International Nuclear Information System (INIS)

    Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos

    2017-01-01

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  14. Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays

    International Nuclear Information System (INIS)

    Chekini, M.; Bierwagen, J.; Cunningham, A.; Bürgi, T.; Filter, R.; Rockstuhl, C.

    2015-01-01

    Localized surface plasmon resonances excited in metallic nanoparticles confine and enhance electromagnetic fields at the nanoscale. This is particularly pronounced in dimers made from two closely spaced nanoparticles. When quantum emitters, such as dyes, are placed in the gap of those dimers, their absorption and emission characteristics can be modified. Both processes have to be considered when aiming to enhance the fluorescence from the quantum emitters. This is particularly challenging for dimers, since the electromagnetic properties and the enhanced fluorescence sensitively depend on the distance between the nanoparticles. Here, we use a layer-by-layer method to precisely control the distances in such systems. We consider a dye layer deposited on top of an array of gold nanoparticles or integrated into a central position of a double array of gold nanoparticles. We study the effect of the spatial arrangement and the average distance on the plasmon-enhanced fluorescence. We found a maximum of a 99-fold increase in the fluorescence intensity of the dye layer sandwiched between two gold nanoparticle arrays. The interaction of the dye layer with the plasmonic system also causes a spectral shift in the emission wavelengths and a shortening of the fluorescence life times. Our work paves the way for large-scale, high throughput, and low-cost self-assembled functionalized plasmonic systems that can be used as efficient light sources

  15. Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berlanga, Isadora [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo [Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beaucheff 851, Santiago (Chile); Gómez, Victoria Alejandra [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Aliaga-Alcalde, Núria [ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys, 23, 08018, Barcelona (Spain); CSIC-ICMAB (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Fuenzalida, Victor [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Flores, Marcos, E-mail: mflorescarra@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); and others

    2017-01-15

    Highlights: • Thiophene curcuminoid molecules deposited on a gold surface by immersion. • Molecular dynamic studies of the molecular arrangement approaching the surface. • XPS and STM studies showing different arrangement of the molecules on the surface. • Molecular Interaction with surface depends on the sulfur position in thiophene rings. • Temporal evolution of the molecular arrangement on the surface. - Abstract: We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.

  16. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.

    Science.gov (United States)

    Fu, Xiuli; Chen, Lingxin; Li, Jinhua

    2012-08-21

    A novel colorimetric method was developed for ultrasensitive detection of heparin based on self-assembly of gold nanoparticles (AuNPs) onto the surface of graphene oxide (GO). Polycationic protamine was used as a medium for inducing the self-assembly of citrate-capped AuNPs on GO through electrostatic interaction, resulting in a shift in the surface plasmon resonance (SPR) absorption of AuNPs and exhibiting a blue color. Addition of polyanionic heparin disturbed the self-assemble of AuNPs due to its strong affinity to protamine. With the increase of heparin concentration, the amounts of self-assembly AuNPs decreased and the color changed from blue to red in solution. Therefore, a "blue-to-red" colorimetric sensing strategy based on self-assembly of AuNPs could be established for heparin detection. Compared with the commonly reported aggregation-based methods ("red-to-blue"), the color change from blue to red was more eye-sensitive, especially in low concentration of target. Moreover, stronger interaction between protamine and heparin led to distinguish heparin from its analogues as well as various potentially coexistent physiological species. The strategy was simply achieved by the self-assembly nature of AuNPs and the application of two types of polyionic media, showing it to be label-free, simple, rapid and visual. This method could selectively detect heparin with a detection limit of 3.0 ng mL(-1) in standard aqueous solution and good linearity was obtained over the range 0.06-0.36 μg mL(-1) (R = 0.9936). It was successfully applied to determination of heparin in fetal bovine serum samples as low as 1.7 ng mL(-1) with a linear range of 0-0.8 μg mL(-1).

  17. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-jun [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China); Zhang, Ning; Wang, Jingyuan [The First Affiliated Hospital of Xi’an Jiaotong University, Department of Clinical Laboratory (China); Yang, Chun-yu; Zhu, Jian, E-mail: nanoptzj@163.com; Zhao, Jun-wu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China)

    2016-02-15

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity.

  18. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Li, Jian-jun; Zhang, Ning; Wang, Jingyuan; Yang, Chun-yu; Zhu, Jian; Zhao, Jun-wu

    2016-01-01

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity

  19. Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Puangpetch, Tarawipa [Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000 (Thailand); Sommakettarin, Pichayaon [The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phyathai Road, Pathumwan, Bangkok 10330 (Thailand); Chavadej, Sumaeth; Sreethawong, Thammanoon [The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phyathai Road, Pathumwan, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-11-15

    The photocatalytic water splitting is a promising process for producing H{sub 2} from two abundant renewable sources of water and solar light, with the aid of a suitable photocatalyst. In this work, a combination of sensitizer addition and noble metal loading was employed to modify perovskite photocatalysts in order to achieve the enhancement of photocatalytic H{sub 2} production under visible light irradiation. The dependence of the H{sub 2} production on type of mesoporous-assembled perovskite titanate nanocrystal photocatalysts (MgTiO{sub 3}, CaTiO{sub 3}, and SrTiO{sub 3}), calcination temperature of photocatalyst, Pt loading, type and concentration of electron donor (diethanolamine, DEA; and triethanolamine, TEA), concentration of sensitizer (Eosin Y, E.Y.), photocatalyst dosage, and initial solution pH, was systematically studied. The experimental results showed that the 0.5 wt.% Pt-loaded mesoporous-assembled SrTiO{sub 3} nanocrystal synthesized by a single-step sol-gel method and calcined at 650 C exhibited the highest photocatalytic H{sub 2} production activity from a 15 vol% DEA aqueous solution with dissolved 0.5 mM E.Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the maximum photocatalytic H{sub 2} production activity were found to be 6 g/l and 11.6, respectively. (author)

  20. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    Directory of Open Access Journals (Sweden)

    Tao Ding

    2016-01-01

    Full Text Available Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  1. Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

    Directory of Open Access Journals (Sweden)

    M. Fátima Barroso

    2016-05-01

    Full Text Available In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC and 1-undecanethiol (SH. After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures.

  2. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition

    NARCIS (Netherlands)

    Saeed, S.; Buters, F.; Dohnalova, K.; Wosinski, L.; Gregorkiewicz, T.

    2014-01-01

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO2. Optical characterization

  3. In situ WetSTEM observation of gold nanorod self-assembly dynamics in a drying colloidal droplet

    Czech Academy of Sciences Publication Activity Database

    Novotný, F.; Wandrol, P.; Proška, J.; Šlouf, Miroslav

    2014-01-01

    Roč. 20, č. 2 (2014), s. 385-393 ISSN 1431-9276 R&D Projects: GA TA ČR TE01020118; GA ČR GAP205/10/0348 Institutional support: RVO:61389013 Keywords : gold nanorods * self-assembly * in situ Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.877, year: 2014

  4. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu; Da'As, Eman Husni; Haverinen, Hanna M.; Cha, Dong Kyu; Malik, Mohammad A.; Jabbour, Ghassan Elie

    2013-01-01

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low

  5. Protein-stabilized fluorescent nanocrystals consisting of a gold core and a silver shell for detecting the total amount of cysteine and homocysteine

    International Nuclear Information System (INIS)

    Gui, Rijun; Wang, Yanfeng; Sun, Jie

    2014-01-01

    We report on a simple and sensitive method for the determination of the total amount of cysteine (Cys) and homocysteine (hCys), [Cys plus hCys], by exploiting the effect of Cys and hCys on the photoluminescence of human serum albumin-stabilized gold-core silver-shell nanocrystals (NCs). If Cys (or hCys) are added to these NCs, Cys (or hCys) will be adsorbed on the surface due to ligand exchange with human serum albumin, and this results in the quenching of the luminescence of the NCs. The addition of mixtures of Cys and hCys in different molar ratios also induces a decrease in luminescence whose intensity is linearly related to the concentration of [Cys plus hCys] in the range from 0.1 – 5.0 μM, with a correlation coefficient (R 2 ) of 0.9953 and a detection limit of 15 nM. The method is highly selective and sensitive over other α-amino acids, water-soluble thiols, and biomolecules. It has been successfully applied to the determination of the concentration of [Cys plus hCys] in spiked solutions of biomolecules and in real biological samples (author)

  6. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles.

    Science.gov (United States)

    Wang, Zhijiang; Wu, Lina; Shen, Baozhong; Jiang, Zhaohua

    2013-09-30

    Fluorescent detection is an attractive method for the detection of toxic chemicals. However, most chemosensors that are currently utilized in fluorescent detection are based on organic dyes or quantum dots, which suffer from instability, high background noise and interference from organic impurities in solution, which can also be excited by UV radiation. In the present research, we developed a novel NaYF4:Yb,Ho/Au nanocomposite-based chemosensor with high sensitivity (10 ppb) and selectivity over competing analytes for the detection of the insecticide cartap. This nanosensor is excited with a 970-nm laser instead of UV radiation to give an emission peak at 541 nm. In the presence of cartap, the nanocomposites aggregate, resulting in enhanced luminescence resonance energy transfer between the NaYF4:Yb,Ho nanocrystals and the gold nanoparticles, which decreases the emission intensity at 541 nm. The relative luminescence intensity at 541 nm has a linear relationship with the concentration of cartap in the solution. Based on this behavior, the developed nanosensor successfully detected cartap in farm produce and water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Self-assembly of single "square" quantum rings in gold-free GaAs nanowires.

    Science.gov (United States)

    Zha, Guowei; Shang, Xiangjun; Su, Dan; Yu, Ying; Wei, Bin; Wang, Li; Li, Mifeng; Wang, Lijuan; Xu, Jianxing; Ni, Haiqiao; Ji, Yuan; Sun, Baoquan; Niu, Zhichuan

    2014-03-21

    Single nanostructures embedded within nanowires (NWs) represent one of the most promising technologies for applications in quantum photonics. However, fabrication imperfections and etching-induced defects are inevitable for top-down fabrications, whereas self-assembly bottom-up approaches cannot avoid the difficulties of its stochastic nature and are limited to restricted heterogeneous material systems. Here we demonstrate the versatile self-assembly of single "square" quantum rings (QR) on the sidewalls of gold-free GaAs NWs for the first time. By tuning the deposition temperature, As overpressure and amount of gallium-droplets, we were able to control the density and morphology of the structure, yielding novel single quantum dots, QR, coupled QRs, and nano-antidots. A proposed model based on a strain-driven, transport-dependent nucleation of gallium droplets at high temperature accounts for the formation mechanism of these structures. We achieved a single-QR-in-NW structure, of which the optical properties were analyzed using micro-photoluminescence at 10 K and a spatially resolved cathodoluminescence technique at 77 K. The spectra show sharp discrete peaks; of these peaks, the narrowest linewidth (separation) was 578 μeV (1-3 meV), reflecting the quantized nature of the ring-type electronic states.

  8. Layer-by-layer assembled multilayers using catalase-encapsulated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungwoo; Park, Jeongju [School of Advanced Materials Engineering, Kookmin University, Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Cho, Jinhan, E-mail: jinhan71@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2010-09-17

    We introduce a novel and versatile approach for the preparation of multilayers, based on catalase-encapsulated gold nanoparticles (CAT-Au{sub NP}), allowing electrostatic charge reversal and structural transformation through pH adjustment. CAT-Au{sub NP}, which are synthesized directly from CAT stabilizer, can be electrostatically assembled with anionic and cationic PEs as a result of the charge reversal of the catalase stabilizers through pH control. In particular, at pH 5.2, near the pI of catalase, dispersed CAT-Au{sub NP} are structurally transformed into colloidal or network CAT-Au{sub NP} nanocomposites. Furthermore, we demonstrate that the layer-by-layer assembled multilayers composed of PEs and CAT-Au{sub NP} induce an effective electron transfer between CAT and the electrode as well as a high loading of CAT and Au{sub NP}, and resultantly exhibit a highly catalytic activity toward H{sub 2}O{sub 2}.

  9. Light-driven self-assembly of hetero-shaped gold nanorods

    Science.gov (United States)

    Liaw, Jiunn-Woei; Chao, Hsueh-Yu; Huang, Cheng-Wei; Kuo, Mao-Kuen

    2018-01-01

    Light-driven self-assembly and coalescence of two nearby hetero-shaped gold nanorods (GNRs) with different lengths are studied theoretically. The optical forces and torques, in terms of Maxwell's stress tensor, upon these GNRs provided by a linearly polarized (LP) plane wave are analyzed using the multiple multipole (MMP) method. Numerical results show that the optical torque dominates their alignments and the optical force their attraction. The most likely outcome of the plasmon-mediated light-matter interaction is wavelength dependent. Three different coalescences of the two GNRs could be induced by a LP light in three different wavelength regimes, respectively. For example, the side-by-side coalescence of two GNRs with radius of 15 nm and different lengths (120 and 240 nm) is induced in water as irradiated by a LP light at 633 nm, the T-shaped one at 1064 nm, and the end-to-end one at 1700 nm. The plasmonic attractive force and heating power densities inside GNRs with different gaps are also studied; the smaller the gap, the larger the attractive force and heating power. The results imply that the plasmonic coalescence and heating of two discrete GNRs may cause the local fusion at the junction of the assembly and the subsequent annealing (even recrystallization). Because the heating makes the two discrete GNRs fused to become a new nanostructure, the plasmonic coalescence of optical manipulation is irreversible.

  10. Photocatalytic H 2 production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO 2 nanocrystal photocatalyst

    Science.gov (United States)

    Sreethawong, Thammanoon; Junbua, Chompoonuch; Chavadej, Sumaeth

    Sensitized photocatalytic production of hydrogen from water splitting is investigated under visible light irradiation over mesoporous-assembled titanium dioxide (TiO 2) nanocrystal photocatalysts, without and with Pt loading. The photocatalysts are synthesized by a sol-gel process with the aid of a structure-directing surfactant and are characterized by N 2 adsorption-desorption analysis, X-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray analysis. The dependence of hydrogen production on the type of TiO 2 photocatalyst (synthesized mesoporous-assembled and commercial non-mesoporous-assembled TiO 2 without and with Pt loading), the calcination temperature of the synthesized photocatalyst, the sensitizer (Eosin Y) concentration, the electron donor (diethanolamine) concentration, the photocatalyst dosage and the initial solution pH is systematically studied. The results show that in the presence of the Eosin Y sensitizer, the Pt-loaded mesoporous-assembled TiO 2 synthesized by a single-step sol-gel process and calcined at 500 °C exhibits the highest photocatalytic activity for hydrogen production from a 30 vol.% diethanolamine aqueous solution with dissolved 2 mM Eosin Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the maximum photocatalytic activity for hydrogen production are 3.33 g dm -3 and 11.5, respectively.

  11. Self-Assembly of Gold Nanoparticles at the Liquid/Liquid Interface

    International Nuclear Information System (INIS)

    Lee, Kang Yeol; Han, Sang Woo

    2005-01-01

    We have shown that the crown ether derivative can mediate the transfer of gold nanoparticles in water solution to water/oil interface, results in directing the self-assembly of nanoparticles in the form of a novel nanocomposite film. The interfacial film of nanoparticles could be transferred to various solid substrates. The experimental results indicate the formation of nanoparticles monolayers at water/oil interfaces. Our work is an important step towards interfacial entrapment and self-assembly of nanoparticles for efficient creation of 2D nanostructures. These types of materials may be used in developing catalysts, sensors, and nanoelectronic devices. Currently, we are attempting to synthesize other composite films by using specific interactions between suitable organic or inorganic ligands and various nanoparticles. The intense research activity in the field of nanoparticles is motivated by the search for new materials in order to further miniaturize electronic devices, as well as by the fundamental question of how molecular electronic properties evolve with increasing size in this intermediate region between molecular and solid-state physics. In this respect, molecularly bridged nanoparticle aggregates have been attracting growing interest. The properties of two-dimensional assemblies of metal nanoparticles are controlled by the composition, geometry, and spatial arrangement of the nanoparticle building blocks. Such structures have been used for a variety of important applications in catalysis, photonics, electronics, and biological sensing. The 2D/3D control over the spatial arrangement of nanoparticles is primarily based on the thiolamphilic nature of metal nanoparticles, hydrogenbonding interactions, the highly specific recognition interaction of antigens/antibodies, and specific base-pairing interactions between DNA and its complementary strand

  12. Thermal conductance of interfaces with molecular layers - low temperature transient absorption study on gold nanorods supported on self assembled monolayers

    Science.gov (United States)

    Wang, Wei; Huang, Jingyu; Murphy, Catherine; Cahill, David; University of Illinois At Urbana Champaign, Department of Materials Science; Engineering Team; Department Collaboration

    2011-03-01

    While heat transfer via phonons across solid-solid boundary has been a core field in condense matter physics for many years, vibrational energy transport across molecular layers has been less well elucidated. We heat rectangular-shaped gold nanocrystals (nanorods) with Ti-sapphire femtosecond pulsed laser at their longitudinal surface plasmon absorption wavelength to watch how their temperature evolves in picoseconds transient. We observed single exponential decay behavior, which suggests that the heat dissipation is only governed by a single interfacial conductance value. The ``RC'' time constant was 300ps, corresponding to a conductance value of 95MW/ m 2 K. This interfacial conductance value is also a function of ambient temperature since at temperatures as low as 80K, which are below the Debye temperature of organic layers, several phonon modes were quenched, which shut down the dominating channels that conduct heat at room temperature.

  13. Reducing HAuCl4 by the C60 dianion: C60-directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies

    International Nuclear Information System (INIS)

    Liu Wei; Gao Xiang

    2008-01-01

    The C 60 dianion is used to reduce tetrachloroauric acid (HAuCl 4 ) for the first time; three-dimensional C 60 bound gold (Au-C 60 ) nanoclusters are obtained from C 60 -directed self-assembly of gold nanoparticles due to the strong affinities of Au-C 60 and C 60 -C 60 . The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C 60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies. TEM demonstrates the formation of 3D nanonetwork aggregates, which are composed of discrete gold nanocores covered with a C 60 monolayer. The SAED and XRD patterns indicate that the gold nanocores inside the capped C 60 molecules belong to the face-centred cubic crystal structure, while the C 60 molecules are amorphous. The EDS and XPS measurements validate that the Au-C 60 nanoclusters contain only Au and C elements and Au 3+ is reduced to Au 0 . FT-IR spectroscopy shows the chemiadsorption of C 60 to the gold nanocores, while Raman spectroscopy demonstrates the electron transfer from the gold nanocores to the chemiadsorbed C 60 molecules. Au-C 60 nanoclusters embedded in tetraoctyl-n-ammonium bromide (TOAB) on glassy carbon electrodes (GCEs) have been fabricated and have shown stable and well-defined electrochemical responses in aqueous solution

  14. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    Science.gov (United States)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified Au

  15. Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides.

    Science.gov (United States)

    Enomoto, Junko; Kageyama, Tatsuto; Myasnikova, Dina; Onishi, Kisaki; Kobayashi, Yuka; Taruno, Yoko; Kanai, Takahiro; Fukuda, Junji

    2018-05-01

    Self-assembled monolayers (SAMs) have been used to elucidate interactions between cells and material surface chemistry. Gold surfaces modified with oligopeptide SAMs exhibit several unique characteristics, such as cell-repulsive surfaces, micropatterns of cell adhesion and non-adhesion regions for control over cell microenvironments, and dynamic release of cells upon external stimuli under culture conditions. However, basic procedures for the preparation of oligopeptide SAMs, including appropriate cleaning methods of the gold surface before modification, have not been fully established. Because gold surfaces are readily contaminated with organic compounds in the air, cleaning methods may be critical for SAM formation. In this study, we examined the effects of four gold cleaning methods: dilute aqua regia, an ozone water, atmospheric plasma, and UV irradiation. Among the methods, UV irradiation most significantly improved the formation of oligopeptide SAMs in terms of repulsion of cells on the surfaces. We fabricated an apparatus with a UV light source, a rotation table, and HEPA filter, to treat a number of gold substrates simultaneously. Furthermore, UV-cleaned gold substrates were capable of detaching cell sheets without serious cell injury. This may potentially provide a stable and robust approach to oligopeptide SAM-based experiments for biomedical studies. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Two-dimensional self-assembly of DNA-functionalized gold nanoparticles

    Science.gov (United States)

    Wang, Wenjie; Zhang, Honghu; Hagen, Noah; Kuzmenko, Ivan; Akinc, Mufit; Travesset, Alex; Mallapragada, Surya; Vaknin, David

    2D superlattices of nanoparticles (NPs) are promising candidates for nano-devices. It is still challenging to develop a simple yet efficient protocol to assemble NPs in a controlled manner. Here, we report on formation of 2D Gibbs monolayers of single-stranded DNA-coated gold nanoparticles (ssDNA-AuNPs) at the air-water interface by manipulation of salts contents. MgCl2 and CaCl2 in solutions facilitate the accumulation of the non-complementary ssDNA-AuNPs on aqueous surfaces. Grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity show that the surface AuNPs assembly forms a mono-particle layer and undergoes a transformation from short-range to long-range (hexagonal) order above a threshold of [MgCl2] or [CaCl2]. For solutions that include two kinds of ssDNA-AuNPs with complementary base-pairing, the surface AuNPs form a thicker film and only in-plane short-range order is observed. By using other salts (NaCl or LaCl3) at concentrations of similar ionic strength to those of MgCl2 or CaCl2, we find that surface adsorbed NPs lack any orders. X-ray fluorescence measurements provide direct evidence of surface enrichment of AuNPs and divalent ions (Ca2 +) . The work was supported by the Office of Basic Energy Sciences, USDOE under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.

  17. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J., E-mail: lwebb@cm.utexas.edu

    2017-02-01

    Highlights: • One-pot synthesis of α-helical-terminated self-assembled monolayers on Au(111). • Synthesis of high density, structured, and covalently bound α-helices on Au(111). • Characterization by surface-averaged and single molecule techniques. • Peptide-terminated surfaces for fabrication of biomaterials and sensors. - Abstract: The Huisgen cycloaddition reaction (“click” chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  18. Self-assembled monolayers of a disulphide-derivatised cobalt-porphyrin on gold

    International Nuclear Information System (INIS)

    Viana, A.S.; Leupold, S.; Montforts, F.-P.; Abrantes, L.M.

    2005-01-01

    A self-assembled monolayer (SAM) of a novel cobalt(II)porphyrin disulphide derivative was prepared on flat gold(1 1 1) electrode. Evidence for surface modification was provided by electrochemical reductive desorption of the monolayer and ellipsometry, consistent with a coverage of 2.5 x 10 -10 mol cm -2 and a thickness of 13 A, respectively. Both results support the presence of SAMs where the molecules share an intermediate position between perpendicular and flat orientation. Scanning tunnelling microscopy have also proven the formation of CoPSS SAMs, however high-resolution images could only be obtained when the CoPSS molecules were diluted in an hexanethiol SAM. The electrocatalytic activity of the surface confined Co-porphyrin was evaluated for the oxygen reduction. Voltammetric data indicate that reaction involves two electrons consistent with the formation of hydrogen peroxide. Under similar experimental conditions the data obtained for an iron-porphyrin analogue points for a full reduction of dioxygen to water

  19. Electrochemical evaluation of avidin-biotin interaction on self-assembled gold electrodes

    International Nuclear Information System (INIS)

    Ding, S.-J.; Chang, B.-W.; Wu, C.-C.; Lai, M.-F.; Chang, H.-C.

    2005-01-01

    The avidin-biotin interaction on 11-mercaptoundecanoic acid self-assembled gold electrodes was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The interfacial properties of the modified electrodes were evaluated in the presence of the Fe(China) 6 3-/4- couple redox as a probe. A simple equivalent circuit model with a constant phase element was used to interpret the obtained impedance spectra. The results of cyclic voltammetry showed that the voltammetric behavior of the redox probe was influenced by the electrode surface modification. It is evident that the accumulation of treated substances and the binding of biotin to avidin on the electrode surface resulted in the increasing electron-transfer resistance and the decreasing capacitance. The changes in the electron-transfer resistance on the avidin-modified electrodes were more sensitive than that in the capacitance while detecting biotin over the 2-10 μg/mL concentration. The detection amount can be as low as 20 ng/mL based on the electron-transfer resistance that presented the change of 4.3 kΩ without the use of labels. The development of a rapid, facile, and sensitive method for the quantitation of nanogram quantities of biomolecules utilizing EIS may be achieved

  20. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    Science.gov (United States)

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  1. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods

    DEFF Research Database (Denmark)

    Jain, Titoo; Westerlund, Axel Rune Fredrik; Johnson, Erik

    2009-01-01

    Gold nanorods (AuNRs) are of interest for a wide range of applications, ranging from imaging to molecular electronics, and they have been studied extensively for the past decade. An important issue in AuNR applications is the ability to self-assemble the rods in predictable structures...... on the nanoscale. We here present a new way to end-to-end link AuNRs with a single or few linker molecules. Whereas methods reported in the literature so far rely on modification of the AuNRs after the synthesis, we here dimerize gold nanoparticle seeds with a water-soluble dithiol-functionalized polyethylene...... that a large fraction of the rods are flexible around the hinging molecule in solution, as expected for a molecularly linked nanogap. By using excess of gold nanoparticles relative to the linking dithiol molecule, this method can provide a high probability that a single molecule is connecting the two rods...

  2. Layer-by-layer assembled porous CdSe films incorporated with plasmonic gold and improved photoelectrochemical behaviors

    International Nuclear Information System (INIS)

    Liu, Aiping; Ren, Qinghua; Yuan, Ming; Xu, Tao; Tan, Manlin; Zhao, Tingyu; Dong, Wenjun; Tang, Weihua

    2013-01-01

    Highlights: • A 3D porous CdSe film with plasmonic gold was fabricated by electrodeposition. • A prominent light absorption enhancement of CdSe films was attained by gold plasmon. • The photoelectrochemical response of CdSe was tunable by Au–CdSe bilayer number. • The porous Au–CdSe films had a potential application in energy conversion devices. -- Abstract: A simple method for creating three-dimensional porous wurtzite CdSe films incorporated with plasmonic gold by the electrochemical layer-by-layer assembly was proposed. A prominent enhancement in light absorption of CdSe films was attained by the efficient light scattering of gold plasmons as sub-wavelength antennas and concentrators and the near-field coupling of gold plasmons with the neighboring porous CdSe films. The broadband photocurrent enhancement of Au–CdSe composite systems in the visible light range and the local current maximum between 600 and 700 nm suggested the cooperative action of antenna effects and electromagnetic field enhancement resulting from localized surface plasmon excitation of gold. Furthermore, the photoelectrochemical response of porous Au–CdSe composite films was highly tunable with respect to the number of Au–CdSe bilayer. The optimal short-circuit current and open-circuit potential were obtained in a four-layer Au–CdSe system because the thicker absorber layer with less porous structure might limit the electrolyte diffusion into the hybrid electrode and impose a barrier for electron tunneling and transferring. The highly versatile and tunable properties of assembled porous Au–CdSe composite films demonstrated their potential application in energy conversion devices

  3. Preparation and characterization of gold nanocrystals and nanomultilayer mirrors for X-ray diffraction experiments; Praeparation und Charakterisierung von Goldnanokristallen und Nanomultilayerspiegeln fuer Roentgenbeugungsexperimente

    Energy Technology Data Exchange (ETDEWEB)

    Slieh, Jawad

    2009-03-15

    In order to make possible studies on the dynamics of protein molecules in their natural environment Sasaki has developed in the last years a new X-ray diffraction procedure. In this procedure, which is called dynamical X-ray tracking (DXT), the diffraction occurs not directly on the protein molecule, but on a nanomirror rigidly bound to the protein molecule. Measured is hereby the time variation od the alignment of the nanocrystal, which is determined by means of the position of the Laue-diffraction points. By means of these position variations statements on structure variations of the studied protein can be derived with a high spatial accuracy in the time domain. The scientific aim of this thesis is the construction of a DXT measuring place as well as the preparation of the requireds nanocrystalline X-ray diffracting protein labels including their characterization. First a short survey about the foundations of the X radiation and their interactions with matter, especially under regardment of X-ray diffraction on crystals, is given. The measuring methods for the determination of the crystal alignment as well as the vertical and lateral crystal size are presented. In the following chapter a comprehensive survey about the different devices and analysis methods used for the fabrication and characterization of gold crystals is presented. Additionally with precise technical statements the self-constructed MBE apparature is described. This apparature has the purpose to fabricate gold nanocrystals by means of the molecular-beam-epitaxy (MBE) procedure. In the fourth chapter the construction of the DXT laboratory are presented and its beam profile in the focus, its divergence, and its beam spectrum determined. Based on this in the fifth chapter the study of the radiation damage of 2 cysteine-peroxyredoxine (2CP) proteins and the detection of this radiation damage without Au colloids and with Au colloids are presented. The main content of the sixth chapter is the precise

  4. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching

    International Nuclear Information System (INIS)

    Sivaraman, Sankar K; Santhanam, Venugopal

    2012-01-01

    Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 × 10 5 ) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface. (paper)

  5. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu

    2013-12-18

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low temperature (120 °C). The size of the resulting NPs can be readily controlled through the concentration of the gold precursor and oleylamine ink. The pure gold composition of the synthesized NPs was confirmed by energy-dispersive X-ray spectroscopy (EDXS) analysis. High-resolution SEM (HRSEM) and TEM (HRTEM), and X-ray diffraction revealed their size and face-centered cubic (fcc) crystal structure, respectively. Owing to the high density of the NP film, UV/Vis spectroscopy showed a red shift in the intrinsic plasmonic resonance peak. We envision the extension of this approach to the synthesis of other nanomaterials and the production of tailored functional nanomaterials and devices. Midas touch: The use of low-cost manufacturing approaches in the synthesis of nanoparticles is critical for many applications. Reactive inkjet printing, along with a judicious choice of precursor/solvent system, was used to synthesize a relatively uniform assembly of crystalline gold nanoparticles, with diameters as small as (8±2)nm, over a given substrate surface. © 2014 WILEY-VCH Verlag GmbH.

