WorldWideScience

Sample records for gold based solder

  1. Effects of soldering methods on tensile strength of a gold-palladium metal ceramic alloy.

    Science.gov (United States)

    Ghadhanfari, Husain A; Khajah, Hasan M; Monaco, Edward A; Kim, Hyeongil

    2014-10-01

    The tensile strength obtained by conventional postceramic application soldering and laser postceramic welding may require more energy than microwave postceramic soldering, which could provide similar tensile strength values. The purpose of the study was to compare the tensile strength obtained by microwave postceramic soldering, conventional postceramic soldering, and laser postceramic welding. A gold-palladium metal ceramic alloy and gold-based solder were used in this study. Twenty-seven wax specimens were cast in gold-palladium noble metal and divided into 4 groups: laser welding with a specific postfiller noble metal, microwave soldering with a postceramic solder, conventional soldering with the same postceramic solder used in the microwave soldering group, and a nonsectioned control group. All the specimens were heat treated to simulate a normal porcelain sintering sequence. An Instron Universal Testing Machine was used to measure the tensile strength for the 4 groups. The means were analyzed statistically with 1-way ANOVA. The surface and fracture sites of the specimens were subjectively evaluated for fracture type and porosities by using a scanning electron microscope. The mean (standard deviation) ultimate tensile strength values were as follows: nonsectioned control 818 ±30 MPa, microwave 516 ±34 MPa, conventional 454 ±37 MPa, and laser weld 191 ±39 MPa. A 1-way ANOVA showed a significant difference in ultimate tensile strength among the groups (F3,23=334.5; Ptensile strength for gold and palladium noble metals than either conventional soldering or laser welding. Conventional soldering resulted in a higher tensile strength than laser welding. Under the experimental conditions described, either microwave or conventional postceramic soldering would appear to satisfy clinical requirements related to tensile strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Effects of rework on adhesion of Pb-In soldered gold thick films

    International Nuclear Information System (INIS)

    Gehman, R.W.; Becka, G.A.; Losure, J.A.

    1982-02-01

    The feasibility of repeatedly reworking Pb-In soldered joints on gold thick films was evaluated. Nailhead adhesion tests on soldered thick films typically resulted in failure within the bulk solder (50 In-50 Pb). Average strengths increased with each rework, and the failure mode changed. An increase in metalization lift-off occurred with successive reworks. An investigation was initiated to determine why these changes occurred. Based on this work, the thick film adhesion to the substrate appeared to be lowered by indium reduction of cadmium oxide and by formation of a weak, brittle intermetallic compound, Au 9 In 4 . It was concluded that two solder reworks could be conducted without significant amounts of metallization lift-off during nailhead testing

  3. Dissolution ad uptake of cadmium from dental gold solder alloy implants

    International Nuclear Information System (INIS)

    Bergman, B.; Bergman, M.; Soeremark, R.

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium ( 115 Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of 115 Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver. (author)

  4. Dissolution and uptake of cadmium from dental gold solder alloy implants

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, B; Bergman, M; Soeremark, R [Umeaa Univ. (Sweden); Karolinska Institutet, Stockholm (Sweden))

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium (/sup 115/Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of /sup 115/Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver.

  5. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  6. In-vitro Investigations of Skin Closure using Diode Laser and Protein Solder Containing Gold Nanoshells

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh

    2010-12-01

    Full Text Available Introduction: Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nanoshells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nanoshells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after placing 50 μl of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns, and scan velocity (Vs were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nanoshell concentrations. In addition, at constant laser irradiance (I, the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to st = 1610 g/cm2 at I ~ 60 Wcm-2, T ~ 65ºC, Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nanoshells can be used as an indocyanine green dye (ICG alterative for laser tissue soldering.  Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  7. In-vitro investigations of skin closure using diode laser and protein solder containing gold nano shells

    International Nuclear Information System (INIS)

    Nourbakhsh, M. S.; Etrati Khosroshahi, M.

    2011-01-01

    Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nano shells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nano shells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nano shells were prepared. A full thickness incision of 2*20 mm 2 was made on the surface and after placing 50 μ1 of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nano shell concentrations. In addition, at constant laser irradiance (I), the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to σt = 1610 g/cm 2 at I ∼ 60 W cm-2, T ∼ 65 d egree C , Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nano shells can be used as an indocyanine green dye alterative for laser tissue soldering. Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  8. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing sold...... bonds were consistently found to be mechanically stronger than the carbon nanotubes.......Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...

  9. Development of gold based solder candidates for flip chip assembly

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...

  10. Solderability study of RABiTS-based YBCO coated conductors

    International Nuclear Information System (INIS)

    Zhang Yifei; Duckworth, Robert C.; Ha, Tam T.; Gouge, Michael J.

    2011-01-01

    Study examines the implication of solder and flux selection in YBCO splice joints. Focus is on commercially available RABiTS-based YBCO coated conductors. Solderability varied with solder and flux for three different stabilizations tested. Resistivity of stabilizer was dominant factor in splice joint resistance. Solder materials affected splice joint resistance when solderability was poor. The solderability of commercially available YBa 2 Cu 3 O 7-x (YBCO) coated conductors that were made from Rolling Assisted Biaxially Textured Substrates (RABiTS)-based templates was studied. The coated conductors, also known as second-generation (2G) high temperature superconductor (HTS) wires (in the geometry of flat tapes about 4 mm wide), were laminated with copper, brass, or stainless steel strips as stabilizers. To understand the factors that influence their solderability, surface profilometry and scanning electron microscopy were used to characterize the wire surfaces. The solderability of three solders, 52In48Sn, 67Bi33In, and 100In (wt.%), was evaluated using a standard test (IPC/ECA J-STD-002) and with two different commercial fluxes. It was found that the solderability varied with the solder and flux but the three different wires showed similar solderability for a fixed combination of solder and flux. Solder joints of the 2G wires were fabricated using the tools and the procedures recommended by the HTS wire manufacturer. The solder joints were made in a lap-joint geometry and with the superconducting sides of the two wires face-to-face. The electrical resistances of the solder joints were measured at 77 K, and the results were analyzed to qualify the soldering materials and evaluate the soldering process. It was concluded that although the selection of soldering materials affected the resistance of a solder joint, the resistivity of the stabilizer was the dominant factor.

  11. Complications with computer-aided designed/computer-assisted manufactured titanium and soldered gold bars for mandibular implant-overdentures: short-term observations.

    Science.gov (United States)

    Katsoulis, Joannis; Wälchli, Julia; Kobel, Simone; Gholami, Hadi; Mericske-Stern, Regina

    2015-01-01

    Implant-overdentures supported by rigid bars provide stability in the edentulous atrophic mandible. However, fractures of solder joints and matrices, and loosening of screws and matrices were observed with soldered gold bars (G-bars). Computer-aided designed/computer-assisted manufactured (CAD/CAM) titanium bars (Ti-bars) may reduce technical complications due to enhanced material quality. To compare prosthetic-technical maintenance service of mandibular implant-overdentures supported by CAD/CAM Ti-bar and soldered G-bar. Edentulous patients were consecutively admitted for implant-prosthodontic treatment with a maxillary complete denture and a mandibular implant-overdenture connected to a rigid G-bar or Ti-bar. Maintenance service and problems with the implant-retention device complex and the prosthesis were recorded during minimally 3-4 years. Annual peri-implant crestal bone level changes (ΔBIC) were radiographically assessed. Data of 213 edentulous patients (mean age 68 ± 10 years), who had received a total of 477 tapered implants, were available. Ti-bar and G-bar comprised 101 and 112 patients with 231 and 246 implants, respectively. Ti-bar mostly exhibited distal bar extensions (96%) compared to 34% of G-bar (p overdentures supported by soldered gold bars or milled CAD/CAM Ti-bars are a successful treatment modality but require regular maintenance service. These short-term observations support the hypothesis that CAD/CAM Ti-bars reduce technical complications. Fracture location indicated that the titanium thickness around the screw-access hole should be increased. © 2013 Wiley Periodicals, Inc.

  12. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  13. Effect of solder bump size on interfacial reactions during soldering between Pb-free solder and Cu and Ni/ Pd/ Au surface finishes

    International Nuclear Information System (INIS)

    NorAkmal, F.; Ourdjini, A.; Azmah Hanim, M.A.; Siti Aisha, I.; Chin, Y.T.

    2007-01-01

    Flip chip technology provides the ultimate in high I/ O-density and count with superior electrical performance for interconnecting electronic components. Therefore, the study of the intermetallic compounds was conducted to investigate the effect of solder bumps sizes on several surface finishes which are copper and Electroless Nickel/ Electroless Palladium/ Immersion Gold (ENEPIG) which is widely used in electronics packaging as surface finish for flip-chip application nowadays. In this research, field emission scanning electron microscopy (FESEM) analysis was conducted to analyze the morphology and composition of intermetallic compounds (IMCs) formed at the interface between the solder and UBM. The IMCs between the SAC lead-free solder with Cu surface finish after reflow were mainly (Cu, Ni) 6 Sn 5 and Cu 6 Sn 5 . While the main IMCs formed between lead-free solder on ENEPIG surface finish are (Ni, Cu) 3 Sn 4 and Ni 3 Sn 4 . The results from FESEM with energy dispersive x-ray (EDX) have revealed that isothermal aging at 150 degree Celsius has caused the thickening and coarsening of IMCs as well as changing them into more spherical shape. The thickness of the intermetallic compounds in both finishes investigated was found to be higher in solders with smaller bump size. From the experimental results, it also appears that the growth rate of IMCs is higher when soldering on copper compared to ENEPIG finish. Besides that, the results also showed that the thickness of intermetallic compounds was found to be proportional to isothermal aging duration. (author)

  14. Drinking Water Contamination Due To Lead-based Solder

    Science.gov (United States)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  15. Instantaneous fluxless bonding of Au with Pb-Sn solder in ambient atmosphere

    International Nuclear Information System (INIS)

    Lee, T.K.; Zhang, Sam; Wong, C.C.; Tan, A.C.

    2005-01-01

    A fluxless bonding technique has been developed as a method of flip-chip bonding for microelectronic packaging. The fluxless bonding technique can be achieved instantaneously in an ambient environment between metallic stud bumps and predefined molten solder. This paper describes the mechanics of the bonding action and verifies the effectiveness of this bonding method through wetting balance tests and scanning electron microscope and energy dispersive x-ray analysis. This technique has been demonstrated by using a gold stud bump to break the tin oxide layer over molten solder. This allows for a fast, solid liquid interdiffusion between gold (Au) and the fresh molten eutectic lead-tin (Pb-Sn) solder for joint formation during solidification. This bonding method has been successfully tested with 130-μm-pitch flip-chip bond pads on a joint-in-via flex substrate architecture

  16. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    Science.gov (United States)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  17. Laser soldering of Sn-Ag-Cu and Sn-Zn-Bi lead-free solder pastes

    Science.gov (United States)

    Takahashi, Junichi; Nakahara, Sumio; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2004-10-01

    It has reported that a waste of an electronics substrate including lead and its compound such as 63Sn-37Pb has polluted the environment with acid rain. For that environment problem the development of lead-free solder alloys has been promoted in order to find out the substitute for Sn-Pb solders in the United States, Europe, and Japan. In a present electronics industry, typical alloys have narrowed down to Sn-Ag-Cu and Sn-Zn lead-free solder. In this study, solderability of Pb-free solder that are Sn-Ag-Cu and Sn-Zn-Bi alloy was studied on soldering using YAG (yttrium aluminum garnet) laser and diode laser. Experiments were peformed in order to determine the range of soldering parameters for obtaining an appropriate wettability based on a visual inspection. Joining strength of surface mounting chip components soldered on PCB (printed circuit board) was tested on application thickness of solder paste (0.2, 0.3, and 0.4 mm). In addition, joining strength characteristics of eutectic Sn-Pb alloy and under different power density were examined. As a result, solderability of Sn-Ag-Cu (Pb-free) solder paste are equivalent to that of coventional Sn-Pb solder paste, and are superior to that of Sn-Zn-Bi solder paste in the laser soldering method.

  18. Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yanghua [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xia_yanghua@hotmail.com; Xie Xiaoming [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2008-04-24

    The reliability of lead-free electronic assemblies under thermal cycling was investigated. Thin small outline package (TSOP) devices with FeNi leads were reflow soldered on FR4 PCB (printed circuit board) with Sn3.0Ag0.5Cu (wt%) solder. The effects of different PCB finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) were studied. The results show that OSP finish reveals better performance than its ENIG counterparts. The crack originates at the fringe of heel fillet in both cases. The propagation of crack in the ENIG case is along the device/solder interface, while in the case of OSP, the crack extends parallel to the solder/PCB interface. When the OSP finishes are employed, many Cu6Sn5 precipitates form inside the bulk solder and have a strengthening effect on the solder joint, resulting in better reliability performance as compared to those with ENIG finishes.

  19. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    Science.gov (United States)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  20. Effect of gap distance on tensile strength of preceramic base metal solder joints.

    Science.gov (United States)

    Fattahi, Farnaz; Motamedi, Milad

    2011-01-01

    In order to fabricate prostheses with high accuracy and durability, soldering techniques have been introduced to clinical dentistry. However, these prostheses always fail at their solder joints. The purpose of this study was to evaluate the effect of gap distance on the tensile strength of base metal solder joints. Based on ADA/ISO 9693 specifications for tensile test, 40 specimens were fabricated from a Ni-Cr alloy and cut at the midpoint of 3-mm diameter bar and placed at desired positions by a specially designed device. The specimens were divided into four groups of 10 samples according to the desired solder gap distance: Group1: 0.1mm; Group2: 0.25mm; Group3: 0.5mm; and Group4: 0.75mm. After soldering, specimens were tested for tensile strength by a universal testing machine at a cross-head speed of 0.5mm/min with a preload of 10N. The mean tensile strength values of the groups were 162, 307.8, 206.1 and 336.7 MPa, respectively. The group with 0.75-mm gap had the highest and the group with 0.1-mm gap had the lowest tensile strength. Bonferroni test showed that Group1 and Group4 had statistically different values (P=0.023), but the differences between other groups were not sig-nificant at a significance level of 0.05. There was no direct relationship between increasing soldering gap distance and tensile strength of the solder joints.

  1. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    Science.gov (United States)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  2. Study of silicon chip soldering in high-power transistor housing

    Directory of Open Access Journals (Sweden)

    Vasily S. Anosov

    2017-09-01

    We experimentally assessed the effect of outer housing layer materials and back side chip metallization. For lead-silver soldering of silicon chips, the best housing is that with a nickel outer layer rather than with a gold-plated one, because the resultant thermal resistance is lower and the absence of gold makes the technology cheaper. We obtained a 0.6 K/W thermal resistance for a 24 mm2 chip area.

  3. Microstructural discovery of Al addition on Sn–0.5Cu-based Pb-free solder design

    International Nuclear Information System (INIS)

    Koo, Jahyun; Lee, Changsoo; Hong, Sung Jea; Kim, Keun-Soo; Lee, Hyuck Mo

    2015-01-01

    It is important to develop Pb-free solder alloys suitable for automotive use instead of traditional Sn–Pb solder due to environmental regulations (e.g., Restriction of Hazardous Substances (RoHS)). Al addition has been spotlighted to enhance solder properties. In this study, we investigated the microstructural change of Sn–0.5Cu wt.% based Pb-free solder alloys with Al addition (0.01–0.05 wt.%). The small amount of Al addition caused a remarkable microstructural change. The Al was favored to form Cu–Al intermetallic compounds inside the solder matrix. We identified the Cu–Al intermetallic compound as Cu_3_3Al_1_7, which has a rhombohedral structure, using EPMA and TEM analyses. This resulted in refined Cu_6Sn_5 networks in the Sn–0.5Cu based solder alloy. In addition, we conducted thermal analysis to confirm its stability at a high temperature of approximately 230 °C, which is the necessary temperature range for automotive applications. The solidification results were substantiated thermodynamically using the Scheil solidification model. We can provide criteria for the minimum aluminum content to modify the microstructure of Pb-free solder alloys. - Graphical abstract: The minor Al additions refined eutectic Cu_6Sn_5 IMC networks on the Sn–0.5Cu based solder alloys. The microstructure was dramatically changed with the minor Al addition. - Highlights: • We observed dramatic microstructure-change with Al additions. • We defined Cu_3_3Al_1_7 IMC with Al additions using TEM analysis. • We investigated grain refinement with Al additions using EBSD. • We discussed the refinement based on Scheil solidification model.

  4. Microstructural discovery of Al addition on Sn–0.5Cu-based Pb-free solder design

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jahyun; Lee, Changsoo [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Hong, Sung Jea [MK Electron Co., Ltd., Yongin Cheoin-gu 316-2 (Korea, Republic of); Kim, Keun-Soo, E-mail: keunsookim@hoseo.edu [Department of Display Engineering, Hoseo University, Asan 336-795 (Korea, Republic of); Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-11-25

    It is important to develop Pb-free solder alloys suitable for automotive use instead of traditional Sn–Pb solder due to environmental regulations (e.g., Restriction of Hazardous Substances (RoHS)). Al addition has been spotlighted to enhance solder properties. In this study, we investigated the microstructural change of Sn–0.5Cu wt.% based Pb-free solder alloys with Al addition (0.01–0.05 wt.%). The small amount of Al addition caused a remarkable microstructural change. The Al was favored to form Cu–Al intermetallic compounds inside the solder matrix. We identified the Cu–Al intermetallic compound as Cu{sub 33}Al{sub 17}, which has a rhombohedral structure, using EPMA and TEM analyses. This resulted in refined Cu{sub 6}Sn{sub 5} networks in the Sn–0.5Cu based solder alloy. In addition, we conducted thermal analysis to confirm its stability at a high temperature of approximately 230 °C, which is the necessary temperature range for automotive applications. The solidification results were substantiated thermodynamically using the Scheil solidification model. We can provide criteria for the minimum aluminum content to modify the microstructure of Pb-free solder alloys. - Graphical abstract: The minor Al additions refined eutectic Cu{sub 6}Sn{sub 5} IMC networks on the Sn–0.5Cu based solder alloys. The microstructure was dramatically changed with the minor Al addition. - Highlights: • We observed dramatic microstructure-change with Al additions. • We defined Cu{sub 33}Al{sub 17} IMC with Al additions using TEM analysis. • We investigated grain refinement with Al additions using EBSD. • We discussed the refinement based on Scheil solidification model.

  5. Soldering handbook

    CERN Document Server

    Vianco, Paul T

    1999-01-01

    Contains information related to soldering processes, and solder joint performance and reliability. Covers soldering fundamentals, technology, materials, substrate materials, fluxes, pastes, assembly processes, inspection, and environment. Covers today's advanced joining applications and emphasizes new materials, including higher strength alloys; predictive performance; computer modeling; advanced inspection techniques; new processing concepts, including laser heating; and the resurgence in ultrasonic soldering.

  6. On the problem of soldering refractory metals with silver-containing solders

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Andryushchenko, V.I.; Chepelenko, V.N.; Batov, V.M.

    1981-01-01

    The processes of wetting, spreading and interphase interactions of copper-silver liquid alloys alloyed with Ni and Si, with niobium, tantalum, molybdenum, tungsten, 12Kh18N10T steel and nickel are studied. It has been determined that Ni or Si additions into the copper-silver solder improve the wetting and adhesion. When soldering with the alloy containing Ni additions, the strength of a soldered Joint grows with the increase of soldering duration while soldering with the alloy containing Si additions, the strength decreases. That is why Ni-containing solders are preferable for soldering thick-walled structures, and Si-containing solders - for thin-walled structures [ru

  7. Solder joint technology materials, properties, and reliability

    CERN Document Server

    Tu, King-Ning

    2007-01-01

    Solder joints are ubiquitous in electronic consumer products. The European Union has a directive to ban the use of Pb-based solders in these products on July 1st, 2006. There is an urgent need for an increase in the research and development of Pb-free solders in electronic manufacturing. For example, spontaneous Sn whisker growth and electromigration induced failure in solder joints are serious issues. These reliability issues are quite complicated due to the combined effect of electrical, mechanical, chemical, and thermal forces on solder joints. To improve solder joint reliability, the science of solder joint behavior under various driving forces must be understood. In this book, the advanced materials reliability issues related to copper-tin reaction and electromigration in solder joints are emphasized and methods to prevent these reliability problems are discussed.

  8. SMT soldering handbook

    National Research Council Canada - National Science Library

    Strauss, Rudolf

    1998-01-01

    ... 3.2.1 Constituents, melting behaviour and mechanical properties 3.2.2 Composition of solders for use in electronics 3.2.3 Lead-free solders 3.2.4 Solder impurities The soldered joint 3.3.1 Solde...

  9. Scalable Manufacturing of Solderable and Stretchable Physiologic Sensing Systems.

    Science.gov (United States)

    Kim, Yun-Soung; Lu, Jesse; Shih, Benjamin; Gharibans, Armen; Zou, Zhanan; Matsuno, Kristen; Aguilera, Roman; Han, Yoonjae; Meek, Ann; Xiao, Jianliang; Tolley, Michael T; Coleman, Todd P

    2017-10-01

    Methods for microfabrication of solderable and stretchable sensing systems (S4s) and a scaled production of adhesive-integrated active S4s for health monitoring are presented. S4s' excellent solderability is achieved by the sputter-deposited nickel-vanadium and gold pad metal layers and copper interconnection. The donor substrate, which is modified with "PI islands" to become selectively adhesive for the S4s, allows the heterogeneous devices to be integrated with large-area adhesives for packaging. The feasibility for S4-based health monitoring is demonstrated by developing an S4 integrated with a strain gauge and an onboard optical indication circuit. Owing to S4s' compatibility with the standard printed circuit board assembly processes, a variety of commercially available surface mount chip components, such as the wafer level chip scale packages, chip resistors, and light-emitting diodes, can be reflow-soldered onto S4s without modifications, demonstrating the versatile and modular nature of S4s. Tegaderm-integrated S4 respiration sensors are tested for robustness for cyclic deformation, maximum stretchability, durability, and biocompatibility for multiday wear time. The results of the tests and demonstration of the respiration sensing indicate that the adhesive-integrated S4s can provide end users a way for unobtrusive health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  11. Features of soldering of molybdenum a lols

    International Nuclear Information System (INIS)

    Grishin, V.L.; Rybkin, B.V.; Cherkasov, A.F.

    1980-01-01

    Soldering features of complex-alloy molybdenum alloys were investigated in comparison with alloys based on solid solutions. Soldering features of heterogeneous molybdenum base alloys were investigated using samples of 0.5-1.O mm sheets with the strain of about 95% made of ingots which had been smelted in arc vacuum furnaces. The soldering of samples was carried out in 5x1O -5 mm Hg vacuum using different sources of heating: radiation, electron-ray and contact. It was shown that heat-resisting soldered joints of heterogeneous molybdenum alloys could be produced using zirconium and niobium base solders containing the most effective hardeners of the parent material (titanum, vanadium, tantalum, molybdenum, tungsten). To preserve high mechanical properties of heterogeneous alloys it was expedient to use for welding local heating sources which permitted to decrease considerably temperature- time conditions of the process

  12. Influence of Difference Solders Volume on Intermetallic Growth of Sn-4.0Ag-0.5Cu/ENEPIG

    Directory of Open Access Journals (Sweden)

    Saliza Azlina O.

    2016-01-01

    Full Text Available In recent years, portable electronic packaging products such as smart phones, tablets, notebooks and other gadgets have been developed with reduced size of component packaging, light weight, high speed and with enhanced performance. Thus, flip chip technology with smaller solder sphere sizes that would produce fine solder joint interconnections have become essential in order to fulfill these miniaturization requirements. This study investigates the interfacial reactions and intermetallics formation during reflow soldering and isothermal aging between Sn-4.0Ag-0.5Cu (SAC405 and electroless nickel/immersion palladium/immersion gold (EN(PEPIG. Solder diameters of 300 μm and 700 μm were used to compare the effect of solder volume on the solder joint microstructure. The solid state isothermal aging was performed at 125°C starting from 250 hours until 2000 hours. The results revealed that only (Cu,Ni6Sn5 IMC was found at the interface during reflow soldering while both (Cu,Ni6Sn5 and (Ni,Cu3Sn4 IMC have been observed after aging process. Smaller solder sizes produced thinner IMC than larger solder joints investigated after reflow soldering, whereas the larger solders produced thinner IMC than the smaller solders after isothermal aging. Aging duration of solder joints has been found to be increase the IMC’s thickness and changed the IMC morphologies to spherical-shaped, compacted and larger grain size.

  13. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure and microhard......Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The influence of the low melting point metals namely In, Sb and Sn to the Au-Ge eutectic with respect to the microstructure...... was primarily strengthened by the refined (Ge) dispersed phase. The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. In the present work it was found that among the low melting point metals, the addition of Sb to the Au-Ge eutectic would...

  14. Study on interfacial reaction between lead-free solders and alternative surface finishes

    International Nuclear Information System (INIS)

    Siti Rabiatul Aisha; Ourdjini, A.; Saliza Osman

    2007-01-01

    This study investigates the interfacial reactions occurring during reflow soldering between Sn-Ag-Cu lead-free solder and two surface finishes: electroless nickel/ immersion gold (ENIG) and immersion silver (IAg). The study focuses on interfacial reactions evolution and growth kinetics of intermetallic compounds (IMC) formed during soldering and isothermal ageing at 150 degree Celsius for up to 2000 hours. Optical and scanning electron microscopy were used to measure IMC thickness and examine the morphology of IMC respectively, whereas the IMC phases were identified by energy dispersive X-ray analysis (EDX). The results showed that the IMC formed on ENIG finish is thinner compared to that formed on IAg finish. For IAg surface finish, Cu 6 Sn 5 IMCs with scallop morphology are formed at the solder/ surface finish interface after reflow while a second IMC, Cu 3 Sn was formed between the copper and Cu 6 Sn 5 IMC after the isothermal ageing treatment. For ENIG surface finish both (Cu,Ni) 6 Sn 5 and (Ni,Cu) 3 Sn 4 are formed after soldering. Isothermal aging of the solder joints formed on ENIG finish was found to have a significant effect on the morphology of the intermetallics by transforming to more spherical and denser morphology in addition to increase i their thickness with increased ageing time. (author)

  15. Research on Defects Inspection of Solder Balls Based on Eddy Current Pulsed Thermography

    Directory of Open Access Journals (Sweden)

    Xiuyun Zhou

    2015-10-01

    Full Text Available In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT. Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  16. Laser-activated protein solder for peripheral nerve repair

    Science.gov (United States)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  17. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  18. Effect of soldering techniques and gap distance on tensile strength of soldered Ni-Cr alloy joint.

    Science.gov (United States)

    Lee, Sang-Yeob; Lee, Jong-Hyuk

    2010-12-01

    The present study was intended to evaluate the effect of soldering techniques with infrared ray and gas torch under different gap distances (0.3 mm and 0.5 mm) on the tensile strength and surface porosity formation in Ni-Cr base metal alloy. Thirty five dumbbell shaped Ni-Cr alloy specimens were prepared and assigned to 5 groups according to the soldering method and the gap distance. For the soldering methods, gas torch (G group) and infrared ray (IR group) were compared and each group was subdivided by corresponding gap distance (0.3 mm: G3 and IR3, 0.5 mm: G5, IR5). Specimens of the experimental groups were sectioned in the middle with a diamond disk and embedded in solder blocks according to the predetermined distance. As a control group, 7 specimens were prepared without sectioning or soldering. After the soldering procedure, a tensile strength test was performed using universal testing machine at a crosshead speed 1 mm/min. The proportions of porosity on the fractured surface were calculated on the images acquired through the scanning electronic microscope. Every specimen of G3, G5, IR3 and IR5 was fractured on the solder joint area. However, there was no significant difference between the test groups (P > .05). There was a negative correlation between porosity formation and tensile strength in all the specimens in the test groups (P tensile strength of joints and porosity formations between the gas-oxygen torch soldering and infrared ray soldering technique or between the gap distance of 0.3 mm and 0.5 mm.

  19. Evaluation on the characteristics of tin-silver-bismuth solder

    Science.gov (United States)

    Xia, Z.; Shi, Y.; Chen, Z.

    2002-02-01

    Tin-silver-bismuth solder is characterized by its lower melting point, good wetting behavior, and good mechanical property for which it is expected to be a new lead-free solder to replace tin-lead solder. In this article, Sn-3.33Ag-4.83Bi solder was investigated concerning its physical, spreading, and mechanical properties under specific conditions. Cooling curves and DSC results showed that it was close to eutectic composition (m.p. 210° 212 °C). Coefficiency of thermal expansion (CTE) of this solder, between that of PCBs and copper substrates, was beneficial to alleviate the thermal mismatch of the substrates. It was also a good electrical and thermal conductor. Using a rosin-based, mildly activated (RMA) flux, a spreading test indicated that SnAgBi solder paste had good solderability. Meanwhile, the solder had high tensile strength and fracture energy. Its fracture mechanism was a mixture of ductile and brittle fracture morphology. The metallographic and EDAX analyses indicated that it was composed of a tin-based solid solution and some intermetallic compound (IMC) that could strengthen the substrate. However, these large needle-like IMCs would cut the substrate and this resulted in the decreasing of the toughness of the solder.

  20. Thermomechanical fatigue life prediction for several solders

    Science.gov (United States)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for

  1. Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction

    Science.gov (United States)

    Takaku, Yoshikazu; Ohnuma, Ikuo; Kainuma, Ryosuke; Yamada, Yasushi; Yagi, Yuji; Nishibe, Yuji; Ishida, Kiyohito

    2006-11-01

    Bismuth and its alloys are candidates for Pb-free high-temperature solders that can be substituted for conventional Pb-rich Pb-Sn solders (melting point (mp) = 573 583 K). However, inferior properties such as brittleness and weak bonding strength should be improved for practical use. To that end, BiCu-X (X=Sb, Sn, and Zn) Pb-free high-temperature solders are proposed. Miscibility gaps in liquid BiCu-X alloys were surveyed using the thermodynamic database ADAMIS (alloy database for micro-solders), and compositions of the BiCu-X solders were designed on the basis of calculation. In-situ composite solders that consist of a Bi-base matrix with fine intermetallic compound (IMC) particles were produced by gas-atomizing and melt-spinning methods. The interfacial reaction between in-situ composite solders and Cu or Ni substrates was investigated. The IMCs at the interface formed a thin, uniform layer, which is an appropriate morphology for a reliable solder joint.

  2. Integration of environmentally compatible soldering technologies for waste minimization

    International Nuclear Information System (INIS)

    Hosking, F.M.

    1992-01-01

    There has been a concentrated effort throughout the international microelectronics industry to phase out chlorofluorocarbon (CFC) materials and alleviate the serious problem of ozone depletion created by the release of CFCS. The development of more environmentally compatible manufacturing technologies is the cornerstone of this effort. Alternative materials and processes for cleaning and soldering have received special attention. Electronic. soldering typically utilizes rosin-based fluxes to promote solder wettability. Flux residues must be removed from the soldered parts when high product reliability is essential. Halogenated or CFC solvents have been the principle chemicals used to clean the residues. With the accelerated push to eliminate CFCs in the US by 1995, CFC-free solvents, aqueous-based cleaning, water soluble or ''no clean'' fluxes, and fluxless soldering technologies are being developed and quickly integrated into manufacturing practice. Sandia's Center for Solder Science and Technology has been ch g a variety of fluxless and alternative soldering technologies for DOE's waste minimization program. The work has focused on controlled atmosphere, laser, and ultrasonic fluxless soldering, protective metallic and organic coatings, and fluxes which have water soluble or low solids-based chemistries. With the increasing concern that Pb will also be banned from electronic soldering, Sandia has been characterizing the wetting, aging, and mechanical properties of Pb-fire solder alloys. The progress of these integrated studies will be discussed. Their impact on environmentally compatible manufacturing will be emphasized. Since there is no universal solution to the various environmental, safety, and health issues which currently face industry, the proposed technologies offer several complementary materials and processing options from which one can choose

  3. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints.

    Science.gov (United States)

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-12-01

    Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (ptensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint.

  4. High-Temperature Lead-Free Solder Alternatives: Possibilities and Properties

    DEFF Research Database (Denmark)

    High-temperature solders have been widely used as joining materials to provide stable interconnections that resist a severe thermal environment and also to facilitate the drive for miniaturization. High-lead containing solders have been commonly used as high-temperature solders. The development...... of high-temperature lead-free solders has become an important issue for both the electronics and automobile industries because of the health and environmental concerns associated with lead usage. Unfortunately, limited choices are available as high-temperature lead-free solders. This work outlines...... the criteria for the evaluation of a new high-temperature lead-free solder material. A list of potential ternary high-temperature lead-free solder alternatives based on the Au-Sn and Au-Ge systems is proposed. Furthermore, a comprehensive comparison of the high-temperature stability of microstructures...

  5. Interfacial reaction of Sn-based solder joint in the package system

    Science.gov (United States)

    Gu, Huandi

    In this thesis, I report a study on the effect of the solder size on intermetallic layer formation by comparing the morphology change and growth rate of two different size solder joint aged at a same temperature for different aging time. The layer thickness and microstructure were analyzed using scanning electron microscopy (SEM). Photoshop was used to measure the thickness of intermetallic compound. Two different size of solder joints with composition of Sn-Ag-Cu (305) were used.

  6. Interface between Sn-Sb-Cu solder and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sebo, P., E-mail: Pavel.Sebo@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Svec, P. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janickovic, D.; Illekova, E. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava 45 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine)

    2011-07-15

    Highlights: {yields} New lead-free solder materials based on Sn-Sb-Cu were designed and prepared. {yields} Melting and solidification temperatures of the solders have been determined. {yields} Cu-substrate/solder interaction has been analyzed and quantified. {yields} Phases formed at the solder-substrate interface have been identified. {yields} Composition and soldering atmospheres were correlated with joint strength. - Abstract: Influence of antimony and copper in Sn-Sb-Cu solder on the melting and solidification temperatures and on the microstructure of the interface between the solder and copper substrate after wetting the substrate at 623 K for 1800 s were studied. Microstructure of the interface between the solder and copper substrates in Cu-solder-Cu joints prepared at the same temperature for 1800 s was observed and shear strength of the joints was measured. Influence of the atmosphere - air with the flux and deoxidising N{sub 2} + 10H{sub 2} gas - was taken into account. Thermal stability and microstructure were studied by differential scanning calorimetry (DSC), light microscopy, scanning electron microscopy (SEM) with energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). Melting and solidification temperatures of the solders were determined. An interfacial transition zone was formed by diffusion reaction between solid copper and liquid solder. At the interface Cu{sub 3}Sn and Cu{sub 6}Sn{sub 5} phases arise. Cu{sub 3}Sn is adjacent to the Cu substrate and its thickness decreases with increasing the amount of copper in solder. Scallop Cu{sub 6}Sn{sub 5} phase is formed also inside the solder drop. The solid solution Sn(Sb) and SbSn phase compose the interior of the solder drop. Shear strength of the joints measured by push-off method decreases with increasing Sb concentration. Copper in the solder shows even bigger negative effect on the strength.

  7. Effect of temperature and flux concentration on soldering of base metal.

    Science.gov (United States)

    Lee, S Y; Lin, C T; Wang, M H; Tseng, H; Huang, H M; Dong, D R; Pan, L C; Shih, Y H

    2000-12-01

    The present study used the acoustic emission (AE) technique to evaluate interactions among soldering temperature, flux treatment, and the resultant ultimate tensile strength (UTS). Scanning electron microscopy (SEM) was used to examine fracture surfaces of the solder joints. Specimens were cast from removable partial denture alloy and then placed in a jig with a gap distance of 1.0 mm. A high-frequency soldering machine with an optical pyrometer was used for soldering at 1150 degrees C and 1200 degrees C, respectively. The flux concentrations were 67% and 75%. The soldered specimens were subjected to tensile test at a crosshead speed of 0.05 mm/min. During testing, acoustic emissions in the frequency range of 100--1200 kHz were collected, filtered, recorded, and processed by a sensing device. The results were analysed by ANOVA and Tukey LSD test. UTS at different temperatures showed no significant difference according to either mechanical or acoustic results. But in the 1200 degrees C group, the UTSs and AE counts showed significant differences (Pacoustic signals within the elastic deformation zone, while the 67% flux subgroup produced similar signals within the plastic deformation zone, either beyond the 0.2% yield point or before fracture.

  8. A novel method for direct solder bump pull testing using lead-free solders

    Science.gov (United States)

    Turner, Gregory Alan

    This thesis focuses on the design, fabrication, and evaluation of a new method for testing the adhesion strength of lead-free solders, named the Isotraction Bump Pull method (IBP). In order to develop a direct solder joint-strength testing method that did not require customization for different solder types, bump sizes, specific equipment, or trial-and-error, a combination of two widely used and accepted standards was created. First, solder bumps were made from three types of lead free solder were generated on untreated copper PCB substrates using an in-house fabricated solder bump-on-demand generator, Following this, the newly developed method made use of a polymer epoxy to encapsulate the solder bumps that could then be tested under tension using a high precision universal vertical load machine. The tests produced repeatable and predictable results for each of the three alloys tested that were in agreement with the relative behavior of the same alloys using other testing methods in the literature. The median peak stress at failure for the three solders tested were 2020.52 psi, 940.57 psi, and 2781.0 psi, and were within one standard deviation of the of all data collected for each solder. The assumptions in this work that brittle fracture occurred through the Intermetallic Compound layer (IMC) were validated with the use of Energy-Dispersive X-Ray Spectrometry and high magnification of the fractured surface of both newly exposed sides of the test specimens. Following this, an examination of the process to apply the results from the tensile tests into standard material science equations for the fracture of the systems was performed..

  9. Mechanical properties of Bi-In-Zn/ Cu solder joint system

    International Nuclear Information System (INIS)

    Ervina Efzan Mohd Noor; Mohammed Noori Ridha; Ahmad Badri Ismail; Nurulakmal Mohd Sharif; Kuan Yew Cheong; Tadashi Ariga; Zuhailawati Hussain

    2009-01-01

    Full text: In recent years, the pollution of environment from lead (Pb) and Pb-containing compounds in microelectronic devices attracts more and more attentions in academia and industry; the lead-free solder alloys begin to replace the lead-based solders in packaging process of some devices and components. In this works, microstructure and mechanical properties of different reflow temperature (80, 100, 120 and 140 degree Celsius) for solder joints on shear strength of Bi-In-Zn lead free solder with low melting temperature of 60 degree Celsius on Cu solder joint has been investigated. This paper will compared the mechanical properties of the Bi-In-Zn lead-free solder alloys with current lead-free solder, Sn-Ag-Cu solder alloy. The fracture surface analyses have been observed by Optical Microscope and were investigated by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) and proved it by X-ray diffraction (XRD). (author)

  10. A Corrosion Investigation of Solder Candidates for High-Temperature Applications

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Ambat, Rajan

    2009-01-01

    The step soldering approach is being employed in the Multi-Chip module (MCM) technology. High lead containing alloys is one of the solders currently being used in this approach. Au-Sn and Au-Ge based candidate alloys have been proposed as alternative solders for this application. In this work...

  11. Lead free solder mechanics and reliability

    CERN Document Server

    Pang, John Hock Lye

    2012-01-01

    Lead-free solders are used extensively as interconnection materials in electronic assemblies and play a critical role in the global semiconductor packaging and electronics manufacturing industry. Electronic products such as smart phones, notebooks and high performance computers rely on lead-free solder joints to connect IC chip components to printed circuit boards. Lead Free Solder: Mechanics and Reliability provides in-depth design knowledge on lead-free solder elastic-plastic-creep and strain-rate dependent deformation behavior and its application in failure assessment of solder joint reliability. It includes coverage of advanced mechanics of materials theory and experiments, mechanical properties of solder and solder joint specimens, constitutive models for solder deformation behavior; numerical modeling and simulation of solder joint failure subject to thermal cycling, mechanical bending fatigue, vibration fatigue and board-level drop impact tests. This book also: Discusses the mechanical prope...

  12. Milliprobe and microprobe analysis of gold items of ancient jewellery

    International Nuclear Information System (INIS)

    Demortier, G.; Hackens, T.

