WorldWideScience

Sample records for gold in-tube assay

  1. The QuantiFERON-TB Gold In-Tube Assay in Neuro-Ophthalmology.

    Science.gov (United States)

    Little, Leanne M; Rigi, Mohammed; Suleiman, Ayman; Smith, Stacy V; Graviss, Edward A; Foroozan, Rod; Lee, Andrew G

    2017-09-01

    Although QuantiFERON-TB Gold In-Tube (QFT-GIT) testing is regularly used to detect infection with Mycobacterium tuberculosis, its utility in a patient population with a low risk for tuberculosis (TB) has been questioned. The following is a cohort study analyzing the efficacy of QFT-GIT testing as a method for detection of active TB disease in low-risk individuals in a neuro-ophthalmologic setting. Ninety-nine patients from 2 neuro-ophthalmology centers were identified as having undergone QFT-GIT testing between January 2012 and February 2016. Patients were divided into groups of negative, indeterminate, and positive QFT-GIT results. Records of patients with positive QFT-GIT results were reviewed for development of latent or active TB, as determined by clinical, bacteriologic, and/or radiographic evidence. Of the 99 cases reviewed, 18 patients had positive QFT-GIT tests. Of these 18 cases, 12 had documentation of chest radiographs or computed tomography which showed no evidence for either active TB or pulmonary latent TB infection (LTBI). Four had chest imaging which was indicative of possible LTBI. None of these 18 patients had symptoms of active TB and none developed active TB within the follow-up period. Based on our results, we conclude that routine testing with QFT-GIT in a low-risk cohort did not diagnose active TB infection. We do not recommend routine QFT-GIT testing for TB low-risk individuals, as discerned through patient and exposure history, ocular examination, and clinical judgment, in neuro-ophthalmology practice.

  2. QuantiFERON–TB Gold In-Tube test performance in Denmark

    DEFF Research Database (Denmark)

    Hermansen, Thomas; Lillebaek, Troels; Hansen, Ann-Brit E

    2014-01-01

    BACKGROUND: Little is known about the QuantiFERON-TB Gold In-Tube Test (QFT) in extreme age groups. The test performance has been reported to be impaired in children and elderly, but reports are diverging. The aim of this study was to evaluate QFT performance in patients with and without......, the overall QFT performance was good. The sensitivity in children (≥ 1) was high although few children were included, whereas sensitivity declined with increasing age. Indeterminate rates were higher in infants and elderly. In contrast to current guidelines, our data suggest that the QFT performs well...... in children ≥ 1 years in low endemic regions but that the test should be used with care among the elderly....

  3. Accuracy of the QuantiFERON-TB Gold in Tube for diagnosing tuberculosis in a young pediatric population previously vaccinated with Bacille Calmette-Guerin

    Directory of Open Access Journals (Sweden)

    Marcelo Genofre Vallada

    2014-03-01

    Full Text Available Objective: To evaluate the accuracy of an interferongamma release assay (QuantiFERON-TB Gold in Tube for diagnosing Mycobacterium tuberculosis infection in a young pediatric population. Methods: 195 children previously vaccinated with BCG were evaluated, being 184 healthy individuals with no clinical or epidemiological evidence of mycobacterial infection, and 11 with Mycobacterium tuberculosis infection, according to clinical, radiological, and laboratory parameters. A blood sample was obtained from each child and processed according to the manufacturer's instructions. The assay performance was evaluated by a Receiver Operating Characteristic (ROC curve. Results: In the group of 184 non-infected children, 130 (70.6% were under the age of four years (mean age of 35 months. In this group, 177 children (96.2% had negative test results, six (3.2% had indeterminate results, and one (0.5% had a positive result. In the group of 11 infected children, the mean age was 58.5 months, and two of them (18% had negative results. The ROC curve had an area under the curve of 0.88 (95%CI 0.82-0.92; p<0.001, disclosing a predictive positive value of 81.8% for the test (95%CI 46.3-97.4. The assay sensitivity was 81.8% (95%CI 48.2-97.2 and the specificity was 98.8% (95%CI 96-99.8. Conclusions: In the present study, the QuantiFERON-TB Gold in Tube performance for diagnosing M. tuberculosis infection was appropriate in a young pediatric population.

  4. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    International Nuclear Information System (INIS)

    Nara, Seema; Tripathi, Vinay; Singh, Harpal; Shrivastav, Tulsidas G.

    2010-01-01

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL -1 with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  5. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Seema, E-mail: seemanara@mnnit.ac.in [Department of Applied Mechanics (Biotechnology), Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Tripathi, Vinay [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Singh, Harpal [Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Shrivastav, Tulsidas G. [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India)

    2010-12-03

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL{sup -1} with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  6. QuantiFERON®-TB gold in-tube performance for diagnosing active tuberculosis in children and adults in a high burden setting

    DEFF Research Database (Denmark)

    Rose, Michala Vaaben; Kimaro, Godfather; Nissen, Thomas N

    2012-01-01

    To determine whether QuantiFERON®-TB Gold In-Tube (QFT) can contribute to the diagnosis of active tuberculosis (TB) in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST) in a prospective cohort of TB suspect children compared to adults with confi......To determine whether QuantiFERON®-TB Gold In-Tube (QFT) can contribute to the diagnosis of active tuberculosis (TB) in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST) in a prospective cohort of TB suspect children compared to adults...

  7. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  8. Gold nanoparticles-based colorimetric and visual creatinine assay

    International Nuclear Information System (INIS)

    He, Yi; Zhang, Xianhui; Yu, Haili

    2015-01-01

    We demonstrate a selective and sensitive method for determination of creatinine using citrate-stabilized gold nanoparticles (AuNPs) as a colorimetric probe. It is based on a direct cross-linking reaction that occurs between creatinine and AuNPs that causes aggregation of AuNPs and results in a color change from wine red to blue. The absorption peak is shifted from 520 to 670 nm. Under the optimized conditions, the shift in the absorption peak is related the logarithm of the creatinine concentration in the 0.1 to 20 mM range, and the instrumental detection limit (LOD) is 80 μM. This LOD is about one order of magnitude better than that that of the Jaffé method (720 μM). The assay displays good selectivity over interfering substances including various inorganic ions, organic small compounds, proteins, and biothiols. It was successfully employed to the determination of creatinine in spiked human urine. (author)

  9. [Tuberculosis screening program for undocumented immigrant teenagers using the QuantiFERON(®)-TB Gold In-Tube test].

    Science.gov (United States)

    Salinas, Carlos; Ballaz, Aitor; Díez, Rosa; Aguirre, Urko; Antón, Ane; Altube, Lander

    2015-07-06

    The aim of this study was to determine the prevalence of tuberculosis infection in undocumented immigrant teenagers using a tuberculin skin test (TST) for initial screening and QuantiFERON(®)-TB Gold In-Tube (QFT-GIT) as a confirmatory test. From 2007 to 2012, under 19 year-old immigrant teenagers from 2 accommodation centers of the Basque Country (Spain) were included in the study. The TST was done in all of them and the QFT-GIT was done in selected patients with a TST≥5mm. Eight hundred and forty-five immigrants were included, most of them from Africa (99.5%). Fifty-one percent of immigrants with TST ≥ 5 mm has a positive QFT-GIT. We found 2 cases of active tuberculosis (2/845: 0.24%). The concordance between TST (≥ 10 mm) and QFT-GIT was 63%, with 57% of positive concordance cases and 96% of negative concordances. There were 246 cases with TST ≥ 10 mm (29%), with significant differences between Magrebis (21.5%) and Subsaharians (67%) (Ptuberculosis infection in Subsaharian immigrants, we recommend implementing screening programs in this population. Using QFT-GIT, the number of candidates for chemoprophylaxis was reduced to 43% compared with TST alone (≥ 10 mm). Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  10. Fluorogenic dansyl-ligated gold nanoparticles for the detection of sulfur mustard by displacement assay.

    Science.gov (United States)

    Knighton, Richard C; Sambrook, Mark R; Vincent, Jack C; Smith, Simon A; Serpell, Christopher J; Cookson, James; Vickers, Matthew S; Beer, Paul D

    2013-03-21

    The dansyl fluorophore ligated to gold nanoparticles via imidazole and amine groups affords conjugates capable of detecting micromolar concentrations of the chemical warfare agent sulfur mustard by a fluorescence switching 'ON' displacement assay.

  11. Low-energy ED-XRF spectrometry application in gold assaying

    International Nuclear Information System (INIS)

    Marucco, Alessandra

    2004-01-01

    The performances of a low-energy dispersive XRF spectrometer in gold assaying are evaluated by a series of analysis on international standards and other certified gold alloys with. Results of standard-free analysis based on fundamental parameters method compared to results of multi-standard method, demonstrate a large gain of accuracy by drawing appropriate calibration curves with use of 1 to 16 matrix-specific standards. The accuracy of gold assaying has improved by a factor of 10, as compared to the conventional touchstone test. This rather economical technique satisfies then numerous precious alloys analyst needs, representing an excellent alternative to the traditional method for quick anti-fraud controls

  12. Sensitivity and specificity of QuantiFERON-TB Gold Plus compared with QuantiFERON-TB Gold In-Tube and T-SPOT.TB on active tuberculosis in Japan.

    Science.gov (United States)

    Takasaki, Jin; Manabe, Toshie; Morino, Eriko; Muto, Yoshikazu; Hashimoto, Masao; Iikura, Motoyasu; Izumi, Shinyu; Sugiyama, Haruhito; Kudo, Koichiro

    2018-03-01

    The QuantiFERON-TB Gold Plus (QFT-Plus) was introduced in 2015 as a new generation of interferon-gamma release assays (IGRAs) designed to detect Mycobacterium tuberculosis infection (TB). Examination of its diagnostic accuracy is crucial before it is launched in Japan. We examined 99 patients with laboratory-confirmed active TB (patients) and 117 healthy volunteers with no risk of TB infection (controls) at a medical center in Tokyo, Japan. Blood samples were collected from both the patients and controls and tested using three types of IGRAs: the QFT-Plus, the QuantiFERON-TB Gold In-Tube (QFT-GIT), and the T-SPOT.TB (T-SPOT). The sensitivity and specificity of each IGRA were examined and compared. The sensitivity of the QFT-Plus was 98.9% (95% confidence interval [CI], 0.934-0.998) and similar to that of the QFT-GIT (97.9%; 95% CI, 0.929-0.998) and T-SPOT (96.9%; 95% CI, 0.914-0.994). The specificity of the QFT-Plus was the same as that of the QFT-GIT and T-SPOT (98.1%; 95% CI, 0.934-0.998). One patient with uncontrolled diabetes mellitus showed negative results on all three IGRAs. The QFT-Plus showed a high degree of agreement with the QFT-GIT and T-SPOT, with high sensitivity and specificity. Severe diabetes mellitus may influence the results of IGRAs. Larger studies are needed to validate the accuracy of the GFT-Plus and determine whether it can contribute as adjunctive method for the early diagnosis of active TB in Japan. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  13. QuantiFERON-TB Gold In-Tube as a Confirmatory Test for Tuberculin Skin Test in Tuberculosis Contact Tracing: A Noninferiority Clinical Trial.

    Science.gov (United States)

    Muñoz, Laura; Santin, Miguel; Alcaide, Fernando; Ruíz-Serrano, Maria Jesús; Gijón, Paloma; Bermúdez, Elena; Domínguez-Castellano, Angel; Navarro, María Dolores; Ramírez, Encarnación; Pérez-Escolano, Elvira; López-Prieto, María Dolores; Gutiérrez-Rodriguez, José; Anibarro, Luis; Calviño, Laura; Trigo, Matilde; Cifuentes, Carmen; García-Gasalla, Mercedes; Payeras, Antoni; Gasch, Oriol; Espasa, Mateu; Agüero, Ramon; Ferrer, Diego; Casas, Xavier; González-Cuevas, Araceli; García-Zamalloa, Alberto; Bikuña, Edurne; Lecuona, María; Galindo, Rosa; Ramírez-Lapausa, Marta; Carrillo, Raquel

    2018-01-18

    Screening strategies based on interferon-γ release assays in tuberculosis contact tracing may reduce the need for preventive therapy without increasing subsequent active disease. We conducted an open-label, randomized trial to test the noninferiority of a 2-step strategy with the tuberculin skin test (TST) followed by QuantiFERON-TB Gold In-Tube (QFT-GIT) as a confirmatory test (the TST/QFT arm) to the standard TST-alone strategy (TST arm) for targeting preventive therapy in household contacts of patients with tuberculosis. Participants were followed for 24 months after randomization. The primary endpoint was the development of tuberculosis, with a noninferiority margin of 1.5 percentage points. A total of 871 contacts were randomized. Four contacts in the TST arm and 2 in the TST/QFT arm developed tuberculosis. In the modified intention-to-treat analysis, this accounted for 0.99% in the TST arm and 0.51% in the TST/QFT arm (-0.48% difference; 97.5% confidence interval [CI], -1.86% to 0.90%); in the per-protocol analysis, the corresponding rates were 1.67% and 0.82% in the TST and TST/QFT arms, respectively (-0.85% difference; 97.5% CI, -3.14% to 1.43%). Of the 792 contacts analyzed, 65.3% in the TST arm and 42.2% in the TST/QFT arm were diagnosed with tuberculosis infection (23.1% difference; 95% CI, 16.4% to 30.0%). In low-incidence settings, screening household contacts with the TST and using QFT-GIT as a confirmatory test is not inferior to TST-alone for preventing active tuberculosis, allowing a safe reduction of preventive treatments. NCT01223534. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  14. Size fraction assaying of gold bearing rocks (for gold extraction) by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D.K.; Adomako, D.

    2005-01-01

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite sample was determined as a function of particle size by using Instrumental Neutron Activation Analysis. The concentrations of gold for the corresponding particle sizes were 16.4 ± 0.17mg/kg for sizes <63μm; 161± 0.75 mg/kg for 63 - 125 μm, 0.53 + 0.03 mg/kg for 125 - 250 μm, 4.66± 0.07 mg/kg for 250 - 355 μm, 1.55 ± 0.06 for 355 - 425 μm, 0.80 ± 0.008 mg/kg for 425 -1000 μm, and 1.27 + 0.05 mg/kg for 1000-2000 μm. The average gold content in a 7.127 kg composite sample based on particle size found to be 3.08 mg/kg. (au)

  15. Use of QuantiFERON®-TB Gold in-tube culture supernatants for measurement of antibody responses.

    Directory of Open Access Journals (Sweden)

    Simon G Kimuda

    Full Text Available QuantiFERON®-TB Gold in-tube (QFT-GIT supernatants may be important samples for use in assessment of anti-tuberculosis (TB antibodies when only limited volumes of blood can be collected and when a combination of antibody and cytokine measurements are required. These analytes, when used together, may also have the potential to differentiate active pulmonary TB (APTB from latent TB infection (LTBI. However, few studies have explored the use of QFT-GIT supernatants for investigations of antibody responses. This study determined the correlation and agreement between anti-CFP-10 and anti-ESAT-6 antibody concentrations in QFT-GIT nil supernatant and serum pairs from 68 TB household contacts. We also explored the ability of Mycobacterium tuberculosis (M.tb specific antibodies, or ratios of antibody to interferon gamma (IFN-γ in QFT-GIT supernatants, to differentiate 97 APTB cases from 58 individuals with LTBI. Sputum smear microscopy was used to define APTB, whereas the QFT-GIT and tuberculin skin test were used to define LTBI. There were strong and statistically significant correlations between anti-CFP-10 and anti-ESAT-6 antibodies in unstimulated QFT-GIT supernatants and sera (r = 0.89; p<0.0001 for both, and no significant differences in antibody concentration between them. Anti-CFP-10 & anti-ESAT-6 antibodies differentiated APTB from LTBI with sensitivities of 88.7% & 71.1% and specificities of 41.4% & 51.7% respectively. Anti-CFP-10 antibody/M.tb specific IFN-γ and anti-ESAT-6 antibody/M.tb specific IFN-γ ratios had sensitivities of 48.5% & 54.6% and specificities of 89.7% and 75.9% respectively. We conclude that QFT-GIT nil supernatants may be used in the place of sera when measuring antibody responses, reducing blood volumes needed for such investigations. Antibodies in QFT-GIT nil supernatants on their own discriminate APTB from LTBI with high sensitivity but have poor specificity, whereas the reverse is true when antibodies are used in

  16. Gold nanoparticle immunochromatographic assay for quantitative detection of urinary RBP

    Directory of Open Access Journals (Sweden)

    XU Kuan

    2013-04-01

    Full Text Available A rapid quantitative detection of urinary RBP was established by using nano-gold immunochromatography (sandwich method and trisodium citrate reduction method and a rapid immunochromatographic test strip was developed. Theimmunochromatographic test strip can quantitatively detect RBP within 15 minutes. The detection limit was 150ng/mL and detection range was from 150 to 5000 ng/mL. There were no cross-reactions with others kidney disease markers,such as urinary albumin (ALB,transferrin protein (TRF,β2-microglobulin (β2-MG,urinary fiber connecting protein (FN,and lysozyme (LZM. The results indicate that it is a quick and simple method with strong specificity,high sensitivity,and wide detection range. The rapid detection method will have extensive clinical applications in the early diagnosis of proximal tubular damage,kidney disease,diabetic nephropathy,and process monitoring.

  17. A novel colloidal gold labeled antigen for the detection of Deoxynivalenol using an immunochromatographic assay method

    Science.gov (United States)

    Jin, Yu; Liu, Renrong; Zhu, Lixin; Chen, Zhenzhen

    2017-11-01

    In this paper, an immunochromatographic assay card was developed for the detection of DON in feed and cereals using a novel colloidal gold labeling method. For the colloidal gold immunochromatographic rapid detection (GICD) card, a monoclonal antibody DON-mAb and a goat anti-chicken IgY were drawn on NC membrane as the test line (T line) and the control line (C line) respectively. A gold labeled DON-CBSA conjugate and a gold labeled chicken IgY were sprayed onto the conjugate pad. The GICD card has cut-off levels of 50ng/mL for DON, which is invulnerable to matrix interference, and applicable to a wide range of samples. The GICD detecting results of feed and grain samples were compared with the results of ELISA testing, which showed good consistency.

  18. Establishment of colloid gold immunity chromatography assay for cardiac troponin I (cTnI)

    International Nuclear Information System (INIS)

    Wang Dezhi; Chen Jiying; Qin Lili; Zhao Baojian; Zhang Chunming

    2006-01-01

    Objective: To establish the colloid gold Immunity chromatography assay for cardiac troponin I. Methods: To purify cTnI from human cardiac muscle and immunize rabbit with it. cTnI antibody of rabbit anti-human cardiac muscle has been prepared and colloid gold immunity chromatography assay was established by using immunity chromatography technology. Results: Anti-serum titles of cTnI were 1:100000, Ka=2.38 x 10 9 L/mol; Methodological index: Sensitivity: 5 ng/ml; Specificity: cTnI is no cross-reaction with cTnT, cTnC and CK-MB. conclusion: The assay is highly specific, quick and simple. It can be widely used for the early diagnosis of AMI and scientific research. (authors)

  19. Comparison of results of assaying and neutron activation analysis when determining gold and silver content

    International Nuclear Information System (INIS)

    Vaganov, P.A.; Bulnaev, A.I.; Kulikov, V.D.; Mejer, V.A.; Zakharevich, K.V.

    1977-01-01

    Compared are results of simultaneous determination of gold and silver content in rock samples by the methods of neutron activation analysis and assaying. Rock samples were irradiated by thermal neutron flux of 5x10 13 nxcm -2 xs -1 during 12 hours. The gold content was determined in 8-12 days after irradiation, and silver content in 40-50 days. T he gold content determination was performed by 411.8 keV γ quanta of 198 Au. To establish the silver content two analytical lines of sup(110m)Ag isomer with the energy of 657.7 and 937.4 keV were used. The sensitivity threshold of Au content determination amounts to 3x10 -6 % (or 1x10 -9 g) and that for Ag is 2x10 -40 % (using γ line with the energy of 657.7 keV). The comparison of the results of assaying and neutron-activation analysis has shown for silver a good agreement between the both methods, the coefficient of pair correlation being equal to 0.997. For gold the divergence between the methods is observed. The activation analysis provides on the average lower values of gold content

  20. Fire-assay determination of small amounts of gold in mineral raw materials

    International Nuclear Information System (INIS)

    Kuligin, V.M.; Zdorova, Eh.P.; Popova, N.N.; Rakovskij, Eh.V.

    1976-01-01

    Gold is concentrated in 0.1-1.0 g of a lead alloy obtained in fire assay and cupellation and can be used for the analysis of a number of geological samples. The procedure makes it possible to determine gold with a limit of detection of 0.02 g/ton from a representative sample of 50-100 g. The use of lead acetate ensures the limit of detection of 0.002 g/ton, the relative standard deviation being greater than 0.01

  1. Issues in the analyze of low content gold mining samples by fire assay technique

    Science.gov (United States)

    Cetean, Valentina

    2016-04-01

    The classic technique analyze of samples with low gold content - below 0.1 g/t (=100 ppb = parts per billion), either ore or gold sediments, involves the preparation of sample by fire assay extraction, followed by the chemical attack with aqua regia (hydrochloric and nitric acid) and measuring the gold content by atomic absorption spectrometry or inductively coupled mass spectrometry. The issues raised by this analysis are well known for the world laboratories, commercial or research ones. The author's knowledge regarding this method of determining the gold content, accumulated in such laboratory from Romania (with more than 40 years of experience, even if not longer available from 2014) confirms the obtaining of reliable results required a lot of attention, amount of work and the involving of an experienced fire assayer specialist. The analytical conclusion for a research laboratory is that most reliable and statistically valid results are till reached for samples with more than 100 ppb gold content; the degree of confidence below this value is lower than 90%. Usually, for samples below 50 ppb, it does not exceed 50-70 %, unless without very strictly control of each stage, that involve additional percentage of hours allocated for successive extracting tests and knowing more precisely the other compounds that appear in the sample (Cu, Sb, As, sulfur / sulphides, Te, organic matter, etc.) or impurities. The most important operation is the preparation, namely: - grinding and splitting of sample (which can cause uneven distribution of gold flakes in the double samples for analyzed); - pyro-metallurgical recovery of gold = fire assay stage, involving the more precise temperature control in furnace during all stages (fusion and cupellation) and adjusting of the fire assay flux components to produce a successful fusion depending of the sample matrix and content; - reducing the sample weight to decrease the amount of impurities that can be concentrated in the lead button

  2. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.

    Science.gov (United States)

    Xie, Xiaoji; Xu, Wei; Liu, Xiaogang

    2012-09-18

    The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics

  3. Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus

    Directory of Open Access Journals (Sweden)

    Xianglong Yu

    2018-05-01

    Full Text Available Goose parvovirus (GPV remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.

  4. Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles

    Science.gov (United States)

    Wang, Yulong; Wang, Limin; Su, Zhenhe; Xue, Juanjuan; Dong, Jinbo; Zhang, Cunzheng; Hua, Xiude; Wang, Minghua; Liu, Fengquan

    2017-02-01

    We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV-vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV-vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing.

  5. Evaluation of antioxidant activity of chrysanthemum extracts and tea beverages by gold nanoparticles-based assay.

    Science.gov (United States)

    Liu, Quanjun; Liu, Haifang; Yuan, Zhiliang; Wei, Dongwei; Ye, Yongzhong

    2012-04-01

    A gold nanoparticles-based (GNPs-based) assay was developed for evaluating antioxidant activity of chrysanthemum extracts and tea beverages. Briefly, a GNPs growth system consisted of designated concentrations of hydrogen tetrachloroaurate, cetyltrimethyl ammonium bromide, sodium citrate, and phosphate buffer was designed, followed by the addition of 1 mL different level of test samples. After a 10-min reaction at 45°C, GNPs was formed in the reduction of metallic ions to zero valence gold by chrysanthemum extracts or tea beverages. And the resultant solution exhibited a characteristic surface plasmon resonance band of GNPs centered at about 545 nm, responsible for its vivid light pink or wine red color. The optical properties of GNPs formed correlate well with antioxidant activity of test samples. As a result, the antioxidant functional evaluation of chrysanthemum extracts and beverages could be performed by this GNPs-based assay with a spectrophotometer or in visual analysis to a certain extent. Our present method based on the sample-mediated generation and growth of GNPs is rapid, convenient, inexpensive, and also demonstrates a new possibility for the application of nanotechnology in food science. Moreover, this present work provides some useful information for in-depth research of involving chrysanthemum. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Serial testing of refugees for latent tuberculosis using the QuantiFERON-gold in-tube: effects of an antecedent tuberculin skin test.

    Science.gov (United States)

    Baker, Cristina A; Thomas, William; Stauffer, William M; Peterson, Phillip K; Tsukayama, Dean T

    2009-04-01

    Screening for latent tuberculosis infection (LTBI) in refugee populations immigrating to low-incidence countries remains a challenge. We assessed the characteristics of the QuantiFERON-Gold In-Tube (QFT-GIT) compared with the tuberculin skin test (TST) in 198 refugees of all ages from tuberculosis-endemic countries. Diagnostic agreement between the first QFT-GIT and simultaneous TST was 78% (kappa = 0.56) and between serial QFT-GITs was 89% (kappa = 0.76). In serial QFT-GIT testing, 70% of subjects had an increased QFT-GIT value, perhaps the result of an antecedent TST in the setting of previous TB exposure. This boosting seemed to become less prevalent with time from TST and occurred less frequently in those with negative first QFT-GIT readings. Despite small changes in the quantitative results caused by nonspecific variation and boosting, the diagnostic result of the QFT-GIT was reliable. The QFT-GIT shows the potential to replace the TST for LTBI screening in refugees from tuberculosis-endemic areas.

  7. Utility of QuantiFERON-TB Gold In-Tube assay in adult, pulmonary and extrapulmonary, active tuberculosis diagnosis

    Directory of Open Access Journals (Sweden)

    Mohammed Azghay

    2016-03-01

    Conclusion: On its own, QFT-GIT is an insufficient tool to confirm the diagnosis of TB disease. However, it may form part of an ensemble of tools in combination with clinical, biological, and radiological assessments.

  8. Time Series Modeling of Nano-Gold Immunochromatographic Assay via Expectation Maximization Algorithm.

    Science.gov (United States)

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Cao, Jie; Liu, Xiaohui

    2013-12-01

    In this paper, the expectation maximization (EM) algorithm is applied to the modeling of the nano-gold immunochromatographic assay (nano-GICA) via available time series of the measured signal intensities of the test and control lines. The model for the nano-GICA is developed as the stochastic dynamic model that consists of a first-order autoregressive stochastic dynamic process and a noisy measurement. By using the EM algorithm, the model parameters, the actual signal intensities of the test and control lines, as well as the noise intensity can be identified simultaneously. Three different time series data sets concerning the target concentrations are employed to demonstrate the effectiveness of the introduced algorithm. Several indices are also proposed to evaluate the inferred models. It is shown that the model fits the data very well.

  9. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    Science.gov (United States)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  10. QuantiFERON®-TB gold in-tube performance for diagnosing active tuberculosis in children and adults in a high burden setting.

    Directory of Open Access Journals (Sweden)

    Michala V Rose

    Full Text Available AIM: To determine whether QuantiFERON®-TB Gold In-Tube (QFT can contribute to the diagnosis of active tuberculosis (TB in children in a high-burden setting and to assess the performance of QFT and tuberculin skin test (TST in a prospective cohort of TB suspect children compared to adults with confirmed TB in Tanzania. METHODS: Sensitivity and specificity of QFT and TST for diagnosing active TB as well as indeterminate QFT rates and IFN-γ levels were assessed in 211 TB suspect children in a Tanzanian district hospital and contrasted in 90 adults with confirmed pulmonary TB. RESULTS: Sensitivity of QFT and TST in children with confirmed TB was 19% (5/27 and 6% (2/31 respectively. In adults sensitivity of QFT and TST was 84% (73/87 and 85% (63/74. The QFT indeterminate rate in children and adults was 27% and 3%. Median levels of IFN-γ were lower in children than adults, particularly children <2 years and HIV infected. An indeterminate result was associated with age <2 years but not malnutrition or HIV status. Overall childhood mortality was 19% and associated with an indeterminate QFT result at baseline. CONCLUSION: QFT and TST showed poor performance and a surprisingly low sensitivity in children. In contrast the performance in Tanzanian adults was good and comparable to performance in high-income countries. Indeterminate results in children were associated with young age and increased mortality. Neither test can be recommended for diagnosing active TB in children with immature or impaired immunity in a high-burden setting.

  11. [Comparative study of concordance and costs between tuberculin skin test and QuantiFERON(®)-TB Gold In-Tube in the diagnosis of latent tuberculosis infection among contacts of patients with pulmonary tuberculosis].

    Science.gov (United States)

    Martinez Lacasa, Xavier; Canals Font, Roser; Jaen Manzanera, Angels; Cuchi Burgos, Eva; Lite Lite, Josep

    2015-11-20

    Recently diagnosis of latent tuberculosis infection (LTBI) can be made using the tuberculin skin test (TST) or by techniques known as interferon-γ release assays (IGRAS), being QuantiFERON(®)-TB Gold In-Tube (QF-G-IT) the most used. The IGRAS avoid some drawbacks of the TST, especially cross-reaction with bacillus Calmette-Guérin (BCG) vaccine, but also present some problems such as those arising from cost and the need of having an adequate infrastructure and experience. There is no clear consensus on which technique should be preferentially used for the diagnosis of LTBI. This is a comparative study between the TST and QT-G-IT in a cohort of contacts of patients with pulmonary tuberculosis during the study period. An analysis of global agreement and groups was performed according to whether the contacts were vaccinated with BCG or not. A study of costs of both techniques and diagnostic strategies based on these techniques was performed. The agreement between TST and QF-G-IT was acceptable in the whole sample yet it was very good in the unvaccinated group. Few cases of indeterminate values were recorded. The cost study showed that TST was cheaper than QF-G-IT; however when we analyzed the cost of the strategies according to each technique, the QF-G-IT showed a better cost-benefit. We suggest considering QF-G-IT as the only preferred technique for the diagnosis of LTBI in household contacts, based on good overall agreement between the 2 techniques (even if we eliminate the effect of the vaccine) and a cost analysis favorable to QF-G-IT. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  12. Highly Sensitive Colorimetric Assay for Determining Fe3+ Based on Gold Nanoparticles Conjugated with Glycol Chitosan

    Directory of Open Access Journals (Sweden)

    Kyungmin Kim

    2017-01-01

    Full Text Available A highly sensitive and simple colorimetric assay for the detection of Fe3+ ions was developed using gold nanoparticles (AuNPs conjugated with glycol chitosan (GC. The Fe3+ ion coordinates with the oxygen atoms of GC in a hexadentate manner (O-Fe3+-O, decreasing the interparticle distance and inducing aggregation. Time-of-flight secondary ion mass spectrometry showed that the bound Fe3+ was coordinated to the oxygen atoms of the ethylene glycol in GC, which resulted in a significant color change from light red to dark midnight blue due to aggregation. Using this GC-AuNP probe, the quantitative determination of Fe3+ in biological, environmental, and pharmaceutical samples could be achieved by the naked eye and spectrophotometric methods. Sensitive response and pronounced color change of the GC-AuNPs in the presence of Fe3+ were optimized at pH 6, 70°C, and 300 mM NaCl concentration. The absorption intensity ratio (A700/A510 linearly correlated to the Fe3+ concentration in the linear range of 0–180 μM. The limits of detection were 11.3, 29.2, and 46.0 nM for tap water, pond water, and iron supplement tablets, respectively. Owing to its facile and sensitive nature, this assay method for Fe3+ ions can be applied to the analysis of drinking water and pharmaceutical samples.

  13. A Novel Diagnostic Method to Detect Duck Tembusu Virus: A Colloidal Gold-Based Immunochromatographic Assay

    Directory of Open Access Journals (Sweden)

    Guanliu Yu

    2018-05-01

    Full Text Available Duck Tembusu virus (DTMUV is an emerging pathogenic flavivirus that has resulted in large economic losses to the duck-rearing industry in China since 2010. Therefore, an effective diagnostic approach to monitor the spread of DTMUV is necessary. Here, a novel diagnostic immunochromatographic strip (ICS assay was developed to detect DTMUV. The assay was carried out using colloidal gold coated with purified monoclonal antibody A12D3 against envelope E protein. Purified polyclonal C12D1 antibodies from BALB/c mice against the envelope E protein were used as the capture antibody. Goat anti-mouse IgG was used to detect DTMUV, which was also assembled on the ICS. Results showed that the ICS could specifically detect DTMUV within 10 min. It also could be stored 25 and 4°C for 4 and 6 months, respectively. The sensitivity of the ICS indicated that the dilution multiples of positive allantoic fluid of DTMUV (LD50: 104.33/0.2 ml was up to 200. Its specificity and sensibility showed no significant change under the above storage situations. Fifty clinical samples were simultaneously detected by ICS and reverse-transcription polymerase chain reaction with a 93.9% coincidence rate between them. It proved that the ICS in the present study was highly specific, sensitive, repeatable, and more convenient to rapidly detect DTMUV in clinical samples.

  14. Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Science.gov (United States)

    Bernacka-Wojcik, Iwona

    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio ( 13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 mul on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration

  15. Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk.

    Science.gov (United States)

    Zhou, Jinyu; Nie, Wei; Chen, Yiqiang; Yang, Chunjiang; Gong, Lu; Zhang, Chi; Chen, Qian; He, Lidong; Feng, Xiaoyu

    2018-08-01

    In this study, we developed a quadruplex gold immunochromatogaraphic assay (GICA) for the simultaneous determination of four families of antibiotics including β-lactams, tetracyclines, streptomycin and chloramphenicol in milk. For qualitative analysis, the visual cut-off values were measured to be 2-100 ng/mL, 16-32 ng/mL, 50 ng/mL and 2.4 ng/mL for β-lactams, tetracyclines, streptomycin and chloramphenicol, respectively. For quantitative analysis, the detection ranges were 0.13-1 ng/mL for penicillin G, 0.13-8 ng/mL for tetracycline, 0.78-25 ng/mL for streptomycin, 0.019-1.2 ng/mL for chloramphenicol in milk respectively, with linear correlation coefficients higher than 0.97. The spiked experiment indicated that the mean recoveries ranged from 84.5% to 107.6% with coefficient of variations less than 16.2%, and real sample analysis revealed that the GICA can produce consistent results with instrumental analysis. These results demonstrated that this novel immunoassay is a promising approach for rapidly screening common antibiotic residues in milk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay.

    Science.gov (United States)

    Saleh, Mona; El-Matbouli, Mansour

    2015-06-01

    Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Controlling the electrochemical deposition of silver onto gold nanoparticles: reducing interferences and increasing the sensitivity of magnetoimmuno assays.

    Science.gov (United States)

    de la Escosura-Muñiz, Alfredo; Maltez-da Costa, Marisa; Merkoçi, Arben

    2009-04-15

    An electrocatalytical method induced by gold nanoparticles in order to improve the sensitivity of the magnetoimmunosensing technology is reported. Microparamagnetic beads as primary antibodies immobilization platforms and gold nanoparticles modified with secondary antibodies as high sensitive electrocatalytical labels are used. A built-in magnet carbon electrode allows the collection/immobilization on its surface of the microparamagnetic beads with the immunological sandwich and gold nanoparticle catalysts attached onto. The developed magnetoimmunosensing technology allows the antigen detection with an enhanced sensitivity due to the catalytic effect of gold nanoparticles on the electroreduction of silver ions. The main parameters that affect the different steps of the developed assay are optimized so as to reach a high sensitive electrochemical detection of the protein. The low levels of gold nanoparticles detected with this method allow the obtaining of a novel immunosensor with low protein detection limits (up to 23 fg/mL), with special interest for further applications in clinical analysis, food quality and safety as well as other industrial applications.