  6. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  7. Understanding the self-assembly of proteins onto gold nanoparticles and quantum dots driven by metal-histidine coordination.

    Science.gov (United States)

    Aldeek, Fadi; Safi, Malak; Zhan, Naiqian; Palui, Goutam; Mattoussi, Hedi

    2013-11-26

    Coupling of polyhistidine-appended biomolecules to inorganic nanocrystals driven by metal-affinity interactions is a greatly promising strategy to form hybrid bioconjugates. It is simple to implement and can take advantage of the fact that polyhistidine-appended proteins and peptides are routinely prepared using well established molecular engineering techniques. A few groups have shown its effectiveness for coupling proteins onto Zn- or Cd-rich semiconductor quantum dots (QDs). Expanding this conjugation scheme to other metal-rich nanoparticles (NPs) such as AuNPs would be of great interest to researchers actively seeking effective means for interfacing nanostructured materials with biology. In this report, we investigated the metal-affinity driven self-assembly between AuNPs and two engineered proteins, a His7-appended maltose binding protein (MBP-His) and a fluorescent His6-terminated mCherry protein. In particular, we investigated the influence of the capping ligand affinity to the nanoparticle surface, its density, and its lateral extension on the AuNP-protein self-assembly. Affinity gel chromatography was used to test the AuNP-MPB-His7 self-assembly, while NP-to-mCherry-His6 binding was evaluated using fluorescence measurements. We also assessed the kinetics of the self-assembly between AuNPs and proteins in solution, using time-dependent changes in the energy transfer quenching of mCherry fluorescent proteins as they immobilize onto the AuNP surface. This allowed determination of the dissociation rate constant, Kd(-1) ∼ 1-5 nM. Furthermore, a close comparison of the protein self-assembly onto AuNPs or QDs provided additional insights into which parameters control the interactions between imidazoles and metal ions in these systems.

  8. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  9. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Saeed, Saba; Buters, Frank; Dohnalova, Katerina; Wosinski, Lech; Gregorkiewicz, Tom

    2014-10-10

    We present a structural and optical study of solid-state dispersions of Ge nanocrystals prepared by plasma-enhanced chemical vapor deposition. Structural analysis shows the presence of nanocrystalline germanium inclusions embedded in an amorphous matrix of Si-rich SiO(2).Optical characterization reveals two prominent emission bands centered around 2.6 eV and 3.4 eV, and tunable by excitation energy. In addition, the lower energy band shows an excitation power-dependent blue shift of up to 0.3 eV. Decay dynamics of the observed emission contains fast (nanosecond) and slow (microseconds) components, indicating contributions of several relaxation channels. Based on these material characteristics, a possible microscopic origin of the individual emission bands is discussed.

  10. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films.

    Science.gov (United States)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Kawazumi, Hirofumi; Yamada, Sunao

    2009-04-09

    The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.

  11. Polymer-templated self-assembly of a 2-dimensional gold nanoparticle network

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Westerlund, Fredrik; Moth-Poulsen, Kasper

    2008-01-01

    We here report on the formation of well-ordered 2D gold nanostructures at the air/water interface. Spreading a mixture of alkanethiol-capped gold nanoparticles (AuNPs) and an amphiphilic poly(p-phenylene) on a water surface and compressing the mixture to a surface pressure of 40 mN/m lead...

  12. Self-assembly of octapod-shaped colloidal nanocrystals into a hexagonal ballerina network embedded in a thin polymer film

    NARCIS (Netherlands)

    Arciniegas, Milena P.; Kim, Mee R.; De Graaf, Joost|info:eu-repo/dai/nl/314838961; Brescia, Rosaria; Marras, Sergio; Miszta, Karol; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807; Van Roij, René|info:eu-repo/dai/nl/152978984; Manna, Liberato

    2014-01-01

    Nanoparticles with unconventional shapes may exhibit different types of assembly architectures that depend critically on the environmental conditions under which they are formed. Here, we demonstrate how the presence of polymer (polymethyl methacrylate, PMMA) molecules in a solution, in which

  13. Charge transport in a CoPt3 nanocrystal microwire

    International Nuclear Information System (INIS)

    Beecher, P.; De Marzi, G.; Quinn, A.J.; Redmond, G.; Shevchenko, E.V.; Weller, H.

    2004-01-01

    The electrical characteristics of single CoPt 3 nanocrystal microwires formed by magnetic field-directed growth from colloidal solutions are presented. The wires comprise disordered assemblies of discrete nanocrystals, separated from each other by protective organic ligand shells. Electrical data indicate that the activated charge transport properties of the wires are determined by the nanocrystal charging energy, governed by the size and capacitance of the individual nanocrystals. Focused ion beam-assisted deposition of Pt metal at the wire-electrode junctions is employed to optimize the wire-electrode contacts, whilst maintaining the nanocrystal-dominated transport characteristics of these one-dimensional nanocrystal structures

  14. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...... with that of cyt c in the absence of AuNPs is observed. AuNPs appear to serve as excellent ET relays, most likely by facilitating the electronic coupling between the protein redox center and the electrode surface....

  15. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.

    Science.gov (United States)

    Ma, Jinlong; Hu, Zhenpeng; Wang, Wei; Wang, Xinyu; Wu, Qiang; Yuan, Zhi

    2017-05-24

    A reversible programmed targeting strategy could achieve high tumor accumulation due to its long blood circulation time and high cellular internalization. Here, targeting ligand-modified poly(ethylene glycol) (PEG-ligand), dibutylamines (Bu), and pyrrolidinamines (Py) were introduced on the surface of gold nanoparticles (Au NPs) for reversible shielding/deshielding of the targeting ligands by pH-responsive self-assembly. Hydrophobic interaction and steric repulsion are the main driving forces for the self-assembly/disassembly of Au NPs. The precise self-assembly (pH ≥ 7.2) and disassembly (pH ≤ 6.8) of Au NPs with different ligands could be achieved by fine-tuning the modifying molar ratio of Bu and Py (R m ), which followed the formula R m = 1/(-0.0013X 2 + 0.0323X + 1), in which X is the logarithm of the partition coefficient of the targeting ligand. The assembled/disassembled behavior of Au NPs at pH 7.2 and 6.8 was confirmed by transmission electron microscopy and dynamic light scattering. Enzyme-linked immunosorbent assays and cellular uptake studies showed that the ligands could be buried inside the assembly and exposed when disassembled. More importantly, this process was reversible, which provides the possibility of prolonging blood circulation by shielding ligands associated with the NPs that were effused from tumor tissue.

  17. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.

    2016-08-19

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  18. A Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage

    KAUST Repository

    Jans, Anne C. H.; Gó mez-Suá rez, Adriá n; Nolan, Steven P.; Reek, Joost N. H.

    2016-01-01

    Dinuclear gold complexes have the ability to interact with one or more substrates in a dual-activation mode, leading to different reactivity and selectivity than their mononuclear relatives. In this contribution, this difference was used to control the catalytic properties of a gold-based catalytic system by site-isolation of mononuclear gold complexes by selective encapsulation. The typical dual-activation mode is prohibited by this catalyst encapsulation, leading to typical behavior as a result of mononuclear activation. This strategy can be used as a switch (on/off) for a catalytic reaction and also permits reversible control over the product distribution during the course of a reaction.

  19. Time-of-flight secondary-ion mass spectrometry on thiole self-assembly monolayers on gold; Flugzeit-Sekundaerionenmassenspektrometrie an Thiol self assembly Monolagen auf Gold

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, M.

    2006-07-01

    Aim of this thesis was to get a deeper understanding for the influence of different matrix effects on the emission of molecular secondary ions. For the estimation of the influence of the primary-ion surface interaction a series of different primary-ion species was applied, which differ by mass, kinetic energy, and composition (monoatomic or polyatomic). In the framework of the presented results different matrix effects were studied. For this systematically the influence of the substrate-thiolate, the thiolate-thiolate, and the primary-ion substrate interaction on the formation of characteristic secondary ions was quantified. For the corresponding considerations beside the thiolate secondary ions M{sup -} the gold-thiolate clusters of the type Au{sub x+1}M{sub x}{sup -} were referred to.

  20. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films

    Directory of Open Access Journals (Sweden)

    D. Hewson

    2017-06-01

    Full Text Available Evaporation induced self-assembled (EISA thin films of cellulose nanocrystals (CNCs have shown great potential for displaying structural colour across the visible spectrum. They are believed primarily to reflect left handed circularly polarised (LCP light due to their natural tendency to form structures comprising left handed chirality. Accordingly the fabrication of homogenously coloured CNC thin films is challenging. Deposition of solid material towards the edge of a dried droplet, via the coffee-stain effect, is one such difficulty in achieving homogenous colour across CNC films. These effects are most easily observed in films prepared from droplets where observable reflection of visible light is localised around the edge of the dry film. We report here, the observation of both left and right hand circularly polarised (LCP/RCP light in reflection from distinct separate regions of CNC EISA thin films and we elucidate how these reflections are dependent on the distribution of CNC material within the EISA thin film. Optical models of reflection are presented which are based on structures revealed using high resolution transmission electron microscopy (TEM images of film cross sections. We have also employed spectroscopic characterisation techniques to evaluate the distribution of solid CNC material within a selection of CNC EISA thin films and we have correlated this distribution with polarised light spectra collected from each film. We conclude that film regions from which RCP light was reflected were associated with lower CNC concentrations and thicker film regions.

  2. Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing

    International Nuclear Information System (INIS)

    Li Xin; Qian Jun; He Sailing

    2008-01-01

    Multilayered polyelectrolyte functionalized gold nanorods (GNRs) are reported for the conjugation of and sensitive detection of bio-molecules. Multilayered polyelectrolyte functionalized GNRs can significantly improve the biocompatibility of cetyltrimethylammonium bromide (CTAB) coated GNRs in a bio-environment and can diminish the toxicity induced by CTAB. Biotin, bovine serum albumin (BSA)-biotin and streptavidin are conjugated to polyelectrolyte functionalized GNRs, and the conjugates can serve as a platform for many biotin-streptavidin-based biological applications. Through the robust self-assembly effect of GNRs, biotin-conjugated GNRs are also utilized as a very sensitive probe for the detection of a small amount of streptavidin

  3. Photoluminescence and self-assembly of cesium lead halide perovskite nanocrystals: Effects of chain length of organic amines and reaction temperature

    Science.gov (United States)

    Yuan, Yi; Liu, Zheming; Liu, Zhenyang; Peng, Lan; Li, Yongjie; Tang, Aiwei

    2017-05-01

    All-inorganic halide perovskites have become one of the most prospective materials for lightening and display technology due to their color-tunable and narrow-band emission. Herein, we have systematically studied the effects of organic amines with different hydrocarbon chain length on the optical properties and morphology as well as the crystal structure of colloidal CsPbBr3 nanocrystals (NCs), which were synthesized in the presence of oleic acid (OA) and organic amines by using a simple hot-injection approach. The hydrocarbon chain length has shown an independent correlation to the morphology and crystal structure of the as-obtained CsPbBr3 NCs at 160 °C, but their optical properties can be affected to some extent. The photoluminescence quantum yields (PLQYs) of the CsPbBr3 NCs synthesized in the presence of organic amines with long carbon chain length are generally in the range of 55-80% for different reaction time, but the PLQYs of less than 20% are obtained for the products synthesized in the presence of octylamine (OTAm) with short carbon chain length. The effects of the reaction temperature on the optical properties, size and crystal structure of the CsPbBr3 NCs synthesized in the presence of cetylamine (CTAm) are studied. Interestingly, some nanoplates also appear in these CsPbBr3 NCs obtained at relatively low temperatures (120 and 140 °C), which have a strong tendency to self-assemble into face-to-face nanostructures. Such a similar self-assembly behavior is also observed in the product synthesized in the presence of oleylamine (OLAm), but only flat nanoplates are observed in the products in the presence of OTAm at 120 °C. The results indicate that the lower reaction temperature and hydrocarbon chain length of the organic ligands play a significant role in the self-assembly of CsPbBr3 NCs. This work opens up an alternative approach to controllable-synthesis of perovskite NCs through varying the carbon chain length of organic surfactants, and enlightens

  4. Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals

    NARCIS (Netherlands)

    Wang, H.; Bongio, M.; Farbod, K.; Nijhuis, A.W.G.; Beucken, J.J. van den; Boerman, O.C.; Hest, J. van; Li, Y.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    Colloidal gels are a particularly attractive class of hydrogels for applications in regenerative medicine, and allow for a "bottom-up" fabrication of multi-functional biomaterials by employing micro- or nanoscale particles as building blocks to assemble into shape-specific bulk scaffolds. So far,

  5. XPS and NEXAFS study of tyrosine-terminated propanethiol assembled on gold

    CERN Document Server

    Petoral, R M

    2003-01-01

    Tyrosine-terminated propanethiol (TPT), tyrosine linked to 3-mercaptopropionic acid through an amide bond, is adsorbed to gold surfaces. The adsorbates are characterized by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). XPS is used to investigate the chemical binding and electronic structure of the monolayer. Strong molecular binding of the tyrosine derivative on the gold surface through the sulfur atom is attained. Angle-dependent XPS results shows that TPT molecules are oriented with the sulfur atoms molecularly oriented close to the gold surface and that the phenol moiety is oriented away from the gold surface. Average orientation of the adsorbate on gold is deduced using the NEXAFS results. It shows that the main molecular axis is tilted approximately 38 deg. relative to the Au surface normal. The ring plane of the phenol moiety exhibits a preferential orientation with an average tilt angle of the normal of the ring plane from the surfa...

  6. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  7. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    International Nuclear Information System (INIS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-01-01

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  8. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Jen

    Full Text Available The preconcentration of proteins with low concentrations can be used to increase the sensitivity and accuracy of detection. A nonlinear electrokinetic flow is induced in a nanofluidic channel due to the overlap of electrical double layers, resulting in the fast accumulation of proteins, referred to as the exclusion-enrichment effect. The proposed chip for protein preconcentration was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. This study extends our previous paper, in which gold nanoparticles were manually deposited onto the surface of a protein preconcentrator. In the present work, nanofractures were formed by utilizing the self-assembly of gold-nanoparticle-assisted electric breakdown. This reliable method for nanofracture formation, involving self-assembled monolayers of nanoparticles at the junction gap between microchannels, also decreases the required electric breakdown voltage. The experimental results reveal that a high concentration factor of 1.5×10(4 for a protein sample with an extremely low concentration of 1 nM was achieved in 30 min by using the proposed chip, which is faster than our previously proposed chip at the same conditions. Moreover, an immunoassay of bovine serum albumin (BSA and anti-BSA was carried out to demonstrate the applicability of the proposed chip.

  9. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    International Nuclear Information System (INIS)

    Shakir, Imran; Ali, Zahid; Kang, Dae Joon

    2014-01-01

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers

  10. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, Imran, E-mail: shakir@skku.edu [Deanship of scientific research, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Ali, Zahid [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); National Institute of Lasers and Optronics, Islamabad (Pakistan); Kang, Dae Joon [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-12-25

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers.

  11. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Chemically controlled interfacial nanoparticle assembly into nanoporous gold films for electrochemical applications

    DEFF Research Database (Denmark)

    Christiansen, Mikkel U. -B.; Seselj, Nedjeljko; Engelbrekt, Christian

    2018-01-01

    at the liquid/air interface starting from gold nanoparticles (AuNPs) in an aqueous solution, providing silver-free gold films. Chloroauric acid is reduced to AuNP building blocks by 2-(N-morpholino)ethanesulfonic acid, which also acts as a protecting agent and pH buffer. By adding potassium chloride before Au......, they can be controlled by varying the temperature, chloride concentration, ionic strength, and protonation of the buffer. cNPGF formation is attributed to the destabilization of AuNPs at the air–liquid interface. The developed method generates electrochemically stable cNPGFs up to 20 cm2 in size...

  13. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    Science.gov (United States)

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  14. Self-Assembled Monolayers on Gold of β-Cyclodextrin Adsorbates with Different Anchoring Groups

    NARCIS (Netherlands)

    Méndez Ardoy, Alejandro; Steentjes, Tom; Kudernac, Tibor; Huskens, Jurriaan

    2014-01-01

    We designed multivalent β-cyclodextrin-based adsorbates bearing different anchoring groups aiming to yield stable monolayers with improved packing and close contact of the cavity to the gold surface. Toward this end the primary rim of the β-cyclodextrin was decorated with several functional groups,

  15. "Cloud" assemblies: quantum dots form electrostatically bound dynamic nebulae around large gold nanoparticles.

    Science.gov (United States)

    Lilly, G Daniel; Lee, Jaebeom; Kotov, Nicholas A

    2010-10-14

    Dynamic self-assembled structures of nanoparticles can be produced using predominantly electrostatic interactions. Such assemblies were made from large, positively charged Au metal nanoparticles surrounded by an electrostatically bound cloud of smaller, negatively charged CdSe/ZnS or CdTe quantum dots. At low concentrations they are topologically similar to double electric layers of ions and corona-like assemblies linked by polymer chains. They can also be compared to the topological arrangement of some planetary systems in space. The great advantages of the cloud assemblies are (1) their highly dynamic nature compared to more rigid covalently bound assemblies, (2) simplicity of preparation, and (3) exceptional versatility in components and resulting optical properties. Photoluminescence intensity enhancement originating from quantum resonance between excitons and plasmons was observed for CdSe/ZnS quantum dots, although CdTe dots displayed emission quenching. To evaluate more attentively their dynamic behavior, emission data were collected for the cloud-assemblies with different ratios of the components and ionic strengths of the media. The emission of the system passes through a maximum for 80 QDs ∶ 1 Au NP as determined by the structure of the assemblies and light absorption conditions. Ionic strength dependence of luminescence intensity contradicts the predictions based on the Gouy-Chapman theory and osmotic pressure at high ionic strengths due to formation of larger chaotic colloidally stable assemblies. "Cloud" assemblies made from different nanoscale components can be used both for elucidation of most fundamental aspects of nanoparticle interactions, as well as for practical purposes in sensing and biology.

  16. Rague-Like FeP Nanocrystal Assembly on Carbon Cloth: An Exceptionally Efficient and Stable Cathode for Hydrogen Evolution

    KAUST Repository

    Yang, Xiulin

    2015-05-25

    There is a strong demand to replace expensive Pt catalysts with cheap metal sulfides or phosphides for hydrogen generation in water electrolysis. The earth-abundant Fe can be electroplated on carbon cloth (CC) to form high surface area rague-like FeOOH assembly. Subsequent gas phase phosphidation converts the FeOOH to FeP or FeP2 and the morphology of the crystal assembly is controlled by the phosphidation temperature. The FeP prepared at 250 oC presents lower crystallinity and those prepared at higher temperatures 400 oC and 500 oC possess higher crystallinity but lower surface area. The phosphidation at 300 oC produces nanocrystalline FeP and preserves the high-surface area morphology; thus it exhibits the highest HER efficiency in 0.5 M H2SO4; i.e. the required overpotential to reach 10 and 20 mA/cm2 is 34 and 43 mV respectively. These values are lowest among the reported non-precious metal phosphides on CC. The Tafel slope for the FeP prepared at 300 oC is around 29.2 mV/dec comparable to that of Pt/CC, indicating that the hydrogen evolution for our best FeP is limited by Tafel reaction (same as Pt). Importantly, the FeP/CC catalyst exhibits much better stability in a wide range working current density (up to 1 V/cm2), suggesting that it is a promising replacement of Pt for HER.

  17. Rague-Like FeP Nanocrystal Assembly on Carbon Cloth: An Exceptionally Efficient and Stable Cathode for Hydrogen Evolution

    KAUST Repository

    Yang, Xiulin; Lu, Ang-Yu; Zhu, Yihan; Min, Shixiong; Hedhili, Mohamed N.; Han, Yu; Huang, Kuo-Wei; Li, Lain-Jong

    2015-01-01

    There is a strong demand to replace expensive Pt catalysts with cheap metal sulfides or phosphides for hydrogen generation in water electrolysis. The earth-abundant Fe can be electroplated on carbon cloth (CC) to form high surface area rague-like FeOOH assembly. Subsequent gas phase phosphidation converts the FeOOH to FeP or FeP2 and the morphology of the crystal assembly is controlled by the phosphidation temperature. The FeP prepared at 250 oC presents lower crystallinity and those prepared at higher temperatures 400 oC and 500 oC possess higher crystallinity but lower surface area. The phosphidation at 300 oC produces nanocrystalline FeP and preserves the high-surface area morphology; thus it exhibits the highest HER efficiency in 0.5 M H2SO4; i.e. the required overpotential to reach 10 and 20 mA/cm2 is 34 and 43 mV respectively. These values are lowest among the reported non-precious metal phosphides on CC. The Tafel slope for the FeP prepared at 300 oC is around 29.2 mV/dec comparable to that of Pt/CC, indicating that the hydrogen evolution for our best FeP is limited by Tafel reaction (same as Pt). Importantly, the FeP/CC catalyst exhibits much better stability in a wide range working current density (up to 1 V/cm2), suggesting that it is a promising replacement of Pt for HER.

  18. Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold

    Energy Technology Data Exchange (ETDEWEB)

    Tuccitto, N. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)], E-mail: n.tuccitto@unict.it; Torrisi, V.; Delfanti, I.; Licciardello, A. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)

    2008-12-15

    Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au{sub n}{sup -}) in comparison with the molecular ions (M{sup -}) and clusters (M{sub x}Au{sub y}{sup -}) by using Bi{sup +}, Bi{sub 3}{sup +}, Bi{sub 5}{sup +} beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.

  19. End-to-end self-assembly of gold nanorods in isopropanol solution: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Gordel, M., E-mail: marta.gordel@pwr.edu.pl [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland); Piela, K., E-mail: katarzyna.piela@pwr.edu.pl [Wrocław University of Technology, Department of Physical and Quantum Chemistry (Poland); Kołkowski, R. [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland); Koźlecki, T. [Wrocław University of Technology, Department of Chemical Engineering, Faculty of Chemistry (Poland); Buckle, M. [CNRS, École Normale Supérieure de Cachan, Laboratoire de Biologie et Pharmacologie Appliquée (France); Samoć, M. [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland)

    2015-12-15

    We describe here a modification of properties of colloidal gold nanorods (NRs) resulting from the chemical treatment used to carry out their transfer into isopropanol (IPA) solution. The NRs acquire a tendency to attach one to another by their ends (end-to-end assembly). We focus on the investigation of the change in position and shape of the longitudinal surface plasmon (l-SPR) band after self-assembly. The experimental results are supported by a theoretical calculation, which rationalizes the dramatic change in optical properties when the NRs are positioned end-to-end at short distances. The detailed spectroscopic characterization performed at the consecutive stages of transfer of the NRs from water into IPA solution revealed the features of the interaction between the polymers used as ligands and their contribution to the final stage, when the NRs were dispersed in IPA solution. The efficient method of aligning the NRs detailed here may facilitate applications of the self-assembled NRs as building blocks for optical materials and biological sensing.Graphical Abstract.

  20. Cyclodextrin inclusion complexes with thiocholesterol and their self-assembly on gold: A combined electrochemical and lateral force microscopy analysis

    International Nuclear Information System (INIS)

    Pandey, Rakesh K.; Lakshminarayanan, V.

    2014-01-01

    The present study is an attempt to understand the properties of an interesting self-assembled monolayer system composed of inclusion complexes of thiocholesterol and cyclodextrins. Cyclodextrins were used as host compound while thiocholesterol was used as the entrant molecule into the cavity of cyclodextrins. The improved electron transfer barrier property towards a redox couple indicates a sturdy inclusion complex monolayer. A very large R ct value, 64.6 kΩ·cm 2 for a redox system was obtained in the case of methyl-β-cyclodextrin and thiocholesterol inclusion complex self-assembled monolayer. A rather low value of capacitance 1.2 μF cm −2 measured in supporting electrolyte further signifies the fact that inclusion complex monolayer is quite impermeable for ionic species. In addition lateral force microscopy combined with force–distance analysis revealed the presence of an interesting mixed hydrophilic/hydrophobic surface. - Highlights: • Self-assembled monolayer of inclusion complexes on gold surface • Lateral force microscopy study of the regions of varying hydrophilicities • Could find applications in patterning surfaces to be hydrophilic/hydrophobic • Improved electron transfer barrier properties

  1. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    Science.gov (United States)

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  2. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  3. Water-Based Assembly and Purification of Plasmon-Coupled Gold Nanoparticle Dimers and Trimers

    Directory of Open Access Journals (Sweden)

    Sébastien Bidault

    2012-01-01

    Full Text Available We describe a simple one-pot water-based scheme to produce gold nanoparticle groupings with short interparticle spacings. This approach combines a cross-linking molecule and a hydrophilic passivation layer to control the level of induced aggregation. Suspensions of dimers and trimers are readily obtained using a single electrophoretic purification step. The final interparticle spacings allow efficient coupling of the particle plasmon modes as verified in extinction spectroscopy.

  4. Synthesis and controlled self-assembly of UV-responsive gold nanoparticles in block copolymer templates.

    Science.gov (United States)

    Song, Dong-Po; Wang, Xinyu; Lin, Ying; Watkins, James J

    2014-11-06

    We demonstrate the facile synthesis of gold nanoparticles (GNPs) functionalized by UV-responsive block copolymer ligands, poly(styrene)-b-poly(o-nitrobenzene acrylate)-SH (PS-b-PNBA-SH), followed by their targeted distribution within a lamellae-forming poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer. The multilayer, micelle-like structure of the GNPs consists of a gold core, an inner PNBA layer, and an outer PS layer. The UV-sensitive PNBA segment can be deprotected into a layer containing poly(acrylic acid) (PAA) when exposed to UV light at 365 nm, which enables the simple and precise tuning of GNP surface properties from hydrophobic to amphiphilic. The GNPs bearing ligands of different chemical compositions were successfully and selectively incorporated into the PS-b-P2VP block copolymer, and UV light showed a profound influence on the spatial distributions of GNPs. Prior to UV exposure, GNPs partition along the interfaces of PS and P2VP domains, while the UV-treated GNPs are incorporated into P2VP domains as a result of hydrogen bond interactions between PAA on the gold surface and P2VP domains. This provides an easy way of controlling the arrangement of nanoparticles in polymer matrices by tailoring the nanoparticle surface using UV light.

  5. Mesoporous CdS via Network of Self-Assembled Nanocrystals: Synthesis, Characterization and Enhanced Photoconducting Property.

    Science.gov (United States)

    Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim

    2018-01-01

    Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.

  6. Self-assembled monolayers of semi-fluorinated thiols and disulfides with a potentially antibacterial terminal fragment on gold surfaces

    International Nuclear Information System (INIS)

    Thebault, P.; Taffin de Givenchy, E.; Guittard, F.; Guimon, C.; Geribaldi, S.

    2008-01-01

    Attempts to elaborate the best organized cationic self-assembled monolayers (SAMs) with sulfur derivatives containing potentially bactericidal quaternary ammonium salt moieties have been performed on gold with the final aim to obtain contact-active antibacterial surfaces. Four molecules bearing two hydrocarbon spacers with different lengths between the sulfur atom and the quaternized nitrogen atom, and two different terminal semi-fluorinated alkyl chains have been synthesised and used in view to evaluate their capacity for leading to the highest densities and the highest organization of potentially active molecules on the metal surface. The formation and quality of SAMs characterized by X-ray photoelectron spectroscopy, Internal Reflexion Infra Red Imaging, contact angle and blocking factor measurements depend on the lengths of both the hydrocarbon spacer and terminal perfluorinated chain

  7. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical response to tetrabromobisphenol A

    International Nuclear Information System (INIS)

    Wang, Yanying; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Li, Chunya; Wu, Kangbing

    2016-01-01

    Cysteine (Cys) was electrochemically deposited on a glassy carbon electrode (GCE) by cyclic voltammetry. The poly-Cys modified electrode was placed in a solution of gold nanorods (GNRs) to induced self-assembly of the GNRs. The GNRs/poly-Cys/GCEs were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. A voltammetric study on tetrabromobisphenol A (TBBPA) with this GCE showed the current response to be enhanced by a factor of 11 compared to a non-modified GCE. Based on these findings, a square wave voltammetric assay was worked out. Under optimized conditions, a linear relationship between the oxidation peak current and TBBPA is found for the 10 nM to 10 μM concentration range. The detection limit is 3.2 nM (at an S/N ratio of 3). The electrode was successfully applied to the determination of TBBPA in spiked tap water and lake water samples. (author)

  8. Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Gold-Thiol Self-assembled Monolayers at High Coverage

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2009-01-01

    the structural motifs observed on surfaces at low coverage and on gold nanoparticles to the observed spectroscopic properties of high-coverage SAMs formed by methanethiol. However, the significant role attributed to intermolecular steric packing effects suggests a lack of generality for the adatom-mediated motif......Self-assembled monolayers (SAMs) formed by chemisorption of a branched-chain alkanethiol, 2-methyl-1-propanethiol, on Au(111) surfaces were studied by in situ scanning tunneling microscopy (STM) under electrochemical potential control and analyzed using extensive density functional theory (DFT...... two R−S−Au−S−R adatom-mediated motifs per surface cell, with steric-induced variations in the adsorbate alignment inducing the observed STM image contrasts. Observed pits covering 5.6 ± 0.5% of the SAM surface are consistent with this structure. These results provide the missing link from...