    It has long been accepted that the presence of cadmium implies a condemnation of the authenticity of an ancient gold object, or at least, of the part of the object where the cadmium is detected. An analysis in Paris of a recently excavated object from Roman times has shown cadmium. Meanwhile, systematic observations were made at L.A.R.N. on objects dating from Hellenistic to Byzantine times with different given origins (objects from a museum and from private collections). By using PIXE with a 3 MeV proton milliprobe (700 μm beam diameter) in a non vacuum geometry, relative amounts of copper, silver, cadmium and gold at the surface of more than 30 gold objects expected to be ancient have been determined. Traces or significant concentrations of cadmium have been detected at several points on or in the neighbourhood of solders on many objects which seem to be from Roman to early Byzantine times. Cadmium concentrations range between 2 to 100 parts per thousand. This range of variations and the relative concentrations of Au, Ag, Cu and Cd at the surface of the objects studied are often different from the figures obtained during analyses of modern soldering alloys. Experiments with the L.A.R.N. proton microprobe (5 μm x 10 μm area) allow a still better topographical resolution and more significative comparison of the relative amounts of the elements of interest in modern soldering alloys and supposedly old solders. The usefulness of the microprobe is demonstrated. (author)

  13. High power vertical stacked and horizontal arrayed diode laser bar development based on insulation micro-channel cooling (IMCC) and hard solder bonding technology

    Science.gov (United States)

    Wang, Boxue; Jia, Yangtao; Zhang, Haoyu; Jia, Shiyin; Liu, Jindou; Wang, Weifeng; Liu, Xingsheng

    2018-02-01

    An insulation micro-channel cooling (IMCC) has been developed for packaging high power bar-based vertical stack and horizontal array diode lasers, which eliminates many issues caused in its congener packaged by commercial copper formed micro-channel cooler(MCC), such as coefficient of thermal expansion (CTE) mismatch between cooler and diode laser bar, high coolant quality requirement (DI water) and channel corrosion and electro-corrosion induced by DI water if the DI-water quality is not well maintained The IMCC cooler separates water flow route and electrical route, which allows tap-water as coolant without electro-corrosion and therefore prolongs cooler lifetime dramatically and escalated the reliability of these diode lasers. The thickness of ceramic and copper in an IMCC cooler is well designed to minimize the CTE mismatch between laser bar and cooler, consequently, a very low "SMILE" of the laser bar can be achieved for small fast axis divergence after collimation. In additional, gold-tin hard solder bonding technology was also developed to minimize the risk of solder electromigration at high current density and thermal fatigue under hard-pulse operation mode. Testing results of IMCC packaged diode lasers are presented in this report.

  14. A new method for soldering particle-reinforced aluminum metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinbin; Mu, Yunchao [Zhongyuan University of Technology, Zhengzhou 450007 (China); Luo, Xiangwei [Zhengzhou University, Zhengzhou 450002 (China); Niu, Jitai, E-mail: niujitai@163.com [Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. Black-Right-Pointing-Pointer The nickel plating is required on the surface of the composites before soldering. Black-Right-Pointing-Pointer Low welding temperature is set to avoid overheating of the matrix. Black-Right-Pointing-Pointer Chemical and metallurgical bonding of composites and Kovar is carried out. Black-Right-Pointing-Pointer High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al-SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe-Ni-Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn-Cd-Ag-Cu) with a melting point of about 400 Degree-Sign C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)-Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al-SiC composite.

  15. A new method for soldering particle-reinforced aluminum metal matrix composites

    International Nuclear Information System (INIS)

    Lu, Jinbin; Mu, Yunchao; Luo, Xiangwei; Niu, Jitai

    2012-01-01

    Highlights: ► Soldering of 55% SiCp/Al composite and Kovar is first achieved in the world. ► The nickel plating is required on the surface of the composites before soldering. ► Low welding temperature is set to avoid overheating of the matrix. ► Chemical and metallurgical bonding of composites and Kovar is carried out. ► High tension strength of 225 MPa in soldering seam has been obtained. - Abstract: Soldering of aluminum metal matrix composites (Al–SiC) to other structural materials, or even to themselves, has proved unsuccessful mainly due to the poor wetting of these composites by conventional soldering alloys. This paper reports a new approach, which improves the wetting properties of these composites by molting solder alloys to promote stronger bonds. The new approach relies on nickel-plating of the composite's faying surface prior to application of a solder alloy. Based on this approach, an aluminum metal matrix composite containing 55 vol.% SiC particles is successfully soldered to a Fe–Ni–Co alloy (commercially known as Kovar 4J29). The solder material is a zinc-based alloy (Zn–Cd–Ag–Cu) with a melting point of about 400 °C. Microscopic examinations of the aluminum metal matrix composites (Al-MMCs)–Kovar interfaces show that the nickel-plating, prior to soldering, could noticeably enhance the reaction between the molten solder and composites. The fractography of the shear-tested samples revealed that fracture occurs within the composite (i.e. cohesive failure), indicating a good adhesion between the solder alloy and the Al–SiC composite.

  16. Properties and Microstructures of Sn-Bi-X Lead-Free Solders

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-01-01

    Full Text Available The Sn-Bi base lead-free solders are proposed as one of the most popular alloys due to the low melting temperature (eutectic point: 139°C and low cost. However, they are not widely used because of the lower wettability, fatigue resistance, and elongation compared to traditional Sn-Pb solders. So the alloying is considered as an effective way to improve the properties of Sn-Bi solders with the addition of elements (Al, Cu, Zn, Ga, Ag, In, Sb, and rare earth and nanoparticles. In this paper, the development of Sn-Bi lead-free solders bearing elements and nanoparticles was reviewed. The variation of wettability, melting characteristic, electromigration, mechanical properties, microstructures, intermetallic compounds reaction, and creep behaviors was analyzed systematically, which can provide a reference for investigation of Sn-Bi base solders.

  17. Utilization of Pb-free solders in MEMS packaging

    Science.gov (United States)

    Selvaduray, Guna S.

    2003-01-01

    Soldering of components within a package plays an important role in providing electrical interconnection, mechanical integrity and thermal dissipation. MEMS packages present challenges that are more complex than microelectronic packages because they are far more sensitive to shock and vibration and also require precision alignment. Soldering is used at two major levels within a MEMS package: at the die attach level and at the component attach level. Emerging environmental regulations worldwide, notably in Europe and Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the inherent toxicity of Pb. This has provided the driving force for development and deployment of Pb-free solder alloys. A relatively large number of Pb-free solder alloys have been proposed by various researchers and companies. Some of these alloys have also been patented. After several years of research, the solder alloy system that has emerged is based on Sn as a major component. The electronics industry has identified different compositions for different specific uses, such as wave soldering, surface mount reflow, etc. The factors that affect choice of an appropriate Pb-free solder can be divided into two major categories, those related to manufacturing, and those related to long term reliability and performance.

  18. Tensile strength of two soldered alloys (Minalux and Verabond2

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Rezaee S

    2002-07-01

    Full Text Available Recently. Minalux alloy, a base metal free from Be, has been presented on the market while no special soldering has been recommended for it. On the other hand, based on the manufacturer's claim, this alloy is similar to Verabond2. The aim of this study was to investigate the tensile strength of Minalux and Verabond2, soldered by Verasolder. Twelve standard dambble shape samples, with the length of 18 mm and the diameter of 3mm, were prepared from each alloy. Six samples of each alloy were divided into two pieces with carboradom disk. Soldering gap distance was 0.3mm, measured by a special jig and they were soldered by Verasolder alloy. Six other samples, of both Iranian and foreign unsoldered alloys were considered as control group. Then samples were examined under tensile force and their tensile strength was recorded. Two- way variance analysis showed that the tensile strength of Minalux alloy and Verabond2 were not statistically significant (Verasoler 686, Minalux 723, but after soldering, such difference became significant (Minalux 308, Verabond2 432. Verabond2 showed higher tensile strength after soldering.

  19. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    Science.gov (United States)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  20. Spontaneous soldering

    International Nuclear Information System (INIS)

    Percacci, R.

    1984-01-01

    It is proposed that the soldering form of general relativity be treated as a dynamical variable. This gives rise to the possibility of treating the linear connection on (n-dimensional) spacetime and an internal O(k)-Yang-Mills field as different components of the same O(N) gauge field (N= n+k). The distinction between gravitational and Yang-Mills interactions is due to a kind of Higgs mechanism driven by the vacuum expectation value of the soldering form. (orig.)

  1. Albumin solder covalently bound to a polymer membrane: New approach to improve binding strength in laser tissue soldering in-vitro.

    Science.gov (United States)

    Hiebl, B; Ascher, L; Luetzow, K; Kratz, K; Gruber, C; Mrowietz, C; Nehring, M E; Lendlein, A; Franke, R-P; Jung, F

    2018-01-01

    Laser tissue soldering (LTS) based on indocyanine green (ICG)-mediated heat-denaturation of proteins might be a promising alternative technique for micro-suturing, but up to now the problem of too weak shear strength of the solder welds in comparison to sutures is not solved. Earlier reports gave promising results showing that solder supported by carrier materials can enhance the cohesive strength of the liquid solder. In these studies, the solder was applied to the carriers by dip coating. Higher reliability of the connection between the solder and the carrier material is expected when the solder is bound covalently to the carrier material. In the present study a poly(ether imide) (PEI) membrane served as carrier material and ICG-supplemented albumin as solder substrate. The latter was covalently coupled to the carrier membrane under physiological conditions to prevent structural protein changes. As laser source a diode continuous-wave laser emitting at 808 nm with intensities between 250 mW and 1500 mW was utilized. The albumin functionalized carrier membrane was placed onto the tunica media of explanted pig thoracic aortae forming an overlapping area of approximately 0.5×0.5 cm2. All tests were performed in a dry state to prevent laser light absorption by water. Infrared spectroscopy, spectro-photometrical determination of the secondary and primary amine groups after acid orange II staining, contact angle measurements, and atomic force microscopy proved the successful functionalization of the PEI membrane with albumin. A laser power of 450 mW LTS could generate a membrane-blood vessel connection which was characterized by a shear strength of 0.08±0.002 MPa, corresponding to 15% of the tensile strength of the native blood vessel. Theoretically, an overlapping zone of 4.1 mm around the entire circumference of the blood vessel could have provided shear strength of the PEI membrane-blood vessel compound identical to the tensile strength of the native

  2. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...... criterion, phases predicted in the bulk solder and the thermodynamic stability of chlorides. These promising solder candidates were precisely produced using the hot stage microscope and its respective anodic and cathodic polarization curves were investigated using a micro-electrochemical set up...

  3. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    International Nuclear Information System (INIS)

    Xiao, H.; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-01-01

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R 0 /R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints

  4. Damage behavior of SnAgCu/Cu solder joints subjected to thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, H., E-mail: xiaohui2013@yahoo.com.cn; Li, X.Y.; Hu, Y.; Guo, F.; Shi, Y.W.

    2013-11-25

    Highlights: •A creep–fatigue damage model based on CDM was proposed. •Designed system includes load frame, strain measure device and damage test device. •Damage evolution of solder joints was a function of accumulated inelastic strain. •Damage of solder joints is an interaction between creep and low-cycle fatigue. -- Abstract: Thermomechanical fatigue damage is a progressive process of material degradation. The objective of this study was to investigate the damage behavior of SnAgCu/Cu solder joints under thermomechanical cycling. A damage model was proposed based on continuum damage mechanics (CDM). Based upon an analysis of displacements for flip-chip solder joints subjected to thermal cycling, a special bimetallic loading frame with single-solder joint samples was designed to simulate the service conditions of actual joints in electronic packages. The assembly, which allowed for strain measurements of an individual solder joint during temperature cycling, was used to investigate the impact of stress–strain cycling on the damage behavior of SnAgCu/Cu solder joints. The characteristic parameters of the damage model were determined through thermomechanical cycling and strain measurement tests. The damage variable D = 1 − R{sub 0}/R was selected, and values for it were obtained using a four-probe method for the single-solder joint samples every dozen cycles during thermomechanical cycling tests to verify the model. The results showed that the predicted damage was in good agreement with the experimental results. The damage evolution law proposed here is a function of inelastic strain, and the results showed that the damage rate of SnAgCu/Cu solder joints increased as the range of the applied strain increased. In addition, the microstructure evolution of the solder joints was analyzed using scanning electron microscopy, which provided the microscopic explanation for the damage evolution law of SnAgCu/Cu solder joints.

  5. Reliability Study of Solder Paste Alloy for the Improvement of Solder Joint at Surface Mount Fine-Pitch Components

    Directory of Open Access Journals (Sweden)

    Mohd Nizam Ab. Rahman

    2014-12-01

    Full Text Available The significant increase in metal costs has forced the electronics industry to provide new materials and methods to reduce costs, while maintaining customers’ high-quality expectations. This paper considers the problem of most electronic industries in reducing costly materials, by introducing a solder paste with alloy composition tin 98.3%, silver 0.3%, and copper 0.7%, used for the construction of the surface mount fine-pitch component on a Printing Wiring Board (PWB. The reliability of the solder joint between electronic components and PWB is evaluated through the dynamic characteristic test, thermal shock test, and Taguchi method after the printing process. After experimenting with the dynamic characteristic test and thermal shock test with 20 boards, the solder paste was still able to provide a high-quality solder joint. In particular, the Taguchi method is used to determine the optimal control parameters and noise factors of the Solder Printer (SP machine, that affects solder volume and solder height. The control parameters include table separation distance, squeegee speed, squeegee pressure, and table speed of the SP machine. The result shows that the most significant parameter for the solder volume is squeegee pressure (2.0 mm, and the solder height is the table speed of the SP machine (2.5 mm/s.

  6. Features of Pd-Ni-Fe solder system for vacuum brazing of low alloy steels

    International Nuclear Information System (INIS)

    Radzievskij, V.N.; Kurochko, R.S.; Lotsmanov, S.N.; Rymar', V.I.

    1975-01-01

    The brazing solder of the Pd-Ni-Fe alloyed with copper and lithium, in order to decrease the melting point and provide for a better spreading, when soldered in vacuum ensures a uniform strength of soldered joints with the base metal of low-alloyed steels of 34KHNIM-type. The properties of low-alloyed steel joints brazed with the Pd-Ni-Fe-system solder little depend on the changes in the soldering parameters. The soldered joint keeps a homogeneous structure after all the stages of heat treatment (annealing, quenching and tempering)

  7. Fundamentals of lead-free solder interconnect technology from microstructures to reliability

    CERN Document Server

    Lee, Tae-Kyu; Kim, Choong-Un; Ma, Hongtao

    2015-01-01

    This unique book provides an up-to-date overview of the fundamental concepts behind lead-free solder and interconnection technology. Readers will find a description of the rapidly increasing presence of electronic systems in all aspects of modern life as well as the increasing need for predictable reliability in electronic systems. The physical and mechanical properties of lead-free solders are examined in detail, and building on fundamental science, the mechanisms responsible for damage and failure evolution, which affect reliability of lead-free solder joints are identified based on microstructure evolution.  The continuing miniaturization of electronic systems will increase the demand on the performance of solder joints, which will require new alloy and processing strategies as well as interconnection design strategies. This book provides a foundation on which improved performance and new design approaches can be based.  In summary, this book:  Provides an up-to-date overview on lead-free soldering tech...

  8. Spectroscopic investigation of oxidized solder surfaces

    International Nuclear Information System (INIS)

    Song, Jenn-Ming; Chang-Chien, Yu-Chien; Huang, Bo-Chang; Chen, Wei-Ting; Shie, Chi-Rung; Hsu, Chuang-Yao

    2011-01-01

    Highlights: → UV-visible spectroscopy is successfully used to evaluate the degree of discoloring of solders. → The surface oxides of solders can also be identified by UV-visible absorption spectra. → The discoloration of solder surface can be correlated with optical characterization of oxides. → A strategy against discoloring by alloying was also suggested. - Abstract: For further understanding of the discoloration of solder surfaces due to oxidation during the assembly and operation of electronic devices, UV-vis and X-ray photoelectron spectroscopic analyses were applied to evaluate the degree of discoloring and identify the surface oxides. The decrease in reflectance of the oxidized solder surface is related to SnO whose absorption band is located within the visible region. A trace of P can effectively depress the discoloration of solders under both solid and semi-solid states through the suppression of SnO.

  9. Optimal parameters for laser tissue soldering

    Science.gov (United States)

    McNally-Heintzelman, Karen M.; Sorg, Brian S.; Chan, Eric K.; Welch, Ashley J.; Dawes, Judith M.; Owen, Earl R.

    1998-07-01

    Variations in laser irradiance, exposure time, solder composition, chromophore type and concentration have led to inconsistencies in published results of laser-solder repair of tissue. To determine optimal parameters for laser tissue soldering, an in vitro study was performed using an 808-nm diode laser in conjunction with an indocyanine green (ICG)- doped albumin protein solder to weld bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The effects of laser irradiance and exposure time on tensile strength of the weld and temperature rise as well as the effect of hydration on bond stability were investigated. Optimum irradiance and exposure times were identified for each solder type. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the weld. A reduction in dye concentration from 2.5 mg/ml to 0.25 mg/ml was also found to result in an increase in tensile strength. The strongest welds were produced with an irradiance of 6.4 W/cm2 for 50 s using a solid protein solder composed of 60% BSA and 0.25 mg/ml ICG. Steady-state solder surface temperatures were observed to reach 85 plus or minus 5 degrees Celsius with a temperature gradient across the solid protein solder strips of between 15 and 20 degrees Celsius. Finally, tensile strength was observed to decrease significantly (20 to 25%) after the first hour of hydration in phosphate-buffered saline. No appreciable change was observed in the strength of the tissue bonds with further hydration.

  10. Handbook of machine soldering SMT and TH

    CERN Document Server

    Woodgate, Ralph W

    1996-01-01

    A shop-floor guide to the machine soldering of electronics Sound electrical connections are the operational backbone of every piece of electronic equipment-and the key to success in electronics manufacturing. The Handbook of Machine Soldering is dedicated to excellence in the machine soldering of electrical connections. Self-contained, comprehensive, and down-to-earth, it cuts through jargon, peels away outdated notions, and presents all the information needed to select, install, and operate machine soldering equipment. This fully updated and revised volume covers all of the new technologies and processes that have emerged in recent years, most notably the use of surface mount technology (SMT). Supplemented with 200 illustrations, this thoroughly accessible text Describes reflow and wave soldering in detail, including reflow soldering of SMT boards and the use of nitrogen blankets * Explains the setup, operation, and maintenance of a variety of soldering machines * Discusses theory, selection, and control met...

  11. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    Science.gov (United States)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  12. Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    McNally, K.M.; Sorg, B.S.; Welch, A.J.; Dawes, J.M.; Owen, E.R.

    1999-01-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5mgml -1 to 0.25mgml -1 was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4Wcm -2 using a solid protein solder composed of 60% BSA and 0.25mgml -1 ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85±5 deg. C with a

  13. Characterizing the Soldering Alloy Type In–Ag–Ti and the Study of Direct Soldering of SiC Ceramics and Copper

    Directory of Open Access Journals (Sweden)

    Roman Koleňák

    2018-04-01

    Full Text Available The aim of the research was to characterize the soldering alloy In–Ag–Ti type, and to study the direct soldering of SiC ceramics and copper. The In10Ag4Ti solder has a broad melting interval, which mainly depends on its silver content. The liquid point of the solder is 256.5 °C. The solder microstructure is composed of a matrix with solid solution (In, in which the phases of titanium (Ti3In4 and silver (AgIn2 are mainly segregated. The tensile strength of the solder is approximately 13 MPa. The strength of the solder increased with the addition of Ag and Ti. The solder bonds with SiC ceramics, owing to the interaction between active In metal and silicon infiltrated in the ceramics. XRD analysis has proven the interaction of titanium with ceramic material during the formation of the new minority phases of titanium silicide—SiTi and titanium carbide—C5Ti8. In and Ag also affect bond formation with the copper substrate. Two new phases were also observed in the bond interphase—(CuAg6In5 and (AgCuIn2. The average shear strength of a combined joint of SiC–Cu, fabricated with In10Ag4Ti solder, was 14.5 MPa. The In–Ag–Ti solder type studied possesses excellent solderability with several metallic and ceramic materials.

  14. Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.

  15. Lead-free solder technology transfer from ASE Americas

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    1999-10-19

    To safeguard the environmental friendliness of photovoltaics, the PV industry follows a proactive, long-term environmental strategy involving a life-of-cycle approach to prevent environmental damage by its processes and products from cradle to grave. Part of this strategy is to examine substituting lead-based solder on PV modules with other solder alloys. Lead is a toxic metal that, if ingested, can damage the brain, nervous system, liver and kidneys. Lead from solder in electronic products has been found to leach out from municipal waste landfills and municipal incinerator ash was found to be high in lead also because of disposed consumer electronics and batteries. Consequently, there is a movement in Europe and Japan to ban lead altogether from use in electronic products and to restrict the movement across geographical boundaries of waste containing lead. Photovoltaic modules may contain small amounts of regulated materials, which vary from one technology to another. Environmental regulations impact the cost and complexity of dealing with end-of-life PV modules. If they were classified as hazardous according to Federal or State criteria, then special requirements for material handling, disposal, record-keeping and reporting would escalate the cost of decommissioning the modules. Fthenakis showed that several of today's x-Si modules failed the US-EPA Toxicity Characteristic Leaching Procedure (TCLP) for potential leaching of Pb in landfills and also California's standard on Total Threshold Limit Concentration (TTLC) for Pb. Consequently, such modules may be classified as hazardous waste. He highlighted potential legislation in Europe and Japan which could ban or restrict the use of lead and the efforts of the printed-circuit industries in developing Pb-free solder technologies in response to such expected legislation. Japanese firms already have introduced electronic products with Pb-free solder, and one PV manufacturer in the US, ASE Americas has used a

  16. Thermomechanical behavior of tin-rich (lead-free) solders

    Science.gov (United States)

    Sidhu, Rajen Singh

    In order to adequately characterize the behavior of ball-grid-array (BGA) Pb-free solder spheres in electronic devices, the microstructure and thermomechanical behavior need to be studied. Microstructure characterization of pure Sn, Sn-0.7Cu, Sn-3.5Ag, and Sn-3.9Ag-0.7Cu alloys was conducted using optical microscopy, scanning electron microscopy, transmission electron microscopy, image analysis, and a novel serial sectioning 3D reconstruction process. Microstructure-based finite-element method (FEM) modeling of deformation in Sn-3.5Ag alloy was conducted, and it will be shown that this technique is more accurate when compared to traditional unit cell models for simulating and understanding material behavior. The effect of cooling rate on microstructure and creep behavior of bulk Sn-rich solders was studied. The creep behavior was evaluated at 25, 95, and 120°C. Faster cooling rates were found to increase the creep strength of the solders due to refinement of the solder microstructure. The creep behavior of Sn-rich single solder spheres reflowed on Cu substrates was studied at 25, 60, 95, and 130°C. Testing was conducted using a microforce testing system, with lap-shear geometry samples. The solder joints displayed two distinct creep behaviors: (a) precipitation-strengthening (Sn-3.5Ag and Sn-3.9Ag-0.7Cu) and (b) power law creep accommodated by grain boundary sliding (GBS) (Sn and Sn-0.7Cu). The relationship between microstructural features (i.e. intermetallic particle size and spacing), stress exponents, threshold stress, and activation energies are discussed. The relationship between small-length scale creep behavior and bulk behavior is also addressed. To better understand the damage evolution in Sn-rich solder joints during thermal fatigue, the local damage will be correlated to the cyclic hysteresis behavior and crystal orientations present in the Sn phase of solder joints. FEM modeling will also be utilized to better understand the macroscopic and local

  17. Interfacial Microstructure and Shear Strength of Brazed Cu-Cr-Zr Alloy Cylinder and Cylindrical Hole by Au Based Solder

    Directory of Open Access Journals (Sweden)

    Zaihua Li

    2017-07-01

    Full Text Available Au-Ge-Ni solder was chosen for brazing of the Cu-Cr-Zr alloy cylinder and a part with a cylindrical hole (sleeve below 550 °C. The Au based solder was first sintered on the surface of the cylinder and then brazed to the inner surface of the sleeve. The effects of the heating process, the temperature and the holding time at the temperature on the microstructure of the sintered layer on the surface of the cylinder, the brazed interfacial microstructure, and the brazed shear strength between the cylinder and the sleeve were investigated by scanning electron microscope, energy dispersive X-ray spectroscopy analysis, and tensile shear tests. By approach of side solder melt feeding and brazing under proper parameters, the voids and micro cracks due to a lack of enough solder melt feeding are greatly lessened and the brazed shear strength of 100 MPa is ensured even with large clearances around 0.01 mm.

  18. Soldering of Mg Joints Using Zn-Al Solders

    Science.gov (United States)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-04-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  19. Physical properties of lead free solders in liquid and solid state

    Energy Technology Data Exchange (ETDEWEB)

    Mhiaoui, Souad

    2007-04-17

    The European legislation prohibits the use of lead containing solders in Europe. However, lead free solders have a higher melting point (typical 20%) and their mechanical characteristics are worse. Additional problems are aging and adhesion of the solder on the electronic circuits. Thus, research activities must focus on the optimization of the properties of Sn-Ag-Cu based lead free solders chosen by the industry. Two main objectives are treated in this work. In the center of the first one is the study of curious hysteresis effects of metallic cadmium-antimony alloys after thermal cycles by measuring electronic transport phenomena (thermoelectric power and electrical resistivity). The second objective, within the framework of ''cotutelle'' between the universities of Metz and of Chemnitz and supported by COST531, is to study more specifically lead free solders. A welding must well conduct electricity and well conduct and dissipate heat. In Metz, we determined the electrical conductivity, the thermoelectric power and the thermal conductivity of various lead free solders (Sn-Ag-Cu, Sn-Cu, Sn-Ag, Sn-Sb) as well in the liquid as well in the solid state. The results have been compared to classical lead-tin (Pb-Sn) solders. In Chemnitz we measured the surface tension, the interfacial tension and the density of lead free solders. We also measured the viscosity of these solders without and with additives, in particular nickel. These properties were related to the industrial problems of wettability and spreadability. Lastly, we solidified alloys under various conditions. We observed undercooling. We developed a technique of mixture of nanocrystalline powder with lead free solders ''to sow'' the liquid bath in order to obtain ''different'' solids which were examined using optical and electron microscopy. (orig.)

  20. Visual detection of defects in solder joints

    Science.gov (United States)

    Blaignan, V. B.; Bourbakis, Nikolaos G.; Moghaddamzadeh, Ali; Yfantis, Evangelos A.

    1995-03-01

    The automatic, real-time visual acquisition and inspection of VLSI boards requires the use of machine vision and artificial intelligence methodologies in a new `frame' for the achievement of better results regarding efficiency, products quality and automated service. In this paper the visual detection and classification of different types of defects on solder joints in PC boards is presented by combining several image processing methods, such as smoothing, segmentation, edge detection, contour extraction and shape analysis. The results of this paper are based on simulated solder defects and a real one.

  1. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    Science.gov (United States)

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  2. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  3. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Directory of Open Access Journals (Sweden)

    Yee Mei Leong

    2016-06-01

    Full Text Available Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag content solder SAC105 (Sn-1.0Ag-0.5Cu because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al addition (0.1–0.5 wt.% to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.

  4. Soldering Characteristics and Mechanical Properties of Sn-1.0Ag-0.5Cu Solder with Minor Aluminum Addition

    Science.gov (United States)

    Leong, Yee Mei; Haseeb, A.S.M.A.

    2016-01-01

    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1–0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu3Al2. Cu3Al2 resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu6Sn5 intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu6Sn5 IMC but has no significant effect on the thickness of Cu3Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface. PMID:28773645

  5. The constitutive response of three solder materials

    International Nuclear Information System (INIS)

    Perez-Bergquist, Alejandro G.; Cao Fang; Perez-Bergquist, Sara J.; Lopez, Mike F.; Trujillo, Carl P.; Cerreta, Ellen K.; Gray, George T.

    2012-01-01

    Highlights: ► The full constitutive response of three solder materials. ► Test temperatures from −196 °C to 60 °C and strain rates from 10 −3 to >10 3 s −1 . ► Substitutes for leaded solders from a mechanical/microstructural properties view. - Abstract: As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (−196 °C to 60 °C) and strain rate (10 −3 to >10 3 s −1 ). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.

  6. Microstructure evolution and thermomechanical fatigue of solder materials

    NARCIS (Netherlands)

    Matin, M.A.

    2005-01-01

    The microelectronics industry is confronted with the new challenge to produce joints with lead-free solder materials replacing classical tin-lead solders in devices used in many fields (e.g. consumer electronics, road transport, aviation, space-crafts, telecommunication). In service, solder

  7. In-situ study of electromigration-induced grain rotation in Pb-free solder joint by synchrotron microdiffraction

    International Nuclear Information System (INIS)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2008-01-01

    The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines

  8. Laser assisted soldering: microdroplet accumulation with a microjet device.

    Science.gov (United States)

    Chan, E K; Lu, Q; Bell, B; Motamedi, M; Frederickson, C; Brown, D T; Kovach, I S; Welch, A J

    1998-01-01

    We investigated the feasibility of a microjet to dispense protein solder for laser assisted soldering. Successive micro solder droplets were deposited on rat dermis and bovine intima specimens. Fixed laser exposure was synchronized with the jetting of each droplet. After photocoagulation, each specimen was cut into two halves at the center of solder coagulum. One half was fixed immediately, while the other half was soaked in phosphate-buffered saline for a designated hydration period before fixation (1 hour, 1, 2, and 7 days). After each hydration period, all tissue specimens were prepared for scanning electron microscopy (SEM). Stable solder coagulum was created by successive photocoagulation of microdroplets even after the soldered tissue exposed to 1 week of hydration. This preliminary study suggested that tissue soldering with successive microdroplets is feasible even with fixed laser parameters without active feedback control.

  9. Soldering of copper-clad niobium--titanium superconductor composite

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Woodhouse, J.J.; Easton, D.S.

    1977-04-01

    When superconductivity is applied to various electrical devices, the joining of the superconducting material and the performance of the joints are generally crucial to the successful operation of the system. Although many techniques are being considered for joining composite superconductors, soldering is the most common. We determined the wetting and flow behavior of various solder and flux combinations on a copper-clad Nb-Ti composite, developed equipment and techniques for soldering and inspection of lap joints, and determined the shear strength of joints at temperatures down to -269 0 C (4 0 K). We studied 15 solders and 17 commercial and experimental fluxes in the wettability and flow tests. A resistance unit was built for soldering test specimens. A series of samples soldered with 80 Pb-20 Sn, 83 Pb-15 Sn-2 Sb, 97.5 Pb-1.5 Ag-1 Sn, 80 In-15 Pb-5 Ag, or 25 In-37.5 Pb-37.5 Sn (wt percent) was inspected by three nondestructive techniques. Through-transmission ultrasound gave the best correlation with nonbond areas revealed in peel tests. Single-lap shear specimens soldered with 97.5 Pb-1.5 Ag-1 Sn had the highest strength (10.44 ksi, 72 MPa) and total elongation (0.074 in., 1.88 mm) at -269 0 C (4 0 K) of four solders tested

  10. The constitutive response of three solder materials

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bergquist, Alejandro G., E-mail: alexpb@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, NM 87545 (United States); Cao Fang [Exxon Mobil Research and Engineering Company, Annadale, NJ 08801 (United States); Perez-Bergquist, Sara J.; Lopez, Mike F.; Trujillo, Carl P.; Cerreta, Ellen K.; Gray, George T. [Materials Science and Technology Division, Los Alamos National Laboratory, Mail Stop G755, Los Alamos, NM 87545 (United States)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer The full constitutive response of three solder materials. Black-Right-Pointing-Pointer Test temperatures from -196 Degree-Sign C to 60 Degree-Sign C and strain rates from 10{sup -3} to >10{sup 3} s{sup -1}. Black-Right-Pointing-Pointer Substitutes for leaded solders from a mechanical/microstructural properties view. - Abstract: As increasing worldwide demand for portable consumer electronics drives development of smaller, faster, more powerful electronic devices, components in these devices must become smaller, more precise, and more robust. Often, failure of these devices comes as a result of failure of the package (i.e. when a mobile phone is dropped) and specifically comes as a result of failure of solder interconnects. As a result, stronger more reliable solder materials are needed. In this paper, the constitutive responses of three solder materials (Sn63Pb37, Sn62Pb36Ag2, and Sn96.5Ag3Cu0.5) are analyzed as a function of temperature (-196 Degree-Sign C to 60 Degree-Sign C) and strain rate (10{sup -3} to >10{sup 3} s{sup -1}). The lead-free Sn96.5Ag3Cu0.5 possessed the highest yield stress of the three solders at all tested strain rates and temperatures, and all solder microstructures which displayed a mechanical response that was sensitive to temperature exhibited grain coarsening with increasing plastic strain, even at room temperature.

  11. In-situ study of electromigration-induced grain rotation in Pb-free solder joint by synchrotron microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Tu, King-Ning

    2008-10-31

    The rotation of Sn grains in Pb-free flip chip solder joints hasn't been reported in literature so far although it has been observed in Sn strips. In this letter, we report the detailed study of the grain orientation evolution induced by electromigration by synchrotron based white beam X-ray microdiffraction. It is found that the grains in solder joint rotate more slowly than in Sn strip even under higher current density. On the other hand, based on our estimation, the reorientation of the grains in solder joints also results in the reduction of electric resistivity, similar to the case of Sn strip. We will also discuss the reason why the electric resistance decreases much more in strips than in the Sn-based solders, and the different driving force for the grain growth in solder joint and in thin film interconnect lines.

  12. Characterization of lead-free solders for electronic packaging

    Science.gov (United States)

    Ma, Hongtao

    The characterization of lead-free solders, especially after isothermal aging, is very important in order to accurately predict the reliability of solder joints. However, due to lack of experimental testing standards and the high homologous temperature of solder alloys (Th > 0.5T m even at room temperature), there are very large discrepancies in both the tensile and creep properties provided in current databases for both lead-free and Sn-Pb solder alloys. In this research, mechanical measurements of isothermal aging effects and the resulting changes in the materials behavior of lead-free solders were performed. A novel specimen preparation procedure was developed where the solder uniaxial test specimens are formed in high precision rectangular cross-section glass tubes using a vacuum suction process. Using specimens fabricated with the developed procedure, isothermal aging effects and viscoplastic material behavior evolution have been characterized for 95.5Sn-4.0Ag-0.5Cu (SAC405) and 96.5Sn-3.0Ag-0.5Cu (SAC305) lead-free solders, which are commonly used as the solder ball alloy in lead-free BGAs and other components. Analogous tests were performed with 63Sn-37Pb eutectic solder samples for comparison purposes. Up to 40% reduction in tensile strength was observed for water quenched specimens after two months of aging at room temperature. Creep deformation also increased dramatically with increasing aging durations. Microstructural changes during room temperature aging were also observed and recorded for the solder alloys and correlated with the observed mechanical behavior changes. Aging effects at elevated temperatures for up to 6 months were also investigated. Thermal aging caused significant tensile strength loss and deterioration of creep deformation. The thermal aging results also showed that after an initial tensile strength drop, the Sn-Pb eutectic solder reached a relatively stable stage after 200 hours of aging. However, for SAC alloy, both the tensile and

  13. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Peng, Jianke [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Wang, Xincheng [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Xie, Yan [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  14. Correlation Between Pin Misalignment and Crack Length in THT Solder Joints

    Directory of Open Access Journals (Sweden)

    Molnar A.

    2017-06-01

    Full Text Available In this manuscript, correlations were searched for between pin misalignments relative to PCB bores and crack propagation after cyclic thermal shock tests in THT solder joints produced from lead-free solder alloys. In total, 7 compositions were examined including SAC solders with varying Ag, Cu and Ni contents. The crack propagation was initiated by cyclic thermal shock tests with 40°C / +125°C temperature profiles. Pin misalignments relative to the bores were characterized with three attributes obtained from one section of the examined solder joints. Cracks typically originated at the solder/pin or solder/bore interfaces and propagated within the solder. It was shown that pin misalignments did not have an effect on crack propagation, thus, the solder joints’ lifetime.

  15. Efforts to Develop a 300°C Solder

    Energy Technology Data Exchange (ETDEWEB)

    Norann, Randy A [Perma Works LLC

    2015-01-25

    This paper covers the efforts made to find a 300°C electrical solder solution for geothermal well monitoring and logging tools by Perma Works LLC. This paper covers: why a high temperature solder is needed, what makes for a good solder, testing flux, testing conductive epoxy and testing intermetallic bonds. Future areas of research are suggested.

  16. Strength of joints brazed with two-phase solders

    International Nuclear Information System (INIS)

    Shnyakin, N.S.; Parfenova, L.V.; Ekatova, A.S.; Prilepskaya, I.V.

    1976-01-01

    Dependence of the structure and strength of soldered joints upon a gap size in case of 1Kh18N10T stainless steel soldering with a double-phase solder of Ni-Zn-Cu system is described. Butt and lap joints have been subjected to soldering with gas-flame and induction heating. The optimum conditions of the solder crystallization are determined with wedge-gap samples. The studies show that the character of distribution of a fusible β-phase in metal depends upon a gap size. With gaps up to 0.1 mm the β-phase enriched with a fusible component (zinc) runs as a continuous thin interlayer in the middle of the seam. As a result of zinc evaporation from the β-phase this interlayer becomes internally oxidized. After the sample is broken an oxidized fracture gives one the impression of a poor fusion in the middle part of the joint. The ultimate strength of butt joints is 15-20 kgf/sq.mm. A value of thermal expansion of 1Kh18N10T steel samples, 1-5 mm thick, has been experimentally determined for butt soldering. The elongation of two halves of the sample is measured by an indicator and proved to be 0.89 mm for a 50x50x2 mm sample at a soldering temperature of 1.100 deg C. The paper presents methods for the calculation of an optimal gap value for butt soldering with a local gas-flame and induction heating

  17. Safer Soldering Guidelines and Instructional Resources

    Science.gov (United States)

    Love, Tyler S.; Tomlinson, Joel

    2018-01-01

    Soldering is a useful and necessary process for many classroom, makerspace, Fab Lab, technology and engineering lab, and science lab activities. As described in this article, soldering can pose many safety risks without proper engineering controls, standard operating procedures, and direct instructor supervision. There are many safety hazards…

  18. Influence of Co and W powders on viscosity of composite solders during soldering of specially shaped diamond-abrasive tools

    Science.gov (United States)

    Sokolov, E. G.; Aref’eva, S. A.; Svistun, L. I.

    2018-03-01

    The influence of Co and W powders on the structure and the viscosity of composite solders Sn-Cu-Co-W used for the manufacture of the specially shaped diamond tools has been studied. The solders were obtained by mixing the metallic powders with an organic binder. The mixtures with and without diamonds were applied to steel rollers and shaped substrates. The sintering was carried out in a vacuum at 820 ° C with time-exposure of 40 minutes. The influence of Co and W powders on the viscosity solders was evaluated on the basis of the study of structures and according to the results of sintering specially shaped diamond tools. It was found that to provide the necessary viscosity and to obtain the uniform diamond-containing layers on the complex shaped surfaces, Sn-Cu-Co-W solder should contain 27–35 vol % of solid phase. This is achieved with a total solder content of 24–32 wt % of cobalt powder and 7 wt % of tungsten powder.

  19. The influence of silver content on structure and properties of Sn–Bi–Ag solder and Cu/solder/Cu joints

    Energy Technology Data Exchange (ETDEWEB)

    Šebo, P. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Švec, P. Sr., E-mail: Peter.Svec@savba.sk [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava (Slovakia); Janičkovič, D.; Illeková, E. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia); Zemánková, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Račianska 75, 831 02 Bratislava 3 (Slovakia); Plevachuk, Yu. [Ivan Franko National University, Department of Metal Physics, 79005 Lviv (Ukraine); Sidorov, V. [Ural State Pedagogical University, Cosmonavtov 26, 620017 Ekaterinburg (Russian Federation); Švec, P. [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava 45 (Slovakia)

    2013-06-01

    The effect of silver content on structure and properties of Sn{sub 100−x}Bi{sub 10}Ag{sub x} (x=3–10 at%) lead-free solder and Cu–solder–Cu joints was investigated. The microstructure of the solder in both bulk and rapidly solidified ribbon forms was analyzed by scanning electron microscopy (SEM) and X-ray diffraction. The peculiarities in melting kinetic, studied by differential scanning calorimetry (DSC), and silver influence on it are described and discussed. The wetting of a copper substrate was examined by the sessile drop method in the temperature range of 553–673 K in air and deoxidizing gas (N{sub 2}+10%H{sub 2}) at atmospheric pressure. Cu–solder–Cu joints were also prepared in both atmospheres, and their shear strength was measured by the push-off method. The produced solders consisted of tin, bismuth and Ag{sub 3}Sn phases. The product of the interaction between the solder and the copper substrate consists of two phases: Cu{sub 3}Sn, which is adjacent to the substrate, and a Cu{sub 6}Sn{sub 5} phase. The wetting angle in air increased slightly as the silver concentration in the solder increased. Wetting of the copper substrate in N{sub 2}+10H{sub 2} gas shows the opposite tendency: the wetting angle slightly decreased as the silver content in the solder increased. The shear strength of the joints prepared in air (using flux) tends to decrease with increasing production temperature and increasing silver content in the solder. The equivalent decrease in the shear strength of the joints prepared in N{sub 2}+10H{sub 2} is more apparent.