  18. Analytical detection and biological assay of antileukemic drug using gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: rajselva_77@yahoo.co.in; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: mkalagar@yahoo.com; Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-11-12

    Gold nanoparticles are reported and evaluated as probes for the detection of anticancer drug 6-mercaptopurine (6-MP). The nature of binding between 6-MP and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The bound antileukemic drug is fluorescent and the quenching property of gold nanoparticles could be exploited for biological investigations. The 6-MP-colloidal gold complex is observed to have appreciable antibacterial and antifungal activity against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus fumigatus, and Aspergillus niger. The experimental studies suggest that gold nanoparticles have the potential to be used as effective carriers for anticancer drugs.

  19. Instrumental neutron activation analysis of a nickel sulfide fire assay button to determine the platinum group elements and gold

    Energy Technology Data Exchange (ETDEWEB)

    Asif, M.; Parry, S.J.; Malik, H. (Imperial College of Science, Technology and Medicine, Silwood Park, Ascot (United Kingdom). Centre for Analytical Research in the Environment)

    1992-08-01

    Platinum group elements and gold were determined in reference materials SARM 7 and MA 1b using fire assay with 0.5 g of nickel prior to neutron activation analysis. The method is simple and rapid, avoiding the dissolution step where losses occur, particularly of gold. The problem of standardizing the button mass was overcome by using a spiking technique. The method is best suited to samples with little or no copper, when the detection limits can be as low as 0.002, 0.025, 0.018, 0.0002, 0.002, 0.020 and 0.2 mg kg[sup -1] for Rh, Pd, Pt, Ir, Au, Os and Ru, respectively. (author).

  20. Colloidal gold-based immunochromatographic strip assay for the rapid detection of three natural estrogens in milk.

    Science.gov (United States)

    Wang, Zhongxing; Guo, Lingling; Liu, Liqiang; Kuang, Hua; Xu, Chuanlai

    2018-09-01

    In this study, we developed highly sensitive and specific monoclonal antibodies (mAbs) against estrone (E 1 ), 17β-estradiol (17β-E 2 ), and estriol (E 3 ). The half-maximal inhibitory concentration values of anti-E 1 , anti-17β-E 2 , and anti-E 3 mAbs were 0.46, 0.36, and 0.39 ng/mL, respectively, based on competitive enzyme-linked immunosorbent assay (ic-ELISA) results. A rapid colloidal gold-based immunoassay strip assay was developed for the determination of E 1, 17β-E 2 , and E 3 residues in milk samples. The assay had a visual cut-off value of 5 ng/mL, and required 10 min to assess with the naked eye. The results obtained from the immunochromatographic strip assay were consistent with those obtained from ic-ELISA and gas chromatography-mass spectrometry. The immunochromatographic strip assay is useful and rapid for the detection of E 1 , 17β-E 2 , and E 3 in milk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Nanostructured gold deposited in gelatin template applied for electrochemical assay of glucose in serum

    Czech Academy of Sciences Publication Activity Database

    Juřík, T.; Podešva, Pavel; Farka, Z.; Kovář, D.; Skládal, P.; Foret, František

    2016-01-01

    Roč. 188, JAN (2016), s. 277-285 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA15-15479S Institutional support: RVO:68081715 Keywords : gold nanostructures * gelatin template * glucose electrooxidation * blood analysis * non-enzymatic sensor Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.798, year: 2016

  2. Development of a paper-based vertical flow SERS assay for citrulline detection using aptamer-conjugated gold nanoparticles

    Science.gov (United States)

    Locke, Andrea; Deutz, Nicolaas; Coté, Gerard

    2018-02-01

    Research toward development of point-of-care (POC) technologies is emerging as a means for diagnosis and monitoring of patients outside the hospital. These POC devices typically utilize assays capable of detecting low level biomarkers indicative of specific diseases. L-citrulline, an α-amino acid produced in the intestinal mucosa cells, is one such biomarker typically found circulating within the plasma at physiological concentrations of 40 μM. Researchers have found that intestinal enterocyte malfunction causes its level to be significantly lowered, establishing it as a potential diagnostic biomarker for gut function. Our research group has proposed the development of a surface enhanced Raman spectroscopy (SERS) based assay, using vertical flow paper fluidics, for citrulline detection. The assay consists of a fluorescently active, Raman reporter labeled aptamer conjugated on gold nanoparticles. The aptamer changes its confirmation on binding to its target, which in turn changes the distance between the Raman active molecule and the nanoparticle surface. These particles were embedded within a portable chip consisting of cellulose-based paper. After the chips were loaded with different concentrations of free L-citrulline in phosphate buffer, time was given for the assay to interact with the sample. A handheld Raman spectrometer (638 nm; Ocean Optics) was used to measure the SERS intensity. Results showed decrease in intensity with increasing concentration of L-citrulline (0-50μM).

  3. Oligopeptide-heavy metal interaction monitoring by hybrid gold nanoparticle based assay.

    Science.gov (United States)

    Politi, Jane; Spadavecchia, Jolanda; Iodice, Mario; de Stefano, Luca

    2015-01-07

    Phytochelatins are small peptides that can be found in several organisms, which use these oligopeptides to handle heavy metal elements. Here, we report a method for monitoring interactions between lead(ii) ions in aqueous solutions and phytochelatin 6 oligopeptide bioconjugated onto pegylated gold nanorods (PEG-AuNrs). This study is the first step towards a high sensitive label free optical biosensor to quantify heavy metal pollution in water.

  4. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract

    Science.gov (United States)

    Izadiyan, Zahra; Shameli, Kamyar; Hara, Hirofumi; Mohd Taib, Siti Husnaa

    2018-01-01

    The unique properties of gold nanoparticles (Au-NPs) produce in plant extract make them attractive for use in medical and industrial applications, it is necessary to develop environmentally friendly methods for their synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduction of the gold ions to Au-NPs during synthesis with natural plant extracts or with plasmas atmospheric pressure. Here, the biosynthesis of Au-NPs using the Juglans regia (J. regia) green husk extract was investigated as the reducing and stabilizing agent. The formation of Au-NPs was initially monitored by visual observation and then characterized with the help of various characterization techniques. UV-vis spectroscopy results showed that Au-NPs synthesized using moderate temperature have a blue shifting, good distribution and smaller size compare with Au-NPs fabricated in room temperature. X-ray diffraction (XRD) results revealed the distinctive formation of the crystalline structure of Au-NPs with a spherical shape. According to transmission electron microscopy (TEM), the mean diameter and standard deviation of Au-NPs at room and moderate temperatures were 19.19 ± 4.7 and 14.32 ± 3.24 nm, respectively. The result of Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) are in good agreement with each other and confirm that by using the moderate temperature compare to the room temperature the yield of reaction increased. Based on the zeta potential result, Au-NPs has sufficient value for the stability of the solution. According to FTIR spectrum, the J. regia would be coated on the gold ions surface in a successful manner. The non-toxic effect of Au-NPs concentration below 250 μg/ml was observed in the studies of in vitro cytotoxicity on normal and cancerous cell lines, respectively. The dose-dependent toxicity made it a suitable candidate for various medical applications.

  5. Synergistic Use of Gold Nanoparticles (AuNPs) and “Capillary Enzyme-Linked Immunosorbent Assay (ELISA)” for High Sensitivity and Fast Assays

    Science.gov (United States)

    Kim, Wan-Joong; Cho, Hyo Young; Jeong, Bongjin; Byun, Sangwon; Huh, JaeDoo; Kim, Young Jun

    2017-01-01

    Using gold nanoparticles (AuNPs) on “capillary enzyme-linked immunosorbent assay (ELISA)”, we produced highly sensitive and rapid assays, which are the major attributes for point-of-care applications. First, in order to understand the size effect of AuNPs, AuNPs of varying diameters (5 nm, 10 nm, 15 nm, 20 nm, 30 nm, and 50 nm) conjugated with Horseradish Peroxidase (HRP)-labeled anti-C reactive protein (antiCRP) (AuNP•antiCRP-HRP) were used for well-plate ELISA. AuNP of 10 nm produced the largest optical density, enabling detection of 0.1 ng/mL of CRP with only 30 s of incubation, in contrast to 10 ng/mL for the ELISA run in the absence of AuNP. Then, AuNP of 10 nm conjugated with antiCRP-HRP (AuNP•antiCRP-HRP) was used for “capillary ELISA” to detect as low as 0.1 ng/mL of CRP. Also, kinetic study on both 96-well plates and in a capillary tube using antiCRP-HRP or AuNP•antiCRP-HRP showed a synergistic effect between AuNP and the capillary system, in which the fastest assay was observed from the “AuNP capillary ELISA”, with its maximum absorbance reaching 2.5 min, while the slowest was the typical well-plate ELISA with its maximum absorbance reaching in 13.5 min. PMID:29278402

  6. An enzyme-linked immunosorbent assay and a gold-nanoparticle based immuno chromatographic test for amatoxins using recombinant antibody

    International Nuclear Information System (INIS)

    He, Kuo; Zhao, Ruiping; Wang, Lixia; Feng, Tingting; Wei, Dong; Zhang, Xiuyuan

    2016-01-01

    The authors describe two kinds of rapid assays for the determination of amatoxins in mushrooms. The first is an enzyme-linked immunosorbent assay (ELISA) using horseradish peroxidase. The second is a rapid immuno chromatographic assay that uses colloidal gold as a red label (CG-ICA). Both are based on the use of a well-characterized recombinant single chain variable fragment antibody (named scFv-A4). The half-maximum inhibition concentrations (IC50) of α-amanitin, β-amanitin and γ-amanitin are 78, 85 and 90 ng⋅mL"-"1, and the limits of detection (LODs; for IC15) are 1.9, 2.1 and 2.8 ng⋅mL"-"1. The method was applied to the determination of amanitins in mushrooms, and the LODs for α-amanitin, β-amanitin and γ-amanitin in mushroom samples were found to be 4.9, 6.4 and 8.3 ng⋅mL"-"1. The visual minimum detection limits of the optimized CGIA are 4 and 6 ng⋅mL"-"1 for mushroom samples. The test can be performed within 10 min. The results of the analysis of spiked samples showed that the CG-IA can rapidly and semi-quantitatively quantify amatoxins in mushroom samples on site and at low costs. (author)

  7. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer

    International Nuclear Information System (INIS)

    Soheili, Vahid; Taghdisi, Seyed Mohammad; Khayyat, Mohammad Hassanzadeh; Abnous, Khalil; Bazzaz, BiBi Sedigheh Fazly; Ramezani, Mohammad

    2016-01-01

    Aptamers specific for the antibiotic streptomycin were identified by a modified SELEX procedure that employs magnetic beads. After eight rounds of selection, twenty-six aptamers were identified and clustered into seven groups according to similarities in their sequences. The binding constant of three sequences from different groups were determined by colorimetric assays using unmodified gold nanoparticles (AuNPs). These most suitable aptamers were then truncated, and finally a 23-base sequence was identified that has the highest affinity (K_d = 132.3 nM) and selectivity. The assay was employed to analyze streptomycin residue in raw milk samples by ratiometric spectrophotometry at 520 and 660 nm, respectively. The analytical range extends from 180 to 1000 nM, and the LOD is 47.2 nM which is better than that of HPLC (4 μM). The interaction between aptamer and streptomycin was studied by molecular modeling. In our perception, this colorimetric assay provides a viable method for fast analysis of streptomycin in raw milk. (author)

  8. DNA-conjugated gold nanoparticles based colorimetric assay to assess helicase activity: a novel route to screen potential helicase inhibitors

    Science.gov (United States)

    Deka, Jashmini; Mojumdar, Aditya; Parisse, Pietro; Onesti, Silvia; Casalis, Loredana

    2017-03-01

    Helicase are essential enzymes which are widespread in all life-forms. Due to their central role in nucleic acid metabolism, they are emerging as important targets for anti-viral, antibacterial and anti-cancer drugs. The development of easy, cheap, fast and robust biochemical assays to measure helicase activity, overcoming the limitations of the current methods, is a pre-requisite for the discovery of helicase inhibitors through high-throughput screenings. We have developed a method which exploits the optical properties of DNA-conjugated gold nanoparticles (AuNP) and meets the required criteria. The method was tested with the catalytic domain of the human RecQ4 helicase and compared with a conventional FRET-based assay. The AuNP-based assay produced similar results but is simpler, more robust and cheaper than FRET. Therefore, our nanotechnology-based platform shows the potential to provide a useful alternative to the existing conventional methods for following helicase activity and to screen small-molecule libraries as potential helicase inhibitors.

  9. Tuberculin skin test and QuantiFERON® assay in young children investigated for tuberculosis in South Africa

    NARCIS (Netherlands)

    Moyo, S.; Isaacs, F.; Gelderbloem, S.; Verver, S.; Hawkridge, A. J.; Hatherill, M.; Tameris, M.; Geldenhuys, H.; Workman, L.; Pai, M.; Hussey, G.; Hanekom, W. A.; Mahomed, H.

    2011-01-01

    Although the literature on interferon-gamma release assays on tuberculosis (TB) in children has increased, data pertaining to young children remain relatively limited. To compare results from the tuberculin skin test (TST) and the QuantiFERON®-TB Gold In-Tube assay (QFT) in children aged <3 years

  10. Use of gold and silver standards based on phenol-formalde-hyde resin in assay-activation analysis of geological samples

    International Nuclear Information System (INIS)

    Aliev, A.I.; Drynkin, V.I.; Lejpunskaya, D.I.; Nedostup, T.V.

    1976-01-01

    Using standards on phenol-formaldehyde resin base for assaying-activation analysis of geological specimens for gold and silver has bee the advantage of uniformly distributing Au and Ag in spesimens and possible preparing tablets of practically any form or size. The validity and accuracy of these standards have been studied for the cases of short irradiation. Conventional point standards were used as reference standards. The experiments carried out have shown that tablet resol standards are suitable for a mass assaying-activation analysis for gold and silver at practically any concentrations

  11. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Diana; Gonzalez, Maria Cristina [Departamento de Quimica Analitica e Ingenieria Quimica, Facultad de Quimica, Edificio Polivalente, Universidad de Alcala, Ctra. Madrid-Barcelona km 33,600, 28871 Alcala de Henares, Madrid (Spain); Escarpa, Alberto, E-mail: alberto.escarpa@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Facultad de Quimica, Edificio Polivalente, Universidad de Alcala, Ctra. Madrid-Barcelona km 33,600, 28871 Alcala de Henares, Madrid (Spain)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Visual detection based gold and silver nanoparticles aggregation. Black-Right-Pointing-Pointer Functionalized and non-functionalized nanoparticles. Black-Right-Pointing-Pointer High selectivity and sensitivity. Black-Right-Pointing-Pointer No complex instrumentation is required/chemical creativity for analyte detection. - Abstract: Localized surface plasmon resonance (LSPR) is one of the most remarkable features of gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs). Due to these inherent optical properties, colloidal solutions of Au and Ag NPs have high extinction coefficients and different colour in the visible region of the spectrum when they are well-spaced in comparison with when they are aggregated. Therefore, a well-designed chemical interaction between the analyte and NPs surroundings leads to a change of colour (red to blue for Au NPs and yellow to brown for Ag NPs from well-spaced to aggregated ones, respectively) allowing the visual detection of the target analyte. These approaches have exhibited an excellent analytical performance with high sensitivities due to the strong LSPR and excellent selectivity strategically driven by the interaction analyte-NPs surroundings involving mainly electrostatic and hydrogen bond interactions as well as donor-acceptor chemical reactions, among others. In addition, this kind of colorimetric assays has received considerable attention in the analytical field because of their simplicity and low cost since they do not require any expensive or complex instrumentation. As a consequence of this, detection of molecules with a high significance in the bio-medical, clinical, food safety and environmental fields including DNA, proteins and a wide spectrum of organic molecules as well as inorganic ions have been impressively reported in the most relevant literature using these assays. This timely review offers a rational vision of the main achievements yielded in the relevant

  12. Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA

    Directory of Open Access Journals (Sweden)

    Paula Ciaurriz

    2017-01-01

    Full Text Available The enzyme-linked immunosorbent assay (ELISA technique is based on the specific recognition ability of the molecular structure of an antigen (epitope by an antibody and is likely the most important diagnostic technique used today in bioscience. With this methodology, it is possible to diagnose illness, allergies, alimentary fraud, and even to detect small molecules such as toxins, pesticides, heavy metals, etc. For this reason, any procedures that improve the detection limit, sensitivity or reduce the analysis time could have an important impact in several fields. In this respect, many methods have been developed for improving the technique, ranging from fluorescence substrates to methods for increasing the number of enzyme molecules involved in the detection such as the biotin–streptavidin method. In this context, nanotechnology has offered a significant number of proposed solutions, mainly based on the functionalization of nanoparticles from gold to carbon which could be used as antibody carriers as well as reporter enzymes like peroxidase. However, few works have focused on the study of best practices for nanoparticle functionalization for ELISA enhancement. In this work, we use 20 nm gold nanoparticles (AuNPs as a vehicle for secondary antibodies and peroxidase (HRP. The design of experiments technique (DOE and four different methods for biomolecule loading were compared using a rabbit IgG/goat anti-rabbit IgG ELISA model (adsorption, directional, covalent and a combination thereof. As a result, AuNP probes prepared by direct adsorption were the most effective method. AuNPs probes were then used to detect gliadin, one of the main components of wheat gluten, the protein composite that causes celiac disease. With this optimized approach, our data showed a sensitivity increase of at least five times and a lower detection limit with respect to a standard ELISA of at least three times. Additionally, the assay time was remarkably decreased.

  13. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review

    International Nuclear Information System (INIS)

    Vilela, Diana; González, María Cristina; Escarpa, Alberto

    2012-01-01

    Highlights: ► Visual detection based gold and silver nanoparticles aggregation. ► Functionalized and non-functionalized nanoparticles. ► High selectivity and sensitivity. ► No complex instrumentation is required/chemical creativity for analyte detection. - Abstract: Localized surface plasmon resonance (LSPR) is one of the most remarkable features of gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs). Due to these inherent optical properties, colloidal solutions of Au and Ag NPs have high extinction coefficients and different colour in the visible region of the spectrum when they are well-spaced in comparison with when they are aggregated. Therefore, a well-designed chemical interaction between the analyte and NPs surroundings leads to a change of colour (red to blue for Au NPs and yellow to brown for Ag NPs from well-spaced to aggregated ones, respectively) allowing the visual detection of the target analyte. These approaches have exhibited an excellent analytical performance with high sensitivities due to the strong LSPR and excellent selectivity strategically driven by the interaction analyte-NPs surroundings involving mainly electrostatic and hydrogen bond interactions as well as donor–acceptor chemical reactions, among others. In addition, this kind of colorimetric assays has received considerable attention in the analytical field because of their simplicity and low cost since they do not require any expensive or complex instrumentation. As a consequence of this, detection of molecules with a high significance in the bio-medical, clinical, food safety and environmental fields including DNA, proteins and a wide spectrum of organic molecules as well as inorganic ions have been impressively reported in the most relevant literature using these assays. This timely review offers a rational vision of the main achievements yielded in the relevant literature according to this exciting and creative analytical field.

  14. Analytical and diagnostic performance of a qPCR assay for Ichthyophonus spp. compared to the tissue culture 'gold standard'.

    Science.gov (United States)

    Lowe, Vanessa C; Hershberger, Paul K; Friedman, Carolyn S

    2018-06-04

    Parasites of the genus Ichthyophonus infect many fish species and have a non-uniform distribution within host tissues. Due in part to this uneven distribution, the comparative sensitivity and accuracy of using molecular-based detection methods versus culture to estimate parasite prevalence is under debate. We evaluated the analytical and diagnostic performance of an existing qPCR assay in comparison to the 'gold standard' culture method using Pacific herring Clupea pallasii with known exposure history. We determined that the assay is suitable for use in this host, and diagnostic specificity was consistently high (>98%) in both heart and liver tissues. Diagnostic sensitivity could not be fully assessed due to low infection rates, but our results suggest that qPCR is not as sensitive as culture under all circumstances. Diagnostic sensitivity of qPCR relative to culture is likely affected by the amount of sample processed. The prevalence values estimated by the 2 methods were not significantly different when sample amounts were equal (heart tissue), but when the assayed sample amounts were unequal (liver tissue), the culture method detected a significantly higher prevalence of the parasite than qPCR. Further, culture of liver also detected significantly more Ichthyophonus infections than culture of heart, suggesting that the density and distribution of parasites in tissues also plays a role in assay sensitivity. This sensitivity issue would be most problematic for fish with light infections. Although qPCR does not detect the presence of a live organism, DNA-based pathogen detection methods provide the opportunity for alternate testing strategies when culture is not possible.

  15. Colorimetric assay for lead ions based on the leaching of gold nanoparticles.

    Science.gov (United States)

    Chen, Yi-You; Chang, Huan-Tsung; Shiang, Yen-Chun; Hung, Yu-Lun; Chiang, Cheng-Kang; Huang, Chih-Ching

    2009-11-15

    A colorimetric, label-free, and nonaggregation-based gold nanoparticles (Au NPs) probe has been developed for the detection of Pb(2+) in aqueous solution, based on the fact that Pb(2+) ions accelerate the leaching rate of Au NPs by thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). Au NPs reacted with S(2)O(3)(2-) ions in solution to form Au(S(2)O(3))(2)(3-) complexes on the Au NP surfaces, leading to slight decreases in their surface plasmon resonance (SPR) absorption. Surface-assisted laser desorption/ionization time-of-flight ionization mass spectrometry (SALDI-TOF MS) data reveals the formation of Pb-Au alloys on the surfaces of the Au NPs in the presence of Pb(2+) ions and 2-ME. The formation of Pb-Au alloys accelerated the Au NPs rapidly dissolved into solution, leading to dramatic decreases in the SPR absorption. The 2-ME/S(2)O(3)(2-)-Au NP probe is highly sensitive (LOD = 0.5 nM) and selective (by at least 1000-fold over other metal ions) toward Pb(2+) ions, with a linear detection range (2.5 nM-10 muM) over nearly 4 orders of magnitude. The cost-effective probe allows rapid and simple determination of the concentrations of Pb(2+) ions in environmental samples (Montana soil and river), with results showing its great practicality for the detection of lead in real samples.

  16. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay

    International Nuclear Information System (INIS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-01-01

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC 50 values in WST-1 assays. The IC 50 values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles

  17. A novel colorimetric assay for rapid detection of cysteine and Hg²⁺ based on gold clusters.

    Science.gov (United States)

    Wang, Yi-Wei; Tang, Shurong; Yang, Huang-Hao; Song, Hongbo

    2016-01-01

    Inhibition and recovery of the catalytic activity of bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) is observed for the first time by introduction of cysteine and Hg(2+). The prepared BSA-AuNCs possess highly intrinsic peroxidase-like activity. It can catalyze the oxidation of 3, 3, 5, 5-tetramethylbenzidine by H2O2 to produce a blue colored product. Based on this phenomenon, a new colorimetric assay for rapid, selective and sensitive detection of cysteine and Hg(2+) in aqueous solution has been demonstrated. The interaction process between target molecule and BSA-AuNCs is very fast, so that the whole test can be completed within ten minutes. Moreover, the fabricated colorimetric sensor is simple and cost-effective, without the need of nucleic acid based recognition element and complicated washing, separation and labeling process, thus holds great promise for routine analysis of cysteine and Hg(2+) in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  19. The frequencies of IFNγ+IL2+TNFα+ PPD-specific CD4+CD45RO+ T-cells correlate with the magnitude of the QuantiFERON® gold in-tube response in a prospective study of healthy indian adolescents.

    Science.gov (United States)

    Jenum, Synne; Grewal, Harleen M S; Hokey, David A; Kenneth, John; Vaz, Mario; Doherty, Timothy Mark; Jahnsen, Frode Lars

    2014-01-01

    QuantiFERON-TB Gold In-Tube (QFT) is an IFNγ-release assay used in the diagnosis of Mycobacterium tuberculosis (MTB) infection. The risk of TB progression increases with the magnitude of the MTB-specific IFNγ-response. QFT reversion, also associated with low Tuberculin Skin Test responses, may therefore represent a transient immune response with control of M. tuberculosis infection. However, studies at the single cell level have suggested that the quality (polyfunctionality) of the T-cell response is more important than the quantity of cytokines produced. To explore the quality and/or magnitude of mycobacteria-specific T-cell responses associated with QFT reversion and persistent QFT-positivity. Multi-color flowcytometry on prospectively collected peripheral blood mononuclear cells was applied to assess mycobacteria-specific T-cell responses in 42 QFT positive Indian adolescents of whom 21 became QFT negative (reverters) within one year. Ten QFT consistent negatives were also included as controls. There was no difference in the qualitative PPD-specific CD4+ T-cell response between QFT consistent positives and reverters. However, compared with QFT consistent positives, reverters displayed lower absolute frequencies of polyfunctional (IFNγ+IL2+TNFα+) CD4+ T-cells at baseline, which were further reduced to the point where they were not different to QFT negative controls one year later. Moreover, absolute frequencies of these cells correlated well with the magnitude of the QFT-response. Whereas specific polyfunctional CD4+ T-cells have been suggested to protect against TB progression, our data do not support that higher relative or absolute frequencies of PPD-specific polyfunctional CD4+ T-cells in peripheral blood can explain the reduced risk of TB progression observed in QFT reverters. On the contrary, absolute frequencies of these cells correlated with the QFT-response, suggesting that this readout reflects antigenic load.

  20. Size fractional gold assaying of gold bearing rocks from the Amansie West District of Ghana by instrumental neutron activation: implication for gold extraction process by small-scale miners. Technical report for 2004/2005

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D. K.; Adomako, D.

    2005-01-01

    This paper examines the possibility of improving the extraction process of gold from gold bearing rocks by small-scale gold miners in Ghana. The investigation involved crushing of 25 hard rock gold ore samples with a total weight of 7,126.98g to fine particles to form a composite sample and screening at a range of grind sizes. This was followed by the determination of gold distribution as a function of 'particle size' in the composite sample using INAA. The following concentrations of gold for the corresponding particle sizes are reported: 63-125 μm, 161±0.75 mg/kg; Sub 63 μm, 16.4 ± 0.17 mg/kg; 250-355 μm, 4.66 ± 0. 07; 355-425μm, 1.55 ± 0.06 mg/kg; 1000-2000 μm, 1.27±005 mg/kg; 125-250 μm, 0.53 ± 0.03 mg/kg; 425-1000 μm, 0.180 ± 0.008 mg/kg. An estimate for gold in the composite sample based on particle size yielded an average value of 3.80 mg/kg. (au)

  1. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    Science.gov (United States)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  2. Interaction of Thermus thermophilus ArsC enzyme and gold nanoparticles naked-eye assays speciation between As(III) and As(V)

    International Nuclear Information System (INIS)

    Politi, Jane; De Stefano, Luca; Spadavecchia, Jolanda; Casale, Sandra; Fiorentino, Gabriella; Antonucci, Immacolata

    2015-01-01

    The thermophilic bacterium Thermus thermophilus HB27 encodes chromosomal arsenate reductase (TtArsC), the enzyme responsible for resistance to the harmful effects of arsenic. We report on adsorption of TtArsC onto gold nanoparticles for naked-eye monitoring of biomolecular interaction between the enzyme and arsenic species. Synthesis of hybrid biological–metallic nanoparticles has been characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV–vis), dynamic light scattering (DLS) and phase modulated infrared reflection absorption (PM-IRRAS) spectroscopies. Molecular interactions have been monitored by UV–vis and Fourier transform-surface plasmon resonance (FT-SPR). Due to the nanoparticles’ aggregation on exposure to metal salts, pentavalent and trivalent arsenic solutions can be clearly distinguished by naked-eye assay, even at 85 μM concentration. Moreover, the assay shows partial selectivity against other heavy metals. (paper)

  3. Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-Assembly of Gold Nanorods.

    Science.gov (United States)

    Chen, Lu; Lu, Linlin; Wang, Sufan; Xia, Yunsheng

    2017-06-23

    In this study, we present a valence states modulation strategy for picomole level assay of Hg 2+ using directional self-assembly of gold nanorods (AuNRs) as signal readout. Hg 2+ ions are first controllably reduced to Hg + ions by appropriate ascorbic acid, and the reduced Hg + ions react with the tips of the preadded AuNRs and form gold amalgam. Such Hg + decorated AuNRs then end-to-end self-assemble into one-dimensional architectures by the bridging effects of lysine based on the high affinity of NH 2 -Hg + interactions. Correspondingly, the AuNRs' longitudinal surface plasmon resonance is gradually reduced and a new broad band appears at 900-1100 nm region simultaneously. The resulting distinctly ratiometric signal output is not only favorable for Hg 2+ ions detection but competent for their quantification. Under optimal conditions, the linear range is 22.8 pM to 11.4 nM, and the detection limit is as low as 8.7 pM. Various transition/heavy metal ions, such as Pb 2+ , Ti 2+ , Co 2+ , Fe 3+ , Mn 2+ , Ba 2+ , Fe 2+ , Ni 2+ , Al 3+ , Cu 2+ , Ag + , and Au 3+ , do not interfere with the assay. Because of ultrahigh sensitivity and excellent selectivity, the proposed system can be employed for assaying ultratrace of Hg 2+ containing in drinking and commonly environmental water samples, which is difficult to be achieved by conventional colorimetric systems. These results indicate that the present platform possesses specific advantages and potential applications in the assay of ultratrace amounts of Hg 2+ ions.

  4. Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1

    International Nuclear Information System (INIS)

    Urusov, Alexander E.; Zherdev, Anatoly V.; Dzantiev, Boris B.

    2014-01-01

    We describe a sensitive method for the immunochromatographic determination of aflatoxin B1. It is based on the following steps: 1) Competitive interaction between non-labeled specific primary antibodies and target antigens in a sample and in the test zone of a membrane; 2) detection of the immune complexes on the membrane by using a secondary antibodies labeled with gold nanoparticles. The method enables precise adjustment of the required quantities of specific antibodies and the colloidal (gold) marker. It was applied in a lateral flow format to the detection of aflatoxin B1 and exhibits a limit of detection (LOD) of 160 pg · mL −1 if detected visually, and of 30 pg · mL −1 via instrumental detection. This is significantly lower than the LOD of 2 ng · mL −1 achieved by conventional lateral flow analysis using the same reagents. (author)

  5. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    Directory of Open Access Journals (Sweden)

    Aki Takahashi, Shigeru Uchiyama, Yuya Kato, Teruko Yuhi, Hiromi Ushijima, Makoto Takezaki, Toshihiro Tominaga, Yoshiko Moriyama, Kunio Takeda, Toshiro Miyahara and Naoki Nagatani

    2009-01-01

    Full Text Available The concentration of salivary secretory immunoglobulin A (sIgA is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2 containing non-ionic surfactant (3 wt% Tween 20. The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

  6. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    International Nuclear Information System (INIS)

    Takahashi, Aki; Kato, Yuya; Takezaki, Makoto; Tominaga, Toshihiro; Moriyama, Yoshiko; Takeda, Kunio; Miyahara, Toshiro; Nagatani, Naoki; Uchiyama, Shigeru; Yuhi, Teruko; Ushijima, Hiromi

    2009-01-01

    The concentration of salivary secretory immunoglobulin A (sIgA) is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA) for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2) containing non-ionic surfactant (3 wt% Tween 20). The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

  7. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    Science.gov (United States)

    Takahashi, Aki; Uchiyama, Shigeru; Kato, Yuya; Yuhi, Teruko; Ushijima, Hiromi; Takezaki, Makoto; Tominaga, Toshihiro; Moriyama, Yoshiko; Takeda, Kunio; Miyahara, Toshiro; Nagatani, Naoki

    2009-06-01

    The concentration of salivary secretory immunoglobulin A (sIgA) is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA) for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2) containing non-ionic surfactant (3 wt% Tween 20). The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

  8. Immunochromatographic assay using gold nanoparticles for measuring salivary secretory IgA in dogs as a stress marker

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Aki; Kato, Yuya; Takezaki, Makoto; Tominaga, Toshihiro; Moriyama, Yoshiko; Takeda, Kunio; Miyahara, Toshiro; Nagatani, Naoki [Department of Applied Chemistry, Graduate School of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005 (Japan); Uchiyama, Shigeru [Okayama University of Science Specialized Training College, 8-3 Handa-cho, Kita-ku, Okayama 700-0003 (Japan); Yuhi, Teruko; Ushijima, Hiromi, E-mail: nagatani@dac.ous.ac.j [Biodevicetechnology Ltd. 2-13 Asahidai, Nomi-City, Ishikawa 923-1211 (Japan)

    2009-06-15

    The concentration of salivary secretory immunoglobulin A (sIgA) is a well-known stress marker for humans. The concentration of salivary sIgA in dogs has also been reported as a useful stress marker. In addition, salivary sIgA in dogs has been used to determine the adaptive ability of dogs for further training. There are conventional procedures based on enzyme-linked immunosorbent assay (ELISA) for measuring salivary sIgA in dogs. However, ELISA requires long assay time, complicated operations and is costly. In the present study, we developed an immunochromatographic assay for measuring salivary sIgA in dogs using a dilution buffer containing a non-ionic surfactant. We determined 2500-fold dilution as the optimum condition for dog saliva using a phosphate buffer (50 mM, pH 7.2) containing non-ionic surfactant (3 wt% Tween 20). The results obtained from the saliva samples of three dogs using immunochromatographic assay were compared with those obtained from ELISA. It was found that the immunochromatographic assay is applicable to judge the change in salivary sIgA in each dog. The immunochromatographic assay for salivary sIgA in dogs is a promising tool, which should soon become commercially available for predicting a dog's psychological condition and estimating adaptive ability for training as guide or police dogs.

  9. New synthesis of gold nanocorals using a diazonium compound, and their application to an electrochemiluminescent assay of hydrogen peroxide

    International Nuclear Information System (INIS)

    Xu, Min; Qi, Wenjing; Zhang, Ling; Lai, Jianping; Aziz-ur-Rehman; Majeed, Saadat; Xu, Guobao

    2014-01-01

    The reaction of hydrogen tetracholoroaurate, sodium borohydride and the diazonium compound prepared from 4-aminobenzoic acid results in the formation of gold nanocorals (Au-NCs) for the first time. Scanning electron microscopy images and transmission electron microscopy images show that the Au-NCs are composed of nanowires with a diameter of 5.3 nm. A glassy carbon electrode modified with Au-NCs is found to trigger intense electrochemiluminescence of the luminol/H 2 O 2 system at a potential of −0.13 V. The effect was exploited to determine H 2 O 2 in the 0.1 to 100 μM concentration range with a 30 nM detection limit. (author)

  10. An Aptamer Bio-barCode (ABC) assay using SPR, RNase H, and probes with RNA and gold-nanorods for anti-cancer drug screening.