  9. Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode

    International Nuclear Information System (INIS)

    Hammami, Asma; Raouafi, Noureddine; Sahli, Rihab

    2016-01-01

    We report on the design of a simple yet sensitive and selective electrode for amperometric determination of dopamine at a cathodic potential as low as −0.30 V vs. Ag/AgCl. The electrode was obtained by self-assembly of ω-mercaptopropyl naphthoquinone (NQ-SAM) on the surface of a polycrystalline gold electrode. The presence of dopamine induces an increase of the reduction current peak at −0.30 V corresponding to the reduction of naphthoquinone to hydronaphthoquinone. Dopamine and dopamine-quinone accumulate on the surface to form a 3D network linked by hydrogen bonds. Raman and infrared spectroscopy as well as atomic force microscopy confirmed the multilayer formation. The method allows dopamine to be indirectly detected at a working potential that is lower by 0.50 V than the standard oxidation potential at a bare gold electrode. The sensor shows distinct oxidation potentials for dopamine (120 mV), ascorbic acid (280 mV) and uric acid (520 mV) which makes the method fairly selective. The analytical range extends from 1 to 100 μM concentrations of dopamine, and the limits of detection and quantification are 0.040 and 0.134 μM, respectively. (author)

  10. The nanocoherer: an electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper

    Science.gov (United States)

    Minnai, Chloé; Mirigliano, Matteo; Brown, Simon A.; Milani, Paolo

    2018-03-01

    We report the realization of a resettable resistive switching device based on a nanostructured film fabricated by supersonic cluster beam deposition of gold clusters on plain paper substrates. Through the application of suitable voltage ramps, we obtain, in the same device, either a complex pattern of resistive switchings, or reproducible and stable switchings between low resistance and high resistance states, with an amplitude up to five orders of magnitude. Our device retains a state of internal resistance following the history of the applied voltage similar to that reported for memristors. The two different switching regimes in the same device are both stable, the transition between them is reversible, and it can be controlled by applying voltage ramps or by mechanical deformation of the substrate. The device behavior can be related to the formation, growth and breaking of junctions between the loosely aggregated gold clusters forming the nanostructured films. The fact that our cluster-assembled device is mechanically resettable suggests that it can be considered as the analog of the coherer: a switching device based on metallic powders used for the first radio communication system.

  11. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junbo, E-mail: Lijunbo@haust.edu.cn [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China); Wu, Wenlan [Henan University of Science and Technology, School of Medicine (China); Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China)

    2017-03-15

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB) coating gold nanoparticles (PEG-b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  12. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Science.gov (United States)

    Li, Junbo; Wu, Wenlan; Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan

    2017-03-01

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol- b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG- b-PAMPImB) coating gold nanoparticles (PEG- b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  13. Disulfide-induced self-assembled targets : A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-01-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol-modified probes, each of which specifically

  14. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, E. (Ehsan); M. Hosseini (Morteza); Davari, M.D. (Mehdi D.); Ganjali, M.R. (Mohammad R.); M.P. Peppelenbosch (Maikel); F. Rezaee (Farhad)

    2017-01-01

    textabstractA modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which

  15. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    Science.gov (United States)

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  16. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold : Base matters

    NARCIS (Netherlands)

    Valkenier, Hennie; Huisman, Everardus H.; Hal, Paul A. van; de Leeuw, Dagobert; Chiechi, Ryan C.; Hummelen, Jan C.

    2011-01-01

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases

  17. Cloning nanocrystal morphology with soft templates

    Science.gov (United States)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  18. Electrochemical detection of Cd2+ ions by a self-assembled monolayer of 1,9-nonanedithiol on gold

    International Nuclear Information System (INIS)

    Malel, Esteban; Sinha, Jatin K.; Zawisza, Izabella; Wittstock, Gunther; Mandler, Daniel

    2008-01-01

    The application of 1,9-nonanedithiol (NDT) self-assembled monolayer (SAM) on gold for the electrochemical determination of Cd 2+ was studied. Interestingly, we found that a NDT SAM strongly affects the stripping wave of Cd, resulting in a sharp peak that was used for electroanalytical determination of Cd 2+ in aqueous solutions. The different parameters, such as potential and time of deposition of Cd, were examined. Furthermore, polarization-modulated infrared reflection absorption spectroscopy (PM IRRAS) and X-ray photoelectron spectroscopy (XPS) were used for exploring the interaction between the deposited Cd and the thiol groups on Au. FTIR measurements clearly indicate that NDT is assembled in a disordered liquid type monolayer interacting with the Au electrode via both thiol moieties. XPS reveals that Cd is stripped at two different potentials and that the signal of sulfur is almost unchanged by deposition and desorption of Cd. All these finding allude to the interesting conclusion that Cd is deposited on Au lifting to some extent the thiol groups

  19. Rhizome of Anemarrhena asphodeloides as mediators of the eco-friendly synthesis of silver and gold spherical, face-centred cubic nanocrystals and its anti-migratory and cytotoxic potential in normal and cancer cell lines.

    Science.gov (United States)

    Lee, Hyun A; Castro-Aceituno, Veronica; Abbai, Ragavendran; Moon, Seong Soo; Kim, Yeon-Ju; Simu, Shakina Yesmin; Yang, Deok Chun

    2018-03-29

    The water extract of Anemarrhena asphodeloides, the traditional oriental medicinal plant, mediated the eco-friendly synthesis of silver nanoparticles (Aa-AgNPs) and gold nanoparticles (Aa-AuNPs). First, its therapeutic rhizome was powdered prior to water extraction and then silver, gold nanoparticles were synthesized. Aa-AgNPs and Aa-AuNPs were found to be spherical, face-centred cubic nanocrystals with a Z-average hydrodynamic diameter of 190 and 258 nm, respectively. In addition, proteins and aromatic biomolecules were the plausible players associated with the production and stabilization of Aa-AgNPs; instead, phenolic compounds were responsible for the synthesis and stability of Aa-AuNPs. In vitro cytotoxic analysis revealed that up to 50 μg.mL -1 concentration Aa-AuNPs did not exhibit any toxicity on 3T3-L1, HT29 and MCF7 cell lines, while being specifically cytotoxic to A549 cell line. On the contrary, Aa-AgNPs displayed a significantly higher toxicity in comparison to Aa-AuNPs in all cell lines specially MCF7 cell line. Since cancer cells were more sensitive to Aa-Au/AgNPs treatments, further evaluation was done in order to determine their anticancer potential. Reactive oxygen species (ROS) generation was not affected by Aa-AuNPs, on the other hand, Aa-AgNPs treatment exhibited a higher potential to induce oxidative stress in A549 cells than HT29 and MCF7 cells. In addition, Aa-Ag/AuNPs reduced cell migration in A549 cells at 10 and 50 μg.mL -1 , respectively. So far, this is the only report uncovering the ability of A. asphodeloides to synthesize silver and gold nanoparticles with anticancer potential and also indirectly enabling its large-scale utilization with value addition.

  20. Flower-like self-assembly of gold nanoparticles for highly sensitive electrochemical detection of chromium(VI)

    International Nuclear Information System (INIS)

    Ouyang Ruizhuo; Bragg, Stefanie A.; Chambers, James Q.; Xue Ziling

    2012-01-01

    Highlights: ► Fabrication of a flower-like self-assembly of two AuNP layers on a GCE. ► Cr(VI) detection: 10–1200 ng L −1 concentration range; 2.9 ng L −1 detection limit. ► The 1st AuNP layer on the GCE surface as anchors for a thiol sol–gel film. ► The sol–gel film link the 1st AuNP layer to the 2nd AuNP layer. ► Functionalization of the 2nd AuNP layer by a thiol pyridinium for HCrO 4 − detection. - Abstract: We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNP layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol–gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNP layer is then self-assembled on the surface of the sol–gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1200 ng L −1 and a low detection limit of 2.9 ng L −1 . In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy.

  1. Phase transitions and doping in semiconductor nanocrystals

    Science.gov (United States)

    Sahu, Ayaskanta

    impurities (or doping) allows further control over the electrical and optical properties of nanocrystals. However, while impurity doping in bulk semiconductors is now routine, doping of nanocrystals remains challenging. In particular, evidence for electronic doping, in which additional electrical carriers are introduced into the nanocrystals, has been very limited. Here, we adopt a new approach to electronic doping of nanocrystals. We utilize a partial cation exchange to introduce silver impurities into cadmium selenide (CdSe) and lead selenide (PbSe) nanocrystals. Results indicate that the silver-doped CdSe nanocrystals show a significant increase in fluorescence intensity, as compared to pure CdSe nanocrystals. We also observe a switching from n- to p-type doping in the silver-doped CdSe nanocrystals with increased silver amounts. Moreover, the silver-doping results in a change in the conductance of both PbSe and CdSe nanocrystals and the magnitude of this change depends on the amount of silver incorporated into the nanocrystals. In the bulk, silver chalcogenides (Ag2E, E=S, Se, and Te) possess a wide array of intriguing properties, including superionic conductivity. In addition, they undergo a reversible temperature-dependent phase transition which induces significant changes in their electronic and ionic properties. While most of these properties have been examined extensively in bulk, very few studies have been conducted at the nanoscale. We have recently developed a versatile synthesis that yields colloidal silver chalcogenide nanocrystals. Here, we study the size dependence of their phase-transition temperatures. We utilize differential scanning calorimetry and in-situ X-ray diffraction analyses to observe the phase transition in nanocrystal assemblies. We observe a significant deviation from the bulk alpha (low-temperature) to beta (high-temperature) phase-transition temperature when we reduce their size to a few nanometers. Hence, these nanocrystals provide great

  2. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly.

    Science.gov (United States)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-28

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.

  3. Studies on the effect of solvents on self-assembly of thioctic acid and Mercaptohexanol on gold

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiguo; Niu Tianxing [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Zhang Zhenjiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006 (China); Feng Guiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping, E-mail: bisp@nju.edu.c [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)

    2011-04-29

    In this article we investigated the effect of solvents (CCl{sub 4}, CH{sub 3}CN, DMF, ethanol, ethanol-H{sub 2}O and H{sub 2}O) on self-assembly of Thioctic acid (TA) and Mercaptohexanol (MCH) on gold by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical characteristics of TA and MCH self-assembled monolayers (SAMs) formed in different solvents were evaluated by inspecting the ions permeability (interfacial capacitance C and phase angle {phi}{sub 1Hz}) and electron transfer capability (current density difference {Delta}i and charge transfer resistance R{sub ct}). Experimental results indicated that the ability of solvents availing the ordering of SAMs was: for TA, CCl{sub 4} > ethanol > CH{sub 3}CN > ethanol-H{sub 2}O > DMF; for MCH, H{sub 2}O > ethanol-H{sub 2}O {approx} CCl{sub 4} > ethanol {approx} CH{sub 3}CN > DMF. Through relating the C, {phi}{sub 1Hz}, {Delta}i and R{sub ct} of SAMs (TA and MCH) with parameters of solvent (polarity E{sub T}{sup N}, solubility parameter {delta} and octanol/water partition coefficients logP{sub ow}), it was found that solvents with bigger logP{sub ow} (smaller E{sub T}{sup N} and {delta}) availed the ordering of TA-SAMs but the effect of solvents on MCH self-assembly was complex and MCH-SAMs formed in H{sub 2}O (the biggest E{sub T}{sup N}, {delta} and the smallest logP{sub ow}) and CCl{sub 4} (the smallest E{sub T}{sup N}, {delta} and the biggest logP{sub ow}) were more ordered than in other solvents.

  4. Experimental evidence for self-assembly of CeO2 particles in solution: Formation of single-crystalline porous CeO2 nanocrystals

    DEFF Research Database (Denmark)

    Tan, Hui Ru; Tan, Joyce Pei Ying; Boothroyd, Chris

    2012-01-01

    Single-crystalline porous CeO2 nanocrystals, with sizes of ∼20 nm and pore diameters of 1-2 nm, were synthesized successfully using a hydrothermal method. Using electron tomography, we imaged the three-dimensional structure of the pores in the nanocrystals and found that the oriented aggregation ...... energy-loss spectroscopy. The oxygen vacancies might play an important role in oxygen diffusion in the crystals and the catalytic activities of single-crystalline porous CeO 2 structures. © 2011 American Chemical Society....

  5. Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties

    NARCIS (Netherlands)

    de Girolamo, Julia; Reiss, Peter; Zagorska, Malgorzata; de Bettignies, Remi; Bailly, Severine; Mevellec, Jean-Yves; Lefrant, Serge; Travers, Jean-Pierre; Pron, Adam

    2008-01-01

    Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary

  6. Self-assembled gold nanoparticles modified ITO electrodes: The monolayer binder molecule effect

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara; Cassani, Maria Cristina; Scavetta, Erika; Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento 4, 40136 Bologna, INSTM, UdR Bologna (Italy)

    2008-11-15

    The fabrication of gold attached organosilane-coated indium tin oxide Au{sub NPs}-MPTMS/ITO and Au{sub NPs}-APTES/ITO electrodes [MPTMS 3-(mercaptopropyl)-trimethoxysilane, APTES = 3-(aminopropyl)-triethoxysilane, ITO = indium tin oxide] was carried out making use of a well-known two-step procedure and the role played by the -SH and -NH{sub 2} functional groups in the two electrodes has been examined and compared using different techniques. Information about particle coverage and inter-particle spacing has been obtained using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) whereas, bulk surface properties have been probed with UV-vis spectroscopy, CV and electrochemical impedance spectroscopy (EIS). The catalytic activity of the two electrodes has been evaluated studying the electrooxidation of methanol in alkaline conditions. The results obtained show that the NH{sub 2} functionality in the APTES binder molecule favours the formation of isle-like Au nanoparticle aggregates that lead to both a higher electron transfer and electrocatalytic activity. (author)

  7. New method for preparation of polyoxometalate-capped gold nanoparticles, and their assembly on an indium-doped tin oxide electrode

    International Nuclear Information System (INIS)

    Cheng, Y.; Zheng, J.; Wang, Z.; Liu, L.; Wu, Y.; Yang, J.

    2011-01-01

    Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1. 34 x 10 5 mol -1 .L.s -1 . The amperometric method gave a linear range from 2. 5 x 10 -6 to 1. 5 x 10 -3 M and a detection limit of 1. 0 x 10 -6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes. (author)

  8. Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Cassani, Maria Cristina; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Lazzari, Dario; Bertola, Maurizio

    2016-01-01

    Metal/organosilane/oxide sandwich structures were prepared via a two-step self-assembly method. First, indium tin oxide (ITO) substrates were functionalized with the following fluoroalkylsilanes (FAS): RFC(O)N(H)(CH2)3Si(OMe)3 (1, RF = C5F11), containing an embedded amide between the perfluoroalkyl chain and the syloxanic moiety, and RF(CH2)2Si(OEt)3 (2, RF = C6F13). Subsequently, Au nanoparticles (AuNPs) introduction in the obtained systems was carried out by controlled immersion into a solution of citrate-stabilized AuNPs. The physico-chemical properties of the target materials were thoroughly investigated by using various complementary techniques. Finally, the application of such systems as catalysts for methanol electro-oxidation under alkaline conditions was investigated, revealing the synergistical role played by FAS and AuNPs in promoting a remarkable electrocatalytic activity.

  9. Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Te-Hua [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Chang, Win-Jin, E-mail: changwj@mail.ksu.edu.tw [Department of Mechanical Engineering Kun Shan University, Tainan 710, Taiwan (China); Fan, Yu-Cheng [Institute of Mechanical and Electromechanical Engineering National Formosa University, Yunlin 632, Taiwan (China); Weng, Cheng-I [Department of Mechanical Engineering National Cheng Kung University, Tainan, 710, Taiwan (China)

    2009-08-15

    Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.

  10. Molecular dynamics of contact behavior of self-assembled monolayers on gold using nanoindentation

    International Nuclear Information System (INIS)

    Fang, Te-Hua; Chang, Win-Jin; Fan, Yu-Cheng; Weng, Cheng-I

    2009-01-01

    Molecular dynamics simulation is used to study nanoindentation of the self-assembled monolayers (SAMs) on an Au surface. The interaction of SAM atoms is described by a general universal force field (UFF), the tight-binding second-moment approximation (TB-SMA) is used for Au substrate, and the Lennard-Jones potential function is employed to describe interaction among the indenter, the SAMs, and the Au substrate atoms. The model consists of a planar Au substrate with n-hexadecanethiol SAM chemisorbed to the substrate. The simulation results show that the contact pressure increases as the SAMs temperature increases. In addition, the contact pressure also increases as the depth and velocity of indentation increase.

  11. Formation of noble metal nanocrystals in the presence of biomolecules

    Science.gov (United States)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  12. Clay-chitosan-gold nanoparticle nanohybrid: Preparation and application for assembly and direct electrochemistry of myoglobin

    International Nuclear Information System (INIS)

    Zhao Xiaojuan; Mai Zhibin; Kang Xinhuang; Dai Zong; Zou Xiaoyong

    2008-01-01

    A biocompatible nanohybrid material (clay/AuCS) based on clay, chitosan and gold nanoparticles was explored. The material could provide a favorable microenvironment for proteins to realize the direct electron transfer on glassy carbon electrodes (GCE). Myoglobin (Mb), as a model protein to investigate the nanohybrid, was immobilized between the clay/AuCS film and another clay layer. Mb in the system exhibited a pair of well-defined and quasi-reversible redox peaks at -0.160 V (vs. saturated Ag/AgCl electrode) in 0.1 M PBS (pH 7.0), corresponding to its heme Fe III /Fe II redox couples. UV-vis spectrum suggested that Mb retained its native conformation in the system. Basal plane spacing of clay obtained by X-ray diffraction (XRD) indicated that there was an intercalation-exfoliation-restacking process among Mb, AuCS and clay during the modified film drying. Excellent biocatalytic activity of Mb in the modified system was exemplified by the reduction of hydrogen peroxide and nitrite. The linear range of H 2 O 2 determination was from 3.9 x 10 -5 to 3.0 x 10 -3 M with a detection limit of 7.5 μM based on the signal to noise ratio of 3. The kinetic parameters such as α (charge transfer coefficient), k s (electron transfer rate constant) and K m (Michaelis-Menten constant) were evaluated to be 0.55, 2.66 ± 0.15 s -1 and 5.10 mM, respectively

  13. Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers.

    Science.gov (United States)

    La Torre, Alessandro; Giménez-López, Maria del Carmen; Fay, Michael W; Rance, Graham A; Solomonsz, William A; Chamberlain, Thomas W; Brown, Paul D; Khlobystov, Andrei N

    2012-03-27

    Graphitized carbon nanofibers (GNFs) act as efficient templates for the growth of gold nanoparticles (AuNPs) adsorbed on the interior (and exterior) of the tubular nanostructures. Encapsulated AuNPs are stabilized by interactions with the step-edges of the individual graphitic nanocones, of which GNFs are composed, and their size is limited to approximately 6 nm, while AuNPs adsorbed on the atomically flat graphitic surfaces of the GNF exterior continue their growth to 13 nm and beyond under the same heat treatment conditions. The corrugated structure of the GNF interior imposes a significant barrier for the migration of AuNPs, so that their growth mechanism is restricted to Ostwald ripening. Conversely, nanoparticles adsorbed on smooth GNF exterior surfaces are more likely to migrate and coalesce into larger nanoparticles, as revealed by in situ transmission electron microscopy imaging. The presence of alkyl thiol surfactant within the GNF channels changes the dynamics of the AuNP transformations, as surfactant molecules adsorbed on the surface of the AuNPs diminished the stabilization effect of the step-edges, thus allowing nanoparticles to grow until their diameters reach the internal diameter of the host nanofiber. Nanoparticles thermally evolved within the GNF channel exhibit alignment, perpendicular to the GNF axis due to interactions with the step-edges and parallel to the axis because of graphitic facets of the nanocones. Despite their small size, AuNPs in GNF possess high stability and remain unchanged at temperatures up to 300 °C in ambient atmosphere. Nanoparticles immobilized at the step-edges within GNF are shown to act as effective catalysts promoting the transformation of dimethylphenylsilane to bis(dimethylphenyl)disiloxane with a greater than 10-fold enhancement of selectivity as compared to free-standing or surface-adsorbed nanoparticles. © 2012 American Chemical Society

  14. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers

    International Nuclear Information System (INIS)

    Xia, Ning; Ma, Fengji; Zhao, Feng; He, Qige; Du, Jimin; Li, Sujuan; Chen, Jing; Liu, Lin

    2013-01-01

    Highlights: • Performances of p-AP redox cycling using different reductants on gold surface are compared. • Background current decreases in order of hydrazine, Na 2 SO 3 , NaBH 4 , NADH, cysteamine, and TCEP. • Chemical reaction rate with QI increases in order of NADH, TCEP, and cysteamine. • NADH, TCEP and cysteamine are suitable for p-AP redox cycling on gold electrode. -- Abstract: p-Aminophenol (p-AP) redox cycling using chemical reductants is one strategy for developing sensitive electrochemical sensors. However, most of the reported reductants are only used on indium-tin oxide (ITO) electrodes but not gold electrodes due to the high background current caused by the oxidation reaction of the reductants on the highly electrocatalytic gold electrodes. Therefore, new strategies and/or reductants are in demand for expanding the application of p-AP redox cycling on gold electrodes. In this work, we compared the performances of several reductants in p-AP redox cycling on self-assembled monolayers (SAMs)-modified gold electrodes. Among the tested reagents, nicotinamide adenine dinucleotide (NADH), tris(2-carboxyethyl)phosphine (TCEP) and cysteamine were demonstrated to be suitable for p-AP redox cycling on the alkanethiol-modified gold electrodes because of their low background current. The rate of chemical reaction between reductants and p-quinone imine (QI, the electrochemically oxidized product of p-AP) increases in the order of NADH −1 was achieved. We believe that our work will be valuable for the development of electrochemical sensors using p-AP redox cycling on gold electrodes

  15. Photocatalytic H{sub 2} production from water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled Pt/TiO{sub 2} nanocrystal photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sreethawong, Thammanoon; Chavadej, Sumaeth [The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phyathai Road, Pathumwan, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Junbua, Chompoonuch [The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phyathai Road, Pathumwan, Bangkok 10330 (Thailand)

    2009-05-15

    Sensitized photocatalytic production of hydrogen from water splitting is investigated under visible light irradiation over mesoporous-assembled titanium dioxide (TiO{sub 2}) nanocrystal photocatalysts, without and with Pt loading. The photocatalysts are synthesized by a sol-gel process with the aid of a structure-directing surfactant and are characterized by N{sub 2} adsorption-desorption analysis, X-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray analysis. The dependence of hydrogen production on the type of TiO{sub 2} photocatalyst (synthesized mesoporous-assembled and commercial non-mesoporous-assembled TiO{sub 2} without and with Pt loading), the calcination temperature of the synthesized photocatalyst, the sensitizer (Eosin Y) concentration, the electron donor (diethanolamine) concentration, the photocatalyst dosage and the initial solution pH is systematically studied. The results show that in the presence of the Eosin Y sensitizer, the Pt-loaded mesoporous-assembled TiO{sub 2} synthesized by a single-step sol-gel process and calcined at 500 C exhibits the highest photocatalytic activity for hydrogen production from a 30 vol.% diethanolamine aqueous solution with dissolved 2 mM Eosin Y. Moreover, the optimum photocatalyst dosage and initial solution pH for the maximum photocatalytic activity for hydrogen production are 3.33 g dm{sup -3} and 11.5, respectively. (author)

  16. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    Science.gov (United States)

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  17. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Science.gov (United States)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  18. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.

    Science.gov (United States)

    Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong

    2016-05-24

    Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.

  19. FET immunosensor for hemoglobin A1c using a gold nanofilm grown by a seed-mediated technique and covered with mixed self-assembled monolayers

    International Nuclear Information System (INIS)

    Xue, Q.; Bian, C.; Tong, J.; Sun, J.; Zhang, H.; Xia, S.

    2012-01-01

    A micro FET-based immunosensor was developed for the determination of hemoglobin-A1c (HbA1c). The HbA1c/hemoglobin ratio is an important index in diabetes control. The sensor was fabricated by Complementary Metal-Oxide-Semiconductor Transistor (CMOS) and Micro Electronic Mechanical System (MEMS) techniques. The antibodies were immobilized via mixed self-assembled monolayers (SAMs) on a gold nanofilm. The nanofilm was deposited on a gold electrode by seed-mediated growth and gave a uniform and well distributed coverage. Nonspecific sites and interferences by noise were eliminated by covering the AuNPs with mixed SAMs. Compared to the immunosensor fabricated via the mixed SAMs method without gold nanofilm, the immunosensor displays a more than 2-fold sensitivity. The immunosensor is capable of detecting HbA1c and hemoglobin in hemolyzed and diluted whole blood, and results showed good agreement with the established clinical method. (author)

  20. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  1. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

    Science.gov (United States)

    Tódor, István Sz.; Szabó, László; Marişca, Oana T.; Chiş, Vasile; Leopold, Nicolae

    2014-12-01

    Colloidal nanoparticle assemblies (NPAs) were obtained in a one-step procedure, by reduction of HAuCl4 by hydroxylamine hydrochloride, at room temperature, without the use of any additional nucleating agent. By changing the order of the reactants, NPAs with mean size of 20 and 120 nm were obtained. Because of their size and irregular popcorn like shape, the larger size NPAs show absorption in the NIR spectral region. The building blocks of the resulted nanoassemblies are spherical nanoparticles with diameters of 4-8 and 10-30 nm, respectively. Moreover, by stabilizing the colloid with bovine serum albumin at different time moments after synthesis, NPAs of controlled size between 20 and 120 nm, could be obtained. The NPAs were characterized using UV-Vis spectroscopy, TEM and SEM electron microscopies. In addition, the possibility of using the here proposed NPAs as surface-enhanced Raman scattering (SERS) substrate was assessed and found to provide a higher enhancement compared to conventional citrate-reduced nanoparticles.

  2. Gold nanoparticle assemblies of controllable size obtained by hydroxylamine reduction at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tódor, István Sz.; Szabó, László; Marişca, Oana T.; Chiş, Vasile; Leopold, Nicolae, E-mail: nicolae.leopold@phys.ubbcluj.ro [Babeş-Bolyai University, Faculty of Physics (Romania)

    2014-12-15

    Colloidal nanoparticle assemblies (NPAs) were obtained in a one-step procedure, by reduction of HAuCl{sub 4} by hydroxylamine hydrochloride, at room temperature, without the use of any additional nucleating agent. By changing the order of the reactants, NPAs with mean size of ∼20 and ∼120 nm were obtained. Because of their size and irregular popcorn like shape, the larger size NPAs show absorption in the NIR spectral region. The building blocks of the resulted nanoassemblies are spherical nanoparticles with diameters of 4–8 and 10–30 nm, respectively. Moreover, by stabilizing the colloid with bovine serum albumin at different time moments after synthesis, NPAs of controlled size between 20 and 120 nm, could be obtained. The NPAs were characterized using UV–Vis spectroscopy, TEM and SEM electron microscopies. In addition, the possibility of using the here proposed NPAs as surface-enhanced Raman scattering (SERS) substrate was assessed and found to provide a higher enhancement compared to conventional citrate-reduced nanoparticles.

  3. Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: barbara.ballarin@unibo.it [Department of Industrial Chemistry “Toso Montanari”, UdR INSTM of Bologna and CIRI MAM, Alma Mater Studiorum – University of Bologna, Viale del Risorgimento 4, 40136 Bologna (Italy); Barreca, Davide [CNR-IENI and INSTM, Department of Chemistry, Padova University, Via Marzolo 1, 35131 Padova (Italy); Cassani, Maria Cristina, E-mail: maria.cassani@unibo.it [Department of Industrial Chemistry “Toso Montanari”, UdR INSTM of Bologna and CIRI MAM, Alma Mater Studiorum – University of Bologna, Viale del Risorgimento 4, 40136 Bologna (Italy); Carraro, Giorgio; Maccato, Chiara [Department of Chemistry, Padova University and INSTM, Via Marzolo 1, 35131 Padova (Italy); Mignani, Adriana [Center for Industrial Research – Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Viale del Risorgimento 2, 40136 Bologna (Italy); Lazzari, Dario; Bertola, Maurizio [Miteni S.p.A., Località Colombara 91, 36070 Trissino, VI (Italy)

    2016-01-30

    Graphical abstract: - Highlights: • Au{sub NPs}/short-chain fluoroalkylsilane (FAS) layers/indium tin oxide (ITO) sandwich structures were prepared by a two-step method. • The FAS-embedded amide functional group enhances the Au{sub NPs} surface coverage. • The Au{sub NPs}/FAS/ITO systems are electrocatalytically active toward methanol oxidation. - Abstract: Metal/organosilane/oxide sandwich structures were prepared via a two-step self-assembly method. First, indium tin oxide (ITO) substrates were functionalized with the following fluoroalkylsilanes (FAS): R{sub F}C(O)N(H)(CH{sub 2}){sub 3}Si(OMe){sub 3} (1, R{sub F} = C{sub 5}F{sub 11}), containing an embedded amide between the perfluoroalkyl chain and the syloxanic moiety, and R{sub F}(CH{sub 2}){sub 2}Si(OEt){sub 3} (2, R{sub F} = C{sub 6}F{sub 13}). Subsequently, Au nanoparticles (Au{sub NPs}) introduction in the obtained systems was carried out by controlled immersion into a solution of citrate-stabilized Au{sub NPs}. The physico-chemical properties of the target materials were thoroughly investigated by using various complementary techniques. Finally, the application of such systems as catalysts for methanol electro-oxidation under alkaline conditions was investigated, revealing the synergistical role played by FAS and Au{sub NPs} in promoting a remarkable electrocatalytic activity.