  20. Fatigue and thermal fatigue of Pb-Sn solder joints

    International Nuclear Information System (INIS)

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55 0 C and 125 0 C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb

  1. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    Science.gov (United States)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  2. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    Science.gov (United States)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  3. Nanoconstruction by welding individual metallic nanowires together using nanoscale solder

    International Nuclear Information System (INIS)

    Peng, Y; Inkson, B J; Cullis, A G

    2010-01-01

    This work presents a new bottom-up nanowelding technique enabling building blocks to be assembled and welded together into complex 3D nanostructures using nanovolumes of metal solder. The building blocks of gold nanowires, (Co 72 Pt 28 /Pt) n multilayer nanowires, and nanosolder Sn 99 Au 1 alloy nanowires were successfully fabricated by a template technique. Individual metallic nanowires were picked up and assembled together. Conductive nanocircuits were then welded together using similar or dissimilar nanosolder material. At the weld sites, nanoscale volumes of a chosen metal are deposited using nanosolder of a sacrificial nanowire, which ensures that the nanoobjects to be bonded retain their structural integrity. The whole nanowelding process is clean, controllable and reliable, and ensures both mechanically strong and electrically conductive contacts.

  4. Laser welding of vas deferens in rodents: initial experience with fluid solders.

    Science.gov (United States)

    Trickett, R I; Wang, D; Maitz, P; Lanzetta, M; Owen, E R

    1998-01-01

    This study evaluates the use of sutureless laser welding for vasovasostomy. In 14 rodents, the left vas deferens underwent vasovasostomy using an albumin-based solder applied to the adventitia of the vas deferens. The solder contained the dye, indocyanine green, to allow selective absorption and denaturation by a fiber-coupled 800-nm diode laser. The right vas deferens served as a control, receiving conventional layered microsurgical repair. We used a removable 4/0 nylon stent and microclamps to appose the vas deferens during repair, with no need for stay sutures. The mean time to perform laser solder repair (23.5 min) and conventional repair (23.3 min) were not significantly different (P=0.91). However, examination after 8 weeks showed that granuloma formation (G) and patency (P) rates for the conventional suture technique (G, 14%; P, 93%) were significantly better than observed for the laser solder technique (G, 57%; P, 50%).

  5. Nano-soldering to single atomic layer

    Science.gov (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  6. Thermal decomposition of solder flux activators under simulated wave soldering conditions

    DEFF Research Database (Denmark)

    Piotrowska, Kamila; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    /methodology/approach: Changes in the chemical structure of the activators were studied using Fourier transform infrared spectroscopy technique and were correlated to the exposure temperatures within the range of wave soldering process. The amount of residue left on the surface was estimated using standardized acid-base...... titration method as a function of temperature, time of exposure and the substrate material used. Findings: The study shows that there is a possibility of anhydride-like species formation during the thermal treatment of fluxes containing weak organic acids (WOAs) as activators (succinic and DL...

  7. Soldering formalism in noncommutative field theory: a brief note

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2004-01-01

    In this Letter, I develop the soldering formalism in a new domain--the noncommutative planar field theories. The soldering mechanism fuses two distinct theories showing opposite or complimentary properties of some symmetry, taking into account the interference effects. The above mentioned symmetry is hidden in the composite (or soldered) theory. In the present work it is shown that a pair of noncommutative Maxwell-Chern-Simons theories, having opposite signs in their respective topological terms, can be consistently soldered to yield the Proca model (Maxwell theory with a mass term) with corrections that are at least quadratic in the noncommutativity parameter. We further argue that this model can be thought of as the noncommutative generalization of the Proca theory of ordinary spacetime. It is well known that abelian noncommutative gauge theory bears a close structural similarity with non-abelian gauge theory. This fact is manifested in a non-trivial way if the present Letter is compared with existing literature, where soldering of non-abelian models are discussed. Thus the present work further establishes the robustness of the soldering programme. The subtle role played by gauge invariance (or the lack of it), in the above soldering process, is revealed in an interesting way

  8. Thermomechanical fatigue of Sn-37 wt.% Pb model solder joints

    International Nuclear Information System (INIS)

    Liu, X.W.; Plumbridge, W.J.

    2003-01-01

    The fatigue of Sn-37 wt.% Pb model solder joints has been investigated under thermomechanical and thermal cycling. Based upon an analysis of displacements during thermomechancial cycling, a model solder joint has been designed to simulate actual joints in electronic packages. The strain-stress relationship, characterised by hysteresis loops, was determined during cycling from 30 to 125 deg. C, and the stress-range monitored throughout. The number of cycles to failure, as defined by the fall in stress range, was correlated to strain range and strain energy. The strain hardening exponent, k, varied with the definition of failure and, when a stress-range drop of 50% was used, it was 0.46. Cracks were produced during pure thermal cycling without external strains applied. These arose due to the local strains caused by thermal expansion mismatches between the solder and Cu 6 Sn 5 intermetallic layer, between the phases of solder, and due to the anisotropy of the materials. The fatigue life under thermomechanical cycling was significantly inferior to that obtained in isothermal mechanical cycling. A factor contributing to this inferiority is the internal damage produced during temperature cycling

  9. External-beam PIXE spectrometry for the study of Punic jewellery (SW Spain): The geographical provenance of the palladium-bearing gold

    International Nuclear Information System (INIS)

    Ontalba Salamanca, M.A.; Gomez-Tubio, B.; Ortega-Feliu, I.; Respaldiza, M.A.; Luisa de la Bandera, M.; Ovejero Zappino, G.; Bouzas, A.; Gomez-Moron, A.

    2006-01-01

    This paper presents the study of a set of Punic gold items (400 B.C.), from the Museum of Cadiz (Spain). An external beam set-up has been employed for the absolutely non-destructive analysis of the objects. PIXE spectrometry has been performed in order to characterize the metallic alloys and the manufacturing techniques. Compositional differences have been found and soldering procedures have been identified. By comparison with the rings and other coetaneous jewellery, the presence of palladium in the bulk alloy of the earrings can be pointed out. The geographical provenance of the palladium-bearing gold is discussed based on geological and archaeological considerations

  10. External-beam PIXE spectrometry for the study of Punic jewellery (SW Spain): The geographical provenance of the palladium-bearing gold

    Energy Technology Data Exchange (ETDEWEB)

    Ontalba Salamanca, M.A. [Departamento de Fisica, Escuela Politecnica, Universidad de Extremadura, Avda. de la Universidad s/n., 10071 Caceres (Spain)]. E-mail: ontalba@unex.es; Gomez-Tubio, B. [Centro Nacional de Aceleradores, Sevilla (Spain); Ortega-Feliu, I. [Centro Nacional de Aceleradores, Sevilla (Spain); Respaldiza, M.A. [Centro Nacional de Aceleradores, Sevilla (Spain); Luisa de la Bandera, M. [Departamento de Arqueologia, Universidad de Sevilla (Spain); Ovejero Zappino, G. [Cobre Las Cruces SA, Gerena, Sevilla (Spain); Bouzas, A. [Instituto Andaluz de Patrimonio Historico, Sevilla (Spain); Gomez-Moron, A. [Instituto Andaluz de Patrimonio Historico, Sevilla (Spain)

    2006-08-15

    This paper presents the study of a set of Punic gold items (400 B.C.), from the Museum of Cadiz (Spain). An external beam set-up has been employed for the absolutely non-destructive analysis of the objects. PIXE spectrometry has been performed in order to characterize the metallic alloys and the manufacturing techniques. Compositional differences have been found and soldering procedures have been identified. By comparison with the rings and other coetaneous jewellery, the presence of palladium in the bulk alloy of the earrings can be pointed out. The geographical provenance of the palladium-bearing gold is discussed based on geological and archaeological considerations.

  11. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering with...

  12. Effects of voids on thermal-mechanical reliability of lead-free solder joints

    Directory of Open Access Journals (Sweden)

    Benabou Lahouari

    2014-06-01

    Full Text Available Reliability of electronic packages has become a major issue, particularly in systems used in electrical or hybrid cars where severe operating conditions must be met. Many studies have shown that solder interconnects are critical elements since many failure mechanisms originate from their typical response under thermal cycles. In this study, effects of voids in solder interconnects on the electronic assembly lifetime are estimated based on finite element simulations.

  13. Eddy current quality control of soldered current-carrying busbar splices of superconducting magnets

    CERN Document Server

    Kogan, L; Savary, F; Principe, R; Datskov, V; Rozenfel'd, E; Khudjakov, B

    2015-01-01

    The eddy current technique associated with a U-shaped transducer is studied for the quality control of soldered joints between superconducting busbars ('splices'). Two other quality control techniques, based on X-rays and direct measurement of the electrical resistance, are also studied for comparison. A comparative analysis of the advantages and disadvantages of these three methods in relation to the quality control of soldered superconducting busbar cables enclosed in copper shells is used for benchmarking. The results of inspections with the U-shaped eddy current transducer carried out on several sample joints presenting different types of soldering defects show the potential of this type of nondestructive (ND) quality control technique.

  14. Microstructurally Adaptive Constitutive Relations and Reliability Assessment Protocols for Lead Free Solder

    Science.gov (United States)

    2015-05-05

    under bump metallurgy and solder joint geometry on Sn grain morphology in Pb free solder joints were examined. SnAgCu solder joints were examined for...free solder interconnects”, Sci. Technol. Weld . Join. 13, 732 (2008). [3.25] Terashima, S., Takahama, K., Nozaki, M., and Tanaka, M. Recrystallization

  15. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    Science.gov (United States)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  16. Characteristics of solder joints under fatigue loads using piezomechanical actuation

    Science.gov (United States)

    Shim, Dong-Jin; Spearing, S. Mark

    2003-07-01

    Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

  17. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    DEFF Research Database (Denmark)

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    of the die lifetime based on a quantitative analysis of die soldering in the framework of the numerical simulations of the die-casting process. Full 3D simulations of the process, including the filling. solidification, and the die cooling, are carried out using the casting simulation software MAGMAsoft....... The resulting transient temperature fields on the die surface and in the casting are then post-processed to estimate the die soldering. The present work deals only with the metallurgical/chemical kind of soldering which occurs at high temperatures and involves formation and growth of intermetallic layers...

  18. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  19. Oxidation and reduction kinetics of eutectic SnPb, InSn, and AuSn: a knowledge base for fluxless solder bonding applications

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Preuss, A.; Adolphi, B.

    1998-01-01

    : (1) SnPb; (2) InSn; (3) AuSn. The studies of the oxidation kinetics show that the growth of the native oxide, which covers the solder surfaces from the start of all soldering operations is self-limiting. The rate of oxidation on the molten, metallic solder surfaces is significantly reduced...... and reduction kinetics, are applied to flip-chip (FC) bonding experiments in vacuum with and without the injection of H2. Wetting in vacuum is excellent but the self-alignment during flip-chip soldering is restricted. The desired, perfectly self-aligned FC-bonds have been only achieved, using evaporated...

  20. Effect of Solder Flux Residues on Corrosion of Electronics

    DEFF Research Database (Denmark)

    Hansen, Kirsten Stentoft; Jellesen, Morten Stendahl; Møller, Per

    2009-01-01

    Flux from ‘No Clean’ solder processes can cause reliability problems in the field due to aggressive residues, which may be electrical conducting or corrosive in humid environments. The solder temperature during a wave solder process is of great importance to the amount of residues left on a PCBA...... testing and use in the field, consequences and recommendations are given. Failures, caused by harsh[1] customer environments, are not covered in this paper....

  1. Quality Analysis of Welded and Soldered Joints of Cu-Nb Microcomposite Wires

    Directory of Open Access Journals (Sweden)

    Nikolaj VIŠNIAKOV

    2011-03-01

    Full Text Available Quality analysis of welded and soldered joints of Cu-Nb microcomposite wires has been performed. Quality and mechanical characteristics of joints as ultimate tensile stress limit and elongation at break were measured with an universal testing machine and controlled visually using an optical microscope. Two wires joints were soldered with silver and copper solders and put into steel and copper sleeve respectively. Another two wires joints were soldered with silver solder and welded without any reinforcement. Joints soldered with the silver solder and steel sleeve have demonstrated the best mechanical characteristics: ultimate tensile stress limit of 650 MPa and elongation at break of 0.85 %. Joints soldered with the copper sleeve have no advantages comparing with the soldered butt joint. Ultimate tensile stress limit and elongation at break were in 300 MPa - 350 MPa and in 0.35 % - 0.45 % ranges respectively. Two welded joints had ultimate tensile stress limit of 470 MPa and elongation at break of 0.71 %. In all joints the microstructure of Nb filaments was destroyed and mechanical properties have been specified by mechanical strength of copper and sleeve materials only.http://dx.doi.org/10.5755/j01.ms.17.1.242

  2. Development of a soft-soldering system for aluminum

    Science.gov (United States)

    Falke, W. L.; Lee, A. Y.; Neumeier, L. A.

    1983-03-01

    The method employs application of a thin nickel copper alloy coating to the substrate, which enables the tin lead solders to wet readily and spread over the areas to be joined. The aluminum substrate is mechanically or chemically cleaned to facilitate bonding to a minute layer of zinc that is subsequently applied, with an electroless zincate solution. The nickel copper alloy (30 to 70 pct Ni) coating is then applied electrolytically over the zinc, using immersion cell or brush coating techniques. Development of acetate electrolytes has permitted deposition of the proper alloys coatings. The coated areas can then be readily joined with conventional tin lead solders and fluxs. The joints so formed are ductile, strong, and relatively corrosion resistant, and exhibit strengths equivalent to those formed on copper and brass when the same solders and fluxes are used. The method has also been employed to soft solder magnesium alloys.

  3. Comparison of implant-abutment interface misfits after casting and soldering procedures.

    Science.gov (United States)

    Neves, Flávio Domingues das; Elias, Gisele Araújo; da Silva-Neto, João Paulo; de Medeiros Dantas, Lucas Costa; da Mota, Adérito Soares; Neto, Alfredo Júlio Fernandes

    2014-04-01

    The aim of this study was to compare vertical and horizontal adjustments of castable abutments after conducting casting and soldering procedures. Twelve external hexagonal implants (3.75 × 10 mm) and their UCLA abutments were divided according their manufacturer and abutment type: PUN (plastic UCLA, Neodent), PUC (plastic UCLA, Conexão), PU3i (plastic UCLA, Biomet 3i), and PUTN (plastic UCLA with Tilite milled base, Neodent). Three infrastructures of a fixed partial implant-supported bridge with 3 elements were produced for each group. The measurements of vertical (VM) and horizontal (HM) misfits were obtained via scanning electron microscopy after completion of casting and soldering. The corresponding values were determined to be biomechanically acceptable to the system, and the results were rated as a percentage. Statistical analysis establishes differences between groups by chi-square after procedures, and McNeman's test was applied to analyze the influence of soldering over casting (α ≤ .05). For the values of VM and HM, respectively, when the casting process was complete, it was observed that 83.25% and 100% (PUTN), 33.3% and 27.75% (PUN), 33.3% and 88.8% (PUC), 33.3% and 94.35% (PU3i) represented acceptable values. After completing the requisite soldering, acceptable values were 50% and 94.35% (PUTN), 16.6% and 77.7% (PUN), 38.55% and 77.7% (PUC), and 27.75% and 94.35% (PU3i). Within the limitations of this study, it can be concluded that the premachined abutments presented more acceptable VM values. The HM values were within acceptable limits before and after the soldering procedure for most groups. Further, the soldering procedure resulted in an increase of VM in all groups.

  4. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  5. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    Science.gov (United States)

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu

    2017-08-01

    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  6. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    Science.gov (United States)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-12-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys ( T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  7. Thermomechanical Behavior of Monolithic SN-AG-CU Solder and Copper Fiber Reinforced Solders

    National Research Council Canada - National Science Library

    Reuse, Rolando

    2005-01-01

    .... The thermomechanical cycling in the solder causes numerous reliability challenges, mostly because of the mismatch of the coefficient of thermal expansion between the silicon chip and the substrate...

  8. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    Science.gov (United States)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  9. Effect of rare earth Ce on the fatigue life of SnAgCu solder joints in WLCSP device using FEM and experiments

    International Nuclear Information System (INIS)

    Zhang, Liang; Han, Ji-guang; Guo, Yong-huan; He, Cheng-wen

    2014-01-01

    With the addition of 0.03 wt% rare earth Ce, in our previous works, the properties of SnAgCu solder were enhanced obviously. Based on the Garofalo–Arrhenius creep constitutive model, finite element method was used to simulate the stress–strain response during thermal cycle loading, and combined with the fatigue life prediction models, the fatigue life of SnAgCu/SnAgCuCe solder joints was calculated respectively, which can demonstrate the effect of the rare earth Ce on the fatigue life of SnAgCu solder joints. The results indicated that the maximum stress–strain can be found on the top surface of the corner solder joint, and the warpage of the PCB substrate occurred during thermal cycle loading. The trends obtained from modeling results have a good agreement with the experimental data reported in the literature for WLCSP devices. In addition, the stress–strain of SnAgCuCe solder joints is lower than that of SnAgCu solder joints. The thermal fatigue lives of solder joints calculated based on the creep model and creep strain energy density model show that the fatigue life of SnAgCuCe solder joints is higher than the SnAgCu solder joints. The fatigue life of SnAgCuCe solder joints can be enhanced significantly with the addition of Ce, is 30.2% higher than that of SnAgCu solder joints, which can be attributed to the CeSn 3 particles formed resisting the motion of dislocation; moreover, the refinement of microstructure and the IMC sizes also contribute to the enhancement of fatigue life, which elucidates that SnAgCuCe solder can be utilized in electronic industry with high reliability replacing the SnAgCu solder

  10. Finite Element-Assisted Assessment of the Thermo-cyclic Characteristics of Leads Soldered with SnAgCu(+Bi,In) Alloys

    Science.gov (United States)

    Lis, Adrian; Nakanishi, Kohei; Matsuda, Tomoki; Sano, Tomokazu; Minagawa, Madoka; Okamoto, Masahide; Hirose, Akio

    2017-07-01

    Solder joints between leads and printed circuit boards in thin small outline packages were produced with conventional Sn1.0Ag0.7Cu (SAC107) and Sn3.0Ag0.7Cu (SAC305) solders as well as various solder alloys with gradually increasing amounts of Bi (up to 3.0 wt.%) and In (up to 1.0 wt.%) within the SAC107 base solder. The reliability of soldered leads in temperature cycle (TC) tests improved most with solder alloys containing both Bi (1.6 wt.%) and In (0.5 wt.%). Microindentation and electron probe microanalysis mappings revealed that the effect originates from a combination of solution and precipitation strengthening of the initial SAC alloy. The distribution of inelastic strain accumulation (ISA), as a measure for degradation, was determined in the solder joints by finite element calculations. It was shown that defects in the solder proximal to the lead (60-75 μm), which was underpinned by similar cracking characteristics along the lead-solder interface. The ISA was confirmed to be lower in SAC+Bi/In alloys owing to their enhanced elasto-plastic properties. Moreover, the addition of a thin Cu coating on the leads could improve the joint reliability, as suggested by the calculation of the ISA and the acceleration factor.

  11. A flip chip process based on electroplated solder bumps

    Science.gov (United States)

    Salonen, J.; Salmi, J.

    1994-01-01

    Compared to wire bonding and TAB, flip chip technology using solder joints offers the highest pin count and packaging density and superior electrical performance. The chips are mounted upside down on the substrate, which can be made of silicon, ceramic, glass or - in some cases - even PCB. The extra processing steps required for chips are the deposition of a suitable thin film metal layer(s) on the standard Al pad and the formation of bumps. Also, the development of new fine line substrate technologies is required to utilize the full potential of the technology. In our bumping process, bump deposition is done by electroplating, which was chosen for its simplicity and economy. Sputter deposited molybdenum and copper are used as thin film layers between the aluminum pads and the solder bumps. A reason for this choice is that the metals can be selectively etched after bumping using the bumps as a mask, thus circumventing the need for a separate mask for etching the thin film metals. The bumps are electroplated from a binary Pb-Sn bath using a thick liquid photoresist. An extensively modified commercial flip chip bonder is used for alignment and bonding. Heat assisted tack bonding is used to attach the chips to the substrate, and final reflow joining is done without flux in a vacuum furnace.

  12. Electrical Resistance of Nb$_{3}$Sn/Cu Splices Produced by Electromagnetic Pulse Technology and Soft Soldering

    CERN Document Server

    Schoerling, D; Scheuerlein, C; Atieh, S; Schaefer, R

    2011-01-01

    The electrical interconnection of Nb$_{3}$Sn/Cu strands is a key issue for the construction of Nb$_{3}$Sn based damping ring wigglers and insertion devices for third generation light sources. We compare the electrical resistance of Nb$_{3}$Sn/Cu splices manufactured by solid state welding using Electromagnetic Pulse Technology (EMPT) with that of splices produced by soft soldering with two different solders. The resistance of splices produced by soft soldering depends strongly on the resistivity of the solder alloy at the operating temperature. By solid state welding splice resistances below 10 nOhm can be achieved with 1 cm strand overlap length only, which is about 4 times lower than the resistance of Sn96Ag4 soldered splices with the same overlap length. The comparison of experimental results with Finite Element simulations shows that the electrical resistance of EMPT welded splices is determined by the resistance of the stabilizing copper between the superconducting filaments and confirms that welding of ...

  13. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  14. Effect of trace elements on the interface reactions between two lead-free solders and copper or nickel substrates

    Directory of Open Access Journals (Sweden)

    Soares D.

    2007-01-01

    Full Text Available Traditional Sn-Pb solder alloys are being replaced, because of environmental and health concerns about lead toxicity. Among some alternative alloy systems, the Sn-Zn and Sn-Cu base alloy systems have been studied and reveal promising properties. The reliability of a solder joint is affected by the solder/substrate interaction and the nature of the layers formed at the interface. The solder/substrate reactions, for Sn-Zn and Sn-Cu base solder alloys, were evaluated in what concerns the morphology and chemical composition of the interface layers. The effect of the addition of P, at low levels, on the chemical composition of the layers present at the interface was studied. The phases formed at the interface between the Cu or Ni substrate and a molten lead-free solder at 250ºC, were studied for different stage times and alloy compositions. The melting temperatures, of the studied alloys, were determined by Differential Scanning Calorimetry (DSC. Identification of equilibrium phases formed at the interface layer, and the evaluation of their chemical composition were performed by Scanning Electron Microscopy (SEM/EDS. Different interface characteristics were obtained, namely for the alloys containing Zn. The obtained IML layer thickness was compared, for both types of alloy systems.

  15. Nano-soldering of magnetically aligned three-dimensional nanowire networks

    International Nuclear Information System (INIS)

    Gao Fan; Gu Zhiyong

    2010-01-01

    It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.

  16. A Hodge dual for soldered bundles

    International Nuclear Information System (INIS)

    Lucas, Tiago Gribl; Pereira, J G

    2009-01-01

    In order to account for all possible contractions allowed by the presence of the solder form, a generalized Hodge dual is defined for the case of soldered bundles. Although for curvature the generalized dual coincides with the usual one, for torsion it gives a completely new dual definition. Starting from the standard form of a gauge Lagrangian for the translation group, the generalized Hodge dual yields precisely the Lagrangian of the teleparallel equivalent of general relativity, and consequently also the Einstein-Hilbert Lagrangian of general relativity

  17. SINGLE IMAGE CAMERA CALIBRATION IN CLOSE RANGE PHOTOGRAMMETRY FOR SOLDER JOINT ANALYSIS

    Directory of Open Access Journals (Sweden)

    D. Heinemann

    2016-06-01

    Full Text Available Printed Circuit Boards (PCB play an important role in the manufacturing of electronic devices. To ensure a correct function of the PCBs a certain amount of solder paste is needed during the placement of components. The aim of the current research is to develop an real-time, closed-loop solution for the analysis of the printing process where solder is printed onto PCBs. Close range photogrammetry allows for determination of the solder volume and a subsequent correction if necessary. Photogrammetry is an image based method for three dimensional reconstruction from two dimensional image data of an object. A precise camera calibration is indispensable for an accurate reconstruction. In our certain application it is not possible to use calibration methods with two dimensional calibration targets. Therefore a special calibration target was developed and manufactured, which allows for single image camera calibration.

  18. Characterization of the microstructure of tin-silver lead free solder

    Energy Technology Data Exchange (ETDEWEB)

    Hurtony, Tamás, E-mail: hurtony@ett.bme.hu [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary); Szakál, Alex; Almásy, László [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Len, Adél [Neutron Spectroscopy Department, Wigner Research Centre for Physics, Budapest (Hungary); Faculty of Engineering and Information Technology, University of Pécs (Hungary); Kugler, Sándor [Department of Theoretical Physics, Budapest University of Technology and Economics (Hungary); Bonyár, Attila; Gordon, Péter [Department of Electronics Technology, Budapest University of Technology and Economics, Egry József utca 18, Budapest, H-1111 (Hungary)

    2016-07-05

    Reliability and lifetime are the two most relevant design considerations in the production of safety critical assemblies. For example in a modern automobile dozens of electronic assemblies are integrated in which thousands of solder joints are mounting the electronic components to the printed circuit boards. There exists no standardised and universal observation method for characterising the fine microstructure of such solder joints. Previously we have developed a new method for the quantitative characterization of lead-free solder alloys and in present study the validity of the proposed method is demonstrated. Microstructure of Sn-3.5Ag lead free solder alloy was investigated by electrochemical impedance spectroscopy. Solder samples were solidified with different cooling rates in order to induce differences in the microstructure. Microstructure of the ingots was revealed by selective electrochemical etching. Electrochemical impedance spectra (EIS) were measured before and after the selective etching process. The complex impedance spectra contain information about microstructure of the solder alloys. Comparison and modelling of two EIS spectra allowed obtaining a characteristic parameter of surface structure of the etched specimens. The EIS measurements were complemented with small angle neutron scattering measurements and scanning electron microscopy, in order to correlate the EIS parameter with the magnitude of the interface of the β-Sn and Ag{sub 3}Sn phases.

  19. Dye-enhanced protein solders and patches in laser-assisted tissue welding.

    Science.gov (United States)

    Small, W; Heredia, N J; Maitland, D J; Da Silva, L B; Matthews, D L

    1997-01-01

    This study examines the use of dye-enhanced protein bonding agents in 805 nm diode laser-assisted tissue welding. A comparison of an albumin liquid solder and collagen solid-matrix patches used to repair arteriotomies in an in vitro porcine model is presented. Extrinsic bonding media in the form of solders and patches have been used to enhance the practice of laser tissue welding. Preferential absorption of the laser wavelength has been achieved by the incorporation of chromophores. Both the solder and the patch included indocyanine green dye (ICG) to absorb the 805 nm continuous-wave diode laser light used to perform the welds. Solder-mediated welds were divided into two groups (high power/short exposure and low power/long exposure), and the patches were divided into three thickness groups ranging from 0.1 to 1.3 mm. The power used to activate the patches was constant, but the exposure time was increased with patch thickness. Burst pressure results indicated that solder-mediated and patched welds yielded similar average burst strengths in most cases, but the patches provided a higher success rate (i.e., more often exceeded 150 mmHg) and were more consistent (i.e., smaller standard deviation) than the solder. The strongest welds were obtained using 1.0-1.3 mm thick patches, while the high power/short exposure solder group was the weakest. Though the solder and patches yielded similar acute weld strengths, the solid-matrix patches facilitated the welding process and provided consistently strong welds. The material properties of the extrinsic agents influenced their performance.

  20. Horizon shells and BMS-like soldering transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); O’Loughlin, Martin [University of Nova Gorica,Vipavska 13, 5000 Nova Gorica (Slovenia)

    2016-03-07

    We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together across null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.

  1. Ion beam studies of archaeological gold jewellery items

    International Nuclear Information System (INIS)

    Demortier, G.

    1996-01-01

    Analytical work on material of archaeological interest performed at LARN mainly concerns gold jewellery, with an emphasis to solders on the artefacts and to gold plating or copper depletion gilding. PIXE, RBS but also PIGE and NRA have been applied to a large variety of items. On the basis of elemental analysis, we have identified typical workmanship of ancient goldsmiths in various regions of the world: finely decorated Mesopotamian items, Hellenistic and Byzantine craftsmanship, cloisonne of the Merovingian period, depletion gilding on Pre-Colombian tumbaga. This paper is some shortening of the work performed at LARN during the last ten years. Criteria to properly use PIXE for quantitative analysis of non-homogeneous ancient artefacts presented at the 12th IBA conference in 1995 are also shortly discussed. (orig.)

  2. Ion beam studies of archaeological gold jewellery items

    Energy Technology Data Exchange (ETDEWEB)

    Demortier, G [Facultes Universitaires Notre-Dame de la Paix, Namur (Belgium). Lab. d` Analyses par Reactions Nucleaires

    1996-06-01

    Analytical work on material of archaeological interest performed at LARN mainly concerns gold jewellery, with an emphasis to solders on the artefacts and to gold plating or copper depletion gilding. PIXE, RBS but also PIGE and NRA have been applied to a large variety of items. On the basis of elemental analysis, we have identified typical workmanship of ancient goldsmiths in various regions of the world: finely decorated Mesopotamian items, Hellenistic and Byzantine craftsmanship, cloisonne of the Merovingian period, depletion gilding on Pre-Colombian tumbaga. This paper is some shortening of the work performed at LARN during the last ten years. Criteria to properly use PIXE for quantitative analysis of non-homogeneous ancient artefacts presented at the 12th IBA conference in 1995 are also shortly discussed. (orig.).

  3. Remote micro-encapsulation of curium-gold cermets

    International Nuclear Information System (INIS)

    Coops, M.S.; Voegele, A.L.; Hayes, W.N.; Sisson, D.H.

    1980-01-01

    A technique is described for fabricating minature, high-density capsules of curium-244 oxide contained in three concentric jackets of metallic gold (or silver), with the outer surface being free of alpha contamination. The completed capsules are right circular cylinders 0.2500-inch diameter and 0.125-inch tall, with each level of containment soldered (or brazed) closed. A typical capsule would contain approx. 70 mg of 244 Cm (5.7 Ci) mixed with 120 mg of gold powder in the form of a cermet wafer clad in three concentric, 0.010-inch thick, liquid tight jackets. This method of fabrication eliminates voids between the jackets and produces a minimum size, maximum density capsule. Cermet densities of 11.5 g/cc were obtained, with an overall density of 17.3 g/cc for the finished capsule

  4. CO2 temperature-controlled laser soldering of pig trachea incisions in vitro using flexible albumin bands

    Science.gov (United States)

    Sharvit, Dan; Vasilyev, Tamar; Vasserman, Irena; Simhon, David; Kariv, Naam; DeRowe, Ari; Katzir, Abraham

    2005-04-01

    Resection of a segment of the trachea is a procedure applied for the removal of cervical tumors invading the trachea, or for the treatment of severe tracheal stenosis. The current method of anastomosis is based on multiple sutures. The main drawbacks of this method are: 1) A long procedure time, 2) An air leakage, and 3) An inflammatory response to the sutures. In this study we evaluated the feasibility and effectiveness of the use of temperature controlled CO2 laser soldering of incisions in pig tracheas in vitro. A transverse incision was made in a separated pig trachea. A flexible albumin band was prepared and was laser soldered with albumin solder to the outer surface of the trachea, covering the incision. The soldered trachea ends were sealed and the burst pressure was measured. In a series of in vitro experiments, the mean burst pressure was found to be 230 mm Hg. These preliminary results demonstrated that laser soldering using a flexible albumin band may be a useful method for sealing an incision in the trachea.

  5. Physics of Failure as a Basis for Solder Elements Reliability Assessment in Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    description of the reliability. A physics of failure approach is applied. A SnAg solder component used in power electronics is used as an example. Crack propagation in the SnAg solder is modeled and a model to assess the accumulated plastic strain is proposed based on a physics of failure approach. Based...... on the proposed model it is described how to find the accumulated linear damage and reliability levels for a given temperature loading profile. Using structural reliability methods the reliability levels of the electrical components are assessed by introducing scale factors for stresses....

  6. Effects of Fe2NiO4 nanoparticles addition into lead free Sn–3.0Ag–0.5Cu solder pastes on microstructure and mechanical properties after reflow soldering process

    International Nuclear Information System (INIS)

    Chellvarajoo, Srivalli; Abdullah, M.Z.; Samsudin, Z.

    2015-01-01

    Highlights: • Fe 2 NiO 4 nanoparticles added into SAC 305 by mechanical mixing to form nanocomposite solder paste. • Nanoparticles in the composite solder travels with flux to the outermost surface after reflow. • The intermetallics compound reduced with the addition of nanoparticles into solder paste. • The hardness increased with the addition of limited percentage of nanoparticles into SAC 305. - Abstract: This study investigates the effects of the addition of Fe 2 NiO 4 nanoparticles into a SAC-305 lead-free solder paste. Iron, nickel, and oxide nano-elements were mixed with Pb-free solder alloying elements to produce a new form of nanocomposite solder paste, which can be a promising material in electronic packaging. The SAC-305 was mechanically added with 0.5, 1.5, and 2.5 wt.% of Fe 2 NiO 4 nanoparticles. The migration of nanoparticles in the nanocomposite solder paste to the outermost surface was clarified using the copper ‘sandwich’ method, which was performed after the reflow soldering process. Varying amounts of nanoparticles in the SAC-305 affected the IMC thickness and mechanical properties of the nanocomposite solder paste. The IMC thickness was reduced by 29.15%, 42.37%, and 59.00% after adding 0.5, 1.5, and 2.5 wt.% of Fe 2 NiO 4 nanoparticles in the SAC-305, respectively. However, via nanoindentation method, the hardness of the nanocomposite solder was improved by 44.07% and 56.82% after adding 0.5 and 1.5 wt.% of Fe 2 NiO 4 nanoparticles, respectively. If the addition of Fe 2 NiO 4 nanoparticle exceeded 1.5 wt.%, the hardness increased infinitely

  7. The metallurgical approach on the solder voids behaviour in surface mount devices

    International Nuclear Information System (INIS)

    Mohabattul Zaman Bukhari

    1996-01-01

    Solder voids are believed to cause poor heat dissiption in the Surface Mount devices and reduce the reliability of the devices at higher operating services. There are a lot of factors involved in creating voids such as gas/flux entrapment, wettability, outgasseous, air bubbles in the solder paste, inconsistency of solder coverage and improper metal scheme selection. This study was done to observe the behaviour of the solder voids in term of flux entrapmentt and wettability. It is believed that flux entrapment and wettability are verify this hypothesis. Two types of metal scheme were chosen which are Nickel (Ni) plated and Tin (Sn) plated heatsink. X-ray techniques such as Radiographic Inspection Analysis and EDAX were used to detect the minute solder voids. The solder voids observed on the heatsinks and Copper shims after the reflow process are believed to be a non contact voids that resulted from some portion of the surface not wetting properly

  8. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.; Anderson, D.J. [Sandia National Labs., Albuquerque, NM (United States); Burress, R.V. [SEHO (United States)] [and others

    1995-06-01

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The test data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.

  9. Laser Soldering of Rat Skin Using a Controlled Feedback System

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Nourbakhsh

    2009-03-01

    Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.

  10. The Shear Strength and Fracture Behavior of Sn-Ag- xSb Solder Joints with Au/Ni-P/Cu UBM

    Science.gov (United States)

    Lee, Hwa-Teng; Hu, Shuen-Yuan; Hong, Ting-Fu; Chen, Yin-Fa

    2008-06-01

    This study investigates the effects of Sb addition on the shear strength and fracture behavior of Sn-Ag-based solders with Au/Ni-P/Cu underbump metallization (UBM) substrates. Sn-3Ag- xSb ternary alloy solder joints were prepared by adding 0 wt.% to 10 wt.% Sb to a Sn-3.5Ag alloy and joining them with Au/Ni-P/Cu UBM substrates. The solder joints were isothermally stored at 150°C for up to 625 h to study their microstructure and interfacial reaction with the UBM. Single-lap shear tests were conducted to evaluate the mechanical properties, thermal resistance, and failure behavior. The results show that UBM effectively suppressed intermetallic compound (IMC) formation and growth during isothermal storage. The Sb addition helped to refine the Ag3Sn compounds, further improving the shear strength and thermal resistance of the solders. The fracture behavior evolved from solder mode toward the mixed mode and finally to the IMC mode with increasing added Sb and isothermal storage time. However, SnSb compounds were found in the solder with 10 wt.% Sb; they may cause mechanical degradation of the solder after long-term isothermal storage.

  11. Temperature-controlled laser-soldering system and its clinical application for bonding skin incisions

    Science.gov (United States)

    Simhon, David; Gabay, Ilan; Shpolyansky, Gregory; Vasilyev, Tamar; Nur, Israel; Meidler, Roberto; Hatoum, Ossama Abu; Katzir, Abraham; Hashmonai, Moshe; Kopelman, Doron

    2015-12-01

    Laser tissue soldering is a method of repairing incisions. It involves the application of a biological solder to the approximated edges of the incision and heating it with a laser beam. A pilot clinical study was carried out on 10 patients who underwent laparoscopic cholecystectomy. Of the four abdominal incisions in each patient, two were sutured and two were laser soldered. Cicatrization, esthetical appearance, degree of pain, and pruritus in the incisions were examined on postoperative days 1, 7, and 30. The soldered wounds were watertight and healed well, with no discharge from these wounds or infection. The total closure time was equal in both methods, but the net soldering time was much shorter than suturing. There was no difference between the two types of wound closure with respect to the pain and pruritus on a follow-up of one month. Esthetically, the soldered incisions were estimated as good as the sutured ones. The present study confirmed that temperature-controlled laser soldering of human skin incisions is clinically feasible, and the results obtained were at least equivalent to those of standard suturing.

  12. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    International Nuclear Information System (INIS)

    Li Guangdong; Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu

    2010-01-01

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  13. Effect of phosphorus element on the comprehensive properties of Sn-Cu lead-free solder

    Energy Technology Data Exchange (ETDEWEB)

    Li Guangdong, E-mail: liguangdong@emails.bjut.edu.c [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China); Shi Yaowu; Hao Hu; Xia Zhidong; Lei Yongping; Guo Fu [College of Materials Science and Engineering, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2010-02-18

    In the present work, the effect of phosphorus on the creep fatigue properties of Sn-Cu eutectic lead-free solder was carried out. The experimental results show that the melting temperature was almost not changed with adding small amount of P element. However, the addition of trace P element led to the decrease in the property of creep fatigue. The fractography analysis by a scanning electron microscopy (SEM) shows that ductile fracture was the dominant failure behavior in the process of creep fatigue test of Sn0.7Cu and Sn0.7Cu0.005P specimens. It should be pointed out that there is significant difference in the fractographs between the joints of Sn0.7Cu solder and Sn0.7Cu0.005P solder. In the fractograph of Sn0.7Cu solder joint, the microstructure is prolonged along testing direction, and the dimples were more than the fractograph of Sn0.7Cu0.005P solder joint. In addition, the voids could be found on the Sn0.7Cu0.005P solder joint, and trace P addition may increase the rate of forming void of Sn0.7Cu solder joint. The voids can potentially lead to crack initiation or propagation sites in the solder joint. As a result, the creep fatigue of solder joint containing P such as Sn0.7Cu0.005P offers worse property compared to Sn0.7Cu solder joint.

  14. Mechanism of Solder Joint Cracks in Anisotropic Conductive Films Bonding and Solutions: Delaying Hot-Bar Lift-Up Time and Adding Silica Fillers

    Directory of Open Access Journals (Sweden)

    Shuye Zhang

    2018-01-01

    Full Text Available Micron sizes solder metallurgical joints have been applied in a thin film application of anisotropic conductive film and benefited three general advantages, such as lower joint resistance, higher power handling capability, and reliability, when compared with pressure based contact of metal conductor balls. Recently, flex-on-board interconnection has become more and more popular for mobile electronic applications. However, crack formation of the solder joint crack was occurred at low temperature curable acrylic polymer resins after bonding processes. In this study, the mechanism of SnBi58 solder joint crack at low temperature curable acrylic adhesive was investigated. In addition, SnBi58 solder joint cracks can be significantly removed by increasing the storage modulus of adhesives instead of coefficient of thermal expansion. The first approach of reducing the amount of polymer rebound can be achieved by using an ultrasonic bonding method to maintain a bonding pressure on the SnBi58 solder joints cooling to room temperature. The second approach is to increase storage modulus of adhesives by adding silica filler into acrylic polymer resins to prevent the solder joint from cracking. Finally, excellent acrylic based SnBi58 solder joints reliability were obtained after 1000 cycles thermal cycling test.