    Science.gov (United States)

    Loo, Jacky Fong-Chuen; Yang, Chengbin; Tsang, Hing Lun; Lau, Pui Man; Yong, Ken-Tye; Ho, Ho Pui; Kong, Siu Kai

    2017-10-07

    With modifications to an ultra-sensitive bio-barcode (BBC) assay, we have developed a next generation aptamer-based bio-barcode (ABC) assay to detect cytochrome-c (Cyto-c), a cell death marker released from cancer cells, for anti-cancer drug screening. An aptamer is a short single-stranded DNA selected from a synthetic DNA library that is capable of binding to its target with high affinity and specificity based on its unique DNA sequence and 3D structure after folding. Similar to the BBC assay, Cyto-c is captured by a micro-magnetic particle (MMP) coated with capturing antibodies (Ab) and an aptamer specifically against Cyto-c to form sandwich structures ([MMP-Ab]-[Cyto-c]-[Aptamer]). After washing and melting, our aptamers, acting as a DNA bio-barcode, are released from the sandwiches and hybridized with the probes specially designed for RNase H for surface plasmon resonance (SPR) sensing. In an aptamer-probe duplex, RNase H digests the RNA in the probe and releases the intact aptamer for another round of hybridization and digestion. With signal enhancement effects from gold-nanorods (Au-NRs) on probes for SPR sensing, the detection limit was found to be 1 nM for the aptamer and 80 pM for Cyto-c. Without the time-consuming DNA amplification steps by PCR, the detection process of this new ABC assay can be completed within three hours. As a proof-of-concept, phenylarsine oxide was found to be a potent agent to kill liver cancer cells with multi-drug resistance at the nano-molar level. This approach thus provides a fast, sensitive and robust tool for anti-cancer drug screening.

  11. A Label Free Colorimetric Assay for the Detection of Active Botulinum Neurotoxin Type A by SNAP-25 Conjugated Colloidal Gold

    Directory of Open Access Journals (Sweden)

    Christopher Gwenin

    2013-08-01

    Full Text Available Botulinum neurotoxins are one of the most potent toxins known to man. Current methods of detection involve the quantification of the toxin but do not take into account the percentage of the toxin that is active. At present the assay used for monitoring the activity of the toxin is the mouse bioassay, which is lengthy and has ethical issues due to the use of live animals. This report demonstrates a novel assay that utilises the endopeptidase activity of the toxin to detect Botulinum neurotoxin in a pharmaceutical sample. The cleaving of SNAP-25 is monitored via UV-Visible spectroscopy with a limit of detection of 373 fg/mL and has been further developed into a high throughput method using a microplate reader detecting down to 600 fg/mL of active toxin. The results show clear differences between the toxin product and the placebo, which contains the pharmaceutical excipients human serum albumin and lactose, showing that the assay detects the active form of the toxin.

  12. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles

    International Nuclear Information System (INIS)

    Yan, Yu-Qian; Tang, Xian; Wang, Yong-Sheng; Li, Ming-Hui; Cao, Jin-Xiu; Chen, Si-Han; Zhu, Yu-Feng; Wang, Xiao-Feng; Huang, Yan-Qin

    2015-01-01

    We report on a sensitive and selective strategy for the determination of metallothioneins (MTs). The assay is based on the suppression of the surface energy transfer that occurs between rhodamine 6G (Rh6G) and gold nanoparticles (AuNPs). If Rh6G is adsorbed onto the surface of AuNPs in water solution of pH 3.0, its fluorescence is quenched due to surface energy transfer. However, on addition of MTs to the Rh6G-AuNPs system, fluorescence is recovered owing to the formation of the MTs-AuNPs complex and the release of Rh6G into the solution. Under optimized conditions, the increase in fluorescence intensity is directly proportional to the concentration of the MTs in the range from 9.68 to 500 ng mL −1 , with a detection limit as low as 2.9 ng mL −1 . The possible mechanism of this assay is discussed. The method was successfully applied to the determination of MTs in (spiked) human urine. (author)

  13. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence.

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2017-06-15

    Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R 2 =0.9984) between the fluorescent intensity and the target DNA concentration in the samples. Copyright © 2016. Published by Elsevier B.V.

  14. A novel sandwich enzyme-linked immunosorbent assay with covalently bound monoclonal antibody and gold probe for sensitive and rapid detection of bovine β-lactoglobulin.

    Science.gov (United States)

    He, Shengfa; Li, Xin; Wu, Yong; Wu, Shandong; Wu, Zhihua; Yang, Anshu; Tong, Ping; Yuan, Juanli; Gao, Jinyan; Chen, Hongbing

    2018-06-01

    Bovine milk is a recognized allergenic food source with β-lactoglobulin (BLG) as its major allergen. Reliable detection of BLG epitopes can, therefore, be a useful marker for the presence of milk in processed food products, and for potential allergenicity. At the present, enzyme-linked immunosorbent assays (ELISA) for the detection of BLG are time-consuming and generally not specific to BLG IgE epitopes. In this study, the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-activated anti-BLG IgE epitope monoclonal antibody (mAb 1G9) was covalently bound onto the KOH-treated microtiter plate surface. Using this mAb-bound plate in sandwich combination with biotinylated anti-BLG polyclonal antibody-labeled gold nanoparticles, a linear dynamic range between 31.25 and 64 × 10 3  ng mL -1 with a limit of detection for BLG of 0.49 ng mL -1 was obtained, which is 32 times wider and 16 times more sensitive than conventional sandwich ELISA (sELISA). Total recovery of BLG in spiked food samples was found, without matrix effects. Also in partially hydrolyzed infant formulas, the allergenic BLG residues were detected quantitatively. Compared with conventional and commercial BLG detection sELISAs, our sELISA is reliable, highly BLG epitope-specific, user-friendly, and time-saving and allows accurate detection of potentially allergenic residues in different types of processed foods. This improved sELISA protocol can be easily extended to detect other well-identified and characterized food allergens. Graphical abstract IgE epitope mAb-bound plate in sandwich combination with gold probe for sensitive and rapid detection of bovine β-lactoglobulin and its potentially allergenic residues.

  15. Development of a colloidal gold-immunochromatography assay to detect immunoglobulin G antibodies to Treponema pallidum with TPN17 and TPN47.

    Science.gov (United States)

    Lin, Li-Rong; Fu, Zuo-Gen; Dan, Bing; Jing, Guang-Jun; Tong, Man-li; Chen, De-Teng; Yu, Yang; Zhang, Chang-Gong; Yang, Tian-Ci; Zhang, Zhong-Ying

    2010-11-01

    Syphilis remains a worldwide public health problem; it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. Here, we report a new testing method named colloidal gold-immunochromatography assay (GICA) to detect syphilis instead of fluorescent treponemal antibody-absorption (FTA-Abs). Syphilis-specific immunoglobulin G (IgG) antibody was detected with GICA established on syphilis-specific recombinant proteins, TPN17 and TPN47. FTA-Abs Treponema pallidum (TP)-IgG was set as the gold standard. A GICA test was performed to detect the serum of 14 967 subjects who took a serologic test for syphilis at the Xiamen Center of Clinical Laboratory, Fujian, China, from March 2009 to February 2010, among which 1326 cases were diagnosed as syphilitic. The results showed that the sensitivity, specificity, and positive predictive value were 99.38% (1279/1287), 99.96% (12,975/12,980), and 99.61% (1279/1284), respectively. The positive rate between the 2 test methods had no significant difference (χ(2) = 0.003, P > 0.05). Detection on 500 interference specimens indicated that the biologic false-positive rate of the GICA test was extremely low and free from other biologic and chemical factors. The characteristics of GICA TP-IgG correspond to that of FTA-Abs TP-IgG (EUROIMMUN Medizinische Labordiagnostika, Germany). The GICA test is convenient, fast, and inexpensive, and it can be used both as a confirmatory test and a screening indicator, instead of FTA-Abs TP-IgG. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC{sub 50}) test using WST-1 assay

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.

  17. Development of a free-solution SERS-based assay for point-of-care oral cancer biomarker detection using DNA-conjugated gold nanoparticles

    Science.gov (United States)

    Han, Sungyub; Locke, Andrea K.; Oaks, Luke A.; Cheng, Yi-Shing Lisa; Coté, Gerard L.

    2018-02-01

    It is estimated that the number of new cases of oral cancers worldwide is 529,000 and more than 300,000 deaths each year. The five-year survival rate remains about 50%, and the low survival rate is believed to be due to delayed detection. The primary detection method is through a comprehensive clinical examination by a dentist followed by a biopsy of suspicious lesions. Systematic review and meta-analysis have revealed that clinical examination alone may not be sufficient to cause the clinician to perform a biopsy or refer for biopsy for early detection of OSCC. Therefore, a non-invasive, point-of-Care (POC) detection with high sensitivity and specificity for early detection would be urgently needed, and using salivary biomarkers would be an ideal technology for it. S100 calcium binding protein P (S100P) mRNA presenting in saliva is a potential biomarker for detection of oral cancer. Further, surface enhanced Raman spectroscopy (SERS) has been shown to be a promising POC diagnostic technique. In this research, a SERS-based assay using oligonucleotide strains was developed for the sensitive and rapid detection of S100P. Gold nanoparticles (AuNPs) as a SERS substrate were used for the conjugation with one of two unique 24 base pair oligonucleotides, referred to as left and right DNA probes. A Raman reporter molecule, malachite green isothiocyanate (MGITC), was bound to left-probe-conjugated AuNPs. UV-vis spectroscopy was employed to monitor the conjugation of DNA probes to AuNPs. The hybridization of S100P target to DNA-conjugated AuNPs in sandwich-assay format was confirmed by Raman spectroscopy and shown to yield and R2 of 0.917 across the range of 0-200 nM and a limit of detection of 3 nM.

  18. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    Science.gov (United States)

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method

    Directory of Open Access Journals (Sweden)

    Wan Zhixiang

    2005-07-01

    Full Text Available Abstract Background Viral hepatitis due to hepatitis B virus and hepatitis C virus are major public health problems all over the world. Traditional detection methods including polymerase chain reaction (PCR-based assays and enzyme-linked immunosorbent assays (ELISA are expensive and time-consuming. In our assay, a protein chip assay using Nano-gold Immunological Amplification and Silver Staining (NIASS method was applied to detect HBV and HCV antibodies rapidly and simultaneously. Methods Chemically modified glass slides were used as solid supports (named chip, on which several antigens, including HBsAg, HBeAg, HBcAg and HCVAg (a mixture of NS3, NS5 and core antigens were immobilized respectively. Colloidal nano-gold labelled staphylococcal protein A (SPA was used as an indicator and immunogold silver staining enhancement technique was applied to amplify the detection signals, producing black image on array spots, which were visible with naked eyes. To determine the detection limit of the protein chip assay, a set of model arrays in which human IgG was spotted were structured and the model arrays were incubated with different concentrations of anti-IgG. A total of 305 serum samples previously characterized with commercial ELISA were divided into 4 groups and tested in this assay. Results We prepared mono-dispersed, spherical nano-gold particles with an average diameter of 15 ± 2 nm. Colloidal nano-gold-SPA particles observed by TEM were well-distributed, maintaining uniform and stable. The optimum silver enhancement time ranged from 8 to 12 minutes. In our assay, the protein chips could detect serum antibodies against HBsAg, HBeAg, HBcAg and HCVAg with the absence of the cross reaction. In the model arrays, the anti-IgG as low as 3 ng/ml could be detected. The data for comparing the protein chip assay with ELISA indicated that no distinct difference (P > 0.05 existed between the results determined by our assay and ELISA respectively. Conclusion

  20. A homogeneous and “off–on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)

    2016-07-27

    In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while

  1. Paper-based assay of antioxidant activity using analyte-mediated on-paper nucleation of gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2015-02-20

    With the increasing interest in the health benefits arising from the consumption of dietary products rich in antioxidants, there exists a clear demand for easy-to-use and cost-effective tests that can be used for the identification of the antioxidant power of food products. Paper-based analytical devices constitute a remarkable platform for such expedient and low-cost assays with minimal external resources but efforts in this direction are still scarce. In this work we introduce a new paper-based device in the form of a sensor patch that enables the determination of antioxidant activity through analyte-driven on-paper formation of gold nanoparticles. The principle of detection capitalizes, for the first time, on the on-paper nucleation of gold ions to its respective nanoparticles, upon reduction by antioxidant compounds present in an aqueous sample. The ensuing chromatic transitions, induced on the paper surface, are used as an optical "signature" of the antioxidant strength of the solution. The response of the paper-based sensor was evaluated against a large variety of antioxidant species and the respective dose response curves were constructed. On the basis of these data, the contribution of each species according to its chemical structure was elucidated. For the analysis of real samples, a concentration-dependent colorimetric response was established against Gallic acid equivalents over a linear range of 10 μM-1.0 mM, with detection limits at the low and ultra-low μM levels (i.e. <1.0 μM) and satisfactory precision (RSD=3.6-12.6%). The sensor has been tested for the assessment of antioxidant activity in real samples (teas and wines) and the results correlated well with commonly used antioxidant detection methods. Importantly, the sensor performed favorably for long periods of time when stored at moisture-free and low temperature conditions without losing its activity thus posing as an attractive alternative to the assessment of antioxidant activity without

  2. Serial QuantiFERON-TB Gold In-Tube assay and tuberculin skin test to diagnose latent tuberculosis in household Mexican contacts: conversion and reversion rates and associated factors using conventional and borderline zone definitions

    Directory of Open Access Journals (Sweden)

    Joel Monárrez-Espino

    2014-11-01

    Full Text Available A cohort of 123 adult contacts was followed for 18‐24 months (86 completed the follow-up to compare conversion and reversion rates based on two serial measures of QuantiFERON (QFT and tuberculin skin test (TST (PPD from TUBERSOL, Aventis Pasteur, Canada for diagnosing latent tuberculosis (TB in household contacts of TB patients using conventional (C and borderline zone (BZ definitions. Questionnaires were used to obtain information regarding TB exposure, TB risk factors and socio-demographic data. QFT (IU/mL conversion was defined as 0.70 (BZ and reversion was defined as ≥0.35 to 10 (BZ and reversion was defined as ≥5 to <5 (C. The QFT conversion and reversion rates were 10.5% and 7% with C and 8.1% and 4.7% with the BZ definitions, respectively. The TST rates were higher compared with QFT, especially with the C definitions (conversion 23.3%, reversion 9.3%. The QFT conversion and reversion rates were higher for TST ≥5; for TST, both rates were lower for QFT <0.35. No risk factors were associated with the probability of converting or reverting. The inconsistency and apparent randomness of serial testing is confusing and adds to the limitations of these tests and definitions to follow-up close TB contacts.

  3. Highly sensitive and simple liquid chromatography assay with ion-pairing extraction and visible detection for quantification of gold from nanoparticles.

    Science.gov (United States)

    Pallotta, Arnaud; Philippe, Valentin; Boudier, Ariane; Leroy, Pierre; Clarot, Igor

    2018-03-01

    A simple isocratic HPLC method using visible detection was developed and validated for the quantification of gold in nanoparticles (AuNP). After a first step of oxidation of nanoparticles, an ion-pair between tetrachloroaurate anion and the cationic dye Rhodamine B was formed and extracted from the aqueous media with the help of an organic solvent. The corresponding Rhodamine B was finally quantified by reversed phase liquid chromatography using a Nucleosil C18 (150mm × 4.6mm, 3µm) column and with a mobile phase containing acetonitrile and 0.1% trifluoroacetic acid aqueous solution (25/75, V/V) at 1.0mLmin -1. and at a wavelength of 555nm. The method was validated using methodology described by the International Conference on Harmonization and was shown to be specific, precise (RSD < 11%), accurate and linear in the range of 0.1 - 30.0µM with a lower limit of quantification (LLOQ) of 0.1µM. This method was in a first time applied to AuNP quality control after their synthesis. In a second time, the absence of gold leakage (either as AuNP or gold salt form) from nanostructured multilayered polyelectrolyte films under shear stress was assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identifying Predictors of Interferon-γ Release Assay Results in Pediatric Latent Tuberculosis: A Protective Role of Bacillus Calmette-Guérin?

    Science.gov (United States)

    Sotgiu, Giovanni; Altet-Gómez, Neus; Tsolia, Maria; Ruga, Ezia; Velizarova, Svetlana; Kampmann, Beate

    2012-01-01

    Rationale: Interferon-γ (IFN-γ) release assays are widely used to diagnose latent infection with Mycobacterium tuberculosis in adults, but their performance in children remains incompletely evaluated to date. Objectives: To investigate factors influencing results of IFN-γ release assays in children using a large European data set. Methods: The Pediatric Tuberculosis Network European Trials group pooled and analyzed data from five sites across Europe comprising 1,128 children who were all investigated for latent tuberculosis infection by tuberculin skin test and at least one IFN-γ release assay. Multivariate analyses examined age, bacillus Calmette-Guérin (BCG) vaccination status, and sex as predictor variables of results. Subgroup analyses included children who were household contacts. Measurements and Main Results: A total of 1,093 children had a QuantiFERON-TB Gold In-Tube assay and 382 had a T-SPOT.TB IFN-γ release assay. Age was positively correlated with a positive blood result (QuantiFERON-TB Gold In-Tube: odds ratio [OR], 1.08 per year increasing age [P 5 yr). Conclusions: Our data show that BCG vaccination may be effective in protecting children against Mycobacterium tuberculosis infection. To restrict use of IFN-γ release assays to children with positive skin tests risks underestimating latent infection. PMID:22700862

  5. Interferon gamma release assays for the diagnosis of latent TB infection in HIV-infected individuals in a low TB burden country.

    LENUS (Irish Health Repository)

    Cheallaigh, Clíona Ní

    2013-01-01

    Interferon gamma release assays (IGRAs) are used to diagnose latent tuberculosis infection. Two IGRAs are commercially available: the Quantiferon TB Gold In Tube (QFT-IT) and the T-SPOT.TB. There is debate as to which test to use in HIV+ individuals. Previous publications from high TB burden countries have raised concerns that the sensitivity of the QFT-IT assay, but not the T-SPOT.TB, may be impaired in HIV+ individuals with low CD4+ T-cell counts. We sought to compare the tests in a low TB burden setting.

  6. Evaluation of a Commercial Sandwich Enzyme-Linked Immunosorbent Assay for the Quantification of Beta-Casomorphin 7 in Yogurt Using Solid-Phase Extraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry as the "Gold Standard" Method.

    Science.gov (United States)

    Nguyen, Duc Doan; Busetti, Francesco; Johnson, Stuart Keith; Solah, Vicky Ann

    2018-03-01

    This study investigated beta-casomorphin 7 (BCM7) in yogurt by means of LC-tandem MS (MS/MS) and enzyme-linked immunosorbent assay (ELISA) and use LC-MS/MS as the "gold standard" method to evaluate the applicability of a commercial ELISA. The level of BCM7 in milk obtained from ELISA analysis was much lower than that obtained by LC-MS/MS analysis and trended to increase during fermentation and storage of yogurt. Meanwhile, the results obtained from LC-MS/MS showed that BCM7 degraded during stages of yogurt processing, and its degradation may have been caused by X-prolyl dipeptidyl aminopeptidase activity. As a result, the commercial sandwich ELISA kit was not suitable for the quantification of BCM7 in fermented dairy milk.

  7. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid

    International Nuclear Information System (INIS)

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu"2"+ through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10"−"3–10"−"6 M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments. - Highlights: • A novel task-specific ionic liquid functionalized gold nanoparticle was successfully prepared. • This material was successfully applied to recognizing five amino acids with Cu(II) through distinctive color changes. • The proposed strategy was successfully used to analyze the histidine in real samples.

  8. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang, E-mail: panyuanjiang@zju.edu.cn

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu{sup 2+} through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10{sup −3}–10{sup −6} M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments. - Highlights: • A novel task-specific ionic liquid functionalized gold nanoparticle was successfully prepared. • This material was successfully applied to recognizing five amino acids with Cu(II) through distinctive color changes. • The proposed strategy was successfully used to analyze the histidine in real samples.

  9. Automation in tube finishing bay

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Satyadev, B.; Raghuraman, S.; Syama Sundara Rao, B.

    1997-01-01

    Automation concept in tube finishing bay, introduced after the final pass annealing of PHWR tubes resulted in integration of number of sub-systems in synchronisation with each other to produce final cut fuel tubes of specified length, tube finish etc. The tube finishing bay which was physically segregated into four distinct areas: 1. tube spreader and stacking area, 2. I.D. sand blasting area, 3. end conditioning, wad blowing, end capping and O.D. wet grinding area, 4. tube inspection, tube cutting and stacking area has been studied

  10. Interferon-γ release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis

    DEFF Research Database (Denmark)

    Diel, R; Goletti, D; Ferrara, G

    2011-01-01

    We conducted a systematic review and meta-analysis to compare the accuracy of the QuantiFERON-TB® Gold In-Tube (QFT-G-IT) and the T-SPOT®.TB assays with the tuberculin skin test (TST) for the diagnosis of latent Mycobacterium tuberculosis infection (LTBI). The Medline, Embase and Cochrane databases...... of IGRAs varied 98-100%. In immunocompetent adults, NPV for progression to tuberculosis within 2 yrs were 97.8% for T-SPOT®.TB and 99.8% for QFT-G-IT. When test performance of an immunodiagnostic test was not restricted to prior positivity of another test, progression rates to tuberculosis among IGRA...

  11. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.

    Science.gov (United States)

    Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na

    2013-03-15

    We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  13. Evaluation of immune responses in HIV infected patients with pleural tuberculosis by the QuantiFERON® TB-Gold interferon-gamma assay

    Directory of Open Access Journals (Sweden)

    Lekabe Jacob M

    2008-03-01

    Full Text Available Abstract Background Diagnosis of tuberculous (TB pleuritis is difficult and better diagnostic tools are needed. New blood based interferon-gamma (IFN-γ tests are promising, but sensitivity could be low in HIV positive patients. The IFN-γ tests have not yet been validated for use in pleural fluid, a compartment with higher level of immune activation than in blood. Methods The QuantiFERON TB®-Gold (QFT-TB test was analysed in blood and pleural fluid from 34 patients presenting with clinically suspected pleural TB. Clinical data, HIV status and CD4 cell counts were recorded. Adenosine deaminase activity (ADA analysis and TB culture were performed on pleural fluid. Results The patients were categorised as 'confirmed TB' (n = 12, 'probable TB' (n = 16 and 'non-TB' pleuritis (n = 6 based on TB culture results and clinical and biochemical criteria. The majority of the TB patients were HIV infected (82%. The QFT-TB in pleural fluid was positive in 27% and 56% of the 'confirmed TB' and 'probable TB' cases, respectively, whereas the corresponding sensitivities in blood were 58% and 83%. Indeterminate results in blood (25% were caused by low phytohemagglutinin (PHA = positive control IFN-γ responses, significantly lower in the TB patients as compared to the 'non-TB' cases (p = 0.02. Blood PHA responses correlated with CD4 cell count (r = 0.600, p = 0.028. In contrast, in pleural fluid indeterminate results (52% were caused by high Nil (negative control IFN-γ responses in both TB groups. Still, the Nil IFN-γ responses were lower than the TB antigen responses (p Conclusion The QFT-TB test in blood could contribute to the diagnosis of TB pleuritis in the HIV positive population. Still, the number of inconclusive results is too high to recommend the commercial QFT-TB test for routine use in pleural fluid in a TB/HIV endemic resource-limited setting.

  14. The impact of HIV infection and CD4 cell count on the performance of an interferon gamma release assay in patients with pulmonary tuberculosis

    DEFF Research Database (Denmark)

    Aabye, Martine G.; Ravn, Pernille; PrayGod, George

    2009-01-01

    pulmonary tuberculosis (PTB) in a TB- and HIV-endemic population and the effect of HIV-infection and CD4 cell count on test performance. METHODOLOGY/PRINCIPAL FINDINGS: 161 patients with sputum culture confirmed PTB were subjected to HIV- and QFT-IT testing and measurement of CD4 cell count. The QFT......BACKGROUND: The performance of the tuberculosis specific Interferon Gamma Release Assays (IGRAs) has not been sufficiently documented in tuberculosis- and HIV-endemic settings. This study evaluated the sensitivity of the QuantiFERON TB-Gold In-Tube (QFT-IT) in patients with culture confirmed...

  15. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  16. Beneficiation of the gold bearing ore by gravity and flotation

    Science.gov (United States)

    Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven

    2012-02-01

    Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.

  17. Analysis of forming limit in tube hydroforming

    International Nuclear Information System (INIS)

    Kim, Chan Il; Yang, Seung Hang; Kim, Young Suk

    2013-01-01

    The automotive industry has shown increasing interest in tube hydroforming. Despite many automobile structural parts being produced from cylindrical tubes, failures frequently occur during tube hydroforming under improper forming conditions. These problems include wrinkling, buckling, folding back, and bursting. We perform analytical studies to determine forming limits in tube hydroforming and demonstrate how these forming limits are influenced by the loading path. Theoretical results for the forming limits of wrinkling and bursting are compared with experimental results for an aluminum tube.

  18. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  19. Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry

    International Nuclear Information System (INIS)

    Dykman, Lev A; Bogatyrev, Vladimir A

    2007-01-01

    The review summarises data on the synthesis and functionalisation of gold nanoparticles and their applications in biological investigations. Particular attention is given to applications of colloidal gold in solid-phase assays, immunoassay and studies of biologically active compounds by vibrational spectroscopy. A special section deals with the use of gold nanoparticles as antigen carriers in immunisation.

  20. Evaluation of a colloidal gold immunochromatography assay in the detection of Treponema pallidum specific IgM antibody in syphilis serofast reaction patients: a serologic marker for the relapse and infection of syphilis.

    Science.gov (United States)

    Lin, Li-Rong; Tong, Man-Li; Fu, Zuo-Gen; Dan, Bing; Zheng, Wei-Hong; Zhang, Chang-Gong; Yang, Tian-Ci; Zhang, Zhong-Ying

    2011-05-01

    Syphilis remains as a worldwide public health problem; hence, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A new testing method to detect Treponema pallidum IgM (TP-IgM), named colloidal gold immunochromatography assay (GICA), is presented in place of fluorescent treponemal antibody absorption (FTA-Abs). TP-IgM was detected using GICA developed on syphilis-specific recombinant proteins TPN17 and TPN47. The FTA-Abs IgM test was set as the gold standard. A GICA TP-IgM test was performed to detect syphilis in 1208 patients who received recommended therapy for syphilis for more than 1 year at the Xiamen Center of Clinical Laboratory in China from June 2005 to May 2009. One hundred blood donors were set up as control. The sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio were 98.21%, 99.04%, 93.75%, 99.73%, 102.3, and 0.018, respectively. Detection on 500 interference specimens indicated that the biological false-positive rate of the GICA test was extremely low and was free from other biological and chemical factors. The patients were divided into the following experimental groups based on the results of toluidine red unheated serum test (TRUST) and treponemal pallidum particle agglutination (TPPA): (1) the syphilis serofast reaction (SSR) group consisted of 411 cases with (+) TRUST and (+) TPPA, which exhibited no clinical manifestations of syphilis after 1 year of recommended syphilis treatment; (2) the serum cure group, which was further subdivided into group A, a group that consisted of 251 cases with (-) TRUST and (+) TPPA, and (3) group B, a group that consisted of 546 cases with (-) TRUST and (-) TPPA; and (4) the blood donor control group, which consisted of 100 healthy persons with (-) ELISA-TP and (-) TPPA. We used the FTA-Abs method and the GICA method to detect TP-IgM; the positive rate of TP-IgM in 411 SSR

  1. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  2. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  3. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  4. Aptamer-based electrochemical assay of 17β-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification

    International Nuclear Information System (INIS)

    Huang, Ke-Jing; Liu, Yu-Jie; Zhang, Ji-Zong

    2015-01-01

    We have developed an electrochemical method for the determination of 17β-estradiol. A glassy carbon electrode was modified with a composite made from copper sulfide nanosheets, gold nanoparticles, and glucose oxidase. The copper sulfide nanosheet was prepared by a single-step hydrothermal process, and its properties were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Finally, an estradiol-specific aptamer was assembled on the electrode. The copper sulfide nanosheet on the electrode surface acts as a relatively good electrical conductor. Glucose oxidase acts as an indicator, and the dual modification of glucose oxidase and gold nanoparticles for signal amplification. The determination of 17β-estradiol was performed by differential pulse voltammetry of glucose oxidase because the signal measured at typically −0.43 V depends on the concentration of 17β-estradiol because addition of 17β-estradiol at electrode hinders electron transfer. A linear relationship exists between the peak current and the logarithm of concentration of 17β-estradiol in the 0.5 pM to 5 nM range, with a 60 f. detection limit (at 3σ/S). The method displays good selectivity over bisphenol A, 1-aminoanthraquinone and naphthalene even if present in 100-fold concentrations. (author)

  5. Hallmarking as an essential need of gold industry

    International Nuclear Information System (INIS)

    Mahmood, K.; Alam, S.; Ahmed, T.

    2006-01-01

    As gold is a soft metal, for Jewellery making it is alloyed with Silver or Copper so that its strength may increase. Other main alloying elements include; Zinc, Cadmium and Nickel. These alloying elements help to reduce cost, improve appearance and to improve chemical properties of gold. The percentage of alloying elements determines the caratages of gold. The gold Jewellery sold in local market is often under-carated. In order to improve the quality of product sold, complete quality assessment of gold should be done. A complete quality assessment includes both Assaying and Hallmarking. Assaying is the analysis of an individual sample of gold from a customer to find out it's composition and Hallmarking refers to physically marking: a piece of Jewellery according to specific laws to certify the purity of metal. In this paper we have assessed and compared the quality of locally manufactured gold ornaments and its alloying components with international market as well as standards of gold and its alloys. And as Hallmarking is one of the main strategic initiatives to improve the quality of product sold for domestic and export consumption, this paper discusses the necessary steps leading to Hallmarking. We have used micro-XRF spectrometer for assaying and Laser Engraving machine for the purpose of Hallmarking. (author)

  6. Autologous patch graft in tube shunt surgery.

    Science.gov (United States)

    Aslanides, I M; Spaeth, G L; Schmidt, C M; Lanzl, I M; Gandham, S B

    1999-10-01

    To evaluate an alternate method of covering the subconjunctival portion of the tube in aqueous shunt surgery. Evidence of tube erosion, graft-related infection, graft melting, or other associated intraocular complications were evaluated. A retrospective study of 16 patients (17 eyes) who underwent tube shunt surgery at Wills Eye Hospital between July 1991 and October 1996 was conducted. An autologous either "free" or "rotating" scleral lamellar graft was created to cover the subconjunctival portion of the tube shunt. All patients were evaluated for at least 6 months, with a mean follow-up of 14.8 months (range 6-62 months). All eyes tolerated the autologous graft well, with no clinical evidence of tube erosion, or graft-related or intraocular complications. Autologous patch graft in tube shunt surgery appears--in selected cases--to be an effective, safe and inexpensive surgical alternative to allogenic graft materials. It also offers ease of availability, and eliminates the risk of transmitting infectious disease.

  7. Determination of platinum group elements and gold in reference materials by instrumental neutron activation analysis and inductively coupled plasma-mass spectrometry with nickel sulphide fire-assay collection

    International Nuclear Information System (INIS)

    Morcelli, C.P.R.; Figueiredo, A.M.G.; Sarkis, J.E.S.; Kakazu, M.; Enzweiler, J.

    2002-01-01

    Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) after NiS fire assay were used to determine platinum group elements (PGE) and Au in the geological reference materials peridotite GPt-3 and pyroxene peridotite GPt-4 (IGGE, China). INAA has been one of the most useful analytical techniques for PGEs and Au determination, due to its high sensitivity and accuracy. After the fire assay, the NiS button is dissolved in concentrated hydrochloric acid, leaving a residue of insoluble PGE sulphides; the solution is filtered and the filter is directly irradiated with neutrons. In more recent years, ICP-MS with nickel fire assay collection and tellurium coprecipitation has been used as a mean of analysing PGE, with the main advantage of avoiding problems of losses of PGE during the HCl digestion of the NiS button. Buttons were prepared by mixing the sample (10-15 g) with fluxes, nickel and sulphur in a fire clay crucible and fused at temperatures around 1000 deg C. For NAA, the filters containing the PGEs and Au were irradiated at the IEA-R1 research nuclear reactor at IPEN. The measurements of the induced gamma-ray activity were carried out in an hyperpure Ge detector. In general, the results obtained by the two techniques were in good agreement with recommended values. INAA results exhibited higher values than the recommended values for Pd and Pt in GPt-3, while the opposite effect was observed for GPt-4 sample. Ru was not detected by INAA. On the other hand, Rh and Ir were determined more accurately by INAA (relative errors better than 10%). The ICP-MS analytical technique showed better detection limits, and all the PGE were determined. Results obtained for Pt and Pd presented accuracy better than 5% while losses were observed for Os and Ir. (author)

  8. Hormone assay

    International Nuclear Information System (INIS)

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  9. Assay system

    International Nuclear Information System (INIS)

    Patzke, J.B.; Rosenberg, B.J.

    1984-01-01

    The accuracy of assays for monitoring concentrations of basic drugs in biological fluids containing a 1 -acid glycoproteins, such as blood (serum or plasma), is improved by the addition of certain organic phosphate compounds to minimize the ''protein effect.'' Kits containing the elements of the invention are also disclosed

  10. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  11. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  12. Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon

    Science.gov (United States)

    Vishiti, A.; Suh, C. E.; Lehmann, B.; Egbe, J. A.; Shemang, E. M.

    2015-11-01

    The Batouri area hosts lode-gold mineralization under several-m-thick lateritic cover. Pitting to bed rock on a geochemical Au anomaly defined from previous reconnaissance soil sampling identified five horizons ranging from saprock at the base to laterite at the top. Analysis of bulk samples from each horizon by fire assay shows that most of the horizons are barren although 119 ppb and 48 ppb Au values were obtained from one laterite horizon and one saprolite horizon, respectively, from two separate pits. All the horizons were panned and particulate gold was also recovered only from these two horizons. The gold grains from both horizons are morphologically and compositionally indistinguishable with rare quartz, pyrite and galena inclusions. The grains have irregular, sub-rounded, bean to elongated shapes and they show a remarkable core-rim zonation. Electron microprobe analysis of the grains recorded high gold content in the rims (86.3-100 wt%) and along fissures within the grains (95.1-100 wt%). The cores are relatively Ag rich (11.8-14 wt% Ag) while the rims (0.63-13.7 wt% Ag, most of the values fall within the lower limit of this range) and fissures (0.03-5.02 wt% Ag) are poor in Ag. The low Ag concentration in the rims and along fissures is attributed to preferential leaching of Ag; a process recognized in gold grains and platiniferous alloys from alluvia. The core composition of the grains is similar to that of primary gold composition in the bedrock. These results show that gold in the soil is relic particulate gold derived from the primary source with no evidence of secondary gold precipitation in the weathering cycle. In all the pits no horizon was systematically enriched in gold suggesting there has been no chemical remobilization of gold in this environment. Rather the dispersion of gold here is in the particulate form. Therefore combining particulate gold features with assay data is relevant to exploration in such tropical environments.

  13. Coal-oil assisted flotation for the gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.; Seyrankaya, A.; Cilingir, Y. [Dokuz Eylul University, Izmir (Turkey). Mining Engineering Department

    2005-09-01

    Using coal-oil agglomeration method for free or native gold recovery has been a research subject for many researchers over the years. In this study, a new approach 'coal-oil assisted gold flotation' was used to recover gold particles. The coal-oil-gold agglomeration process considers the preferential wetting of coal and gold particles. The method takes advantage of the greater hydrophobicity and oleophilicity of coal and gold compared to that the most gangue materials. Unlike the previous studies about coal-oil-gold agglomeration, this method uses a very small amount of coal and agglomerating agents. Some experiments were conducted on synthetic gold ore samples to reveal the reaction of the coal-oil assisted gold flotation process against the size and the number of gold particles in the feed. It was observed that there is no significant difference in process gold recoveries for feeds assaying different Au. Although there was a slight decrease for coarse gold particles, the process seems to be effective for the recovery of gold grains as coarse as 300 {mu} m. The decrease in the finest size ({lt} 53 {mu} m) is considered to be the decrease in the collision efficiency between the agglomerates and the finest gold particles. The effect of changing coal quantity for constant ore and oil amounts was also investigated. The experiments showed that the process gives very similar results for both artificial and natural ore samples; the best results have been obtained by using 30/1 coal-oil ratio.