  4. Self-assembled Thiolated Calix[n]arene (n=4, 6, 8) Films on Gold Electrodes and Application for Electrochemical Determination Dopamine

    International Nuclear Information System (INIS)

    Zheng, Gang; Chen, Ming; Liu, Xinyue; Zhou, Jun; Xie, Ju; Diao, Guowang

    2014-01-01

    Highlights: • TCnA/GE was prepared by using a simple self-assembled strategy. • Multilayer self-assembled films of TCnA molecules were fabricated on GE. • TCnA/GE exhibited high supramolecular recognition and enrichment capability. • TC8A/GE showed excellent electrochemical performance for DA. - Abstract: In this study, gold electrodes (GE) modified with three kinds of thiolated calix[4,6,8]arenes (TCnA: TC4A, TC6A, TC8A) were successfully prepared using a simple self-assembly strategy. Three self-assembled films were characterized by cyclic voltammetry measurement, electrochemical impedance spectroscopy, static contact angle measurement and atomic force microscopy. The results confirmed that TCnA molecules effectively absorbed onto the surface of gold electrodes to fabricate the multilayer self-assembled films. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurement showed that the TCnA/GE exhibited high supramolecular recognition and enrichment capability and consequently displayed good electrochemical response toward dopamine (DA). Especially, TC8A/GE exhibited an excellent electrochemical performance for DA with high current densities of 1.5 mA mmol −1 L cm −2 , broad linear range (1 × 10 −6 to 1 × 10 −3 mol L −1 ) and low detection limit (5 × 10 −7 mol L −1 ). The mechanism of supramolecular recognition and enrichment capability of TCnA/GE was discussed

  5. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  6. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  7. Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays.

    Science.gov (United States)

    Polleux, Julien; Rasp, Matthias; Louban, Ilia; Plath, Nicole; Feldhoff, Armin; Spatz, Joachim P

    2011-08-23

    Simultaneous synthesis and assembly of nanoparticles that exhibit unique physicochemical properties are critically important for designing new functional devices at the macroscopic scale. In the present study, we report a simple version of block copolymer micellar lithography (BCML) to synthesize gold and titanium dioxide (TiO(2)) nanoarrays by using benzyl alcohol (BnOH) as a solvent. In contrast to toluene, BnOH can lead to the formation of various gold nanopatterns via salt-induced micellization of polystyrene-block-poly(vinylpyridine) (PS-b-P2VP). In the case of titania, the use of BCML with a nonaqueous sol-gel method, the "benzyl alcohol route", enables the fabrication of nanopatterns made of quasi-hexagonally organized particles or parallel wires upon aging a (BnOH-TiCl(4)-PS(846)-b-P2VP(171))-containing solution for four weeks to grow TiO(2) building blocks in situ. This approach was found to depend mainly on the relative lengths of the polymer blocks, which allows nanoparticle-induced micellization and self-assembly during solvent evaporation. Moreover, this versatile route enables the design of uniform and quasi-ordered gold-TiO(2) binary nanoarrays with a precise particle density due to the absence of graphoepitaxy during the deposition of TiO(2) onto gold nanopatterns. © 2011 American Chemical Society

  8. Transparent nanoscale floating gate memory using self-assembled bismuth nanocrystals in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) pyrochlore thin films grown at room temperature.

    Science.gov (United States)

    Jung, Hyun-June; Yoon, Soon-Gil; Hong, Soon-Ku; Lee, Jeong-Yong

    2012-07-03

    Bismuth nanocrystals for a nanoscale floating gate memory device are self-assembled in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) dielectric films grown at room temperature by radio-frequency sputtering. The TEM cross-sectional image shows the "real" structure grown on a Si (001) substrate. The image magnified from the dotted box (red color) in the the cross-sectional image clearly shows bismuth nanoparticles at the interface between the Al(2) O(3) and HfO(2) layer (right image). Nanoparticles approximately 3 nm in size are regularly distributed at the interface. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  10. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.

    Science.gov (United States)

    Patil, Bhushan; Kobayashi, Yoshiki; Fujikawa, Shigenori; Okajima, Takeyoshi; Mao, Lanqun; Ohsaka, Takeo

    2014-02-01

    A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function. © 2013.

  11. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    International Nuclear Information System (INIS)

    Wu, Ming-Chung; Chen, Shih-Wen; Li, Jia-Han; Chou, Yi; Lin, Jhih-Fong; Chen, Yang-Fang; Su, Wei-Fang

    2012-01-01

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: ► We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. ► These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. ► Adding the Au nanoparticles can give more functionalities for sensing applications.

  12. Manipulation of extinction spectra of P3HT/PMMA medium arrays on silicon substrate containing self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ming-Chung [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333-02, Taiwan (China); Chen, Shih-Wen; Li, Jia-Han [Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chou, Yi; Lin, Jhih-Fong [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106-17, Taiwan (China); Su, Wei-Fang, E-mail: suwf@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan (China)

    2012-11-15

    In this study, we report a simple novel approach to modulate the extinction spectra of P3HT/PMMA by manipulating the medium arrays on a substrate that is coated with self-assembled gold nanoparticles. The 20 nm gold nanoparticles were synthesized and then self-assembled on the APTMS/silicon substrate surface by immersing the substrate into the gold colloid suspension. A high-resolution P3HT/PMMA photoluminescent electron beam resist was used to fabricate various square hole arrays on the substrate containing gold nanoparticles. The P3HT/PMMA medium composition causes the blue shifts in the extinction peaks of up to 40.6 nm by decreasing the period from 500 nm to 200 nm for P3HT/PMMA square hole arrays with a diameter of 100 nm. The magnitude of blue shift is directly proportional to the product of the changes of medium refractive index and the array structure factor. These peak shifts and intensity of extinction spectra for various P3HT/PMMA medium arrays are well described by the finite-difference time-domain (FDTD) simulation results. Since this simple cost-effective technique can tune the extinction spectrum of medium and adding the gold nanoparticles can give more functionalities for sensing applications, such as surface-enhanced Raman scattering (SERS), that provides good opportunities for the design and fabrication of new optoelectronic devices and sensors. Highlights: Black-Right-Pointing-Pointer We can tune the extinction spectra of P3HT/PMMA by manipulating the medium arrays. Black-Right-Pointing-Pointer These optical behaviors of P3HT/PMMA medium arrays are well described by FDTD simulation results. Black-Right-Pointing-Pointer Adding the Au nanoparticles can give more functionalities for sensing applications.

  13. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  14. The effect of interaction between surface plasmons of gold nanoparticles and optical active centers on luminescence of Eu3+- doped Zn2SnO4 nanocrystals

    Science.gov (United States)

    Thien, Nguyen Duy; Vu, Le Van; Long, Nguyen Ngoc

    2018-04-01

    The enhancement and quenching of Eu3+ ion emission were investigated in Zn2SnO4:Eu3+@Au (ZTO:Eu3+@Au) nanocomposites. Under 361 nm excitation we revealed the extinction of the intrinsic defect emission and the enhancement of Eu3+ ion emission when Au content in samples is increased, but under excitation wavelength of 394 nm we observed only the suppression of Eu3+ ion emission. The cause of the observed PL behavior is related to the interaction between surface plasmon induced by gold nanoparticles and luminescence centers in the samples.

  15. Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.

    Science.gov (United States)

    Rauh, Astrid; Carl, Nico; Schweins, Ralf; Karg, Matthias

    2018-01-23

    Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core

  16. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    method was used for the in situ synthesis of gold nanoparticles as a model system. Relatively monodisperse gold nanoparticles were produced. The size and shape of gold nanoparticles can be controlled by the gold precursor and surfactant concentration in the ‘ink.’ This approach can be extended to the synthesis of other nanocrystals and is thus a truly impactful process for the low-cost synthesis of materials and devices incorporating nanocrystals.

  17. DNA biosensor for detection of Salmonella typhi from blood sample of typhoid fever patient using gold electrode modified by self-assembled monolayers of thiols

    Science.gov (United States)

    Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni

    2017-05-01

    Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.

  18. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    Science.gov (United States)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  19. Inner filter effect of gold nanoparticles on the fluorescence of rare-earth phosphate nanocrystals and its application for determination of biological aminothiols

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong-Qi; Wu, Yong; Yuan, Fei; Xu, Juan; Zhang, Yi-Yan; Wang, Lun, E-mail: wanglun@mail.ahnu.edu.cn

    2013-09-15

    A simple, sensitive fluorescent method for detecting biological aminothiols has been developed based on the inner filter effect principle that utilizes CePO{sub 4}:Tb{sup 3+} luminescent nanoparticles as the donor and gold nanoparticles (AuNPs) as the energy receptor. Stable, water-soluble and well-dispersible CePO{sub 4}:Tb{sup 3+} nanoparticles with low photobleaching features were synthesized conveniently by a facile solvothermal method. At the same time, AuNPs with a high extinction coefficient are expected to be capable of functioning as powerful receptor. Based on the complementary overlap between the emission spectrum of CePO{sub 4}:Tb{sup 3+} nanoparticles and the absorption spectrum of Au NPs, an inner filter effect system was constructed. In the presence of aminothiols (such as cysteine), AuNPs interacted with the aminothiols, thereby inducing the aggregation of AuNPs, which induced the fluorescence recovery. In the present work, we developed a turn-on fluorescent assay for the determination of biological aminothiols. Under the optimum conditions, the linear concentration ranges were 1.0×10{sup −7}–2.0×10{sup −6} M for cysteine, 5.0×10{sup −8}–5.0×10{sup −7} M for glutathione and 8.0×10{sup −8}–1.0×10{sup −6} M for homocysteine, respectively. The method is successfully applied to the quantification of biological aminothiols in synthetic samples. -- Highlights: • An inner filter effect method for detecting biological aminothiols has been developed. • CePO{sub 4}:Tb{sup 3+} nanoparticles were synthesized and used as the donor. • Gold nanoparticles (AuNPs) were synthesized and used as the energy receptor.

  20. Linear self-assembly and grafting of gold nanorods into arrayed micrometer-long nanowires on a silicon wafer via a combined top-down/bottom-up approach.

    Science.gov (United States)

    Lestini, Elena; Andrei, Codrin; Zerulla, Dominic

    2018-01-01

    Macroscopically long wire-like arrangements of gold nanoparticles were obtained by controlled evaporation and partial coalescence of an aqueous colloidal solution of capped CTAB-Au nanorods onto a functionalised 3-mercaptopropyl trimethoxysilane (MPTMS) silicon substrate, using a removable, silicon wafer with a hydrophobic surface that serves as a "handrail" for the initial nanorods' linear self-assembly. The wire-like structures display a quasi-continuous pattern by thermal annealing of the gold nanorods when the solvent (i.e. water) is evaporated at temperatures rising from 20°C to 140°C. Formation of both single and self-replicating parallel 1D-superstructures consisting of two or even three wires is observed and explained under such conditions.

  1. Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface

    International Nuclear Information System (INIS)

    Xie, Yunfeng; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-01

    A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb 2+ by exploiting the catalytic effect of Pb 2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb 2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb 2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb 2+ in real samples. (author)

  2. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Noyhouzer, Tomer [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Mandler, Daniel, E-mail: mandler@vms.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2011-01-17

    The electrochemical determination of low levels of Cd using a self-assembled monolayer (SAM) modified Au electrode is reported. Determination was based on the stripping of Cd, which was deposited by under potential deposition (UPD). A series of short alkanethiol SAMs bearing different end groups, i.e., sulfonate, carboxylate and ammonium, were examined. Lowest level of detection (ca. 50 ng L{sup -1}) was achieved with a 3-mercaptopropionic acid (MPA) monolayer using subtractive anodic square wave voltammetry (SASV). Additional surface methods, namely, reductive desorption and X-ray photoelectron spectroscopy, were applied to determine the interfacial structure of the electrodeposited Cd on the modified electrodes. We conclude that the deposited Cd forms a monoatomic layer, which bridges between the gold surface and the alkanethiol monolayer associating with both the gold and the sulfur atoms.

  3. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  4. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    Science.gov (United States)

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  5. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2015-09-01

    Full Text Available A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs and glucose oxidase (GOD onto single-walled carbon nanotubes (SWCNTs-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  6. Control of regioselectivity over gold nanocrystals of different surfaces for the synthesis of 1,4-disubstituted triazole through the click reaction.

    Science.gov (United States)

    Rej, Sourav; Chanda, Kaushik; Chiu, Chun-Ya; Huang, Michael H

    2014-11-24

    Gold nanocubes, octahedra, and rhombic dodecahedra were examined for facet-dependent catalytic activity in the formation of triazoles. Rhombic dodecahedra gave 100% regioselective 1,4-triazoles. The product yield was increased by decreasing the particle size. However, a mixture of 1,4- and 1,5-triazoles was obtained in lower yields when cubes and octahedra of similar sizes were used. The lowest Au-atom density on the {110} surface and largest unsaturated coordination number of surface Au atoms may explain their best catalytic efficiency and product regioselectivity. Various spectroscopic techniques were employed to verify the formation of the Au-acetylide intermediate and establish the reaction mechanism, in which phenylacetylene binds to the Au {110} surface through the terminal-binding mode to result in the exclusive formation of 1,4-triazoles. The smallest rhombic dodecahedra can give diverse 1,4-disubstituted triazoles in good yields by coupling a wide variety of alkynes and organic halides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates

    KAUST Repository

    Martins, P. A. T.; Alsaiari, Shahad K.; Julfakyan, Khachatur; Nie, Z.; Khashab, Niveen M.

    2017-01-01

    We present a reconstituted lipoprotein-based nanoparticle platform comprising a curcumin fluorescent motif and an NIR responsive gold core. This multifunctional nanosystem is successfully used for aggregation-dependent fluorescence detection and photothermal disassembly of insoluble amyloid aggregates.

  8. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates

    KAUST Repository

    Martins, P. A. T.

    2017-01-10

    We present a reconstituted lipoprotein-based nanoparticle platform comprising a curcumin fluorescent motif and an NIR responsive gold core. This multifunctional nanosystem is successfully used for aggregation-dependent fluorescence detection and photothermal disassembly of insoluble amyloid aggregates.

  9. Synthesis and pH-dependent assembly of isotropic and anisotropic gold nanoparticles functionalized with hydroxyl-bearing amino acids

    Science.gov (United States)

    Swami, Anuradha; Mittal, Sherry; Chopra, Adity; Sharma, Rohit K.; Wangoo, Nishima

    2018-03-01

    In recent years, the synthesis of gold nanostructures of controllable shapes and dimensions has become a subject of intensive and interesting studies. Especially, anisotropic gold nanostructures such as nanoplates, nanoribbons, nanoprisms and nanorods have attracted much attention due to their striking optical properties and promising applications in electronics, photonics, sensing and biomedicine. Keeping this in mind, in the present report, an unprecedented, facile and one pot synthesis of isotropic (spherical) and anisotropic (triangular, pentagonal, hexagonal, rod shaped) gold nanomaterials via pH controlled shape modulation using hydroxyl moeity containing α-amino acids (Serine, Threonine, Tyrosine) as both reducing and capping agents is reported. The synthesized nanostructures have been further characterized by UV-Vis spectroscopy and transmission electron microscopy. It was deduced from these studies that pH played a key role in the anisotropic growth of gold nanostructures. These gold nanoparticles can be further used for applications in biosensing, plasmonics, and electrocatalysis and others involving surface enhanced raman scattering. This study is therefore, important from the point of view of using amino acids for the synthesis of gold nanoparticles of different shapes and sizes leading towards the development of inventive biosensors and biocompatible nanoconstructs.

  10. A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly.

    Science.gov (United States)

    Wang, Shaozhen; Sun, Junyong; Gao, Feng

    2015-06-21

    A turn-on fluorescent chemosensor of Pb(2+) in the near-infrared (NIR) region, which is based on the Pb(2+)-tuned restored fluorescence of a weakly fluorescent fluorophore-gold nanoparticle (AuNPs) assembly, has been reported. In this fluorophore-AuNP assembly, NIR fluorescent dye brilliant cresyl blue (BCB) molecules act as fluorophores and are used for signal transduction of fluorescence, while AuNPs act as quenchers to quench the nearby fluorescent BCB molecules via electron transfer. In the presence of Pb(2+), fluorescent BCB molecules detached from AuNPs and restored their fluorescence due to the formation of a chelating complex between Pb(2+) and glutathione confined on AuNPs. Under the optimal conditions, the present BCB-AuNP assembly is capable of detecting Pb(2+) with a concentration ranging from 7.5 × 10(-10) to 1 × 10(-8) mol L(-1) (0.16-2.1 ng mL(-1)) and a detection limit of 0.51 nM (0.11 ng mL(-1)). The present BCB-AuNP assembly can be used in aqueous media for the determination of Pb(2+) unlike common organic fluorescent reagents, and also shows advantages of NIR fluorescence spectrophotometry such as less interference, lower detection limit, and higher sensitivity. Moreover, the present method was successfully applied for the detection of Pb(2+) in water samples with satisfactory results.

  11. A nano-structured Ni(II)-chelidamic acid modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Azadbakht, Azadeh [Department of Chemistry, Faculty of Basic Science, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2012-10-01

    A nano-structured Ni(II)-chelidamic acid (2,6-dicarboxy-4-hydroxypyridine) film was electrodeposited on a gold nanoparticle-cysteine-gold electrode. The morphology of Ni(II)-chelidamic acid gold nanoparticle self-assembled electrode was investigated by scanning electron microscopy (SEM). Electrocatalytic oxidation of methanol on the surface of modified electrode was studied by cyclic voltammetry and chronoamperometry methods. The hydrodynamic amperometry at a rotating modified electrode at constant potential versus reference electrode was used for detection of methanol. Under optimized conditions the calibration plots are linear in the concentration range 0-50 mM with a detection limit of 15 {mu}M. The formed matrix in our work possessed a 3D porous network structure with a large effective surface area, high catalytic activity and behaved like microelectrode ensembles. The modified electrode indicated reproducible behavior and a high level stability during the experiments, making it particularly suitable for analytical purposes. - Highlights: Black-Right-Pointing-Pointer The Au electrode modified with thin Ni(II)/CHE-AuNP film shows stable and reproducible behavior. Black-Right-Pointing-Pointer Long stability and excellent electrochemical reversibility were observed. Black-Right-Pointing-Pointer This modified electrode shows excellent catalytic activity for methanol oxidation. Black-Right-Pointing-Pointer Combination of unique properties of AuNP and Ni(II)/CHE resulted in improvement of current responses.

  12. Layer-by-layer assembly of gold nanoparticles and cysteamine on gold electrode for immunosensing of human chorionic gonadotropin at picogram levels

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com [Department of Chemistry, Ilam University, P.O. Box, 69315-516, Ilam (Iran, Islamic Republic of); Valipour, Akram [Department of Chemistry, Ilam University, P.O. Box, 69315-516, Ilam (Iran, Islamic Republic of); Valipour, Mehdi [Department of Chemistry, Payame Noor University, P.O. Box, 19395-3697, Tehran (Iran, Islamic Republic of)

    2016-04-01

    The development of an electrochemical immunosensor for the detection of human chorionic gonadotropin (hCG) is described with a limit of detection as low as 0.3 pg mL{sup −1} in phosphate buffer. In this immunosensor, cysteamine (Cys) and gold nanoparticles (AuNPs) were used to immobilize an anti-hCG monoclonal antibody onto a gold electrode (GE). The structure of AuNPs has been confirmed by EDS, SEM, and TEM analysis. Due to the large specific surface area and excellent electrical conductivity of AuNPs, electron transfer was promoted and the amount of hCG antibody was enhanced significantly. A systematic study on the effects of experimental parameters such as pH, incubation time in the hCG solution and urea solution used for experiments on the binding between the immobilized antibody and hCG has been carried out. Under optimal experimental parameters, differential pulse voltammetry (DPV) signal changes of the [Fe(CN){sub 6}]{sup 3−/4−} are used to detect hCG with two broad linear ranges: 0.001 to 0.2 and 0.2 to 60.7 ng mL{sup −1}. The LOD value proves more sensitive in comparison with previously reported methods. The prepared immunosensor showed high sensitivity and stability. In addition, the immunosensor was successfully used for the determination of hCG in human serum. - Highlights: • AuNPs were used for covalent attachment of anti-body onto GE. • AuNPs joint to GE via Cys, which were similar to electron-transfer tunnel. • A simple method and a sensitive immunosensing for hCG were reported.

  13. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    International Nuclear Information System (INIS)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao; Wang, Changwei; Lee, Yong-Ill; Hao, Jingcheng; Liu, Hong-Guo

    2014-01-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl 4 . Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl 4 − ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH 4 aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH 4 in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and at air/water interface

  14. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Wang, Changwei [Environmental Monitoring Center of Shandong Province, Jinan 250013 (China); Lee, Yong-Ill [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Hao, Jingcheng [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Liu, Hong-Guo, E-mail: hgliu@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China)

    2014-07-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl{sub 4}. Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl{sub 4}{sup −} ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH{sub 4} aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH{sub 4} in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and

  15. Modification of a Polycrystalline Gold Electrode by Thiolated Calix[4]arene and Undecanethiol: Self-assembly Process versus Electrochemical Deposition

    Czech Academy of Sciences Publication Activity Database

    Šustrová, Barbora; Štulík, Karel; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 4 (2013), s. 4367-4383 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GAP208/12/1645; GA AV ČR IAA400400806 Institutional support: RVO:61388955 Keywords : Thiolated calixarene * Polycrystalline gold * Surface modification Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  16. Optoacoustic response of gold nanorods in soft phantoms using high-power diode laser assemblies at 870 and 905 nm.

    Science.gov (United States)

    Leggio, L; Gawali, S; Gallego, D; Rodríguez, S; Sánchez, M; Carpintero, G; Lamela, H

    2017-03-01

    In the present paper we show the optoacoustic (OA) response of two solutions of gold nanorods dispersed in distilled water (0.8 mg/ml) and hosted in tissue-like phantoms by using small arrays of HPDLs at 870 and 905 nm as excitation sources. The HPDLs are coupled to a 7-to-1 optical fiber bundle with output diameter of 675 μm. Each solution of gold nanorods exhibits an absorption peak close to the operating wavelength, i.e. ~860 nm and ~900 nm, respectively, to optimize the generation of OA signals. The phantoms are made of agar, intralipid and hemoglobin to simulate a soft biological tissue with reduced properties of scattering. Three 3-mm diameter tubes done in the phantoms at different depths (0.9 cm, 1.8 cm, and 2.7 cm) have been filled with gold nanorods. In this way, OA signals with appreciable SNR are generated at different depths in the phantoms. The high OA response exhibited by gold nanorods suggests their application in OA spectroscopy as exogenous contrast agents to detect and monitor emerging diseases like metastasis and arteriosclerotic plaques.

  17. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  18. Crystallization and Growth of Colloidal Nanocrystals

    CERN Document Server

    Leite, Edson Roberto

    2012-01-01

    Since the size, shape, and microstructure of nanocrystalline materials strongly impact physical and chemical properties, the development of new synthetic routes to  nanocrystals with controlled composition and morphology is a key objective of the nanomaterials community. This objective is dependent on control of the nucleation and growth mechanisms that occur during the synthetic process, which in turn requires a fundamental understanding of both classical nucleation and growth and non-classical growth processes in nanostructured materials.  Recently, a novel growth process called Oriented Attachment (OA) was identified which appears to be a fundamental mechanism during the development of nanoscale  materials. OA is a special case of aggregation that provides an important route by which nanocrystals grow, defects are formed, and unique—often symmetry-defying—crystal morphologies can be produced. This growth mechanism involves reversible self-assembly of primary nanocrystals followed by reorientati...

  19. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    Science.gov (United States)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-04-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.

  20. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.

    Science.gov (United States)

    Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan

    2010-07-20

    The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.

  1. Probing integration strength of colloidal spheres self-assembled from TiO2 nanocrystals by in-situ TEM indentation

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; De Hosson, J.Th.M.; Luysberg, M.; Tillmann, K.; Weirich, T.

    2008-01-01

    Small building blocks such as molecules and nanoparticles, with controlled size, shape, and properties, have been recently utilized as artificial building blocks to assemble two- or three-dimensional structures via “bottom up” processes. Unlike the well known ionic, metallic, or covalent bonds

  2. Synthesis and characterization of Mn.sup.2+./sup. doped ZnS nanocrystals self-assembled in a tight mesoporous structure

    Czech Academy of Sciences Publication Activity Database

    Nistor, S.V.; Nistor, L.C.; Stefan, M.; Mateescu, C.D.; Birjega, R.; Solovieva, Natalia; Nikl, Martin

    2009-01-01

    Roč. 46, 1-2 (2009), s. 306-311 ISSN 0749-6036 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline ZnS:Mn * mesoporous structure * self-assembly * photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2009

  3. Fabrication and electronic transport studies of single nanocrystal systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, David Louis [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  4. Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose

    International Nuclear Information System (INIS)

    Roh, Seongjin; Kim, Jongwon

    2015-01-01

    We report on a method of single-step electrodeposition of three-dimensionally (3-D) assembled Pt spheres on a gold-coated silicon wafer. The 3-D interconnected Pt spheres could be electrodeposited by applying a negative potential (−0.8 V, vs. Ag/AgCl) in neutral electrolytes containing KClO 4 . The application of such a negative potential is not possible in acidic solutions because of the formation of hydrogen. Scanning electron microscopy revealed that the seed Pt particles first grew to a certain size, and then form Pt spheres interconnected in multiple layers. The resulting 3-D assembled Pt sphere structures warrants a high surface area, and this property was utilized for the selective and sensitive amperometric determination of glucose at a working potential of 0.4 V (vs. Ag/AgCl), at near neutral pH values and in the presence of 0.1 M chloride. This straightforward method for the fabrication of 3-D assembled Pt sphere structures offers new opportunities for electroanalytical and electrocatalytic sensing based on porous Pt surfaces (author)

  5. Investigation of the air effect on the resonance frequency and damping of three small assembled structures using different adhesive materials (SU8 epoxy resin and compressed gold)

    International Nuclear Information System (INIS)

    Nouira, H; Foltête, E; Hirsinger, L; Ballandras, S

    2008-01-01

    There has been growing interest in recent years in the understanding of microsystems and the mechanical properties essential for their design. In this context, an experimental technique is proposed to characterize the structures of small dimensions composed of both silicon and lithium niobate and assembled using three different adhesive materials (SU8 (5 and 1 µm) and compressed gold) surrounded by various ambient air pressure levels. Dynamic tests were performed on three different structures used for the manufacturing of a harvesting energy microconverter. The assembled structure is mounted on a support and excited by a white noise signal via an electromagnetic shaker. The dynamic responses are recorded by a Doppler laser vibrometer and the modal parameters (obtained from the dynamic response) are identified in order to determine their evolution when the ambient air pressure inside the vacuum chamber is changed. A nonlinear modal identification is then performed. It is based on the logarithmic decrement method applied in the time–frequency domain using a wavelet transform of the time responses. The evolution of the equivalent modal frequencies and damping of the assembled structure versus time and vibration magnitude are identified for several pressure values ranging from a secondary vacuum to atmospheric pressure

  6. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  7. Efficient self-assembly of DNA-functionalized fluorophores and gold nanoparticles with DNA functionalized silicon surfaces: the effect of oligomer spacers

    Science.gov (United States)

    Milton, James A.; Patole, Samson; Yin, Huabing; Xiao, Qiang; Brown, Tom; Melvin, Tracy

    2013-01-01

    Although strategies for the immobilization of DNA oligonucleotides onto surfaces for bioanalytical and top-down bio-inspired nanobiofabrication approaches are well developed, the effect of introducing spacer molecules between the surface and the DNA oligonucleotide for the hybridization of nanoparticle–DNA conjugates has not been previously assessed in a quantitative manner. The hybridization efficiency of DNA oligonucleotides end-labelled with gold nanoparticles (1.4 or 10 nm diameter) with DNA sequences conjugated to silicon surfaces via hexaethylene glycol phosphate diester oligomer spacers (0, 1, 2, 6 oligomers) was found to be independent of spacer length. To quantify both the density of DNA strands attached to the surfaces and hybridization with the surface-attached DNA, new methodologies have been developed. Firstly, a simple approach based on fluorescence has been developed for determination of the immobilization density of DNA oligonucleotides. Secondly, an approach using mass spectrometry has been created to establish (i) the mean number of DNA oligonucleotides attached to the gold nanoparticles and (ii) the hybridization density of nanoparticle–oligonucleotide conjugates with the silicon surface–attached complementary sequence. These methods and results will be useful for application with nanosensors, the self-assembly of nanoelectronic devices and the attachment of nanoparticles to biomolecules for single-molecule biophysical studies. PMID:23361467

  8. Direct electrochemistry and electrocatalysis of hemoglobin at three-dimensional gold film electrode modified with self-assembled monolayers of 3-mercaptopropylphosphonic acid

    International Nuclear Information System (INIS)

    Chen Yu; Yang Xiaojing; Guo Lirong; Li Jing; Xia Xinghua; Zheng Limin

    2009-01-01

    Multilayered hemoglobin (Hb) molecules were successfully immobilized on three-dimensional gold film electrode modified with self-assembled monolayers (SAMs) of 3-mercaptopropylphosphonic acid. Direct electrochemistry of the immobilized multilayered Hb occurs with high thermal stability and electrochemical stability. In the multilayered Hb film, the most inner Hb molecules can directly transfer electron with the electrode, while the Hb protein beyond this layer communicates electron with the electrode via protein-protein electron exchange. In addition, the proposed functional interface can greatly enhance electron transfer rate of the immobilized Hb protein (k s = 15.8 ± 2.0 s -1 ) due to the increase of roughness of the gold substrate. Under optimized experimental conditions, the multilayered Hb film displays good bioelectrocatalytic activity toward the reduction of hydrogen peroxide. This electrochemical sensor shows fast response (less than 1 s), wide linear range (7.8 x 10 -8 to 9.1 x 10 -5 M) and low detection limit (2.5 x 10 -8 M), which can be attributed to good mass transport, large Hb proteins loading per unit area and fast electron transfer rate of Hb protein.