  15. A Novel Technique for the Connection of Ceramic and Titanium Implant Components Using Glass Solder Bonding

    Directory of Open Access Journals (Sweden)

    Enrico Mick

    2015-07-01

    Full Text Available Both titanium and ceramic materials provide specific advantages in dental implant technology. However, some problems, like hypersensitivity reactions, corrosion and mechanical failure, have been reported. Therefore, the combining of both materials to take advantage of their pros, while eliminating their respective cons, would be desirable. Hence, we introduced a new technique to bond titanium and ceramic materials by means of a silica-based glass ceramic solder. Cylindrical compound samples (Ø10 mm × 56 mm made of alumina toughened zirconia (ATZ, as well as titanium grade 5, were bonded by glass solder on their end faces. As a control, a two-component adhesive glue was utilized. The samples were investigated without further treatment, after 30 and 90 days of storage in distilled water at room temperature, and after aging. All samples were subjected to quasi-static four-point-bending tests. We found that the glass solder bonding provided significantly higher bending strength than adhesive glue bonding. In contrast to the glued samples, the bending strength of the soldered samples remained unaltered by the storage and aging treatments. Scanning electron microscopy (SEM and energy-dispersive X-ray (EDX analyses confirmed the presence of a stable solder-ceramic interface. Therefore, the glass solder technique represents a promising method for optimizing dental and orthopedic implant bondings.

  16. In vitro conjunctival incision repair by temperature-controlled laser soldering.

    Science.gov (United States)

    Norman, Galia; Rabi, Yaron; Assia, Ehud; Katzir, Abraham

    2009-01-01

    The common method of closing conjunctival incisions is by suturing, which is associated with several disadvantages. It requires skill to apply and does not always provide a watertight closure, which is required in some operations (e.g., glaucoma filtration). The purpose of the present study was to evaluate laser soldering as an alternative method for closing conjunctival incisions. Conjunctival incisions of 20 ex vivo porcine eyes were laser soldered using a temperature-controlled fiberoptic laser system and an albumin mixed with indocyanine green as a solder. The control group consisted of five repaired incisions by a 10-0 nylon running suture. The leak pressure of the repaired incisions was measured. The mean leak pressure in the laser-soldered group was 132 mm Hg compared to 4 mm Hg in the sutured group. There was no statistically significant difference in both the incision's length and distance from the limbus between the groups, before and after the procedure, indicating that there was no severe thermal damage. These preliminary results clearly demonstrate that laser soldering may be a useful method for achieving an immediate watertight conjunctival wound closure. This procedure is faster and easier to apply than suturing.

  17. Rheological characterisation and printing performance of Sn/Ag/Cu solder pastes

    International Nuclear Information System (INIS)

    Durairaj, R.; Ramesh, S.; Mallik, S.; Seman, A.; Ekere, N.

    2009-01-01

    Lead-free solder paste printing process accounts for majority of the assembly defects in the electronic manufacturing industry. The study investigates rheological behaviour and stencil printing performance of the lead-free solder pastes (Sn/Ag/Cu). Oscillatory stress sweep test was carried out to study the visco-elastic behaviour of the lead-free solder pastes. The visco-elastic behaviour of the paste encompasses solid and liquid characteristic of the paste, which could be used to study the flow behaviour experienced by the pastes during the stencil printing process. From this study, it was found that the solid characteristics (G') is higher than the liquid characteristic (G'') for the pastes material. In addition, the results from the study showed that the solder paste with a large G' = G'' has a higher cohesiveness resulting in poor withdrawal of the paste during the stencil printing process. The phase angles (δ) was used to correlate the quality of the dense suspensions to the formulation of solder paste materials. This study has revealed the value of having a rheological measurement for explaining and characterising solder pastes for stencil printing. As the demand for lead free pastes increases rheological measurements can assist with the formulation or development of new pastes.

  18. Development of Sn-Ag-Cu-X Solders for Electronic Assembly by Micro-Alloying with Al

    Science.gov (United States)

    Boesenberg, Adam J.; Anderson, Iver E.; Harringa, Joel L.

    2012-07-01

    Of Pb-free solder choices, an array of solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic ( T eut = 217°C) composition have emerged with potential for broad use, including ball grid array (BGA) joints that cool slowly. This work investigated minor substitutional additions of Al (0.05Al), but the suppression effect faded for >0.20Al. Undercooling suppression did not correlate specifically with blade suppression since it became significant at 0.10Al and increased continuously with greater Al to 0.25Al. Surprisingly, an intermediate range of Al content (0.10 wt.% to 0.20 wt.% Al) promoted formation of significant populations of 2- μm to 5- μm faceted Cu-Al particles, identified as Cu33Al17, that clustered at the top of the solder joint matrix and exhibited extraordinary hardness. Clustering of Cu33Al17 was attributed to its buoyancy, from a lower density than Sn liquid, and its early position in the nucleation sequence within the solder matrix, permitting unrestricted migration to the top interface. Joint microstructures and implications for the full nucleation sequence for these SAC + Al solder joints are discussed, along with possible benefits from the clustered particles for improved thermal cycling resistance.

  19. Corrosion Reliability of Lead-free Solder Systems Used in Electronics

    DEFF Research Database (Denmark)

    Li, Feng; Verdingovas, Vadimas; Medgyes, Balint

    2017-01-01

    humidity/temperature cycling tests on soldered surface insulation resistance (SIR) comb pattern. Complimentary microstructural and phase analysis of solder alloys has been carried out using the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) methods...

  20. Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders

    National Research Council Canada - National Science Library

    Chung, Kohn C

    2006-01-01

    .... In previous work, it was proposed that reinforcement of solder by NiTi shape memory alloy particles to form smart composite solder reduces the inelastic strain of the solder and hence, may enhance...

  1. Development of Pb-Free Nanocomposite Solder Alloys

    Directory of Open Access Journals (Sweden)

    Animesh K. Basak

    2018-04-01

    Full Text Available As an alternative to conventional Pb-containing solder material, Sn–Ag–Cu (SAC based alloys are at the forefront despite limitations associated with relatively poor strength and coarsening of grains/intermetallic compounds (IMCs during aging/reflow. Accordingly, this study examines the improvement of properties of SAC alloys by incorporating nanoparticles in it. Two different types of nanoparticles were added in monolithic SAC alloy: (1 Al2O3 or (2 Fe and their effect on microstructure and thermal properties were investigated. Addition of Fe nanoparticles leads to the formation of FeSn2 IMCs alongside Ag3Sn and Cu6Sn5 from monolithic SAC alloy. Addition of Al2O3 nano-particles do not contribute to phase formation, however, remains dispersed along primary β-Sn grain boundaries and act as a grain refiner. As the addition of either Fe or Al2O3 nano-particles do not make any significant effect on thermal behavior, these reinforced nanocomposites are foreseen to provide better mechanical characteristics with respect to conventional monolithic SAC solder alloys.

  2. The effect of graphene on the intermetallic and joint strength of Sn-3.5Ag lead-free solder

    Science.gov (United States)

    Mayappan, R.; Salleh, A.; Andas, J.

    2017-09-01

    Solder has been widely used in electronic industry as interconnection for electronic packaging. European Union and Japan have restricted the use of Sn-Pb solder as it contains lead which can harmful to human health and environment. Due to this, many researches have been done in order to find a suitable replacement for the lead solder. Although many lead-free solders are available, the Sn-3.5Ag solder with the addition of graphene seem to be a suitable candidate. In this study, a 0.07 wt% graphene nanosheet was added into the Sn-3.5Ag solder and this composite solder was prepared under powder metallurgy method. The solder was reacted with copper substrate at 250 °C for one minute. For joint strength analysis, two copper strips were soldered together. The solder joint was aged at temperature 100 °C for 500 hours. Scanning Electron Microscope (SEM) was used to observe the interfacial reaction and Instron machine was used to determine the joint strength. Cu6Sn5 intermetallic layer was formed at the interface between the Cu substrate and the solders. Composite solder showed the retardation of the intermetallic growth compared to the plain solder. The thickness value of the intermetallic was used to calculate the growth rate the IMC. The graphene nanosheets added solder has lower growth rate which is 3.86 × 10-15 cm2/s compared to the plain solder 7.15 × 10-15 cm2/s. Shear strength analysis show that the composite solder has higher joint compared to the plain solder.

  3. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near combustible...

  4. Soldering and brazing safety guide: A handbook on space practice for those involved in soldering and brazing

    Science.gov (United States)

    This manual provides those involved in welding and brazing with effective safety procedures for use in performance of their jobs. Hazards exist in four types of general soldering and brazing processes: (1) cleaning; (2) application of flux; (3) application of heat and filler metal; and (4) residue cleaning. Most hazards during those operations can be avoided by using care, proper ventilation, protective clothing and equipment. Specific process hazards for various methods of brazing and soldering are treated. Methods to check ventilation are presented as well as a check of personal hygiene and good maintenance practices are stressed. Several emergency first aid treatments are described.

  5. Design and Experiment of a Solder Paste Jetting System Driven by a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    Shoudong Gu

    2016-06-01

    Full Text Available To compensate for the insufficiency and instability of solder paste dispensing and printing that are used in the SMT (Surface Mount Technology production process, a noncontact solder paste jetting system driven by a piezoelectric stack based on the principle of the nozzle-needle-system is introduced in this paper, in which a miniscule gap exists between the nozzle and needle during the jetting process. Here, the critical jet ejection velocity is discussed through theoretical analysis. The relations between ejection velocity and needle structure, needle velocity, and nozzle diameter were obtained by FLUENT software. Then, the prototype of the solder paste jetting system was fabricated, and the performance was verified by experiments. The effects of the gap between nozzle and needle, the driving voltage, and the nozzle diameter on the jetting performance and droplet diameter were obtained. Solder paste droplets 0.85 mm in diameter were produced when the gap between the nozzle and needle was adjusted to 10 μm, the driving voltage to 80 V, the nozzle diameter to 0.1 mm, and the variation of the droplet diameter was within ±3%.

  6. A review on solder reflow and flux application for flip chip

    Science.gov (United States)

    Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Visvanathan, Susthitha Menon; Retnasamy, Vithyacharan

    2017-09-01

    This paper encompassed of the evolution and key findings, critical technical challenges, solutions and bonding equipment of solder reflow in flip chip bonding. Upon scrutinizing researches done by others, it can be deduced that peak temperature, time above liquidus, soak temperature, soak time, cooling rate and reflow environment played a vital role in achieving the desired bonding profile. In addition, flux is also needed with the purpose of removing oxides/contaminations on bump surface as well as to promote wetting of solder balls. Electromigration and warpage are the two main challenges faced by solder reflow process which can be overcome by the advancement in under bump metallization (UBM) and substrate technology. The review is ended with a brief description of the current equipment used in solder reflow process.

  7. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  8. Interfacial microstructures and solder joint strengths of the Sn-8Zn-3Bi and Sn-9Zn-lAl Pb-free solder pastes on OSP finished printed circuit boards

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-T. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China); Hsi, C.-S. [Department of Materials Science and Engineering, National United University, 1 Lein-Da, Kung-Ching Li, Miaoli 36003, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw; Chang, T.-C.; Liang, M.-K. [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, 195 Section 4, Chung-Hsing Road, Chutung, Hsinchu 31040, Taiwan (China)

    2008-07-14

    Two kinds of lead-free solders, Sn-8Zn-3Bi and Sn-9Zn-lAl, were used to mount passive components onto printed circuit boards via a re-flow soldering process. The samples were stored at 150 deg. C for 200, 400, 600, 800, and 1100 h. The microstructures of the samples after aged at 150 deg. C for various times were characterized using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and the analyzed of solder joint shear strengths. The joint strength between Sn-8Zn-3Bi and Cu pad was about 4.0 {+-} 0.3 kg, while the strength between Sn-9Zn-lAl and Cu pad had values of 2.6 {+-} 0.1 kg. Both kinds of solder joints exhibited reduced strengths with increasing aging times. After aging at 150 deg. C for 1100 h, the joints strengths of Sn-8Zn-3Bi and Sn-9Zn-lAl were 1.8 {+-} 0.3 and 1.7 {+-} 0.3 kg, respectively. Both the Sn-8Zn-3Bi and Sn-9Zn-lAl joints showed brittle fracture behaviors. A flat layer of Cu{sub 5}Zn{sub 8} intermetallic compound (IMC) was formed between Sn-8Zn-3Bi solder and Cu pad after reflow. When the aging time was increased to 400 h, Zn-depletion and formation of Cu{sub 6}Sn{sub 5} IMC were observed in the solders due to the interaction between the tin and zinc compounds. The interaction between Sn-9Zn-lAl solder and Cu pad had similar behavior, however, Cu{sub 6}Sn{sub 5} IMC formed in Sn-9Zn-lAl solder when after aging at 150 deg. C for 600 h. As the aging time increased, both types of solders generated clear IMC spalling layers with large and continuous voids. Those voids substantially decreased the joint strength.

  9. Automation of experimental research of waveguide paths induction soldering

    Science.gov (United States)

    Tynchenko, V. S.; Petrenko, V. E.; Kukartsev, V. V.; Tynchenko, V. V.; Antamoshkin, O. A.

    2018-05-01

    The article presents an automated system of experimental studies of the waveguide paths induction soldering process. The system is a part of additional software for a complex of automated control of the technological process of induction soldering of thin-walled waveguide paths from aluminum alloys, expanding its capabilities. The structure of the software product, the general appearance of the controls and the potential application possibilities are presented. The utility of the developed application by approbation in a series of field experiments was considered and justified. The application of the experimental research system makes it possible to improve the process under consideration, providing the possibility of fine-tuning the control regulators, as well as keeping the statistics of the soldering process in a convenient form for analysis.

  10. Optimization of the soldering process by the DMAIC methodology

    Directory of Open Access Journals (Sweden)

    Michał Zasadzień

    2016-06-01

    Full Text Available The chapter presents the use of the DMAIC method for the analysis and improvement of the process of soldering pins in a plug connecting a bundle of wires to the board of a controller; a part of the steering system of a car. The main problem in the soldering process, that is an unsatisfactory share of bad soldered connections between the board and the plug and the instability of that number, was identified by means of a five-phase improvement process. Key points and main causes of the defect were pointed out, and process improvement measures were suggested. Due to the analysis conducted and the correct implementation of improvement measures the share of defective connections has been decreased twofold.

  11. Contamination profile on typical printed circuit board assemblies vs soldering process

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Purpose – The purpose of this paper was to analyse typical printed circuit board assemblies (PCBAs) processed by reflow, wave or selective wave soldering for typical levels of process-related residues, resulting from a specific or combination of soldering processes. Typical solder flux residue...... structure was identified by Fourier transform infrared spectroscopy, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode set-up. Localized extraction of residue was carried...

  12. Effect of gamma radiation on micromechanical hardness of lead-free solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Wilfred [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Irman Abdul; Jalar, Azman; Kamil, Insan; Bakar, Maria Abu [Universiti Kebangsaan Malaysia, Bangi, 43600 Kajang, Selangor (Malaysia); Yusoff, Wan Yusmawati Wan [Universiti Pertahanan Nasional Malaysia, Kem Sg. Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-25

    Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the increment of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.

  13. Comparative shear tests of some low temperature lead-free solder pastes

    Science.gov (United States)

    Branzei, Mihai; Plotog, Ioan; Varzaru, Gaudentiu; Cucu, Traian C.

    2016-12-01

    The range of electronic components and as a consequence, all parts of automotive electronic equipment operating temperatures in a vehicle is given by the location of that equipment, so the maximum temperature can vary between 358K and 478K1. The solder joints could be defined as passive parts of the interconnection structure of automotive electronic equipment, at a different level, from boards of electronic modules to systems. The manufacturing costs reduction necessity and the RoHS EU Directive3, 7 consequences generate the trend to create new Low-Temperature Lead-Free (LTLF) solder pastes family9. In the paper, the mechanical strength of solder joints and samples having the same transversal section as resistor 1206 case type made using the same LTLF alloys into Vapour Phase Soldering (VPS) process characterized by different cooling rates (slow and rapid) and two types of test PCBs pads finish, were benchmarked at room temperature. The presented work extends the theoretical studies and experiments upon heat transfer in VPSP in order to optimize the technology for soldering process (SP) of automotive electronic modules and could be extended for home and modern agriculture appliances industry. The shear forces (SF) values of the LTLF alloy samples having the same transversal section as resistor 1206 case type will be considered as references values of a database useful in the new solder alloy creation processes and their qualification for automotive electronics domain.

  14. Manipulation and soldering of carbon nanotubes using atomic force microscope

    International Nuclear Information System (INIS)

    Kashiwase, Yuta; Ikeda, Takayuki; Oya, Takahide; Ogino, Toshio

    2008-01-01

    Manipulation of carbon nanotubes (CNTs) by an atomic force microscope (AFM) and soldering of CNTs using Fe oxide nanoparticles are described. We succeeded to separate a CNT bundle into two CNTs or CNT bundles, to move the separated CNT to a desirable position, and to bind it to another bundle. For the accurate manipulation, load of the AFM cantilever and frequency of the scan were carefully selected. We soldered two CNTs using an Fe oxide nanoparticle prepared from a ferritin molecule. The adhesion forces between the soldered CNTs were examined by an AFM and it was found that the CNTs were bound, though the binding force was not strong

  15. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn- xAg-0.7Cu

    Science.gov (United States)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-12-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  16. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2010-01-01

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au......-Ge-In and Au-Ge-Sn combinations was determined to be the classic solid solution strengthening. The Au-Ge-Sb combination was primarily strengthened by the refined (Ge) dispersed phase. The aging temperature had a significant influence on the microhardness in the case of the Au-Ge-Sn candidate alloy...

  17. THE POSSIBILITY OF USING LASER-ULTRASOUND TO MONITOR THE QUALITY SOLDERED CONNECTIONS CHAMBERS OF LIQUID ROCKET ENGINES

    Directory of Open Access Journals (Sweden)

    N. V. Astredinova

    2014-01-01

    Full Text Available During the manufacturing process to the design of modern liquid rocket engines are presented important requirements, such as minimum weight, maximum stiffness and strength of nodes, maximum service life in operation, high reliability and quality of soldered and welded seams. Due to the high quality requirements soldered connections and the specific design of the nozzle, it became necessary in the development and testing of a new non-conventional non-destructive testing method – laser-ultrasound diagnosis. In accordance with regulatory guidelines, quality control soldered connections is allowed to use an acoustic kind of control methods of the reflected light, transmitted light, resonant, free vibration and acoustic emission. Attempts to use traditional methods of non-destructive testing did not lead to positive results. This is due primarily to the size of typical solder joint defects, as well as the structural features of the rocket engine, the data structure is not controllable. In connection with this, a new method that provides quality control soldered connections cameras LRE based on the thermo generation of ultrasound. Methods of ultrasonic flaw detection of photoacoustic effect, in most cases, have a number of advantages over methods that use standard (traditional piezo transducers. In the course of studies have found that the sensitivity of the laser-ultrasonic method and flaw detector UDL-2M can detect lack of adhesion in the solder joints on the upper edges of the nozzle in the sub-header area of the site.

  18. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Science.gov (United States)

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  19. Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš; Andersson, D.; Hoo, N.; Pearce, J.; Watson, A.; Dinsdale, A.; Mucklejohn, S.

    2012-01-01

    Roč. 21, č. 5 (2012), s. 629-637 ISSN 1059-9495 Institutional support: RVO:68081723 Keywords : lead-free soldering, * materials for high-temperature LF * new technologies for HT lead-free soldering Subject RIV: BJ - Thermodynamics Impact factor: 0.915, year: 2012

  20. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    Science.gov (United States)

    Sorg, Brian S.; Welch, Ashley J.

    2001-05-01

    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  1. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2015-01-01

    Full Text Available SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth and nanoparticles to the SnAgCu solders. In this paper, the work of SnAgCu lead-free solders containing alloying elements and nanoparticles was reviewed, and the effects of alloying elements and nanoparticles on the melting temperature, wettability, mechanical properties, hardness properties, microstructures, intermetallic compounds, and whiskers were discussed.

  2. The critical oxide thickness for Pb-free reflow soldering on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. Key [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Assembly Test Global Materials, Intel Microelectronics Asia Ltd, B1, No. 205, Tun-Hwa North Road, 10595 Taipei, Taiwan (China); Chen, Y.J.; Li, C.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China); Kao, C.R., E-mail: crkao@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan (China)

    2012-06-01

    Oxidation is an undesirable effect of reflow soldering. Non-wetting occurs when the oxide layer grows above the critical thickness. Characterizing the critical oxide thickness for soldering is challenging due to oxide's nano-scale thickness and irregular topographic surface. In this paper, the critical copper oxide thickness was characterized by Time-of-Flight Secondary Ion Mass Spectrometry, Scanning Electron Microscopy, Energy-Dispersive X-ray spectroscopy, and Transmission Electron Microscopy. Copper substrates were coated with an Organic-Solderable-Preservative (OSP) layer and baked at 150 Degree-Sign C and 85% Relative Humidity for different amounts of time. The onset of the non-wetting phenomenon occurred when the oxide thickness reached 18 {+-} 5 nm. As the oxide grew beyond this critical thickness, the percentage of non-wetting solder joint increased exponentially. The growth of the oxide thickness followed a parabolic rate law. The rate constant of oxidation was 0.6 Multiplication-Sign 10{sup -15} cm{sup 2} min{sup -1}. Oxidation resulted from interdiffusion of copper and oxygen atoms through the OSP and oxide layers. The oxidation mechanism will be presented and discussed. - Highlights: Black-Right-Pointing-Pointer Critical oxide thickness for Pb free solder on Cu substrate is 18 {+-} 5 nm. Black-Right-Pointing-Pointer Above the critical oxide, non-wet solder joint increases exponentially. Black-Right-Pointing-Pointer A maximum 13-nm oxide thickness is suggested for good solder joint. Black-Right-Pointing-Pointer Initial growth of oxide thickness is logarithmic and then parabolic after 12 nm. Black-Right-Pointing-Pointer Thick oxide (360-560 nm) is formed as pores shorten the oxidation path.

  3. The effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

    Science.gov (United States)

    Werden, Jesse

    The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure. Microalloying is one potential solution to the microstructural coarsening problem. This experiment consists of a microstructural coarsening study of SAC305 in which each sample has been alloyed with one of three different solutes, directionally solidified at 100microm/s, and then aged at three different temperatures over a total period of 20 days. There are several important conclusions from this experiment. First, the coarsening kinetics of the intermetallics in the ternary eutectic follow the Ostwald ripening model where r3 in proprotional to t for each alloying constituent. Second, the activation energy for coarsening was found to be 68.1+/-10.3 kJ/mol for the SAC305 samples, Zn had the most significant increase in the activation energy increasing it to 88.8+/-34.9 kJ/mol for the SAC+Zn samples, Mn also increased the activation energy to 83.2+/-20.8 kJ/mol for the SAC+Mn samples, and Sb decreased the activation energy to 48.0+/-3.59 kJ/mol for the SAC+Sb samples. Finally, it was found that the

  4. Massive spalling of Cu-Zn and Cu-Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction

    Science.gov (United States)

    Kotadia, H. R.; Panneerselvam, A.; Mokhtari, O.; Green, M. A.; Mannan, S. H.

    2012-04-01

    The interfacial intermetallic compound (IMC) formation between Cu substrate and Sn-3.8Ag-0.7Cu-X (wt.%) solder alloys has been studied, where X consists of 0-5% Zn or 0-2% Al. The study has focused on the effect of solder volume as well as the Zn or Al concentration. With low solder volume, when the Zn and Al concentrations in the solder are also low, the initial Cu-Zn and Al-Cu IMC layers, which form at the solder/substrate interface, are not stable and spall off, displaced by a Cu6Sn5 IMC layer. As the total Zn or Al content in the system increases by increasing solder volume, stable CuZn or Al2Cu IMCs form on the substrate and are not displaced. Increasing concentration of Zn has a similar effect of stabilizing the Cu-Zn IMC layer and also of forming a stable Cu5Zn8 layer, but increasing Al concentration alone does not prevent spalling of Al2Cu. These results are explained using a combination of thermodynamic- and kinetics-based arguments.

  5. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    KAUST Repository

    Zhang, Xuan; Zheng, Xiujun; Zhang, Hong; Zhang, Junli; Fu, Jiecai; Zhang, Qiang; Peng, Chaoyi; Bai, Feiming; Zhang, Xixiang; Peng, Yong

    2017-01-01

    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  6. Bottom-up nanoarchitecture of semiconductor nano-building blocks by controllable in situ SEM-FIB thermal soldering method

    KAUST Repository

    Zhang, Xuan

    2017-08-10

    Here we demonstrate that the building blocks of semiconductor WO3 nanowires can be controllably soldered together by a novel nano-soldering technique of in situ SEM-FIB thermal soldering, in which the soldering temperature can precisely remain in an optimal range to avoid a strong thermal diffusion.

  7. 30 CFR 77.1111 - Welding, cutting, soldering; use of fire extinguisher.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, soldering; use of fire... OF UNDERGROUND COAL MINES Fire Protection § 77.1111 Welding, cutting, soldering; use of fire extinguisher. One portable fire extinguisher shall be provided at each location where welding, cutting, or...

  8. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a ''press'' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  9. Application of PIXE to the study of Renaissance style enamelled gold jewelry

    Science.gov (United States)

    Weldon, M.; Carlson, J.; Reedy, S.; Swann, C. P.

    1996-04-01

    This study examines and compares three pieces of Renaissance style gold and enamelled jewelry owned by the Walters Art Gallery, Baltimore, MD, USA. These are a 16th century Hat Badge of Adam and Eve, a 19th century Fortitude Pendant and a Diana Pendant presumed to be of the 16th century (The Walters Art Gallery, Jewelry, Ancient to Modern (Viking, New York, 1979)), Ref. [1]. PIXE spectroscopy was applied to examine the elemental composition of the gold and of the enamels. Compositional differences, including the use of post-Renaissance colorants, were found between the enamels in separate regions of each of the three pieces. The modern colorant, chromium, was, in fact, found in all of the pieces and uranium was found in only the Diana Pendant. There are some differences in the gold purity of the three objects; there are significant differences in the solders used even within one object, the Fortitude Pendant.

  10. Microstructural evolution and tensile properties of Sn-Ag-Cu mixed with Sn-Pb solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fengjiang [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States); O' Keefe, Matthew [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)], E-mail: mjokeefe@mst.edu; Brinkmeyer, Brandon [Department of Materials Science and Engineering and Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65401 (United States)

    2009-05-27

    The effect of incorporating eutectic Sn-Pb solder with Sn-3.0Ag-0.5Cu (SAC) Pb-free solder on the microstructure and tensile properties of the mixed alloys was investigated. Alloys containing 100, 75, 50, 25, 20, 15, 10, 5 and 0 wt% SAC, with the balance being Sn-37Pb eutectic solder alloy, were prepared and characterized. Optical and scanning electron microscopy were used to analyze the microstructures while 'mini-tensile' test specimens were fabricated and tested to determine mechanical properties at the mm length scale, more closely matching that of the solder joints. Microstructural analysis indicated that a Pb-rich phase formed and was uniformly distributed at the boundary between the Sn-rich grains or between the Sn-rich and the intermetallic compounds in the solder. Tensile results showed that mixing of the alloys resulted in an increase in both the yield and the ultimate tensile strength compared to the original solders, with the 50% SAC-50% Sn-Pb mixture having the highest measured strength. Initial investigations indicate the formation and distribution of a Pb-rich phase in the mixed solder alloys as the source of the strengthening mechanism.

  11. Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [Department; Son, Jae Sung [Department; School; Dolzhnikov, Dmitriy S. [Department; Filatov, Alexander S. [Department; Hazarika, Abhijit [Department; Wang, Yuanyuan [Department; Hudson, Margaret H. [Department; Sun, Cheng-Jun [Advanced; Chattopadhyay, Soma [Physical; Talapin, Dmitri V. [Department; Center

    2017-07-27

    Here we report the syntheses of largely unexplored lead and bismuth chalcogenidometallates in the solution phase. Using N2H4 as the solvent, new compounds such as K6Pb3Te6·7N2H4 were obtained. These soluble molecular compounds underwent cation exchange processes using resin chemistry, replacing Na+ or K+ by decomposable N2H5+ or tetraethylammonium cations. They also transformed into stoichiometric lead and bismuth chalcogenide nanomaterials with the addition of metal salts. Such a versatile chemistry led to a variety of composition-matched solders to join lead and bismuth chalcogenides and tune their charge transport properties at the grain boundaries. Solution-processed thin films composed of Bi0.5Sb1.5Te3 microparticles soldered by (N2H5)6Bi0.5Sb1.5Te6 exhibited thermoelectric power factors (~28 μW/cm K2) comparable to those in vacuum-deposited Bi0.5Sb1.5Te3 films. The soldering effect can also be integrated with attractive fabrication techniques for thermoelectric modules, such as screen printing, suggesting the potential of these solders in the rational design of printable and moldable thermoelectrics.

  12. Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy

    Directory of Open Access Journals (Sweden)

    Abdoul-Aziz Bogno

    2015-01-01

    Full Text Available The properties and performance of lead-free solder alloys such as fluidity and wettability are defined by the alloy composition and solidification microstructure. Rapid solidification of metallic alloys is known to result in refined microstructures with reduced microsegregation and improved mechanical properties of the final products as compared to normal castings. The rapidly solidified Sn-based solders by melt spinning were shown to be suitable for soldering with low temperature and short soldering duration. In the present study, rapidly solidified Sn–0.7 wt.%Cu droplets generated by impulse atomization (IA were achieved as well as directional solidification under transient conditions at lower cooling rate. This paper reports on a comparative study of the rapidly solidified and the directionally solidified samples. Different but complementary characterization techniques were used to fully analyze the solidification microstructures of the samples obtained under the two cooling regimes. These include X-ray diffractometry (XRD and scanning electron microscopy (SEM. In order to compare the tensile strength and elongation to fracture of the directionally solidified ingot and strip castings with the atomized droplet, compaction and extrusion of the latter were carried out. It was shown that more balanced and superior tensile mechanical properties are available for the hot extruded samples from compacted as-atomized Sn–0.7 wt.%Cu droplets. Further, elongation-to-fracture was 2–3× higher than that obtained for the directionally solidified samples.

  13. Properties and Microstructures of Sn-Ag-Cu-X Lead-Free Solder Joints in Electronic Packaging

    OpenAIRE

    Sun, Lei; Zhang, Liang

    2015-01-01

    SnAgCu solder alloys were considered as one of the most popular lead-free solders because of its good reliability and mechanical properties. However, there are also many problems that need to be solved for the SnAgCu solders, such as high melting point and poor wettability. In order to overcome these shortcomings, and further enhance the properties of SnAgCu solders, many researchers choose to add a series of alloying elements (In, Ti, Fe, Zn, Bi, Ni, Sb, Ga, Al, and rare earth) and nanoparti...

  14. Electromigration-induced back stress in critical solder length for three-dimensional integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y. T.; Hsu, H. H.; Wu, Albert T., E-mail: atwu@ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli City 320, Taiwan (China)

    2014-01-21

    Because of the miniaturization of electronic devices, the reliability of electromigration has become a major concern when shrinking the solder dimensions in flip-chip joints. Fast reaction between solders and electrodes causes intermetallic compounds (IMCs) to form, which grow rapidly and occupy entire joints when solder volumes decrease. In this study, U-grooves were fabricated on Si chips as test vehicles. An electrode-solder-electrode sandwich structure was fabricated by using lithography and electroplating. Gaps exhibiting well-defined dimensions were filled with Sn3.5Ag solders. The gaps between the copper electrodes in the test sample were limited to less than 15 μm to simulate microbumps. The samples were stressed at various current densities at 100 °C, 125 °C, and 150 °C. The morphological changes of the IMCs were observed, and the dimensions of the IMCs were measured to determine the kinetic growth of IMCs. Therefore, this study focused on the influence of back stress caused by microstructural evolution in microbumps.

  15. Transected sciatic nerve repair by diode laser protein soldering.

    Science.gov (United States)

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (pneurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Laser beam soldering of micro-optical components

    Science.gov (United States)

    Eberhardt, R.

    2003-05-01

    MOTIVATION Ongoing miniaturisation and higher requirements within optical assemblies and the processing of temperature sensitive components demands for innovative selective joining techniques. So far adhesive bonding has primarily been used to assemble and adjust hybrid micro optical systems. However, the properties of the organic polymers used for the adhesives limit the application of these systems. In fields of telecommunication and lithography, an enhancement of existing joining techniques is necessary to improve properties like humidity resistance, laserstability, UV-stability, thermal cycle reliability and life time reliability. Against this background laser beam soldering of optical components is a reasonable joining technology alternative. Properties like: - time and area restricted energy input - energy input can be controlled by the process temperature - direct and indirect heating of the components is possible - no mechanical contact between joining tool and components give good conditions to meet the requirements on a joining technology for sensitive optical components. Additionally to the laser soldering head, for the assembly of optical components it is necessary to include positioning units to adjust the position of the components with high accuracy before joining. Furthermore, suitable measurement methods to characterize the soldered assemblies (for instance in terms of position tolerances) need to be developed.

  17. Characterizing performances of solder paste printing process at flexible manufacturing lines

    International Nuclear Information System (INIS)

    Siew, Jit Ping; Low, Heng Chin; Teoh, Ping Chow

    2015-01-01

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter

  18. Characterizing performances of solder paste printing process at flexible manufacturing lines

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Jit Ping; Low, Heng Chin [University of Science Malaysia, 11800 Minden, Penang (Malaysia); Teoh, Ping Chow [Wawasan Open University, 54 Jalan Sultan Ahmad Shah, 10050 Penang (Malaysia)

    2015-02-03

    Solder paste printing (SPP) has been a challenge on printed circuit board (PCB) manufacturing, evident by the proliferation of solder paste inspection equipment, or substituted by rigorous non-value added activity of manual inspections. The objective of this study is to characterize the SPP performance of various products manufactured in flexible production lines with different equipment configurations, and determine areas for process improvement. The study began by collecting information on SPP performance relative to component placement (CP) process, and to the proportion of mixed products. Using a clustering algorithm to group similar elements together, SPP performance across all product-production line pairs are statistically modeled to discover the trend and the influential factors. The main findings are: (a) Ratio of overall dpku for CP and SPP processes are 2:1; (b) logistic regression models of SPP performance indicated that only effects of product-production line and solder paste printer configuration are significant; (c) PCB circuitry design with BGA components and single solder paste printer line configurations generated the highest monthly defects, with the highest variation in the latter.

  19. Evaluation of process influences on surface chemistry of epoxy acrylate based solder mask via XPS, ToF-SIMS and contact angle measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, Caroline, E-mail: caroline.hofmeister@de.bosch.com [Robert Bosch GmbH, Postfach 30 02 40, 70442 Stuttgart (Germany); Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen (Germany); Maaß, Sebastian [Robert Bosch GmbH, Postfach 30 02 40, 70442 Stuttgart (Germany); Fladung, Thorsten; Mayer, Bernd [Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen (Germany)

    2017-01-01

    Epoxy acrylate based solder mask formulations were conditioned by different printed circuit board (PCB) manufacturing and PCB assembly process stages. Depending on these different influences the chemistry of the solder mask surface was investigated regarding adhesion to possible adhesion partners. The combination of X-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the contact angle method, for surface energy determination, provided a detailed understanding of the surface near region up to the topmost monolayer, which forms the contact zone in which adhesion takes place. The combination of ToF-SIMS and XPS provided molecular information of surface components comprising quantitative information. The influences of all process steps, like UV, chemical and thermal treatment, on the chemical surface composition and appearance were identified. Based on the results a chemical surface model could be created regarding the different adhesion mechanisms. It has been shown that an enrichment of siloxanes at the surface is generated by different mechanisms that were distinguished based on ToF-SIMS. Even though an oxidation process in the surface near region (10 nm) was indicated by XPS, no increase of the surface polar groups and thus no polarity increase could be observed within the first monolayer. A surface model derived from the analysis results shows generation and occupation of free sites at the surface through all stages of the process. An occupation of free sites by siloxanes from additives in the solder mask formulation results in a siloxane dominated topmost monolayer. - Highlights: • A surface model describing the process influences is proposed. • Detailed siloxane reaction analysis was possible with ToF-SIMS. • Photo-chemical, chemical and thermal surface modification occur during PCB manufacturing.

  20. A FPGA implementation of solder paste deposit on printed circuit boards errors detector based in a bright and contrast algorithm

    OpenAIRE

    De Luca-Pennacchia, A.; Sánchez-Martínez, M. Á.

    2007-01-01

    Solder paste deposit on printed circuit boards (PCB) is a critical stage. It is known that about 60% of functionality defects in this type of boards are due to poor solder paste printing. These defects can be diminished by means of automatic optical inspection of this printing. Actually, this process is implemented by image processing software with its inherent high computational time cost. In this paper we propose to implement a high parallel degree image comparison algorithm suitable to be ...

  1. Crystal plasticity finite element analysis of deformation behaviour in SAC305 solder joint

    Science.gov (United States)

    Darbandi, Payam

    Due to the awareness of the potential health hazards associated with the toxicity of lead (Pb), actions have been taken to eliminate or reduce the use of Pb in consumer products. Among those, tin (Sn) solders have been used for the assembly of electronic systems. Anisotropy is of significant importance in all structural metals, but this characteristic is unusually strong in Sn, making Sn based solder joints one of the best examples of the influence of anisotropy. The effect of anisotropy arising from the crystal structure of tin and large grain microstructure on the microstructure and the evolution of constitutive responses of microscale SAC305 solder joints is investigated. Insights into the effects of key microstructural features and dominant plastic deformation mechanisms influencing the measured relative activity of slip systems in SAC305 are obtained from a combination of optical microscopy, orientation imaging microscopy (OIM), slip plane trace analysis and crystal plasticity finite element (CPFE) modeling. Package level SAC305 specimens were subjected to shear deformation in sequential steps and characterized using optical microscopy and OIM to identify the activity of slip systems. X-ray micro Laue diffraction and high energy monochromatic X-ray beam were employed to characterize the joint scale tensile samples to provide necessary information to be able to compare and validate the CPFE model. A CPFE model was developed that can account for relative ease of activating slip systems in SAC305 solder based upon the statistical estimation based on correlation between the critical resolved shear stress and the probability of activating various slip systems. The results from simulations show that the CPFE model developed using the statistical analysis of activity of slip system not only can satisfy the requirements associated with kinematic of plastic deformation in crystal coordinate systems (activity of slip systems) and global coordinate system (shape changes

  2. An Approach for Impression Creep of Lead Free Microelectronic Solders

    Science.gov (United States)

    Anastasio, Onofrio A.

    2002-06-01

    Currently, the microelectronics industry is transitioning from lead-containing to lead-free solders in response to legislation in the EU and Japan. Before an alternative alloy can be designated as a replacement for current Pb-Sn extensive testing must be accomplished. One major characteristic of the alloy that must be considered is creep. Traditionally, creep testing requires numerous samples and a long tin, which thwarts the generation of comprehensive creep databases for difficult to prepare samples such as microelectronic solder joints. However, a relatively new technique, impression creep enables us to rapidly generate creep data. This test uses a cylindrical punch with a flat end to make an impression on the surface of a specimen under constant load. The steady state velocity of the indenter is found to have the same stress and temperature dependence as the conventional unidirectional creep test using bulk specimens. This thesis examines impression creep tests of eutectic Sn-Ag. A testing program and apparatus was developed constructed based on a servo hydraulic test frame. The apparatus is capable of a load resolution of 0.01N with a stability of plus/minus 0.1N, and a displacement resolution of 0.05 microns with a stability of plus/minus 0.1 microns. Samples of eutectic Sn-Ag solder were reflowed to develop the microstructure used in microelectronic packaging. Creep tests were conducted at various stresses and temperatures and showed that coarse microstructures creep more rapidly than the microstructures in the tested regime.

  3. A review of typical thermal fatigue failure models for solder joints of electronic components

    Science.gov (United States)

    Li, Xiaoyan; Sun, Ruifeng; Wang, Yongdong

    2017-09-01

    For electronic components, cyclic plastic strain makes it easier to accumulate fatigue damage than elastic strain. When the solder joints undertake thermal expansion or cold contraction, different thermal strain of the electronic component and its corresponding substrate is caused by the different coefficient of thermal expansion of the electronic component and its corresponding substrate, leading to the phenomenon of stress concentration. So repeatedly, cracks began to sprout and gradually extend [1]. In this paper, the typical thermal fatigue failure models of solder joints of electronic components are classified and the methods of obtaining the parameters in the model are summarized based on domestic and foreign literature research.