  14. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  15. Comparison of in-house biotin-avidin tetanus IgG enzyme-linked-immunosorbent assay (ELISA) with gold standard in vivo mouse neutralization test for the detection of low level antibodies.

    Science.gov (United States)

    Sonmez, Cemile; Coplu, Nilay; Gozalan, Aysegul; Akin, Lutfu; Esen, Berrin

    2017-06-01

    Detection of anti-tetanus antibody levels is necessary for both determination of the immune status of individuals and also for planning preventive measures. ELISA is the preferred test among in vitro tests however it can be affected by the cross reacting antibodies. A previously developed in-house ELISA test was found not reliable for the antibody levels ≤1.0IU/ml. A new method was developed to detect low antibody levels correctly. The aim of the present study was to compare the results of the newly developed in-house biotin-avidin tetanus IgG ELISA test with the in vivo mouse neutralization test, for the antibody levels ≤1.0IU/ml. A total of 54 serum samples with the antibody levels of three different levels, =0.01IU/ml, 0.01-0.1IU/ml, 0.1-1IU/ml, which were detected by in vivo mouse neutralization test were studied by the newly developed in-house biotin-avidin tetanus IgG ELISA test. Test was validated by using five different concentrations (0.01IU/ml, 0.06IU/ml, 0.2IU/ml, 0.5IU/ml, 1.0IU/ml). A statistically significant correlation (r 2 =0.9967 p=0,001) between in vivo mouse neutralization test and in-house biotin-avidin tetanus IgG ELISA test, was observed. For the tested concentrations intra-assay, inter-assay, accuracy, sensitivity, specificity and coefficients of variations were determined as ≤15%. In-house biotin-avidin tetanus IgG ELISA test can be an alternative method to in vivo mouse neutralization method for the detection of levels ≤1.0IU/ml. By using in-house biotin-avidin tetanus IgG ELISA test, individuals with non protective levels, will be reliably detected. Copyright © 2017. Published by Elsevier B.V.

  16. Evaluation of the Diagnostic Accuracy of a Typhoid IgM Flow Assay for the Diagnosis of Typhoid Fever in Cambodian Children Using a Bayesian Latent Class Model Assuming an Imperfect Gold Standard

    Science.gov (United States)

    Moore, Catrin E.; Pan-Ngum, Wirichada; Wijedoru, Lalith P. M.; Sona, Soeng; Nga, Tran Vu Thieu; Duy, Pham Thanh; Vinh, Phat Voong; Chheng, Kheng; Kumar, Varun; Emary, Kate; Carter, Michael; White, Lisa; Baker, Stephen; Day, Nicholas P. J.; Parry, Christopher M.

    2014-01-01

    Rapid diagnostic tests are needed for typhoid fever (TF) diagnosis in febrile children in endemic areas. Five hundred children admitted to the hospital in Cambodia between 2009 and 2010 with documented fever (≥ 38°C) were investigated using blood cultures (BCs), Salmonella Typhi/Paratyphi A real-time polymerase chain reactions (PCRs), and a Typhoid immunoglobulin M flow assay (IgMFA). Test performance was determined by conventional methods and Bayesian latent class modeling. There were 32 cases of TF (10 BC- and PCR-positive cases, 14 BC-positive and PCR-negative cases, and 8 BC-negative and PCR-positive cases). IgMFA sensitivity was 59.4% (95% confidence interval = 41–76), and specificity was 97.8% (95% confidence interval = 96–99). The model estimate sensitivity for BC was 81.0% (95% credible interval = 54–99). The model estimate sensitivity for PCR was 37.8% (95% credible interval = 26–55), with a specificity of 98.2% (95% credible interval = 97–99). The model estimate sensitivity for IgMFA (≥ 2+) was 77.9% (95% credible interval = 58–90), with a specificity of 97.5% (95% credible interval = 95–100). The model estimates of IgMFA sensitivity and specificity were comparable with BCs and better than estimates using conventional analysis. PMID:24218407

  17. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  18. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  19. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  20. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  1. Comparison of two interferon-gamma assays and tuberculin skin test for tracing tuberculosis contacts

    NARCIS (Netherlands)

    Arend, Sandra M.; Thijsen, Steven F. T.; Leyten, Eliane M. S.; Bouwman, John J. M.; Franken, Willeke P. J.; Koster, Ben F. P. J.; Cobelens, Frank G. J.; van Houte, Arend-Jan; Bossink, Ailko W. J.

    2007-01-01

    The tuberculin skin test (TST) has low specificity. QuantiFERON-TB Gold (QFT-G) and T-SPOT.TB are based on interferon (IFN)-gamma responses to Mycobacterium tuberculosis-specific antigens. A novel in-tube format of QFT-G (QFT-GIT) offers logistical advantages. To compare TST, QFT-GIT, and T-SPOT.TB

  2. Automation of the dicentric chromosome assay and related assays

    International Nuclear Information System (INIS)

    Balajee, Adayabalam S.; Dainiak, Nicholas

    2016-01-01

    Dicentric Chromosome Assay (DCA) is considered to be the 'gold standard' for personalized dose assessment in humans after accidental or incidental radiation exposure. Although this technique is superior to other cytogenetic assays in terms of specificity and sensitivity, its potential application to radiation mass casualty scenarios is highly restricted because DCA is time consuming and labor intensive when performed manually. Therefore, it is imperative to develop high throughput automation techniques to make DCA suitable for radiological triage scenarios. At the Cytogenetic Biodosimetry Laboratory in Oak Ridge, efforts are underway to develop high throughput automation of DCA. Current status on development of various automated cytogenetic techniques in meeting the biodosimetry needs of radiological/nuclear incident(s) will be discussed

  3. Authentication of gold products by nuclear methods

    International Nuclear Information System (INIS)

    De Jesus, A.S.M.

    1985-01-01

    The falsification of valuable gold items is a threat to the authenticity of gold products. To solve this, there is a continuous search for reliable, practicle and cost-effective means of identifying forgeries. Because nuclear techniques as applied to elemental analysis have a high degree of specificity, are non-destructive and permit the availability of results within a relatively short time, a few of these techniques were investigated and reviewed in the article. Work on some promising methods in the author's laboratory is also discussed. Constraints such as those imposed by the time taken by the measurement, negligible residual activity within a relatively short time were also considered. The techniques that were investigated include: the transmission of electromagnetic radiation through a medium; scattering of electromagnetic radiation; x-ray fluorescence analysis; neutron activation analysis; activation by the inelastic scattering of gamma radiation; activation by the inelastic scattering of fast neutrons; absorption and scattering of fast neutrons; self-attenuation of gamma radiation. The shape of the object being investigated, should also be considered. It is concluded that a system based on the inelastic scattering of neutrons emitted by a 241 Am/Be source (halflife = 433 years) is practical and capable of authenticating gold and gold alloy coins such as Krugerrands. The feasibility study on the assaying of gold jewelry by means of nuclear methods also showed it to be impractical

  4. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  5. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-01-01

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL −1 can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples

  6. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Li [Logistics School, Beijing Wuzi University, Beijing 101149 (China); Chen, Jing; Li, Na [Logistics School, Beijing Wuzi University, Beijing 101149 (China); He, Pingli [State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100094 (China); Li, Zhen [State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193 (China)

    2014-08-11

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL{sup −1} can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples.

  7. Eddy current inspection of weld defects in tubing

    Science.gov (United States)

    Katragadda, G.; Lord, W.

    1992-01-01

    An approach using differential probes for the inspection of weld defects in tubing is studied. Finite element analysis is used to model the weld regions and defects. Impedance plane signals are predicted for different weld defect types and compared wherever possible with signals from actual welds in tubing. Results show that detection and sizing of defects in tubing is possible using differential eddy current techniques. The phase angle of the impedance plane trajectory gives a good indication of the sizing of the crack. Data on the type of defect can be obtained from the shape of the impedance plane trajectory and the phase. Depending on the skin depth, detection of outer wall, inner wall, and subsurface defects is possible.

  8. Neutron activation for logging the distribution of gold in bore-hole cores

    International Nuclear Information System (INIS)

    Rahmanian, H.; Watterson, J.I.W.

    1992-01-01

    A new method for the non-destructive determination of gold in bore-hole cores has been developed using instrumental neutron activation analysis with a 252 Cf source. The procedure obtains the distribution and concentration of gold along the longitudinal axis of the core i.e. a log of the gold concentration. The accuracy of the method is comparable to fire assay at a level of 2 ppm and has a detection limit of 1 ppm under the conditions used. The assay of the gold is carried out by employing a novel variation of the conventional comparator method using gold wires as both standard and flux monitor. A method is described for logging gold in bore-hole cores using neutron activation with a 160 μg 252 Cf neutron source. The method has a limit of detection of about 1 ppm under the described conditions. (author)

  9. Serial interferon-gamma release assays during treatment of active tuberculosis in young adults

    Directory of Open Access Journals (Sweden)

    Lee Choon-Taek

    2010-10-01

    Full Text Available Abstract Background The role of interferon-γ release assay (IGRA in monitoring responses to anti-tuberculosis (TB treatment is not clear. We evaluated the results of the QuantiFERON-TB Gold In-tube (QFT-GIT assay over time during the anti-TB treatment of adults with no underlying disease. Methods We enrolled soldiers who were newly diagnosed with active TB and admitted to the central referral military hospital in South Korea between May 1, 2008 and September 30, 2009. For each participant, we preformed QFT-GIT assay before treatment (baseline and at 1, 3, and 6 months after initiating anti-TB medication. Results Of 67 eligible patients, 59 (88.1% completed the study protocol. All participants were males who were human immunodeficiency virus (HIV-negative and had no chronic diseases. Their median age was 21 years (range, 20-48. Initially, 57 (96.6% patients had positive QFT-GIT results, and 53 (89.8%, 42 (71.2%, and 39 (66.1% had positive QFT-GIT results at 1, 3, and 6 months, respectively. The IFN-γ level at baseline was 5.31 ± 5.34 IU/ml, and the levels at 1, 3, and 6 months were 3.95 ± 4.30, 1.82 ± 2.14, and 1.50 ± 2.12 IU/ml, respectively. All patients had clinical and radiologic improvements after treatment and were cured. A lower IFN-γ level, C-reactive protein ≥ 3 mg/dl, and the presence of fever (≥ 38.3°C at diagnosis were associated with negative reversion of the QFT-GIT assay. Conclusion Although the IFN-γ level measured by QFT-GIT assay decreased after successful anti-TB treatment in most participants, less than half of them exhibited QFT-GIT reversion. Thus, the reversion to negativity of the QFT-GIT assay may not be a good surrogate for treatment response in otherwise healthy young patients with TB.

  10. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    International Nuclear Information System (INIS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-01-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV– visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  11. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  12. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  13. Radiometric determination in situ of the face grades in Witwatersrand gold and uranium mines

    International Nuclear Information System (INIS)

    Smit, C.J.B.

    1985-01-01

    A prototype collimated radiometric face scanner was tested in the Harmony Gold Mine. The results obtained during the pilot study indicate that in situ radiometric uranium assays are statistically indistinguishable from those obtained conventionally from channel chip samples. In addition, the study demonstrated that reasonably reliable gold estimates can be deduced from the radiometric measurements, by use of the ratio of gold to uranium within a mine. The instrumentation, calibration procedures, and background determination are described briefly

  14. Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release

    DEFF Research Database (Denmark)

    Kyrsting, Anders; Bendix, Pól Martin; Stamou, Dimitrios

    2011-01-01

    Irradiated metallic nanoparticles hold great promise as heat transducers in photothermal applications such as drug delivery assays or photothermal therapy. We quantify the temperature increase of individual gold nanoparticles trapped in three dimensions near lipid vesicles exhibiting temperature...

  15. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  16. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  17. Facts and Fantasies about Gold

    OpenAIRE

    Klement, Joachim

    2015-01-01

    Due to the increasing popularity of gold as an investment the demand for effective risk management techniques for gold investments has increased as well. In this paper we analyze several drivers of the price of gold that have been proposed in the past. Our analysis indicates that short-term volatility of the price of gold remains rather unpredictable with many of the explanations like the fund flows in physical gold ETF either unreliable or unstable over time. Our analysis suggests that there...

  18. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    International Nuclear Information System (INIS)

    Souza, Israel D.; Melo, Lidervan P.; Jardim, Isabel C.S.F.; Monteiro, Juliana C.S.; Nakano, Ana Marcia S.; Queiroz, Maria Eugênia C.

    2016-01-01

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL"−"1 (LLOQ) to 400 ng mL"−"1 with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded. • The

  19. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Israel D.; Melo, Lidervan P. [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Jardim, Isabel C.S.F. [Instituto de Química, Universidade Estadual de Campinas, Campinas, SP (Brazil); Monteiro, Juliana C.S.; Nakano, Ana Marcia S. [Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Queiroz, Maria Eugênia C., E-mail: mariaeqn@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL{sup −1} (LLOQ) to 400 ng mL{sup −1} with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded.

  20. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  1. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples.

    Science.gov (United States)

    Souza, Israel D; Melo, Lidervan P; Jardim, Isabel C S F; Monteiro, Juliana C S; Nakano, Ana Marcia S; Queiroz, Maria Eugênia C

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Analysis of gold in jewellery articles by energy dispersive XRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Latifah Amin

    2001-01-01

    The value of a precious metal article is much related to its fineness. For gold assay, conventional fire assay technique has been used as the standard technique for more than 500 years. Alternative modern techniques like energy dispersive x-ray fluorescence can also be used in the determination of gold purity. Advantages of this technique compared to the conventional method including non-destructive analysis, does not use any toxic or hazardous chemicals, automatic computer control and is user friendly, requires minimum number of personnel, shorter analysis time and able to determine associated elements in the metal. Analysis was performed on different sizes and purity of gold. Comparison results for the analysis using different reference standards show small differences between technique and its certified value. The technique also gives small standard deviation value in its repeatability test. (Author)

  3. Critical heat flux in tubes and tight hexagonal rod lattices

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Cheng Xu; Zeggel, W.

    1994-01-01

    The critical heat flux (CHF) in small-diameter tubes and in tight hexagonal 7-rod and 37-rod bundles was investigated in the KRISTA test facility, using Freon 12 as the working fluid. The measurements in tubes showed that the influence of the tube diameter on CHF cannot be described as suggested by earlier publications with sufficient accuracy. CHF in bundles is lower than in tubes under comparable conditions. The influence of spacers (grid spacers, wire wraps) on CHF was found to be governed by local steam qualities. A comparison of the test results with some CHF prediction methods showed that the look-up table method reproduces the test results in circular tubes most accurately. Combined with CHF look-up tables, subchannel analysis and Ahmad's fluid-to-fluid scaling law, Freon experiments have proven to be a suitable tool for CHF prediction in water-cooled rod bundles. (orig.) [de

  4. PAME: plasmonic assay modeling environment

    Directory of Open Access Journals (Sweden)

    Adam Hughes

    2015-08-01

    Full Text Available Plasmonic assays are an important class of optical sensors that measure biomolecular interactions in real-time without the need for labeling agents, making them especially well-suited for clinical applications. Through the incorporation of nanoparticles and fiberoptics, these sensing systems have been successfully miniaturized and show great promise for in-situ probing and implantable devices, yet it remains challenging to derive meaningful, quantitative information from plasmonic responses. This is in part due to a lack of dedicated modeling tools, and therefore we introduce PAME, an open-source Python application for modeling plasmonic systems of bulk and nanoparticle-embedded metallic films. PAME combines aspects of thin-film solvers, nanomaterials and fiber-optics into an intuitive graphical interface. Some of PAME’s features include a simulation mode, a database of hundreds of materials, and an object-oriented framework for designing complex nanomaterials, such as a gold nanoparticles encased in a protein shell. An overview of PAME’s theory and design is presented, followed by example simulations of a fiberoptic refractometer, as well as protein binding to a multiplexed sensor composed of a mixed layer of gold and silver colloids. These results provide new insights into observed responses in reflectance biosensors.

  5. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  6. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  7. In vitro immunomodulation of a whole blood IFN-γ release assay enhances T cell responses in subjects with latent tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Rajiv L Gaur

    Full Text Available Activation of innate immunity via pathogen recognition receptors (PRR modulates adaptive immune responses. PRR ligands are being exploited as vaccine adjuvants and as therapeutics, but their utility in diagnostics has not been explored. Interferon-gamma (IFN-γ release assays (IGRAs are functional T cell assays used to diagnose latent tuberculosis infection (LTBI; however, novel approaches are needed to improve their sensitivity.In vitro immunomodulation of a whole blood IGRA (QuantiFERON®-TB GOLD In-Tube with Toll-like receptor agonists poly(I:C, LPS, and imiquimod was performed on blood from subjects with LTBI and negative controls.In vitro immunomodulation significantly enhanced the response of T cells stimulated with M. tuberculosis antigens from subjects with LTBI but not from uninfected controls. Immunomodulation of IGRA revealed T cell responses in subjects with LTBI whose T cells otherwise do not respond to in vitro stimulation with antigens alone. Similar to their in vivo functions, addition of poly(I:C and LPS to whole blood induced secretion of inflammatory cytokines and IFN-α and enhanced the surface expression of antigen presenting and costimulatory molecules on antigen presenting cells.In vitro immunomodulation of whole blood IGRA may be an effective strategy for enhancing the sensitivity of T cells for diagnosis of LTBI.

  8. Experimental Investigation of Surface Color Changes in Vacuum Evaporation Process for Gold-like Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yang Baojian

    2016-01-01

    Full Text Available In order to reduce the environmental pollution caused by the three wastes during the process of electroplating of gold-like film on stainless steel, in this paper, the "vacuum evaporation and annealing" composite technologies were adopted to evaporate gold-like film in 16 stainless steel 304 substrates, and electronic color cards and color software were also used for analyzing the color and luster of the gold-like film. Experiments shows that the negative pressure, annealing temperature and mass fraction of the double copper alloys have influence on preparation of imitation in assaying the fineness of gold film, the annealing temperature has significant effects on imitation in assaying the fineness of gold film.

  9. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  10. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  11. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    Science.gov (United States)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  12. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  13. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  14. Spectroscopic diagnostic of gold plasma

    International Nuclear Information System (INIS)

    Busquet, M.

    1986-01-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included [fr

  15. Spectroscopic diagnostic of gold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.

    1986-06-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included.

  16. Cost-effectiveness of interferon-γ release assay versus chest X-ray for tuberculosis screening of employees.

    Science.gov (United States)

    Kowada, Akiko

    2011-12-01

    Currently, an annual chest X-ray examination (CXR) for detection of active tuberculosis (TB) in employees aged ≥40 years is recommended in the guidelines of the Japan Industrial Safety and Health Law. Interferon-γ release assays are new alternatives to the tuberculin skin test for detecting Mycobacterium tuberculosis infection, with higher specificity than the tuberculin skin test and without cross-reactivity with the Bacille Calmette-Guérin vaccine. This study aimed to assess the cost-effectiveness of employee TB screening using QuantiFERON-TB Gold In-Tube (QFT) versus CXR. Markov models were constructed. The target population was a hypothetical cohort of immunocompetent 40-year-old individuals, using a societal perspective and a lifetime horizon. All costs and clinical benefits were discounted at a fixed annual rate of 3%. In a base-case analysis, the QFT strategy was the most cost-effective ($US 262.84; 22.87049 quality-adjusted life-years [QALYs]) compared with no screening ($448.38; 22.85452 QALYs) and CXR ($543.50; 22.85453 QALYs) [year 2009 values]. The QFT strategy is currently robust for screening Bacille Calmette-Guérin- vaccinated employees in Japan. There appears to be little role for CXR. These findings may be applicable to other countries in terms of choosing optimal TB screening for employees. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  17. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  18. Bioassisted Phytomining of Gold

    Science.gov (United States)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  19. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  20. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  1. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  2. Beneficiation and leaching study of a muti-Au carrier and low grade refractory gold ore

    Science.gov (United States)

    Li, W. J.; Song, Y. S.; Chen, Y.; Cai, L. L.; Zhou, G. Y.

    2017-09-01

    Detailed mineralogy and beneficiation and leaching study of a muti-Au carrier, low grade refractory gold ore from a beneficiation plant in Henan Province, China, was investigated. Mineral liberation analysis, scanning electron microscopy, element phase analysis and etc. by a mineral liberation analyser were used for mineralogical characterization study of this ore. The present work describes an experimental study on the effect of traditional parameters (such as grinding fineness and reagent regimes), middling processing method and flowsheet construction on the total recovery and the assay of the floatation concentrate. Two-step floatation and part of middling combined to the floatation tailing for gold leaching process resulted in high gold grade (g.t-1) and gold recovery (%) for this refractory gold ore. This process opens the possibilities of maximizing Au grade and recoveries in a muti-Au carrier and low grade refractory gold ore where low recoveries are common.

  3. An in-vitro studies on green synthesis of gold nanoparticles against pathogens and cancer cells

    Directory of Open Access Journals (Sweden)

    V. Ramesh

    2015-11-01

    Full Text Available Nanotechnology is a most promising field for generating new applications in medicine. It is imperative to integrate nanoscience and medicine. The present investigation is highly warranted to through more light upon the gold nanoparticles reduced from gold salt through the active principle of medicinal plant. The special emphasis of investigation is the active principle along with gold nanoparticles against for cancer cells. The 70 - 90 nm sized particles were synthesized by using Diospyros ferrea and this confirmed by SEM. These gold nanoparticles showed a characteristic absorption peak at 540 nm in UV spectra. The possibility of protein as a stabilizing material in gold nanoparticles is revealed by FTIR analysis. Remarkably, as a result of wide screening on the application of newly synthesized gold nanoparticles their anticancer potential has been discovered using MTT assay. The antimicrobial activity of AuNPs showed effective against bacteria than the fungal strains.

  4. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  5. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms

    Science.gov (United States)

    Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein

    2015-12-01

    Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.

  6. Management of in-tube projectiles using acoustic channel

    Science.gov (United States)

    Kostina, M. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article describes the method of measuring the distance from the operator's console installed outside the pipe to the in-tube projectile. A method for measuring distance in the absence of an echo signal is proposed. To do this, two identical ultrasonic locators operating at different frequencies were installed inside and outside the pipeline. The change in the duration of an acoustic pulse propagating in a circular waveguide with rigid walls is shown, which leads to a decrease in the data transfer rate.

  7. Propagation of Quasi-plane Nonlinear Waves in Tubes

    Directory of Open Access Journals (Sweden)

    P. Koníček

    2002-01-01

    Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.

  8. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Moreno-Alvarez, S. A.; Martinez-Castanon, G. A.; Nino-Martinez, N.; Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P.; Ruiz, Facundo

    2010-01-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  9. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  10. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  11. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  12. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  13. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  14. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance

    International Nuclear Information System (INIS)

    Kalita, Sanjeeb; Kandimalla, Raghuram; Sharma, Kaustav Kalyan; Kataki, Amal Chandra; Deka, Manab; Kotoky, Jibon

    2016-01-01

    In this study, we have described the biosynthesis of biocompatible gold nanoparticles (GNPs) from aqueous extract of the aerial parts of a pteridophyte, “Adiantum philippense” by microwave irradiation and its surface functionalization with broad spectrum beta lactam antibiotic, amoxicillin (Amox). The functionalization of amoxicillin on GNPs (GNP-Amox) was carried out via electrostatic interaction of protonated amino group and thioether moiety mediated attractive forces. The synthesized GNPs and GNP-Amox were physicochemically characterized. UV–Vis spectroscopy, Zeta potential, XRD, FTIR and SERS (surface enhanced raman spectra) results confirmed the loading of Amox into GNPs. Loading of Amox to GNPs reduce amoxicillin cytotoxicity, whereas GNPs were found to be nontoxic to mouse fibroblast cell line (L929) as evident from MTT and acridine orange/ethidium bromide (AO/EtBr) live/dead cell assays. The GNP-Amox conjugates demonstrated enhanced broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. Furthermore, in-vitro and in-vivo assays of GNP-Amox revealed potent anti-MRSA activity and improved the survival rate. This indicates the subversion of antibiotic resistance mechanism by overcoming the effect of high levels of β-lactamase produced by methicillin resistant Staphylococcus aureus (MRSA). Taken together, this study demonstrates the positive attributes from GNP-Amox conjugates as a promising antibacterial therapeutic agent against MRSA as well as other pathogens. - Highlights: • Aqueous extract of A. phillippens was used as a reducing and capping agent for synthesis of microwave irradiated gold nanoparticles. • GNPs were loaded with amoxicillin for restoration in antibacterial activity of amoxicillin against MRSA strains. • Gold nanoparticles and GNP-Amox were found biocompitable as tested on L929 cell line. • The nanoparticle antibiotic conjugates exhibited restoration of amoxicillin activity against MRSA in

  15. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Sanjeeb; Kandimalla, Raghuram; Sharma, Kaustav Kalyan [Drug Discovery Lab, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Kataki, Amal Chandra [Dr. B. Borooah Cancer Institute, Guwahati, Assam (India); Department of Applied Sciences, Gopinath Bordoloi Nagar, Jalukbari, Gauhati University, Guwahati 781014, Assam (India); Deka, Manab [Department of Applied Sciences, Gopinath Bordoloi Nagar, Jalukbari, Gauhati University, Guwahati 781014, Assam (India); Kotoky, Jibon, E-mail: jkotoky@gmail.com [Drug Discovery Lab, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India)

    2016-04-01

    In this study, we have described the biosynthesis of biocompatible gold nanoparticles (GNPs) from aqueous extract of the aerial parts of a pteridophyte, “Adiantum philippense” by microwave irradiation and its surface functionalization with broad spectrum beta lactam antibiotic, amoxicillin (Amox). The functionalization of amoxicillin on GNPs (GNP-Amox) was carried out via electrostatic interaction of protonated amino group and thioether moiety mediated attractive forces. The synthesized GNPs and GNP-Amox were physicochemically characterized. UV–Vis spectroscopy, Zeta potential, XRD, FTIR and SERS (surface enhanced raman spectra) results confirmed the loading of Amox into GNPs. Loading of Amox to GNPs reduce amoxicillin cytotoxicity, whereas GNPs were found to be nontoxic to mouse fibroblast cell line (L929) as evident from MTT and acridine orange/ethidium bromide (AO/EtBr) live/dead cell assays. The GNP-Amox conjugates demonstrated enhanced broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. Furthermore, in-vitro and in-vivo assays of GNP-Amox revealed potent anti-MRSA activity and improved the survival rate. This indicates the subversion of antibiotic resistance mechanism by overcoming the effect of high levels of β-lactamase produced by methicillin resistant Staphylococcus aureus (MRSA). Taken together, this study demonstrates the positive attributes from GNP-Amox conjugates as a promising antibacterial therapeutic agent against MRSA as well as other pathogens. - Highlights: • Aqueous extract of A. phillippens was used as a reducing and capping agent for synthesis of microwave irradiated gold nanoparticles. • GNPs were loaded with amoxicillin for restoration in antibacterial activity of amoxicillin against MRSA strains. • Gold nanoparticles and GNP-Amox were found biocompitable as tested on L929 cell line. • The nanoparticle antibiotic conjugates exhibited restoration of amoxicillin activity against MRSA in

  16. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  17. Metal-amplified Density Assays, (MADAs), including a Density-Linked Immunosorbent Assay (DeLISA).

    Science.gov (United States)

    Subramaniam, Anand Bala; Gonidec, Mathieu; Shapiro, Nathan D; Kresse, Kayleigh M; Whitesides, George M

    2015-02-21

    This paper reports the development of Metal-amplified Density Assays, or MADAs - a method of conducting quantitative or multiplexed assays, including immunoassays, by using Magnetic Levitation (MagLev) to measure metal-amplified changes in the density of beads labeled with biomolecules. The binding of target analytes (i.e. proteins, antibodies, antigens) to complementary ligands immobilized on the surface of the beads, followed by a chemical amplification of the binding in a form that results in a change in the density of the beads (achieved by using gold nanoparticle-labeled biomolecules, and electroless deposition of gold or silver), translates analyte binding events into changes in density measureable using MagLev. A minimal model based on diffusion-limited growth of hemispherical nuclei on a surface reproduces the dynamics of the assay. A MADA - when performed with antigens and antibodies - is called a Density-Linked Immunosorbent Assay, or DeLISA. Two immunoassays provided a proof of principle: a competitive quantification of the concentration of neomycin in whole milk, and a multiplexed detection of antibodies against Hepatitis C virus NS3 protein and syphilis T. pallidum p47 protein in serum. MADAs, including DeLISAs, require, besides the requisite biomolecules and amplification reagents, minimal specialized equipment (two permanent magnets, a ruler or a capillary with calibrated length markings) and no electrical power to obtain a quantitative readout of analyte concentration. With further development, the method may be useful in resource-limited or point-of-care settings.

  18. IFN-γ release assay conversions and reversions. Challenges with serial testing in U.S. health care workers.

    Science.gov (United States)

    Joshi, Manish; Monson, Thomas P; Joshi, Anita; Woods, Gail L

    2014-03-01

    IFN-γ release assays (IGRAs) including the QuantiFERON-TB gold in-tube test (QFT-GIT) are increasingly used in place of the tuberculin skin test (TST) in surveillance programs for Mycobacterium tuberculosis infection in the United States. However, data on conversions, reversions, and predictive value of QFT in such programs for health care workers (HCWs) are limited. The purpose of this study is to assess long-term reproducibility and conversion and reversion rates of QFT-GIT among HCWs who underwent serial testing at a tertiary care center in the United States. Retrospective chart review of HCWs at the Central Arkansas Veterans Healthcare System (CAVHS) who underwent serial testing with QFT-GIT as a part of their employee screening between November 1, 2008 and January 31, 2011. A total of 2,303 HCWs had at least 2 QFT-GITs 1 year apart. The initial QFT-GIT was positive for 69 and 2 were indeterminate. Of these 69 HCWs, 31 (45%) reverted on repeat testing, and 25 of 31 (80.6%) HCWs who reverted had a negative look-back TST. Of the 2,232 HCWs with an initial negative QFT-GIT, 71 (3.2%) converted on repeat testing. A third QFT-GIT assay was performed in 41 of the 71 converters and 90% (37 of 41) reverted back to negative. Only two HCWs had TST and QFT-GIT conversion. Poor IGRA reproducibility and a low predictive value of QFT-GIT conversions indicate that QFT-GIT with current interpretation criteria should not be used for serial screening of U.S. HCWs. Negative TSTs have higher reproducibility than QFT-GIT for serial testing of HCWs in low tuberculosis incidence settings.

  19. Serial QuantiFERON-TB Gold In-Tube testing for psoriatic patients receiving antitumor necrosis factor-alpha therapy

    Directory of Open Access Journals (Sweden)

    Chun-Yu Cheng

    2015-09-01

    Conclusion: This study demonstrated that 14.29% of psoriatic patients undergoing long-term TNF-α antagonist therapy had a QFT-GIT conversion. Although a decreased IFN-γ level and QFT-GIT reversion were observed in most cases following prophylactic therapy, the value of QFT-GIT for evaluating the effect of LTBI prophylaxis remains controversial.

  20. Conceptual optimization using genetic algorithms for tube in tube structures

    International Nuclear Information System (INIS)

    Pârv, Bianca Roxana; Hulea, Radu; Mojolic, Cristian

    2015-01-01

    The purpose of this article is to optimize the tube in tube structural systems for tall buildings under the horizontal wind loads. It is well-known that the horizontal wind loads is the main criteria when choosing the structural system, the types and the dimensions of structural elements in the majority of tall buildings. Thus, the structural response of tall buildings under the horizontal wind loads will be analyzed for 40 story buildings and a total height of 120 meters; the horizontal dimensions will be 30m × 30m for the first two optimization problems and 15m × 15m for the third. The optimization problems will have the following as objective function the cross section area, as restrictions the displacement of the building< the admissible displacement (H/500), and as variables the cross section dimensions of the structural elements

  1. Effects of ship motions on laminar flow in tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh1986@163.co [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yu, L. [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2010-01-15

    The thermal-hydraulics of barge-mounted floating nuclear desalination plants is the incentive for this study. Laminar flow in tubes in heaving motion is modeled. The friction factor and heat transfer coefficient are obtained. All the equations of laminar flow in steady state are applicable for heeling motion. The effect of ship motions on the laminar developing region is also analyzed. The ship motions can weaken the boundary layer in the laminar developing region and strengthen the laminar frictional resistance. The effect of ship motions on the instability of laminar flow is also investigated. The ship motions do not affect the instability point, but they can shorten the distance between the instability point and the transition point, and cause the transition from laminar flow to turbulent flow to occur earlier.

  2. Reproducibility of Interferon Gamma (IFN-γ) Release Assays. A Systematic Review

    Science.gov (United States)

    Tagmouti, Saloua; Slater, Madeline; Benedetti, Andrea; Kik, Sandra V.; Banaei, Niaz; Cattamanchi, Adithya; Metcalfe, John; Dowdy, David; van Zyl Smit, Richard; Dendukuri, Nandini

    2014-01-01

    Rationale: Interferon gamma (IFN-γ) release assays for latent tuberculosis infection result in a larger-than-expected number of conversions and reversions in occupational screening programs, and reproducibility of test results is a concern. Objectives: Knowledge of the relative contribution and extent of the individual sources of variability (immunological, preanalytical, or analytical) could help optimize testing protocols. Methods: We performed a systematic review of studies published by October 2013 on all potential sources of variability of commercial IFN-γ release assays (QuantiFERON-TB Gold In-Tube and T-SPOT.TB). The included studies assessed test variability under identical conditions and under different conditions (the latter both overall and stratified by individual sources of variability). Linear mixed effects models were used to estimate within-subject SD. Measurements and Main Results: We identified a total of 26 articles, including 7 studies analyzing variability under the same conditions, 10 studies analyzing variability with repeat testing over time under different conditions, and 19 studies reporting individual sources of variability. Most data were on QuantiFERON (only three studies on T-SPOT.TB). A considerable number of conversions and reversions were seen around the manufacturer-recommended cut-point. The estimated range of variability of IFN-γ response in QuantiFERON under identical conditions was ±0.47 IU/ml (coefficient of variation, 13%) and ±0.26 IU/ml (30%) for individuals with an initial IFN-γ response in the borderline range (0.25–0.80 IU/ml). The estimated range of variability in noncontrolled settings was substantially larger (±1.4 IU/ml; 60%). Blood volume inoculated into QuantiFERON tubes and preanalytic delay were identified as key sources of variability. Conclusions: This systematic review shows substantial variability with repeat IFN-γ release assays testing even under identical conditions, suggesting that reversions

  3. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  4. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  5. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  6. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  7. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  8. Evaluation of a high-sensitivity assay for measurement of canine and feline serum cardiac troponin I

    DEFF Research Database (Denmark)

    Langhorn, Rebecca; Willesen, Jakob; Tarnow, Inge

    2013-01-01

    Cardiac troponins are established as the gold standard biomarkers for acute cardiac injury. As even small elevations of cardiac troponins have prognostic relevance in people, it is important to investigate the performance of sensitive assays for use in veterinary medicine....

  9. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  10. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  11. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  12. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  13. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  14. Radioreceptor opioid assay

    International Nuclear Information System (INIS)

    Miller, R.J.; Chang, K.-J.

    1981-01-01

    A radioreceptor assay is described for assaying opioid drugs in biological fluids. The method enables the assay of total opioid activity, being specific for opioids as a class but lacking specificity within the class. A radio-iodinated opioid and the liquid test sample are incubated with an opiate receptor material. The percentage inhibition of the binding of the radio-iodinated compound to the opiate receptor is calculated and the opioid activity of the test liquid determined from a standard curve. Examples of preparing radio-iodinated opioids and assaying opioid activity are given. A test kit for the assay is described. Compared to other methods, this assay is cheap, easy and rapid. (U.K.)