  9. Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-Assembly of Gold Nanorods.

    Science.gov (United States)

    Chen, Lu; Lu, Linlin; Wang, Sufan; Xia, Yunsheng

    2017-06-23

    In this study, we present a valence states modulation strategy for picomole level assay of Hg 2+ using directional self-assembly of gold nanorods (AuNRs) as signal readout. Hg 2+ ions are first controllably reduced to Hg + ions by appropriate ascorbic acid, and the reduced Hg + ions react with the tips of the preadded AuNRs and form gold amalgam. Such Hg + decorated AuNRs then end-to-end self-assemble into one-dimensional architectures by the bridging effects of lysine based on the high affinity of NH 2 -Hg + interactions. Correspondingly, the AuNRs' longitudinal surface plasmon resonance is gradually reduced and a new broad band appears at 900-1100 nm region simultaneously. The resulting distinctly ratiometric signal output is not only favorable for Hg 2+ ions detection but competent for their quantification. Under optimal conditions, the linear range is 22.8 pM to 11.4 nM, and the detection limit is as low as 8.7 pM. Various transition/heavy metal ions, such as Pb 2+ , Ti 2+ , Co 2+ , Fe 3+ , Mn 2+ , Ba 2+ , Fe 2+ , Ni 2+ , Al 3+ , Cu 2+ , Ag + , and Au 3+ , do not interfere with the assay. Because of ultrahigh sensitivity and excellent selectivity, the proposed system can be employed for assaying ultratrace of Hg 2+ containing in drinking and commonly environmental water samples, which is difficult to be achieved by conventional colorimetric systems. These results indicate that the present platform possesses specific advantages and potential applications in the assay of ultratrace amounts of Hg 2+ ions.

  10. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging.

    Science.gov (United States)

    Mieszawska, Aneta J; Gianella, Anita; Cormode, David P; Zhao, Yiming; Meijerink, Andries; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2012-06-14

    Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.

  11. Correction: One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    Science.gov (United States)

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-02-01

    Correction for 'One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor' by Jayakumar Kumarasamy, et al., Nanoscale, 2018, DOI: 10.1039/c7nr06952a.

  12. Switching on/off the chemisorption of thioctic-based self-assembled monolayers on gold by applying a moderate cathodic/anodic potential.

    Science.gov (United States)

    Sahli, Rihab; Fave, Claire; Raouafi, Noureddine; Boujlel, Khaled; Schöllhorn, Bernd; Limoges, Benoît

    2013-04-30

    An in situ and real-time electrochemical method has been devised for quantitatively monitoring the self-assembly of a ferrocene-labeled cyclic disulfide derivative (i.e., a thioctic acid derivative) on a polycrystalline gold electrode under electrode polarization. Taking advantage of the high sensitivity, specificity, accuracy, and temporal resolution of this method, we were able to demonstrate an unexpectedly facilitated formation of the redox-active SAM when the electrode was held at a moderate cathodic potential (-0.4 V vs SCE in CH3CN), affording a saturated monolayer from only micromolar solutions in less than 10 min, and a totally impeded SAM growth when the electrode was polarized at a slightly anodic potential (+0.5 V vs SCE in CH3CN). This method literally allows for switching on/off the formation of SAMs under "soft" conditions. Moreover the cyclic disulfide-based SAM was completely desorbed at this potential contrary to the facilitated deposition of a ferrocene-labeled alkanethiol. Such a strikingly contrasting behavior could be explained by an energetically favored release of the thioctic-based SAM through homolytic cleavage of the Au-S bond followed by intramolecular cyclization of the generated thiyl diradicals. Moreover, the absence of a discernible transient faradaic current response during the potential-assisted adsorption/desorption of the redox-labeled cyclic disulfide led us to conclude in a potential-dependent reversible surface reaction where no electron is released or consumed. These results provide new insights into the formation of disulfide-based SAMs on gold but also raise some fundamental questions about the intimate mechanism involved in the facilitated adsorption/desorption of SAMs under electrode polarization. Finally, the possibility to easily and selectively address the formation/removal of thioctic-based SAMs on gold by applying a moderate cathodic/anodic potential offers another degree of freedom in tailoring their properties and

  13. A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides.

    Science.gov (United States)

    Jiang, Bin; Dong, Pei; Zheng, Jianbin

    2018-06-01

    Using an ionic layer-by-layer self-assembly technique, colloidal gold nanoparticles (AuNPs) and diazo-resins (DAR) were immobilised on the surface of a p-aminobenzenesulfonic acid-modified glassy carbon electrode to form a matrix composite membrane for acetylcholinesterase (AChE) immobilisation. Photo-sensitive DAR was used as the assembly interlayer to convert the ionic bond into a covalent bond to improve the biosensor stability. These fabrication processes were followed by electrochemical impedance spectroscopy and cyclic voltammetry to verify the membrane formation. Because of the introduction of AuNPs/DAR/AChE biofilms, the modified electrode exhibited excellent electron transfer mediation and electrical conductivity. In addition, it exhibited high sensitivity in the range of linear concentration from 1.0 × 10 -8 to 1.0 × 10 -12 g L -1 with the detection limit of 5.12 × 10 -13 and 5.85 × 10 -13 g L -1 for malathion and methyl parathion, respectively. More importantly, the presented biosensor considerably improved stability because the electrostatic interaction was converted into covalent bonds by UV irradiation. It is a simple, cheap and stable method for quantitative detection of organophosphorus pesticides, and this method may pave a way for the sensitive, simple detection of different analytes without the need of expensive instrumentation. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold Electrode

    Directory of Open Access Journals (Sweden)

    Abderrazak Maaref

    2012-10-01

    Full Text Available The detection of pathogenic bacteria remains a challenge for the struggle against biological weapons, nosocomial diseases, and for food safety. In this research, our aim was to develop an easy-to-use electrochemical immunosensor for the detection of pathogenic Staphylococcus aureus ATCC25923. The biosensor was elaborated by the immobilization of anti-S. aureus antibodies using a self-assembled monolayer (SAMs of 3-Mercaptopropionic acid (MPA. These molecular assemblies were spontaneously formed by the immersion of the substrate in an organic solvent containing the SAMs that can covalently bond to the gold surface. The functionalization of the immunosensor was characterized using two electrochemical techniques: cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS. Here, the analysis was performed in phosphate buffer with ferro/ferricyanide as the redox probe. The EIS technique was used for affinity assays: antibody-cell binding. A linear relationship between the increment in the electron transfer resistance (RCT and the logarithmic value of S. aureus concentration was observed between 10 and 106 CFU/mL. The limit of detection (LOD was observed at 10 CFU/mL, and the reproducibility was calculated to 8%. Finally, a good selectivity versus E. coli and S. epidermidis was obtained for our developed immunosensor demonstrating its specificity towards only S. aureus.

  15. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  16. Facile preparation of surface-exchangeable core@shell iron oxide@gold nanoparticles for magnetic solid-phase extraction: Use of gold shell as the intermediate platform for versatile adsorbents with varying self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Ying [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School, University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Huimin [Beijing National Laboratory of Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-06

    Graphical abstract: -- Highlights: •The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles functionalized with SAMs were successfully constructed. •The SAMs could be transformed from one kind to another via thiol exchange process. •The developed nanomaterials could be applied in mode switching MSPE. -- Abstract: The core@shell Fe{sub 3}O{sub 4}@Au nanoparticles (NPs) functionalized with exchangeable self-assembled monolayers have been developed for mode switching magnetic solid-phase extraction (MSPE) using high performance liquid chromatography with ultraviolet detection. The adsorbents were synthesized by chemical coprecipitation to prepare magnetic cores followed by sonolysis to produce gold shells. Functionalization of Fe{sub 3}O{sub 4}@Au NPs surface was realized through self-assembly of commercially available low molecular weight thiol-containing ligands using gold shells as intermediate platform and the dynamic nature of Au–S chemistry allowed substituent of one thiol-containing ligand with another simply by thiol exchange process. The resultant adsorbents were characterized by transmission electronic microscopy, Fourier transform infrared spectroscopy, elemental analysis, contact angle measurement, and vibrating sample magnetometry. To evaluate the versatile performance of the developed MSPE adsorbents, they were applied for normal-phase SPE followed by reversed-phase SPE. A few kinds of diphenols and polycyclic aromatic hydrocarbons (PAHs) were employed as model analytes, respectively. The predominant parameters affecting extraction efficiency were investigated and optimized. Under the optimum experimental conditions, wide dynamic linear range (6.25–1600 μg L{sup −1} for diphenols and 1.56–100 μg L{sup −1} for PAHs) with good linearity (r{sup 2} ≥ 0.989) and low detection limits (0.34–16.67 μg L{sup −1} for diphenols and 0.26–0.52 μg L{sup −1} for PAHs) were achieved. The advantage of the developed method is that the Fe{sub 3}O

  17. Inorganic nanocrystals as contrast agents in MRI:synthesis, coating and introducing multifunctionality

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L.; Mieszawska, Aneta J.; Fayad, Zahi A.

    2013-01-01

    Inorganic nanocrystals have myriad applications in medicine, which includes their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. For MRI, nanocrystals can produce contrast themselves, of which iron oxides have been most extensively explored, or be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used in imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. Due to these exciting applications, synthesizing and rendering these nanocrystals water-soluble and biocompatible is therefore highly desirable. We will discuss aqueous phase and organic phase methods for synthesizing inorganic nanocrystals such as gold, iron oxides and quantum dots. The pros and cons of the various methods will be highlighted. We explore various methods for making nanocrystals biocompatible, i.e. directly synthesizing nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples will be highlighted and their applications explained. These examples signify that synthesizing biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied for a wide range of applications. Therefore we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. PMID:23303729

  18. Simultaneous control of nanocrystal size and nanocrystal ...

    Indian Academy of Sciences (India)

    applications such as a photo-sensor [11]. Thus, it is desirable to have, not only a control on the size of the nanocrystals, but also an independent tunability of the ... 1-thioglycerol) in 25 ml methanol under inert atmosphere. 10 ml of 0.2 M sodium sulfide solution is then added to the reaction mixture dropwise and the reaction.

  19. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias; Choi, Joshua J.; Smilgies, Detlef-M.

    2009-01-01

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  20. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias

    2009-10-27

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  1. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S.

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  2. Formation of colloidal semiconductor nanocrystals. The aspect of nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Kudera, S

    2007-08-17

    The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals' size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of the different samples involves organic solvents and surfactants and reactions at elevated temperatures. The presence of magic size clusters offers a possibility to control the size of the nanocrystals even at very small dimensions. The clusters produced comprise ca. 100 atoms. In the case of CdSe, nanocrystals of this size emit a blue fluorescence and therefore extend the routinely accessible spectrum for this material over the whole visible range. Samples fluorescing in the spectral range from green to red are produced with standard recipes. In this work a reaction scheme for magic size clusters is presented and a theoretical model to explain the particular behaviour of their growth dynamics is discussed. The samples are investigated by optical spectroscopy, transmission electron microscopy, X-ray diffraction and elemental analysis. A method to form branched nanocrystals is discussed. The branching point is analysed by high resolution transmission electron microscopy and proves for the occurrence of a multiple twinned structure are strengthened by simulation of the observed patterns. Two different techniques to generate nanocrystals of this type are presented. The first relies on a seeded growth approach in which the nucleation of the second material is allowed only on de ned sites of the seeds. The second technique uses the tips of pre-formed nano-dumbbells as sacrificial domains. The material on the tips is replaced by gold. Hybrid materials are formed by a seeded-growth mechanism. Pre-formed nanocrystals provide the nucleation sites for the second material. (orig.)

  3. Fabrication of new carbon paste electrodes based on gold nano-particles self-assembled to mercapto compounds as suitable ionophores for potentiometric determination of copper ions

    Directory of Open Access Journals (Sweden)

    Rasoul Pourtaghavi Talemi

    2013-12-01

    Full Text Available In the present study, we investigate the potentiometric behavior of Cu2+ carbon paste electrodes based on two mercapto compounds 2-ethylmino-5-mercapto-1,3,4-thiadiazole (EAMT and 2-acetylamino-5-mercapto-1,3,4-thiadiazole (AAMT self-assembled on gold nano-paricle (GNP as ionophore. Then, the obtained results from the modified electrodes are compared. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+, in which the sulfur and nitrogen atoms in their structure play a significant role as the effective coordination donor site for the copper ion. Among these electrodes, the best performance was obtained with the sensor with a EAMT/graphite powder/paraffin oil weight ratio of 4.0/68/28 with 200 µL of GNP which exhibits the working concentration range of 1.6×10−9 to 6.3×10−2 M and a nernstian slope of 28.9±0.4 mVdecade−1 of copper(II activity. The detection limit of electrode was 2.9(±0.2×10−10M and potential response was pH ; in other words, it was independent across the range of 2.8–6.3. The proposed electrode presented very good selectivity and sensitivity towards the Cu2+ ions over a wide variety of cations including alkali, alkaline earth, transition and heavy metal ions. Moreover, the proposed electrode was successfully applied as an indicator electrode in the potentiometric titration of Cu(II ions with EDTA and also the potentiometric determination of copper ions in spiked water samples.

  4. Integrated electrochemical gluconic acid biosensor based on self-assembled monolayer-modified gold electrodes. Application to the analysis of gluconic acid in musts and wines.

    Science.gov (United States)

    Campuzano, S; Gamella, M; Serra, B; Reviejo, A J; Pingarrón, J M

    2007-03-21

    An integrated amperometric gluconic acid biosensor constructed using a gold electrode (AuE) modified with a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) on which gluconate dehydrogenase (GADH, 0.84 U) and the mediator tetrathiafulvalene (TTF, 1.5 micromol) were coimmobilized by covering the electrode surface with a dialysis membrane is reported. The working conditions selected were Eapp=+0.15 V and 25+/-1 degrees C. The useful lifetime of one single TTF-GADH-MPA-AuE was surprisingly long. After 53 days of continuous use, the biosensor exhibited 86% of the original sensitivity. A linear calibration plot was obtained for gluconic acid over the 6.0x10(-7) to 2.0x10(-5) M concentration range, with a limit of detection of 1.9x10(-7) M. The effect of potential interferents (glucose, fructose, galactose, arabinose, and tartaric, citric, malic, ascorbic, gallic, and caffeic acids) on the biosensor response was evaluated. The behavior of the biosensor in a flow-injection system in connection with amperometric detection was tested. The analytical usefulness of the biosensor was evaluated by determining gluconic acid in wine and must samples, and the results obtained were validated by comparison with those provided by using a commercial enzyme test kit.

  5. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    Science.gov (United States)

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  6. Electrochemistry of the Self-Assembled Monolayers of Dyads Consisting of Tripod-Shaped Trithiol and Bithiophene on Gold

    Directory of Open Access Journals (Sweden)

    Toshikazu Kitagawa

    2014-09-01

    Full Text Available Self-assembled monolayers (SAMs of tripod-shaped trithiols, consisting of an adamantane core with three CH2SH legs and a bithiophene group, were prepared on a Au(111 surface. Adsorption in a tripod-like fashion was supported by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS of the SAMs, which indicated the absence of free SH groups. Cyclic voltammetry showed an irreversible cathodic wave due to reductive desorption. The SAM also showed an anodic wave due to the single-electron oxidation of the bithiophene moiety without concomitant desorption of the molecules. Although oxidation was irreversible in the absence of a protecting group, it became reversible with the introduction of a terminal phenyl group. The charge of the oxidation was one-third that of the reductive desorption, confirming a three-point adsorption. The surface coverage was ca. 50% of that expected for the anti bithiophene conformation, which suggested that an increase in the surface area per molecule had been caused by the presence of an energetically high-lying syn conformer. In accordance with this, the line shape of the oxidation wave suggested an electrostatic repulsive interaction between neighboring molecules.

  7. Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Janik; Kewes, Guenter; Schell, Andreas W.; Aichele, Thomas; Benson, Oliver [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Nuesse, Nils; Schoengen, Max; Loechel, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Hanke, Tobias; Leitenstorfer, Alfred [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Bratschitsch, Rudolf [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Technische Universitaet Chemnitz, Institut fuer Physik, Chemnitz (Germany)

    2012-05-15

    We demonstrate the ability to modify the emission properties and enhance the interaction strength of single-photon emitters coupled to nanophotonic structures based on metals and dielectrics. Assembly of individual diamond nanocrystals, metal nanoparticles, and photonic crystal cavities to meta-structures is introduced. Experiments concerning controlled coupling of single defect centers in nanodiamonds to optical nanoantennas made of gold bowtie structures are reviewed. By placing one and the same emitter at various locations with high precision, a map of decay rate enhancements was obtained. Furthermore, we demonstrate the formation of a hybrid cavity quantum electrodynamics system in which a single defect center is coupled to a single mode of a gallium phosphite photonic crystal cavity. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Nanocrystals Technology for Pharmaceutical Science.

    Science.gov (United States)

    Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng

    2018-05-17

    Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Determination of the electronic energy levels of colloidal nanocrystals using field-effect transistors and Ab-initio calculations.

    Science.gov (United States)

    Bisri, Satria Zulkarnaen; Degoli, Elena; Spallanzani, Nicola; Krishnan, Gopi; Kooi, Bart Jan; Ghica, Corneliu; Yarema, Maksym; Heiss, Wolfgang; Pulci, Olivia; Ossicini, Stefano; Loi, Maria Antonietta

    2014-08-27

    Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    Science.gov (United States)

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  11. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  12. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  13. One-step coelectrodeposition-assisted layer-by-layer assembly of gold nanoparticles and reduced graphene oxide and its self-healing three-dimensional nanohybrid for an ultrasensitive DNA sensor.

    Science.gov (United States)

    Kumarasamy, Jayakumar; Camarada, María Belén; Venkatraman, Dharuman; Ju, Huangxian; Dey, Ramendra Sundar; Wen, Yangping

    2018-01-18

    A layer-by-layer (LBL) assembly was employed for preparing multilayer thin films with a controlled architecture and composition. In this study, we report the one-step coelectrodeposition-assisted LBL assembly of both gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) on the surface of a glassy carbon electrode (GCE) for the ultrasensitive electrochemical impedance sensing of DNA hybridization. A self-healable nanohybrid thin film with a three-dimensional (3D) alternate-layered nanoarchitecture was obtained by the one-step simultaneous electro-reduction of both graphene oxide and gold chloride in a high acidic medium of H 2 SO 4 using cyclic voltammetry and was confirmed by different characterization techniques. The DNA bioelectrode was prepared by immobilizing the capture DNA onto the surface of the as-obtained self-healable AuNP/rGO/AuNP/GCE with a 3D LBL nanoarchitecture via gold-thiol interactions, which then served as an impedance sensing platform for the label-free ultrasensitive electrochemical detection of DNA hybridization over a wide range from 1.0 × 10 -9 to 1.0 × 10 -13 g ml -1 , a low limit of detection of 3.9 × 10 -14 g ml -1 (S/N = 3), ultrahigh sensitivity, and excellent selectivity. This study presents a promising electrochemical sensing platform for the label-free ultrasensitive detection of DNA hybridization with potential application in cancer diagnostics and the preparation of a self-healable nanohybrid thin film with a 3D alternate-layered nanoarchitecture via a one-step coelectrodeposition-assisted LBL assembly.

  14. Heterogeneous local order in self-assembled nanoparticle films revealed by X-ray cross-correlations

    Directory of Open Access Journals (Sweden)

    Felix Lehmkühler

    2018-05-01

    Full Text Available We report on the self-assembly of gold nanoparticles coated with a soft poly(ethylene glycol shell studied by X-ray cross-correlation analysis. Depending on the initial concentration of gold nanoparticles used, structurally heterogeneous films were formed. The films feature hot spots of dominating four- and sixfold local order with patch sizes of a few micrometres, containing 104–105 particles. The amplitude of the order parameters suggested that a minimum sample amount was necessary to form well ordered local structures. Furthermore, the increasing variation in order parameters with sample thickness demonstrated a high degree of structural heterogeneity. This wealth of information cannot be obtained by the conventional microscopy techniques that are commonly used to study nanocrystal superstructures, as illustrated by complementary scanning electron microscopy measurements.

  15. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform

    NARCIS (Netherlands)

    Cormode, David P.; Skajaa, Torjus; van Schooneveld, Matti M.; Koole, Rolf; Jarzyna, Peter; Lobatto, Mark E.; Calcagno, Claudia; Barazza, Alessandra; Gordon, Ronald E.; Zanzonico, Pat; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2008-01-01

    High density lipoprotein (HDL) is an important natural nanoparticle that may be modified for biomedical imaging purposes. Here we developed a novel technique to create unique multimodality HDL mimicking nanoparticles by incorporation of gold, iron oxide, or quantum dot nanocrystals for computed

  16. Reusable hydroxyapatite nanocrystal sensors for protein adsorption

    International Nuclear Information System (INIS)

    Tagaya, Motohiro; Ikoma, Toshiyuki; Hanagata, Nobutaka; Chakarov, Dinko; Kasemo, Bengt; Tanaka, Junzo

    2010-01-01

    The repeatability of the adsorption and removal of fibrinogen and fetal bovine serum on hydroxyapatite (HAp) nanocrystal sensors was investigated by Fourier transform infrared (FTIR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) monitoring technique. The HAp nanocrystals were coated on a gold-coated quartz sensor by electrophoretic deposition. Proteins adsorbed on the HAp sensors were removed by (i) ammonia/hydrogen peroxide mixture (APM), (ii) ultraviolet light (UV), (iii) UV/APM, (iv) APM/UV and (v) sodium dodecyl sulfate (SDS) treatments. FTIR spectra of the reused surfaces revealed that the APM and SDS treatments left peptide fragments or the proteins adsorbed on the surfaces, whereas the other methods successfully removed the proteins. The QCM-D measurements indicated that in the removal treatments, fibrinogen was slowly adsorbed in the first cycle because of the change in surface wettability revealed by contact angle measurements. The SDS treatment was not effective in removing proteins. The APM or UV treatment decreased the frequency shifts for the reused HAp sensors. The UV/APM treatment did not induce the frequency shifts but decreased the dissipation shifts. Therefore, we conclude that the APM/UV treatment is the most useful method for reproducing protein adsorption behavior on HAp sensors.

  17. Reusable hydroxyapatite nanocrystal sensors for protein adsorption

    Directory of Open Access Journals (Sweden)

    Motohiro Tagaya, Toshiyuki Ikoma, Nobutaka Hanagata, Dinko Chakarov, Bengt Kasemo and Junzo Tanaka

    2010-01-01

    Full Text Available The repeatability of the adsorption and removal of fibrinogen and fetal bovine serum on hydroxyapatite (HAp nanocrystal sensors was investigated by Fourier transform infrared (FTIR spectroscopy and quartz crystal microbalance with dissipation (QCM-D monitoring technique. The HAp nanocrystals were coated on a gold-coated quartz sensor by electrophoretic deposition. Proteins adsorbed on the HAp sensors were removed by (i ammonia/hydrogen peroxide mixture (APM, (ii ultraviolet light (UV, (iii UV/APM, (iv APM/UV and (v sodium dodecyl sulfate (SDS treatments. FTIR spectra of the reused surfaces revealed that the APM and SDS treatments left peptide fragments or the proteins adsorbed on the surfaces, whereas the other methods successfully removed the proteins. The QCM-D measurements indicated that in the removal treatments, fibrinogen was slowly adsorbed in the first cycle because of the change in surface wettability revealed by contact angle measurements. The SDS treatment was not effective in removing proteins. The APM or UV treatment decreased the frequency shifts for the reused HAp sensors. The UV/APM treatment did not induce the frequency shifts but decreased the dissipation shifts. Therefore, we conclude that the APM/UV treatment is the most useful method for reproducing protein adsorption behavior on HAp sensors.

  18. Photoemission studies of semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Hamad, K.S.; Roth, R.; Alivisatos, A.P.

    1997-01-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface

  19. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  20. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  1. Combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) studies of glucose oxidase (GOx) immobilised onto self-assembled monolayer on the gold film

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.; Gooding, J.; Erokin, P.; Short, K.

    1999-01-01

    In fabrication of biosensors, self-assembled monolayers (SAM) are an attractive method of immobilising enzymes at electrode surface since it allows precise control over the amount and spatial distribution of the immobilized enzyme. The covalent attachment of glucose oxidase (GOx) to a carboxylic terminated SAM chemisorbed onto gold films was achieved via carbodiimide activation of the carboxylic acids to a reactive intermediate susceptible to nucleophilic attack by amines on free lysine chains of the enzyme. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) measurements were used for characterisation of GOx modified gold surfaces. Tapping mode AFM studies have revealed that GOx molecules form slightly disordered arrays of pentagonal or hexagonal clusters. Observed features of immobilised GOx are distributed as a submonolayer on the SAM surface which has allowed visualisation of native and unfolded enzyme structure. The presence of the SAM and enzyme on the gold surface was detected by XPS spectroscopy. Spectra show typical peaks for the C 1s, O 1s and N 1s regions. A kinetic study of the adsorption of GOx onto activated SAM using in-situ QCM allowed determination the amount of immobilised GOx on the layer and consequently the optimal immobilisation conditions. Performance parameters of the biosensor such as sensitivity to glucose concentration as a function of enzyme loading were evaluated amperometrically using the redox mediator p-benzoquinone

  2. Microfluidic Fabrication of Hydrocortisone Nanocrystals Coated with Polymeric Stabilisers

    Directory of Open Access Journals (Sweden)

    David F. Odetade

    2016-12-01

    Full Text Available Hydrocortisone (HC nanocrystals intended for parenteral administration of HC were produced by anti-solvent crystallisation within coaxial assemblies of pulled borosilicate glass capillaries using either co-current flow of aqueous and organic phases or counter-current flow focusing. The organic phase was composed of 7 mg/mL of HC in a 60:40 (v/v mixture of ethanol and water and the anti-solvent was milli-Q water. The microfluidic mixers were fabricated with an orifice diameter of the inner capillary ranging from 50 µm to 400 µm and operated at the aqueous to organic phase flow rate ratio ranging from 5 to 25. The size of the nanocrystals decreased with increasing aqueous to organic flow rate ratio. The counter-current flow microfluidic mixers provided smaller nanocrystals than the co-current flow devices under the same conditions and for the same geometry, due to smaller diameter of the organic phase stream in the mixing zone. The Z-average particle size of the drug nanocrystals increased from 210–280 nm to 320–400 nm after coating the nanocrystals with 0.2 wt % aqueous solution of hydroxypropyl methylcellulose (HPMC in a stirred vial. The differential scanning calorimetry (DSC and X-ray powder diffraction (XRPD analyses carried out on the dried nanocrystals stabilized with HPMC, polyvinyl pyrrolidone (PVP, and sodium lauryl sulfate (SLS were investigated and reported. The degree of crystallinity for the processed sample was lowest for the sample stabilised with HPMC and the highest for the raw HC powder.

  3. Gold electrode modified with a self-assembled glucose oxidase and 2,6-pyridinedicarboxylic acid as novel glucose bioanode for biofuel cells

    NARCIS (Netherlands)

    Ammam, Malika; Fransaer, Jan

    2014-01-01

    In this study, we have constructed a gold electrode modified with (3-aminopropyl)trimethoxysilane/2,6-pyridinedicarboxylic acid/glucose oxidase (abbreviated as, Au/ATS/PDA/GOx) by sequential chemical adsorption. Au/ATS/PDA/GOx electrode was characterized by Fourier Transform Infrared Spectroscopy

  4. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications

    Science.gov (United States)

    Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo

    2015-08-01

    Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.

  5. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu; Choi, Joshua J.; Kaushik, Ananth; Clancy, Paulette; Smilgies, Detlef-M.; Hanrath, Tobias

    2011-01-01

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  6. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  7. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection.

    Science.gov (United States)

    Mao, Mei; Zhou, Binbin; Tang, Xianghu; Chen, Cheng; Ge, Meihong; Li, Pan; Huang, Xingjiu; Yang, Liangbao; Liu, Jinhuai

    2018-03-15

    Liquid interfacial self-assembly of metal nanoparticles holds great promise for its various applications, such as in tunable optical devices, plasmonics, sensors, and catalysis. However, the construction of large-area, ordered, anisotropic, nanoparticle monolayers and the acquisition of self-assembled interface films are still significant challenges. Herein, a rapid, validated method to fabricate large-scale, close-packed nanomaterials at the cyclohexane/water interface, in which hydrophilic cetyltrimethylammonium bromide coated nanoparticles and gold nanorods (AuNRs) self-assemble into densely packed 2D arrays by regulating the surface ligand and suitable inducer, is reported. Decorating AuNRs with polyvinylpyrrolidone not only extensively decreases the charge of AuNRs, but also diminishes repulsive forces. More importantly, a general, facile, novel technique to transfer an interfacial monolayer through a designed in situ reaction cell linked to a microfluidic chip is revealed. The self-assembled nanofilm can then automatically settle on the substrate and be directly detected in the reaction cell in situ by means of a portable Raman spectrometer. Moreover, a close-packed monolayer of self-assembled AuNRs provides massive, efficient hotspots to create great surface-enhanced Raman scattering (SERS) enhancement, which provides high sensitivity and reproducibility as the SERS-active substrate. Furthermore, this strategy was exploited to detect drug molecules in human urine for cyclohexane-extracted targets acting as the oil phase to form an oil/water interface. A portable Raman spectrometer was employed to detect methamphetamine down to 100 ppb levels in human urine, exhibiting excellent practicability. As a universal platform, handy tool, and fast pretreatment method with a good capability for drug detection in biological systems, this technique shows great promise for rapid, credible, and on-spot drug detection. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature.