  4. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  5. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  6. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    Science.gov (United States)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-03-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  7. Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants

    Science.gov (United States)

    Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai

    2018-06-01

    With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.

  8. Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy

    Science.gov (United States)

    Tikale, Sanjay; Prabhu, K. Narayan

    2018-05-01

    The effect of Al2O3 nanoparticles reinforcement on melting behavior, microstructure evolution at the interface and joint shear strength of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder alloy subjected to multiple reflow cycles was investigated. The reinforced SAC305 solder alloy compositions were prepared by adding Al2O3 nanoparticles in different weight fractions (0.05, 0.1, 0.3 and 0.5 wt.%) through mechanical dispersion. Cu/solder/Cu micro-lap-shear solder joint specimens were used to assess the shear strength of the solder joint. Differential scanning calorimetry was used to investigate the melting behavior of SAC305 solder nanocomposites. The solder joint interfacial microstructure was studied using scanning electron microscopy. The results showed that the increase in melting temperature (T L) and melting temperature range of the SAC305 solder alloy by addition of Al2O3 nanoparticles were not significant. In comparison with unreinforced SAC305 solder alloy, the reinforcement of 0.05-0.5 wt.% of Al2O3 nanoparticles improved the solder wettability. The addition of nanoparticles in minor quantity effectively suppressed the Cu6Sn5 IMC growth, improved the solder joint shear strength and ductility under multiple reflow cycles. However, the improvement in solder properties was less pronounced on increasing the nanoparticle content above 0.1 wt.% of the solder alloy.

  9. Investigation of moisture uptake into printed circuit board laminate and solder mask materials

    DEFF Research Database (Denmark)

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Borgaonkar, Shruti

    2017-01-01

    with different solder mask materials and exposed to saturated water vapour and liquid water. The solder masks are characterised for their microstructure and constituent phases using scanning electron microscopy and X-ray diffraction. The observations are correlated with themoisture absorption characteristic...

  10. Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder

    Science.gov (United States)

    Tucker, Jonathon P.

    As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb

  11. Laser-tissue soldering with biodegradable polymer films in vitro: film surface morphology and hydration effects.

    Science.gov (United States)

    Sorg, B S; Welch, A J

    2001-01-01

    Previous research introduced the concept of using biodegradable polymer film reinforcement of a liquid albumin solder for improvement of the tensile strength of repaired incisions in vitro. In this study, the effect of creating small pores in the PLGA films on the weld breaking strength is studied. Additionally, the effect of hydration on the strength of the reinforced welds is investigated. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with an 806-nm CW diode laser. A poly(DL-lactic-co-glycolic acid) (PLGA) film was used to reinforce the solder (the controls had solder but no reinforcement). Breaking strengths were measured acutely and after hydration in saline for 1 and 2 days. The data were analyzed by ANOVA (P < 0.05) and multiple comparisons of means were performed using the Newman-Keuls test. The creation of pores in the PLGA films qualitatively improved the film flexibility without having an apparent adverse effect on the breaking strength, while the actual technique of applying the film and solder had more of an effect. The acute maximum average breaking strengths of some of the film reinforced specimens (114.7 g-134.4 g) were significantly higher (P < 0.05) than the acute maximum average breaking strength of the unreinforced control specimens (68.3 g). Film reinforced specimens were shown to have a statistically significantly higher breaking strength than unreinforced controls after 1- and 2-day hydration. Reinforcement of liquid albumin solders in laser-assisted incision repair appears to have advantages over conventional methods that do not reinforce the cohesive strength of the solder in terms of acute breaking strength and after immersion in moist environments for short periods of time. Using a film with the solder applied to one surface only may be advantageous over other techniques.

  12. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

    Science.gov (United States)

    Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.

    2011-01-01

    The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.

  13. Wall-slip effects in SnAgCu solder pastes used in electronics assembly applications

    International Nuclear Information System (INIS)

    Mallik, S.; Ekere, N.N.; Durairaj, R.; Marks, A.E.; Seman, A.

    2009-01-01

    Solder paste is the most important strategic bonding material used in the assembly of surface mount components in electronics manufacturing. As the trend towards miniaturisation of electronic products continues, there is an increasing demand for better understanding of the flow and deformation that is, the rheological behaviour of solder paste formulations. Wall slip plays an important role in characterising the flow behaviour of solder paste materials. The problem of wall slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. In rheological measurements, slip effects can generally be avoided by using roughened surfaces for measuring geometries. In this paper, a novel technique is developed to study the effect of wall slip in the rheological measurements of lead-free solder paste. The viscosity and oscillatory data obtained for three different solder paste samples (from measuring geometries of different surface roughness) have been analysed and compared. In viscosity measurements, slip effects were dominant at low shear rates and the use of serrated surfaces was found to be quite effective in minimizing slip effects. Oscillatory measurements were also affected by roughening the surfaces of measuring geometries.

  14. Investigation on solder joint strength of nickel tin-plated and CRS tabs with PCB

    International Nuclear Information System (INIS)

    Luay Hussain

    2002-01-01

    Failure analysis on easily peels off Nickel and CRS steel tabs from PCB was carried out. Nickel Tin plated tabs, CRS steel tabs and tube were joined to the PCB using reflow/ convection soldering, in an oven. The solder paste composition is Sn36/Pb35/Ag2. Peel test was conducted and it was found that many tabs could be easily peeled off with low force. Porosities which varies from 0.4 mm to < 0.01mm in diameter, developed during soldering process and solidification was noted. It was found, the number, size and position of these porosities inside the solder layer on both parts of the tabs affect the peel strength. Scanning Electron Microscopy study and EDX analysis were carried out. It was found that the low peel strength values were due to the combination of generation and development of porosities during soldering process which act as stress concentrators and the evolution (growth) of eutectic Sn/Pb and Sn/Ni/Cu brittle grainy phase. Large eutectic microstructure with brittle Sn-Ni-Cu grainy phase enhances the failure with low peeling forces. Sample showing no feature of Sn/Ni/Cu grain gave high peeling strength value. Solder reflow, an important process, can result in strength enhancement (if it was controlled for example in a furnace). (Author)

  15. Development of high melting point, environmentally friendly solders, using the calphad approach

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2008-01-01

    An attempt has been made using the CALPHAD approach via Thermo-Calc to explore the various possible chemical compositions that adhere to the melting criterion i.e. 270-350 degrees C, required to replace the traditionally used high lead content solders for first level packaging applications. Vario...... tension have also been considered. Special focus has been given to toxicity related issues since the main ideology of looking for an alternative to high lead containing solders is not related to technical issues but due to environmental concerns.......An attempt has been made using the CALPHAD approach via Thermo-Calc to explore the various possible chemical compositions that adhere to the melting criterion i.e. 270-350 degrees C, required to replace the traditionally used high lead content solders for first level packaging applications. Various...... of promising solder alloy candidates. The ternary combinations that satisfied the primary solidification requirement were scrutinized taking into account the commercial interests i.e. availability, cost-effectiveness, recyclability and toxicity issues. Technical issues like manufacturability and surface...

  16. Reliability of soldered joints for automotive electronic devices; Denso buhin ni okeru handa setsugo no shinraisei

    Energy Technology Data Exchange (ETDEWEB)

    Kita, T; Mukaibo, N; Ando, K; Moriyama, M [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    Concerning the tin and lead eutectic solder, we have evaluated the reliability of three factors of intermetallic compound layer, creep and vibration which cause solder degradation. First, the stress factor was extracted from investigating the mechanism of degradation, and the best acceleration test method was fixed. Next, the acceleration test was executed to find the stress dependency and the tendency of solder degradation was modeled numerically. While the environmental stress frequency was obtained and they were put together by using a minor method, which enabled us to predict the life span of solder on the market with precision. 5 refs., 13 figs.

  17. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    Science.gov (United States)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  18. Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Randy; Peterson, Kenneth A.

    2015-10-01

    This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

  19. Improvement of the auto wire feeder machine in a de-soldering process

    Directory of Open Access Journals (Sweden)

    Niramon Nonkhukhetkhong

    2016-10-01

    Full Text Available This paper presents the methodology of the de-soldering process for rework of disk drive Head Stack Assembly (HSA units. The auto wire feeder is a machine that generates Tin (Sn on the product. This machine was determined to be one of the major sources of excess Sn on the HSA. The defect rate due to excess Sn is more than 30%, which leads to increased processing time and cost to perform additional cleaning steps. From process analysis, the major causes of excess Sn are as follows: 1 The machine cannot cut the wire all the way into the flux core area; 2 The sizes and types of soldering irons are not appropriate for the unit parts; and, 3 There are variations introduced into the de-soldering process by the workforce. This paper proposes a methodology to address all three of these causes. First, the auto wire feeder machine in the de-solder process will be adjusted in order to cut wires into flux core. Second, the types of equipment and material used in de-soldering will be optimized. Finally, a new standard method for operators, which can be controlled more easily, will be developed in order to reduce defects due to workforce related variation. After these process controls and machine adjustments were implemented, the overall Sn related problems were significantly improved. Sn contamination was reduced by 41% and cycle time was reduced by an average of 15 seconds.

  20. Fluxless flip-chip bonding using a lead-free solder bumping technique

    Science.gov (United States)

    Hansen, K.; Kousar, S.; Pitzl, D.; Arab, S.

    2017-09-01

    With the LHC exceeding the nominal instantaneous luminosity, the current barrel pixel detector (BPIX) of the CMS experiment at CERN will reach its performance limits and undergo significant radiation damage. In order to improve detector performance in high luminosity conditions, the entire BPIX is replaced with an upgraded version containing an additional detection layer. Half of the modules comprising this additional layer are produced at DESY using fluxless and lead-free bumping and bonding techniques. Sequential solder-jetting technique is utilized to wet 40-μm SAC305 solder spheres on the silicon-sensor pads with electroless Ni, Pd and immersion Au (ENEPIG) under-bump metallization (UBM). The bumped sensors are flip-chip assembled with readout chips (ROCs) and then reflowed using a flux-less bonding facility. The challenges for jetting low solder volume have been analyzed and will be presented in this paper. An average speed of 3.4 balls per second is obtained to jet about 67 thousand solder balls on a single chip. On average, 7 modules have been produced per week. The bump-bond quality is evaluated in terms of electrical and mechanical properties. The peak-bump resistance is about 17.5 mΩ. The cross-section study revealed different types of intermetallic compounds (IMC) as a result of interfacial reactions between UBM and solder material. The effect of crystalline phases on the mechanical properties of the joint is discussed. The mean shear strength per bump after the final module reflow is about 16 cN. The results and sources of yield loss of module production are reported. The achieved yield is 95%.

  1. Reliability of Pb free solder alloys. Physical and mechanical properties; Pb free handa no shinraisei. Butsuri kikaiteki shinraisei

    Energy Technology Data Exchange (ETDEWEB)

    Sanji, M; Yoshino, M; Ishikawa, J; Takenaka, O [Denso Corp., Aichi (Japan)

    1997-10-01

    Properties of 19 different Pb free solders have been evaluated in comparison with Sn-37Pb eutectic solder. Pb free solders without Bi were on the same level as Sn-37Pb in tensile strength and elongation, and those with Bi had higher strength and lower elongation than Sn-37Pb. As the Bi content increased, strength was higher, and elongation was lower. In torsion fatigue tests, fatigue life of Pb free solders without Bi was longer than Sn-37Pb. The relationships of Coffin-Manson rule and Basquin rule with fatigue life was applicable to Pb free solder. Fatigue life of those is inferred from their tensile strength. 7 refs., 13 figs., 1 tab.

  2. Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages

    Energy Technology Data Exchange (ETDEWEB)

    Gain, Asit Kumar [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)], E-mail: eeycchan@cityu.edu.hk; Yung, Winco K.C. [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2009-05-25

    The effect of nano Ni additions in Sn-9Zn and Sn-8Zn-3Bi solders on their interfacial microstructures and shear loads with Au/Ni/Cu pad metallization in ball grid array (BGA) applications were investigated. After the addition of nano Ni powder in Sn-based lead-free solders, there were no significant changes in the interfacial microstructure. But, in the solder region a very fine Zn-rich phase was observed. Also on the fracture surfaces a fine Zn-Ni compound was found. After the addition of nano Ni powder in Sn-based solders, the shear loads were increased due to a refinement of the microstructure and in addition, ductile fracture surfaces were clearly observed. The shear loads of the plain Sn-9Zn and Sn-8Zn-3Bi solders after one reflow cycle were about 1798 g and 2059 g, respectively. After the addition of nano Ni powder, their loads were about 2172 g and 2212 g, respectively, after one reflow cycle and their shear loads after eight reflow cycles were about 2099 g and 2081 g, respectively.

  3. Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages

    International Nuclear Information System (INIS)

    Gain, Asit Kumar; Chan, Y.C.; Yung, Winco K.C.

    2009-01-01

    The effect of nano Ni additions in Sn-9Zn and Sn-8Zn-3Bi solders on their interfacial microstructures and shear loads with Au/Ni/Cu pad metallization in ball grid array (BGA) applications were investigated. After the addition of nano Ni powder in Sn-based lead-free solders, there were no significant changes in the interfacial microstructure. But, in the solder region a very fine Zn-rich phase was observed. Also on the fracture surfaces a fine Zn-Ni compound was found. After the addition of nano Ni powder in Sn-based solders, the shear loads were increased due to a refinement of the microstructure and in addition, ductile fracture surfaces were clearly observed. The shear loads of the plain Sn-9Zn and Sn-8Zn-3Bi solders after one reflow cycle were about 1798 g and 2059 g, respectively. After the addition of nano Ni powder, their loads were about 2172 g and 2212 g, respectively, after one reflow cycle and their shear loads after eight reflow cycles were about 2099 g and 2081 g, respectively.

  4. Laser tissue welding mediated with a protein solder

    Science.gov (United States)

    Small, Ward, IV; Heredia, Nicholas J.; Celliers, Peter M.; Da Silva, Luiz B.; Eder, David C.; Glinsky, Michael E.; London, Richard A.; Maitland, Duncan J.; Matthews, Dennis L.; Soltz, Barbara A.

    1996-05-01

    A study of laser tissue welding mediated with an indocyanine green dye-enhanced protein solder was performed. Freshly obtained sections of porcine artery were used for the experiments. Sample arterial wall thickness ranged from two to three millimeters. Incisions approximately four millimeters in length were treated using an 805 nanometer continuous- wave diode laser coupled to a one millimeter diameter fiber. Controlled parameters included the power delivered by the laser, the duration of the welding process, and the concentration of dye in the solder. A two-color infrared detection system was constructed to monitor the surface temperatures achieved at the weld site. Burst pressure measurements were made to quantify the strengths of the welds immediately following completion of the welding procedure.

  5. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  6. Laser solder welding of articular cartilage: tensile strength and chondrocyte viability.

    Science.gov (United States)

    Züger, B J; Ott, B; Mainil-Varlet, P; Schaffner, T; Clémence, J F; Weber, H P; Frenz, M

    2001-01-01

    The surgical treatment of full-thickness cartilage defects in the knee joint remains a therapeutic challenge. Recently, new techniques for articular cartilage transplantation, such as mosaicplasty, have become available for cartilage repair. The long-term success of these techniques, however, depends not only on the chondrocyte viability but also on a lateral integration of the implant. The goal of this study was to evaluate the feasibility of cartilage welding by using albumin solder that was dye-enhanced to allow coagulation with 808-nm laser diode irradiation. Conventional histology of light microscopy was compared with a viability staining to precisely determine the extent of thermal damage after laser welding. Indocyanine green (ICG) enhanced albumin solder (25% albumin, 0.5% HA, 0.1% ICG) was used for articular cartilage welding. For coagulation, the solder was irradiated through the cartilage implant by 808-nm laser light and the tensile strength of the weld was measured. Viability staining revealed a thermal damage of typically 500 m in depth at an irradiance of approximately 10 W/cm(2) for 8 seconds, whereas conventional histologies showed only half of the extent found by the viability test. Heat-bath investigations revealed a threshold temperature of minimum 54 degrees C for thermal damage of chondrocytes. Efficient cartilage bonding was obtained by using bovine albumin solder as adhesive. Maximum tensile strength of more than 10 N/cm(2) was achieved. Viability tests revealed that the thermal damage is much greater (up to twice) than expected after light microscopic characterization. This study shows the feasibility to strongly laser weld cartilage on cartilage by use of a dye-enhanced albumin solder. Possibilities to reduce the range of damage are suggested. Copyright 2001 Wiley-Liss, Inc.

  7. Electrochemical Behavior of Sn-9Zn- xTi Lead-Free Solders in Neutral 0.5M NaCl Solution

    Science.gov (United States)

    Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki

    2018-05-01

    Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn- xTi ( x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density ( i corr) and much higher total resistance ( R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn- xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.

  8. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    Directory of Open Access Journals (Sweden)

    Jinhua Mi

    2014-01-01

    Full Text Available Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA and fine-pitch ball grid array (FBGA interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products.

  9. Contamination profile of Printed Circuit Board Assemblies in relation to soldering types and conformal coating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition......, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined...

  10. Numerical prediction of mechanical properties of Pb-Sn solder alloys containing antimony, bismuth and or silver ternary trace elements

    Science.gov (United States)

    Gadag, Shiva P.; Patra, Susant

    2000-12-01

    Solder joint interconnects are mechanical means of structural support for bridging the various electronic components and providing electrical contacts and a thermal path for heat dissipation. The functionality of the electronic device often relies on the structural integrity of the solder. The dimensional stability of solder joints is numerically predicted based on their mechanical properties. Algorithms to model the kinetics of dissolution and subsequent growth of intermetallic from the complete knowledge of a single history of time-temperature-reflow profile, by considering equivalent isothermal time intervals, have been developed. The information for dissolution is derived during the heating cycle of reflow and for the growth process from cooling curve of reflow profile. A simple and quick analysis tool to derive tensile stress-strain maps as a function of the reflow temperature of solder and strain rate has been developed by numerical program. The tensile properties are used in modeling thermal strain, thermal fatigue and to predict the overall fatigue life of solder joints. The numerical analysis of the tensile properties as affected by their composition and rate of testing, has been compiled in this paper. A numerical model using constitutive equation has been developed to evaluate the interfacial fatigue crack growth rate. The model can assess the effect of cooling rate, which depends on the level of strain energy release rate. Increasing cooling rate from normalizing to water-quenching, enhanced the fatigue resistance to interfacial crack growth by up to 50% at low strain energy release rate. The increased cooling rates enhanced the fatigue crack growth resistance by surface roughening at the interface of solder joint. This paper highlights salient features of process modeling. Interfacial intermetallic microstructure is affected by cooling rate and thereby affects the mechanical properties.

  11. Enhanced performance of VOx-based bolometer using patterned gold black absorber

    Science.gov (United States)

    Smith, Evan M.; Panjwani, Deep; Ginn, James; Warren, Andrew; Long, Christopher; Figuieredo, Pedro; Smith, Christian; Perlstein, Joshua; Walter, Nick; Hirschmugl, Carol; Peale, Robert E.; Shelton, David J.

    2015-06-01

    Patterned highly absorbing gold black film has been selectively deposited on the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves gold black's near unity absorption. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. Infrared responsivity is substantially improved by the gold black coating without significantly increasing noise. The increase in the time constant caused by the additional mass of gold black is a modest 14%.

  12. The Effect of Reflow on Wettability of Sn 96.5 Ag 3 Cu 0.5 Solder

    Directory of Open Access Journals (Sweden)

    Zoltán Weltsch

    2012-11-01

    Full Text Available Surface conditions on Printed Circuit Board (PCB final finishes have an important impact on the wetting behaviour with lead-free solder. The improvement of wettability in liquid Sn 96.5 Ag 3 Cu 0.5 Solder alloy on PCB substrate was measured with a sessile drop method at 523 K temperature. Wetting properties was determined in normal atmospheric air and inert atmosphere. The wetting angles increasing with the number of reflows both atmosphere. The effect of the atmosphere has a huge importance of the oxidation which manifests itself of the measured wetting angles. One of the most important factors to the wetting properties is the amount of oxygen in the soldering atmosphere. Using the inert atmosphere is crucial to Pb-free solders, particularly after reflows.

  13. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  14. Reliability and microstructure of lead-free solder joints in industrial electronics after accelerated thermal aging

    NARCIS (Netherlands)

    Scaltro, F.; Biglari, M.H.; Kodentsov, A.; Yakovleva, O.; Brom, E.

    2009-01-01

    The reliability of lead-free (LF) solder joints in surface-mounted device components (SMD) has been investigated after thermo-cycle testing. Kirkendall voids have been observed at the interface component/solder together with the formation of fractures. The evolution, the morphology and the elemental

  15. Damage Model for Reliability Assessment of Solder Joints in Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    environmental factors. Reliability assessment for such type of products conventionally is performed by classical reliability techniques based on test data. Usually conventional reliability approaches are time and resource consuming activities. Thus in this paper we choose a physics of failure approach to define...... damage model by Miner’s rule. Our attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Based on the proposed method it is described how to find the damage level for a given temperature loading profile. The proposed method is discussed...

  16. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  17. Substituição das soldas estanho-chumbo na manufatura: efeitos na saúde do trabalhador e no desempenho ambiental Substitution of tin-lead solders in manufacturing: impacts on workers' health and on the environment

    Directory of Open Access Journals (Sweden)

    Cecilia Maria Villas Bôas de Almeida

    2013-03-01

    Full Text Available As soldas à base de estanho-chumbo (63Sn/37Pb são largamente utilizadas no Brasil e no mundo. Este estudo aplica a avaliação em emergia em um fabricante de soldas brandas à base de estanho e chumbo e outros metais. O cálculo da emergia por unidade de três tipos de solda mostra que mais recursos são utilizados para produzir uma tonelada de soldas livres de chumbo do que para produzir soldas à base de estanho e chumbo. O indicador DALY (Disability Adjusted Life Years foi utilizado para comparar as emissões na atmosfera dos três tipos de produção de soldas e os resultados apontam para a adoção das soldas à base de chumbo, quando se considera todo o ciclo de vida do produto. A diferença entre os resultados obtidos por avaliações locais e globais é discutida.Tin-lead solders (Sn63-Pb37 have been widely used in Brazil and worldwide. This study evaluates the emergy in a company that manufactures soft solders based on tin, lead, and other metals. The calculation of emergy per unit of three types of solder showed that more resources are used to produce one ton of lead-free solders than those used to produce tin-lead solders. The DALY (Disability Adjusted Life Years indicator was used to assess the emissions to air of three types of solder. The results favor the use of tin-lead solders when the whole product life-cycle is evaluated. The difference between the results obtained by local and global assessments is discussed.

  18. Laser Soldering and Thermal Cycling Tests of Monolithic Silicon Pixel Chips

    CERN Document Server

    Strand, Frode Sneve

    2015-01-01

    An ALPIDE-1 monolithic silicon pixel sensor prototype has been laser soldered to a flex printed circuit using a novel interconnection technique using lasers. This technique is to be optimised to ensure stable, good quality connections between the sensor chips and the FPCs. To test the long-term stability of the connections, as well as study the effects on hit thresholds and noise in the sensor, it was thermally cycled in a climate chamber 1200 times. The soldered connections showed good qualities like even melting and good adhesion on pad/flex surfaces, and the chip remained in working condition for 1080 cycles. After this, a few connections failed, having cracks in the soldering tin, rendering the chip unusable. Threshold and noise characteristics seemed stable, except for the noise levels of sector 2 in the chip, for 1000 cycles in a temperature interval of "10^{\\circ}" and "50^{\\circ}" C. Still, further testing with wider temperature ranges and more cycles is needed to test the limitations of the chi...

  19. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    International Nuclear Information System (INIS)

    Yang, Ming; Ko, Yong-Ho; Bang, Junghwan; Kim, Taek-Soo; Lee, Chang-Woo; Li, Mingyu

    2017-01-01

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  20. Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Ko, Yong-Ho [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Bang, Junghwan [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Kim, Taek-Soo [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Chang-Woo, E-mail: cwlee@kitech.re.kr [Micro-Joining Center, Korea Institute of Industrial Technology (KITECH), Incheon 21999 (Korea, Republic of); Li, Mingyu, E-mail: myli@hit.edu.cn [Shenzhen Key Laboratory of Advanced Materials, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055 (China)

    2017-02-15

    Low–Ag–content Sn–Ag–Cu (SAC) solders have attracted much recent attention in electronic packaging for their low cost. To reasonably reduce the Ag content in Pb–free solders, a deep understanding of the basic influence of Ag on the SAC solder/Cu substrate interfacial reaction is essential. Previous studies have discussed the influence of Ag on the interfacial intermetallic compound (IMC) thickness. However, because IMC growth is the joint result of multiple factors, such characterizations do not reveal the actual role of Ag. In this study, changes in interfacial IMCs after Ag introduction were systemically and quantitatively characterized in terms of coarsening behaviors, orientation evolution, and growth kinetics. The results show that Ag in the solder alloy affects the coarsening behavior, accelerates the orientation concentration, and inhibits the growth of interfacial IMCs during solid–state aging. The inhibition mechanism was quantitatively discussed considering the individual diffusion behaviors of Cu and Sn atoms, revealing that Ag inhibits interfacial IMC growth primarily by slowing the diffusion of Cu atoms through the interface. - Highlights: •Role of Ag in IMC formation during Sn–Ag–Cu soldering was investigated. •Ag affects coarsening, crystallographic orientation, and IMC growth. •Diffusion pathways of Sn and Cu are affected differently by Ag. •Ag slows Cu diffusion to inhibit IMC growth at solder/substrate interface.

  1. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates

    International Nuclear Information System (INIS)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-01-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  2. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

    2008-09-01

    The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in

  3. Multi-layer SiC ceramics/Mo joints brazed using high-temperature solders

    International Nuclear Information System (INIS)

    Olesinska, W.; Kesik, J.

    2003-01-01

    The paper presents the results of studies on joining SiC ceramics with molybdenum, with the ceramic surface being activated by titanium, chromium or copper. Titanium or chromium were deposited by the sputtering technique, and copper - by the electro-chemical method. The microstructures of the SiC/Mo joints brazed with the CuMn13Ni3 solder and copper in a nitrogen atmosphere were examined and the results discussed. The joints, in which the ceramic surface was activated in addition with chromium, do not contain mechanical defects caused by the joining process, and the ceramic surface is covered with a continuous layer of the solder. A phase analysis of the interface surface identified an MeSiC phase. The mechanical strength of the joints in which the ceramic surface was modified by the Ti, Cr and Cu layers was markedly greater than that of the joints brazed directly to the uncoated ceramics with the use of active solders. (author)

  4. Life cycle assessment (LCA of lead-free solders from the environmental protection aspect

    Directory of Open Access Journals (Sweden)

    Mitovski Aleksandra M.

    2009-01-01

    Full Text Available Life-cycle assessment (LCA presents a relatively new approach, which allows comprehensive environmental consequences analysis of a product system over its entire life. This analysis is increasingly being used in the industry, as a tool for investigation of the influence of the product system on the environment, and serves as a protection and prevention tool in ecological management. This method is used to predict possible influences of a certain material to the environment through different development stages of the material. In LCA, the product systems are evaluated on a functionally equivalent basis, which, in this case, was 1000 cubic centimeters of an alloy. Two of the LCA phases, life-cycle inventory (LCA and life-cycle impact assessment (LCIA, are needed to calculate the environmental impacts. Methodology of LCIA applied in this analysis aligns every input and output influence into 16 different categories, divided in two subcategories. The life-cycle assessment reaserch review of the leadfree solders Sn-Cu, SAC (Sn-Ag-Cu, BSA (Bi-Sb-Ag and SABC (Sn-Ag-Bi-Cu respectively, is given in this paper, from the environmental protection aspect starting from production, through application process and finally, reclamation at the end-of-life, i.e. recycling. There are several opportunities for reducing the overall environmental and human health impacts of solder used in electronics manufacturing based on the results of the LCA, such as: using secondary metals reclaimed through post-industrial recycling; power consumption reducing by replacing older, less efficient reflow assembly equipment, or by optimizing the current equipment to perform at the elevated temperatures required for lead-free soldering, etc. The LCA analysis was done comparatively in relation to widely used Sn-Pb solder material. Additionally, the impact factors of material consumption, energy use, water and air reserves, human health and ecotoxicity have been ALSO considered including

  5. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  6. A Feasibility Study of Lead Free Solders for Level 1 Packaging Applications

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    An attempt has been made to determine the lead free ternary combinations that satisfied the solidification requirement for a solder used in level 1 packaging applications, using the CALPHAD approach. The segregation profiles of the promising candidates were analyzed after scrutinizing the equilib......An attempt has been made to determine the lead free ternary combinations that satisfied the solidification requirement for a solder used in level 1 packaging applications, using the CALPHAD approach. The segregation profiles of the promising candidates were analyzed after scrutinizing...

  7. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms

    Science.gov (United States)

    Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein

    2015-12-01

    Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.

  8. Decomposition of no-clean solder flux systems and their effects on the corrosion reliability of electronics

    DEFF Research Database (Denmark)

    Conseil, Helene; Verdingovas, Vadimas; Jellesen, Morten Stendahl

    2016-01-01

    No-clean flux systems are used today for the soldering of electronic printed circuit board assemblies assuming that all the aggressive substances of the flux will vanish during the soldering process i.e. evaporate, decompose or being enclosed safely in the residues. However this is not true in most...... that the fluxes do not decompose fully within the temperature regime of the soldering process, leaving behind significant level of weak organic acid residues. The residue depending on the type and amount can be can be very aggressive towards the corrosion on the printed circuit board assemblies. The glutaric acid...

  9. Hypospadias repair using laser tissue soldering (LTS): preliminary results of a prospective randomized study

    Science.gov (United States)

    Kirsch, Andrew J.; Cooper, Christopher S.; Canning, Douglas A.; Snyder, Howard M., III; Zderic, Stephen A.

    1998-07-01

    Purpose: The purpose of this study was to evaluate laser tissue soldering using an 808 nm diode laser and wavelength- matched human albumin solder for urethral surgery in children. Methods: Currently, 30 boys, ages 3 months to 8 years were randomized to standard suturing (n equals 22) or 'sutureless' laser hypospadias repair (n equals 18). Laser soldering was performed with a human albumin solder doped with indocyanine green dye (2.5 mg/ml) using a laser power output of 0.5 W, pulse duration of 0.5 sec, and interval of 0.1 sec. Power density was approximately 16 W/cm2. In the laser group, sutures were used for tissue alignment only. At the time of surgery, neourethral and penile lengths, operative time for urethral repair, and number of sutures/throws were measured. Postoperatively, patients were examined for complications of wound healing, stricture, or fistula formation. Results: Mean age, severity of urethral defect, type of repair, and neourethra length were equivalent between the two groups. Operative time was significantly faster for laser soldering in both simple (1.6 plus or minus 0.21 min, p less than 0.001) and complex (5.4 plus or minus 0.28 min, p less than 0.0001) hypospadias repairs compared to controls (10.6 plus or minus 1.4 min and 27.8 plus or minus 2.9 min, respectively). The mean number of sutures used in the laser group for simple and complex repairs (3.3 plus or minus 0.3 and 8.1 plus or minus 0.64, respectively) were significantly (p less than 0.0001) less than for controls (8.2 plus or minus 0.84 and 20 plus or minus 2.3, respectively). Followup was between 3 months and 14 months. The overall complication rate in the laser group (11%) was lower than the controls (23%). However, statistical significance (p less than 0.05) was achieved only for the subgroup of patients undergoing simple repairs (LTS, 100% success versus suturing, 69% success). Conclusions: These preliminary results indicate that laser tissue soldering for hypospadias repair

  10. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    International Nuclear Information System (INIS)

    Liu, Chih-Yao; Hon, Min-Hsiung; Wang, Moo-Chin; Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long

    2014-01-01

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag 3 Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn 3 . No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging

  11. Effects of aging time on the mechanical properties of Sn–9Zn–1.5Ag–xBi lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Yao [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hon, Min-Hsiung [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Chen, Ying-Ru; Chang, Kuo-Ming; Li, Wang-Long [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan (China)

    2014-01-05

    Highlights: • The microstructure of these solder alloys are composed of Sn-rich phase and Ag{sub 3}Sn. • The grain size of Sn–9Zn–1.5Ag–xBi solder alloys increases with rose aging time. • The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloys. • TEM observed that Bi appears as oblong shape fine particles. -- Abstract: The effects of aging time on the mechanical properties of the Sn–9Zn–1.5Ag–xBi lead-free solder alloys are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometry (EDS) and a universal testing machine. The experimental results show that the microstructure of Sn–9Zn–1.5Ag–xBi solder alloys is composed of Sn-rich phase and AgZn{sub 3}. No other intermetallic compounds (IMCs) with Bi content was observed in the solder matrix for Sn–9Zn–1.5Ag solder alloys with various Bi contents before and after aging at 150 °C for different durations. The lattice parameter increases significantly with increasing aging time or Bi addition. The size of Sn-rich grain increased gradually with aging time increased, but decreases with Bi content increases. The maximum yield strength is 112.7 ± 2.2 MPa for Sn–9Zn–1.5Ag–3Bi solder alloy before aging.

  12. Gold leaching by organic base polythionates: new non-toxic and secure technology.

    Science.gov (United States)

    Smolyaninov, Vladislav; Shekhvatova, Galina; Vainshtein, Mikhail

    2014-01-01

    The article present a review on own experimental and some published data which are related with the gold leaching. It is well-known that the most common and usual process of the leaching with cyanide can be dangerous, needs a great water consumption, and additional costs for remediation of the poisoned and toxic sites. The experimental data described production of poythionates which are not toxic but perspective for the prosperous gold leaching. The paper dedicated to the safe gold leaching with thiosulfates and organic salts of polythionic acids (organic base polythionates). The method of production of these polythionates based on the Smolyaninov reaction is described in stages and in details for the first time. Possible application of the polythionates application in the gold leaching is discussed and its advantages are compared with the gold leaching by cyanation.

  13. Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys

    International Nuclear Information System (INIS)

    Shalaby, Rizk Mostafa

    2013-01-01

    Mechanical properties and indentation creep of the melt-spun process Bi–42 wt%Sn, Bi–40 wt%Sn–2 wt%In, Bi–40 wt%Sn–2 wt%Ag and Bi–38 wt%Sn–2 wt%In–2 wt%Ag were studied by dynamic resonance technique and Vickers indentation testing at room temperature and compared to that of the traditional Sn–37 wt%Pb eutectic alloy. The results show that the structure of Bi–42 wt%Sn alloy is characterized by the presence of rhombohedral Bi and body centered tetragonal β-Sn. The two ternary alloys exhibit additional constituent phases of intermetallic compounds SnIn 19 for Bi–40 wt%Sn–2 wt%In and ε-Ag 3 Sn for Bi–40 wt%Sn–2 wt%Ag alloys. Attention has been paid to the role of intermetallic compounds on mechanical and creep behavior. The In and Ag containing solder alloy exhibited a good combination of higher creep resistance, good mechanical properties and lower melting temperature as compared with Pb–Sn eutectic solder alloy. This was attributed to the strengthening effect of Bi as a strong solid solution element in the Sn matrix and formation of intermetallic compounds β-SnBi, ε-Ag 3 Sn and InSn 19 which act as both strengthening agent and grain refiner in the matrix of the material. Addition of In and Ag decreased the melting temperature of Bi–Sn lead-free solder from 143 °C to 133 °C which was possible mainly due to the existence of InSn 19 and Ag 3 Sn intermetallic compounds. Elastic constants, internal friction and thermal properties of Bi–Sn based alloys have been studied and analyzed.

  14. Modified gold electrodes based on thiocytosine/guanine-gold nanoparticles for uric and ascorbic acid determination

    International Nuclear Information System (INIS)

    Vulcu, Adriana; Grosan, Camelia; Muresan, Liana Maria; Pruneanu, Stela; Olenic, Liliana

    2013-01-01

    The present paper describes the preparation of new modified surfaces for electrodes based on guanine/thiocytosine and gold nanoparticles. The gold nanoparticles were analyzed by UV–vis spectroscopy and transmission electron microscopy (TEM) and it was found that they have diameters between 30 and 40 nm. The layers were characterized by specular reflectance infrared spectroscopy (FTIR-RAS) and by atomic force microscopy (AFM). The thickness of layers was found to be approximately 30 nm for TC layers and 300 nm for GU layers. Every layer was characterized as electrochemical sensor (by cyclic voltammetry) both for uric acid and ascorbic acid determinations, separately and in their mixture. The modified sensors have good calibration functions with good sensitivity (between 1.145 and 1.406 mA cm −2 /decade), reproducibility ( t hiocytosine (Au T C) and gold g uanine (Au G U) layers

  15. Thermal Fatigue Evaluation of Pb-Free Solder Joints: Results, Lessons Learned, and Future Trends

    Science.gov (United States)

    Coyle, Richard J.; Sweatman, Keith; Arfaei, Babak

    2015-09-01

    Thermal fatigue is a major source of failure of solder joints in surface mount electronic components and it is critically important in high reliability applications such as telecommunication, military, and aeronautics. The electronic packaging industry has seen an increase in the number of Pb-free solder alloy choices beyond the common near-eutectic Sn-Ag-Cu alloys first established as replacements for eutectic SnPb. This paper discusses the results from Pb-free solder joint reliability programs sponsored by two industry consortia. The characteristic life in accelerated thermal cycling is reported for 12 different Pb-free solder alloys and a SnPb control in 9 different accelerated thermal cycling test profiles in terms of the effects of component type, accelerated thermal cycling profile and dwell time. Microstructural analysis on assembled and failed samples was performed to investigate the effect of initial microstructure and its evolution during accelerated thermal cycling test. A significant finding from the study is that the beneficial effect of Ag on accelerated thermal cycling reliability (measured by characteristic lifetime) diminishes as the severity of the accelerated thermal cycling, defined by greater ΔT, higher peak temperature, and longer dwell time increases. The results also indicate that all the Pb-free solders are more reliable in accelerated thermal cycling than the SnPb alloy they have replaced. Suggestions are made for future work, particularly with respect to the continued evolution of alloy development for emerging application requirements and the value of using advanced analytical methods to provide a better understanding of the effect of microstructure and its evolution on accelerated thermal cycling performance.

  16. Effects of PCB thickness on adjustable fountain wave soldering

    Indian Academy of Sciences (India)

    hybrid circuit assembly, component lead tinning, and wire tinning. .... The mesh model was built and optimized with 599920 hybrid nodes as shown in figure 9. ... conducted to track the fluid motions of the two phases (i.e., molten solder and air).

  17. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    International Nuclear Information System (INIS)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. (review)

  18. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  19. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions

    Science.gov (United States)

    Ting Tan, Ai; Wen Tan, Ai; Yusof, Farazila

    2015-01-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn–Ag–Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided. PMID:27877786

  20. Development of technique for laser welding of biological tissues using laser welding device and nanocomposite solder.

    Science.gov (United States)

    Gerasimenko, A; Ichcitidze, L; Podgaetsky, V; Ryabkin, D; Pyankov, E; Saveliev, M; Selishchev, S

    2015-08-01

    The laser device for welding of biological tissues has been developed involving quality control and temperature stabilization of weld seam. Laser nanocomposite solder applied onto a wound to be weld has been used. Physicochemical properties of the nanocomposite solder have been elucidated. The nature of the tissue-organizing nanoscaffold has been analyzed at the site of biotissue welding.

  1. Stability of molybdenum nanoparticles in Sn-3.8Ag-0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Arafat, M.M., E-mail: arafat_mahmood@yahoo.com; Johan, Mohd Rafie, E-mail: mrafiej@um.edu.my

    2012-02-15

    This work investigates the effects of molybdenum nanoparticles on the growth of interfacial intermetallic compound between Sn-3.8Ag-0.7Cu solder and copper substrate during multiple reflow. Molybdenum nanoparticles were mixed with Sn-3.8Ag-0.7Cu solder paste by manual mixing. Solder samples were reflowed on a copper substrate in a 250 Degree-Sign C reflow oven up to six times. The molybdenum content of the bulk solder was determined by inductive coupled plasma-optical emission spectrometry. It is found that upon the addition of molybdenum nanoparticles to Sn-3.8Ag-0.7Cu solder, the interfacial intermetallic compound thickness and scallop diameter decreases under all reflow conditions. Molybdenum nanoparticles do not appear to dissolve or react with the solder. They tend to adsorb preferentially at the interface between solder and the intermetallic compound scallops. It is suggested that molybdenum nanoparticles impart their influence on the interfacial intermetallic compound as discrete particles. The intact, discrete nanoparticles, by absorbing preferentially at the interface, hinder the diffusion flux of the substrate and thereby suppress the intermetallic compound growth. - Highlights: Black-Right-Pointing-Pointer Mo nanoparticles do not dissolve or react with the SAC solder during reflow. Black-Right-Pointing-Pointer Addition of Mo nanoparticles results smaller IMC thickness and scallop diameter. Black-Right-Pointing-Pointer Mo nanoparticles influence the interfacial IMC through discrete particle effect.