  15. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles.

    Science.gov (United States)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-08-11

    A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV-vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL(-1) can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  18. Effect of Pregnancy on Interferon Gamma Release Assay and Tuberculin Skin Test Detection of Latent TB Infection Among HIV-Infected Women in a High Burden Setting.

    Science.gov (United States)

    LaCourse, Sylvia M; Cranmer, Lisa M; Matemo, Daniel; Kinuthia, John; Richardson, Barbra A; Horne, David J; John-Stewart, Grace

    2017-05-01

    Peripartum immunologic changes may affect latent tuberculosis infection (LTBI) diagnostic performance among HIV-infected women. HIV-infected women were serially tested with tuberculin skin test (TST) and interferon gamma release assay [QuantiFERON TB Gold In-tube (QFT)] in pregnancy and 6 weeks postpartum in Kenya. Prevalence, sensitivity and agreement, and correlates of QFT/TST positivity were assessed. Quantitative QFT mitogen and Mycobacterium tuberculosis antigen (Mtb-Ag) responses were compared by peripartum stage. Incidence of test conversion at 6 weeks postpartum was evaluated in baseline TST-/QFT- women. Among 100 HIV-infected women, median age was 26 years, median CD4 was 555 cells per cubic millimeter, and 88% were on antiretrovirals. More women were QFT+ than TST+ in both pregnancy (35.4% vs. 13.5%, P = 0.001) and postpartum (29.6% vs. 14.8%, P pregnancy vs. postpartum, and specifically among persistently QFT+ women (Mtb-Ag: 3.46 vs. 4.48 IU/mL, P = 0.007). QFT indeterminate rate was higher in pregnancy (16%) compared with postpartum (0%) because of lower mitogen response. QFT identified >2-fold more women with LTBI compared with TST in pregnancy and postpartum. Lower QFT Mtb-Ag and mitogen responses in pregnancy compared with postpartum suggest that pregnancy-associated immunologic changes may influence LTBI test performance.

  19. Endogenous Locus Reporter Assays.

    Science.gov (United States)

    Liu, Yaping; Hermes, Jeffrey; Li, Jing; Tudor, Matthew

    2018-01-01

    Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.

  20. Texture development of HTS powder-in-tube conductors

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom)

    1998-10-01

    An overview of the fabrication and electromagnetic properties of high-temperature conductors processed by the powder-in-tube (PIT) technique with reference to texture development and critical anisotropy data is presented. Special emphasis is given to the optimization of the physicochemical and electromagnetic parameters of the multifilamentary and single-filament conductors with superconducting cores of Bi-2223, Tl-1223 and Y-123 superconducting phases. The influence of the multifilamentary and single-filament structures on texture development is discussed. Also, the importance of the local disturbances of the grain alignment and microdefects for the current distribution across and in the plane of the whole conductor is analysed. A comparative study of the critical current anisotropy with field direction in low magnetic fields of Tl-1223 and Bi-2223 conductors manufactured by the PIT technique is presented. For Tl-1223 PIT conductors the anisotropy coefficient shows a very pronounced minimum, followed by a monotonic reduction of anisotropy with the increase of the magnetic field. This is explained in terms of poor grain alignment with weak intergranular superconducting coupling which cause 3D current percolation and also by the demagnetizing effect of the grains and the ceramic core in the PIT Tl-1223 tapes. (author)

  1. Flame oscillations in tubes with nonslip at the walls

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, V' yacheslav; Bychkov, Vitaly; Petchenko, Arkady [Institute of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2006-06-15

    A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes. (author)

  2. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, H.; Robinson, A.J.; Ching, C.Y.; Shoukri, M. [McMaster University, Department of Mechanical Engineering, Hamilton, Ont. (Canada); Cotton, J.S. [Dana Corporation, Long Manufacturing Division, Oakville, Ont. (Canada)

    2006-05-15

    An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55kg/m{sup 2}s=

  3. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  4. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  5. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  6. Solid phase assays

    International Nuclear Information System (INIS)

    Reese, M.G.; Johnson, L.R.; Ransom, D.K.

    1980-01-01

    In a solid phase assay for quantitative determination of biological and other analytes, a sample such as serum is contacted with a receptor for the analyte being assayed, the receptor being supported on a solid support. No tracer for the analyte is added to the sample before contacting with the receptor; instead the tracer is contacted with the receptor after unbound analyte has been removed from the receptor. The assay can be otherwise performed in a conventional manner but can give greater sensitivity. (author)

  7. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  8. Correlations for developing film boiling effect in tubes

    International Nuclear Information System (INIS)

    Guo, Y.; Leung, L.K.H.

    2005-01-01

    Full text of publication follows: Reducing uncertainties in predicting film-boiling heat transfer can provide improved margins in reactor safety analysis, hence improved operating margins in nuclear power plants. Most reactor safety codes employed the tube-based prediction method for the fully developed film-boiling heat transfer coefficient. This approach tends to underpredict the heat-transfer coefficient and over-predict the sheath temperature at post-dryout conditions close to the CHF point. The under-prediction is due mainly to the droplet impingement on the heated surface and vapour superheating. This heat-transfer regime is referred to as the developing film boiling, which is associated with an enhancement in heat transfer compared to the fully developed film boiling. An improvement in the prediction accuracy is achievable by accounting for the effect of vapour-film development on film boiling heat transfer. In addition to system safety analyses, the prediction of developing film boiling heat transfer is required in subchannel analyses for fuel bundles. A tube-data-based prediction method is particularly relevant for subchannel applications. The objective of this study is to derive a correlation for the developing film boiling effect in tubes. The current CANDU R . system safety and subchannel analyses codes apply the look-up table approach to predict the film boiling heat transfer. The post-dryout look-up table provides the fully developed film boiling heat transfer in an 8-mm vertical tube, and has been extended to other tube sizes using a diameter modification factor. In this study, a modification factor has been developed to account for the developing film-boiling effect, and is expressed in the following non-dimensional form: K = (h FB - h FD )/(h NB - h FD ) = f ((T W - T sat )/T CHF - T sat )) where h FB is the film boiling heat transfer coefficient, h FD is the fully developed film-boiling heat transfer coefficient, which is evaluated using the film

  9. In harmony with gold and uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profile is given on Mr Clive Knobbs as managing director of Harmony gold mine. From March 1 1983 he succeeded as deputy chairman of the group's gold and uranium division, and became the Rand Mines representative on the Gold Producers Committee and the Executive Committee of the Chamber of Mines. The article also takes a look at gold and uranium mining in general

  10. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  11. Factor IX assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003679.htm Factor IX assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  12. Factor VIII assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003678.htm Factor VIII assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  13. Factor II assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003674.htm Factor II assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  14. Factor VII assay

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003676.htm Factor VII assay To use the sharing features on ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  15. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.; Parameswaran, Ash M.; Sumanpreet, K. Chhina

    2013-01-01

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling

  16. A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation.

    Science.gov (United States)

    Jin, Xiao; Gou, Jin-Ying

    2016-01-01

    Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. Here we adapted Pro-Q ® Diamond (Pro-Q ® Diamond Phosphoprotein Gel Stain), a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT) method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q ® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1) on a thylakoid ascorbate peroxidase (tAPX), an established phosphorylation target in our earlier study. The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.

  17. A rapid and cost-effective fluorescence detection in tube (FDIT method to analyze protein phosphorylation

    Directory of Open Access Journals (Sweden)

    Xiao Jin

    2016-11-01

    Full Text Available Abstract Background Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. Results Here we adapted Pro-Q® Diamond (Pro-Q® Diamond Phosphoprotein Gel Stain, a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1 on a thylakoid ascorbate peroxidase (tAPX, an established phosphorylation target in our earlier study. Conclusion The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.

  18. Gold--a controversial sensitizer

    DEFF Research Database (Denmark)

    Bruze, M; Andersen, Klaus Ejner

    1999-01-01

    allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... for the questioning may have been confusion in differentiating between contact allergy and allergic contact dermatitis. To arrive at a diagnosis of allergic contact dermatitis, 3 steps have, in principle, to be fulfilled: (i) establishment of contact allergy; (ii) demonstration of present exposure; (iii) assessment...

  19. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  20. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  1. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  2. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  3. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  4. Characterisation of gold from Fiji

    OpenAIRE

    Naden, Jon; Henney, P.J.

    1995-01-01

    This is a study of the variation in chemistry and inclusion mineralogy of bedrock and placer gold from Fiji. It forms part of a large project, undertaking gold characterisation from a wide range of geological environments in Ecuador, Zimbabwe, Malaysia and Fiji. The work was carried out under the Overseas Development AdministratiodBritish Geological Survey Technology Development and Research programme (Project R5549) as part of the British Government’s provision of technical...

  5. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  6. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  7. Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Elnaz Shaabani

    2017-04-01

    Full Text Available Objective(s: Biological applications of gold nanoparticles have limitations because of the toxic chemicals used in their synthesis. Curcumin can be used as reducing as well as capping agent in synthesis of GNPs to eliminate the cytotoxicity. Conjugation of curcumin to gold also helps in increasing its solubility and bioavailability. Materials and Methods: Here we report synthesis of gold nanoparticles coated with citrate and curcumin and of two different sizes via chemical routes. UV-Vis absorbance spectroscopy, Dynamic Light Scattering and Transmission Electron Microscopy were applied to study the average particle size, size stability of the samples and zeta potential. Fourier transform infrared, Raman Spectroscopy and Fluorescence Spectroscopy were applied for detection of curcumin on the surface of GNPs. The antioxidant activity was evaluated using DPPH assay and Cytotoxicity was evaluated by MTT assay.Results: Particles were synthesized of 6 and 16 nm size. The average particle size was found to be 21.7 ± 5.7 by TEM. The zeta potential on the surface of Cur-GNPs was negative and larger than 25 mV which is a sign of their high stability. The stability of these particles (with different coatings but with similar sizes at different time intervals (up to 3 months and also in different media like cell culture medium, different buffers, glucose and at different pH conditions have been investigated thoroughly. Appearance of functional groups assigned to curcumin in FTIR and SERS spectra are sign of presence of curcumin in the sample. The quenching of the fluorescence in the presence of GNPs reveals the clear indication of the capping and binding of curcumin with GNPs. Cur-GNP1 (16 nm were found to exhibit highest antioxidant activity than other gold nanoparticles. Cytotoxicity evaluation using MTT assay on L929 cell line proved curcumin coated gold nanoparticles were non-toxic up to 40 ppm.Conclusion: The results revealed that larger curcumin

  8. The use of whole blood in a dipstick assay for detection of antibodies to Mycobacterium leprae: a field evaluation

    NARCIS (Netherlands)

    Bührer-Sekula, S.; Cunha, M. G.; Ferreira, W. A.; Klatser, P. R.

    1998-01-01

    We describe a further simplification of a dipstick assay for the detection of antibodies to phenolic glycolipid I of Mycobacterium leprae by using whole blood and evaluated the assay performance in the leprosy endemic area of Amazonas in Brazil. The agreement with the 'gold' standard ELISA was 94.9%

  9. Factors associated with the performance of a blood-based interferon-γ release assay in diagnosing tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sally Banfield

    Full Text Available BACKGROUND: Indeterminate results are a recognised limitation of interferon-γ release assays (IGRA in the diagnosis of latent tuberculosis (TB infection (LTBI and TB disease, especially in children. We investigated whether age and common co-morbidities were associated with IGRA performance in an unselected cohort of resettled refugees. METHODS: A retrospective cross-sectional study of refugees presenting for their post-resettlement health assessment during 2006 and 2007. Refugees were investigated for prevalent infectious diseases, including TB, and for common nutritional deficiencies and haematological abnormalities as part of standard clinical screening protocols. Tuberculosis screening was performed by IGRA; QuantiFERON-TB Gold in 2006 and QuantiFERON-TBGold In-Tube in 2007. RESULTS: Complete data were available on 1130 refugees, of whom 573 (51% were children less than 17 years and 1041 (92% were from sub-Saharan Africa. All individuals were HIV negative. A definitive IGRA result was obtained in 1004 (89% refugees, 264 (26% of which were positive; 256 (97% had LTBI and 8 (3% had TB disease. An indeterminate IGRA result was obtained in 126 (11% refugees (all failed positive mitogen control. In multivariate analysis, younger age (linear OR= 0.93 [95% CI 0.91-0.95], P<0.001, iron deficiency anaemia (2.69 [1.51-4.80], P = 0.001, malaria infection (3.04 [1.51-6.09], P = 0.002, and helminth infection (2.26 [1.48-3.46], P<0.001, but not vitamin D deficiency or insufficiency, were associated with an indeterminate IGRA result. CONCLUSIONS: Younger age and a number of common co-morbidities are significantly and independently associated with indeterminate IGRA results in resettled predominantly African refugees.

  10. Assay method and compositions

    International Nuclear Information System (INIS)

    1977-01-01

    Methods are described for measuring catecholamine levels in human and animal body fluids and tissues using the catechol-O-methyl-transferase (COMT) radioassay. The assay involves incubating the biological sample with COMT and the tritiated methyl donor, S-adenosyl-L-methionine( 3 H)-methyl. The O-methylated ( 3 H) epinephrine and/or norepinephrine are extracted and oxidised to vanillin- 3 H which in turn is extracted and its radioactivity counted. When analysing dopamine levels the assay is extended by vanillin- 3 H and raising the pH of the aqueous periodate phase from which O-methylated ( 3 H) dopamine is extracted and counted. The assay may be modified depending on whether measurements of undifferentiated total endogenous catecholamine levels or differential analyses of the catecholamine levels are being performed. The sensitivity of the assay can be as low as 5 picograms for norepinephrine and epinephrine and 12 picograms for dopamine. The assemblance of the essential components of the assay into a kit for use in laboratories is also described. (U.K.)

  11. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  12. Rover waste assay system

    International Nuclear Information System (INIS)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-01-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched 235 U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for 137 Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs

  13. Radioreceptor assay for insulin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [Tokyo Univ. (Japan). Faculty of Medicine

    1975-04-01

    Radioreceptor assay of insulin was discussed from the aspects of the measuring method, its merits and problems to be solved, and its clinical application. Rat liver 10 x g pellet was used as receptor site, and enzymatic degradation of insulin by the system contained in this fraction was inhibited by adding 1 mM p-CMB. /sup 125/I-labelled porcine insulin was made by lactoperoxidase method under overnight incubation at 4/sup 0/C and later purification by Sephadex G-25 column and Whatman CF-11 cellulose powder. Dog pancreatic vein serum insulin during and after the glucose load was determined by radioreceptor assay and radioimmunoassay resulting that both measurements accorded considerably. Radioreceptor assay would clarify the pathology of disorders of glucose metabolism including diabetes.

  14. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  15. Clonogenic assay: adherent cells.

    Science.gov (United States)

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-03-13

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant

  16. Determination of gold in geological samples - the present and the future

    International Nuclear Information System (INIS)

    Feriancik, E.

    1997-01-01

    This paper reviews some analytical techniques which have been described for the gold analysis of geological materials: spectrophotometry; flame atomic absorption spectrometry; graphite coupled plasma atomic emission spectrometry; inductively coupled plasma atomic emission spectrometry; inductively coupled plasma-mass spectrometry; neutron activation; electro-analysis methods and fire assay

  17. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    International Nuclear Information System (INIS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Chen, Chien-Fu; Cheng, Chao-Min

    2013-01-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h. (paper)

  18. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  19. Assays for calcitonin receptors

    International Nuclear Information System (INIS)

    Teitelbaum, A.P.; Nissenson, R.A.; Arnaud, C.D.

    1985-01-01

    The assays for calcitonin receptors described focus on their use in the study of the well-established target organs for calcitonin, bone and kidney. The radioligand used in virtually all calcitonin binding studies is 125 I-labelled salmon calcitonin. The lack of methionine residues in this peptide permits the use of chloramine-T for the iodination reaction. Binding assays are described for intact bone, skeletal plasma membranes, renal plasma membranes, and primary kidney cell cultures of rats. Studies on calcitonin metabolism in laboratory animals and regulation of calcitonin receptors are reviewed

  20. Nanostructured polypyrrole for automated and electrochemically controlled in-tube solid-phase microextraction of cationic nitrogen compounds

    International Nuclear Information System (INIS)

    Asiabi, Hamid; Yamini, Yadollah; Rezaei, Fatemeh; Seidi, Shahram

    2015-01-01

    The authors describe an efficient method for microextraction and preconcentration of trace quantities of cationic nitrogen compounds, specifically of anilines. It relies on a combination of electrochemically controlled solid-phase microextraction and on-line in-tube solid-phase microextraction (SPME) using polypyrrole-coated capillaries. Nanostructured polypyrrole was electrically deposited on the inner surface of a stainless steel tube and used as the extraction phase. It also acts as a polypyrrole electrode that was used as a cation exchanger, and a platinum electrode that was used as the anode. The solution to be extracted is passed over the inner surface of the polypyrrole electrode, upon which cations are extracted by applying a negative potential under flow conditions. This method represents an ideal technique for SPME of protonated anilines because it is fast, easily automated, solvent-free, and inexpensive. Under optimal conditions, the limits of detection are in the 0.10–0.30 μg L -1 range. The method works in the 0.10 to 300 μg L -1 concentration range. The inter- and intra-assay precisions (RSD%; for n = 3) range from 5.1 to 7.5 % and from 4.7 to 6.0 % at the concentration levels of 2, 10 and 20 μg L -1 , respectively. The EC-in-tube SPME method was successfully applied to the analysis of methyl-, 4-chloro-, 3-chloro and 3,4-dichloroanilines in (spiked) water samples. (author)

  1. Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.

    Science.gov (United States)

    Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper

    2018-03-07

    The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.

  2. Annealing relaxation of ultrasmall gold nanostructures

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Except serving as an excellent gift on proper occasions, gold finds applications in life sciences, particularly in diagnostics and therapeutics. These applications were made possible by gold nanoparticles, which differ drastically from macroscopic gold. Versatile surface chemistry of gold nanoparticles allows coating with small molecules, polymers, biological recognition molecules. Theoretical investigation of nanoscale gold is not trivial, because of numerous metastable states in these systems. Unlike elsewhere, this work obtains equilibrium structures using annealing simulations within the recently introduced PM7-MD method. Geometries of the ultrasmall gold nanostructures with chalcogen coverage are described at finite temperature, for the first time.

  3. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  4. Lateral flow assays

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Amerongen, van A.

    2012-01-01

    A simple version of immunochemical-based methods is the Lateral Flow Assay (LFA). It is a dry chemistry technique (reagents are included); the fluid from the sample runs through a porous membrane (often nitrocellulose) by capillary force. Typically the membrane is cut as a strip of 0.5*5 cm. In most

  5. Microchemiluminescent assay system

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, J.L.

    1986-04-09

    The patent concerns a microchemiluminescent assay system, which can be used to detect ionizing radiation, heat or specific substances. The method involves the use of a complex formed from serum albumin and a luminescer which, in the presence of ionizing radiation (heat, or a specific analyte), will emit light in an amount proportional to the amount of radiation, etc. (U.K.).

  6. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    to inhibit proliferation of HeLa cells was determined using the 3443- dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay. Extracts from roots of Agathisanthemum bojeri, Synaptolepis kirkii and Zanha africana and the leaf extract of Physalis peruviana at a concentration of 10 pg/ml inhibited cell ...

  7. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis S; Kirkby, Nikolai S; Bestle, Morten H

    2015-01-01

    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  8. FLUIDICS DEVICE FOR ASSAY

    DEFF Research Database (Denmark)

    2007-01-01

    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention is a...

  9. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  10. Plasmonic Horizon in Gold Nanosponges.

    Science.gov (United States)

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  11. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  12. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  13. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor

    DEFF Research Database (Denmark)

    Phuoc Long, Truong; Cao, Cuong; Park, Sungho

    2011-01-01

    Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibodyfunctionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) lmax shifts of the resonant Rayleigh light scattering spectra. By replacing...... can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple...

  14. Ligations of Gold Atoms with Iron Porphyrin

    DEFF Research Database (Denmark)

    Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens

    Gold is an exotic material with d-electrons deciding electronic mappings andconfigurations of adsorbed molecules. The specific interaction of Au atoms and S-, Ncappedmolecules make gold nanoparticles widely applied in the medicine transport andimmunoassay. Density functional theory demonstrates t...

  15. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    . In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  16. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Yang Yong; Huang Zhengren; Jiang Dongliang; Tanemura, Masaki; Yamaguchi, Kohei; Li Zhiyuan; Huang Yingping; Kawamura, Go; Nogami, Masayuki

    2010-01-01

    A simple Ar + -ion irradiation route has been developed to prepare gold nanoneedle arrays on glass substrates for surface-enhanced Raman scattering (SERS)-active substrates. The nanoneedles exhibited very sharp tips with an apex diameter of 20 nm. These arrays were evaluated as potential SERS substrates using malachite green molecules and exhibited a SERS enhancement factor of greater than 10 8 , which is attributed to the localized electron field enhancement around the apex of the needle and the surface plasmon coupling originating from the periodic structure. This work demonstrates a new technique for producing controllable and reproducible SERS substrates potentially applicable for chemical and biological assays.

  17. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  18. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  19. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  20. In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using Embelia ribes.

    Science.gov (United States)

    Dhayalan, Manikandan; Denison, Michael Immanuel Jesse; L, Anitha Jegadeeshwari; Krishnan, Kathiravan; N, Nagendra Gandhi

    2017-02-01

    In recent years, the green synthesis of gold (GNPs) and silver (SNPs) nanoparticles has gained great interest among chemists and researchers. The present study reports an eco-friendly, cost-effective, rapid and easy method for the synthesis of gold and silver nanoparticles using the seed extract of Embelia ribes (SEEr) as capping and reducing agent. The synthesised GNPs and SNPs were characterised using the following techniques: UV-vis spectroscopy, DLS, HR-TEM, FT-IR and XRD. The free radical scavenging potential of GNPs and SNPs was measured by DPPH assay and Phosphomolybdenum assay. Further, the antimicrobial activity against two micro-organisms were tested using disc diffusion method and cytotoxicity of GNPs and SNPs was determined against MCF-7 cell lines at different concentrations by MTT assay. Both the GNPs and SNPs prepared from E. ribes comparatively showed promising results thereby proving their clinical importance.

  1. Radioreceptor assay for oxyphenonium

    International Nuclear Information System (INIS)

    Ensing, K.; Zeeuw, R.A. de

    1984-01-01

    The development of a radioreceptor assay for the quaternary anticholinergic drug, oxyphenonium, in plasma is reported. It is based on competition between this drug and 3 H-dexetimide for binding to muscarinic receptors. After ion pair extraction and reextraction, the drug can be determined in plasma at concentrations down to a value of 100 pg/ml. This permits pharmacokinetic studies to be made after inhalation of oxyphenonium. (author)

  2. Dual isotope assays

    International Nuclear Information System (INIS)

    Smith, G.F.W.; Stevens, R.A.J.; Jacoby, B.

    1980-01-01

    Dual isotope assays for thyroid function are performed by carrying out a radio-immunoassay for two of thyroxine (T4), tri-iodothyronine (T3), thyroid stimulating hormone (TSH), and thyroxine binding globulin (TBG), by a method wherein a version of one of the thyroid components, preferably T4 or T3 is labelled with Selenium-75 and the version of the other thyroid component is labelled with a different radionuclide, preferably Iodine-125. (author)

  3. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  4. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  5. Cancer caused by radioactive gold rings

    International Nuclear Information System (INIS)

    Callary, E.M.

    1989-01-01

    Two recent cases of skin cancer caused by radioactive gold rings are described. The gold was contaminated with radon daughters from hollow goldseeds used to hold radon, back in the 1930s or possibly later. Other radioactive gold rings are probably being worn. The Canadian AECB offers free testing

  6. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  7. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  8. Gold grade of epithermal gold ore at Lamuntet, Brang Rea, West Sumbawa District, West Nusa Tenggara Province, Indonesia

    Science.gov (United States)

    Ernawati, Rika; Idrus, Arifudin; TBMP, Himawan

    2017-06-01

    Lamuntet is one of gold ore mining area carried out by the Artisanal Small scale Gold Mining (ASGM) located in West Sumbawa, Indonesia. Most of the miners at this area are not the local miners but also those from other regions. Mineralization of this area is strong identified as low sulfidation epithermal system. There are two blocks of this mining location, namely, Ngelampar block with an area of 0.164 km2 and Song block with an area of 0.067 km2. This study was focused on Ngelampar block. The characteristic of epithermal system is the existence of quartz vein with comb, vuggy, and sugary texture. The aim of this research was to analyze the gold grade and other metals, such as Cu, Ag, Pb, As, Zn, and Hg. The research methods included literature study from previous researches, field work, laboratory work, and interpretation. The literature study was performed on previous researches with similar study area. The field work comprised of direct observation and sampling. Fieldwork was done for a week to obtain gold ore/vein. Sixteen samples were analyzed to obtain the grade of ore/metal. The Hg laboratory analysis was then performed on the six samples with the highest gold grade. Laboratory works were conducted at Intertek Jakarta by using Fire Assay (FA) for gold grade and Atomic Absorption Spectrophotometry (AAS) for Cu, Ag, Pb, As, Zn, and Hg. Results of the analysis showed the range of Au was grade (0.1 ppm - 27.8 ppm), Cu was 26 ppm -1740 ppm, Pb was 101 ppm- >4000 ppm, Zn of 73 ppm- >10,000 ppm, Ag of 3 ppm -185 ppm, As was 150 ppm-6530 ppm, and Hg of 0.08 ppm - 1.89 ppm. L1 and L15 had high grade for all values (Au, Ag, Zn, Cu, As, and Hg). Gold mineralization was formed as electrum because of Ag content is higher than 20%. Associated minerals of the samples in the study area were galena, sphalerite, arsenopyrite, and chalcopyrite which showed the characteristic of rich base metal of Pb, Zn, and Cu at LS epithermal.

  9. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  10. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  11. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Bucchianico, Sebastiano Di; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-01-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions

  12. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucchianico, Sebastiano Di [Karolinska Institutet, Institute of Environmental Medicine (Sweden); Migliore, Lucia [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics (Italy); Marsili, Paolo [Institute of Complex Systems (ISC-CNR) (Italy); Vergari, Chiara [Plasma Diagnostics and Technologies s.r.l. (Italy); Giammanco, Francesco [University of Pisa, Department of Physics “E. Fermi” (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Institute of Complex Systems (ISC-CNR) (Italy)

    2015-05-15

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  13. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    Science.gov (United States)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  14. Green Nanotechnology from Tea: Phytochemicals in Tea as Building Blocks for Production of Biocompatible Gold Nanoparticles.

    Science.gov (United States)

    Nune, Satish K; Chanda, Nripen; Shukla, Ravi; Katti, Kavita; Kulkarni, Rajesh R; Thilakavathi, Subramanian; Mekapothula, Swapna; Kannan, Raghuraman; Katti, Kattesh V

    2009-06-01

    Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve the dual roles as effective reducing agents to reduce gold and also as stabilizers to provide robust coating on the gold nanoparticles in a single step. The Tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and have been found to be non toxic as assessed through MTT assays. No 'man made' chemicals, other than gold salts, are used in this true biogenic green nanotechnological process thus paving excellent opportunities for their applications in molecular imaging and therapy.

  15. Radiorespirometic assay device

    International Nuclear Information System (INIS)

    Levin, G.V.; Straat, P.A.

    1981-01-01

    A radiorespirometic assay device is described in which the presence of microorganisms in a sample is determined by placing the sample in contact with a metabolisable radioactive labelled substrate, collecting any gas evolved, exposing a photosensitive material to the gas and determining if a spot is produced on the material. A spot indicates the presence of radioactivity showing that the substrate has been metabolized by a microorganism. Bacteria may be detected in body fluids, hospital operating rooms, water, food, cosmetics and drugs. (U.K.)

  16. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  17. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  18. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  19. RAS - Screens & Assays - Drug Discovery

    Science.gov (United States)

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  20. Improving shuffler assay accuracy

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1995-01-01

    Drums of uranium waste should be disposed of in an economical and environmentally sound manner. The most accurate possible assays of the uranium masses in the drums are required for proper disposal. The accuracies of assays from a shuffler are affected by the type of matrix material in the drums. Non-hydrogenous matrices have little effect on neutron transport and accuracies are very good. If self-shielding is known to be a minor problem, good accuracies are also obtained with hydrogenous matrices when a polyethylene sleeve is placed around the drums. But for those cases where self-shielding may be a problem, matrices are hydrogenous, and uranium distributions are non-uniform throughout the drums, the accuracies are degraded. They can be greatly improved by determining the distributions of the uranium and then applying correction factors based on the distributions. This paper describes a technique for determining uranium distributions by using the neutron count rates in detector banks around the waste drum and solving a set of overdetermined linear equations. Other approaches were studied to determine the distributions and are described briefly. Implementation of this correction is anticipated on an existing shuffler next year

  1. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  2. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  3. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  4. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  5. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  6. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...... images and then to reappear by changing the scanning force. By combining contact mode AFM imaging and local force measurements, the interaction between the nanobubbles and the probe can be analyzed and give information about the characteristics of nanobubbles. A model of the forces between the AFM probe...

  7. Hydrophobically modified chitosan/gold nanoparticles for DNA delivery

    International Nuclear Information System (INIS)

    Bhattarai, Shanta Raj; Remant Bahadur, K.C.; Aryal, Santosh; Bhattarai, Narayan; Kim, Sun Young; Yi, Ho Keun; Hwang, Pyoung Han; Kim, Hak Yong

    2008-01-01

    Present study dealt an application of modified chitosan gold nanoparticles (Nac-6-Au) for the immobilization of necked plasmid DNA. Gold nanoparticles stabilized with N-acylated chitosan were prepared by graft-onto approach. The stabilized gold nanoparticles were characterized by different physico-chemical techniques such as UV-vis, TEM, ELS and DLS. MTT assay was used for in vitro cytotoxicity of the nanoparticles into three different cell lines (NIH 3T3, CT-26 and MCF-7). The formulation of plasmid DNA with the nanoparticles corresponds to the complex forming capacity and in-vitro/in-vivo transfection efficiency was studied via gel electrophoresis and transfection methods, respectively. Results showed the modified chitosan gold nanoparticles were well-dispersed and spherical in shape with average size around 10∼12 nm in triple distilled water at pH 7.4, and showed relatively no cytotoxicity at low concentration. Addition of plasmid DNA on the aqueous solution of the nanoparticles markedly reduced surface potential (50.0∼66.6%) as well as resulted in a 13.33% increase in hydrodynamic diameters of the formulated nanoparticles. Transfection efficiency of Nac-6-Au/DNA was dependent on cell type, and higher β-galactosidase activity was observed on MCF-7 breast cancer cell. Typically, this activity was 5 times higher in 4.5 mg/ml nanoparticles concentration than that achieved by the nanoparticles of other concentrations (and/or control). However, this activity was lower in in-vitro and dramatically higher in in-vivo than that of commercially available transfection kit (Lipofectin (registered) ) and DNA. From these results, it can be expected to develop alternative new vectors for gene delivery

  8. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf

  9. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  10. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  11. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  12. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  13. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U 3 O 8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U 3 O 8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  14. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  15. Ultrasensitive electrochemiluminescent immunoassay for morphine using a gold electrode modified with CdS quantum dots, polyamidoamine, and gold nanoparticles

    International Nuclear Information System (INIS)

    Fei, Wenjuan; Chen, Feifei; Sun, Li; Li, Qianhua; Wu, Ying; Yang, Jianping

    2014-01-01

    We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng•mL −1 , with a detection limit as low as 67 pg•mL −1 . The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays. (author)

  16. An acoustic prion assay

    Directory of Open Access Journals (Sweden)

    Gordon Hayward

    2016-12-01

    Full Text Available An acoustic prion assay has been demonstrated for sheep brain samples. Only five false positives and no false negatives were observed in a test of 45 positive and 45 negative samples. The acoustic prion sensor was constructed using a thickness shear mode quartz resonator coated with a covalently bound recombinant prion protein. The characteristic indicator of a scrapie infected sheep brain sample was an observed shoulder in the frequency decrease in response to a sample.The response of the sensor aligns with a conformational shift in the surface protein and with the propagation mechanism of the disease. This alignment is evident in the response timing and shape, dependence on concentration, cross species behaviour and impact of blood plasma. This alignment is far from sufficient to prove the mechanism of the sensor but it does offer the possibility of a rapid and inexpensive additional tool to explore prion disease. Keywords: Prions, Thickness shear mode quartz sensor

  17. Assay of oestrogen

    International Nuclear Information System (INIS)

    Edwards, J.C.

    1981-01-01

    A particular problem with the direct radioimmunoassay of unconjugated oestriol in pregnancy is caused by the increased amount of steroid-binding proteins present in pregnancy serum and plasma. The steroid-binding proteins react with oestriol and 125 I-labelled oestriol during the assay procedure and the steroid-protein bound 125 I-labelled oestriol is precipitated along with the antibody-bound 125 I-labelled oestriol by the ammonium sulphate solution separation system. A novel method is described whereby progesterone (1-20 μg/ml) is used to block the action of steroid-binding proteins in pregnancy serum and plasma samples, thus minimizing interference in a direct radioimmunoassay for unconjugated oestriol using a specific anti-oestriol serum. (U.K.)

  18. Use of interferon-gamma release assays in a health care worker screening program: experience from a tertiary care centre in the United States.

    Science.gov (United States)

    Joshi, Manish; Monson, Thomas P; Woods, Gail L

    2012-01-01

    Interferon-gamma release assays including the QuantiFERON-TB Gold In-Tube test (QFT-GIT [Cellestis Ltd, Australia]) may be used in place of the tuberculin skin test (TST) in surveillance programs for Mycobacterium tuberculosis infection control. However, data on performance and practicality of the QFT-GIT in such programs for health care workers (HCWs) are limited. To assess the performance, practicality and reversion rate of the QFT-GIT among HCWs at a tertiary health care institution in the United States. Retrospective chart review of HCWs at Central Arkansas Veterans Healthcare System (Arkansas, USA) who underwent QFT-GIT testing as a part of their employee screening between November 1, 2008 and October 31, 2009. QFT-GIT was used to screen 3290 HCWs. The initial QFT-GIT was interpreted as positive for 129 (3.9%) HCWs, negative for 3155 (95.9%) and indeterminate for six (0.2%). Testing with QFT-GIT was repeated in 45 HCWs who had positive results on the initial test. The QFT-GIT reverted to negative in 18 (40.0%) HCWs, all of whom had negative TST status and initial interferon-gamma values of 0.35 IU⁄mL to 2.0 IU⁄mL. The QFT-GIT test is feasible in large health care setting as an alternative to TST for M tuberculosis infection screening in HCWs but is not free from challenges. The major concerns are the high number of positive test results and high reversion rates on repeat testing, illustrating poor short-term reproducibility of positive QFT-GIT test results. These results suggest adopting a borderline zone between interferon-gamma values of 0.35 IU⁄mL to 2.0 IU⁄mL, and cautious clinical interpretation of values in this range.

  19. Powder-in-Tube (PIT) Nb3Sn conductors for high-field magnets

    NARCIS (Netherlands)

    Lindenhovius, J.H.; Hornsveld, E.M.; den Ouden, A.; Wessel, Wilhelm A.J.; ten Kate, Herman H.J.