    Science.gov (United States)

    Zhang, Hao; Xu, Xiaobin; Lin, Haifeng; Ud Din, Muhammad Aizaz; Wang, Haiqing; Wang, Xun

    2017-09-14

    Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites. However, deactivation caused by growth and gathering limits the catalytic application of ultrathin nanocrystals. Here we report Ag nanocrystal-decorated polyoxometalate (Ag-POM) single-walled nanotubes assembled via a concise, surfactant-free soaking method as a new kind of well-defined core-sheath nanoreactor. The diameter of Ag nanocrystals inside polyoxometalate nanotubes can be controlled via simply adjusting the reactant concentration. Ag-POM provided outstanding oxidative desulfurization (ODS) catalytic performance for aromatic sulfocompounds at room temperature. It was suggested that Ag nanocrystals decorated on the inner surface played a key role in adjusting the electronic distribution and enhancing the catalytic activity. The as-prepared Ag-POM nanotubes are promising candidate catalysts with enhanced performance for practical catalytic applications in the gasoline desulfurization industry.

  9. Dynamic Self-Assembly of Gold/Polymer Nanocomposites: pH-Encoded Switching between 1D Nanowires and 3D Nanosponges.

    Science.gov (United States)

    Zhang, Qi; Xu, Tian-Yi; Zhao, Cai-Xin; Jin, Wei-Hang; Wang, Qian; Qu, Da-Hui

    2017-10-05

    The design of tunable dynamic self-assembly of nanoparticles with switchable assembled dimensions and morphologies is a challenging goal whose realization is vital for the evolution of smart nanomaterials. Herein, we report on chitosan polymer as an effective supramolecular "glue" for aldehyde-modified Au nanoparticles to reversibly modulate the states of self-assembled nanocomposites. By simultaneous integration of dynamic covalent Schiff base interactions and noncovalent hydrogen bonds, the chitosan/Au nanocomposites could reversibly transform their assembled morphologies from one-dimensional nanowires to three-dimensional nanosponges in response to the variation of pH value. Moreover, the obtained nanosponges could be used as an efficient pH-controlled cargo release system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The hydrodynamic size of polymer stabilized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)

    2007-11-28

    For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.

  11. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    Science.gov (United States)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  12. Optimizing colloidal nanocrystals for applications

    International Nuclear Information System (INIS)

    Sytnyk, M.

    2015-01-01

    In the scientific literature colloidal nanocrystals are presented as promising materials for multiple applications, in areas covering optoelectronics, photovoltaics, spintronics, catalysis, and bio-medicine. On the marked are, however, only a very limited number of examples found, indeed implementing colloidal nanocrystals. Thus the scope of this thesis was to modify nanocrystals and to tune their properties to fulfill specific demands. While some modifications could be achieved by post synthetic treatments, one key problem of colloidal nanocrystals, hampering there widespread application is the toxicity of their constituents. To develop nanocrystals from non-toxic materials has been a major goal of this thesis as well. Roughly, the results in this thesis could be subdivided into three parts: (i) the development of ion exchange methods to tailor the properties of metallic and metal-oxide based nanocrystal heterostructures, (ii), the synthesis of semiconductor nanocrystals from non-toxic materials, and (iii) the characterization of the nanocrystals by measurements of their morphology, chemical composition, magnetic-, optical-, and electronic properties. In detail, the thesis is subdivided into an introductory chapter, 4 chapters reporting on scientific results, a chapter reporting the used methods, and the conclusions. The 4 chapters devoted to the scientific results correspond to manuscripts, which are either currently in preparation, or have been published in highly ranked scientific journals such as NanoLetters (chapter 2), ACS Nano (chapter 4), or JACS (chapter 5). Thus, these chapters provide also an extra introduction and conclusion section, as well as separate reference lists. Chapter 2 describes a cation exchange process which is used to tune and improve the magnetic properties of different iron-oxide based colloidal nanocrystal-heterostructures. The superparamagnetic blocking temperature, magnetic remanence, and coercivity is tuned by replacing Fe2+ by Co2

  13. Formation and optical characterisation of colloidal gold monolayers

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    We study the deposition of charge-stabilised gold nanocolloids on silicon substrates, which have been derivatised with (aminopropyl)triethoxysilane. Atomic force microscopy (AFM) and spectroscopic ellipsometry are employed to investigate the nanocrystal monolayers ex situ. Analysis of AFM images

  14. Template-directed nucleation and growth of CdS nanocrystal: the role of helical and nonhelical nanofibers on their shape and size

    International Nuclear Information System (INIS)

    Bose, Partha Pratim; Banerjee, Arindam

    2010-01-01

    This study describes the use of chiral nature of synthetic self-assembled nanofibers for nucleation and growth of Cadmium sulfide (CdS) nanocrystals with different sizes and shapes in room temperature. The templates are built by immobilizing a peptide capping agent on the surface of synthetic self-assembled helical or nonhelical nanofibers and CdS nanocrystals were allowed to grow on them. It is observed that there are differences in shapes and sizes of the nanocrystals depending on the chiral nature of the nanofibers on which they were growing. Even the CdS nanocrystals grown on different chiral and achiral nanofibers differ markedly in their photoluminescence properties. Thus, here we introduce a new way of using chirality of nanofibers to nucleate and grow CdS nanocrystals of different shape, size, and optical property.

  15. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  16. Gold Mining by Alkanethiol Radicals: Vacancies and Pits in the Self-Assembled Monolayers of 1-Propanethiol and 1-Butanethiol on Au(111)

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2011-01-01

    Scanning-tunneling microscopy (STM) under electrochemical control (in situ STM) in aqueous solution, combined with a priori density functional theory (DFT) image simulations at room temperature, reveals the atomic nature of the interface between Au(111) and self-assembled monolayers (SAMs) of 1-p...

  17. Recognition of anti-mycolic acid antibody at self-assembled mycolic acid antigens on a gold electrode: a potential impedimetric immunosensing platform for active tuberculosis

    CSIR Research Space (South Africa)

    Mathebula, NS

    2009-01-01

    Full Text Available Electrochemical impedimetric recognition by anti-mycolic acid antibodies, present in tuberculosis (TB)-positive human serum co-infected with human immunodeficiency virus (HIV), of mycolic acids (MA) integrated into a self-assembled monolayer of N-(2...

  18. Cellulose nanocrystal submonolayers by spin coating

    NARCIS (Netherlands)

    Kontturi, E.J.; Johansson, L.S.; Kontturi, K.S.; Ahonen, P.; Thune, P.C.; Laine, J.

    2007-01-01

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images,

  19. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  20. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  1. Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles

    International Nuclear Information System (INIS)

    Feng, Dexiang; Lu, Xiaocui; Dong, Xiao; Zhang, Yuzhong; Ling, Yunyun

    2013-01-01

    We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL −1 ), with a detection limit of 60 pg·mL −1 (S/N = 3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility. (author)

  2. Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals

    Science.gov (United States)

    Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin

    2017-12-01

    In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.

  3. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties

    Directory of Open Access Journals (Sweden)

    Maroof A. Hegazy

    2014-06-01

    Full Text Available Semiconductor nanocrystals (NC’s are the materials with dimensions less than 10 nm. When the dimensions of nanocrystals are reduced the bulk bohr diameter, the photo generated electron-hole pair becomes confined and nanocrystal exhibits size dependent upon optical properties. This work is focused on the studying of CdSe semiconductor nanocrystals. These nanocrystals are considered as one of the most widely studies semiconductors because of their size – tunable optical properties from the visible spectrum. CdSe-nanocrystals are produced and obtained throughout the experimental setup initiated at Nano-NRIAG Unit (NNU, which has been constructed and assembled at NRIAG institute. This unit has a specific characterization for preparing chemical compositions, which may be used for solar cell fabrications and space science technology. The materials prepared included cadmium oxide and selinid have sizes ranging between 2.27 nm and 3.75 nm. CdSe-nanocrystals are synthesized in “TOP/TOPO (tri–octyl phosphine/tri–octyl phosphine oxide. Diagnostic tools, include UV analysis, TEM microscope, and X-ray diffraction, which are considered for the analytical studies of the obtained materials. The results show that, in this size regime, the generated particles have unique optical properties, which is achieved from the UV analysis. Also, the TEM image analysis shows the size and shape of the produced particles. These studies are carried out to optimize the photoluminescent efficiency of these nanoparticles. Moreover, the data revealed that, the grain size of nanocrystals is dependent upon the growth time in turn, it leads to a change in the energy gap. Some applications of this class of materials are outlined.

  4. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during se...

  5. Biologically Assembled Quantum Electronic Arrays

    Science.gov (United States)

    2013-06-07

    Koh , Faxian Xiu, Xingchen Ye, Dong-Kyun Ko, Kang L. Wang, Cherie R. Kagan, Christopher B. Murray. Multiscale Periodic Assembly of Striped Nanocrystal...study is the LlM method (See M. T. Raman et al, Applied . Physics L etters 94, 042507, 2009). This method is a type of first-order reversal...Demonstrated graphene field- effect transistor: (top) optical Image of transferred graphene, (middle) Raman spectrum, (bottom) current voltage

  6. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  7. Enhanced performance of a glucose/O(2) biofuel cell assembled with laccase-covalently immobilized three-dimensional macroporous gold film-based biocathode and bacterial surface displayed glucose dehydrogenase-based bioanode.

    Science.gov (United States)

    Hou, Chuantao; Yang, Dapeng; Liang, Bo; Liu, Aihua

    2014-06-17

    The power output and stability of enzyme-based biofuel cells (BFCs) is greatly dependent on the properties of both the biocathode and bioanode, which may be adapted for portable power production. In this paper, a novel highly uniform three-dimensional (3D) macroporous gold (MP-Au) film was prepared by heating the gold "supraspheres", which were synthesized by a bottom-up protein templating approach, and followed by modification of laccase on the MP-Au film by covalent immobilization. The as-prepared laccase/MP-Au biocathode exihibited an onset potential of 0.62 V versus saturated calomel electrode (SCE, or 0.86 V vs NHE, normal hydrogen electrode) toward O2 reduction and a high catalytic current of 0.61 mAcm(-2). On the other hand, mutated glucose dehydrogenase (GDH) surface displayed bacteria (GDH-bacteria) were used to improve the stability of the glucose oxidation at the bioanode. The as-assembled membraneless glucose/O2 fuel cell showed a high power output of 55.8 ± 2.0 μW cm(-2) and open circuit potential of 0.80 V, contributing to the improved electrocatalysis toward O2 reduction at the laccase/MP-Au biocathode. Moreover, the BFC retained 84% of its maximal power density even after continuous operation for 55 h because of the high stability of the bacterial surface displayed GDH mutant toward glucose oxidation. Our findings may be promising for the development of more efficient glucose BFC for portable battery or self-powered device applications.

  8. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Wu, Yiping; Yu, Wenfang; Yang, Benhong; Li, Pan

    2018-05-15

    The use of different food additives and their active metabolites has been found to cause serious problems to human health. Thus, considering the potential effects on human health, developing a sensitive and credible analytical method for different foods is important. Herein, the application of solvent-driven self-assembled Au nanoparticles (Au NPs) for the rapid and sensitive detection of food additives in different commercial products is reported. The assembled substrates are highly sensitive and exhibit excellent uniformity and reproducibility because of uniformly distributed and high-density hot spots. The sensitive analyses of ciprofloxacin (CF), diethylhexyl phthalate (DEHP), tartrazine and azodicarbonamide at the 0.1 ppm level using this surface-enhanced Raman spectroscopy (SERS) substrate are given, and the results show that Au NP arrays can serve as efficient SERS substrates for the detection of food additives. More importantly, SERS spectra of several commercial liquors and sweet drinks are obtained to evaluate the addition of illegal additives. This SERS active platform can be used as an effective strategy in the detection of prohibited additives in food.

  9. Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV-vis spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, C. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France) and Laboratoire de Spectroscopie Moleculaire de Surface, University of Namur, 61 Rue de Bruxelles, B-5000 Namur (Belgium)]. E-mail: christophe.humbert@fundp.ac.be; Busson, B. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France); Abid, J.-P. [Ecole Polytechnique Federale de Lausanne, Laboratoire d' Electrochimie Physique et Analytique, CH-1015 Lausanne (Switzerland); Six, C. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France); Girault, H.H. [Ecole Polytechnique Federale de Lausanne, Laboratoire d' Electrochimie Physique et Analytique, CH-1015 Lausanne (Switzerland); Tadjeddine, A. [LURE, CNRS-UMR 130, Centre Universitaire Paris-Sud, Ba-hat t. 209D, B.P. 34, 91898 Orsay Cedex (France)

    2005-05-20

    We use sum-frequency generation spectroscopy (SFG) in the infrared 2800-3000 cm{sup -1} spectral range and UV-vis spectroscopy (transmission) in the 450-650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG signal is observed for AuNPs films deposited on glass substrates using the following silane intermediates: 3-(aminopropyl) triethoxysilane and 3-(mercaptopropyl) trimethoxysilane. The density of AuNPs and their aggregates are measured with a scanning electron microscope. For the samples showing a strong well-defined surface plasmon resonance (SPR), we also observe an enhancement of their non-linear optical properties. Furthermore, the SFG measurements show that 1-dodecanethiol films are rather well ordered on specific AuNPs substrates. In this way, the presence of the SFG signal, which comes from both the bulk electronic s-d interband transition and the vibrational states of the adsorbed molecules, depends on a SPR process. This phenomenon is evidenced on the AuNPs by the incident visible beam located at 532 nm, i.e. near the SPR energy maximum of these interfaces. These results open the door to experiments involving macromolecular and biological materials networks deposited on ultrathin metal electrodes in a controlled electrochemical environment.

  10. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.

    Science.gov (United States)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-28

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL(-1) with the limit of detection (LOD) of 0.48 pg mL(-1). The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.

  11. Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a self-assembled monolayer, and methylene blue as an electrochemical indicator probe

    International Nuclear Information System (INIS)

    Hou, Li; Jiang, Lingshan; Song, Yunping; Ding, Yunhua; Wu, Xiaoping; Tang, Dianping; Zhang, Jianhua

    2016-01-01

    A label-free electrochemical aptasensor was developed for selective detection of saxitoxin (STX). It is taking advantage of target-induced conformational change of an STX-specific aptamer when it binds to the toxin. A monolayer of octadecanethiol was deposited on a gold electrode, and then coated with a film of multiwalled carbon nanotubes (MWCNTs) to which the aptamer was covalently conjugated. Methylene blue (MB) was electrostatically anchored on carboxylated MWCNTs and used as the electrochemical indicator that produced a strong differential pulse voltammetric signal in the absence of target (STX). If, however, STX binds to its aptamer, this triggers a conformational change of the aptamer and results in the establishment of a barrier for heterogeneous electron transfer. The oxidation peak current of MB, acquired at −0.27 V (vs. Ag/AgCl), linearly decreases with increasing concentrations of STX in the 0.9 and 30 nM concentration range. The detection limit is 0.38 nM. Marine toxins that maybe present along with STX do not interfere even if they have a similar chemical structure. The assay was applied to the determination of STX in mussels samples and was found to be acceptably accurate. Hence, the method introduced here provides a rapid and sensitive tool for monitoring red tide pollution. (author)

  12. Self-assembled organic monolayers on gold nanoparticles: A study by sum-frequency generation combined with UV-vis spectroscopy

    International Nuclear Information System (INIS)

    Humbert, C.; Busson, B.; Abid, J.-P.; Six, C.; Girault, H.H.; Tadjeddine, A.

    2005-01-01

    We use sum-frequency generation spectroscopy (SFG) in the infrared 2800-3000 cm -1 spectral range and UV-vis spectroscopy (transmission) in the 450-650 nm spectral range in order to characterize vibrational and electronic properties of various interfaces composed of organic monolayers adsorbed on gold nanoparticles (AuNPs) with 19 nm average diameter. SFG signal is observed for AuNPs films deposited on glass substrates using the following silane intermediates: 3-(aminopropyl) triethoxysilane and 3-(mercaptopropyl) trimethoxysilane. The density of AuNPs and their aggregates are measured with a scanning electron microscope. For the samples showing a strong well-defined surface plasmon resonance (SPR), we also observe an enhancement of their non-linear optical properties. Furthermore, the SFG measurements show that 1-dodecanethiol films are rather well ordered on specific AuNPs substrates. In this way, the presence of the SFG signal, which comes from both the bulk electronic s-d interband transition and the vibrational states of the adsorbed molecules, depends on a SPR process. This phenomenon is evidenced on the AuNPs by the incident visible beam located at 532 nm, i.e. near the SPR energy maximum of these interfaces. These results open the door to experiments involving macromolecular and biological materials networks deposited on ultrathin metal electrodes in a controlled electrochemical environment

  13. Controlled supramolecular assembly of micelle-like gold nanoparticles in PS-b-P2VP diblock copolymers via hydrogen bonding.

    Science.gov (United States)

    Jang, Se Gyu; Kramer, Edward J; Hawker, Craig J

    2011-10-26

    We report a facile strategy to synthesize amphiphilic gold (Au) nanoparticles functionalized with a multilayer, micelle-like structure consisting of a Au core, an inner hydroxylated polyisoprene (PIOH) layer, and an outer polystyrene shell (PS). Careful control of enthalpic interactions via a systematic variation of structural parameters, such as number of hydroxyl groups per ligand (N(OH)) and styrene repeating units (N(PS)) as well as areal chain density of ligands on the Au-core surface (Σ), enables precise control of the spatial distribution of these nanoparticles. This control was demonstrated in a lamellae-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) diblock copolymer matrix, where the favorable hydrogen-bonding interaction between hydroxyl groups in the PIOH inner shell and P2VP chains in the PS-b-P2VP diblock copolymer matrix, driving the nanoparticles to be segregated in P2VP domains, could be counter balanced by the enthalphic penalty of mixing of the PS outer brush with the P2VP domains. By varying N(OH), N(PS), and Σ, the nanoparticles could be positioned in the PS or P2VP domains or at the PS/P2VP interface. In addition, the effect of additives interfering with the hydrogen-bond formation between hydroxyl groups on Au nanoparticles and P2VP chains in a diblock copolymer matrix was investigated, and an interesting pea-pod-like segregation of Au nanoparticles in PS domains was observed.

  14. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    Science.gov (United States)

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm -2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Doping effect in Si nanocrystals

    Science.gov (United States)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  16. Optical properties and ensemble characteristics of size purified Silicon nanocrystals

    Science.gov (United States)

    Miller, Joseph Bradley

    Nanotechnology is at the forefront of current scientific research and nanocrystals are being hailed as the 'artificial' atoms of the 21st century. Semiconducting silicon nanocrystals (SiNCs) are prime candidates for potential commercial applications because of silicon's already ubiquitous presence in the semiconductor industry, nontoxicity and abundance in nature. For realization of these potential applications, the properties and behavior of SiNCs need to be understood and enhanced. In this report, some of the main SiNC synthesis schemes are discussed, including those we are currently experimenting with to create our own SiNCs and the one utilized to create the SiNCs used in this study. The underlying physics that governs the unique behavior of SiNCs is then presented. The properties of the as-produced SiNCs are determined to depend strongly on surface passivation and environment. Size purification, an important aspect of nanomaterial utilization, was successfully performed on our SiNCs though density gradient ultracentrifugation. We demonstrate that the size-purified fractions exhibit an enhanced ability for colloidal self-assembly, with better aligned nanocrystal energy levels which promotes greater photostability in close-packed films and produces a slight increase in photoluminescence (PL) quantum yield. The qualities displayed by the fractions are exploited to form SiNC clusters that exhibit photostable PL. An analysis of SiNC cluster (from individual nanocrystals to collections of more than one thousand) blinking and PL shows an improvement in their PL emitting 'on' times. Pure SiNC films and SiNC-polymer nanocomposites are created and the dependence of their PL on temperature is measured. For such nanocomposites, the coupling between the 'coffee-ring' effect and liquid-liquid phase separation is also examined for ternary mixtures of solvent, polymer and semiconducting nanocrystal. We discover that with the right SiNC-polymer concentration and polymer

  17. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    International Nuclear Information System (INIS)

    Gross, Dieter Konrad Michael

    2013-01-01

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  18. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  19. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  20. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  1. Cytosine-assisted synthesis of gold nanochains and gold nanoflowers for the construction of a microperoxidase-11 based amperometric biosensor for hydrogen peroxide

    International Nuclear Information System (INIS)

    Zhang, Qian-Li; Zhou, Dan-Ling; Wang, Ai-Jun; Qin, Su-Fang; Feng, Jiu-Ju; Li, Yong-Fang

    2014-01-01

    A simple method was developed for synthesis of network-like gold nanochains and gold nanoflowers in the presence of cytosine by reduction of tetrachloroauric acid with sodium borohydride and ascorbic acid, respectively. The resulting gold nanocrystals were coated with microperoxidase-11 via electrostatic interactions. Electrodes modified with protein-coated gold nanochains or nanoflowers display well-defined and quasi reversible redox peaks and enhanced high electrocatalytic activity toward the reduction of H 2 O 2 that is due to direct electron transfer to the protein. The effects were exploited for the amperometric detection of H 2 O 2 with a linear response from 0.5 μM to 0.13 mM (for the gold nanochains) and from 1.0 μM to 0.11 mM (for the gold nanoflowers), respectively. The sensor shows lower detection limit and faster response time than sensors based on the use of spherical gold nanoparticles. (author)

  2. Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer.

    Science.gov (United States)

    Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L

    2010-05-07

    Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.

  3. Mechanism underlying bioinertness of self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces.

    Science.gov (United States)

    Hayashi, Tomohiro; Tanaka, Yusaku; Koide, Yuki; Tanaka, Masaru; Hara, Masahiko

    2012-08-07

    The mechanism underlying the bioinertness of the self-assembled monolayers of oligo(ethylene glycol)-terminated alkanethiol (OEG-SAM) was investigated with protein adsorption experiments, platelet adhesion tests, and surface force measurements with an atomic force microscope (AFM). In this work, we performed systematic analysis with SAMs having various terminal groups (-OEG, -OH, -COOH, -NH(2), and -CH(3)). The results of the protein adsorption experiment by the quartz crystal microbalance (QCM) method suggested that having one EG unit and the neutrality of total charges of the terminal groups are essential for protein-resistance. In particular, QCM with energy dissipation analyses indicated that proteins absorb onto the OEG-SAM via a very weak interaction compared with other SAMs. Contrary to the protein resistance, at least three EG units as well as the charge neutrality of the SAM are found to be required for anti-platelet adhesion. When the identical SAMs were formed on both AFM probe and substrate, our force measurements revealed that only the OEG-SAMs possessing more than two EG units showed strong repulsion in the range of 4 to 6 nm. In addition, we found that the SAMs with other terminal groups did not exhibit such repulsion. The repulsion between OEG-SAMs was always observed independent of solution conditions [NaCl concentration (between 0 and 1 M) and pH (between 3 and 11)] and was not observed in solution mixed with ethanol, which disrupts the three-dimensional network of the water molecules. We therefore concluded that the repulsion originated from structured interfacial water molecules. Considering the correlation between the above results, we propose that the layer of the structured interfacial water with a thickness of 2 to 3 nm (half of the range of the repulsion observed in the surface force measurements) plays an important role in deterring proteins and platelets from adsorption or adhesion.

  4. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  5. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  6. Selective growth of gold onto copper indium sulfide selenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research

    2013-05-15

    Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS{sub 2}). CuInS{sub 2}/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity. (orig.)

  7. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  8. An innovative immunosensor for ultrasensitive detection of breast cancer specific carbohydrate (CA 15-3) in unprocessed human plasma and MCF-7 breast cancer cell lysates using gold nanospear electrochemically assembled onto thiolated graphene quantum dots.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Tagi, Solmaz; Solhi, Elham; Mokhtarzadeh, Ahad; Shadjou, Nasrin; Eftekhari, Aziz; Mahboob, Soltanali

    2018-04-03

    The accurate quantification of the level of breast cancer specific protein CA 15-3 in serum is crucial for cancer prognosis. This work, a novel and sensitive label-free immunoassay based on gold nanospear (Au NSs) electrochemically assembled onto thiolated graphene quantum dots (CysA/GQDs) for the detection of CA 15-3 antibodies. The CysA/Au NSs/GQDs hybrid interface provides a large surface area for the effective immobilization of CA 15-3 antigens, as well as it ascertains the bioactivity and stability of immobilized CA 15-3 antigens. Field emission scanning electron microscope (FE-SEM), and EDS photoelectron spectroscopies were used to monitor the sensor fabrication. Also, cyclic voltammetry was used to quantify the extent of Au NSs' surface coverage by CA 15-3 antigens. Square wave voltammetry (SWV) was employed to investigate the immunosensor fabrication and to monitor the binding events between CA 15-3 antigens-antibodies. Under optimized experimental conditions, the immunosensor displayed good sensitivity and specificity. The CA 15-3 were detected in a concentration as low as 0.11U/mL with a linear range from 0.16-125U/mL. The high sensitivity of the immunosensor may derive from the high loading of CA 15-3 antibodies on CysA/Au NSs/GQDs hybrid interface which increases the number of binding events. The method was successfully applied assay of the CA 15-3 in unprocessed human plasma samples. Also, proposed immunosensor was applied to the assay of CA 15-3 malignant cell line lysates (human breast adenocarcinoma cell line-MCF-7). Copyright © 2018. Published by Elsevier B.V.

  9. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  10. Structure Map for Embedded Binary Alloy Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  11. Hollow nanocrystals and method of making

    Science.gov (United States)

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  12. Synthesis, spectroscopy and simulation of doped nanocrystals

    NARCIS (Netherlands)

    Suyver, Jan Frederik

    2003-01-01

    This thesis deals with the properties of semiconductor nanocrystals (ZnS or ZnSe) in the size range (diameter) of 2 nm to 10 nm. The nanocrystals under investigation are doped with the transition metal ions manganese or copper. The goal is to study photoluminescence and electroluminescence from

  13. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  14. Symmetry breaking during seeded growth of nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Xia, Younan

    2012-11-14

    Currently, most of the reported noble-metal nanocrystals are limited to a high level of symmetry, as constrained by the inherent, face-centered cubic (fcc) lattice of these metals. In this paper, we report, for the first time, a facile and versatile approach (backed up by a clear mechanistic understanding) for breaking the symmetry of an fcc lattice and thus obtaining nanocrystals with highly unsymmetrical shapes. The key strategy is to induce and direct the growth of nanocrystal seeds into unsymmetrical modes by manipulating the reduction kinetics. With silver as an example, we demonstrated that the diversity of possible shapes taken by noble-metal nanocrystals could be greatly expanded by incorporating a series of new shapes drastically deviated from the fcc lattice. This work provides a new method to investigate shape-controlled synthesis of metal nanocrystal.

  15. Measuring the Valence of Nanocrystal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan Scharle [Columbia Univ., New York, NY (United States)

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystal with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.

  16. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  17. Phonon dispersion and thermal conductivity of nanocrystal superlattices using three-dimensional atomistic models

    International Nuclear Information System (INIS)

    Zanjani, Mehdi B.; Lukes, Jennifer R.

    2014-01-01

    A computational study of thermal conductivity and phonon dispersion of gold nanocrystal superlattices is presented. Phonon dispersion curves, reported here for the first time from combined molecular dynamics and lattice dynamics calculations, show multiple phononic band gaps and consist of many more dispersion branches than simple atomic crystals. Fully atomistic three dimensional molecular dynamics calculations of thermal conductivity using the Green Kubo method are also performed for the first time on these materials. Thermal conductivity is observed to increase for increasing nanocrystal core size and decrease for increasing surface ligand density. Our calculations predict values in the range 0.1–1 W/m K that are consistent with reported experimental results

  18. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  19. Development Considerations for Nanocrystal Drug Products.

    Science.gov (United States)

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  20. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.; Bealing, Clive R.; Bian, Kaifu; Hughes, Kevin J.; Zhang, Wenyu; Smilgies, Detlef-M.; Hennig, Richard G.; Engstrom, James R.; Hanrath, Tobias

    2011-01-01

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  1. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  2. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  3. Self-assembled nanogaps for molecular electronics.

    Science.gov (United States)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-06-17

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  4. Self-assembled nanogaps for molecular electronics

    International Nuclear Information System (INIS)

    Tang Qingxin; Tong Yanhong; Jain, Titoo; Hassenkam, Tue; Moth-Poulsen, Kasper; Bjoernholm, Thomas; Wan Qing

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO 2 :Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of ∼20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO 2 :Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  5. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  6. Understanding shape and morphology of unusual tubular starch nanocrystals.

    Science.gov (United States)

    Gong, Bei; Liu, Wenxia; Tan, Hua; Yu, Dehai; Song, Zhaoping; Lucia, Lucian A

    2016-10-20

    Starch nanocrystals (SNC) are aptly described as the insoluble degradation byproducts of starch granules that purportedly display morphologies that are platelet-like, round, square, and oval-like. In this work, we reported the preparation of SNC with unprecedented tubular structures through sulfuric acid hydrolysis of normal maize starch, subsequent exposure to ammonia and relaxation at 4°C. High-resolution transmission electron microscopy observation clearly proved that the SNCs possess tubular nanostructures with polygonal cross-section. After further reviewing the transformations of SNC by acid hydrolysis, ammonia treatment, and curing time at 4°C, a mechanism for T-SNC formation is suggested. It is conjectured that T-SNC gradually self-assembles by combination of smaller platelet-like/square nanocrystals likely loosely aggregated by starch molecular chains from residual amorphous regions. This work paves the way for the pursuit of new approaches for the preparation of starch-based nanomaterials possessing unique morphologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Composite material including nanocrystals and methods of making

    Science.gov (United States)

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  8. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings.