  2. Gold nanoparticle-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli

    2008-01-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated

  3. Gold nanoparticle-based electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Pingarron, Jose M.; Yanez-Sedeno, Paloma; Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2008-08-01

    The unique properties of gold nanoparticles to provide a suitable microenvironment for biomolecules immobilization retaining their biological activity, and to facilitate electron transfer between the immobilized proteins and electrode surfaces, have led to an intensive use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance with respect to other biosensor designs. Recent advances in this field are reviewed in this article. The advantageous operational characteristics of the biosensing devices designed making use of gold nanoparticles are highlighted with respect to non-nanostructured biosensors and some illustrative examples are commented. Electrochemical enzyme biosensors including those using hybrid materials with carbon nanotubes and polymers, sol-gel matrices, and layer-by-layer architectures are considered. Moreover, electrochemical immunosensors in which gold nanoparticles play a crucial role in the electrode transduction enhancement of the affinity reaction as well as in the efficiency of immunoreagents immobilization in a stable mode are reviewed. Similarly, recent advances in the development of DNA biosensors using gold nanoparticles to improve DNA immobilization on electrode surfaces and as suitable labels to improve detection of hybridization events are considered. Finally, other biosensors designed with gold nanoparticles oriented to electrically contact redox enzymes to electrodes by a reconstitution process and to the study of direct electron transfer between redox proteins and electrode surfaces have also been treated. (author)

  4. Thermal Analysis of the Sn-Ag-Cu-In Solder Alloy

    DEFF Research Database (Denmark)

    Sopousek, J.; Palcut, Marián; Hodúlová, Erika

    2010-01-01

    The tin-based alloy Sn-1.5Ag-0.7Cu-9.5In (composition in wt.%) is a potential candidate for lead-free soldering at temperatures close to 200°C due to the significant amount of indium. Samples of Sn-1.5Ag-0.7Cu-9.5In were prepared by controlled melting of the pure elements, followed by quenching...... to room temperature. The samples were analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDS) and electron backscatter diffraction. The solidified melt consisted of four different phases. Solidification behavior was monitored by heat-flux differential scanning calorimetry...

  5. Electromigration in 3D-IC scale Cu/Sn/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Cheng-En, E-mail: ceho1975@hotmail.com; Lee, Pei-Tzu; Chen, Chih-Nan; Yang, Cheng-Hsien

    2016-08-15

    The electromigration effect on the three-dimensional integrated circuits (3D-IC) scale solder joints with a Cu/Sn(25–50 μm)/Cu configuration was investigated using a field-emission scanning electron microscope (FE–SEM) combined with electron backscatter diffraction (EBSD) analysis system. Electron current stressing for a few days caused the pronounced accumulation of Cu{sub 6}Sn{sub 5} in specific Sn grain boundaries (GBs). The EBSD analysis indicated that both the β-Sn crystallographic orientation and GB orientation play dominant roles in this accumulation. The dependencies of the Cu{sub 6}Sn{sub 5} accumulation on the two above factors (i.e., Sn grain orientation and GB orientation) can be well rationalized via a proposed mathematic model based on the Huntington and Grone's electromigration theory with the Cu anisotropic diffusion data in a β-Sn lattice. - Highlights: • Anisotropic Cu electromigration in the 3D-IC scale microelectronic solder joints. • Pronounced accumulation of Cu{sub 6}Sn{sub 5} intermetallic in specific Sn grain boundaries. • A linear dependence of Cu{sub 6}Sn{sub 5} accumulation over the current stressing time. • β-Sn and grain boundary orientations are the dominant factors in Cu{sub 6}Sn{sub 5} accumulation.

  6. Improved Switching Characteristics of Fast Power MOSFETs Applying Solder Bump Technology

    Directory of Open Access Journals (Sweden)

    Sibylle Dieckerhoff

    2008-01-01

    Full Text Available The impact of a reduced package stray inductance on the switching performance of fast power MOSFETs is discussed applying advanced 3D packaging technologies. Starting from an overview over new packaging approaches, a solder bump technology using a flexible PI substrate is exemplarily chosen for the evaluation. Measurement techniques to determine the stray inductance are discussed and compared with a numerical solution based on the PEEC method. Experimental results show the improvement of the voltage utilization while there is only a slight impact on total switching losses.

  7. An evaluation of the spring finger solder joints on SA1358-10 and SA2052-4 connector assemblies (MC3617,W87)

    International Nuclear Information System (INIS)

    Kilgo, Alice C.; Vianco, Paul Thomas; Hlava, Paul Frank; Zender, Gary L.

    2006-01-01

    The SA1358-10 and SA2052-4 circular JT Type plug connectors are used on a number of nuclear weapons and Joint Test Assembly (JTA) systems. Prototype units were evaluated for the following specific defects associated with the 95Sn-5Sb (Sn-Sb, wt.%) solder joint used to attach the beryllium-copper (BeCu) spring fingers to the aluminum (Al) connector shell: (1) extended cracking within the fillet; (2) remelting of the solder joint during the follow-on, soldering step that attached the EMR adapter ring to the connector shell (and/or soldering the EMR shell to the adapter ring) that used the lower melting temperature 63Sn-37Pb (Sn-Pb) alloy; and (3) spalling of the Cd (Cr) layer overplating layer from the fillet surface. Several pedigrees of connectors were evaluated, which represented older fielded units as well as those assemblies that were recently constructed at Kansas City Plant. The solder joints were evaluated that were in place on connectors made with the current soldering process as well as an alternative induction soldering process for attaching the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely the EMR adapter ring to the shell. Very similar observations were made, which crossed the different pedigrees of parts and processes. The extent of cracking in the top side fillets varied between the different connector samples and likely reflected the different extents to which the connector was mated to its counterpart assembly. In all cases, the spring finger solder joints on the SA1358-10 connectors were remelted as a result of the subsequent EMR adapter ring attachment process. Spalling of the Cd (Cr) overplating layer was also observed for these connectors, which was a consequence of the remelting activity. On the other hand, the SA2052-4 connector did not exhibit evidence of

  8. Why can a gold salt react as a base?

    Science.gov (United States)

    Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana

    2017-09-26

    This study shows that gold salts [(L)AuX] (L = PMe 3 , PPh 3 , JohnPhos, IPr; X = SbF 6 , PF 6 , BF 4 , TfO, Tf 2 N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L) 2 Au 2 (CH 2 COCH 3 )] + without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L) 2 Au 2 (OH)] + . The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH 3 COCH 3 )] + }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.

  9. Investigation into mechanical properties of joints of heterogeneous materials brazed with high-temperature solders

    International Nuclear Information System (INIS)

    Lomenko, V.I.; Merkushev, V.P.; Borodina, L.M.; Sycheva, T.S.; Tokhtina, O.A.; Frolov, N.N.

    1988-01-01

    Mechanical properties of copper joints with copper, 12Kh18M10T steel and KhD50 composite obtained by vacuum brazing by copper-titanium solder as compared with properties of joints brazed by PSr 72 and PMFOTsr 6-4-0.03 solders in hydrogen are studied. Dependences of joints strength on temperature of contact - reactive vacuum brazing are obtained. Possible applications of joints of dissimilar materials in electrovacuum devices subjected to the effect of dynamic loadings are established

  10. Aging treatment characteristics of solder bump joint for high reliability optical module

    International Nuclear Information System (INIS)

    Kim, Kyung-Seob; Yu, Chung-Hee; Yang, Jun-Mo

    2004-01-01

    The joint strength and fracture surfaces of Sn-37 mass% Pb and Au stud bumps for photo diode packages after isothermal aging testing were studied experimentally. Al/Au stud bumps and Cu/Sn-37 mass% Pb solders were adopted, and aged for up to 900 h to analyze the effect of intermetallic compound (IMC). The joint strength decreased with aging time. The diffraction patterns of Cu 6 Sn 5 , scallop-shaped IMCs, and planar-shaped Cu 3 Sn were characterized using transmission electron microscopy (TEM). The formation of Kirkendall voids and the growth of IMCs at the solder were found to be a possible mechanism for joint strength reduction

  11. Reliability Tests of Aluminium Wedge Wire Bonding on Auto-catalytic Silver Immersion Gold (ASIG) PCB Metallization

    CERN Document Server

    Drozd, A; Kaufmann, S; Manolescu, F; McGill, I

    2011-01-01

    The Auto-catalytic Silver Immersion Gold (ASIG) PCB metallization is a new process that has clear advantages for PCB assembly especially with regard to lead-free soldering. As it may become a popular process in the future for electronics used in physics experiments, the quality of this metallization for aluminium wire bonding has been studied. Aluminium wedge wire bonding continues to be the interconnection method of choice for many physics detector sensors, for high density signal routing and for unpackaged die. Although advertised as having good quality for aluminium wire bonding, this study was performed to verify this claim as well as to test the longer term reliability of the wire bonds taking into consideration the environmental conditions and life-expectancy of devices, in particular for high energy physics detector applications. The tests were performed on PCBs made with the ASIG and ENIG (Electro-less Nickel Immersion Gold) processes at the same time in order to make a comparison with the current ind...

  12. Electrical characteristics for Sn-Ag-Cu solder bump with Ti/Ni/Cu under-bump metallization after temperature cycling tests

    Science.gov (United States)

    Shih, T. I.; Lin, Y. C.; Duh, J. G.; Hsu, Tom

    2006-10-01

    Lead-free solder bumps have been widely used in current flip-chip technology (FCT) due to environmental issues. Solder joints after temperature cycling tests were employed to investigate the interfacial reaction between the Ti/Ni/Cu under-bump metallization and Sn-Ag-Cu solders. The interfacial morphology and quantitative analysis of the intermetallic compounds (IMCs) were obtained by electron probe microanalysis (EPMA) and field emission electron probe microanalysis (FE-EPMA). Various types of IMCs such as (Cu1-x,Agx)6Sn5, (Cu1-y,Agy)3Sn, and (Ag1-z,Cuz)3Sn were observed. In addition to conventional I-V measurements by a special sample preparation technique, a scanning electron microscope (SEM) internal probing system was introduced to evaluate the electrical characteristics in the IMCs after various test conditions. The electrical data would be correlated to microstructural evolution due to the interfacial reaction between the solder and under-bump metallurgy (UBM). This study demonstrated the successful employment of an internal nanoprobing approach, which would help further understanding of the electrical behavior within an IMC layer in the solder/UBM assembly.

  13. An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Zhu Yingchun

    2008-01-01

    Full Text Available Abstract A sensitive amperometric biosensor based on gold nanoelectrode array (NEA was investigated. The gold nanoelectrode array was fabricated by template-assisted electrodeposition on general electrodes, which shows an ordered well-defined 3D structure of nanowires. The sensitivity of the gold NEA to hydrogen peroxide is 37 times higher than that of the conventional electrode. The linear range of the platinum NEA toward H2O2is from 1 × 10−6to 1 × 10−2 M, covering four orders of magnitudes with detection limit of 1 × 10−7 M and a single noise ratio (S/N of four. The enzyme electrode exhibits an excellent response performance to glucose with linear range from 1 × 10−5to 1 × 10−2 M and a fast response time within 8 s. The Michaelis–Menten constantkm and the maximum current densityi maxof the enzyme electrode were 4.97 mM and 84.60 μA cm−2, respectively. This special nanoelectrode may find potential application in other biosensors based on amperometric signals.

  14. Investigation of Sn-Pb solder bumps of prototype photo detectors for the LHCb experiment

    CERN Document Server

    Delsante, M L; Arnau-Izquierdo, G

    2004-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). LHCb is one of the dedicated LHC experiments, allowing high energy proton-proton collisions to be exploited. This paper presents the results of the metallurgic studies carried out on Sn-Pb solder bumps of prototype vacuum photo detectors under development for LHCb, and in particular for the ring imaging Cherenkov-hybrid photo diode (RICH-HPD) project. These detectors encapsulate, in a vacuum tube, an assembly made of two silicon chips bonded together by a matrix of solder bumps. Each bump lies on a suitable system of under-bump metallic layers ensuring mechanical and electrical transition between the chip pad and the solder alloy. During manufacturing of the detector, bump-bonded (BB) assemblies are exposed to severe heat cycles up to 400 degree C inducing, in the present fabrication process, a clear degradation of electrical connectivity. Several investigations such as microstructural observati...

  15. Cytosine-assisted synthesis of gold nanochains and gold nanoflowers for the construction of a microperoxidase-11 based amperometric biosensor for hydrogen peroxide

    International Nuclear Information System (INIS)

    Zhang, Qian-Li; Zhou, Dan-Ling; Wang, Ai-Jun; Qin, Su-Fang; Feng, Jiu-Ju; Li, Yong-Fang

    2014-01-01

    A simple method was developed for synthesis of network-like gold nanochains and gold nanoflowers in the presence of cytosine by reduction of tetrachloroauric acid with sodium borohydride and ascorbic acid, respectively. The resulting gold nanocrystals were coated with microperoxidase-11 via electrostatic interactions. Electrodes modified with protein-coated gold nanochains or nanoflowers display well-defined and quasi reversible redox peaks and enhanced high electrocatalytic activity toward the reduction of H 2 O 2 that is due to direct electron transfer to the protein. The effects were exploited for the amperometric detection of H 2 O 2 with a linear response from 0.5 μM to 0.13 mM (for the gold nanochains) and from 1.0 μM to 0.11 mM (for the gold nanoflowers), respectively. The sensor shows lower detection limit and faster response time than sensors based on the use of spherical gold nanoparticles. (author)

  16. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  17. Measurement of erosion of stainless steel by molten lead-free solder using micro-focus x-ray CT system

    International Nuclear Information System (INIS)

    Nishikawa, Hiroshi; Takemoto, Tadashi; Kang, Songai

    2009-01-01

    The severe erosion damage, which is caused by a molten lead-free solder, of wave solder equipment made into stainless steel has been encountered in operation. Then, the higher maintenance frequency and reduced life time of wave solder machine component is a serious issue in a manufacturing process. In this study, the evaluation method of erosion of stainless steel by molten lead-free solders was investigated using micro-focus X-ray systems for fluoroscopic and computed tomography (CT). As a result, it was found that the fluoroscopic image could truly reconstruct the cross-shape of the stainless steel sample after immersion test without destruction. In the case of X-ray systems for fluoroscopic and CT used in this study, three-dimensional data can be obtained. Therefore, it was possible to easily check the whole picture of the test sample after immersion test and to decide the maximum erosion depth of test sample. (author)

  18. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    Science.gov (United States)

    Barbagallo, C.; Malgioglio, G. L.; Petrone, G.; Cammarata, G.

    2017-05-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers.

  19. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    International Nuclear Information System (INIS)

    Barbagallo, C; Petrone, G; Cammarata, G; Malgioglio, G L

    2017-01-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers. (paper)

  20. Multi-scale modeling of elasto-plastic response of SnAgCu lead-free solder alloys at different ageing conditions: Effect of microstructure evolution, particle size effects and interfacial failure

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Milad; Cugnoni, Joel, E-mail: joel.cugnoni@epfl.ch; Botsis, John

    2016-04-20

    In microelectronics applications, SnAgCu lead-free solder joints play the important role of ensuring both the mechanical and electrical integrity of the components. In such applications, the SnAgCu joints are subjected to elevated homologous temperatures for an extended period of time causing significant microstructural changes and leading to reliability issues. In this study, the link between the change in microstructures and deformation behavior of SnAgCu solder during ageing is explained by developing a hybrid multi-scale microstructure-based modeling approach. Herein, the SnAgCu solder alloy is seen as a three phase metal matrix composite in which Ag{sub 3}Sn and Cu{sub 6}Sn{sub 5} hard intermetallics play the role of reinforcements and Sn the role of a ductile matrix. The hardening of the Sn matrix due to fine intermetallics in the eutectic mixture is modeled by incorporating the mean field effects of geometrically necessary dislocations. Subsequently, a two level homogenization procedure based on micromechanical finite element (FE) models is used to capture the interactions between the different phases. For this purpose, tomographic images of microstructures obtained by Focused Ion Beam (FIB) and synchrotron X-Ray in different ageing conditions are directly used to generate statistically representative volume elements (RVE) using 3D FE models. The constitutive behavior of the solder is determined by sequentially performing two scales of numerical homogenization at the eutectic level and then at the dendrite level. For simplification, the anisotropy of Sn as well as the potential recovery processes have been neglected in the modeling. The observed decrease in the yield strength of solder due to ageing is well captured by the adopted modeling strategy and allows explaining the different ageing mechanisms. Finally, the effects of potential debonding at the intermetallic particle-matrix interface as well as particle fracture on the overall strength of solder are

  1. Electroplating of gold using a sulfite-based electrolyte

    NARCIS (Netherlands)

    Smalbrugge, E.; Jacobs, B.; Falcone, S.; Geluk, E.J.; Karouta, F.; Leijtens, X.J.M.; Besten, den J.H.

    2000-01-01

    Electroplating of gold is often used in optoelectronic and microelectronic devices for air-bridges, heat-sinks or gold-bumps for flip-chip techniques. The gold-cyanide electrolytes, which are commonly used in gold-electroplating, are toxic and attack resist patterns causing cracks during the plating

  2. Gold nanoparticle-based microfluidic sensor for mercury detection

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Jensen, Thomas Glasdam; Kutter, Jörg Peter

    2011-01-01

    The contamination of natural resources by human activity can have severe socio-economical impacts. Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for remote/field sensing. A gold nanoparticle-based lab...

  3. Interfacial Reaction and IMC Growth of an Ultrasonically Soldered Cu/SAC305/Cu Structure during Isothermal Aging

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2018-01-01

    Full Text Available In order to accelerate the growth of interfacial intermetallic compound (IMC layers in a soldering structure, Cu/SAC305/Cu was first ultrasonically spot soldered and then subjected to isothermal aging. Relatively short vibration times, i.e., 400 ms and 800 ms, were used for the ultrasonic soldering. The isothermal aging was conducted at 150 °C for 0, 120, 240, and 360 h. The evolution of microstructure, the IMC layer growth mechanism during aging, and the shear strength of the joints after aging were systemically investigated. Results showed the following. (i Formation of intermetallic compounds was accelerated by ultrasonic cavitation and streaming effects, the thickness of the interfacial Cu6Sn5 layer increased with aging time, and a thin Cu3Sn layer was identified after aging for 360 h. (ii The growth of the interfacial IMC layer of the ultrasonically soldered Cu/SAC305/Cu joints followed a linear function of the square root of the aging time, revealing a diffusion-controlled mechanism. (iii The tensile shear strength of the joint decreased to a small extent with increasing aging time, owing to the combined effects of IMC grain coarsening and the increase of the interfacial IMC. (iv Finally, although the fracture surfaces and failure locations of the joint soldered with 400 ms and 800 ms vibration times show similar characteristics, they are influenced by the aging time.

  4. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Senkbeil, Silja; Jensen, Thomas G.

    2012-01-01

    Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in......-field, detection of two important classes of environmental contaminants – heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L−1 and 16 μg L−1 could be obtained for the heavy metal mercury...... and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants....

  5. Comparative Evaluation of Marginal Accuracy of a Cast Fixed Partial Denture Compared to Soldered Fixed Partial Denture Made of Two Different Base Metal Alloys and Casting Techniques: An In vitro Study.

    Science.gov (United States)

    Jei, J Brintha; Mohan, Jayashree

    2014-03-01

    The periodontal health of abutment teeth and the durability of fixed partial denture depends on the marginal adaptation of the prosthesis. Any discrepancy in the marginal area leads to dissolution of luting agent and plaque accumulation. This study was done with the aim of evaluating the accuracy of marginal fit of four unit crown and bridge made up of Ni-Cr and Cr-Co alloys under induction and centrifugal casting. They were compared to cast fixed partial denture (FPD) and soldered FPD. For the purpose of this study a metal model was fabricated. A total of 40 samples (4-unit crown and bridge) were prepared in which 20 Cr-Co samples and 20 Ni-Cr samples were fabricated. Within these 20 samples of each group 10 samples were prepared by induction casting technique and other 10 samples with centrifugal casting technique. The cast FPD samples obtained were seated on the model and the samples were then measured with travelling microscope having precision of 0.001 cm. Sectioning of samples was done between the two pontics and measurements were made, then the soldering was made with torch soldering unit. The marginal discrepancy of soldered samples was measured and all findings were statistically analysed. The results revealed minimal marginal discrepancy with Cr-Co samples when compared to Ni-Cr samples done under induction casting technique. When compared to cast FPD samples, the soldered group showed reduced marginal discrepancy.

  6. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  7. Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications

    Directory of Open Access Journals (Sweden)

    John D. Sørensen

    2011-12-01

    Full Text Available Wind turbine reliability is an important issue for wind energy cost minimization, especially by reduction of operation and maintenance costs for critical components and by increasing wind turbine availability. To develop an optimal operation and maintenance plan for critical components, it is necessary to understand the physics of their failure and be able to develop reliability prediction models. Such a model is proposed in this paper for an IGBT power electronic module. IGBTs are critical components in wind turbine converter systems. These are multilayered devices where layers are soldered to each other and they operate at a thermal-power cycling environment. Temperature loadings affect the reliability of soldered joints by developing cracks and fatigue processes that eventually result in failure. Based on Miner’s rule a linear damage model that incorporates a crack development and propagation processes is discussed. A statistical analysis is performed for appropriate model parameter selection. Based on the proposed model, a layout for component life prediction with crack movement is described in details.

  8. Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect.

    Science.gov (United States)

    Cui, Jianlei; Yang, Lijun; Wang, Yang; Mei, Xuesong; Wang, Wenjun; Hou, Chaojian

    2015-02-04

    With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

  9. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  10. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    Science.gov (United States)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  11. Effect of cooling rate during solidification of Sn-9Zn lead-free solder alloy on its microstructure, tensile strength and ductile-brittle transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.N., E-mail: prabhukn_2002@yahoo.co.in [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India); Deshapande, Parashuram; Satyanarayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025 (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Effect of cooling rate on tensile and impact properties of Sn-9Zn alloy was assessed. Black-Right-Pointing-Pointer Both DBTT and UTS of the solder alloy increased with increase in cooling rate. Black-Right-Pointing-Pointer An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile-brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn-9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 Degree-Sign C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the

  12. Effect of cooling rate during solidification of Sn–9Zn lead-free solder alloy on its microstructure, tensile strength and ductile–brittle transition temperature

    International Nuclear Information System (INIS)

    Prabhu, K.N.; Deshapande, Parashuram; Satyanarayan

    2012-01-01

    Highlights: ► Effect of cooling rate on tensile and impact properties of Sn–9Zn alloy was assessed. ► Both DBTT and UTS of the solder alloy increased with increase in cooling rate. ► An optimum cooling rate during solidification would minimize DBTT and maximize UTS. - Abstract: Solidification rate is an important variable during processing of materials, including soldering, involving solidification. The rate of solidification controls the metallurgical microstructure at the solder joint and hence the mechanical properties. A high tensile strength and a lower ductile–brittle transition temperature are necessary for reliability of solder joints in electronic circuits. Hence in the present work, the effect of cooling rate during solidification on microstructure, impact and tensile properties of Sn–9Zn lead-free solder alloy was investigated. Four different cooling media (copper and stainless steel moulds, air and furnace cooling) were used for solidification to achieve different cooling rates. Solder alloy solidified in copper mould exhibited higher cooling rate as compared to other cooling media. The microstructure is refined as the cooling rate was increased from 0.03 to 25 °C/s. With increase in cooling rate it was observed that the size of Zn flakes became finer and distributed uniformly throughout the matrix. Ductile-to-brittle transition temperature (DBTT) of the solder alloy increased with increase in cooling rate. Fractured surfaces of impact test specimens showed cleavage like appearance and river like pattern at very low temperatures and dimple like appearance at higher temperatures. The tensile strength of the solder alloy solidified in Cu and stainless moulds were higher as compared to air and furnace cooled samples. It is therefore suggested that the cooling rate during solidification of the solder alloy should be optimum to maximize the strength and minimize the DBTT.

  13. Design of Experiments to Determine Causes of Flex Cable Solder Wicking, Discoloration and Hole Location Defects

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Larry

    2009-04-22

    Design of Experiments (DoE) were developed and performed in an effort to discover and resolve the causes of three different manufacturing issues; large panel voids after Hot Air Solder Leveling (HASL), cable hole locations out of tolerance after lamination and delamination/solder wicking around flat flex cable circuit lands after HASL. Results from a first DoE indicated large panel voids could be eliminated by removing the pre-HASL cleaning. It also revealed eliminating the pre-HASL bake would not be detrimental when using a hard press pad lamination stackup. A second DoE indicated a reduction in hard press pad stackup lamination pressure reduced panel stretch in the y axis approximately 70%. A third DoE illustrated increasing the pre-HASL bake temperature could reduce delamination/solder wicking when using a soft press pad lamination stackup.

  14. Evaluating print performance of Sn-Ag-Cu lead-free solder pastes used in electronics assembly process

    Science.gov (United States)

    Mallik, S.; Bauer, R.; Hübner, F.; Ekere, N. N.

    2011-01-01

    Solder paste is the most widely used interconnection material in the electronic assembly process for attaching electronic components/devices directly onto the surface of printed circuit boards, using stencil printing process. This paper evaluates the performance of three different commercially available Sn-Ag-Cu solder pastes formulated with different particle size distributions (PSD), metal content and alloy composition. A series of stencil printing tests were carried out using a specially designed stencil of 75 μm thickness and apertures of 300×300 μm2 dimension and 500 μm pitch sizes. Solder paste printing behaviors were found related to attributes such as slumping and surface tension and printing performance was correlated with metal content and PSD. The results of the study should benefit paste manufacturers and SMT assemblers to improve their products and practices.

  15. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints

    International Nuclear Information System (INIS)

    Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N.

    2010-01-01

    The volume, size, and dispersion of porosity in solder joints are known to affect mechanical performance and reliability. Most of the techniques used to characterize the three-dimensional (3D) nature of these defects are destructive. With the enhancements in high resolution computed tomography (CT), the detection limits of intrinsic microstructures have been significantly improved. Furthermore, the 3D microstructure of the material can be used in finite element models to understand their effect on microscopic deformation. In this paper we describe a technique utilizing high resolution (< 1 μm) X-ray tomography for the three-dimensional (3D) visualization of pores in Sn-3.9Ag-0.7Cu/Cu joints. The characteristics of reflow porosity, including volume fraction and distribution, were investigated for two reflow profiles. The size and distribution of porosity size were visualized in 3D for four different solder joints. In addition, the 3D virtual microstructure was incorporated into a finite element model to quantify the effect of voids on the lap shear behavior of a solder joint. The presence, size, and location of voids significantly increased the severity of strain localization at the solder/copper interface.

  16. Impurity Effects in Electroplated-Copper Solder Joints

    Directory of Open Access Journals (Sweden)

    Hsuan Lee

    2018-05-01

    Full Text Available Copper (Cu electroplating is a mature technology, and has been extensively applied in microelectronic industry. With the development of advanced microelectronic packaging, Cu electroplating encounters new challenges for atomic deposition on a non-planar substrate and to deliver good throwing power and uniform deposit properties in a high-aspect-ratio trench. The use of organic additives plays an important role in modulating the atomic deposition to achieve successful metallic coverage and filling, which strongly relies on the adsorptive and chemical interactions among additives on the surface of growing film. However, the adsorptive characteristic of organic additives inevitably results in an incorporation of additive-derived impurities in the electroplated Cu film. The incorporation of high-level impurities originating from the use of polyethylene glycol (PEG and chlorine ions significantly affects the microstructural evolution of the electroplated Cu film, and the electroplated-Cu solder joints, leading to the formation of undesired voids at the joint interface. However, the addition of bis(3-sulfopropyl disulfide (SPS with a critical concentration suppresses the impurity incorporation and the void formation. In this article, relevant studies were reviewed, and the focus was placed on the effects of additive formula and plating parameters on the impurity incorporation in the electroplated Cu film, and the void formation in the solder joints.

  17. Mechanistic Prediction of the Effect of Microstructural Coarsening on Creep Response of SnAgCu Solder Joints

    Science.gov (United States)

    Mukherjee, S.; Chauhan, P.; Osterman, M.; Dasgupta, A.; Pecht, M.

    2016-07-01

    Mechanistic microstructural models have been developed to capture the effect of isothermal aging on time dependent viscoplastic response of Sn3.0Ag0.5Cu (SAC305) solders. SnAgCu (SAC) solders undergo continuous microstructural coarsening during both storage and service because of their high homologous temperature. The microstructures of these low melting point alloys continuously evolve during service. This results in evolution of creep properties of the joint over time, thereby influencing the long term reliability of microelectronic packages. It is well documented that isothermal aging degrades the creep resistance of SAC solder. SAC305 alloy is aged for (24-1000) h at (25-100)°C (~0.6-0.8 × T melt). Cross-sectioning and image processing techniques were used to periodically quantify the effect of isothermal aging on phase coarsening and evolution. The parameters monitored during isothermal aging include size, area fraction, and inter-particle spacing of nanoscale Ag3Sn intermetallic compounds (IMCs) and the volume fraction of micronscale Cu6Sn5 IMCs, as well as the area fraction of pure tin dendrites. Effects of microstructural evolution on secondary creep constitutive response of SAC305 solder joints were then modeled using a mechanistic multiscale creep model. The mechanistic phenomena modeled include: (1) dispersion strengthening by coarsened nanoscale Ag3Sn IMCs in the eutectic phase; and (2) load sharing between pro-eutectic Sn dendrites and the surrounding coarsened eutectic Sn-Ag phase and microscale Cu6Sn5 IMCs. The coarse-grained polycrystalline Sn microstructure in SAC305 solder was not captured in the above model because isothermal aging does not cause any significant change in the initial grain size and orientation of SAC305 solder joints. The above mechanistic model can successfully capture the drop in creep resistance due to the influence of isothermal aging on SAC305 single crystals. Contribution of grain boundary sliding to the creep strain of

  18. Solder bond requirement for large, built-up, high-performance conductors

    International Nuclear Information System (INIS)

    Willig, R.L.

    1981-01-01

    Some large built-up conductors fabricated for large superconducting magnets are designed to operate above the maximum recovery current. Because the stability of these conductors is sensitive to the quality of the solder bond joining the composite superconductor to the high-conductivity substrate, a minimum bond requirement is necessary. The present analysis finds that the superconductor is unstable and becomes abruptly resistive when there are temperature excursions into the current sharing region of a poorly bonded conductor. This abrupt transition, produces eddy current heating in the vicinity of the superconducting filaments and causes a sharp reduction in the minimum propagating zone (MPZ) energy. This sensitivity of the MPZ energy to the solder bond contact area is used to specify a minimum bond requirement. For the superconducting MHD magnet built for the Component Development Integration Facility (CDIF), the minimum bonded surface area is .68 cm/sup 2//cm which is 44% of the composite perimeter. 5 refs

  19. In situ investigation of SnAgCu solder alloy microstructure

    International Nuclear Information System (INIS)

    Pietrikova, Alena; Bednarcik, Jozef; Durisin, Juraj

    2011-01-01

    Research highlights: → In situ X-ray diffraction investigation enabled detailed analysis of the melting and solidification process of the SAC305 alloy. → It was found that the SAC305 solder melts at 230 deg. C. When cooling from 240 deg. C the SAC305 alloy solidifies at the temperature of 214 deg. C. During solidification β-Sn and Cu 6 Sn 5 is also formed. Formation of Ag 3 Sn occurs at 206 deg. C and the remaining amount of alloy crystallizes approximately at 160 deg. C. → Furthermore, observation of the thermal expansion behaviour of the β-Sn tetragonal unit cell revealed linear dependence of the unit cell volume on temperature. The unit cell parameters a and c also increase linearly with the temperature. Despite the fact that the c parameter is substantially smaller than parameter a, it exhibits a significantly higher linear thermal expansion coefficient. Comparison between data obtained during heating and cooling indicates that the thermal expansion coefficient is slightly greater in the case of cooling. - Abstract: In situ X-ray diffraction experiments, using synchrotron radiation, were employed to analyze microstructure evolution of the 96.5Sn3Ag0.5Cu (wt.%)-SAC305 lead-free solder alloy during heating (30-240 deg. C), isothermal dwell (240 deg. C) and cooling (240-30 deg. C). The special emphasis was placed on the study of the melting and solidification processes, explaining formation, distribution and the order of crystallization of the crystal phases (β-Sn, intermetallic compounds) in the solder alloy. Furthermore, thermal expansion behaviour of the main constituent phase β-Sn was analyzed prior to melting and after the consequent solidification.

  20. Diode Lasers used in Plastic Welding and Selective Laser Soldering - Applications and Products

    Science.gov (United States)

    Reinl, S.

    Aside from conventional welding methods, laser welding of plastics has established itself as a proven bonding method. The component-conserving and clean process offers numerous advantages and enables welding of sensitive assemblies in automotive, electronic, medical, human care, food packaging and consumer electronics markets. Diode lasers are established since years within plastic welding applications. Also, soft soldering using laser radiation is becoming more and more significant in the field of direct diode laser applications. Fast power controllability combined with a contactless temperature measurement to minimize thermal damage make the diode laser an ideal tool for this application. These advantages come in to full effect when soldering of increasingly small parts in temperature sensitive environments is necessary.

  1. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  2. Reinforcement of high-risk anastomoses using laser-activated protein solders: a clinical study

    Science.gov (United States)

    Libutti, Steven K.; Bessler, Marc; Chabot, J.; Bass, Lawrence S.; Oz, Mehmet C.; Auteri, Joseph S.; Kirsch, Andrew J.; Nowygrod, Roman; Treat, Michael R.

    1993-07-01

    Anastomotic leakage or breakdown can result in catastrophic complications and significantly increased post-operative morbidity and mortality. Certain anastomoses are subject to a higher incidence of disruption and are therefore termed high risk. In an attempt to decrease the risk of anastomotic leaks, we reinforced sutured anastomoses with a laser activated protein solder in patients undergoing esophagojejunostomies (n equals 2), lung transplantation (n equals 2), and pancreaticojejunostomies (Whipple procedure, n equals 5). The protein solder was composed of 1.0 ml of a 25% human albumin solution, 1.0 ml of sodium hyaluronate, and 0.1 ml of Cardiogreen dye. This composition was applied to the sutured anastomosis and activated with an 860 nm pulsed diode laser. Drains were placed when appropriate and patients were followed for up to 10 months post-operatively and assessed for clinical signs of anastomotic leaks. Results to data demonstrated that there were no immediate complications as a result of the procedure. Operative time was not significantly lengthened. There were no cases of clinically significant leakage from any of the reinforced anastomoses. Laser activated protein solders may help to reduce the incidence of leakage in high risk anastomoses. Large numbers of patients and longer follow-up is needed however, to draw significant conclusions.

  3. Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-09-01

    Full Text Available The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.

  4. Kinetics of intermetallic phase formation at the interface of Sn-Ag-Cu-X (X = Bi, In) solders with Cu substrate

    International Nuclear Information System (INIS)

    Hodulova, Erika; Palcut, Marian; Lechovic, Emil; Simekova, Beata; Ulrich, Koloman

    2011-01-01

    Highlights: → In substitutes Sn in intermetallic compounds formed at the Cu-solder interface. → Bi and In decrease the parabolic rate constant of Cu 3 Sn layer growth. → In increases the parabolic rate constant of Cu 6 Sn 5 layer growth. → High In concentrations should be avoided since they may lead to a pre-mature solder joint degradation. - Abstract: The effects of Bi and In additions on intermetallic phase formation in lead-free solder joints of Sn-3.7Ag-0.7Cu; Sn-1.0Ag-0.5Cu-1.0Bi and Sn-1.5Ag-0.7Cu-9.5In (composition given in weight %) with copper substrate are studied. Soldering of copper plate was conducted at 250 deg. C for 5 s. The joints were subsequently aged at temperatures of 130-170 deg. C for 2-16 days in a convection oven. The aged interfaces were analyzed by optical microscopy and energy dispersive X-ray spectroscopy (EDX) microanalysis. Two intermetallic layers are observed at the interface - Cu 3 Sn and Cu 6 Sn 5 . Cu 6 Sn 5 is formed during soldering. Cu 3 Sn is formed during solid state ageing. Bi and In decrease the growth rate of Cu 3 Sn since they appear to inhibit tin diffusion through the grain boundaries. Furthermore, indium was found to produce a new phase - Cu 6 (Sn,In) 5 instead of Cu 6 Sn 5 , with a higher rate constant. The mechanism of the Cu 6 (Sn,In) 5 layer growth is discussed and the conclusions for the optimal solder chemical composition are presented.

  5. Recovery of Tin and Nitric Acid from Spent Solder Stripping Solutions

    International Nuclear Information System (INIS)

    Ahn, Jae-Woo; Ryu, Seong-Hyung; Kim, Tae-young

    2015-01-01

    Spent solder-stripping solutions containing tin, copper, iron, and lead in nitric acid solution, are by-products of the manufacture of printed-circuit boards. The recovery of these metals and the nitric acid, for re-use has economic and environmental benefits. In the spent solder-stripping solution, a systematic method to determine a suitable process for recovery of valuable metals and nitric acid was developed. Initially, more than 90% of the tin was successfully recovered as high-purity SnO 2 by thermal precipitation at 80 ℃ for 3 hours. About 94% of the nitric acid was regenerated effectively from the spent solutions by diffusion dialysis, after which there remained copper, iron, and lead in solution. Leakage of tin through the anion-exchange membrane was the lowest (0.026%), whereas Pb-leakage was highest (4.26%). The concentration of the regenerated nitric acid was about 5.1 N.

  6. Electromigration-induced cracks in Cu/Sn3.5Ag/Cu solder reaction couple at room temperature

    International Nuclear Information System (INIS)

    He Hongwen; Xu Guangchen; Guo Fu

    2009-01-01

    Electromigration (EM) behavior of Cu/Sn 3.5 Ag/Cu solder reaction couple was investigated with a high current density of 5 x 10 3 A/cm 2 at room temperature. One dimensional structure, copper wire/solder ball/copper wire SRC was designed and fabricated to dissipate the Joule heating induced by the current flow. In addition, thermomigration effect was excluded due to the symmetrical structure of the SRC. The experimental results indicated that micro-cracks initially appeared near the cathode interface between solder matrix and copper substrate after 474 h current stressing. With current stressing time increased, the cracks propagated and extended along the cathode interface. It should be noted that the continuous Cu 6 Sn 5 intermetallic compounds (IMCs) layer both at the anode and at the cathode remained their sizes. Interestingly, tiny cracks appeared at the root of some long column-type Cu 6 Sn 5 at the cathode interface due to the thermal stress.

  7. Liver repair and hemorrhage control by using laser soldering of liquid albumin in a porcine model.

    Science.gov (United States)

    Wadia, Y; Xie, H; Kajitani, M

    2000-01-01

    We evaluated laser soldering by using liquid albumin for welding liver injuries. Major liver trauma has a high mortality because of immediate exsanguination and a delayed morbidity from septicemia, peritonitis, biliary fistulae, and delayed secondary hemorrhage. Eight laceration (6 x 2 cm) and eight nonanatomic resection injuries (raw surface, 6 x 2 cm) were repaired. An 805-nm laser was used to weld 50% liquid albumin-indocyanine green solder to the liver surface, reinforcing it with a free autologous omental scaffold. The animals were heparinized and hepatic inflow occlusion was used for vascular control. All 16 soldering repairs were evaluated at 3 hours. All 16 laser mediated liver repairs had minimal blood loss as compared with the suture controls. No dehiscence, hemorrhage, or bile leakage was seen in any of the laser repairs after 3 hours. Laser fusion repair of the liver is a reliable technique to gain hemostasis on the raw surface as well as weld lacerations. Copyright 2000 Wiley-Liss, Inc.