    2000-01-01

    New Nb3Sn conductors, based on the powder-in-tube (PIT) process, have been developed for application in accelerator magnets and high-field solenoids. For application in accelerator magnets, SMI has developed a binary 504 filament PIT conductor by optimizing the manufacturing process and adjustment

  20. Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Bu, Yanan; Luo, Chuannan; Sun, Min

    2017-09-29

    Carbon fibers (CFs) were functionalized with graphene oxide (GO) by an electrophoretic deposition (EPD) method for in-tube solid-phase microextraction (SPME). GO-CFs were filled into a poly(ether ether ketone) (PEEK) tube to obtain a fibers-in-tube SPME device, which was connected with high performance liquid chromatography (HPLC) equipment to build online SPME-HPLC system. Compared with CFs, GO-CFs presented obviously better extraction performance, due to excellent adsorption property and large surface area of GO. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, the important extraction conditions were optimized, such as sample flow rate, extraction time, organic solvent content and desorption time. An online analysis method was established with wide linear range (0.01-50μgL -1 ) and low detection limits (0.001-0.004μgL -1 ). Good sensitivity resulted from high enrichment factors (1133-3840) of GO-CFs in-tube device towards PAHs. The analysis method was used to online determination of PAHs in wastewater samples. Some target analytes were detected and relative recoveries were in the range of 90.2-112%. It is obvious that the proposed GO-CFs in-tube device was an efficient extraction device, and EPD could be used to develop nanomaterials functionalized sorbents for sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  2. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  3. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  4. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram; Ghahramanifard, Fazel [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2016-03-24

    In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07–2.0 μg L{sup −1} in different matrices. This method showed good linearity for indomethacin in the range of 0.1–200 μg L{sup −1}, with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5–8.4% and 2.3–7.6% at three concentration levels of 7, 70 and 150 μg L{sup −1}. The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples. - Graphical abstract: An automated on

  5. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  6. Geochemical indicators of gold ore fields

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.G.

    1995-01-01

    The principles of selection of indicators for genetic reconstructions and prognostic valuations of gold mineralization of diverse morphological and geochemical types have been substantiated. The neutron-activation analysis with radiochemical separation and detection limit of 1-10 -8 %, instrumental neutron-activation analysis and atomic-absorption analysis are the main methods of determination of gold low contents in the rocks, as well as diverse elements, including transition, rare earth elements and tellurium, in gold. 50 refs.; 1 fig.; 3 tabs

  7. Glyco-gold nanoparticles: synthesis and applications

    OpenAIRE

    Compostella, Federica; Pitirollo, Olimpia; Silvestri, Alessandro; Polito, Laura

    2017-01-01

    Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco ...

  8. Glyco-gold nanoparticles: synthesis and applications

    Directory of Open Access Journals (Sweden)

    Federica Compostella

    2017-05-01

    Full Text Available Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.

  9. A novel gold nanoparticle-DNA aptamer-based plasmonic chip for rapid and sensitive detection of bacterial pathogens

    DEFF Research Database (Denmark)

    Sun, Yi; Phuoc Long, Truong; Wolff, Anders

    2016-01-01

    Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers...

  10. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  11. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  12. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  13. Gold Rushes and mineral property rights allocation

    DEFF Research Database (Denmark)

    Sinding, Knud

    , is to handle the other projects that are generated by the "gold rush" informational externalities created by the initial discovery. At the core of the problems of dealing with a gold rush situation is both the informational externality and an institutional framework which is not designed to deal with large...... influxes of prospectors competing for a very limited area. This paper charts significant gold rush events in the mineral industry in recent decades and uses preliminary data on the areas impacted by these gold rushes to argue that many mineral tenure systems should be modified in order to be better able...

  14. Non-Enzymatic Detection of Bacterial Genomic DNA Using the Bio-Barcode Assay

    Science.gov (United States)

    Hill, Haley D.; Vega, Rafael A.; Mirkin, Chad A.

    2011-01-01

    The detection of bacterial genomic DNA through a non-enzymatic nanomaterials based amplification method, the bio-barcode assay, is reported. The assay utilizes oligonucleotide functionalized magnetic microparticles to capture the target of interest from the sample. A critical step in the new assay involves the use of blocking oligonucleotides during heat denaturation of the double stranded DNA. These blockers bind to specific regions of the target DNA upon cooling, and prevent the duplex DNA from re-hybridizing, which allows the particle probes to bind. Following target isolation using the magnetic particles, oligonucleotide functionalized gold nanoparticles act as target recognition agents. The oligonucleotides on the nanoparticle (barcodes) act as amplification surrogates. The barcodes are then detected using the Scanometric method. The limit of detection for this assay was determined to be 2.5 femtomolar, and this is the first demonstration of a barcode type assay for the detection of double stranded, genomic DNA. PMID:17927207

  15. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    Science.gov (United States)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  16. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Adrian A, E-mail: a.walsh@nanobiosols.com [Liverpool Science Park, Nano Biosols Ltd (United Kingdom)

    2017-04-15

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  17. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    Science.gov (United States)

    Walsh, Adrian A.

    2017-04-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  18. Chemisorption of iodine-125 to gold nanoparticles allows for real-time quantitation and potential use in nanomedicine

    International Nuclear Information System (INIS)

    Walsh, Adrian A

    2017-01-01

    Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.

  19. Receptor-based screening assays for the detection of antibiotics residues - A review.

    Science.gov (United States)

    Ahmed, Saeed; Ning, Jianan; Cheng, Guyue; Ahmad, Ijaz; Li, Jun; Mingyue, Liu; Qu, Wei; Iqbal, Mujahid; Shabbir, M A B; Yuan, Zonghui

    2017-05-01

    Consumer and regulatory agencies have a high concern to antibiotic residues in food producing animals, so appropriate screening assays of fast, sensitive, low cost, and easy sample preparation for the identification of these residues are essential for the food-safety insurance. Great efforts in the development of a high-throughput antibiotic screening assay have been made in recent years. Concerning the screening of antibiotic residue, this review elaborate an overview on the availability, advancement and applicability of antibiotic receptor based screening assays for the safety assessment of antibiotics usage (i.e. radio receptor assay, enzyme labeling assays, colloidal gold receptor assay, enzyme colorimetry assay and biosensor assay). This manuscript also tries to shed a light on the selection, preparation and future perspective of receptor protein for antibiotic residue detection. These assays have been introduced for the screening of numerous food samples. Receptor based screening technology for antibiotic detection has high accuracy. It has been concluded that at the same time, it can detect a class of drugs for certain receptor, and realize the multi-residue detection. These assays offer fast, easy and precise detection of antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Science.gov (United States)

    2010-01-01

    ... flat spring joins the two eye rims and the tension it exerts on the nose serves to hold the unit in... inner windings of comfort cable temples; metal parts permanently encased in a non-metallic covering; and...

  1. Replacement of Cetyltrimethylammoniumbromide Bilayer on Gold Nanorod by Alkanethiol Crosslinker for Enhanced Plasmon Resonance Sensitivity

    Science.gov (United States)

    Casas, Justin; Venkataramasubramani, Meenakshi; Wang, Yanyan; Tang, Liang

    2013-01-01

    Surface modification of gold nanorods (GNRs) is often problematic due to tightly packed cetyltrimethylammoniumbromide (CTAB) bilayer. Herein, we performed a double phase transfer ligand exchange to achieve displacement of CTAB on nanorods. During the removal, 11-mercaptoundecanoic acid (MUDA) crosslinker is simultaneously assembled on nanorod surfaces to prevent aggregation. The resulting MUDA-GNRs retain the shape and position of plasmon peaks similar to CTAB-capped GNRs. The introduction of carboxyl groups allows covalent conjugation of biological receptors in a facile fashion to construct a robust, label-free biosensor based on localized surface plasmon resonance (LSPR) transduction of biomolecular interaction. More importantly, smaller MUDA layer on the GNRs reduces the distance of target binding to the plasmonic nanostructure interface, leading to a significant enhancement in LSPR assay sensitivity and specificity. Compared to modification using conventional electropolymer adsorption, MUDA-coated gold nanosensor exhibits five times lower detection limit for cardiac troponin I assay with a high selectivity. PMID:23816849

  2. Leishmania Infection: Laboratory Diagnosing in the Absence of a “Gold Standard”

    Science.gov (United States)

    Rodríguez-Cortés, Alhelí; Ojeda, Ana; Francino, Olga; López-Fuertes, Laura; Timón, Marcos; Alberola, Jordi

    2010-01-01

    There is no gold standard for diagnosing leishmaniases. Our aim was to assess the operative validity of tests used in detecting Leishmania infection using samples from experimental infections, a reliable equivalent to the classic definition of gold standard. Without statistical differences, the highest sensitivity was achieved by protein A (ProtA), immunoglobulin (Ig)G2, indirect fluorescenece antibody test (IFAT), lymphocyte proliferation assay, quantitative real-time polymerase chain reaction of bone marrow (qPCR-BM), qPCR-Blood, and IgG; and the highest specificity by IgG1, IgM, IgA, qPCR-Blood, IgG, IgG2, and qPCR-BM. Maximum positive predictive value was obtained simultaneously by IgG2, qPCR-Blood, and IgG; and maximum negative predictive value by qPCR-BM. Best positive and negative likelihood ratios were obtained by IgG2. The test having the greatest, statistically significant, area under the receiver operating characteristics curve was IgG2 enzyme-linked immunosorbent assay (ELISA). Thus, according to the gold standard used, IFAT and qPCR are far from fulfilling the requirements to be considered gold standards, and the test showing the highest potential to detect Leishmania infection is Leishmania-specific ELISA IgG2. PMID:20134001

  3. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  4. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  5. Structural and functional aspects of trypsin–gold nanoparticle interactions: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Nidhin, Marimuthu [Department of Chemistry, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India); Ghosh, Debasree [Department of Nanotechnology, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India); Yadav, Himanshu; Yadav, Nitu [Department of Chemistry, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India); Majumder, Sudip, E-mail: sudip22m@gmail.com [Department of Chemistry, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India)

    2015-12-15

    Highlights: • Trypsin undergoes activation on incubation with gold nanoparticles. • Enhanced activity depends on the stoichiometry of the mixture. • Higher concentration of nanoparticles damage stability and conformation of trypsin. • Gold nanoparticles undergo morphological change on incubation with trypsin. - Abstract: Trypsin (Trp) is arguably the most important member of the serine proteases. Constructs made up of gold nanoparticles (GNP) with trypsin have been known to exhibit increased efficiency and stability in various experiments. Here we report simple Trp–GNP constructs mixed in different trypsin-to-GNP ratios which exhibit higher efficiencies in biochemical assay, varying resistance to autolysis and higher ability in cell trypsinization. Trp–GNP constructs in different trypsin-to-GNP ratios exhibit prolonged and sustained activity compared to native trypsin in N-α-p-benzoyl-p-nitroanilide (BAPNA) assay as monitored by UV-Visible spectroscopy. The activity was monitored as a function of decreasing rate of linear release of p-nitro aniline (resulting from the cleavage of BAPNA by trypsin) with time during the assay, whose absorbance was measured at 410 nm (λ{sub max} p-nitro aniline). We have done extensive studies to understand structural basis of this trypsin GNP interaction by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and circular dichroism (CD) techniques. Our findings suggest that on interaction, the gold nanoparticles probably form an adherent layer on trypsin that effectively changes the morphology and dimensions of the nanoconstructs. However, trypsin-to-GNP ratio is extremely important, as higher concentration of GNP might damage the conformation of protein. Stability studies related to denaturation show that 1:1 Trp–GNP constructs exhibit maximum stability and high efficiency in all assays performed.

  6. Structural and functional aspects of trypsin–gold nanoparticle interactions: An experimental investigation

    International Nuclear Information System (INIS)

    Nidhin, Marimuthu; Ghosh, Debasree; Yadav, Himanshu; Yadav, Nitu; Majumder, Sudip

    2015-01-01

    Highlights: • Trypsin undergoes activation on incubation with gold nanoparticles. • Enhanced activity depends on the stoichiometry of the mixture. • Higher concentration of nanoparticles damage stability and conformation of trypsin. • Gold nanoparticles undergo morphological change on incubation with trypsin. - Abstract: Trypsin (Trp) is arguably the most important member of the serine proteases. Constructs made up of gold nanoparticles (GNP) with trypsin have been known to exhibit increased efficiency and stability in various experiments. Here we report simple Trp–GNP constructs mixed in different trypsin-to-GNP ratios which exhibit higher efficiencies in biochemical assay, varying resistance to autolysis and higher ability in cell trypsinization. Trp–GNP constructs in different trypsin-to-GNP ratios exhibit prolonged and sustained activity compared to native trypsin in N-α-p-benzoyl-p-nitroanilide (BAPNA) assay as monitored by UV-Visible spectroscopy. The activity was monitored as a function of decreasing rate of linear release of p-nitro aniline (resulting from the cleavage of BAPNA by trypsin) with time during the assay, whose absorbance was measured at 410 nm (λ_m_a_x p-nitro aniline). We have done extensive studies to understand structural basis of this trypsin GNP interaction by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and circular dichroism (CD) techniques. Our findings suggest that on interaction, the gold nanoparticles probably form an adherent layer on trypsin that effectively changes the morphology and dimensions of the nanoconstructs. However, trypsin-to-GNP ratio is extremely important, as higher concentration of GNP might damage the conformation of protein. Stability studies related to denaturation show that 1:1 Trp–GNP constructs exhibit maximum stability and high efficiency in all assays performed.

  7. An electrochemical sensor based on carboxymethylated dextran modified gold surface for ochratoxin A analysis

    OpenAIRE

    Heurich, Meike; Kadir, Mohamad Kamal Abdul; Tothill, Ibtisam E.

    2011-01-01

    A disposable electrochemical immunosensor method was developed for ochratoxin A analysis to be applied for wine samples by using a screen-printed gold working electrode with carbon counter and silver/silver chloride pseudo-reference electrode. An indirect competitive enzyme-linked immunosorbent assay (ELISA) format was constructed by immobilising ochratoxin A conjugate using passive adsorption or covalent immobilisation via amine coupling to a carboxymethylated dextran (CMD)...

  8. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    Science.gov (United States)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  9. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis.

    Science.gov (United States)

    Li, Xiaoling; Wang, Zi; Li, Yanji; Bian, Kexin; Yin, Tian; Gao, Dawei

    2018-01-01

    As the widely use of gold nanoparticles (AuNPs) in drug delivery, the precise control on the size and morphology of the AuNPs is urgently required. In this scenario, traditional synthesis methods cannot meet current requirement because of their inherent defects. We have depicted here a novel method for fabricating monodispersed large size gold nanoparticles, based on the self-assembly of bacitracin. The AuNPs could be facilely, low-cost, and green synthesized with repeatability and controllability in this method. The Bac gold nanoparticles (Bac-AuNPs), composed by bacitracin core and gold shell, exhibited a spherical morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The mean diameter of the Bac-AuNPs was 89nm. The nanoparticles were mono-dispersed and the zeta potential of the nanoparticles was 4.1±0.64mV. Notably, in cell viability assay, the Bac-AuNPs showed less toxicity to HepG2 cells and HEK293 cells compared to small size AuNPs. Collectively, the size, rheological characteristic and the biocompatibility supported the use of the gold nanoparticles as intracellular delivery vehicles for drug delivery, especially for tumor therapy. And this study could provide a maneuverable, controllable and green strategy for the synthesis of AuNPs, which would be applied in disease diagnosis and therapy with biosafety. Copyright © 2017. Published by Elsevier B.V.

  10. Detection of proteins using a colorimetric bio-barcode assay.

    Science.gov (United States)

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  11. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics....

  12. Geochemical methodology for gold prospect ion in Uruguay

    International Nuclear Information System (INIS)

    Spangenber, J.

    1987-01-01

    This work is about the history of gold prospection in Uruguay. In this study there are considered the geochemical aspects, the gold performance, the applicability to mining prospection and the gold prospection aluvionar

  13. Gold emissivities for hydrocode applications

    Science.gov (United States)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-10-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.

  14. Gold emissivities for hydrocode applications

    International Nuclear Information System (INIS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-01-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroes superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroes emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations

  15. Paper Money but a Gold Debt. Italy in the Gold Standard

    OpenAIRE

    Giuseppe Tattara; or consequences)

    2002-01-01

    During the 52 years between the Unification of the Kingdom of Italy and World War 1, the lira was legally convertible into metal for a limited period of time. Although not formally committed to gold, the lira exchange towards the gold standard countries proved remarkably stable, \\223shadowing\\224 gold. It is widely claimed that being one of the successful members of the gold standard circle entailed a number of advantages. If the lira was closely linked to gold, suggesting that there was only...

  16. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  17. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  18. Gold deposits of the southern Piedmont

    Science.gov (United States)

    Pardee, J.T.; Park, C.F.

    1948-01-01

    This report deals chiefly with the gold mines in the Southern Appalachian gold belt whose workings were accessible at the time of examination, but it also · summarizes available information concerning many mines that were not accessible. Most of the mines lie within a belt, 10 to 100 miles wide, that extends

  19. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  20. Ionization model for nickel-like gold

    International Nuclear Information System (INIS)

    Busquet, M.; Bruneau, J.

    1986-04-01

    Before we build an extensive population model for gold ionized 49 to 52 times, we have studied with a more simple model the effect of accounting for cascades (or dielectronic recombination) and Δn = 0 transitions. These transitions allow some understanding of typical feature of experimental gold spectra

  1. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  2. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  3. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Numerical simulations of nanostructured gold films

    DEFF Research Database (Denmark)

    Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.

    2017-01-01

    We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...

  5. Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes

    International Nuclear Information System (INIS)

    Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.

    2007-01-01

    The paper presents an analysis of the flow mechanisms in tubes with wire coils using hydrogen bubble visualization and PIV techniques. Results have been contrasted with experimental data on pressure drop. The relation between the observed flow patterns and the friction factor has been analysed. The experimental analysis that has been carried out allows one to state that at low Reynolds numbers (Re < 400) the flow in tubes with wire coils is basically similar to the flow in smooth tubes. At Reynolds numbers between 500 and 700 and in short pitch wire coils a recirculating flow appears. The insertion of wires coils in a smooth tube accelerates significantly the transition to turbulence. This is produced at Reynolds numbers between 700 and 1000 depending on the wire pitch

  6. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  7. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  8. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  9. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  10. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.

    Science.gov (United States)

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.

  11. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  12. Evaluation of the Sepsis Flow Chip assay for the diagnosis of blood infections.

    Science.gov (United States)

    Galiana, Antonio; Coy, Javier; Gimeno, Adelina; Guzman, Noemi Marco; Rosales, Francisco; Merino, Esperanza; Royo, Gloria; Rodríguez, Juan Carlos

    2017-01-01

    Blood infections are serious complex conditions that generally require rapid diagnosis and treatment. The big challenge is to reduce the time necessary to make a diagnosis with current clinical microbiological methods so as to improve the treatment given to patients. In this study, we assess for the first time the Sepsis Flow Chip assay, which is a novel diagnostic assay for simultaneous rapid-detection of the vast majority of bloodstream pathogens, including Gram-positive and Gram-negative bacteria and fungi, in the same assay, and for the detection of most common antibiotic resistance genes. The SFC assay is based on multiplex PCR and low density DNA arrays. Positive blood cultures from 202 consecutive bacteremia patients were analyzed by SFC assay and the results were compared with the results obtained by the gold standard methodology used in clinical microbiology diagnostic laboratories (EUCAST guidelines). SFC assay overall sensitivity and specificity for bacterial identification were 93.3% and 100% respectively and sensitivity and specificity for the identification of antibiotic genetic resistance determinants were 93.6% and 100% respectively. This is the first evaluation of SFC assay in clinical samples. This new method appears to be very promising by combining the high number of distinct pathogens and genetic resistance determinants identified in a single assay. Further investigations should be done to evaluate the usefulness of this assay in combination with clinical multidisciplinary groups (stewardship), in order for the results to be applied appropriately to the management of patients`infectious processes.

  13. A Rapid Zika Diagnostic Assay to Measure Neutralizing Antibodies in Patients

    Directory of Open Access Journals (Sweden)

    Chao Shan

    2017-03-01

    Full Text Available The potential association of microcephaly and other congenital abnormalities with Zika virus (ZIKV infection during pregnancy underlines the critical need for a rapid and accurate diagnosis. Due to the short duration of ZIKV viremia in infected patients, a serologic assay that detects antibody responses to viral infection plays an essential role in diagnosing patient specimens. The current serologic diagnosis of ZIKV infection relies heavily on the labor-intensive Plaque Reduction Neutralization Test (PRNT that requires more than one-week turnaround time and represents a major bottleneck for patient diagnosis. To overcome this limitation, we have developed a high-throughput assay for ZIKV and dengue virus (DENV diagnosis that can attain the “gold standard” of the current PRNT assay. The new assay is homogeneous and utilizes luciferase viruses to quantify the neutralizing antibody titers in a 96-well format. Using 91 human specimens, we showed that the reporter diagnostic assay has a higher dynamic range and maintains the relative specificity of the traditional PRNT assay. Besides the improvement of assay throughput, the reporter virus technology has also shortened the turnaround time to less than two days. Collectively, our results suggest that, along with the viral RT-PCR assay, the reporter virus-based serologic assay could be potentially used as the first-line test for clinical diagnosis of ZIKV infection as well as for vaccine clinical trials.

  14. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  15. Worth their weight in gold

    International Nuclear Information System (INIS)

    Van Ryssen, E.

    1986-01-01

    A radiotherapeutic method of treating tumours in, on and around the eye, developed and improved over more than a decade of research at the University of Cape Town's Medical School and at the city's Groote Schuur Hospital, has won worldwide recognition. A problem when irradiating eye tumours is that the rays can damage surrounding tissues. Professor Sealy's team overcome this problem by using tailor-made gold or stainless steel shields moulded indiridually to fit the curve of the eyeball of each patient. Depending on the location of the tumour, small radioactive seeds of iodine 125 are placed on the inner or outer curve of the shield in such a way that their rays are confined to the desired location. The number and position of the seeds is worked out to give the desired dose of radiation

  16. Gold nanoparticles: generation and characterization

    International Nuclear Information System (INIS)

    Dey, G.R.

    2013-07-01

    In this presentation we report the reduction of Au 3+ through chemical and free radical (e solv - ) reactions both in non-aqueous and aqueous media. In chemical reduction, the spectral nature in ascorbic acid (AA) and citric acid (CA) systems was different. The band intensity of gold nanoparticles was lower in AA system. While in free radical reaction, the yield of nanoparticles was pure i.e. free from excess reactants. Under the study 60-200 nm size nanoparticles were generated, which are inert to oxygen. Using pulse radiolysis technique, the initial rate for e solv - reaction with Au 3+ was determined to be 7.6 x 10 9 M -1 s -1 . (author)

  17. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  18. Antibacterial gold nanoparticles-biomass assisted synthesis and characterization.

    Science.gov (United States)

    Badwaik, Vivek D; Willis, Chad B; Pender, Dillon S; Paripelly, Rammohan; Shah, Monic; Kherde, Yogesh A; Vangala, Lakshmisri M; Gonzalez, Matthew S; Dakshinamurthy, Rajalingam

    2013-10-01

    Xylose is a natural monosaccharide found in biomass such as straw, pecan shells, cottonseed hulls, and corncobs. Using this monosaccharide, we report the facile, green synthesis and characterization of stable xylose encapsulated gold nanoparticles (Xyl-GNPs) with potent antibacterial activity. Xyl-GNPs were synthesized using the reduction property of xylose in an aqueous solution containing choloraurate anions carried out at room temperature and atmospheric pressure. These nanoparticles were stable and near spherical in shape with an average diameter of 15 +/- 5 nm. Microbiological assay results showed the concentration dependent antibacterial activity of these particles against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria. Thus the facile, environmentally friendly Xyl-GNPs have many potential applications in chemical and biomedical industries, particularly in the development of antibacterial agents in the field of biomedicine.

  19. Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bonanni, A.; Esplandiu, M.J. [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona (Spain); Valle, M. del [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona (Spain)], E-mail: manel.delvalle@uab.es

    2008-04-20

    Streptavidin-coated gold nanoparticles (strept-AuNPs) were used in this work to amplify the impedimetric signal generated in a biosensor detecting the DNA hybridization event. Probe oligomer was adsorbed onto a graphite epoxy composite (GEC) electrode surface and the impedance measurement was performed in a solution containing the redox marker ferrocyanide/ferricyanide. The biotinylated complementary oligomer was used as target. The change of interfacial charge transfer resistance (R{sub ct}), experimented by the redox marker, was recorded to confirm the hybrid formation. The addition of strept-AuNPs, binding to the target due to the strong streptavidin-biotin interaction, led to a further increment of R{sub ct} thus obtaining significant signal amplification. Strept-AuNPs on the electrode surface were observed by scanning electron microscopy (SEM) after silver enhancement treatment. A competitive binding assay was also performed using unlabelled DNA target to demonstrate its applicability to real sample analysis.

  20. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  1. Collagen-Gold Nanoparticle Conjugates for Versatile Biosensing

    Directory of Open Access Journals (Sweden)

    Sarah Unser

    2017-02-01

    Full Text Available Integration of noble metal nanoparticles with proteins offers promising potential to create a wide variety of biosensors that possess both improved selectivity and versatility. The multitude of functionalities that proteins offer coupled with the unique optical properties of noble metal nanoparticles can allow for the realization of simple, colorimetric sensors for a significantly larger range of targets. Herein, we integrate the structural protein collagen with 10 nm gold nanoparticles to develop a protein-nanoparticle conjugate which possess the functionality of the protein with the desired colorimetric properties of the nanoparticles. Applying the many interactions that collagen undergoes in the extracellular matrix, we are able to selectively detect both glucose and heparin with the same collagen-nanoparticle conjugate. Glucose is directly detected through the cross-linking of the collagen fibrils, which brings the attached nanoparticles into closer proximity, leading to a red-shift in the LSPR frequency. Conversely, heparin is detected through a competition assay in which heparin-gold nanoparticles are added to solution and compete with heparin in the solution for the binding sites on the collagen fibrils. The collagen-nanoparticle conjugates are shown to detect both glucose and heparin in the physiological range. Lastly, glucose is selectively detected in 50% mouse serum with the collagen-nanoparticle devices possessing a linear range of 3–25 mM, which is also within the physiologically relevant range.

  2. In vitro toxicity studies of polymer-coated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Rayavarapu, Raja G; Petersen, Wilma; Manohar, Srirang; Van Leeuwen, Ton G [Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Hartsuiker, Liesbeth; Otto, Cees [Medical Cell Biophysics, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, PO Box 217, 7500AE Enschede (Netherlands); Chin, Patrick; Van Leeuwen, Fijs W B [Division of Diagnostic Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Janssen, Hans, E-mail: S.Manohar@utwente.nl [Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2010-04-09

    We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.

  3. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  4. In vivo integrity of polymer-coated gold nanoparticles

    Science.gov (United States)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  5. Intensification Behavior of Mercury Ions on Gold Cyanide Leaching

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-01-01

    Full Text Available Cyanidation is the main method used to extract gold from gold raw materials; however, a serious problem with this method is the low leaching rate. In order to improve gold leaching, the intensification behavior of mercury ions on gold cyanide leaching, for two types of materials, sulphide gold concentrate and oxide gold ore, was investigated. The results showed that mercury ions, with only a 10−5 M dosage, could significantly intensify leaching and gold recovery. The dissolution behavior of gold plate was also intensified by 10−5 M mercury ions. Microstructure analysis showed that mercury ions intensified the cyanidation corrosion of the gold surface, resulting in a loose structure, where a large number of deep ravines and raised particles were evident across the whole gold surface. The loose structure added contact surface between the gold and cyanide, and accelerated gold dissolution. Moreover, mercury ions obstructed the formation of insoluble products, such as AuCN, Au(OHCN, and Au(OHx, that lead to a passivation membrane on the gold surface, reducing contact between the gold and cyanide. These effects, brought about by mercury ions, change the structure and product of the gold surface during gold cyanidation and promote gold leaching.

  6. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  7. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  8. Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate

    Science.gov (United States)

    Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan

    Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.

  9. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  10. Assaying Cellular Viability Using the Neutral Red Uptake Assay.

    Science.gov (United States)

    Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M

    2017-01-01

    The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.

  11. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  12. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  13. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  14. Nature vs. nurture: gold perpetuates "stemness".

    Science.gov (United States)

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  15. Urban artisanal gold shops and mercury emissions

    International Nuclear Information System (INIS)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G.

    2008-01-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs

  16. Assessment of radical scavenging, whitening and moisture retention activities of Panax ginseng berry mediated gold nanoparticles as safe and efficient novel cosmetic material.

    Science.gov (United States)

    Jiménez, Zuly; Kim, Yeon-Ju; Mathiyalagan, Ramya; Seo, Kwang-Hoon; Mohanan, Padmanaban; Ahn, Jong-Chan; Kim, Yu-Jin; Yang, Deok Chun

    2018-03-01

    Panax ginseng berry extract possess remarkable pharmacological effects on skin treatment such as anti-aging, antioxidant, promotor of collagen synthesis and alleviation against atopic dermatitis. In recent years, gold nanoparticles have gained much attention due to their extensive range of applications in particular in the field of drug delivery as a result of their biological compatibility and low toxicity. In a previous study, we designed and developed biocompatible gold and silver nanoparticles based on phytochemical profile and pharmacological efficacy of P. ginseng berry extract, we were able to reduce gold ions to nanoparticles through the process of green synthesis. However, its potential as a cosmetic ingredient is still unexplored. The aim of the present study is to investigate the moisture retention, in-vitro scavenging and whitening properties of gold nanoparticles synthesized from P. ginseng berry in cosmetic applications. Our findings confirm that P. ginseng berry mediated gold nanoparticles exhibited moisture retention capacity. In addition, MTT assay results confirmed that P. ginseng berry mediated gold nanoparticles are non-toxic to human dermal fibroblast and murine melanoma skin cells, possess scavenging activity, protect and provide alleviation against injured caused by H 2 O 2 -induced damage. In addition, P. ginseng berry mediated gold nanoparticles, significantly reduced melanin content and suppress tyrosinase activity in α-MSH-stimulated B16BL6 cells. We conclude that P. ginseng berry mediated gold nanoparticles are biocompatible and environmental affable materials and can be a potential novel cosmetic ingredient.

  17. Phytomining for Artisanal Gold Mine Tailings Management

    Directory of Open Access Journals (Sweden)

    Baiq Dewi Krisnayanti

    2016-08-01

    Full Text Available Mine tailings are generally disposed of by artisanal and small scale gold miners in poorly constructed containment areas and this leads to environmental risk. Gold phytomining could be a possible option for tailings management at artisanal and small-scale gold mining (ASGM locations where plants accumulate residual gold in their above ground biomass. The value of metal recovered from plants could offset some of the costs of environmental management. Getting gold into plants has been repeatedly demonstrated by many research groups; however, a simple working technology to get gold out of plants is less well described. A field experiment to assess the relevance of the technology to artisanal miners was conducted in Central Lombok, Indonesia between April and June 2015. Tobacco was planted in cyanidation tailings (1 mg/kg gold and grown for 2.5 months before the entire plot area was irrigated with NaCN to induce metal uptake. Biomass was then harvested (100 kg, air dried, and ashed by miners in equipment currently used to ash activated carbon at the end of a cyanide leach circuit. Borax and silver as a collector metal were added to the tobacco ash and smelted at high temperature to extract metals from the ash. The mass of the final bullion (39 g was greater than the mass of silver used as a collector (31 g, indicating recovery of metals from the biomass through the smelt process. The gold yield of this trial was low (1.2 mg/kg dry weight biomass concentration, indicating that considerable work must still be done to optimise valuable metal recovery by plants at the field scale. However, the described method to process the biomass was technically feasible, and represents a valid technique that artisanal and small-scale gold miners are willing to adopt if the economic case is good.

  18. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  19. Membrane-based assay for iodide ions based on anti-leaching of gold nanoparticles.

    Science.gov (United States)

    Shen, Yu-Wei; Hsu, Pang-Hung; Unnikrishnan, Binesh; Li, Yu-Jia; Huang, Chih-Ching

    2014-02-26

    We report a label-free colorimetric strategy for the highly selective and sensitive detection of iodide (I(-)) ions in human urine sample, seawater and edible salt. A poly(N-vinyl-2-pyrrolidone)-stabilized Au nanoparticle (34.2-nm) was prepared to detect I(-) ions using silver (Ag(+)) and cyanide (CN(-)) ions as leaching agents in a glycine-NaOH (pH 9.0) solution. For the visual detection of the I(-) ions by naked eye, and for long time stability of the probe, Au nanoparticles (NPs) decorated mixed cellulose ester membrane (MCEM) was prepared (Au NPs/MCEM). The Au NPs-based probe (CN(-)/Ag(+)-Au NPs/MCEM) operates on the principle that Ag(+) ions form a monolyar silver atoms/ions by aurophilic/argentophilic interactions on the Au NPs and it accelerates the leaching rate of Au atoms in presence of CN(-) ions. However, when I(-) is introduced into this system, it inhibits the leaching of Au atoms because of the strong interactions between Ag/Au ions and I(-) ions. Inductively coupled plasma mass spectrometry, surface-assisted laser desorption/ionization time-of-flight mass spectrometry were used to characterize the surface properties of the Au NPs in the presence of Ag(+) and I(-). Under optimal solution conditions, the CN(-)/Ag(+)-Au NPs/MCEM probe enabled the detection of I(-) by the naked eye at nanomolar concentrations with high selectivity (at least 1000-fold over other anions). In addition, this cost-effective probe allowed the determination of I(-) ions in complex samples, such as urine, seawater, and edible salt samples.

  20. Evaluation of simple rapid HIV assays and development of national rapid HIV test algorithms in Dar es Salaam, Tanzania.

    Science.gov (United States)

    Lyamuya, Eligius F; Aboud, Said; Urassa, Willy K; Sufi, Jaffer; Mbwana, Judica; Ndugulile, Faustin; Massambu, Charles

    2009-02-18

    Suitable algorithms based on a combination of two or more simple rapid HIV assays have been shown to have a diagnostic accuracy comparable to double enzyme-linked immunosorbent assay (ELISA) or double ELISA with Western Blot strategies. The aims of this study were to evaluate the performance of five simple rapid HIV assays using whole blood samples from HIV-infected patients, pregnant women, voluntary counseling and testing attendees and blood donors, and to formulate an alternative confirmatory strategy based on rapid HIV testing algorithms suitable for use in Tanzania. Five rapid HIV assays: Determine HIV-1/2 (Inverness Medical), SD Bioline HIV 1/2 3.0 (Standard Diagnostics Inc.), First Response HIV Card 1-2.0 (PMC Medical India Pvt Ltd), HIV1/2 Stat-Pak Dipstick (Chembio Diagnostic System, Inc) and Uni-Gold HIV-1/2 (Trinity Biotech) were evaluated between June and September 2006 using 1433 whole blood samples from hospital patients, pregnant women, voluntary counseling and testing attendees and blood donors. All samples that were reactive on all or any of the five rapid assays and 10% of non-reactive samples were tested on a confirmatory Inno-Lia HIV I/II immunoblot assay (Immunogenetics). Three hundred and ninety samples were confirmed HIV-1 antibody positive, while 1043 were HIV negative. The sensitivity at initial testing of Determine, SD Bioline and Uni-Gold was 100% (95% CI; 99.1-100) while First Response and Stat-Pak had sensitivity of 99.5% (95% CI; 98.2-99.9) and 97.7% (95% CI; 95.7-98.9), respectively, which increased to 100% (95% CI; 99.1-100) on repeat testing. The initial specificity of the Uni-Gold assay was 100% (95% CI; 99.6-100) while specificities were 99.6% (95% CI; 99-99.9), 99.4% (95% CI; 98.8-99.7), 99.6% (95% CI; 99-99.9) and 99.8% (95% CI; 99.3-99.9) for Determine, SD Bioline, First Response and Stat-Pak assays, respectively. There was no any sample which was concordantly false positive in Uni-Gold, Determine and SD Bioline assays. An

  1. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  2. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  3. The giant Kalgoorlie Gold Field revisited

    Directory of Open Access Journals (Sweden)

    Noreen Mary Vielreicher

    2016-05-01

    Direct timing constraints on gold mineralization indicate that Fimiston- and Mt Charlotte-style mineralization formed within a relative short period of time around 2.64 Ga, and, as such, support a model of progressive deformation of a rheologically heterogeneous rock package late in the structural history. Fluid characteristics, combined with the structural, metamorphic and absolute timing, support description of gold mineralization at the Golden Mile as orogenic and mesozonal, and this allows direct correlation with orogenic gold deposits worldwide, which classically formed during accretion along convergent margins throughout Earth history.