    Science.gov (United States)

    Jiang, Li-Ping; Xu, Shu; Zhu, Jian-Min; Zhang, Jian-Rong; Zhu, Jun-Jie; Chen, Hong-Yuan

    2004-09-20

    A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes. Copyright 2004 American Chemical Society

  9. High Temperature AL-Nanocrystal Alloy Synthesis

    National Research Council Canada - National Science Library

    Perepezko, J

    2001-01-01

    Aluminum-rich metallic glasses containing transition metals and rare earth elements have been found to yield finely mixed microstructures of Al nanocrystals embedded in an amorphous matrix and exhibit...

  10. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  11. Photoluminescence of nanocrystals embedded in oxide matrices

    International Nuclear Information System (INIS)

    Estrada, C.; Gonzalez, J.A.; Kunold, A.; Reyes-Esqueda, J.A.; Pereyra, P.

    2006-12-01

    We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)

  12. Anti-microbial peptide facilitated cytosolic delivery of metallic gold nanomaterials

    Science.gov (United States)

    Kapur, Anshika; Wang, Wentao; Diaz Hernandez, Juan; Medina, Scott; Schneider, Joel P.; Mattoussi, Hedi

    2018-02-01

    The unique photophysical properties of gold nanomaterials combined with progress in developing effective surfacefunctionalization strategies has motivated researchers to employ them as tools for use in biomedical imaging, biosensing, diagnostics, photothermal therapy, and as drug and gene delivery vehicles. However, a major challenge limiting these advancements has been the unavailability of effective strategies to deliver these and other nanocrystals into the cytoplasm of live cells. In this study, we demonstrate that the use of a chemically-synthesized anti-microbial peptide, SVS-1, can promote non-endocytic uptake of both small size gold nanoparticles (AuNPs) and larger size gold nanorods (AuNRs) into mammalian cells. For this, colloidally stable AuNP and AuNRs, surface ligated with an amine-functionalized polymer, His-PIMA-PEG-OCH3/NH2 were prepared. The amine groups allow dual, covalent attachment of cysteine terminated SVS-1 (via a thioether linkage) and NHS-ester-Texas-Red dye onto the nanocrystal surfaces. We use fluorescence microscopy to demonstrate nanocrystal staining throughout the cytoplasmic volume of the cells incubated with these conjugates. More importantly, we have conducted additional endocytosis inhibition experiments where cells were incubated with the conjugates at 4°C. Here too, the imaging data have shown significant levels of nanocrystal uptake, further verifying that physical translocation of these conjugates takes place through the cell membrane independent of endocytosis. These findings are promising and can provide critical support for the widespread applications of nanomaterials in the field of biology.

  13. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Abstract. A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  14. Large-scale and green synthesis of octahedral flower-like cupric oxide nanocrystals with enhanced photochemical properties

    International Nuclear Information System (INIS)

    Li, Shi-Kuo; Pan, Yu-Yi; Wu, Mi; Huang, Fang-Zhi; Li, Chuan-Hao; Shen, Yu-Hua

    2014-01-01

    Graphical abstract: - Highlights: • A green method is reported for large-scale synthesis of CuO nanocrystals via a coordination-deposition technique. • Flower-like nanostructure can be rationally tailored by adjusting reaction parameters. • Flower-like nanostructure can be obtained in a wide reaction solution volume range. • Uniform flower-like nanocrystal film assembled by oil–water interfacial self-assembly method exhibits excellent PEC performance. - Abstract: In this work, a large-scale and green method is reported for the facile synthesis of octahedral flower-like CuO nanocrystals via a coordination-deposition route by using Fehling regents. Not any harmful organic chemicals were used during the reaction period. The obtained hierarchical nanostructure can be rationally tailored by varying the concentration of tartrate ions and reaction time. The typical flower-like CuO nanocrystals in the range of 200–250 nm are consisted of numerous small crystalline whiskers, which present a porous surface with a specific surface area of 32.12 m 2 /g and a narrow band gap of 1.5 eV. Importantly, the flower-like CuO nanocrystals show an enhanced photocatalytic activity toward decomposing Rhodamine B (RhB) molecules. The degradation rate is about 87.9% in 40 min under visible light irradiation, which is about 2.5 times for the commercial CuO powers (35.2%). Moreover, the uniform flower-like monolayered CuO film exhibits an excellent photoelectrochemical (PEC) performance with a maximum photocurrent density of 58.8 μA/cm 2 , which is nearly five times higher than the commercial CuO film. This novel synthesis approach provides a large-scale and green protocol for synthesizing hierarchical metal oxide nanocrystals that are useful for photocatalysis, PEC water splitting and photovoltaic device

  15. Large-scale and green synthesis of octahedral flower-like cupric oxide nanocrystals with enhanced photochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi-Kuo; Pan, Yu-Yi; Wu, Mi; Huang, Fang-Zhi; Li, Chuan-Hao, E-mail: lichuanhao1983@163.com; Shen, Yu-Hua, E-mail: s_yuhua@163.com

    2014-10-01

    Graphical abstract: - Highlights: • A green method is reported for large-scale synthesis of CuO nanocrystals via a coordination-deposition technique. • Flower-like nanostructure can be rationally tailored by adjusting reaction parameters. • Flower-like nanostructure can be obtained in a wide reaction solution volume range. • Uniform flower-like nanocrystal film assembled by oil–water interfacial self-assembly method exhibits excellent PEC performance. - Abstract: In this work, a large-scale and green method is reported for the facile synthesis of octahedral flower-like CuO nanocrystals via a coordination-deposition route by using Fehling regents. Not any harmful organic chemicals were used during the reaction period. The obtained hierarchical nanostructure can be rationally tailored by varying the concentration of tartrate ions and reaction time. The typical flower-like CuO nanocrystals in the range of 200–250 nm are consisted of numerous small crystalline whiskers, which present a porous surface with a specific surface area of 32.12 m{sup 2}/g and a narrow band gap of 1.5 eV. Importantly, the flower-like CuO nanocrystals show an enhanced photocatalytic activity toward decomposing Rhodamine B (RhB) molecules. The degradation rate is about 87.9% in 40 min under visible light irradiation, which is about 2.5 times for the commercial CuO powers (35.2%). Moreover, the uniform flower-like monolayered CuO film exhibits an excellent photoelectrochemical (PEC) performance with a maximum photocurrent density of 58.8 μA/cm{sup 2}, which is nearly five times higher than the commercial CuO film. This novel synthesis approach provides a large-scale and green protocol for synthesizing hierarchical metal oxide nanocrystals that are useful for photocatalysis, PEC water splitting and photovoltaic device.

  16. Applying analytical ultracentrifugation to nanocrystal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Jennifer A; Krueger, Karl M; Mayo, J T; Yavuz, Cafer T; Redden, Jacina J; Colvin, Vicki L, E-mail: colvin@rice.ed [Department of Chemistry, Rice University, 6100 Main Street, MS-60, Houston, TX 77005 (United States)

    2009-09-02

    While applied frequently in physical biochemistry to the study of protein complexes, the quantitative use of analytical ultracentrifugation (AUC) for nanocrystal analysis is relatively rare. Its application in nanoscience is potentially very powerful as it provides a measure of nanocrystal density, size and structure directly in the solution phase. Towards that end, this paper examines the best practices for applying data collection and analysis methods for AUC, geared towards the study of biomolecules, to the unique problems of nanoparticle analysis. Using uniform nanocrystals of cadmium selenide, we compared several schemes for analyzing raw sedimentation data. Comparable values of the mean sedimentation coefficients (s-value) were found using several popular analytical approaches; however, the distribution in sample s-values is best captured using the van Holde-Weischt algorithm. Measured s-values could be reproducibly collected if sample temperature and concentration were controlled; under these circumstances, the variability for average sedimentation values was typically 5%. The full shape of the distribution in s-values, however, is not easily subjected to quantitative interpretation. Moreover, the selection of the appropriate sedimentation speed is crucial for AUC of nanocrystals as the density of inorganic nanocrystals is much larger than that of solvents. Quantitative analysis of sedimentation properties will allow for better agreement between experimental and theoretical models of nanocrystal solution behavior, as well as providing deeper insight into the hydrodynamic size and solution properties of nanomaterials.

  17. Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties

    Science.gov (United States)

    Natarajan, Bharath; Gilman, Jeffrey W.

    2017-12-01

    The twisted plywood, or Bouligand, structure is the most commonly observed microstructural motif in natural materials that possess high mechanical strength and toughness, such as that found in bone and the mantis shrimp dactyl club. These materials are isotropically toughened by a low volume fraction of soft, energy-dissipating polymer and by the Bouligand structure itself, through shear wave filtering and crack twisting, deflection and arrest. Cellulose nanocrystals (CNCs) are excellent candidates for the bottom-up fabrication of these structures, as they naturally self-assemble into `chiral nematic' films when cast from solutions and possess outstanding mechanical properties. In this article, we present a review of the fabrication techniques and the corresponding mechanical properties of Bouligand biomimetic CNC nanocomposites, while drawing comparison to the performance standards set by tough natural composite materials. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  18. Bright trions in direct-bandgap silicon nanocrystals revealed bylow-temperature single-nanocrystal spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Pelant, Ivan; Valenta, J.

    2015-01-01

    Roč. 4, Oct (2015), e336 ISSN 2047-7538 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * single-nanocrystal spectroscopy * luminescing trions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.600, year: 2015

  19. Solution synthesis of germanium nanocrystals

    Science.gov (United States)

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  20. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  1. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng [Washington State Univ., Pullman, WA (United States)

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  2. Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold

    NARCIS (Netherlands)

    Heffels, W.; Bastiaansen, C.W.M.; Caseri, W.R.; Smith, P.

    2000-01-01

    Polymer nanocomposites were prepd. by mixing ultrahigh-mol.-wt. polyethylene and gold colloids coated with a self-assembled monolayer of dodecanethiol. Subsequently, these materials were oriented by solid state drawing which induced the formation of uniaxially oriented arrays of gold particles. As a

  3. Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Dieter Konrad Michael

    2013-11-08

    Closely packed nanocrystal systems have been investigated in this thesis with respect to charge separation by charge carrier tunneling. Clustered and layered samples have been analyzed using PL-measurements and SPV-methods. The most important findings are reviewed in the following. A short outlook is also provided for potential further aspects and application of the presented results. The main purpose of this thesis was to find and quantify electronic tunneling transfer in closely packed self-assembled nanocrystal structures presenting quantum mechanical barriers of about 1 nm width. We successfully used hybrid assemblies of CdTe and CdSe nanocrystals where the expected type II alignment between CdTe and CdSe typically leads to a concentration of electrons in CdSe and holes in CdTe nanocrystals. We were able to prove the charge selectivity of the CdTe-CdSe nanocrystal interface which induces charge separation. We mainly investigated the effects related to the electron transfer from CdTe to CdSe nanocrystals. Closely packing was achieved by two independent methods: the disordered colloidal clustering in solution and the layered assembly on dry glass substrates. Both methods lead to an inter-particle distance of about 1 nm of mainly organic material which acts as a tunneling barrier. PL-spectroscopy was applied. The PL-quenching of the CdTe nanocrystals in hybrid assemblies indicates charge separation by electron transfer from CdTe to CdSe nanocrystals. A maximum quenching rate of up to 1/100 ps was measured leading to a significant global PL-quenching of up to about 70 % for the CdTe nanocrystals. It was shown that charge separation dynamics compete with energy transfer dynamics and that charge separation typically dominates. The quantum confinement effect was used to tune the energetic offset between the CdTe and CdSe nanocrystals. We thus observe a correlation of PL-quenching and offset of the energy states for the electron transfer. The investigated PL

  4. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  5. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  6. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-01-01

    -performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a

  7. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  8. Light Scattering Spectroscopies of Semiconductor Nanocrystals (Quantum Dots)

    International Nuclear Information System (INIS)

    Yu, Peter Y; Gardner, Grat; Nozaki, Shinji; Berbezier, Isabelle

    2006-01-01

    We review the study of nanocrystals or quantum dots using inelastic light scattering spectroscopies. In particular recent calculations of the phonon density of states and low frequency Raman spectra in Ge nanocrystals are presented for comparison with experimental results

  9. Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds

    International Nuclear Information System (INIS)

    Tang Aiwei; Wang Yu; Ye Haihang; Zhou Chao; Yang Chunhe; Li Xu; Peng Hongshang; Zhang Fujun; Hou Yanbing; Teng Feng

    2013-01-01

    A one-step colloidal process has been adopted to prepare silver (Ag) and silver sulfide (Ag 2 S) nanocrystals, thus avoiding presynthesis of an organometallic precursor and the injection of a toxic phosphine agent. During the reaction, a layered intermediate compound is first formed, which then acts as a precursor, decomposing into the nanocrystals. The composition of the as-obtained products can be controlled by selective cleavage of S–C bonds or Ag–S bonds. Pure Ag 2 S nanocrystals can be obtained by directly heating silver acetate (Ag(OAc)) and n-dodecanethiol (DDT) at 200 ° C without any surfactant, and pure Ag nanocrystals can be synthesized successfully if the reaction temperature is reduced to 190 ° C and the amount of DDT is decreased to 1 ml in the presence of a non-coordinating organic solvent (1-octadecene, ODE). Otherwise, the mixture of Ag and Ag 2 S is obtained by directly heating Ag(OAc) in DDT by increasing the reaction temperature or in a mixture of DDT and ODE at 200 ° C. The formation mechanism has been discussed in detail in terms of selective S–C and Ag–S bond dissociation due to the nucleophilic attack of DDT and the lower bonding energy of Ag–S. Interestingly, some products can easily self-assemble into two- or three-dimensional (2D or 3D) highly ordered superlattice structures on a copper grid without any additional steps. The excess DDT plays a key role in the superlattice structure due to the bundling and interdigitation of the thiolate molecules adsorbed on the as-obtained nanocrystals. (paper)

  10. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self

  11. Cellulose nanocrystal: electronically conducting polymer nanocomposites for supercapacitors

    OpenAIRE

    Liew, Soon Yee

    2012-01-01

    This thesis describes the use of cellulose nanocrystals for the fabrication of porous nanocomposites with electronic conducting polymers for electrochemical supercapacitor applications. The exceptional strength and negatively charged surface functionalities on cellulose nanocrystals are utilised in these nanocomposites. The negatively charged surface functionalities on cellulose nanocrystals allow their simultaneous incorporation into electropolymerised, positively charged conducting polymer ...

  12. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  13. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  14. Electrochromic properties of self-assembled nanoparticle multilayer films

    International Nuclear Information System (INIS)

    Xue Bo; Li Hong; Zhang Lanlan; Peng Jun

    2010-01-01

    Hexagonal tungsten bronze (HTB) nanocrystal and TiO 2 nanoparticles were assembled into thin films by layer-by-layer self-assembly method. HTB nanocrystals were synthesized by hydrothermal route at 155 o C. UV-Vis spectra showed that the HTB/TiO 2 films exhibit a linear increase in film thickness with assembly exposure steps. The electrochromic property of the film was carefully investigated. Cyclic voltammetry indicated that the redox peak was around -0.5 V. The electrochromic contrast, coloration efficiency, switching speed, stability and optical memory were carefully investigated. The films vary from white to blue and finally dark brown. The electrochromic contrast is 63.9% at 633 nm. The coloration efficiency of the films is relatively high. The response time is less than 3 s.

  15. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  16. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  17. The structure and morphology of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kadavanich, Andreas V. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  18. Strained interface defects in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Benjamin G.; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO (United States); Hiller, Daniel; Zacharias, Margit [IMTEK - Faculty of Engineering, Albert-Ludwigs-University Freiburg (Germany); Luo, Jun-Wei; Beard, Matthew C. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Semonin, Octavi E. [Chemical and Materials Science, National Renewable Energy Laboratory, Golden, CO (United States); Department of Physics, University of Colorado, Boulder, CO (United States)

    2012-08-07

    The surface of silicon nanocrystals embedded in an oxide matrix can contain numerous interface defects. These defects strongly affect the nanocrystals' photoluminescence efficiency and optical absorption. Dangling-bond defects are nearly eliminated by H{sub 2} passivation, thus decreasing absorption below the quantum-confined bandgap and enhancing PL efficiency by an order of magnitude. However, there remain numerous other defects seen in absorption by photothermal deflection spectroscopy; these defects cause non-radiative recombination that limits the PL efficiency to <15%. Using atomistic pseudopotential simulations, we attribute these defects to two specific types of distorted bonds: Si-Si and bridging Si-O-Si bonds between two Si atoms at the nanocrystal surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Crystal Structure of Faradaurate-279: Au279(SPh-tBu)84 Plasmonic Nanocrystal Molecules.

    Science.gov (United States)

    Sakthivel, Naga Arjun; Theivendran, Shevanuja; Ganeshraj, Vigneshraja; Oliver, Allen G; Dass, Amala

    2017-11-01

    We report the discovery of an unprecedentedly large, 2.2 nm diameter, thiolate protected gold nanocrystal characterized by single crystal X-ray crystallography (sc-XRD), Au 279 (SPh-tBu) 84 named Faradaurate-279 (F-279) in honor of Michael Faraday's (1857) pioneering work on nanoparticles. F-279 nanocrystal has a core-shell structure containing a truncated octahedral core with bulk face-centered cubic-like arrangement, yet a nanomolecule with a precise number of metal atoms and thiolate ligands. The Au 279 S 84 geometry was established from a low-temperature 120 K sc-XRD study at 0.90 Å resolution. The atom counts in core-shell structure of Au 279 follows the mathematical formula for magic number shells: Au@Au 12 @Au 42 @Au 92 @Au 54 , which is further protected by a final shell of Au 48 . Au 249 core is protected by three types of staple motifs, namely: 30 bridging, 18 monomeric, and 6 dimeric staple motifs. Despite the presence of such diverse staple motifs, Au 279 S 84 structure has a chiral pseudo-D 3 symmetry. The core-shell structure can be viewed as nested, concentric polyhedra, containing a total of five forms of Archimedean solids. A comparison between the Au 279 and Au 309 cuboctahedral superatom model in shell-wise growth is illustrated. F-279 can be synthesized and isolated in high purity in milligram quantities using size exclusion chromatography, as evidenced by mass spectrometry. Electrospray ionization-mass spectrometry independently verifies the X-ray diffraction study based heavy atoms formula, Au 279 S 84 , and establishes the molecular formula with the complete ligands, namely, Au 279 (SPh-tBu) 84 . It is also the smallest gold nanocrystal to exhibit metallic behavior, with a surface plasmon resonance band around 510 nm.

  20. Pr6O11 micro-spherical nano-assemblies: Microwave-assisted synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Majeed, Shafquat; Shivashankar, S.A.

    2013-01-01

    We report the synthesis of Pr 6 O 11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of 6 O 11 microspheres assembled from ultra-small nanocrystals were synthesized. • As-prepared microspheres are covered by ethylene glycol as shown by IR analysis. • Role of temperature and pressure on self-assembly studied. • Luminescence emission behaviour of as-prepared and annealed products studied

  1. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    Science.gov (United States)

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  2. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  3. Fluorescence behavior and singlet oxygen generating abilities of aluminum phthalocyanine in the presence of anisotropic gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mthethwa, Thandekile; Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za

    2015-01-15

    Gold nanoparticles (spheres, rods and bipyramids) were synthesized. The nanocrystals were characterized by UV–visible spectrometry, transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The as prepared gold nanoparticles were then conjugated to a quaternized 2,(3)-tetra [2-(dimethylamino) ethanethio] substituted Al(OH) phthalocyanine (complex 1). The conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields and lifetimes. Conversely, an increase in the singlet oxygen quantum yields was observed for the conjugated complex 1 in the presence of AuNPs. - Highlights: • Gold nanoparticles (spheres, rods and bipyramids) were synthesized. • Gold nanoparticles were then conjugated to a quaternized ClAl phthalocyanine. • Conjugation of phthalocyanines with gold nanoparticles resulted in a decrease in the fluorescence quantum yields. • An increase in the singlet oxygen quantum yields was observed for the phthalocyanine in the presence of nanoparticles.

  4. Reducing Water Vapor Permeability of Poly(lactic acid Film and Bottle through Layer-by-Layer Deposition of Green-Processed Cellulose Nanocrystals and Chitosan

    Directory of Open Access Journals (Sweden)

    Katalin Halász

    2015-01-01

    Full Text Available Layer-by-layer electrostatic self-assembly technique was applied to improve the barrier properties of poly(lactic acid (PLA films and bottles. The LbL process was carried out by the alternate adsorption of chitosan (CH (polycation and cellulose nanocrystals (CNC produced via ultrasonic treatment. Four bilayers (on each side of chitosan and cellulose nanocrystals caused 29 and 26% improvement in barrier properties in case of films and bottles, respectively. According to the results the LbL process with CH and CNC offered a transparent “green” barrier coating on PLA substrates.

  5. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen.

    Science.gov (United States)

    Jena, Bikash Kumar; Raj, C Retna

    2007-03-27

    This article describes the synthesis of branched flower-like gold (Au) nanocrystals and their electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Gold nanoflowers (GNFs) were obtained by a one-pot synthesis using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) as a reducing/stabilizing agent. The GNFs have been characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical measurements. The UV-visible spectra show two bands corresponding to the transverse and longitudinal surface plasmon (SP) absorption at 532 and 720 nm, respectively, for the colloidal GNFs. The GNFs were self-assembled on a sol-gel-derived silicate network, which was preassembled on a polycrystalline Au electrode and used for electrocatalytic applications. The GNFs retain their morphology on the silicate network; the UV-visible diffuse reflectance spectra (DRS) of GNFs on the silicate network show longitudinal and transverse bands as in the case of colloidal GNFs. The GNFs show excellent electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Oxidation of methanol in alkaline solution was observed at approximately 0.245 V, which is much less positive than that on an unmodified polycrystalline gold electrode. Reduction of oxygen to H2O2 and the further reduction of H2O2 to water in neutral pH were observed at less negative potentials on the GNFs electrode. The electrocatalytic activity of GNFs is significantly higher than that of the spherically shaped citrate-stabilized Au nanoparticles (SGNs).

  6. Manipulating emission of CdSe/ZnS nanocrystals embedded in synthetic opals

    International Nuclear Information System (INIS)

    Benalloul, Paul; Vion, Celine; Barthou, Charles; Schwob, Catherine; Frigerio, Jean-Marc; MaItre, Agnes; Gruzintsev, Alex; Emelchenko, Gennadi; Masalov, Wladimir; Nga, Pham Thu

    2009-01-01

    Photonic crystals (PCs) are the object of great interest due to the possibility, for appropriate PCs, to modify and control light propagation and even to influence the emission properties of an emitter, such as its emission diagram and its life time. One of the most common approaches to prepare 3D PCs takes advantage of the spontaneous self-organisation of spherical colloidal particles. Various self-assembly techniques such as sedimentation, convective or Langmuir-Blodgett ones have been studied as they provide a low cost and relatively easy protocol to obtain artificial opals. SiO 2 opals exhibit a pseudo-band gap. Nevertheless the coupling of II-VI nanocrystal emitters in such PCs allows one to recognize and study some basic problems. Large opals have been prepared by the sedimentation method and the size of the balls has been adjusted so that the pseudo-band gap of those PCs lies in the same region as the emission band of CdSe/ZnS nanocrystals. Diagrams of radiation and the modification of the spontaneous life time of the embedded nanocrystals will be presented and discussed. Introducing well-defined defects in PCs which are necessary to guide the photons through the crystal remains a hard technological challenge. Several top-down methods have been investigated. We will present different bottom-up routes proposed by different groups to engineer planar defects into colloidal PCs.

  7. Prospects of Colloidal Copper Chalcogenide Nanocrystals

    NARCIS (Netherlands)

    van der Stam, W.; Berends, A.C.; de Mello-Donega, Celso

    2016-01-01

    Over the past few years, colloidal copper chalcogenide nanocrystals (NCs) have emerged as promising alternatives to conventional Cd and Pb chalcogenide NCs. Owing to their wide size, shape, and composition tunability, Cu chalcogenide NCs hold great promise for several applications, such as

  8. Hafnium carbide nanocrystal chains for field emitters

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang

    2014-01-01

    A hafnium carbide (HfC) nanostructure, i.e., HfC nanocrystal chain, was synthesized by a chemical vapor deposition (CVD) method. X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectrometer were employed to characterize the product. The synthesized one-dimensional (1D) nanostructures with many faceted octahedral nanocrystals possess diameters of tens of nanometers to 500 nm and lengths of a few microns. The chain-like structures possess a single crystalline structure and preferential growth direction along the [1 0 0] crystal orientation. The growth of the chains occurred through the vapor–liquid–solid process along with a negative-feedback mechanism. The field emission (FE) properties of the HfC nanocrystal chains as the cold cathode emitters were examined. The HfC nanocrystal chains display good FE properties with a low turn-on field of about 3.9 V μm −1 and a high field enhancement factor of 2157, implying potential applications in vacuum microelectronics.

  9. Atomic force microscopy characterization of cellulose nanocrystals

    Science.gov (United States)

    Roya R. Lahiji; Xin Xu; Ronald Reifenberger; Arvind Raman; Alan Rudie; Robert J. Moon

    2010-01-01

    Cellulose nanocrystals (CNCs) are gaining interest as a “green” nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs...

  10. Biocompatibility of bio based calcium carbonate nanocrystals ...

    African Journals Online (AJOL)

    Background: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance ...

  11. Solvothermal synthesis and characterization of CZTS nanocrystals

    Science.gov (United States)

    Dumasiya, Ajay; Shah, N. M.

    2017-05-01

    Cu2ZnSnS4 (CZTS) is a promising thin film absorber material for low cost solar cell applications. CZTS nanoparticle ink synthesized using solvothermal route is an attractive option to deposit absorber layer using screen printing or spin coating method in CZTS thin film solar cell. In this study we have synthesized CZTS nanocrystals using solvothermal method from aqueous solution of Copper nitrate [Cu(NO3)2], Zinc nitrate [Zn(NO3)2], tin chloride [SnCl4] and thiourea with varying concentration of Cu(NO3)2 (viz 0.82 mmol,1.4 mmol, 1.7 mmol) keeping concentrations of rest of solutions constant. As synthesized CZTS nanocrystals are characterized using Energy Dispersive Analysis of X-rays (EDAX) to verify stoichiometry of elements. Analysis of EDAX data suggests that CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole is near stoichiometric. X-ray diffraction analysis study of CZTS nanocrystals having Copper nitrate [Cu (NO3)2] concentration of 1.4 m mole reveals the preferred orientation of the grains in (112), (220) and (312) direction confirming Kesterite structure of CZTS.

  12. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  13. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  14. Mechanistic Study of Monodisperse Iron Oxide Nanocrystals ...

    African Journals Online (AJOL)

    To gain better insight into the formation of iron oxide nanocrystals from the solution phase thermal decomposition of iron (III) oleate complex, different reaction conditions including time, heating ramp, as well as concentrations of iron oleate precursor and oleic acid ligand were systematically varied and the resulting ...

  15. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  16. Bacteriophage Assembly

    Directory of Open Access Journals (Sweden)

    Anastasia A. Aksyuk

    2011-02-01

    Full Text Available Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  17. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi.

    1979-01-01

    Purpose: To prevent scattering of gaseous fission products released from fuel assemblies stored in an fbr type reactor. Constitution; A cap provided with means capable of storing gas is adapted to amount to the assembly handling head, for example, by way of threading in a storage rack of spent fuel assemblies consisting of a bottom plate, a top plate and an assembly support mechanism. By previously eliminating the gas inside of the assembly and the cap in the storage rack, gaseous fission products upon loading, if released from fuel rods during storage, are stored in the cap and do not scatter in the storage rack. (Horiuchi, T.)

  18. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  19. Biomimetic synthesis of noble metal nanocrystals

    Science.gov (United States)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  20. Gold nanoparticle-pentacene memory-transistors

    OpenAIRE

    Novembre , Christophe; Guerin , David; Lmimouni , Kamal; Gamrat , Christian; Vuillaume , Dominique

    2008-01-01

    We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off sta...

  1. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

    International Nuclear Information System (INIS)

    Ashraf, S.; Khalid, Z. M.; Hussain, I.

    2013-01-01

    Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

  2. The Self-Assembly of Nanogold for Optical Metamaterials

    Science.gov (United States)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  3. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  4. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  5. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    Science.gov (United States)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  6. Organization of silicon nanocrystals by localized electrochemical etching

    International Nuclear Information System (INIS)

    Ayari-Kanoun, Asma; Drouin, Dominique; Beauvais, Jacques; Lysenko, Vladimir; Nychyporuk, Tetyana; Souifi, Abdelkader

    2009-01-01

    An approach to form a monolayer of organized silicon nanocrystals on a monocrystalline Si wafer is reported. Ordered arrays of nanoholes in a silicon nitride layer were obtained by combining electron beam lithography and plasma etching. Then, a short electrochemical etching current pulse led to formation of a single Si nanocrystal per each nanohole. As a result, high quality silicon nanocrystal arrays were formed with well controlled and reproducible morphologies. In future, this approach can be used to fabricate single electron devices.