  8. The variation of grain structure and the enhancement of shear strength in SAC305-0.1Ni/OSP Cu solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Fleshman, Collin; Chen, Wei-Yu; Chou, Tzu-Ting [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Huang, Jia-Hong [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China)

    2017-03-01

    In this study, the slow speed shear test in both Sn-3.0Ag-0.5Cu (wt%)/OSP Cu and Sn-3.0Ag-0.5Cu-0.1Ni (wt%)/OSP Cu assembly with the ball heights of 300 μm and the corresponding grain structures were investigated. With the aid of Electron Back Scattering Diffraction (EBSD) analysis, single grain structure was observed in Sn-3.0Ag-0.5Cu/OSP Cu. Besides, Ni was found to control the grain structure in Sn-3.0Ag-0.5Cu-0.1Ni solder balls, showing multiple grains with partially interlaced structure. The grain variation resulted from larger undercooling caused by smaller ball size and Ni-dopant induced tiny intermetallic compounds (IMCs). IMCs serve as heterogeneous nucleation sites for β-tin and thus alter the grain structure of solder balls. The results of shear test reveal that the peak force of solder joints was efficiently enhanced by the addition of Ni. The enhancement of mechanical strength was attributed to the modification of grain structure by the introduction of Ni dopant. It is believed that the smaller grains, tiny intermetallic compounds, and the oriented interlaced area in Ni-doped solder joints became energy barriers for propagation of cracks and dislocations. It is demonstrated that Ni-doped solder joints tend to exhibit better mechanical reliability in advanced electronic packaging. - Highlights: • The grain structure and slow speed shear test performance were investigated. • Doping Ni into solder induce interlaced grain structure. • Interlaced structure can enhance mechanical reliability in BGA packaging.

  9. A Reagentless Amperometric Formaldehyde-Selective Chemosensor Based on Platinized Gold Electrodes

    OpenAIRE

    Demkiv, Olha; Smutok, Oleh; Gonchar, Mykhailo; Nisnevitch, Marina

    2017-01-01

    Fabrication and characterization of a new amperometric chemosensor for accurate formaldehyde analysis based on platinized gold electrodes is described. The platinization process was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis and cyclic voltamperometry. The produced electrodes were characterized using scanning electron microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl) enabled an essential increase in th...

  10. Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2018-01-01

    and metallic electrodes. In this paper, we investigate the joining of ZnSb to Ni and Ag electrodes using a commercial solder alloy S-Bond 400 and hot-pressing technique. Ti and Cr layers are also introduced as a diffusion barrier and microstructure at the interfaces is observed by scanning electron microscopy....... We found that S-bond 400 solder reacts with Ag and Ni electrodes to form different alloys at the interfaces. Cr layer was found to be broken after joining, resulting in a thicker reaction/diffusion layer at the interface, while Ti layer was preserved....

  11. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    shift. Based on this principle, I have fabricated (gold nanosphere core)/(oxidized PANI shell) plasmonic sensors. The sensors have great potential for sensing chemical and biological molecules with reducibility. By using ascorbic acid (AA) as a target analyte, the plasmonic sensor presents high sensing capability. The limit of detection is 0.5 muM, and the linear response range is from 0.5 muM to 10 muM. The limit of detection for my plasmonic sensor is lower than the lowest limit for AA sensors based on liquid chromatography, electrophoresis, and electrochemical method. The sensing performance of my plasmonic sensors is expected to be further improved by optimizing the amount of (gold nanosphere core)/(oxidized PANI shell) structures, or employing other gold nanostructures with higher refractive index sensitivities. I believe that the colloidal (metal core)/(PANI shell) nanostructures pave the way for the fabrication of high-performance, low-cost plasmonic switches as well as for the preparation of advanced, programmable chromic materials for a wide variety of applications, such as smart windows, military anti-counterfeiting and camouflage, environmental sensors and indicators. (Abstract shortened by UMI.).

  12. Influence of intermetallic growth on the mechanical properties of Zn–Sn–Cu–Bi/Cu solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Fei; Yao, Jia; Liang, Jingwei; Qiu, Xiaoming, E-mail: qiuxm13@163.com

    2015-11-15

    The formation of intermetallic reaction layers and their influence on shear strength and fractography was investigated between the Zn–Sn–Cu–Bi (ZSCB) and Cu substrate during the liquid state reaction at 450 °C after 10–90 s. Results showed that reliable solder joints could be obtained at 450 °C after 15–30 s of wetting, accompanied by the creation of scallop ε-CuZn{sub 5}, flat γ-Cu{sub 5}Zn{sub 8} and β-CuZn intermetallic layers in ZSCB/Cu interface. However, with excess increase of soldering time, a transient intermetallic ε-CuZn{sub 4} phase was nuclear and grew at ε-CuZn{sub 5}/γ-Cu{sub 5}Zn{sub 8} interface, which apparently deteriorated the shear strength of solder joints from 76.5 MPa to 51.6 MPa. The sensitivity of the fracture proportion was gradually transformed from monotonic ε-CuZn{sub 5} to the mixture of ε-CuZn{sub 4} and ε-CuZn{sub 5} intermetallic cleavage. Furthermore, the growth mechanism of ε-CuZn{sub 4} intermetallic phase at the ZSCB/Cu interface was discussed. - Highlights: • There are four interfacial intermetallic layers formed at the Zn–Sn–Cu–Bi/Cu interface. • The growth mechanism of ε-CuZn{sub 4} intermetallic phase was discussed. • The wetting time of Zn–Sn–Cu–Bi solder in contact with Cu substrate is a key parameter.

  13. Interactions of Cu-substrates with titanium-alloyed Sn-Zn solders

    Directory of Open Access Journals (Sweden)

    Soares D.

    2006-01-01

    Full Text Available The interactions of copper substrate with titanium-alloyed Sn-Zn eutectic solders have been studied. Two series of experiments have been performed. The first one consisted in differential thermal analyses of Sn-Zn nearly eutectic alloys containing from 1.3 to 2.2 wt. % Ti. Diffusion couples consisted of Cu-wires and Sn-Zn-Ti liquid solders, produced at 250 and 275 OC have been prepared in the second series,. The contact times were up to 3600 s. The contact zones have been characterized by optical and scanning electron microscope. Two layers have been found along the interfaces solid/liquid. The first and the second layers are identical, respectively, with γ and ε phases of the Cu-Zn system. No changes of the chemical compositions were detected for the tested temperatures and reaction times. Continuous parabolic growth of the total diffusion zone thickness with the time of diffusion is observed. The growth is due mainly to one the formed layers (γ while the thickness of the ε-phase layer, stays almost constant for all tested diffusion times and temperatures.

  14. Circuit reliability boosted by soldering pins of disconnect plugs to sockets

    Science.gov (United States)

    Pierce, W. B.

    1964-01-01

    Where disconnect pins must be used for wiring and testing a circuit, improved system reliability is obtained by making a permanent joint between pins and sockets of the disconnect plug. After the circuit has been tested, contact points may be fused through soldering, brazing, or welding.

  15. Mechanical performances of lead-free solder joint connections with applications in the aerospace domain

    Directory of Open Access Journals (Sweden)

    Georgiana PADURARU

    2016-03-01

    Full Text Available The paper presents some theoretical and experimental aspects regarding the tribological performances of lead-free solder joint connections, with application in the aerospace domain. In order to highlight the mechanical and tribological properties of solder joint in correlation with different pad finishes, there were made some mechanical determinations using a dedicated Share Test System. The theoretical model highlights the link between the experimental results and the influence of gravitational acceleration on the mechanical and functional integrity of the electronic assemblies that works in vibration environment. The paper novelty is provided by the interdisciplinary experiment that offers results that can be used in the mechanical, tribological, electronical and aerospace domains.

  16. Fatigue damage modeling in solder interconnects using a cohesive zone approach

    NARCIS (Netherlands)

    Abdul-Baqi, A.J.J.; Schreurs, P.J.G.; Geers, M.G.D.

    2005-01-01

    The objective of this work is to model the fatigue damage process in a solder bump subjected to cyclic loading conditions. Fatigue damage is simulated using the cohesive zone methodology. Damage is assumed to occur at interfaces modeled through cohesive zones in the material, while the bulk material

  17. Effect of Surface Finish of Substrate on Mechanical Reliability of in-48SN Solder Joints in Moems Package

    OpenAIRE

    Koo, Ja-Myeong; Jung, Seung-Boo

    2007-01-01

    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920); International audience; Interfacial reactions and shear properties of the In-48Sn (in wt.%) ball grid array (BGA) solder joints after bonding were investigated with four different surface finishes of the substrate over an underlying Cu pad: electroplated Ni/Au (hereafter E-NG), electroless Ni/immersion Au (hereafter ENIG), immersion Ag (hereafter I-Ag) and organic solderability preservative (hereafte...

  18. Sutureless liver repair and hemorrhage control using laser-mediated fusion of human albumin as a solder.

    Science.gov (United States)

    Wadia, Y; Xie, H; Kajitani, M

    2001-07-01

    Major liver trauma has a high mortality because of immediate exsanguination and a delayed morbidity from septicemia, peritonitis, biliary fistulae, and delayed secondary hemorrhage. We evaluated laser soldering using liquid albumin for welding liver injuries. Fourteen lacerations (6 x 2 cm) and 13 nonanatomic resection injuries (raw surface, 8 x 2 cm) were repaired. An 805-nm laser was used to weld 53% liquid albumin-indocyanine green solder to the liver surface, reinforcing it by welding a free autologous omental scaffold. The animals were heparinized and hepatic inflow occlusion was used for vascular control. For both laceration and resection injuries, 16 soldering repairs were evaluated acutely at 3 hours. Eleven animals were evaluated chronically, two at 2 weeks and nine at 4 weeks. All 27 laser mediated-liver repairs had minimal blood loss compared with the suture controls. No dehiscence, hemorrhage, or bile leakage was seen in any of the laser repairs after 3 hours. All 11 chronic repairs healed without complication. This modality effectively seals the liver surface, joins lacerations with minimal thermal injury, and works independently of the patient's coagulation status.

  19. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis

    International Nuclear Information System (INIS)

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-01-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme. -- Highlights: ► We model the life cycle flows for solder-containing metals in Japan. ► The Japanese shift to lead-free solders progresses rapidly for a decade. ► Substitution for lead in solders slows down during the late life cycle stages. ► The deceleration of substitution precludes a reduction in lead emissions to air.

  20. Sensitive flotation-spectrophotometric determination of gold, based on the gold(I)-iodide-methylene blue system.

    Science.gov (United States)

    Marczenko, Z; Jankowski, K

    1985-04-01

    The gold(I)-iodide-Methylene Blue (MB) system is suitable for flotation separation and spectrophotometric determination of gold. Under the optimum conditions [(MB(+))(AuI(2)(-))].3[(MB(+))(I(3)(-))] is formed, and floated with cyclohexane. The product is dissolved in methanol and its absorbance measured. The molar absorptivity is 3.4 x 10(5)1.mole(-1).cm(-1) at 655 nm. The proposed method is more than three times as sensitive as the Rhodamine B method. Pt, Pd, Ag and Hg interfere seriously, and Ir, Rh, Bi and Cd to a smaller extent. Preliminary separation of gold by precipitation with tellurium as a collector is recommended. The method has been applied to determination of gold traces (about 1 x 10(-4)%) in a copper sample.

  1. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    Science.gov (United States)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  2. Tin-silver and tin-copper alloys for capillarity joining-soft soldering-of copper piping

    International Nuclear Information System (INIS)

    Duran, J.; Amo, J. M.; Duran, C. M.

    2001-01-01

    It is studied the influence of the type of alloy used as filling material on the defects of the soldering joints in copper piping installations, which induce the fluid leak of the systems. The different eutectic temperatures and solidus-liquidus ranges of these alloys, require the setting of the soldering heat input in each case to obtain the suitable capillarity features and alloying temperatures to achieve for the correct formation of the bonding. Most defects in the joints are demonstrated to be generated by bad dossification of thermal inputs, which led depending on the filler alloy used to variations in its fluidity that may produce penetration failures in the bonds or insufficient consistency for the filling of the joints. (Author) 7 refs

  3. Prediction of activities of all components in the lead-free solder systems Bi-In-Sn and Bi-In-Sn-Zn

    International Nuclear Information System (INIS)

    Tao Dongping

    2008-01-01

    The activities of components of the ternary lead-free solder systems Al-Sn-Zn at 973 K, Zn-Cu-Sn at 1023 K and Bi-In-Sn at 1000 and 1050 K have been predicted by a novel molecular interaction volume model-MIVM and the results are in good agreement with experimental data. Then the activities of all components of the Bi-In-Sn at 550 K and the Bi-In-Sn-Zn quaternary system at 700 K have been further predicted and the results are reasonable and reliable. This shows that the model may be a superior alternative for describing interfacial chemical reactions between lead-free solder alloys and common base materials and for the calculation of their phase diagrams because MIVM has certain physical meaning from the viewpoint of statistical thermodynamics and requires only two infinite dilute activity coefficients for each sub-binary system

  4. Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders

    Science.gov (United States)

    Mohammadi, A.; Mahmudi, R.

    2018-02-01

    Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.

  5. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor

    DEFF Research Database (Denmark)

    Phuoc Long, Truong; Cao, Cuong; Park, Sungho

    2011-01-01

    Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibodyfunctionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) lmax shifts of the resonant Rayleigh light scattering spectra. By replacing...... can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple...

  6. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Virginia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Irusta, Silvia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Balas, Francisco [Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Instituto de Carboquímica – Consejo Superior de Investigaciones Científicas (ICB-CSIC), 50018 Zaragoza (Spain); Santamaria, Jesus, E-mail: Jesus.Santamaria@unizar.es [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain)

    2013-07-15

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10{sup 6} particles/cm{sup 3}) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals.

  7. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    International Nuclear Information System (INIS)

    Gómez, Virginia; Irusta, Silvia; Balas, Francisco; Santamaria, Jesus

    2013-01-01

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10 6 particles/cm 3 ) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals

  8. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  9. A novel reflectance-based aptasensor using gold nanoparticles for the detection of oxytetracycline.

    Science.gov (United States)

    Seo, Ho Bin; Kwon, Young Seop; Lee, Ji-eun; Cullen, David; Noh, Hongseok Moses; Gu, Man Bock

    2015-10-07

    We present a novel reflectance-based colorimetric aptasensor using gold nanoparticles for the detection of oxytetracycline for the first time. It was found that the reflectance-based measurement at two wavelengths (650 and 520 nm) can generate more stable and sensitive signals than absorbance-based sensors to determine the aggregation of AuNPs, even at high AuNP concentrations. One of the most common antibacterial agents, oxytetracycline (OTC), was detected at concentrations as low as 1 nM in both buffer solution and tap water, which was 25-fold more sensitive, compared to the previous absorbance-based colorimetric aptasensors. This reflectance-based colorimetric aptasensor using gold nanoparticles is considered to be a better platform for portable sensing of small molecules using aptamers.

  10. Liver repair and hemorrhage control using laser soldering of liquid albumin in a porcine model

    Science.gov (United States)

    Wadia, Yasmin; Xie, Hua; Kajitani, Michio; Gregory, Kenton W.; Prahl, Scott A.

    2000-05-01

    The purpose of this study was to evaluate laser soldering using liquid albumin for welding liver lacerations and sealing raw surfaces created by segmental resection of a lobe. Major liver trauma has a high mortality due to immediate exsanguination and a delayed morbidity and mortality from septicemia, peritonitis, biliary fistulae and delayed secondary hemorrhage. Eight laceration injuries (6 cm long X 2 cm deep) and eight non-anatomical resection injuries (raw surface 6 cm X 2 cm) were repaired. An 805 nm laser was used to weld 53% liquid albumin-ICG solder to the liver surface, reinforcing it with a free autologous omental scaffold. The animals were heparinized to simulate coagulation failure and hepatic inflow occlusion was used for vascular control. For both laceration and resection injuries, eight soldering repairs each were evaluated at three hours. A single suture repair of each type was evaluated at three hours. All 16 laser mediated liver repairs were accompanied by minimal blood loss as compared to the suture controls. No dehiscence, hemorrhage or bile leakage was seen in any of the laser repairs after three hours. In conclusion laser fusion repair of the liver is a quick and reliable technique to gain hemostasis on the cut surface as well as weld lacerations.

  11. Pseudo-template synthesis of gold nanoparticles based on polyhydrosilanes

    International Nuclear Information System (INIS)

    Sacarescu, Liviu; Simionescu, Mihaela; Sacarescu, Gabriela

    2011-01-01

    Highly stable colloidal gold nanoparticles are obtained in a pseudo-template system using a specific polyhydrosilane copolymeric structure. This process takes place in situ by microwaves activation of the polymer solution in a non-polar solvent followed by stirring with solid HAuCl 4 in natural light. The experimental procedure is very simple and the resulted colloidal gold solution is indefinitely stable. The specific surface plasmon resonance absorption band of the gold nanoparticles is strongly red shifted and is strictly related to their size. AFM correlated with DLS analysis showed flattened round shaped colloidal polymer-gold nanoparticles with large diameters. SEM-EDX combined analysis reveals that the polysilane-gold nanoparticles show a natural tendency to auto-assemble in close packed structures which form large areas over the polymer film surface.

  12. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations.

    Science.gov (United States)

    Mick, Enrico; Markhoff, Jana; Mitrovic, Aurica; Jonitz, Anika; Bader, Rainer

    2013-09-11

    Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations-consisting mainly of SiO₂, Al₂O₃, K₂O and Na₂O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa) was found for the three different coatings. The obtained roughness (R z ) amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm) or adhesive strength (57.2 ± 5.8 MPa). In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  13. Microstructure and mechanical properties of Sn-9Zn-xAl2O3 nanoparticles (x=0–1) lead-free solder alloy: First-principles calculation and experimental research

    International Nuclear Information System (INIS)

    Xing, Wen-qing; Yu, Xin-ye; Li, Heng; Ma, Le; Zuo, Wei; Dong, Peng; Wang, Wen-xian; Ding, Min

    2016-01-01

    This paper studies microstructure and mechanical properties of Sn-9Zn-x Al 2 O 3 nanoparticles (x=0–1) lead-free solder alloy. The interface structure, interface energy and electronic properties of Al 2 O 3 /Sn9Zn interface are investigated by first-principle calculation. On the experimental part, in comparison with the plain Sn-9Zn solder, the Al 2 O 3 nanoparticles incorporated into the solder matrix can inhibit the growth of coarse dendrite Sn-Zn eutectic structure and refine grains of the composite solders during the solidification process of the alloys. Moreover, the microhardness and average tensile strength of the solders with addition of Al 2 O 3 nanoparticles increased with the increasing weight percentages of Al 2 O 3 nanoparticles. These improved mechanical properties can be attributed to the microstructure developments and the dispersed Al 2 O 3 nanoparticles.

  14. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles

    Science.gov (United States)

    Nirala, Narsingh R.; Saxena, Preeti S.; Srivastava, Anchal

    2018-02-01

    We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2 mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19 mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100 mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.

  15. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    International Nuclear Information System (INIS)

    Nara, Seema; Tripathi, Vinay; Singh, Harpal; Shrivastav, Tulsidas G.

    2010-01-01

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL -1 with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  16. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Seema, E-mail: seemanara@mnnit.ac.in [Department of Applied Mechanics (Biotechnology), Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Tripathi, Vinay [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Singh, Harpal [Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Shrivastav, Tulsidas G. [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India)

    2010-12-03

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL{sup -1} with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  17. Behavior of Sn-0.7Cu-xZn lead free solder on physical properties and micro structure

    Science.gov (United States)

    Siahaan, Erwin

    2017-09-01

    The issues to substitute Tin-Lead Solders is concerning the health and environmental hazards that is caused by lead, and also legislative actions around the world regarding lead toxicity, which has prompted the research community to attempt to replace solder alloys for the traditional Sn-Pb alloys lead which has been used by industrial worker throughout history because it is easily extracted and refined at a relatively low energy cost and also has a range of useful properties. Traditional industry lead has been used in soldering materials for electronic applications because it has low melting point and a soft, malleable nature, when combined with tin at the eutectic composition which causes the alloy to flow easily in the liquid state and solidifies over a very small range of temperature. One of the potential candidate to replace tin-lead solder is Sn-Cu-Zn eutectic alloy as it has a lower melting temperature. Consequently, it is of interest to determine what reactions can occur in ternary systems derived from the Sn-Cu-Zn eutectic. One such system is Sn-0.7Cu-xZn. The specimen was elaborated on physical properties. The chemical content was analyzed by using Shimadzu XRD and melting point was analyzed by using Differential Scanning Calorimeter ( DSC ). The results has shown that the highest addition of Zinc content (15%Zn) will decrease the melting temperatur to 189°C compared to Sn-Pb at 183°C Increasing the amount of Zn on Sn0.7Cu-xZn alloys will decrease Cu3Sn intermetallic coumpound.

  18. Appendix to the report from the low-residue soldering task force: Phase 2 results

    Energy Technology Data Exchange (ETDEWEB)

    Iman, R.L.; Anderson, D.J.; Huffman, D.D. [and others

    1995-12-01

    The LRSTF report for Phase I of its evaluation of low-residue soldering was issued in June 1995. This Appendix summarizes the results of follow-on testing performed in Phase II and compares electrical test results for both phases. Deliberate decisions were made by the LRSTF in Phase I to challenge the design guideline limits in MILSTD-275, Printed Wiring for Electronic Equipment The LRSTF considered this approach to produce a ``worst case`` design and provide useful information about the robustness of LR soldering processes. As such, good design practices were sometimes deliberately violated in designing the LRSTF board. This approach created some anomalies for both LR boards and RMA/cleaned controls. Phase II testing verified that problems that affected both RMA/cleaned and LR boards in Phase I were design related.

  19. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  20. Effect of laser wavelength and protein solder concentration on acute tissue repair using laser welding: initial results in a canine ureter model.

    Science.gov (United States)

    Wright, E J; Poppas, D P

    1997-01-01

    Successful tissue approximation can be performed using low power laser energy combined with human albumin solder. In vitro studies were undertaken to investigate the acute repair strengths achieved using different laser wavelengths. Furthermore, we evaluated the change in repair strength with that resulted from changes in protein solder concentration. Intraluminal bursting pressure following ureterotomy repair was measured for the following laser wavelengths: 532, 808, 1,320, 2,100, and 10,600 nm. The tissue absorption characteristics of the 808-nm diode and the KTP-532-nm lasers required the addition of the exogenous chromophores indocyanine green and fluorescein, respectively. A 40% human albumin solder was incorporated in the repair of a 1.0-cm longitudinal defect in the canine ureter. Following determination of an optimal welding wavelength, human albumin solder of varying concentrations (25%, 38%, 45%, and 50%) were prepared and tested. The 1,320-nm YAG laser achieved the highest acute bursting pressure and was the most effective in this model. Of the concentrations of albumin tested, 50% human albumin yielded the greatest bursting pressures. We conclude that of the laser wavelengths evaluated, the 1,320-nm YAG achieves the strongest tissue weld in the acute ex vivo dog ureter model. In addition, when this laser system is used, the acute strength of a photothermal weld appears to be directly proportional to the concentration of human albumin solder in the range of 25 to 50%.

  1. A Sub-Microanalysis Approach in Chemical Characterisation of Gold Nanorods Formed by a Novel Polymer-Immobilised Gold Seeds Base

    Directory of Open Access Journals (Sweden)

    Majid Kazemian Abyaneh

    2017-10-01

    Full Text Available Gold nanorods (GNRs have been fabricated by a novel polymer-immobilised seed mediated method using ultraviolet (UV photoreduced gold-polymethylmethacrylate (Au–PMMA nanocomposites as a seed platform and characterised at sub-micron scale regime with synchrotron-based techniques; near-edge X-ray absorption fine structure (NEXAFS spectroscopy and X-ray fluorescence (XRF mapping. In this report, it is shown that investigating polymer nanocomposites using combination of XRF mapping and NEXAFS spectromicroscopy can help to see the growth phenomenon from different perspective than conventional characterisation techniques. XRF maps are used to explore distribution of the constituent elements and showing how polymer matrix making stripe patterns along with regions where GNRs are formed. NEXAFS carbon (C K-edge spectra have been taken at three different stages of synthesis: (1 on Au–PMMA nanocomposites before UV irradiation, (2 after gold nanoparticles formation, and (3 after GNRs formation. It reveals how polymer matrix has been degraded during GNRs formation and avoiding chemically or physically damage to polymer matrix is crucial to control the formation of GNRs.

  2. Knowledge-driven GIS modeling technique for gold exploration, Bulghah gold mine area, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed A. Madani

    2011-12-01

    Full Text Available This research aims to generate a favorability map for gold exploration at the Bulghah gold mine area using integration of geo-datasets within a GIS environment. Spatial data analyses and integration of different geo-datasets are carried out based on knowledge-driven and weighting technique. The integration process involves the weighting and scoring of different layers affecting the gold mineralization at the study area using the index overlay method within PCI Geomatica environment. Generation of the binary predictor maps for lithology, lineaments, faults and favorable contacts precede the construction of the favorability map. About 100 m buffer zones are generated for favorable contacts, lineaments and major faults layers. Internal weighting is assigned to each layer based on favorability for gold mineralization. The scores for lithology, major faults, lineaments and favorable contacts layers in the constructed favorability map are 50%, 25%, 10% and 15%, respectively. Final favorability map for the Bulghah gold mine area shows the recording of two new sites for gold mineralization located at the northern and southern extensions of tonalite–diorite intrusions. The northern new site is now exploited for gold from the Bulghah North mine. The southern new site is narrow and small; its rocks resemble those of the Bulghah gold mine.

  3. Hybrid input-output approach to metal production and its application to the introduction of lead-free solders.

    Science.gov (United States)

    Nakamura, Shinichiro; Murakami, Shinsuke; Nakajima, Kenichi; Nagasaka, Tetsuya

    2008-05-15

    The production process of metals such as copper, lead, and zinc is characterized by mutual interconnections and interdependence, as well as by the occurrence of a large number of byproducts, which include precious or rare metals, such as gold, silver, bismuth, and indium. On the basis of the framework of waste input-output (WIO), we present a hybrid 10 model that takes full account of the mutual interdependence among the metal production processes and the interdependence between them and all the other production sectors of the economy as well. The combination of a comprehensive representation of the whole national economy and the introduction of process knowledge of metal production allows for a detailed analysis of different materials-use scenarios under the consideration of full supply chain effects. For illustration, a hypothetical case study of the introduction of lead-free solder involving the production of silver as a byproduct of copper and lead smelting processes was developed and implemented using Japanese data. To meet the increased demand for the recovery and recycling of silver resources from end-of-life products, the final destination of metal silver in terms of products and user categories was estimated, and the target components with the highest silver concentration were identified.

  4. Influence of ZnO nano-particles addition on thermal analysis, microstructure evolution and tensile behavior of Sn–5.0 wt% Sb–0.5 wt% Cu lead-free solder alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.N., E-mail: alynabieh@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, 41522 Ismailia (Egypt); Eid, E.A., E-mail: dr_eid_hti@yahoo.com [Basic Science Department, Higher Technological Institute, 44629 10th of Ramadan City (Egypt)

    2015-04-24

    Sn–5 wt%Sb–0.5 wt%Cu (plain SSC505) and Sn–5 wt%Sb–0.5 wt%Cu–0.5 wt% ZnO (SSC-ZnO) composite solder alloys have been studied. The variation in thermal behavior, microstructure and tensile characteristics associated with mixing of 0.5 wt% ZnO nano-metric particles to plain SSC505 solder were investigated. A slight increment in the melting temperature [ΔT{sub m}=0.89 °C] was recorded using differential scanning calorimetry (DSC) after addition of ZnO. X-Ray diffraction (XRD) analysis confirmed the existence of β-Sn, SbSn and Cu{sub 6}Sn{sub 5} intermetallic compounds (IMCs) beside some of ZnO planes in SSC-ZnO composite solder. Field emission scanning electronic microscope (FE-SEM) investigation of SSC-ZnO composite solder revealed a homogenous uniform distribution, size refinement of IMCs and β-Sn grains. Addition of ZnO nano-metric particles into the plain SSC505 enhanced the yield stress σ{sub YS} by ~12% and improved the ultimate tensile strength σ{sub UTS} by ~13%. In addition, adding ZnO nano-metric particles was found to be effective for reducing ductility by ~43% of the plain solder due to the refinement of β-Sn grains within SSC-ZnO composite solder. - Highlights: • Melting point of SSC505-ZnO composite solder is slightly increased by 0.89 {sup ο}C compared with the plain SSC505 solder. • XRD and EDX analysis reflect the presence of SbSn, Cu{sub 6}Sn{sub 5} IMCs. • EF-SEM images of SSC-ZnO composite solder revealed homogenous uniform distribution of β-Sn grains and fine IMC particles. • A detectable improvement in the Young modulus, ultimate tensile strength and yield strength were observed after addition of 0.5 wt% ZnO nano-metric particles.

  5. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-06-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  6. Enrichment of Gold in Antimony Matte by Direct Smelting of Refractory Gold Concentrate

    Science.gov (United States)

    Yang, Tianzu; Xie, Boyi; Liu, Weifeng; Zhang, Duchao; Chen, Lin

    2018-04-01

    Conventional cyanidation technology achieves low gold recovery when used to process refractory gold concentrate. Based on the geochemical characteristics of gold deposit mineralization, a new method is proposed herein for gold enrichment in antimony matte by smelting of refractory gold concentrate. The effects of the FeO/SiO2 and CaO/SiO2 ratios, smelting temperature, and smelting time on the gold recovery were investigated in detail. The optimum conditions were determined to be FeO/SiO2 ratio of 1.2, CaO/SiO2 ratio of 0.4, smelting temperature of 1200°C, and smelting time of 45 min. The gold content in antimony matte and smelting slag was 96.68 and 1.13 g/t, respectively. The gold, antimony, and arsenic recovery was 97.72%, 26.89%, and 6.56%, respectively, with most of the antimony and arsenic volatilized into dust. Mineral liberation analyzer results showed that the antimony matte mainly consisted of FeS and FeO, with three phases, viz. FeAs, SbAs, and AuSb, embedded between them, indicating that gold was easily enriched with antimony and arsenic during smelting of refractory gold concentrate.

  7. Complexes of DNA bases and Watson-Crick base pairs with small neutral gold clusters.

    Science.gov (United States)

    Kryachko, E S; Remacle, F

    2005-12-08

    The nature of the DNA-gold interaction determines and differentiates the affinity of the nucleobases (adenine, thymine, guanine, and cytosine) to gold. Our preliminary computational study [Kryachko, E. S.; Remacle, F. Nano Lett. 2005, 5, 735] demonstrates that two major bonding factors govern this interaction: the anchoring, either of the Au-N or Au-O type, and the nonconventional N-H...Au hydrogen bonding. In this paper, we offer insight into the nature of nucleobase-gold interactions and provide a detailed characterization of their different facets, i.e., geometrical, energetic, and spectroscopic aspects; the gold cluster size and gold coordination effects; proton affinity; and deprotonation energy. We then investigate how the Watson-Crick DNA pairing patterns are modulated by the nucleobase-gold interaction. We do so in terms of the proton affinities and deprotonation energies of those proton acceptors and proton donors which are involved in the interbase hydrogen bondings. A variety of properties of the most stable Watson-Crick [A x T]-Au3 and [G x C]-Au3 hybridized complexes are described and compared with the isolated Watson-Crick A x T and G x C ones. It is shown that enlarging the gold cluster size to Au6 results in a rather short gold-gold bond in the Watson-Crick interbase region of the [G x C]-Au6 complex that bridges the G x C pair and thus leads to a significant strengthening of G x C pairing.

  8. The micro-droplet behavior of a molten lead-free solder in an inkjet printing process

    International Nuclear Information System (INIS)

    Tsai, M H; Chou, H H; Hwang, W S

    2009-01-01

    An experimental investigation on the droplet formation of molten Sn3.0 wt%Ag0.5 wt%Cu alloy by an inkjet printing process was conducted. The printing process used a piezoelectric print head with a nozzle orifice diameter of 50 µm. Micro-droplets of a molten lead-free solder were ejected at 230 °C. The print head was driven by a bipolar pulse 40 V in amplitude. The major variables for this study were two pulse times; t rise /t finalrise and t fall , as well as N 2 back-pressure in the molten solder reservoir. Under various printing conditions, extrusion of the liquid column, contraction of liquid thread and pinch-off of liquid thread at nozzle exit were observed by monitoring the dynamics of the molten solder droplet ejection process. The droplet formation was found to be insensitive to t rise and t finalrise in the range of 250–1000 µs. The behavior of droplet formation was, however, significantly affected by the transfer rate, t fall , in the range of 30–60 µs and t fall of 50 µs yielded the most desirable condition of single droplet formation. The N 2 back-pressure was also found to be critical, where a back pressure between 10 and 21 kPa could give the desirable single-droplet formation condition

  9. The Effect of Wetting Gravity Regime on Shear Strength of SAC and Sn-Pb Solder Lap Joints

    Science.gov (United States)

    Sona, Mrunali; Prabhu, K. Narayan

    2017-09-01

    The failure of solder joints due to imposed stresses in an electronic assembly is governed by shear bond strength. In the present study, the effect of wetting gravity regime on single-lap shear strength of Sn-0.3Ag-0.7Cu and Sn-2.5Ag-0.5Cu solder alloys reflowed between bare copper substrates as well as Ni-coated Cu substrates was investigated. Samples were reflowed for 10 s, T gz (time corresponding to the end of gravity regime) and 100 s individually and tested for single-lap shear strength. The single-lap shear test was also carried out on eutectic Sn-Pb/Cu- and Sn-Pb/Ni-coated Cu specimens to compare the shear strength values obtained with those of lead-free alloys. The eutectic Sn-Pb showed significantly higher ultimate shear strength on bare Cu substrates when compared to Sn-Ag-Cu alloys. However, SAC alloys reflowed on nickel-coated copper substrate exhibited higher shear strength when compared to eutectic Sn-Pb/Ni-coated Cu specimens. All the substrate/solder/substrate lap joint specimens that were reflowed for the time corresponding to the end of gravity regime exhibited maximum ultimate shear strength.

  10. Nanodot deposition and its application with atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zenglei, E-mail: liuzenglei@sia.cn; Jiao Niandong, E-mail: ndjiao@sia.cn [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China); Xu Ke [Shenyang Jianzhu University (China); Wang, Zhidong [Chiba Institute of Technology (Japan); Dong Zaili; Liu Lianqing [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China)

    2013-06-15

    Nanodot deposition using atomic force microscope (AFM) is investigated. To realize repeatable and precise deposition of nanodots, the detailed control method is discussed. The electric field between AFM tip and substrate is analyzed, and a convenient method to control tip-substrate separation is proposed. In experiments, two nanodot matrixes are fabricated and the heights of the nanodots are analyzed. Experimental results testify that the control method can lead to repeatable and precise fabrication of deposited nanodots. As an application of deposited nanodots, a carbon nanotube (CNT) is soldered on gold electrodes with deposited Au nanodots. After soldering, the contact resistances between the CNT and the electrodes decrease greatly. AFM-based nanodot deposition can be used to fabricate special nanopatterns; also it can be used to solder nanomaterials on substrates to improve the electrical connection, which has a promising future for nanodevice fabrication.

  11. New Coating Technique of Ceramic Implants with Different Glass Solder Matrices for Improved Osseointegration-Mechanical Investigations

    Directory of Open Access Journals (Sweden)

    Rainer Bader

    2013-09-01

    Full Text Available Ceramics are a very popular material in dental implant technology due to their tribological properties, their biocompatibility and their esthetic appearance. However, their natural surface structure lacks the ability of proper osseointegration, which constitutes a crucial process for the stability and, thus, the functionality of a bone implant. We investigated the application of a glass solder matrix in three configurations—consisting mainly of SiO2, Al2O3, K2O and Na2O to TZP-A ceramic specimens. The corresponding adhesive strength and surface roughness of the coatings on ceramic specimens have been analyzed. Thereby, high adhesive strength (70.3 ± 7.9 MPa was found for the three different coatings. The obtained roughness (Rz amounted to 18.24 ± 2.48 µm in average, with significant differences between the glass solder configurations. Furthermore, one configuration was also tested after additional etching which did not lead to significant increase of surface roughness (19.37 ± 1.04 µm or adhesive strength (57.2 ± 5.8 MPa. In conclusion, coating with glass solder matrix seems to be a promising surface modification technique that may enable direct insertion of ceramic implants in dental and orthopaedic surgery.

  12. Electron transport in gold colloidal nanoparticle-based strain gauges

    Science.gov (United States)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  13. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    International Nuclear Information System (INIS)

    Jha, Abhinav K; Kupinski, Matthew A; Rodríguez, Jeffrey J; Stephen, Renu M; Stopeck, Alison T

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both the ensemble mean square error and precision. We also propose consistency checks for this evaluation technique. (paper)

  14. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  15. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  16. Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys

    Science.gov (United States)

    Reeve, Kathlene N.; Handwerker, Carol A.

    2018-01-01

    The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20-250°C, 1-5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22-64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy's β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.

  17. Effect of nano Co reinforcements on the structure of the Sn-3.0Ag-0.5Cu solder in liquid and after reflow solid states

    Energy Technology Data Exchange (ETDEWEB)

    Yakymovych, Andriy, E-mail: yakymovych@univie.ac.at [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria); Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Mudry, Stepan; Shtablavyi, Ihor [Department of Metal Physics, Ivan Franko National University of Lviv, Kyrylo i Mephodiy Str. 8, 79005 Lviv (Ukraine); Ipser, Herbert [Department of Inorganic Chemistry – Functional Materials, University of Vienna, Währinger Str. 42, 1090 Vienna (Austria)

    2016-09-15

    Sn-Ag-Cu (SAC) alloys are commonly recognized as lead-free solders employed in the electronics industry. However, some disadvantages in mechanical properties and their higher melting temperatures compared to Pb-Sn solders prompt new research relating to reinforcement of existing SAC solders. One of the ways to reinforce these solder materials is the formation of composites with nanoparticles as filler materials. Accordingly, this study presents structural features of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} solders with up to 0.8 wt% nano Co. The effect of nano-sized Co particles was investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD) in both liquid and solid states, and scanning electron microscopy (SEM). The experimental data of DTA are compared with available literature data for bulk Sn-3.0Ag-0.5Cu alloy to check the capability of minor nano-inclusions to decrease the melting temperature of the SAC solder. The combination of structural data in liquid and solid states provides important information about the structural transformations of liquid Sn-3.0Ag-0.5Cu alloys caused by minor Co additions and the phase formation during crystallization. Furthermore, scanning electron microscopy has shown the mutual substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases, respectively. - Highlights: • Differential thermal analysis of nanocomposite (Sn-3.0Ag-0.5Cu){sub 100−x}(nanoCo){sub x} alloys. • Structural transformations of liquid Sn-3.0Ag-0.5Cu solder by minor Co additions. • Structure data of the solid quaternary (Sn-3.0Ag-0.5Cu){sub 100−x}(Co){sub x} alloys. • Substitution of Co and Cu atoms in the Cu{sub 6}Sn{sub 5} and CoSn{sub 3} phases.

  18. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    Science.gov (United States)

    Montes Castillo, Milka Odemariz

    Extraordinary chemical and physical properties exhibited by nanomaterials, as compared to their bulk counterparts, have made the area of nanotechnology a growing realm in the past three decades. It is the nanoscale size (from 1 to 100 nm) and the morphologies of nanomaterials that provide several properties and applications not possible for the same material in the bulk. Magnetic and optical properties, as well as surface reactivity are highly dependent on the size and morphology of the nanomaterial. Diverse nanomaterials are being widely used in molecular diagnostics as well as in medicine, electronic and optical devices. Among the most studied nanomaterials, gold nanoparticles are of special interest due to their multifunctional capabilities. For instance, spherical gold nanoparticles measuring 15-20 nm in diameter have been studied due to their insulin binding properties. Also, thiol functionalized gold nanoparticles between 5 and 30 nm are used in the detection of DNA. Thus, harnessing the shape and size of gold nanoparticles plays an important role in science and technology. The synthesis of gold nanoparticles via the reduction of gold salts, using citrate or other reducing agents, has been widely studied. In recent years, algae, fungi, bacteria, and living plants have been used to reduce trivalent gold (Au3+) to its zero oxidation state (Au 0) forming gold nanoparticles of different sizes and shapes. In addition, plant biomasses have also been studied for their gold-reducing power and nanoparticle formation. Although there is information about the synthesis of the gold nanoparticles by biologically based materials; to our knowledge, the study of the use of alfalfa extracts has not been reported. This innovation represents a significant improvement; that is an environmentally friendly method that does not use toxic chemicals. Also, the problem of extracting the formed gold nanoparticles from biomaterials is addressed in this research but still remains to be

  19. The thermodynamic database COST MP0602 for materials for high-temperature lead-free soldering

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Aleš; Dinsdale, A.; Watson, A.; Vřešťál, J.; Zemanová, Adéla; Brož, P.