  4. Nondestructive analysis of the gold quarter liras

    International Nuclear Information System (INIS)

    Cakir, C.; Guerol, A.; Demir, L.; Sahin, Y.

    2009-01-01

    In this study, we have prepared seven Au-Cu standards in the concentration range of 18-24 (as carat) for nondestructive control of gold quarter liras. Some calibration curves for quantitative analysis of Au in the gold quarter liras that commercially present in Turkey have been plotted using these standard samples. The characteristic X-rays of Au and Cu emitted from these standard samples and the test sample with known composition are recorded by using a Ge(Li) detector. These calibration curves provide a nondestructive analysis of gold quarter liras with the uncertainties about 1.18%. (author)

  5. Refractory concentrate gold leaching: Cyanide vs. bromine

    Science.gov (United States)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  6. Gold's monetary roll will be strengthened - Plumbridge

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Delivering his Presidential address at the Chamber's annual general meeting, Mr Plumbridge said the gold market would enter a new phase and listed seven reasons why gold's monetary role would be strengthened. There was a dramatic increase in the demand for gold jewellery. He also forecasted that South African uranium production would again attain its former peak annual production of about 6000t. There is an essential need for a sustained growth in nuclear power and the prospects for uranium mining industry remain encouraging

  7. Gold nanoparticles extraction from dielectric scattering background

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  8. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  9. Nuclear analyses of the Pietroasa gold hoard

    International Nuclear Information System (INIS)

    Cojocaru, V.; Besliu, C.

    1999-01-01

    By means of nuclear analyses the concentrations of Au, Ag, Cu, Ir, Os, Pt, Co and Hg were measured in the 12 artifacts of the gold hoard discovered in 1837 at Pietroasa, Buzau country in Romania. The concentrations of the first four elements were used to compare different stylistic groups assumed by historians. Comparisons with gold nuggets from the old Dacian territory and gold Roman imperial coins were also made. A good agreement was found with the oldest hypothesis which considers that the hoard is represented by three styles appropriated mainly by the Goths. (author)

  10. The fluorometric microculture cytotoxicity assay.

    Science.gov (United States)

    Lindhagen, Elin; Nygren, Peter; Larsson, Rolf

    2008-01-01

    The fluorometric microculture cytotoxicity assay (FMCA) is a nonclonogenic microplate-based cell viability assay used for measurement of the cytotoxic and/or cytostatic effect of different compounds in vitro. The assay is based on hydrolysis of the probe, fluorescein diacetate (FDA) by esterases in cells with intact plasma membranes. The assay is available as both a semiautomated 96-well plate setup and a 384-well plate version fully adaptable to robotics. Experimental plates are prepared with a small amount of drug solution and can be stored frozen. Cells are seeded on the plates and cell viability is evaluated after 72 h. The protocol described here is applicable both for cell lines and freshly prepared tumor cells from patients and is suitable both for screening in drug development and as a basis for a predictive test for individualization of anticancer drug therapy.

  11. Solution assay instrument operations manual

    International Nuclear Information System (INIS)

    Li, T.K.; Marks, T.; Parker, J.L.

    1983-09-01

    An at-line solution assay instrument (SAI) has been developed and installed in a plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument was designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and americium/plutonium ratios and for routine operation by process technicians who lack instrumentation background. The SAI, based on transmission-corrected, high-resolution gamma-ray spectroscopy, has two measurement stations attached to a single multichannel analyzer/computer system. To ensure the quality of assay results, the SAI has an internal measurement control program, which requires daily and weekly check runs and monitors key aspects of all assay runs. For a 25-ml sample, the assay precision is 5 g/l within a 2000-s count time

  12. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica

    Science.gov (United States)

    2013-01-01

    Background The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach, for production of nanoparticles due to its low energy requirement, environmental compatibility, reduced costs of manufacture, scalability, and nanoparticle stabilization compared with the chemical synthesis. Results The production of gold nanoparticles by the thermophilic bacterium Geobacillus sp. strain ID17 is reported in this study. Cells exposed to Au3+ turned from colourless into an intense purple colour. This change of colour indicates the accumulation of intracellular gold nanoparticles. Elemental analysis of particles composition was verified using TEM and EDX analysis. The intracellular localization and particles size were verified by TEM showing two different types of particles of predominant quasi-hexagonal shape with size ranging from 5–50 nm. The mayority of them were between 10‒20 nm in size. FT-IR was utilized to characterize the chemical surface of gold nanoparticles. This assay supports the idea of a protein type of compound on the surface of biosynthesized gold nanoparticles. Reductase activity involved in the synthesis of gold nanoparticles has been previously reported to be present in others microorganisms. This reduction using NADH as substrate was tested in ID17. Crude extracts of the microorganism could catalyze the NADH-dependent Au3+ reduction. Conclusions Our results strongly suggest that the biosynthesis of gold nanoparticles by ID17 is mediated by enzymes and NADH as a cofactor for this biological transformation. PMID:23919572

  13. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Science.gov (United States)

    Di Bucchianico, Sebastiano; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-05-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  14. Radioligand assay in reproductive biology

    International Nuclear Information System (INIS)

    Korenman, S.G.; Sherman, B.M.

    1975-01-01

    Radioligand assays have been developed for the principal reproductive steroids and peptide hormones. Specific binding reagents have included antibodies, plasma binders, and intracellular receptors. In each assay, problems of specificity, sensitivity, and nonspecific inhibitors were encountered. Many features of the endocrine physiology in childhood, during puberty, and in adulthood have been characterized. Hormonal evaluations of endocrine disorders of reproduction are characterized on the basis of their characteristic pathophysiologic alterations. (U.S.)

  15. Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore

    Science.gov (United States)

    Otsuki, A.; Yue, C.

    2017-07-01

    This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.

  16. Gold deposit styles and placer gold characterisation in northern and east-central Madagascar

    Science.gov (United States)

    Pitfield, Peter E. J; Styles, Michael T.; Taylor, Cliff D.; Key, Roger M.; Bauer,; Ralison, A

    2009-01-01

    Microchemical characterisation of bedrock and placer gold grains from six gold districts within the Archaean domains and intervening Neoproterozoic Anaboriana-Manampotsy belt of northern and east-central Madagascar show few opaque inclusions (e.g pyrrhotite, Bi tellurides) but wide range of Ag contents (40wt%). Some districts exhibit multiple source populations of grains. The ‘greenstone belt’ terranes have an orogenic gold signature locally with an intrusion-related to epithermal overprint. Proterozoic metasediments with felsic to ultramafic bodies yield dominantly intrusion-related gold. A high proportion of secondary gold (<0.5wt% Ag) is related to recycling of paleoplacers and erosion of post-Gondwana planation surfaces and indicates that some mesothermal gold systems were already partially to wholly removed by erosion by the PermoTriassic.

  17. Effects of dissolucytotic gold ions on recovering brain lesions.

    Science.gov (United States)

    Danscher, Gorm; Larsen, Agnete

    2010-04-01

    Recent experimental research has shown that metallic gold releases charged gold atoms when placed intracerebrally and that the liberated gold ions affect inflammation in the brain. The observations suggest that metallic gold can be used as a safe suppressor of inflammation in the central nervous system.

  18. Electroplating of gold using a sulfite-based electrolyte

    NARCIS (Netherlands)

    Smalbrugge, E.; Jacobs, B.; Falcone, S.; Geluk, E.J.; Karouta, F.; Leijtens, X.J.M.; Besten, den J.H.

    2000-01-01

    Electroplating of gold is often used in optoelectronic and microelectronic devices for air-bridges, heat-sinks or gold-bumps for flip-chip techniques. The gold-cyanide electrolytes, which are commonly used in gold-electroplating, are toxic and attack resist patterns causing cracks during the plating

  19. Low-cost mercury (II) ion sensor by biosynthesized gold nanoparticles (AuNPs)

    Science.gov (United States)

    Guerrero, Jet G.; Candano, Gabrielle Jackie; Mendoza, Aileen Nicole; Paderanga, Marciella; Cardino, Krenz John; Locsin, Alessandro; Bibon, Cherilou

    2017-11-01

    Biosynthesis of gold nanoparticles has attracted the curiosity of scientists over the past few decades. Nanoparticles have been proven to exhibit enhanced properties and offer a variety of applications in different fields of study. Utilizing nanoparticles instead of bulky equipment and noxious chemicals has become more convenient; reagents needed for synthesis have been proven to be benign (mostly aqueous solutions) and are cost-effective. In this study, gold nanoparticles were biosynthesized using guyabano (Annonamuricata) peel samples as the source of reducing agents. The optimum concentration ratio of gold chloride to guyabano extract was determined to be 1:7. Characterization studies were accomplished using UV Vis Spectroscopy, Fourier Transform Electron Microscopy (FTIR) and Scanning Electron Microscopy (SEM). Spectroscopic maximum absorbance was found to be at 532 nm thereby confirming the presence of gold nanoparticles. Hydroxyl (O-H stretching), carbonyl (C=O stretching), and amide (N-H stretching) functional groups shown in the FTIR spectra are present on possible reducing agents such as phenols, alkaloids, and saponins found in the plant extract. SEM images revealed spherical shaped nanoparticles with mean diameter of 23.18 nm. It was observed that the bio-synthesized AuNPs were selective to mercury ions through uniform color change from wine red to yellow. A novel smartphone-based mercury (II) ions assay was developed using the gold nanoparticles. A calibration curve correlated the analytical response (Red intensity) to the concentrations of Hg 2+ ions. Around 94% of the variations in the intensity is accounted for by the variations in the concentration of mercury (II) ions suggesting a good linear relationship between the two variables. A relative standard deviation (RSD) of less than 1% was achieved at all individual points. The metal sensor displayed a sensitivity of 0.039 R.I./ppm with an LOD of 93.79 ppm. Thus, the bio-fabricated gold nanoparticles

  20. A study on gold detection in Wenyu gold mine with XRF techniques

    International Nuclear Information System (INIS)

    Liu Liuchun

    1988-01-01

    A portable X ray fluorescence analyzer was used for detecting fluorcescent X rays from the elements associated with gold ores. Fe, As and Ni were chosen to be the indicator elements to analyse rock samples in Wenyu gold mine. Optimum indicators were determined, and it had proved to be successful to detect gold indirectly by measuring the yields of characteristic X rays of the elements. The method provided also valuable information on geology mapping and deposits forming environment

  1. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  2. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  3. Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection.

    Science.gov (United States)

    Poorahong, Sujittra; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2013-01-01

    A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83-102% for this new method compared with 73-107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.

  4. Assessment of horizontal in-tube condensation models using MARS code. Part I: Stratified flow condensation

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon, E-mail: sjhong90@fnctech.com [Department of Engineering Project, FNC Technology Co., Ltd., Bldg. 135-308, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Ju-Yeop; Seul, Kwang-Won [Korea Institute of Nuclear Safety, 19 Kuseong-dong, Yuseong-gu, Daejon (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer This study collected 11 horizontal in-tube condensation models for stratified flow. Black-Right-Pointing-Pointer This study assessed the predictive capability of the models for steam condensation. Black-Right-Pointing-Pointer Purdue-PCCS experiments were simulated using MARS code incorporated with models. Black-Right-Pointing-Pointer Cavallini et al. (2006) model predicts well the data for stratified flow condition. Black-Right-Pointing-Pointer Results of this study can be used to improve condensation model in RELAP5 or MARS. - Abstract: The accurate prediction of the horizontal in-tube condensation heat transfer is a primary concern in the optimum design and safety analysis of horizontal heat exchangers of passive safety systems such as the passive containment cooling system (PCCS), the emergency condenser system (ECS) and the passive auxiliary feed-water system (PAFS). It is essential to analyze and assess the predictive capability of the previous horizontal in-tube condensation models for each flow regime using various experimental data. This study assessed totally 11 condensation models for the stratified flow, one of the main flow regime encountered in the horizontal condenser, with the heat transfer data from the Purdue-PCCS experiment using the multi-dimensional analysis of reactor safety (MARS) code. From the assessments, it was found that the models by Akers and Rosson, Chato, Tandon et al., Sweeney and Chato, and Cavallini et al. (2002) under-predicted the data in the main condensation heat transfer region, on the contrary to this, the models by Rosson and Meyers, Jaster and Kosky, Fujii, Dobson and Chato, and Thome et al. similarly- or over-predicted the data, and especially, Cavallini et al. (2006) model shows good predictive capability for all test conditions. The results of this study can be used importantly to improve the condensation models in thermal hydraulic code, such as RELAP5 or MARS code.

  5. EOP Gold Coral (Gerardia sp.) Growth Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gold coral (Gerardia sp.) trees that were inspected years earlier on Pisces submersible dives were revisited and their change in size measured. The fishery for...

  6. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco; Yapici, Tahir; Peinemann, Klaus-Viktor

    2014-01-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer

  7. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    standard Wilhelmy plate was used for surface pressure sensing. Multilayer ... carried out on a JEOL model 1200EX instrument operated at an accelerating voltage of ... the gold nanoparticles within domains (and reorganization of the domains ...

  8. A new route to gold nanoflowers

    Science.gov (United States)

    Liebig, Ferenc; Henning, Ricky; Sarhan, Radwan M.; Prietzel, Claudia; Bargheer, Matias; Koetz, Joachim

    2018-05-01

    Catanionic vesicles spontaneously formed by mixing the anionic surfactant bis(2-ethylhexyl) sulfosuccinate sodium salt with the cationic surfactant cetyltrimethylammonium bromide were used as a reducing medium to produce gold clusters, which are embedded and well-ordered into the template phase. The gold clusters can be used as seeds in the growth process that follows by adding ascorbic acid as a mild reducing component. When the ascorbic acid was added very slowly in an ice bath round-edged gold nanoflowers were produced. When the same experiments were performed at room temperature in the presence of Ag+ ions, sharp-edged nanoflowers could be synthesized. The mechanism of nanoparticle formation can be understood to be a non-diffusion-limited Ostwald ripening process of preordered gold nanoparticles embedded in catanionic vesicle fragments. Surface-enhanced Raman scattering experiments show an excellent enhancement factor of 1.7 · 105 for the nanoflowers deposited on a silicon wafer.

  9. Deep gold mine fracture zone behaviour

    CSIR Research Space (South Africa)

    Napier, JAL

    1998-12-01

    Full Text Available The investigation of the behaviour of the fracture zone surrounding deep level gold mine stopes is detailed in three main sections of this report. Section 2 outlines the ongoing study of fundamental fracture process and their numerical...

  10. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond...

  11. Adsorption-induced restructuring of gold nanochains

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet

    2002-01-01

    The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the st......The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...... with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains...

  12. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  13. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    thods of reduction of metal ions using plants or microorganisms are often ... have several advantages over bacteria, they are often pre- ferred. ... in static condition for a period of 7 days. ... work was focused on the production of intracellular gold.

  14. Correlation between the genotoxicity endpoints measured by two different genotoxicity assays: comet assay and CBMN assay

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-06-01

    The results concerning of positive findings by micronuclei and non significant ones by comet assay, are corroborated by Deng et al. (2005 study performed in workers occupationally exposed to methotrexate, also a cytostatic drug. According to Cavallo et al. (2009, the comet assay seems to be more suitable for the prompt evaluation of the genotoxic effects, for instance, of polycyclic aromatic hydrocarbons mixtures containing volatile substances, whereas the micronucleus test seems more appropriate to evaluate the effects of exposure to antineoplastic agents. However, there are studies that observed an increase in both the comet assay and the micronucleus test in nurses handling antineoplastic drugs, although statistical significance was only seen in the comet assay, quite the opposite of our results (Maluf & Erdtmann, 2000; Laffon et al. 2005.

  15. Application of radioisotope methods of investigation and control techniques in tube production

    International Nuclear Information System (INIS)

    Chizh, V.A.; Drabkin, L.A.

    1975-01-01

    Various spheres of radioactive isotopes application of closed and open type in tube production are described. Due to the usage of radioactive indicator method in combination with physicochemical methods and metallography new data are obtained in the theory and practice of tube centrifugal casting, rolling and pressing. Adsorption properties of lubricants and element distribution in the joint weld region of the big diameter tubes are investigated. The application of radioactive isotopes as ionizing radiation source made it possible to develop some radioisotope methods and instruments for tube wall thickness and the wall thickness difference control. Short characteristics of such instruments are given

  16. Relationships between boiling regimes and chemical concentration processes in tube support plate crevices

    International Nuclear Information System (INIS)

    Baum, A.

    2002-01-01

    The results of a test inter-relating crevice boiling regimes and chemical concentration in tube support plate crevices are presented. Testing of highly soluble, non-volatile autoclave chemistries produced characteristic crevice pH and impedance distributions during nucleate boiling, initiation of dryout, steady-state operation, and following shutdown. However, the patterns changed as a function of the solubility and volatility of the autoclave chemistry, the solute concentration, and the presence of residual solutes from previous testing. The changes were related to variations in the rates of concentrated solution formation, transport, volatilization, and precipitation. (authors)

  17. Theoretical research on laminar friction resistance in tubes in rolling motion

    International Nuclear Information System (INIS)

    Yan Binghuo; Yu Lei; Yang Yanhua

    2010-01-01

    The model of laminar flow in tubes in rolling motion is established. The dimensionless correlation of velocity is derived, and the correlation of frictional resistance coefficient is also obtained. Of all the additional forces, only the tangential force effects on the flow. The effect of centrifugal and Coriolis forces on the flow is counteracted. The correlation of average frictional resistance coefficient is the same with that of no rolling motion. The effect of rolling motion on frictional resistance coefficient of laminar flow diminishes with the increase of Reynolds number. (authors)

  18. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  19. In Vivo Nanotoxicity Testing using the Zebrafish Embryo Assay.

    Science.gov (United States)

    Rizzo, Larissa Y; Golombek, Susanne K; Mertens, Marianne E; Pan, Yu; Laaf, Dominic; Broda, Janine; Jayapaul, Jabadurai; Möckel, Diana; Subr, Vladimir; Hennink, Wim E; Storm, Gert; Simon, Ulrich; Jahnen-Dechent, Willi; Kiessling, Fabian; Lammers, Twan

    2013-06-10

    Nanoparticles are increasingly used for biomedical purposes. Many different diagnostic and therapeutic applications are envisioned for nanoparticles, but there are often also serious concerns regarding their safety. Given the fact that numerous new nanomaterials are being developed every day, and that not much is known about the long-term toxicological impact of exposure to nanoparticles, there is an urgent need to establish efficient methods for nanotoxicity testing. The zebrafish (Danio rerio) embryo assay has recently emerged as an interesting 'intermediate' method for in vivo nanotoxicity screening, enabling (semi-) high-throughput analyses in a system significantly more complex than cultured cells, but at the same time also less 'invasive' and less expensive than large-scale biocompatibility studies in mice or rats. The zebrafish embryo assay is relatively well-established in the environmental sciences, but it has not yet gained wide notice in the nanomedicine field. Using prototypic polymeric drug carriers, gold-based nanodiagnostics and nanotherapeutics, and iron oxide-based nanodiagnostics, we here show that toxicity testing using zebrafish embryos is easy, efficient and informative, and faithfully reflects, yet significantly extends, cell-based toxicity testing. We therefore expect that the zebrafish embryo assay will become a popular future tool for in vivo nanotoxicity screening.

  20. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  1. The Modern Monetary System and Gold

    Directory of Open Access Journals (Sweden)

    N N Rubtsov

    2013-12-01

    Full Text Available The article considers the nature of modern money, analyzes the mechanism of its creation, showing that it is basically generated by credit and the principle of partial bank reserve. The article draws comparative parallels between trade money based on gold and contemporary, credit money; the author quotes leading bankers and finance experts on the need for partial return to the principles of functioning of the gold standard as the most effective institute of regulating the monetary system in society.

  2. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  3. Synthesis of radioactive gold nanoparticle in surfactant medium

    International Nuclear Information System (INIS)

    Swadesh Mandal

    2014-01-01

    The present study describes the synthesis of radioactive gold nanoparticle in surfactant medium. Proton irradiated stable 197 Au and radioactive 198 Au were simultaneously used for production of radioactive gold nanoparticle. Face centered cubic gold nanoparticles with size of 4-50 nm were found in proton irradiated gold foil. However, the size of nanoparticle varies with pH using both stable and radioactive gold. (author)

  4. Study on Sumbawa gold recovery using centrifuge

    Science.gov (United States)

    Ferdana, A. D.; Petrus, H. T. B. M.; Bendiyasa, I. M.; Prijambada, I. D.; Hamada, F.; Sachiko, T.

    2018-01-01

    The Artisanal Small Gold Mining in Sumbawa has been processing gold with mercury (Hg), which poses a serious threat to the mining and global environment. One method of gold processing that does not use mercury is by gravity method. Before processing the ore first performed an analysis of Mineragraphy and analysis of compound with XRD. Mineragraphy results show that gold is associated with chalcopyrite and covelite and is a single particle (native) on size 58.8 μm, 117 μm up to 294 μm. characterization with XRD shows that the Sumbawa Gold Ore is composed of quartz, pyrite, pyroxene, and sericite compounds. Sentrifugation is one of separation equipment of gravity method to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as water flow rate and particle size. In this present research, the range of flow rate is 5 lpm and 10 lpm, the particle size - 100 + 200 mesh and -200 +300 mesh. Gold concentration in concentrate is measured by EDX. The result shows that the optimum condition is obtained at a separation with flow rate 5 lpm and a particle size of -100 + 200 mesh.

  5. Analysis on the Impact of the Fluctuation of the International Gold Prices on the Chinese Gold Stocks

    Directory of Open Access Journals (Sweden)

    Jiankang Jin

    2014-01-01

    Full Text Available Five gold stocks in Chinese Shanghai and Shenzhen A-share and Comex gold futures are chosen to form the sample, for the purpose of analysing the impact of the fluctuation of the international gold prices on the gold stocks in Chinese Shanghai and Shenzhen A-share. Using the methods of unit root test, Granger causality test, VAR model, and impulse response function, this paper has analysed the relationship between the price change of the international gold futures and the price fluctuation of gold stocks in Chinese Shanghai and Shenzhen comprehensively. The results suggest the fluctuation of the international gold futures has a strong influence on the domestic futures.

  6. Gold Nanocages for Biomedical Applications**

    Science.gov (United States)

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  7. Gold Nanocages for Biomedical Applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-10-17

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl(4). The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy.

  8. The Kolar Gold Field experiment

    International Nuclear Information System (INIS)

    Sreekantan, B.V.

    1982-01-01

    Meson theory was propounded to explain the nuclear force which holds neutrons and protons inside the nucleus. Subsequently, quark theory was put forward to bring some order into an enormously large number of fundamental particles discovered in the hadron family. These two theories are briefly explained. The gravitational force, the electromagnetic force, the weak nuclear force and the strong nuclear force are the basic forces which determine the behaviour of fundamental particles when they are in close proximity. If the last three of the above-mentioned four forces are one or just different aspects of a single force, quarks and leptons can be mingled in the same theoretical framework indicating the non-conservation of baryon number and the spontaneous decay of the proton into leptons. In order to test the last possibility i.e. proton decay, an experiment has been set up in the Kolar Gold Field at a depth of 2300 metres in India. 1650 gas proportional counters are sandwiched between iron plates. The total amount of iron in the form of iron plates and walls of the counters is 140 tons. In this experiment, nuclei of iron are serving as the source of protons and neutrons and the depth eliminates the background events which mimic proton decay. The amount of iron used in the experiment i.e. 140 tons is more than enough to obtain evidence of 10 proton decay events in a year, assuming that the lifetime of proton is 10 30 years or below. (M.G.B.)

  9. Curcumin: the Indian solid gold.

    Science.gov (United States)

    Aggarwal, Bharat B; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo

    2007-01-01

    Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

  10. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    Science.gov (United States)

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  11. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.

    Science.gov (United States)

    Degliangeli, Federica; Kshirsagar, Prakash; Brunetti, Virgilio; Pompa, Pier Paolo; Fiammengo, Roberto

    2014-02-12

    DNA-gold nanoparticle probes are implemented in a simple strategy for direct microRNA (miRNA) quantification. Fluorescently labeled DNA-probe strands are immobilized on PEGylated gold nanoparticles (AuNPs). In the presence of target miRNA, DNA-RNA heteroduplexes are formed and become substrate for the endonuclease DSN (duplex-specific nuclease). Enzymatic hydrolysis of the DNA strands yields a fluorescence signal due to diffusion of the fluorophores away from the gold surface. We show that the molecular design of our DNA-AuNP probes, with the DNA strands immobilized on top of the PEG-based passivation layer, results in nearly unaltered enzymatic activity toward immobilized heteroduplexes compared to substrates free in solution. The assay, developed in a real-time format, allows absolute quantification of as little as 0.2 fmol of miR-203. We also show the application of the assay for direct quantification of cancer-related miR-203 and miR-21 in samples of extracted total RNA from cell cultures. The possibility of direct and absolute quantification may significantly advance the use of microRNAs as biomarkers in the clinical praxis.

  12. Gold nanoparticles-based catalysis for detection of S-nitrosothiols in blood serum.

    Science.gov (United States)

    Jia, Hongying; Han, Xu; Li, Zhiwei; Tian, Qiu; Miao, Xiaoxiang; Du, Libo; Liu, Yang

    2011-09-30

    Accumulating evidence suggests that S-nitrosothiols (RSNOs) play key roles in human health and disease. To clarify their physiological functions and roles in diseases, it is necessary to promote some new techniques for quantifying RSNOs in blood and other biological fluids. Here, a new method using gold nanoparticle catalysts has been introduced for quantitative evaluation of RSNOs in blood serum. The assay involves degrading RSNOs using gold nanoparticles and detecting nitric oxide (NO) released with NO-selective electrodes. The approach displays very high sensitivity for RSNOs with a low detection limit in the picomolar concentration range (5.08 × 10(-11) mol L(-1), S/N=3) and is free from interference of some endogenous substances such as NO(2)(-) and NO(3)(-) co-existing in blood serum. A linear function of concentration in the range of (5.0-1000.0) × 10(-9) mol L(-1) has been observed with a correlation coefficient of 0.9976. The level of RSNOs in blood serum was successfully determined using the described method above. In addition, a dose-dependent effect of gold nanoparticles on the sensitivity for RSNOs detection is revealed, and thereby the approach is potentially useful to evaluate RSNOs levels in various biological fluids via varying gold nanoparticles concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Development of colloidal gold immunochromatographic strips for detection of Riemerella anatipestifer.

    Directory of Open Access Journals (Sweden)

    Wanwan Hou

    Full Text Available Riemerella anatipestifer is one of the most important bacterial pathogen of ducks and causes a contagious septicemia. R. anatipestifer infection causes serositis syndromes similar to other bacterial infections in ducks, including infection by Escherichia coli, Salmonella enterica and Pasteurella multocida. Clinically differentiating R. anatipestifer infections from other bacterial pathogen infections is usually difficult. In this study, MAb 1G2F10, a monoclonal antibody against R. anatipestifer GroEL, was used to develop a colloidal gold immunochromatographic strip. Colloidal gold particles were prepared by chemical synthesis to an average diameter of 20 ± 5.26 nm by transmission electron microscope imaging. MAb 1G2F10 was conjugated to colloidal gold particles and the formation of antibody-colloidal gold conjugates was monitored by UV/Vis spectroscopy. Immunochromatographic strips were assembled in regular sequence through different accessories sticked on PVC plate. Strips specifically detected R. anatipestifer within 10 min, but did not detect E. coli, S. enterica and P. multocida. The detection limit for R. anatipestifer was 1 × 10(6 colony forming units, which was 500 times higher than a conventional agglutination test. Accuracy was 100% match to multiplex PCR. Assay stability and reproducibility were excellent after storage at 4°C for 6 months. The immunochromatographic strips prepared in this study offer a specific, sensitive, and rapid detection method for R. anatipestifer, which is of great importance for the prevention and control of R. anatipestifer infections.

  14. Glycation-assisted synthesized gold nanoparticles inhibit growth of bone cancer cells.

    Science.gov (United States)

    Rahim, Moniba; Iram, Sana; Khan, Mohd Sajid; Khan, M Salman; Shukla, Ankur R; Srivastava, A K; Ahmad, Saheem

    2014-05-01

    This study presents a novel approach to synthesize glycogenic gold nanoparticles (glycogenic GNps) capped with glycated products (Schiff's base, Heyns products, fructosylamine etc.). These glycogenic GNps have been found to be active against human osteosarcoma cell line (Saos-2) with an IC50 of 0.187 mM, while the normal human embryonic lung cell line (L-132) remained unaffected up to 1mM concentration. The size of glycogenic GNps can also be controlled by varying the time of incubation of gold solution. Glycation reactions involving a combination of fructose and HSA (Human Serum Albumin) were found to be effective in the reduction of gold to glycogenic GNps whereas glucose in combination with HSA did not result in the reduction of gold. The progress of the reaction was followed using UV-visible spectroscopy and NBT (Nitroblue tetrazolium) assay. The glycogenic GNps were found to be spherical in shape with an average size of 24.3 nm, in a stable emulsion. These GNps were characterized using UV-visible spectroscopy, zeta potential analysis, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract

    Science.gov (United States)

    Abel, Ezra Elumalai; John Poonga, Preetam Raj; Panicker, Shirly George

    2016-01-01

    This study was aimed to determine the effectiveness of synthesized gold nanoparticles of an ethnobotanically and medicinally important plant species Cassia tora against colon cancer cells and to find its antibacterial and antioxidant activities. In order to improve the bioavailability of C. tora, we synthesized gold nanoparticles through green synthesis, by simple mixing and stirring of C. tora leaf powder and tetrachloroauric acid (HAuCl4) solution which gave a dispersion of gold nanoparticles conjugate with C. tora secondary metabolites (SMs) with characteristic surface plasmon resonance. It was characterized by Fourier transform infrared spectroscopy, zeta sizer, zeta potential and transmission electron microscopy. Antibacterial activity was carried out for gold nanoparticles conjugated with C. tora SMs, using well-diffusion method. The MTT assay for cell viability and markers such as catalase, nitric oxide and lipid peroxidation was predictable to confirm the cytotoxicity and antioxidant properties. The treatment of gold nanoparticles conjugated with C. tora SMs on Col320 cells showed reduction in the cell viability through MTT assay, and it also significantly suppressed the release of H2O2, LPO and NO production in a dose-dependent manner. C. tora SMs conjugate gold nanoparticles showed enhanced bioavailability, antioxidant and anticancer effect against colon cancer cell line (Col320).

  16. Precipitation of PEG/Carboxyl-Modified Gold Nanoparticles with Magnesium Pyrophosphate: A New Platform for Real-Time Monitoring of Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Qin, Ailin; Fu, Lok Tin; Wong, Jacky K F; Chau, Li Yin; Yip, Shea Ping; Lee, Thomas M H

    2017-03-29

    Gold nanoparticles have proven to be promising for decentralized nucleic acid testing by virtue of their simple visual readout and absorbance-based quantification. A major challenge toward their practical application is to achieve ultrasensitive detection without compromising simplicity. The conventional strategy of thermocycling amplification is unfavorable (because of both instrumentation and preparation of thermostable oligonucleotide-modified gold nanoparticle probes). Herein, on the basis of a previously unreported co-precipitation phenomenon between thiolated poly(ethylene glycol)/11-mercaptoundecanoic acid co-modified gold nanoparticles and magnesium pyrophosphate crystals (an isothermal DNA amplification reaction byproduct), a new ultrasensitive and simple DNA assay platform is developed. The binding mechanism underlying the co-precipitation phenomenon is found to be caused by the complexation of carboxyl and pyrophosphate with free magnesium ions. Remarkably, poly(ethylene glycol) does not hinder the binding and effectively stabilizes gold nanoparticles against magnesium ion-induced aggregation (without pyrophosphate). In fact, a similar phenomenon is observed in other poly(ethylene glycol)- and carboxyl-containing nanomaterials. When the gold nanoparticle probe is incorporated into a loop-mediated isothermal amplification reaction, it remains as a red dispersion for a negative sample (in the absence of a target DNA sequence) but appears as a red precipitate for a positive sample (in the presence of a target). This results in a first-of-its-kind gold nanoparticle-based DNA assay platform with isothermal amplification and real-time monitoring capabilities.

  17. Interferon-gamma release assay for the diagnosis of latent tuberculosis infection: A latent-class analysis.

    Directory of Open Access Journals (Sweden)

    Tan N Doan

    Full Text Available Accurate diagnosis and subsequent treatment of latent tuberculosis infection (LTBI is essential for TB elimination. However, the absence of a gold standard test for diagnosing LTBI makes assessment of the true prevalence of LTBI and the accuracy of diagnostic tests challenging. Bayesian latent class models can be used to make inferences about disease prevalence and the sensitivity and specificity of diagnostic tests using data on the concordance between tests. We performed the largest meta-analysis to date aiming to evaluate the performance of tuberculin skin test (TST and interferon-gamma release assays (IGRAs for LTBI diagnosis in various patient populations using Bayesian latent class modelling.Systematic search of PubMeb, Embase and African Index Medicus was conducted without date and language restrictions on September 11, 2017 to identify studies that compared the performance of TST and IGRAs for LTBI diagnosis. Two IGRA methods were considered: QuantiFERON-TB Gold In Tube (QFT-GIT and T-SPOT.TB. Studies were included if they reported 2x2 agreement data between TST and QFT-GIT or T-SPOT.TB. A Bayesian latent class model was developed to estimate the sensitivity and specificity of TST and IGRAs in various populations, including immune-competent adults, immune-compromised adults and children. A TST cut-off value of 10 mm was used for immune-competent subjects and 5 mm for immune-compromised individuals.A total of 157 studies were included in the analysis. In immune-competent adults, the sensitivity of TST and QFT-GIT were estimated to be 84% (95% credible interval [CrI] 82-85% and 52% (50-53%, respectively. The specificity of QFT-GIT was 97% (96-97% in non-BCG-vaccinated and 93% (92-94% in BCG-vaccinated immune-competent adults. The estimated figures for TST were 100% (99-100% and 79% (76-82%, respectively. T-SPOT.TB has comparable specificity (97% for both tests and better sensitivity (68% versus 52% than QFT-GIT in immune-competent adults

  18. Barcoded microchips for biomolecular assays.

    Science.gov (United States)

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  19. Stop Smoking—Tube-In-Tube Helical System for Flameless Calcination of Minerals

    Directory of Open Access Journals (Sweden)

    Nils Haneklaus

    2017-11-01

    Full Text Available Mineral calcination worldwide accounts for some 5–10% of all anthropogenic carbon dioxide (CO2 emissions per year. Roughly half of the CO2 released results from burning fossil fuels for heat generation, while the other half is a product of the calcination reaction itself. Traditionally, the fuel combustion process and the calcination reaction take place together to enhance heat transfer. Systems have been proposed that separate fuel combustion and calcination to allow for the sequestration of pure CO2 from the calcination reaction for later storage/use and capture of the combustion gases. This work presents a new tube-in-tube helical system for the calcination of minerals that can use different heat transfer fluids (HTFs, employed or foreseen in concentrated solar power (CSP plants. The system is labeled ‘flameless’ since the HTF can be heated by other means than burning fossil fuels. If CSP or high-temperature nuclear reactors are used, direct CO2 emissions can be divided in half. The technical feasibility of the system has been accessed with a brief parametric study here. The results suggest that the introduced system is technically feasible given the parameters (total heat transfer coefficients, mass- and volume flows, outer tube friction factors, and –Nusselt numbers that are examined. Further experimental work will be required to better understand the performance of the tube-in-tube helical system for the flameless calcination of minerals.