  7. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  8. Green synthesis of water soluble semiconductor nanocrystals and their applications

    Science.gov (United States)

    Wang, Ying

    II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as

  9. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  10. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species

    KAUST Repository

    Fang, Caihong; Jia, Henglei; Chang, Shuai; Ruan, Qifeng; Wang, Peng; Chen, Tao; Wang, Jianfang

    2014-01-01

    Integration of gold and titania in a nanoscale core/shell architecture can offer large active metal/semiconductor interfacial areas and avoid aggregation and reshaping of the metal nanocrystal core. Such hybrid nanostructures are very useful for studying plasmon-enhanced/enabled processes and have great potential in light-harvesting applications. Herein we report on a facile route to (gold nanocrystal core)/(titania shell) nanostructures with their plasmon band synthetically variable from ∼700 nm to over 1000 nm. The coating method has also been applied to other mono- and bi-metallic Pd, Pt, Au nanocrystals. The gold/titania nanostructures have been employed as the scattering layer in dye-sensitized solar cells, with the resultant cells exhibiting a 13.3% increase in the power conversion efficiency and a 75% decrease in the scattering-layer thickness. Moreover, under resonant excitation, the gold/titania nanostructures can efficiently utilize low-energy photons to generate reactive oxygen species, including singlet oxygen and hydroxyl radicals.

  11. Colorimetric Analysis on Flocculation of Bioinspired Au Self-Assembly for Biophotonic Application

    Directory of Open Access Journals (Sweden)

    Wan-Joong Kim

    2009-01-01

    Full Text Available Gold nanoparticles exhibited strong surface plasmon absorption and couplings between neighboring particles within bioactivated self-assembly modified their optical properties. Colorimetric analysis on the optical modification of surface plasmon resoanance (SPR shift and flocculation parameter functionalized bioinspired gold assembly for biophotonic application. The physical origin of bioinspired gold aggregation-induced shifting, decreasing, or broadening of the plasmon absorption spectra could be explained in terms of dynamic depolarization, collisional damping, and shadowing effects.

  12. A novel probe density controllable electrochemiluminescence biosensor for ultra-sensitive detection of Hg2+ based on DNA hybridization optimization with gold nanoparticles array patterned self-assembly platform.

    Science.gov (United States)

    Gao, Wenhua; Zhang, An; Chen, Yunsheng; Chen, Zixuan; Chen, Yaowen; Lu, Fushen; Chen, Zhanguang

    2013-11-15

    Biosensor based on DNA hybridization holds great potential to get higher sensitivity as the optimal DNA hybridization efficiency can be achieved by controlling the distribution and orientation of probe strands on the transducer surface. In this work, an innovative strategy is reported to tap the sensitivity potential of current electrochemiluminescence (ECL) biosensing system by dispersedly anchoring the DNA beacons on the gold nanoparticles (GNPs) array which was electrodeposited on the glassy carbon electrode surface, rather than simply sprawling the coil-like strands onto planar gold surface. The strategy was developed by designing a "signal-on" ECL biosensing switch fabricated on the GNPs nanopatterned electrode surface for enhanced ultra-sensitivity detection of Hg(2+). A 57-mer hairpin-DNA labeled with ferrocene as ECL quencher and a 13-mer DNA labeled with Ru(bpy)3(2+) as reporter were hybridized to construct the signal generator in off-state. A 31-mer thymine (T)-rich capture-DNA was introduced to form T-T mismatches with the loop sequence of the hairpin-DNA in the presence of Hg(2+) and induce the stem-loop open, meanwhile the ECL "signal-on" was triggered. The peak sensitivity with the lowest detection limit of 0.1 nM was achieved with the optimal GNPs number density while exorbitant GNPs deposition resulted in sensitivity deterioration for the biosensor. We expect the present strategy could lead the renovation of the existing probe-immobilized ECL genosensor design to get an even higher sensitivity in ultralow level of target detection such as the identification of genetic diseases and disorders in basic research and clinical application. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    Science.gov (United States)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  14. Cellulose nanocrystal properties and their applications

    Directory of Open Access Journals (Sweden)

    mahdi jonoobi

    2015-05-01

    Full Text Available The main purpose of this work is to provide an overview of recent research in the area of cellulose nonmaterials production from different sources. Due to their abundance, their renewability, high strength and stiffness, being eco-friendly, and low weight; numerous studies have been reported on the isolation of cellulose nanomaterials from different cellulosic sources and their use in high performance applications. This work covers an introduction into the nano cellulose definition as well as used methods for isolation of nanomaterials (nanocrystals from various sources. The rod-like cellulose nanocrystals (CNC can be isolated from sources like wood, plant fibers, agriculture and industrial bio residues, tunicates, and bacterial cellulose using acid hydrolysis process. Following this, the paper focused on characterization methods, materials properties and structure. The current review is a comprehensive literature regarding the nano cellulose isolation and demonstrates the potential of cellulose nanomaterials to be used in a wide range of high-tech applications.

  15. Nanotopography effects on astrocyte attachment to nanoporous gold surfaces.

    Science.gov (United States)

    Kurtulus, Ozge; Seker, Erkin

    2012-01-01

    Nanoporous gold, synthesized by a self-assembly process, is a new biomaterial with desirable attributes, including tunable nanotopography, drug delivery potential, electrical conductivity, and compatibility with conventional microfabrication techniques. This study reports on the effect of nanotopography in guiding cellular attachment on nanoporous gold surfaces. While the changes in topography do not affect adherent cell density, average cell area displays a non-monotonic dependence on nanotopography.

  16. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  17. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  18. Spontaneous emission enhancement of colloidal perovskite nanocrystals

    Science.gov (United States)

    Yang, Zhili; Waks, Edo

    Halide perovskite semiconductors have emerged as prominent photovoltaic materials since their high conversion efficiency and promising light emitting materials in optoelectronics. In particular, easy-to-fabricated colloidal perovskite nanocrystals based on CsPbX3 quantum dots has been intensively investigated recently. Their luminescent wavelength could be tuned precisely by their chemical composition and size of growth. This opens new applications including light-emitting diodes, optical amplifiers and lasing since their promising performance as emitters. However, this potentially high-efficient emitter and gain material has not been fully investigated and realized in integrated photonic structures. Here we demonstrate Purcell enhancement effect of CsPbBr3 perovskite nanocrystals by coupling to an optimized photonic crystal nanobeam cavity as a first crucial step towards realization of integrated on-chip coherent light source with low energy consumption. We show clearly highly-enhanced photoluminescent spectrum and an averaged Purcell enhancement factor of 2.9 is achieved when they are coupled to nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our lifetime measurement. Our success in enhancement of emission from CsPbX3 perovskite nanocrystals paves the way towards the realization of efficient light sources for integrated optoelectronic devices with low energy consumption.

  19. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  20. Pseudo-template synthesis of gold nanoparticles based on polyhydrosilanes

    International Nuclear Information System (INIS)

    Sacarescu, Liviu; Simionescu, Mihaela; Sacarescu, Gabriela

    2011-01-01

    Highly stable colloidal gold nanoparticles are obtained in a pseudo-template system using a specific polyhydrosilane copolymeric structure. This process takes place in situ by microwaves activation of the polymer solution in a non-polar solvent followed by stirring with solid HAuCl 4 in natural light. The experimental procedure is very simple and the resulted colloidal gold solution is indefinitely stable. The specific surface plasmon resonance absorption band of the gold nanoparticles is strongly red shifted and is strictly related to their size. AFM correlated with DLS analysis showed flattened round shaped colloidal polymer-gold nanoparticles with large diameters. SEM-EDX combined analysis reveals that the polysilane-gold nanoparticles show a natural tendency to auto-assemble in close packed structures which form large areas over the polymer film surface.

  1. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  2. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  3. CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan; Li, Yue; Xu, Jianqiu; Tang, Yulong, E-mail: yulong@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE), Department of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 (China); Hu, Zhiping; Tang, Xiaosheng [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-27

    Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  4. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  5. Influence of gold species (AuCl4(-) and AuCl2(-)) on self-assembly of PS-b-P2VP in solutions and morphology of composite thin films fabricated at the air/liquid interfaces.

    Science.gov (United States)

    Zhao, Xingjuan; Wang, Qian; Zhang, Xiaokai; Lee, Yong-Ill; Liu, Hong-Guo

    2016-01-21

    Composite thin films doped with Au species were fabricated at an air/liquid interface via a series of steps, including the mass transfer of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) across the liquid/liquid interface between a DMF/CHCl3 solution and an aqueous solution containing either AuCl4(-) or AuCl2(-), self-assembly of PS-b-P2VP in a mixed DMF-water solution, and adsorption and further self-organization of the formed aggregates at the air/liquid interface. This is a new approach for fabricating composite polymer films and can be completed within a very short time. AuCl4(-) and AuCl2(-) ions were found to significantly influence the self-assembly behavior of the block copolymer and the morphologies of the composite films, leading to the formation of nanowire arrays and a foam structure at the air/liquid interface, respectively, which originated from rod-like micelles and microcapsules that had formed in the respective solutions. The effect of the metal complex was analyzed based on the packing parameters of the amphiphilic polymer molecules in different microenvironments and the interactions between the pyridine groups and the metal chloride anions. In addition, these composite thin films exhibited stable and durable performance as heterogeneous catalysts for the hydrogenation of nitroaromatics in aqueous solutions.

  6. Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Ozoemena, Kenneth I. [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za; Nkosi, Dudu; Pillay, Jeseelan [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)

    2008-02-15

    This paper provides first evidence of the impact of solution pH on the heterogeneous electron transfer rate constants of self-assembled films of single-walled carbon nanotubes (SWCNT) and SWCNT integrated to cobalt(II)tetra-aminophthalocyanine (SWCNT-CoTAPc) by sequential self-assembly. Using cyclic voltammetry and electrochemical impedance spectroscopy, we proved that both SAMs exhibit notable differences in their response to different buffered solution pH, with and without the presence of redox probe, [Fe(CN){sub 6}]{sup 4-}/[Fe(CN){sub 6}]{sup 3-}. Surface pK{sub a} value for the Au-Cys-SWCNT-CoTAPc was estimated as ca. 7.8, compared to that of the Au-Cys-SWCNT of about 5.5. Interestingly, both redox-active SAMs gave similar analytical response for epinephrine, giving well-resolved square wave voltammograms, with linear concentration range up to 130 {mu}M, sensitivity of ca. 9.4 x 10{sup -3} AM{sup -1}, and limit of detection ca. 6 {mu}M. This analytical result implies that there is no detectable advantage of one of the SAMs over the other in the electrocatalytic detection of this neurotransmitter.

  7. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    International Nuclear Information System (INIS)

    Sun, Yudie; Liu, Honglin; Yang, Liangbao; Sun, Bai; Liu, Jinhuai

    2014-01-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties

  8. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yudie [School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026 (China); Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Honglin, E-mail: hlliu@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Liangbao, E-mail: lbyang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Bai; Liu, Jinhuai [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-05-01

    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.

  9. Fabrication of gold nanoparticle arrays by block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiao Ling

    2011-02-15

    Gold nanoparticle is one of the widely research objects in various fields including catalysis and biotechnology. Precise control of gold nanoparticles placement and their integration is essential to take full advantage of these unique properties for applications. An approach to self-assembling of gold nanoparticles (AuNPs) from reconstructed block copolymer was introduced. Highly ordered polystyrene-block-poly(2-vinylpyridine)(PS-b-P2VP) micellar arrays were obtained by solvent annealing. Subsequent immersion of the films in a preferential solvent for P2VP caused a reorganization of the film to generate a porous structure upon drying. PEG-coated AuNPs were spin-coated onto this reconstruction PS-b-P2VP template. When such films were exposed to toluene vapor-which is non-selective solvent for PEO and P2VP, AuNPs were drawn into those porous to form ordered arrays. Gold nanospheres with size 12±1.8 nm were synthesized by reducing HAuCl{sub 4} via sodium citrate. Gold nanorods (aspect ratio about 6) were prepared from seed-mediated surfactant capping wet chemical method and the aspect ratio is tunable by changing surfactant amount. PEG ligand is used to modify gold nanoparticle surface by removing the original surfactant (sodium citrate -gold nanospheres: CTAB-gold nanorods), which have affinity with certain block copolymer component. Once gold nanoparticle is modified with PEG thiol, they were spin coated onto PS-b-P2VP template, which was prepared by solvent annealing and surface reconstruction process. So gold nanoparticle array was fabricated by this self-assembling process. The same idea can be applied on other nanoparticles.

  10. Fabrication of gold nanoparticle arrays by block copolymer

    International Nuclear Information System (INIS)

    Chen, Xiao Ling

    2011-02-01

    Gold nanoparticle is one of the widely research objects in various fields including catalysis and biotechnology. Precise control of gold nanoparticles placement and their integration is essential to take full advantage of these unique properties for applications. An approach to self-assembling of gold nanoparticles (AuNPs) from reconstructed block copolymer was introduced. Highly ordered polystyrene-block-poly(2-vinylpyridine)(PS-b-P2VP) micellar arrays were obtained by solvent annealing. Subsequent immersion of the films in a preferential solvent for P2VP caused a reorganization of the film to generate a porous structure upon drying. PEG-coated AuNPs were spin-coated onto this reconstruction PS-b-P2VP template. When such films were exposed to toluene vapor-which is non-selective solvent for PEO and P2VP, AuNPs were drawn into those porous to form ordered arrays. Gold nanospheres with size 12±1.8 nm were synthesized by reducing HAuCl 4 via sodium citrate. Gold nanorods (aspect ratio about 6) were prepared from seed-mediated surfactant capping wet chemical method and the aspect ratio is tunable by changing surfactant amount. PEG ligand is used to modify gold nanoparticle surface by removing the original surfactant (sodium citrate -gold nanospheres: CTAB-gold nanorods), which have affinity with certain block copolymer component. Once gold nanoparticle is modified with PEG thiol, they were spin coated onto PS-b-P2VP template, which was prepared by solvent annealing and surface reconstruction process. So gold nanoparticle array was fabricated by this self-assembling process. The same idea can be applied on other nanoparticles

  11. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  12. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  13. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  14. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    NARCIS (Netherlands)

    Gomez, Leyre; Lin, Junhao; De Weerd, Chris; Poirier, Lucas; Boehme, Simon C.; Von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the

  15. Synthesis and preservation of graphene-supported uranium dioxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hanyu [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Wang, Haitao [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States); Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); McNamara, Bruce K.; Buck, Edgar C. [Nuclear Chemistry & Engineering Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Na, Chongzheng, E-mail: chongzheng.na@gmail.com [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX 79409 (United States)

    2016-07-15

    Graphene-supported uranium dioxide (UO{sub 2}) nanocrystals are potentially important fuel materials. Here, we investigate the possibility of synthesizing graphene-supported UO{sub 2} nanocrystals in polar ethylene glycol compounds by the polyol reduction of uranyl acetylacetone under boiling reflux, thereby enabling the use of an inexpensive graphene precursor graphene oxide into a one-pot process. We show that triethylene glycol is the most suitable solvent with an appropriate reduction potential for producing nanometer-sized UO{sub 2} crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO{sub 2} nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO{sub 2} nanocrystals synthesized by polyol reduction can be readily stored in alcohols, impeding oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO{sub 2} nanocrystals for further investigation and development under ambient conditions. - Highlights: • UO{sub 2} nanocrystals are synthesized using polyol reduction method. • Triethylene glycol is the best reducing agent for nano-sized UO{sub 2} crystals. • UO{sub 2} nanocrystals grow on graphene through heteroepitaxy. • Graphene-supported UO{sub 2} nanocrystals can be stored in alcohols to prevent oxidation.

  16. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bostedt, C.; Buuren, T. van; Willey, T.M.; Nelson, A.J.; Franco, N.; Moeller, T.; Terminello, L.J.

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials

  17. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Science.gov (United States)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  18. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie [University of Pennsylvania; Murray, Christopher [University of Pennsylvania; Kikkawa, James [University of Pennsylvania; Engheta, Nader [University of Pennsylvania

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemical methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.

  19. Photoluminescence from Si nanocrystals in silica: The effect of hydrogen

    International Nuclear Information System (INIS)

    Cheylan, S.; Elliman, R.G.

    2001-01-01

    The effect of H passivation on the PL emission of Si nanocrystals produced in silica by ion-implantion and annealing is shown to depend on the implant fluence. At low fluences, where the nanocrystals are small, passivation causes an enhancement of the emission intensity that is uniform over the full spectral range and therefore appears to be independent of nanocrystal size. For higher fluences, where the average size and size distribution of the nanocrystals are larger, the enhancement occurs preferentially at longer wavelengths, giving rise to a red-shift in the emission spectra. Both the enhancement and the red-shift increase monotonically with increasing fluence. These data are shown to be consistent with a model in which the probability to contain a non-radiative defect increases with nanocrystal size

  20. Isolating and moving single atoms using silicon nanocrystals

    Science.gov (United States)

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  1. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  2. Plasmonic light-sensitive skins of nanocrystal monolayers

    Science.gov (United States)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  3. Visualization of red-ox proteins on the gold surface using enzymatic polypyrrole formation

    International Nuclear Information System (INIS)

    Ramanaviciene, A.; Kausaite-Minkstimiene, A.; Voronovic, J.; Ramanavicius, A.; Oztekin, Y.; Carac, G.; German, N.

    2011-01-01

    We describe a new method for the visualization of the activity of red-ox proteins on a gold interface. Glucose oxidase was selected as a model system. Surfaces were modified by adhesion of glucose oxidase on (a) electrochemically cleaned gold; (b) gold films modified with gold nanoparticles, (c) a gold surface modified with self-assembled monolayer, and (d) covalent immobilization of protein on the gold surface modified with a self-assembled monolayer. The simple optical method for the visualization of enzyme on the surfaces is based on the enzymatic formation of polypyrrole. The activity of the enzyme was quantified via enzymatic formation of polypyrrole, which was detected and investigated by quartz microbalance and amperometric techniques. The experimental data suggest that the enzymatic formation of the polymer may serve as a method to indicate the adhesion of active redox enzyme on such surfaces. (author)

  4. Zinc-doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection.

    Science.gov (United States)

    Zhu, Wenjuan; Wang, Chao; Li, Xiaojian; Khan, Malik Saddam; Sun, Xu; Ma, Hongmin; Fan, Dawei; Wei, Qin

    2017-11-15

    Novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated for insulin detection. Au-ZnCd 14 S combined nitrogen doping mesoporous carbons (Au-ZnCd 14 S/NH 2 -NMCs) acted as sensing platform and Au-Cu alloy nanocrystals were employed as labels to quench the ECL of Au-ZnCd 14 S/NH 2 -NMCs. Zinc-doping promoted the ECL behavior of CdS nanocrystals, with the best ECL emission obtained when the molar ratio of Zn/Cd was 1:14. Simultaneously, the modification of gold nanoparticles (Au NPs) and combination with NH 2 -NMC further enhanced the ECL emission of ZnCd 14 S due to its excellent conductivity and large specific surface area, which is desirable for the immunosensor construction. Au-Cu alloy nanocrystals were employed in the ECL system of ZnCd 14 S/K 2 S 2 O 8 triggering ECL quenching effects. The ECL spectra of ZnCd 14 S, acting as the energy donor, exhibited well overlaps with the absorption band of Au-Cu alloy nanocrystals which acted as the energy acceptor, leading to an effective ECL resonance energy transfer (ECL-RET). On the basis of the ECL quenching effects, a sensitive ECL immunosensor for insulin detection was successfully constructed with a linear response range of insulin concentration from 0.1pg/mL to 30ng/mL and the limit of detection was calculated to be 0.03pg/mL (S/N = 3). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  6. Gold nanoparticle growth control - Implementing novel wet chemistry method on silicon substrate

    KAUST Repository

    Al-Ameer, Ammar; Katsiev, Habib; Sinatra, Lutfan; Hussein, Irshad; Bakr, Osman

    2013-01-01

    Controlling particle size, shape, nucleation, and self-assembly on surfaces are some of the main challenges facing electronic device fabrication. In this work, growth of gold nanoparticles over a wide range of sizes was investigated by using a novel

  7. Z-Contrast STEM Imaging and EELS of CdSe Nanocrystals: Towards the Analysis of Individual Nanocrystal Surfaces

    International Nuclear Information System (INIS)

    Erwin, M.; Kadavanich, A.V.; Kippeny, T.; Pennycook, S.J.; Rosenthal, S.J.

    1999-01-01

    We have applied Atomic Number Contract Scanning Transmission Electron Microscopy (Z-Contrast STEM) and STEM/EELS (Electron Energy Loss Spectroscopy) towards the study of colloidal CdSe semiconductor nanocrystals embedded in MEH-PPV polymer films. Unlike the case of conventional phase-contrast High Resolution TEM, Z-Contrast images are direct projections of the atomic structure. Hence they can be interpreted without the need for sophisticated image simulation and the image intensity is a direct measure of the thickness of a nanocrystal. Our thickness measurements are in agreement with the predicted faceted shape of these nanocrystals. Our unique 1.3A resolution STEM has successfully resolve3d the sublattice structure of these CdSe nanocrystals. In [010] projection (the polar axis in the image plane) we can distinguish Se atom columns from Cd columns. Consequently we can study the effects of lattice polarity on the nanocrystal morphology. Furthermore, since the STEM technique does not rely on diffraction, it is superbly suited to the study of non-periodic detail, such as the surface structure of the nanocrystals. EELS measurements on individual nanocrystals indicate a significant amount (equivalet to 0.5-1 surface monolayers) of oxygen on the nanocrystals, despite processing in an inert atmosphere. Spatially resolved measurements at 7A resolution suggest a surface oxide layer. However, the uncertainty in the measurement precludes definitive assignment at this time. The source of the oxygen is under investigation as well

  8. Layer-by-layer self-assembled nanostructured phthalocyaninatoiron(II)/SWCNT-poly(m-aminobenzenesulfonic acid) hybrid system on gold surface: Electron transfer dynamics and amplification of H{sub 2}O{sub 2} response

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, Jeseelan [Molecular and Nanomaterials Electrochemistry laboratory, Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa); Ozoemena, Kenneth I. [Molecular and Nanomaterials Electrochemistry laboratory, Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za

    2009-09-01

    The fabrication of nanostructured platform of poly(m-aminobenzenesulfonic acid) functionalised single-walled carbon nanotubes (SWCNTs-PABS)-iron(II)phthalocyanine nanoparticles (nanoFePc) using layer-by-layer(LBL) self-assembly strategy is described. The substrate build-up, via strong electrostatic interaction, was monitored using atomic force microscopy (AFM) and electrochemical measurements. As the number of bilayers is increased, the electron transfer kinetics of the ferricyaninde/ferrocyanide redox probe is decreased, while the electrochemical reduction of H{sub 2}O{sub 2} at a constant concentration is amplified. The amplification of the electrochemical response to H{sub 2}O{sub 2} detection suggests that this type of electrode could provide an important nano-architectural sensing platform for the development of a sensor.

  9. Size-controlled synthesis of gold bipyramids using an aqueous mixture of CTAC and salicylate anions as the soft template.

    Science.gov (United States)

    Yoo, Hyojong; Jang, Min Hoon

    2013-08-07

    One-dimensional (1D) gold (Au) bipyramids are successfully synthesized through a facile seed-mediated method using cetyltrimethylammonium chloride (CTAC), Au seed nanoparticles, Ag(+) ions, and ascorbic acid. The length and optical properties of the synthesized Au bipyramids are controlled with precision by varying the amount of salicylate anions (Sal(-)) added during the synthesis. The micelles formed from CTA(+)-Sal(-) mixtures in aqueous solutions act as effective templates for the size-controlled synthesis of 1D nanocrystals.

  10. Selective Etching via Soft Lithography of Conductive Multilayered Gold Films with Analysis of Electrolyte Solutions

    Science.gov (United States)

    Gerber, Ralph W.; Oliver-Hoyo, Maria T.

    2008-01-01

    This experiment is designed to expose undergraduate students to the process of selective etching by using soft lithography and the resulting electrical properties of multilayered films fabricated via self-assembly of gold nanoparticles. Students fabricate a conductive film of gold on glass, apply a patterned resist using a polydimethylsiloxane…

  11. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  12. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Hari O. S., E-mail: cyz108802@chemistry.iitd.ac.in, E-mail: hariyadav.iitd@gmail.com; Shrivastav, Gourav; Agarwal, Manish; Chakravarty, Charusita [Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016 (India)

    2016-06-28

    The extent to which solvent-mediated effective interactions between nanoparticles can be predicted based on structure and associated thermodynamic estimators for bulk solvents and for solvation of single and pairs of nanoparticles is studied here. As a test of the approach, we analyse the strategy for creating temperature-independent solvent environments using a series of homologous chain fluids as solvents, as suggested by an experimental paper [M. I. Bodnarchuk et al., J. Am. Chem. Soc. 132, 11967 (2010)]. Our conclusions are based on molecular dynamics simulations of Au{sub 140}(SC{sub 10}H{sub 21}){sub 62} nanoparticles in n-alkane solvents, specifically hexane, octane, decane and dodecane, using the TraPPE-UA potential to model the alkanes and alkylthiols. The 140-atom gold core of the nanocrystal is held rigid in a truncated octahedral geometry and the gold-thiolate interaction is modeled using a Morse potential. The experimental observation was that the structural and rheological properties of n-alkane solvents are constant over a temperature range determined by equivalent solvent vapour pressures. We show that this is a consequence of the fact that long chain alkane liquids behave to a good approximation as simple liquids formed by packing of monomeric methyl/methylene units. Over the corresponding temperature range (233–361 K), the solvation environment is approximately constant at the single and pair nanoparticle levels under good solvent conditions. However, quantitative variations of the order of 10%–20% do exist in various quantities, such as molar volume of solute at infinite dilution, entropy of solvation, and onset distance for soft repulsions. In the opposite limit of a poor solvent, represented by vacuum in this study, the effective interactions between nanoparticles are no longer temperature-independent with attractive interactions increasing by up to 50% on decreasing the temperature from 361 K to 290 K, accompanied by an increase in

  13. Semiconductor nanocrystals for novel optical applications

    Science.gov (United States)

    Moon, Jong-Sik

    Inspired by the promise of enhanced spectral response, photorefractive polymeric composites photosensitized with semiconductor nanocrystals have emerged as an important class of materials. Here, we report on the photosensitization of photorefractive polymeric composites at visible wavelengths through the inclusion of narrow band-gap semiconductor nanocrystals composed of PbS. Through this approach, internal diffraction efficiencies in excess of 82%, two-beam-coupling gain coefficients in excess of 211 cm-1, and response times 34 ms have been observed, representing some of the best figures-of-merit reported on this class of materials. In addition to providing efficient photosensitization, however, extensive studies of these hybrid composites have indicated that the inclusion of nanocrystals also provides an enhancement in the charge-carrier mobility and subsequent reduction in the photorefractive response time. Through this approach with PbS as charge-carrier, unprecedented response times of 399 micros were observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency and with internal diffraction efficiencies of 72% and two- beam-coupling gain coefficients of 500 cm-1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of the enhanced charge mobility without the accompaniment of superfluous traps. Finally, water soluble InP/ZnS and CdSe/ZnS quantum dots interacted with CPP and Herceptin to apply them as a bio-maker. Both of quantum dots showed the excellent potential for use in biomedical imaging and drug delivery applications. It is anticipated that these approaches can play a significant role in the eventual commercialization of these classes of materials.

  14. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  15. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  16. Solvothermal crystallization of nanocrystals of metal oxides

    International Nuclear Information System (INIS)

    Furukawa, S; Amino, H; Iwamoto, S; Inoue, M

    2008-01-01

    Solvothermal crystallization of the hydroxide gels obtained by hydrolysis of alkoxides (Zr, Ta, Nb, ln, Sn, Ti and Al) was examined. Nanocrystals having high surface areas (S BET > 170 m 2 g -1 ) were obtained except for the product derived from indium isopropoxide. The effect of water in organic solvent upon the crystallinity of the product was investigated. The increase in the activity of water by using high concentration of alkoxide or intentional addition of water to the solvothermal medium led to crystal growth of the products. In contrast, decrease in activity of water by adding ethylene glycol before solvothermal treatment caused a decrease in crystallinity of the product

  17. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  18. Structure and Magnetic Properties of Lanthanide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, James Henry [Vanderbilt Univ., Nashville, TN (United States)

    2014-06-01

    We have had considerable success on this project, particularly in the understanding of the relationship between nanostructure and magnetic properties in lanthanide nanocrystals. We also have successfully facilitated the doctoral degrees of Dr. Suseela Somarajan, in the Department of Physics and Astronomy, and Dr. Melissa Harrison, in the Materials Science Program. The following passages summarize the various accomplishments that were featured in 9 publications that were generated based on support from this grant. We thank the Department of Energy for their generous support of our research efforts in this area of materials science, magnetism, and electron microscopy.

  19. Solvothermal crystallization of nanocrystals of metal oxides

    Science.gov (United States)

    Furukawa, S.; Amino, H.; Iwamoto, S.; Inoue, M.

    2008-07-01

    Solvothermal crystallization of the hydroxide gels obtained by hydrolysis of alkoxides (Zr, Ta, Nb, ln, Sn, Ti and Al) was examined. Nanocrystals having high surface areas (SBET > 170 m2 g-1) were obtained except for the product derived from indium isopropoxide. The effect of water in organic solvent upon the crystallinity of the product was investigated. The increase in the activity of water by using high concentration of alkoxide or intentional addition of water to the solvothermal medium led to crystal growth of the products. In contrast, decrease in activity of water by adding ethylene glycol before solvothermal treatment caused a decrease in crystallinity of the product.

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)