  20. Subchronic inhalation toxicity of gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Chung Yong

    2011-05-01

    Full Text Available Abstract Background Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME of gold nanoparticles remain unclear. Results The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males and 145 g (females, were divided into 4 groups (10 rats in each group: fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 μg/m3, middle-dose (2.36 × 105 particle/cm3, 0.38 μg/m3, and high-dose (1.85 × 106 particle/cm3, 20.02 μg/m3. The animals were exposed to gold nanoparticles (average diameter 4-5 nm for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH, and total protein were also monitored in a cellular bronchoalveolar lavage (BAL fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue

  1. Comparison of Parasite Burden Using Real-Time Polymerase Chain Reaction Assay and Limiting Dilution Assay in Leishma-nia major Infected Mouse

    Directory of Open Access Journals (Sweden)

    Somayeh GHOTLOO

    2015-12-01

    Full Text Available Background:Limiting dilution assay is considered as the gold standard method for quantifying the number of parasites in the animal model of Leishmania infection. Nowadays, real-time PCR is being increasingly applied to quantify infectious agents. In the present study, a real-time PCR assay was developed to estimate para­site burdens in lymph nodes of Leishmania major infected BALB/C mice. Enumera­tion of parasites was also performed by limiting dilution assay and compared with the results of real-time PCR based quantification.Methods:The SYBR Green based real- time PCR assay was performed to amplify a 75 bp fragment of superoxide dismutase B1 gene in the lymph nodes of L. major infected BALB/C mice 8 weeks post infection. Mice were infected subcutaneously at the base of their tail with 2 × 105L. major promastigotes in the stationary phase of growth. To compare parasite burdens obtained by real-time PCR assay with those of limiting dilution assay, twelve 8-fold serial dilutions of the lymph node homoge­nates were prepared in the Schneider medium and incubated at 26°C.After 7 days, wells containing motile parasites were identified by direct observation under an inverted light microscope and the total number of parasites was estimated using the ELIDA software.Results:Spearman's correlation coefficient of the parasite burdens between real-time PCR and limiting dilution assay was 0.72 (Pvalue = 0.008.Conclusion:Real-time PCR assay is an appropriate replacement to existing limit­ing dilution assay in quantifying parasite burden in the experimental model of Leishma­nia infection.

  2. Nuclear accident dosimetry: the calibration of Geiger-Mueller and 2π proportional counters for sulphur and gold

    International Nuclear Information System (INIS)

    Delafield, H.J.; Reading, A.H.

    1981-10-01

    A reference, 2π precision counter was set up at Harwell and absolutely calibrated for the measurement of sulphur discs ( 32 P) and gold foils ( 198 Au) used in the UK personnel criticality dosimeter. Sample sulphur discs and gold foils were irradiated in the GLEEP reactor at Harwell, counted in the 2π counter, and their activities absolutely assayed by the National Physical Laboratory. The 2π counter was then used to intercalibrate the GM counters used routinely for the assessment of the criticality dosimeter. The mean measured efficiencies of the GM counters were found to be for 32 P in sulphur discs within +- 4%, and for gold ( 198 Au) within +- 6% of the values given by previous calibrations. (author)

  3. Synthesis of photothermal nanocomposites and their application to antibacterial assays

    Science.gov (United States)

    Yang, Ning; Wang, Chun; Wang, Xiaoyu; Li, Lidong

    2018-04-01

    In this work, we report a novel gold nanorod (AuNR)-based nanocomposite that shows strong binding to bacterium and high antibacterial efficiency. The AuNRs were used as a photothermal material to transform near-infrared radiation (NIR) into heat. We selected poly (acrylic acid) to modify the surface of the AuNRs based on a simple self-assembly method. After conjugation of the bacterium-binding molecule vancomycin, the nanocomposites were capable of efficiently gathering on the cell walls of bacteria. The nanocomposites exhibited a high bacterial inhibition capability owing to NIR-induced heat generation in situ. Therefore, the prepared photothermal nanocomposites show great potential for use in antibacterial assays.

  4. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  5. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  6. Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madani

    2011-12-01

    Full Text Available This research aims to generate a favorability map for gold exploration at the Bulghah gold mine area using integration of geo-datasets within a GIS environment. Spatial data analyses and integration of different geo-datasets are carried out based on knowledge-driven and weighting technique. The integration process involves the weighting and scoring of different layers affecting the gold mineralization at the study area using the index overlay method within PCI Geomatica environment. Generation of the binary predictor maps for lithology, lineaments, faults and favorable contacts precede the construction of the favorability map. About 100 m buffer zones are generated for favorable contacts, lineaments and major faults layers. Internal weighting is assigned to each layer based on favorability for gold mineralization. The scores for lithology, major faults, lineaments and favorable contacts layers in the constructed favorability map are 50%, 25%, 10% and 15%, respectively. Final favorability map for the Bulghah gold mine area shows the recording of two new sites for gold mineralization located at the northern and southern extensions of tonalite–diorite intrusions. The northern new site is now exploited for gold from the Bulghah North mine. The southern new site is narrow and small; its rocks resemble those of the Bulghah gold mine.

  7. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  8. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  9. Moessbauer study of the chemical state of gold in gold ores

    International Nuclear Information System (INIS)

    Wagner, F.E.; Marion, P.H.; Regnard, J.-R.

    1986-01-01

    Information on the chemical state of gold in gold ores has been obtained by 197 Au Moessbauer spectroscopy in cases where the state of this element cannot be determined by such standard methods as optical or electron microscopy. Ore concentrates consisting mainly of pyrite or arsenopyrite and roasted ore and matte samples were studied. The results yielded directly the respective amounts of metallic and chemically bound gold. Unless the gold is metallic, its chemical state in the ores turns out to be different from that in the minerals studied so far as reference materials. The chemical processes taking place during various treatments of the ores, such as roasting or leaching, can also be followed by Moessbauer spectroscopy. It is hoped that Moessbauer spectroscopy will eventually facilitate the development of more efficient methods of gold extraction

  10. Gold Nanoparticles Like A Matrix For Covalent Immobilization Of Cholesterol Oxidase – Application For Biosensing

    Directory of Open Access Journals (Sweden)

    Wojnarowska R.

    2015-09-01

    Full Text Available Gold nanoparticles are emerging as promising agents for various areas of material science as well as nanotechnology, electronics and medicine. The interest in this material is provided due to its unique optical, electronic and molecular-recognition properties. This paper presents results of preparation, characterization and biofunctionalization of gold nanoparticles. Nanoparticles have been conjugated with the cholesterol oxidase enzyme in order to prepare the active element for biosensors. Cholesterol oxidase is one of the most important analytical enzyme, used for cholesterol assay in clinical diagnostics, and there is still a necessity in improvement of existing analytical techniques, including bio-nanotechnological approaches based on modern nanosystems. The prepared bio-nanosystem was characterized by the enzyme activity test. Obtained results showed a stable binding of the enzyme with nanoparticles and preserved the bioactivity approves which gives possibility to use the prepared bio-nanosystems for analytical purposes.

  11. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Subramaniyan Bharathiraja

    2016-04-01

    Full Text Available Astaxanthin, a kind of photosynthetic pigment, was employed for gold nanoparticle formation. Nanoparticles were characterized using Ulteraviolet-Visible (UV-Vis spectroscopy, transmission electron microscopy, and X-ray diffraction, and the possible presence of astaxanthin functional groups were analyzed by Fourier transform infrared spectroscopy (FTIR. The cytotoxic effect of synthesized nanoparticles was evaluated against MDA-MB-231 (human breast cancer cells using a tetrazolium-based assay, and synthesized nanoparticles exhibited dose-dependent toxicity. The morphology upon cell death was differentiated through fluorescent microscopy using different stains that predicted apoptosis. The synthesized nanoparticles were applied in ultrasound-coupled photoacoustic imaging to obtain good images of treated cells. Astaxanthin-reduced gold nanoparticle has the potential to act as a promising agent in the field of photo-based diagnosis and therapy.

  12. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. [Univ. of Michigan, Ann Arbor, MI (United States)

    1999-07-01

    XANES measurements on gold-bearing arsenian pyrite from the Twin Creeks Carlin-type gold deposits show that gold is present as both Au{sup 0} and Au{sup 1+} and arsenic is present as As{sup 1{minus}}. Au{sup 0} is attributed to sub-micrometer size inclusions of free gold, whereas Au{sup 1+} is attributed to gold in the lattice of the arsenian pyrite. STEM observations suggest that As{sup 1{minus}} is probably concentrated in angstrom-scale, randomly distributed layers with a marcasite or arsenopyrite structure. Ionic gold (Au{sup 1+}) could be concentrated in these layers as well, and is present in both twofold- and fourfold-coordinated forms, with fourfold-coordinated Au{sup 1+} more abundant. Twofold-coordinated Au{sup 1+} is similar to gold in Au{sub 2}S in which it is linearly coordinated to two sulfur atoms. The nature of fourfold-coordinated Au{sup 1+} is not well understood, although it might be present as an Au-As-S compound where gold is bonded in fourfold coordination to sulfur and arsenic atoms, or in vacancy positions on a cation site in the arsenian pyrite. Au{sup 1+} was probably incorporated into arsenian pyrite by adsorption onto pyrite surfaces during crystal growth. The most likely compound in the case of twofold-coordinated Au{sup 1+} was probably a tri-atomic surface complex such as S{sub pyrite}-Au{sup 1+}-S{sub bi-sulfide}H or Au{sup 1+}-S-Au{sup 1+}. The correlation between gold and arsenic might be related to the role of arsenic in enhancing the adsorption of gold complexes of this type on pyrite surfaces, possibly through semiconductor effects.

  14. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  15. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  16. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  17. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  18. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  19. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  20. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Science.gov (United States)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  1. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  2. Gold prices: Analyzing its cyclical behavior

    Directory of Open Access Journals (Sweden)

    Martha Gutiérrez

    2013-07-01

    Full Text Available Gold is a commodity that is seen as a safe haven when a financial crisis strikes, but when stock markets are prosperous, these are more attractive investment alternatives, and so the gold cycle goes on and on. The DJIA/GF (Dow Jones Industrial Average and Gold Fix ratio is chosen to establish the evolution of gold prices in relation to the NYSE. This paper has two goals: to prove that the DJIA/GF ratio is strongly cyclical by using Fourier analysis and to set a predictive neural networks model to forecast the behavior of this ratio during 2011-2020. To this end, business cycle events like the Great Depression along with the 1970s crisis, and the 1950s boom along with the world economic recovery of the 1990s are contrasted in light of the mentioned ratio. Gold prices are found to evolve cyclically with a dominant period of 37 years and are mainly affected by energy prices, financial markets and macroeconomic indicators.

  3. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  4. Radiofrequency Heating Pathways for Gold Nanoparticles

    Science.gov (United States)

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  5. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  6. Precipitation of lamellar gold nanocrystals in molten polymers

    International Nuclear Information System (INIS)

    Palomba, M.; Carotenuto, G.

    2016-01-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  7. Assay strategies and methods for phospholipases

    International Nuclear Information System (INIS)

    Reynolds, L.J.; Washburn, W.N.; Deems, R.A.; Dennis, E.A.

    1991-01-01

    Of the general considerations discussed, the two issues which are most important in choosing an assay are (1) what sensitivity is required to assay a particular enzyme and (2) whether the assay must be continuous. One can narrow the options further by considering substrate availability, enzyme specificity, assay convenience, or the presence of incompatible side reactions. In addition, the specific preference of a particular phospholipase for polar head group, micellar versus vesicular substrates, and anionic versus nonionic detergents may further restrict the options. Of the many assays described in this chapter, several have limited applicability or serious drawbacks and are not commonly employed. The most commonly used phospholipase assays are the radioactive TLC assay and the pH-stat assay. The TLC assay is probably the most accurate, sensitive assay available. These aspects often outweigh the disadvantages of being discontinuous, tedious, and expensive. The radioactive E. coli assay has become popular recently as an alternative to the TLC assay for the purification of the mammalian nonpancreatic phospholipases. The assay is less time consuming and less expensive than the TLC assay, but it is not appropriate when careful kinetics are required. Where less sensitivity is needed, or when a continuous assay is necessary, the pH-stat assay is often employed. With purified enzymes, when free thiol groups are not present, a spectrophotometric thiol assay can be used. This assay is ∼ as sensitive as the pH-stat assay but is more convenient and more reproducible, although the substrate is not available commercially. Despite the many assay choices available, the search continues for a convenient, generally applicable assay that is both sensitive and continuous

  8. Geomicrobial Optical Logging Detectors (GOLD)

    Science.gov (United States)

    Bramall, N. E.; Stoker, C. R.; Price, P. B.; Coates, J. D.; Allamandola, L. J.; Mattioda, A. L.

    2008-12-01

    to in situ processes. 4) Temperature and Oxygen Sensors: The ambient temperature will be recorded as well as the presence of oxygen. Oxygen presence can be measured using a fluorescence quenching fiber optic probe to avoid interference from other gases. We forsee that this technology will enable experiments including studies of gene transfer, microbial habitat, in situ stratigraphy and hydrological processes. In addition, though designed to scan borehole walls, GOLD could be used to scan core samples as they are recovered for rapid quantification and analysis in order to discover samples of particular interest that could then be prioritized for more in-depth, traditional analysis.

  9. A Lateral Flow Protein Microarray for Rapid and Sensitive Antibody Assays

    Directory of Open Access Journals (Sweden)

    Helene Andersson-Svahn

    2011-11-01

    Full Text Available Protein microarrays are useful tools for highly multiplexed determination of presence or levels of clinically relevant biomarkers in human tissues and biofluids. However, such tools have thus far been restricted to laboratory environments. Here, we present a novel 384-plexed easy to use lateral flow protein microarray device capable of sensitive (< 30 ng/mL determination of antigen-specific antibodies in ten minutes of total assay time. Results were developed with gold nanobeads and could be recorded by a cell-phone camera or table top scanner. Excellent accuracy with an area under curve (AUC of 98% was achieved in comparison with an established glass microarray assay for 26 antigen-specific antibodies. We propose that the presented framework could find use in convenient and cost-efficient quality control of antibody production, as well as in providing a platform for multiplexed affinity-based assays in low-resource or mobile settings.

  10. Gold Nanoparticles for the Detection of DNA Adducts as Biomarkers of Exposure to Acrylamide

    Science.gov (United States)

    Larguinho, Miguel Angelo Rodrigues

    The main objective of this thesis was the development of a gold nanoparticle-based methodology for detection of DNA adducts as biomarkers, to try and overcome existing drawbacks in currently employed techniques. For this objective to be achieved, the experimental work was divided in three components: sample preparation, method of detection and development of a model for exposure to acrylamide. Different techniques were employed and combined for de-complexation and purification of DNA samples (including ultrasonic energy, nuclease digestion and chromatography), resulting in a complete protocol for sample treatment, prior to detection. The detection of alkylated nucleotides using gold nanoparticles was performed by two distinct methodologies: mass spectrometry and colorimetric detection. In mass spectrometry, gold nanoparticles were employed for laser desorption/ionisation instead of the organic matrix. Identification of nucleotides was possible by fingerprint, however no specific mass signals were denoted when using gold nanoparticles to analyse biological samples. An alternate method using the colorimetric properties of gold nanoparticles was employed for detection. This method inspired in the non-cross-linking assay allowed the identification of glycidamide-guanine adducts and DNA adducts generated in vitro. For the development of a model of exposure, two different aquatic organisms were studies: a goldfish and a mussel. Organisms were exposed to waterborne acrylamide, after which mortality was recorded and effect concentrations were estimated. In goldfish, both genotoxicity and metabolic alterations were assessed and revealed dose-effect relationships of acrylamide. Histopathological alterations were verified primarily in pancreatic cells, but also in hepatocytes. Mussels showed higher effect concentrations than goldfish. Biomarkers of oxidative stress, biotransformation and neurotoxicity were analysed after prolonged exposure, showing mild oxidative stress in

  11. State of the Art Power-in Tube Niobium-Tin Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Godeke, A.; Ouden, A. Den; Nijhuis, A.; ten Kate, H.H.J.

    2008-06-01

    Powder-in-Tube (PIT) processed Niobium-Tin wires are commercially manufactured for nearly three decades and have demonstrated a combination of very high current density (presently up to 2500 A mm{sup -2} non-Cu at 12 T and 4.2 K) with fine (35 {micro}m), well separated filaments. We review the developments that have led to the present state of the art PIT Niobium-Tin wires, discuss the wire manufacturing and A15 formation processes, and describe typical superconducting performance in relation to magnetic field and strain. We further highlight successful applications of PIT wires and conclude with an outlook on possibilities for further improvements in the performance of PIT Niobium-Tin wires.

  12. Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor.

    Science.gov (United States)

    Ringborg, Rolf H; Toftgaard Pedersen, Asbjørn; Woodley, John M

    2017-09-08

    Enzyme-mediated oxidation is of particular interest to synthetic organic chemists. However, the implementation of such systems demands knowledge of enzyme kinetics. Conventionally collecting kinetic data for biocatalytic oxidations is fraught with difficulties such as low oxygen solubility in water and limited oxygen supply. Here, we present a novel method for the collection of such kinetic data using a pressurized tube-in-tube reactor, operated in the low-dispersed flow regime to generate time-series data, with minimal material consumption. Experimental development and validation of the instrument revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high K MO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle.

  13. Results of investigation of spray controlled heat transfer crisis in tubes

    International Nuclear Information System (INIS)

    Sapankevich, A.P.; Kalinina, O.K.; Selivanov, Yu.F.

    1984-01-01

    Coefficient of liquid phase mass transfer is a determining parameter in tubes at crisis controlled with precipitating on heat surface a liquid phase carried in flow. To determine mass transfer coefficients in 4-14 MPa pressure range at 400-2000 kg/m 2 s mass velocities, special experiments were performed in experimental section consisting of two independently heated tubes in-series-connected along the flow. Heat transfer crisis was reached simultaneously in two sections which permitted to eliminate influence of liquid flowing on the wall in the controlsection. A part of heat removed due to forced convection was taken account of during calculation of mass transfer coefficient. Processing results are presented in the criterional form. Mean-square deviation with respect to massive obtained was amounted to 24% during calculation of the mass transfer coefficient and 20% during calculation of critical heat flux

  14. Experimental study and technique for calculation of critical heat fluxes in helium boiling in tubes

    International Nuclear Information System (INIS)

    Arkhipov, V.V.; Kvasnyuk, S.V.; Deev, V.I.; Andreev, V.K.

    1979-01-01

    Studied is the effect of regime parameters on critical heat loads in helium boiling in a vertical tube in the range of mass rates of 80 2 xc) and pressures of 100<=p<=200 kPa for the vapor content range corresponding to the heat exchange crisis of the first kind. The method for calculating critical heat fluxes describing experimental data with the error less than +-15% is proposed. The critical heat loads in helium boiling in tubes reduce with the growth of pressure and vapor content in the regime parameter ranges under investigation. Both positive and negative effects of the mass rate on the critical heat flux are observed. The calculation method proposed satisfactorily describes the experimental data

  15. Lime in gold and uranium mining

    International Nuclear Information System (INIS)

    Van Staden, C.M.

    1979-01-01

    In this article the author discusses the role of lime in gold and uranium extraction and looks more closely at the industry's efforts to improve the environment by vegetation of sand dumps and slimes dams. He then comes to the conclusion that lime has been and still is the most effective, practical and cheapest chemical that can be used in the South African gold and uranium mining industry to settle pulps, protect cyanide solutions, aid the vegetation of dumps and neutralise acidic waters and residues. The gold and uranium industry is very pollution concious, and in South Africa the importance of the role that lime plays in combating air and water pollution cannot be over emphasised

  16. Cancer nanotechnology: emerging role of gold nanoconjugates.

    Science.gov (United States)

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  17. Gold Nanospheres Dispersed Light Responsive Epoxy Vitrimers

    Directory of Open Access Journals (Sweden)

    Zhenhua Wang

    2018-01-01

    Full Text Available Vitrimers represent a new class of smart materials. They are covalently crosslinked like thermosets, yet they can be reprocessed like thermoplastics. The underlying mechanism is the rapid exchange reactions which form new bonds while breaking the old ones. So far, heating is the most widely used stimulus to activate the exchange reaction. Compared to heating, light not only is much more convenient to achieve remote and regional control, but can also offer fast healing. Gold nanospheres are excellent photothermal agents, but they are difficult to disperse into vitrimers as they easily aggregate. In this paper, we use polydopamine to prepare gold nanospheres. The resultant polydopamine-coated gold nanospheres (GNS can be well dispersed into epoxy vitrimers, endowing epoxy vitrimers with light responsivity. The composites can be reshaped permanently and temporarily with light at different intensity. Efficient surface patterning and healing are also demonstrated.

  18. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... of the device. At the same time, metal films of different thicknesses are needed for different applications and, since these films are polycrystalline, their internal properties and surface roughness can greatly vary from one thickness to another. In this work, we study, using atomic force microscopy...

  19. Microbially Induced Precipitation of Gold(0) Nanoparticles.

    Science.gov (United States)

    Roh, Yu; Kang, Serku; Park, Bitna; Kim, Yumi

    2015-01-01

    The objectives of this study were to synthesize gold nanoparticles by biomineralization using metal-reducing bacteria and to characterize their mineralogical properties. The metal-reducing bacteria were able to reduce Au(III) to Au(0) with organic fatty acids as electron donors, as indicated by the color change of the culture solution from colorless gold ions to black precipitates at 25 degrees C. XRD, SEM- and TEM-EDS analyses of the precipitates showed that Au(0) was precipitated and formed at either the cell membrane or extracellularly. The Au(0) nanoparticles were about 200 nm in size and ball-shaped. Biomineralization for elemental Au(0) nanoparticle synthesis may be useful for the recovery of natural gold in natural environments.

  20. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  1. Free gold recovery by coal-oil agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Kotze, W.; Petersen, F.W. [Cape Technikon Cape Town (South Africa). Dept. of Chemical Engineering

    2000-02-01

    The gold mining industry has mainly relied upon the use of highly polluting chemicals, such as mercury and cyanide to recover gold from its ores. The Coal Gold Agglomeration (CGA) process was developed some years ago and has the advantage in that gold is recovered by a procedure which has little or no negative impact on the environment. A gold ore containing liberated gold particles is contacted with coal-oil agglomerates, whereby the gold is recovered into the coal/oil phase. Laboratory scale batch tests were performed on an artificial mixture gold slurry and gold recoveries of up to 85% were found under optimized conditions. By recycling the coal/oil phase, it was found that the gold loading onto the agglomerates was increased. Tests performed on an industrial ore yielded slightly lower gold recoveries, and X-ray Diffraction (XRD) analysis on the coal/oil phase showed that minerals other than gold were recovered into this phase. A comparative study was conducted whereby the CGA process was compared to mercury amalgamation. Gold recoveries obtained through amalgamation were 15% lower than by the agglomeration process, which indicates that this process can be considered favourably as an alternative to amalgamation. 16 refs., 2 figs., 6 tabs.

  2. Major Brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, Charles H.; DeWitt, Ed; Maron, Marcos A.; Ladeira, Eduardo A.

    2001-07-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (>20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Carajás Mineral Province.

  3. Major brazilian gold deposits - 1982 to 1999

    Science.gov (United States)

    Thorman, C.H.; Dewitt, E.; Maron, M.A.; Ladeira, E.A.

    2001-01-01

    Brazil has been a major but intermittent producer of gold since its discovery in 1500. Brazil led the world in gold production during the 18th and early 19th centuries. From the late 19th century to the late 20th century, total mining company and garimpeiro production was small and relatively constant at about 5 to 8 t/year. The discovery of alluvial deposits in the Amazon by garimpeiros in the 1970s and the opening of eight mines by mining companies from 1983 to 1990 fueled a major boom in Brazil's gold production, exceeding 100 t/year in 1988 and 1989. However, garimpeiro alluvial production decreased 'rapidly in the 1990s, to about 10 t/year by 1999. Company production increased about tenfold from about 4 t/year in 1982 to 40 t in 1992. Production from 1992 to the present remained relatively stable, even though several mines were closed or were in the process of closing and no new major mines were put into production during that period. Based on their production history from 1982-1999, 17 gold mines are ranked as major (> 20 t) and minor (3-8 t) mines. From 1982-1999, deposits hosted in Archean rocks produced 66% of the gold in Brazil, whereas deposits in Paleoproterozoic and Neoproterozoic rocks accounted for 19% and 15%, respectively. Deposits in metamorphosed sedimentary rocks, especially carbonate-rich rocks and carbonate iron-formation, yielded the great bulk of the gold. Deposits in igneous rocks were of much less importance. The Archean and Paleoproterozoic terranes of Brazil largely lack base-metal-rich volcanogenic massive sulfide deposits, porphyry deposits, and polymetallic veins and sedimentary exhalative deposits. An exception to this is in the Caraja??s Mineral Province.

  4. Gold nanowires and the effect of impurities

    Directory of Open Access Journals (Sweden)

    Novaes Frederico

    2006-01-01

    Full Text Available AbstractMetal nanowires and in particular gold nanowires have received a great deal of attention in the past few years. Experiments on gold nanowires have prompted theory and simulation to help answer questions posed by these studies. Here we present results of computer simulations for the formation, evolution and breaking of very thin Au nanowires. We also discuss the influence of contaminants, such as atoms and small molecules, and their effect on the structural and mechanical properties of these nanowires.

  5. Aneurysm, arachnoiditis and intrathecal Au (gold)

    International Nuclear Information System (INIS)

    Pence, D.M.; Kim, T.H.; Levitt, S.H.

    1990-01-01

    This report is a 20-year follow-up of 14 patients treated with external beam craniospinal irradiation and intrathecal gold (10-45 mCi) for medulloblastoma. Six of the patients died within 2 years of treatment from persistent disease. No patients are alive without complications. Six of eight surviving patients developed arachnoiditis and cauda equina syndrome within 5 to 10 years of treatment. Seven of eight survivors developed aneurysms and/or cerebrovascular accidents 9 to 20 years after treatment. Four of the cerebrovascular events were fatal. Intrathecal gold pools in the basal cisterns and cauda equina delivering an extremely inhomogeneous dose throughout the neuroaxis. Its use is discouraged

  6. Nuclear shape transition in light gold isotopes

    International Nuclear Information System (INIS)

    Wallmeroth, K.; Bollen, G.; Dohn, A.; Egelhof, P.; Kroenert, U.; Heyde, K.; Coster, C. de; Wood, J.L.; Kluge, H.J.; European Organization for Nuclear Research, Geneva; European Organization for Nuclear Research, Geneva

    1989-01-01

    The hyperfine structure and isotope shifts of short-lived gold isotopes with 185≤A≤190 and the 11/2 - isomer of 189 Au have been investigated by application of on-line resonance ionization mass spectroscopy. A detection efficiency of ε=10 -8 for gold atoms was observed at a background of about one event per 1000 laser shots. The deduced charge radii show a drastic change between A=187 and A=186 which is interpreted as an onset of strong deformation (β 2 ≅ 0.25) in 186 Au and 185 Au due to the influence of the π1h 9/2 intruder orbital. (orig.)

  7. Gold nanoparticle-pentacene memory-transistors

    OpenAIRE

    Novembre , Christophe; Guerin , David; Lmimouni , Kamal; Gamrat , Christian; Vuillaume , Dominique

    2008-01-01

    We demonstrate an organic memory-transistor device based on a pentacene-gold nanoparticles active layer. Gold (Au) nanoparticles are immobilized on the gate dielectric (silicon dioxide) of a pentacene transistor by an amino-terminated self-assembled monolayer. Under the application of writing and erasing pulses on the gate, large threshold voltage shift (22 V) and on/off drain current ratio of ~3E4 are obtained. The hole field-effect mobility of the transistor is similar in the on and off sta...

  8. Nondestructive assay of sale materials

    International Nuclear Information System (INIS)

    Rodenburg, W.W.; Fleissner, J.G.

    1981-01-01

    This paper covers three primary areas: (1) reasons for performing nondestructive assay on SALE materials; (2) techniques used; and (3) discussion of investigators' revised results. The study shows that nondestructive calorimetric assay of plutonium offers a viable alternative to traditional wet chemical techniques. For these samples, the precision ranged from 0.4 to 0.6% with biases less than 0.2%. Thus, for those materials where sampling errors are the predominant source of uncertainty, this technique can provide improved accuracy and precision while saving time and money as well as reducing the amount of liquid wastes to be handled. In addition, high resolution gamma-ray spectroscopy measurements of solids can provide isotopic analysis data in a cost effective and timely manner. The timeliness of the method can be especially useful to the plant operator for production control and quality control measurements

  9. Comet Assay in Cancer Chemoprevention.

    Science.gov (United States)

    Santoro, Raffaela; Ferraiuolo, Maria; Morgano, Gian Paolo; Muti, Paola; Strano, Sabrina

    2016-01-01

    The comet assay can be useful in monitoring DNA damage in single cells caused by exposure to genotoxic agents, such as those causing air, water, and soil pollution (e.g., pesticides, dioxins, electromagnetic fields) and chemo- and radiotherapy in cancer patients, or in the assessment of genoprotective effects of chemopreventive molecules. Therefore, it has particular importance in the fields of pharmacology and toxicology, and in both environmental and human biomonitoring. It allows the detection of single strand breaks as well as double-strand breaks and can be used in both normal and cancer cells. Here we describe the alkali method for comet assay, which allows to detect both single- and double-strand DNA breaks.

  10. Radioreceptor assay for somatomedin A

    Energy Technology Data Exchange (ETDEWEB)

    Takano, K [Tokyo Women' s Medical Coll. (Japan)

    1975-04-01

    Measurement method of somatomedian A by radioreceptor assay using the human placenta membrane was described and discussed. Binding rate of /sup 125/I-somatomedin A to its receptors was studied under various conditions of time and temperature of the incubation, and pH of the system. The influence of somatomedin A, porcine insulin, and porcine calcitonin, on /sup 125/I-somatomedin A bound receptors was studied, and these hormones showed the competitive binding to somatomedin A receptors in some level. The specificity, recovery rate, and clinical applications of somatomedin A were also discussed. Radioreceptor assay for somatomedine A provided easier, faster, and more accurate measurements than conventional bioassay. This technique would be very useful to study somatomedin A receptor and functions of insulin.

  11. Electroplating of nanostructured polyaniline-polypyrrole composite coating in a stainless-steel tube for on-line in-tube solid phase microextraction.

    Science.gov (United States)

    Asiabi, Hamid; Yamini, Yadollah; Seidi, Shahram; Esrafili, Ali; Rezaei, Fatemeh

    2015-06-05

    In this work, a novel and efficient on-line in-tube solid phase microextraction method followed by high performance liquid chromatography was developed for preconcentration and determination of trace amounts of parabens. A nanostructured polyaniline-polypyrrole composite was electrochemically deposited on the inner surface of a stainless steel tube and used as the extraction phase. Several important factors that influence the extraction efficiency, including type of solid-phase coating, extraction and desorption times, flow rates of the sample solution and eluent, pH, and ionic strength of the sample solution were investigated and optimized. Under the optimal conditions, the limits of detection were in the range of 0.02-0.04 μg L(-1). This method showed good linearity for parabens in the range of 0.07-50 μg L(-1), with coefficients of determination better than 0.998. The intra- and inter-assay precisions (RSD%, n=3) were in the range of 5.9-7.0% and 4.4-5.7% at three concentration levels of 2, 10, and 20 μg L(-1), respectively. The extraction recovery values for the spiked samples were in the acceptable range of 80.3-90.2%. The validated method was successfully applied for analysis of methyl-, ethyl-, and propyl parabens in some water, milk, and juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Assay of vitamin B12

    International Nuclear Information System (INIS)

    Tovey, K.C.; Carrick, D.T.

    1982-01-01

    A radioassay is described for vitamin B12 which involves denaturing serum protein binding proteins with alkali. In the denaturation step a dithiopolyol and cyanide are used and in the intrinsic factor assay step a vitamin B12 analogue such as cobinamide is used to bind with any remaining serum proteins. The invention also includes a kit in which the dithiopolyol is provided in admixture with the alkali. The dithiopolyol may be dithiothreitol or dithioerythritol. (author)

  13. Assay of ribulose bisphosphate carboxylase

    International Nuclear Information System (INIS)

    Pike, C.; Berry, J.

    1987-01-01

    Assays of ribulose bisphosphate carboxylase (rubisco) can be used to illustrate many properties of photosynthetic systems. Many different leaves have been assayed with this standard procedure. The tissue is ground with a mortar and pestle in extraction buffer. The supernatant after centrifugation is used as the source of enzyme. Buffer, RuBP, [ 14 C]-NaHCO 3 , and enzyme are combined in a scintillation vial; the reaction is run for 1 min at 30 0 . The acid-stable products are counted. Reproducibility in student experiments has been excellent. The assay data can be combined with analyses of leaf properties such as fresh and dry weight, chlorophyll and protein content, etc. Students have done projects such as the response of enzyme to temperature and to various inhibitors. They also report on the use of a transition state analog, carboxyarabinitol bisphosphate, to titrate the molar concentration of rubisco molecules (active sites) in an enzyme sample. Thus, using crude extracts the catalytic activity of a sample can be compared to the absolute quantity of enzyme or to the turnover number

  14. Modelling spatial anisotropy of gold concentration data using GIS ...

    Indian Academy of Sciences (India)

    Linear trends of anomalously high gold values in the Florida Canyon gold deposit, Nevada have been identified using a ... starting at 3500 ft above mean sea level (msl). Relatively high ..... by slower rise in semivariances for longer distance.

  15. Plasmonic properties of gold-coated nanoporous anodic alumina ...

    Indian Academy of Sciences (India)

    gold-coated NAA is strongly quenched due to the strong plasmonic coupling. Keywords. Plasmon ... When coated by a thin film of gold, these templates can support surface plasmon resonance. ... 2.2 Equipment for characterization. Surface ...

  16. Hydrothermal Gold Mineralization and Structural Controls near May ...

    African Journals Online (AJOL)

    Mickiale

    controlled gold mineralized zones of gold near Workamba. .... consists of rounded to sub-rounded clasts of blue quartz eyes and varies in size from ... Based on the field observation, petrographic study and their cross cutting relationships; four.

  17. New progress of the study on uranium-gold association

    International Nuclear Information System (INIS)

    Feng Mingyue; Sun Zhifu

    1992-01-01

    Through the study on heavy minerals from the uraniferous granite-pegmatite it is found that nature gold is associated with uraninite, which provides the new information for the study on uranium-gold association and its metallogenesis

  18. New progress of the study on uranium-gold association

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng; Zhifu, Sun [Beijing Research Inst. of Uranium Geology (China)

    1992-07-01

    Through the study on heavy minerals from the uraniferous granite-pegmatite it is found that nature gold is associated with uraninite, which provides the new information for the study on uranium-gold association and its metallogenesis.

  19. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  20. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes

    DEFF Research Database (Denmark)

    Schoen, Philipp A.E.; Walther, Jens Honore; Poulikakos, Dimos

    2007-01-01

    The authors investigate the thermally driven mass transport of gold nanoparticles confined inside carbon nanotubes using molecular dynamics simulations. The observed thermophoretic motion of the gold nanoparticles correlates with the phonon dispersion exhibited by a standard carbon nanotube and...