    2012-01-01

    Roč. 48, č. 3 (2012), s. 339-346 ISSN 1450-5339 R&D Projects: GA MŠk LD11024 Institutional support: RVO:68081723 Keywords : CALPHAD method * lead-free solders * thermodynamic database Subject RIV: BJ - Thermodynamics Impact factor: 1.435, year: 2012

  20. Microstructure and mechanical properties of Sn-9Zn-xAl{sub 2}O{sub 3} nanoparticles (x=0–1) lead-free solder alloy: First-principles calculation and experimental research

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Wen-qing; Yu, Xin-ye; Li, Heng; Ma, Le; Zuo, Wei [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Dong, Peng; Wang, Wen-xian [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Ding, Min, E-mail: dingmin@tyut.edu.cn [Taiyuan University of Technology, College of Material Science and Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-12-15

    This paper studies microstructure and mechanical properties of Sn-9Zn-x Al{sub 2}O{sub 3} nanoparticles (x=0–1) lead-free solder alloy. The interface structure, interface energy and electronic properties of Al{sub 2}O{sub 3}/Sn9Zn interface are investigated by first-principle calculation. On the experimental part, in comparison with the plain Sn-9Zn solder, the Al{sub 2}O{sub 3} nanoparticles incorporated into the solder matrix can inhibit the growth of coarse dendrite Sn-Zn eutectic structure and refine grains of the composite solders during the solidification process of the alloys. Moreover, the microhardness and average tensile strength of the solders with addition of Al{sub 2}O{sub 3} nanoparticles increased with the increasing weight percentages of Al{sub 2}O{sub 3} nanoparticles. These improved mechanical properties can be attributed to the microstructure developments and the dispersed Al{sub 2}O{sub 3} nanoparticles.

  1. FY 1998 report on the waste processing/recycling related technology, 'The R and D of lead-free solder standardization'; 1998 nendo haikibutsu shori recycle kanren gijutsu seika hokokusho. Namari free handa kikakuka nado kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To reduce the environmental pollution caused by lead eluted from the electronic equipment waste, the R and D on lead-free solder were conducted and the results were summarized. As to the basic characteristics, the evaluation test method was studied in terms of the range of melting temperature, mechanical strength, wettability and joint strength, to select a uniform test method. As the lead-free solder, Sn-Ag alloys were mainly used and mixed in a combination of Cu, Bi and In. Changes in characteristics were made clear by adding trace elements such as Ge, Mn and P. Relating to the applied characteristics, in selection of solder materials, materials were selected for which evaluation of the commercialization is proceeded with from a viewpoint of promotion of commercialization. Concerning the experimental evaluation of characteristics of lead-free solder in mounted substrates, it was indicated that basically lead-free solder can be practically used. Further, it was indicated that the Sn-Ag-Cu-Bi system depends not on solder composition but on active force, printing accuracy and flux characteristic of solder paste, that improvement of solder paste has an effect on mounting characteristics. (NEDO)

  2. Electrochemical migration of lead-free solder alloys in Na2SO4 environment

    DEFF Research Database (Denmark)

    Medgyes, Balint; Ádám, Sándor; Tar, Lajos

    2017-01-01

    The effect of sulphate ion concentration on electrochemical migration of lead-free solder alloys was investigated with the use of water drop tests, by applying an in-situ optical and electrical inspection system. According to the Mean-Time-To-Failure (MTTF) values it was found that in the case of...

  3. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  4. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate.

    Science.gov (United States)

    Brett, Gemma L; Miedziak, Peter J; He, Qian; Knight, David W; Edwards, Jennifer K; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J

    2013-10-01

    The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  6. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    .47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects of gold nanoparticles with ionizing radiation.Keywords: gold nanoparticles, radiotherapy, monoenergetic synchrotron radiation, radiosensitizers, in vitro

  7. Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder

    Science.gov (United States)

    Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong

    2018-04-01

    The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.

  8. Some Applications of X-Ray Based Elemental Analysis Methods for Romanian Gold Minerals Studies

    International Nuclear Information System (INIS)

    Stan, D.; Constantinescu, B.; Pauna, C.; Neacsu, A.; Popescu, G.

    2009-01-01

    The elemental composition of gold, gold minerals and gold associated minerals releases important information's both from scientific (geologic) and economic point of view. In the present work, we focused on samples from Rosia Montana and Musariu ore deposits, from so called T ransylvanian gold of the golden q uadrilateral , Metaliferi Mountains. Our investigation started using optical microscopy. On the sample from Rosia Montana native gold band could be macroscopically seen. Gold occurs also like native gold in carbonate minerals, or associated with galena, sphalerite, chalcopyrite and quartz. The sample from Musariu shows native gold distributed at the border of sphalerite, native gold enclosed and along the margins of sphalerite and native gold between quartz grains. Three X-ray (the emission of characteristic lines spectra for each element present in the sample) based elemental analysis methods were also used: X-Ray Fluorescence (XRF), micro Synchrotron Radiation induced X-Ray Fluorescence (micro-SR-XRF) and micro Proton Induced X-Ray Emission (micro-PIXE). Our XRF methods are based on Xray tube spectrometers: a portable one - X-MET 3000TX and a stationary one - Spectro MIDEX. The two Rosia Montana and Musariu gold samples were studied using the micro-PIXE technique at the AN2000 accelerator of Laboratory Nazionale di Legnaro (LNL), INFN, Italy - maps and point spectra. The experiment was carried out with a 2 MeV proton microbeam (9 μm 2 beam area), maximum beam current 400 pA. The characteristic X-rays were measured with a Canberra HPGe detector (with 180 eV FWHM at 5.9 keV). Complementary experiments on the samples due the improved condition offered by the high energy X-rays, namely -Sb, Sn, Te detection, were performed at BESSY Synchrotron Radiation Facility, Berlin - point spectra. During the experiment, point spectra were acquired at 35 keV, excitation energy, using a spatially resolved synchrotron-radiation XRF setup detected to analyses. The XRF

  9. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  10. Gold nanoparticle-based fluorescent sensor for the analysis of dithiocarbamate pesticides in water

    DEFF Research Database (Denmark)

    Senkbeil, Silja; Lafleur, Josiane P.; Jensen, Thomas Glasdam

    2012-01-01

    Pesticides play a key role in the high yields achieved in modern agricultural food production. Besides their positive effect on increasing productivity they are intentionally toxic, often towards non-target organisms and contaminated food products can have a serious impact on human...... and environmental health. This paper demonstrates the potential of a gold nanoparticle-based microfluidic sensor for in field detection of dithiocarbamate pesticides at remote locations. Combining the attractive optical properties of gold nanoparticles with on chip mixing and detection, using a simple digital...

  11. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    International Nuclear Information System (INIS)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-01-01

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL"−"1, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  12. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  13. In-situ Investigation of Lead-free Solder Alloy Formation Using a Hot-plate Microscope

    DEFF Research Database (Denmark)

    Bergmann, René; Tang, Peter Torben; Hansen, Hans Nørgaard

    2007-01-01

    This work presents the advantages of using a hot-plate microscope for investigation of new (high-temperature) lead- free solders as in-situ analysis tool and preparation equipment. A description of the equipment and the preparation method is given and some examples are outlined. The formation...

  14. Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Taei, M.; Rahmani, H.R.; Khayamian, T.

    2011-01-01

    Highlights: → Chronic lymphocytic leukemia causes an increase in the number of white blood cells. → We introduced a highly sensitive biosensor for the detection of chronic lymphocytic leukemia. → A suitable 25-mer ssDNA probe was immobilized on the surface of the gold nanoparticles. → We used electrochemical impedance spectroscopy as a suitable tool for the detection. → Detection of chronic lymphocytic leukemia in blood sample was checked using the sensor. - Abstract: A simple and sensitive DNA impedance sensor was prepared for the detection of chronic lymphocytic leukemia. The DNA electrochemical biosensor is worked based on the electrochemical impedance spectroscopic (EIS) detection of the sequence-specific DNA related to chronic lymphocytic leukemia. The ssDNA probe was immobilized on the surface of the gold nanoparticles. Compared to the bare gold electrode, the gold nanoparticles-modified electrode could improve the density of the probe DNA attachment and hence the sensitivity of the DNA sensor greatly. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were performed in a solution containing 1.0 mmol L -1 K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] and 50 mmol L -1 phosphate buffer saline pH 6.87 plus 50 mmol L -1 KCl. In the CV studied, the potential was cycled from 0.0 to +0.65 V with a scan rate of 50 mV s -1 . Using EIS, the difference of the electron transfer resistance (ΔR et ) was linear with the logarithm of the complementary oligonucleotides sequence concentrations in the range of 7.0 x 10 -12 -2.0 x 10 -7 mol L -1 , with a detection limit of 1.0 x 10 -12 mol L -1 . In addition, the DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles.

  15. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu 6 Sn 5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux

  16. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  17. Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint

    Science.gov (United States)

    Mokhtari, Omid; Nishikawa, Hiroshi

    2014-11-01

    In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.

  18. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate

    International Nuclear Information System (INIS)

    Sun, Peng; Andersson, Cristina; Wei, Xicheng; Cheng, Zhaonian; Shangguan, Dongkai; Liu, Johan

    2007-01-01

    In this paper, the coupling effect in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joint with sandwich structure by long time reflow soldering was studied. It was found that the interfacial compound at the Cu substrate was binary Cu-Sn compound in Sn-Ag-Bi solder joint and Cu 5 Zn 8 phase in Sn-Zn-Bi solder joint. The thickness of the Cu-Zn compound layer formed at the Cu substrate was greater than or equal to that of Cu-Sn compound layer, although the reflow soldering temperature of Sn-Zn-Bi (240 o C) was lower than that of Sn-Ag-Bi (250 o C). The stable Cu-Zn compound was the absolute preferential phase in the interfacial layer between Sn-Zn-Bi and the Cu substrate. The ternary (Cu, Ni) 6 Sn 5 compound was formed at the Sn-Ag-Bi/Ni(P)-Cu metallization interface, and a complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P)-Cu metallization interface. It was noted that Cu atoms could diffuse from the Cu substrate through the solder matrix to the Ni(P)-Cu metallization within 1 min reflow soldering time for both solder systems, indicating that just 30 s was long enough for Cu to go through 250 μm diffusion length in the Sn-Ag-Bi solder joint at 250 o C. The coupling effect between Ni(P)/Cu metallization and Cu substrate was confirmed as the type of IMCs at Ni(P) layer had been changed from Ni-Sn system to Cu-Sn system apparently by the diffusion effect of Cu atoms. The (Cu, Ni) 6 Sn 5 layer at the Ni(P)/Cu metallization grew significantly and its thickness was even greater than that of the Cu-Sn compound on the opposite side, however the growth of the complex alloy including Sn, Ni, Cu and Zn on the Ni(P)/Cu metallization was suppressed

  19. Aging effects on the microstructure, surface characteristics and wettability of Cu pretinned with Sn-Pb solders

    Energy Technology Data Exchange (ETDEWEB)

    Linch, Heidi Sue [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study investigates effects of aging in air and argon at 170 C on Cu coupons which were pretinned with 75Sn-25Pb, 8Sn-92Pb, and 5Sn-95Pb solders. Coatings were applied using electroplating or hot dipping techniques. The coating thickness was controlled between 3 to 3μm and the specimens were aged for 0 hours, 2 hours, 24 hours and 2 weeks. Wetting balance tests were used to evaluate the wettability of the test specimens. Microstructural development was evaluated using X-ray diffraction, energy dispersive X-ray and Auger spectroscopy, as well as optical and scanning electron microscopy. The wetting behavior of the test specimens is interpreted with respect to observed microstructural changes and as a function of aging time, solder composition, and processing conditions.

  20. Gold-based optical biosensor for single-mismatched DNA detection using salt-induced hybridization

    DEFF Research Database (Denmark)

    Zhan, Zongrui; Ma, Xingyi; Cao, Cuong

    2011-01-01

    In this study, a gold nanoparticle (Au-NP)-based detection method for sensitive and specific DNA-based diagnostic applications is described. A sandwich format consisting of Au-NPs/DNA/PMP (Streptavidin-coated MagnetSphere Para-Magnetic Particles) was fabricated. PMPs captured and separated target...

  1. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  2. Second harmonic study of acid-base equilibrium at gold nanoparticle/aqueous interface

    Science.gov (United States)

    Ma, Jianqiang; Mandal, Sarthak; Bronsther, Corin; Gao, Zhenghan; Eisenthal, Kenneth B.

    2017-09-01

    Interfacial acid-base equilibrium of the capping molecules is a key factor to stabilize gold nanoparticles (AuNP) in solution. In this study we used Second Harmonic (SH) generation to measure interfacial potential and obtained a surface pKa value of 3.3 ± 0.1 for the carboxyl group in mercaptoundecanoic acid (MUA) molecule at an AuNP/aqueous interface. This pKa value is smaller than its bulk counterpart and indicates that the charged carboxylate group is favored at the AuNP surface. The SH findings are consistent with the effects of the noble metal (gold) surface on a charge in solution, as predicted by the method of images.

  3. Microscopic Gold Particle-Based Fiducial Markers for Proton Therapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Lim, Young Kyung; Kwak, Jungwon; Kim, Dong Wook; Shin, Dongho; Yoon, Myonggeun; Park, Soah; Kim, Jin Sung; Ahn, Sung Hwan; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Pyo, Hong Ryeol; Kim, Dae Yong M.D.; Cho, Kwan Ho

    2009-01-01

    Purpose: We examined the feasibility of using fiducial markers composed of microscopic gold particles and human-compatible polymers as a means to overcome current problems with conventional macroscopic gold fiducial markers, such as dose reduction and artifact generation, in proton therapy for prostate cancer. Methods and Materials: We examined two types of gold particle fiducial marker interactions: that with diagnostic X-rays and with a therapeutic proton beam. That is, we qualitatively and quantitatively compared the radiographic visibility of conventional gold and gold particle fiducial markers and the CT artifacts and dose reduction associated with their use. Results: The gold particle fiducials could be easily distinguished from high-density structures, such as the pelvic bone, in diagnostic X-rays but were nearly transparent to a proton beam. The proton dose distribution was distorted <5% by the gold particle fiducials with a 4.9% normalized gold density; this was the case even in the worst configuration (i.e., parallel alignment with a single-direction proton beam). In addition, CT artifacts were dramatically reduced for the gold particle mixture. Conclusion: Mixtures of microscopic gold particles and human-compatible polymers have excellent potential as fiducial markers for proton therapy for prostate cancer. These include good radiographic visibility, low distortion of the depth-dose distribution, and few CT artifacts.

  4. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shang Li; Dong Shaojun

    2008-01-01

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10 -7 M, 3.5 x 10 -7 M, 4.1 x 10 -7 M, and 7.7 x 10 -7 M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields

  5. Detection of neurotransmitters by a light scattering technique based on seed-mediated growth of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shang Li; Dong Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: dongsj@ciac.jl.cn

    2008-03-05

    A simple light scattering detection method for neurotransmitters has been developed, based on the growth of gold nanoparticles. Neurotransmitters (dopamine, L-dopa, noradrenaline and adrenaline) can effectively function as active reducing agents for generating gold nanoparticles, which result in enhanced light scattering signals. The strong light scattering of gold nanoparticles then allows the quantitative detection of the neurotransmitters simply by using a common spectrofluorometer. In particular, Au-nanoparticle seeds were added to facilitate the growth of nanoparticles, which was found to enhance the sensing performance greatly. Using this light scattering technique based on the seed-mediated growth of gold nanoparticles, detection limits of 4.4 x 10{sup -7} M, 3.5 x 10{sup -7} M, 4.1 x 10{sup -7} M, and 7.7 x 10{sup -7} M were achieved for dopamine, L-dopa, noradrenaline and adrenaline, respectively. The present strategy can be extended to detect other biologically important molecules in a very fast, simple and sensitive way, and may have potential applications in a wide range of fields.

  6. Pressure brazing of ceramics to metals with copper solder

    International Nuclear Information System (INIS)

    Pavlova, M.A.; Metelkin, I.I.

    1986-01-01

    The effect on the quality of joints brazed with copper of different non metallized aluminooxide dielectrics with metals and alloys of a series of technological parameters (temperature, pressure, holding, and medium) in the course of pressure brazing is investigated. It is shown that in case of brazing with kovar and nickel the character of dependences is identical, however in all cases the joints with nickel are more durable. For the ceramics - molybdenum system characterized by weak interaction with copper solder kinetic dependences have no maximum and only under holding of more than 20 min the constant strength of 150-190 MPa is attained

  7. An ultrasensitive hydrogen peroxide biosensor based on electrocatalytic synergy of graphene-gold nanocomposite, CdTe-CdS core-shell quantum dots and gold nanoparticles

    International Nuclear Information System (INIS)

    Gu Zhiguo; Yang Shuping; Li Zaijun; Sun Xiulan; Wang Guangli; Fang Yinjun; Liu Junkang

    2011-01-01

    Graphical abstract: We first reported an ultrasensitive hydrogen peroxide biosensor in this work, which was fabricated by coating graphene-gold nanocomposite, CdTe-CdS core-shell quantum dots, gold nanoparticles and horseradish peroxidase in sequence on the surface of gold electrode. Since a promising their electrocatalytic synergy towards hydrogen peroxide was achieved, the biosensor displayed very high sensitivity, low detection limit (S/N = 3) (3.2 x 10 -11 M) and good long-term stability (20 weeks). Highlights: · We for the first time integrated novel hydrogen peroxide biosensor based on G-AuNP, CdTe-CdS and AuNPs. · Three nanomaterials show remarkable synergistic electrocatalysis towards hydrogen peroxide. · The biosensor provides the best sensitivity in all biosensors based on graphene for detection of glucose up to now. - Abstract: We first reported an ultrasensitive hydrogen peroxide biosensor in this work. The biosensor was fabricated by coating graphene-gold nanocomposite (G-AuNP), CdTe-CdS core-shell quantum dots (CdTe-CdS), gold nanoparticles (AuNPs) and horseradish peroxidase (HRP) in sequence on the surface of gold electrode (GE). Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical performances of the biosensor. Since promising electrocatalytic synergy of G-AuNP, CdTe-CdS and AuNPs towards hydrogen peroxide was achieved, the biosensor displayed a high sensitivity, low detection limit (S/N = 3) (3.2 x 10 -11 M), wide calibration range (from 1 x 10 -10 M to 1.2 x 10 -8 M) and good long-term stability (20 weeks). Moreover, the effects of omitting G-AuNP, CdTe-CdS and AuNP were also examined. It was found that sensitivity of the biosensor is more 11-fold better if G-AuNP, CdTe-CdS and AuNPs are used. This could be ascribed to improvement of the conductivity between graphene nanosheets in the G-AuNP due to introduction of the AuNPs, ultrafast charge transfer from CdTe-CdS to the graphene sheets and AuNP due to

  8. Wetland-based passive treatment systems for gold ore processing effluents containing residual cyanide, metals and nitrogen species.

    Science.gov (United States)

    Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L

    2013-10-01

    Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities.

  9. Non-contact estimation of the bond quality in soldered thin laminate by laser generated lamb waves; Laser reiki ramuha ni yoru handazuke sekisohaku no setsugo seijo no hisesshoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, H.; Futatsugi, T.; Cho, H.; Takemoto, M. [Aoyama-Gakuin University, Tokyo (Japan). Faculty of Science and Engineering

    1998-03-20

    The bond quality of a solder-bonded copper laminated plate was modeled into rigid contact (rc) and slip contact (sc) to calculate the velocity dispersion of lamb waves. The velocity dispersion of laser generated lamb waves was measured, and the bond quality or the thickness of a solder layer was evaluated by non-contact. In the model whose bond surface is rc, the velocity dispersion of lamb waves can be calculated under conditions where the stress and displacement in an interface are continuous. In the model whose bond surface is sc, it can be calculated under conditions where an interface slips freely. Weak bond indicates the velocity dispersion between rc and sc. In this model, the velocity dispersion can also be calculated by a change in the thickness of a solder layer and used for quantitative evaluation of a bond interface. A three-layer solder bond manufactured for trial could be evaluated from the velocity dispersion of laser lamb waves. At the room temperature, the change in bond quality near the solder melting point of bond laminate that was judged as rc was investigated. When the solidus temperature is exceeded, the amplitude of lamb waves and the velocity dispersion changed largely. The amplitude of lamb waves increases as the liquid phase ratio increases. The bond quality near the solder melting point can be evaluated using lamb waves. 9 refs., 10 figs., 2 tabs.

  10. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  11. Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods

    International Nuclear Information System (INIS)

    Gao Fan; Rajathurai, Karunaharan; Cui, Qingzhou; Zhou, Guangwen; NkengforAcha, Irene; Gu Zhiyong

    2012-01-01

    Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders. By controlling the nanosolder reflow atmosphere using a flux, the surface oxide of the nanowires/nanorods can be effectively removed and complete nanosolder melting can be achieved. The complete melting of the nanosolders leads to the formation of nanoscale to microscale spherical solder balls, followed by Ostwald ripening phenomenon. The contact angle of the microscale solder balls formed on Si substrate was measured by direct electron microscopic imaging. These results provide new insights into micro- and nanoscale phase transition and liquid droplet coalescence from nanowires/nanorods to spheroids, and are relevant to nanoscale assembly and smaller ball grid array formation.

  12. A halogen-free synthesis of gold nanoparticles using gold(III) oxide

    International Nuclear Information System (INIS)

    Sashuk, Volodymyr; Rogaczewski, Konrad

    2016-01-01

    Gold nanoparticles are one of the most used nanomaterials. They are usually synthesized by the reduction of gold(III) chloride. However, the presence of halide ions in the reaction mixture is not always welcome. In some cases, these ions have detrimental influence on the morphology and structure of resulting nanoparticles. Here, we present a simple and halogen-free procedure to prepare gold nanoparticles by reduction of gold(III) oxide in neat oleylamine. The method provides the particles with an average size below 10 nm and dispersity of tens of percent. The process of nanoparticle formation was monitored using UV–Vis spectroscopy. The structure and chemical composition of the nanoparticles was determined by SEM, XPS and EDX. We also proposed the mechanism of reduction of gold(III) oxide based on MS, IR and NMR data. Importantly, the synthetic protocol is general and applicable for the preparation of other coinage metal nanoparticles from the corresponding metal oxides. For instance, we demonstrated that the absence of halogen enables efficient alloying of metals when preparing gold–silver bimetallic nanoparticles.

  13. Endurance of lead-free assembly under board level drop test and thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yanghua [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xia_yanghua@hotmail.com; Xie Xiaoming [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2008-06-12

    The reliability of lead-free electronic assemblies under board level drop test and thermal cycling was investigated. TSOP (thin small outline package) devices with FeNi leads were reflow soldered on FR4 PCB (printed circuit board) with Sn3.0Ag0.5Cu (wt%) solder. The effects of different PCB finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) on the reliability performance were studied. The results show that the assemblies with ENIG finishes reveal better reliability performance than its OSP counterparts under drop test, however, the OSP samples outperform those with ENIG finishes under thermal cycling. The failure mechanism is different under these two test conditions: the solder joints fracture into the intermetallic compounds (IMCs) layer under drop test, and cracks initiate in the bulk solder under thermal cycling. The surface finishes have an effect on the failure mode. The propagation of crack in the ENIG case is along the device/solder interface, while in the case of OSP, the crack extends parallel to the solder/PCB interface.

  14. Current redistribution in cables made of insulated, soldered, or oxidized strands

    International Nuclear Information System (INIS)

    Turck, B.

    1979-07-01

    Current redistributions are compared in cables made of insulated strands, soldered, or oxidized strands and insulated strands with periodic joints. After discussing the different current redistributions in the cases of a rapidly changing current and a dc current, several particular situations are investigated: what happens if a strand is broken, or if a local normal zone appears that does not affect all the strands equally, the detection of this normal zone, and the influence of short circuits between strands

  15. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  16. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  17. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains.

    Science.gov (United States)

    Xu, Liguang; Yin, Honghong; Ma, Wei; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-05-15

    Mercuric ions (Hg(2+)) mediate the transformation of single-stranded DNA to form double helical DNA by T-Hg(2+)-T interaction between base pairs. With this strategy, DNA modified gold nanoparticles (Au NPs) were assembled into chains which were displayed remarkable surface-enhanced Raman scattering (SERS) signal. Under optimized conditions, the length of gold nanochains was directly proportional to the mercuric ions concentrations over 0.001-0.5 ng mL(-1) and the limit of detection (LOD) in drinking water was as low as 0.45 pg mL(-1). With ultrasensitivity and excellent selectivity, this feasible and simple method is potentially as a promising tool for monitoring of mercury ions in food safety and environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Improving the mechanical performance of Sn57.6Bi0.4Ag solder joints on Au/Ni/Cu pads during aging and electromigration through the addition of tungsten (W) nanoparticle reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: yili64-c@my.cityu.edu.hk [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Luo, Kaiming; Lim, Adeline B.Y.; Chen, Zhong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wu, Fengshun [School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan (China); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2016-07-04

    Sn57.6Bi0.4Ag solder has been reinforced successfully through the addition of tungsten (W) nanoparticles at a concentration of 0.5 wt%. With the addition of W nanoparticles, the solder matrix lamellar interphase spacing was reduced by 31.0%. Due to the dispersion of W nanoparticles and the consequently refined microstructure, the mechanical properties of the solder alloy were enhanced, as indicated by a 6.2% improvement in the microhardness. During the reflow of solder on Au/Ni/Cu pads, the entire Au layer dissolved into the molten solder rapidly and a large number of (Au,Ni)(Sn,Bi){sub 4} particles were formed. The fracture path of the as-reflowed joint was within the solder region, showing ductile characteristic, and the shear strength was reinforced by 8.2%, due to the enhanced mechanical properties of the solder. During the subsequent aging process, the Au migrated back towards the interface and a thick layer of interfacial (Au,Ni)(Sn,Bi){sub 4} IMC was formed, leading to the shift of the fracture path to the interfacial IMC region, the transformation to brittle fracture and the deterioration of the strength of the joint, due to Au embrittlement. By adding W nanoparticles, the migration of Au was mitigated and the thickness of the (Au,Ni)(Sn,Bi){sub 4} layer was reduced significantly, which reduced the Au embrittlement-induced deterioration of the strength of the joint. During electromigration, the segregation of the Bi-rich and Sn-rich phases and the accumulation of the (Au,Ni)(Sn,Bi){sub 4} layer at cathode interface were mitigated by the addition of W nanoparticles, which improved the electromigration resistance.

  19. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  20. Multifractal detrended cross-correlation between the Chinese domestic and international gold markets based on DCCA and DMCA methods

    Science.gov (United States)

    Cao, Guangxi; Han, Yan; Chen, Yuemeng; Yang, Chunxia

    2014-05-01

    Based on the daily price data of Shanghai and London gold spot markets, we applied detrended cross-correlation analysis (DCCA) and detrended moving average cross-correlation analysis (DMCA) methods to quantify power-law cross-correlation between domestic and international gold markets. Results show that the cross-correlations between the Chinese domestic and international gold spot markets are multifractal. Furthermore, forward DMCA and backward DMCA seems to outperform DCCA and centered DMCA for short-range gold series, which confirms the comparison results of short-range artificial data in L. Y. He and S. P. Chen [Physica A 390 (2011) 3806-3814]. Finally, we analyzed the local multifractal characteristics of the cross-correlation between Chinese domestic and international gold markets. We show that multifractal characteristics of the cross-correlation between the Chinese domestic and international gold markets are time-varying and that multifractal characteristics were strengthened by the financial crisis in 2007-2008.

  1. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    Science.gov (United States)

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-07

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  2. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-12-01

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the Beta-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of Beta-Sn derived from the electromigration data is in good agreement with the calculated value.

  3. In situ measurement of electromigration-induced transient stress in Pb-free Sn-Cu solder joints by synchrotron radiation based X-ray polychromatic microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Tamura, Nobumichi; Kunz, Martin; Tu, King-Ning; Lai, Yi-Shao

    2009-05-15

    Electromigration-induced hydrostatic elastic stress in Pb-free SnCu solder joints was studied by in situ synchrotron X-ray white beam microdiffraction. The elastic stresses in two different grains with similar crystallographic orientation, one located at the anode end and the other at the cathode end, were analyzed based on the elastic anisotropy of the {beta}-Sn crystal structure. The stress in the grain at the cathode end remained constant except for temperature fluctuations, while the compressive stress in the grain at the anode end was built-up as a function of time during electromigration until a steady state was reached. The measured compressive stress gradient between the cathode and the anode is much larger than what is needed to initiate Sn whisker growth. The effective charge number of {beta}-Sn derived from the electromigration data is in good agreement with the calculated value.

  4. Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; DeLa Riva, Andrew T.; Helveg, Stig

    2008-01-01

    Gold nanoparticles are deposited on potassium titanate nanowires and used as heterogeneous catalysts in the aerobic oxidation of benzyl alcohol in methanol to methyl benzoate at ambient conditions. The presence of a catalytic amount of base promotes the reaction and the formation of free benzoic...

  5. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands.

    Science.gov (United States)

    de Almeida, José M M M; Vasconcelos, Helena; Jorge, Pedro A S; Coelho, Luis

    2018-04-20

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO₂) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.

  6. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands

    Science.gov (United States)

    Vasconcelos, Helena

    2018-01-01

    It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR) with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2) substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS) and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency. PMID:29677108

  7. The study of the price of gold futures based on heterogeneous investors' overconfidence

    Institute of Scientific and Technical Information of China (English)

    Wei Jiang; Pupu Luan; Chunpeng Yang

    2014-01-01

    Purpose-The purpose of this paper is to research and analyze the price of gold futures based on heterogeneous investors' overconfidence.Design/methodology/approach-This paper divides the traders of gold futures market into two kinds:the speculators and arbitrageurs,and then constructs a market equilibrium model of futures pricing to analyze the behaviors of the two kinds of traders with overconfidence.After getting the decision-making function,the market equilibrium futures price is attained on the condition of market clearing.Then,this paper analyzes how the overconfidence impacts on futures price,volatility of the price of gold futures and the effects on individual utility.Findings-Under different market conditions,the overconfidence psychological impacts of heterogeneous investor on the price and volatility of futures are different,sometimes completely opposite.Originality/value-In the past literature,the relationships between overconfidence and the price or volatility are positive;however,the study shows that sometimes it is positive,and sometimes it is negative

  8. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  9. Subwavelength Gold Grating as Polarizers Integrated with InP-Based InGaAs Sensors.

    Science.gov (United States)

    Wang, Rui; Li, Tao; Shao, Xiumei; Li, Xue; Huang, Xiaqi; Shao, Jinhai; Chen, Yifang; Gong, Haimei

    2015-07-08

    There are currently growing needs for polarimetric imaging in infrared wavelengths for broad applications in bioscience, communications and agriculture, etc. Subwavelength metallic gratings are capable of separating transverse magnetic (TM) mode from transverse electric (TE) mode to form polarized light, offering a reliable approach for the detection in polarization way. This work aims to design and fabricate subwavelength gold gratings as polarizers for InP-based InGaAs sensors in 1.0-1.6 μm. The polarization capability of gold gratings on InP substrate with pitches in the range of 200-1200 nm (fixed duty cycle of 0.5) has been systematically studied by both theoretical modeling with a finite-difference time-domain (FDTD) simulator and spectral measurements. Gratings with 200 nm lines/space in 100-nm-thick gold have been fabricated by electron beam lithography (EBL). It was found that subwavelength gold gratings directly integrated on InP cannot be applied as good polarizers, because of the existence of SPP modes in the detection wavelengths. An effective solution has been found by sandwiching the Au/InP bilayer using a 200 nm SiO2 layer, leading to significant improvement in both TM transmission and extinction ratio. At 1.35 μm, the improvement factors are 8 and 10, respectively. Therefore, it is concluded that the Au/SiO2/InP trilayer should be a promising candidate of near-infrared polarizers for the InP-based InGaAs sensors.

  10. Surface Morphology Study of Nanostructured Lead-Free Solder Alloy Sn-Ag-Cu Developed by Electrodeposition: Effect of Current Density Investigation

    Directory of Open Access Journals (Sweden)

    Sakinah Mohd Yusof

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Nanostructured lead-free solder Sn-Ag-Cu (SAC was developed by electrodeposition method at room temperature. Electrolite bath which comprised of the predetermined quantity of tin methane sulfonate, copper sulfate and silver sulfate were added sequentially to MSA solution. The methane sulphonic acid (MSA based ternary Sn-Ag-Cu bath was developed by using tin methane sulfonate as a source of Sn ions while the Cu+ and Ag+ ions were obtained from their respective sulfate salts. The rate of the electrodeposition was controlled by variation of current density. The addition of the buffer, comprising of sodium and ammonium acetate helped in raising the pH solution. During the experimental procedure, the pH of solution, composition of the electrolite bath, and the electrodeposition time were kept constant. The electrodeposited rate, deposit composition and microstructure were investigated as the effect of current density. The electrodeposited solder alloy was characterized for their morphology using Field Emission Scanning Electron Microscope (FESEM. In conclusion, vary of current density will play significant role in the surface morphology of nanostructured lead-free solder SAC developed. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New

  11. Size fraction assaying of gold bearing rocks (for gold extraction) by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D.K.; Adomako, D.

    2005-01-01

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite sample was determined as a function of particle size by using Instrumental Neutron Activation Analysis. The concentrations of gold for the corresponding particle sizes were 16.4 ± 0.17mg/kg for sizes <63μm; 161± 0.75 mg/kg for 63 - 125 μm, 0.53 + 0.03 mg/kg for 125 - 250 μm, 4.66± 0.07 mg/kg for 250 - 355 μm, 1.55 ± 0.06 for 355 - 425 μm, 0.80 ± 0.008 mg/kg for 425 -1000 μm, and 1.27 + 0.05 mg/kg for 1000-2000 μm. The average gold content in a 7.127 kg composite sample based on particle size found to be 3.08 mg/kg. (au)

  12. Commentary: Photothermal effects of laser tissue soldering

    International Nuclear Information System (INIS)

    Menovsky, T.; Beek, J.F.; Gemert, M.J.C. van

    1999-01-01

    freezing and thawing induces extracellular and intracellular damage. The study is methodologically sound, and the findings in agreement with those of previous studies, i.e. increasing the concentration of the solder results in a greater tensile strength of the bonded tissue and the higher the tissue temperature the greater the thermal damage. As proteins are believed to be the primary component of the welding process, topical applied proteins, used as solders, may provide the necessary amount of protein for welding and result in a greater tensile strength (Poppas et al 1992). A surprising finding is that no colour changes were observed at the irradiances producing optimal tensile strength (corresponding to a temperature of 85 deg. C), as it is above the denaturisation temperature of proteins and logically would be expected to result in some colour changes. Availability and cost are the biggest obstacles to the widespread use of lasers in tissue welding. Most lasers are not equipped with a stable milliwatt mode and/or a micromanipulator. Sutures, on the contrary, are cheap, reliable and always readily available. From a technical point of view, elements of the laser welding technique are unfamiliar to most surgeons. Therefore, acquisition of technical skills and handling of the laser is essential in a laboratory set-up before proceeding to the clinic. For repair of tissues in humans, placement of sutures seems to be mandatory to facilitate manipulation of the tissue during laser irradiation and to lower the risk of post-operative dehiscence. To use the laser only to avoid the placement of extra sutures (and thus proceeding to standard suture repair) seems, at present, unjustified as many studies have failed to show significant results in favour of laser welding. The end point in tissue welding is, at the moment, based on visual changes of the tissue and the surgeon must 'see and feel' whether the welding is complete. It is important that many investigations continue in the

  13. Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions

    International Nuclear Information System (INIS)

    Park, M.S.; Stephenson, M.K.; Shannon, C.; Cáceres Díaz, L.A.; Hudspeth, K.A.; Gibbons, S.L.; Muñoz-Saldaña, J.; Arróyave, R.

    2012-01-01

    Cu/Sn soldering alloys have emerged as a viable alternative to Pb-based solders, and thus have been extensively explored in the past decade, although the fine-scale behavior of the resulting intermetallic compounds (IMCs), particularly during the early stages of interface formation, is still a source of debate. In this work, the microstructural evolution of Cu 6 Sn 5 , in a Cu/Sn soldering reaction at 523 K, was experimentally investigated by dipping a single Cu sample into molten Sn at a near-constant speed, yielding a continuous set of time evolution samples. The thickness, coarsening and morphology evolution of the Cu 6 Sn 5 layer is investigated through the use of scanning electron microscopy. The experimental results are also compared to phase-field simulations of the microstructural evolution of the Cu 6 Sn 5 layer. The influence of model parameters on the kinetics and morphological evolution of the IMC layer was examined. In general, good qualitative agreement is found between experiments and simulations and for a limited parameter set there appears to be good quantitative agreement between the growth kinetics of the Cu 6 Sn 5 layer, the grain boundary (GB) effect on grain coarsening, and the substrate/IMC interface roughness evolution. Furthermore, the parametric investigations of the model suggests that good agreement between experiments and simulations is achieved when the dominant transport mechanism for the reacting elements (Cu and Sn) is GB diffusion.

  14. Influence of Poly(ethylene glycol) Degradation on Voiding Sporadically Occurring in Solder Joints with Electroplated Cu

    Science.gov (United States)

    Wafula, F.; Yin, L.; Borgesen, P.; Andala, D.; Dimitrov, N.

    2012-07-01

    This paper presents a comprehensive study of the effect of poly(ethylene glycol) (PEG) degradation on the void formation known to take place sporadically at the interface between electroplated Cu and Pb-free solder. Thorough chemical analysis of our plating solution, carried out at different times of the deposition process by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, reveals a dramatic shift in the peaks to lower mass range with time. Scanning electron microscopy cross-sectional images of solder joints with Cu samples that have been plated at different times in the course of solution aging show a decrease in void formation. A decreasing magnitude of the deposition overpotential also seen during aging suggests that, breaking down to lower-molecular-weight fragments, PEG loses its suppression effect and likely has lower impact on the voiding propensity. This indirect correlation is confirmed further by the use of plating solutions containing PEG with preselected molecular weight. We also report on the effect of the surface area-to-solution volume ratio on PEG degradation studied by comparative experiments performed in a 50-mL bath with a rotating disc electrode and in a larger cell (Hull cell) with volume of 267 mL. The results show that, at fixed charge per unit volume, PEG degrades at a greatly accelerated rate in the Hull cell featuring higher electrode surface-to-solution volume ratio. Analysis of solder joints with accordingly grown Cu layers suggests that the voiding decreases faster with the accelerated rate of PEG degradation.

  15. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  16. Coreactant-free and Label-free Eletrochemiluminescence Immunosensor for Copeptin Based on Luminescent Immuno-Gold Nanoassemblys.

    Science.gov (United States)

    Han, Zhili; Shu, Jiangnan; Jiang, Qiaoshi; Cui, Hua

    2018-04-25

    In this work, the eletrochemiluminescence (ECL) behavior of Cu 2+ /cysteine complexes and N-(aminobutyl)-N-(ethylisoluminol) (ABEI) functionalized gold nanoparticles combined with chitosan (Cu 2+ -Cys-ABEI-GNPs-CS) were studied by cyclic voltammetry and a double-step potential, which exhibited excellent ECL properties without any coreactant. It was found that the ECL intensity of Cu 2+ -Cys-ABEI-GNPs-CS could increase at least one order of magnitude compared with that of Cu 2+ -Cys-ABEI-GNPs. Furthermore, a coreactant-free and label-free ECL immunosensor has been established for the determination of early acute myocardial infarction biomarker copeptin based on luminescent immuno-gold nanoassemblys consisting of Cu 2+ -Cys-ABEI-GNPs-CS and immuno-gold nanoparticles prepared by connecting copeptin antibody with trisodium citrate stabilized gold nanoparticles. In the presence of copeptin, an obvious decrease in ECL intensity was observed due to the formation of antibody-antigen immunocomplex, which could be used for the determination of copeptin in the range of 2.0×10 -14 -1.0×10 -11 mol/L with a detection limit of 5.18×10 -15 mol/L. The detection limit of the ECL immunosensor is at least two orders of magnitude lower than that of sandwich immunoassays based on labeling technology. And the ECL immunosensor does not need any coreactant, and avoids complicated labeling and purification procedure. It is ultrasensitive, simple, specific and low-cost. This work reveals that the proposed luminescent immuno-gold nanoassemblys are ideal nanointerfaces for the construction of immunosensors. The proposed strategy may be used for the determination of other antigens if corresponding antibodies are available.

  17. Scanning electron microscopy observations of failures of implant overdenture bars: a case series report.

    Science.gov (United States)

    Waddell, J Neil; Payne, Alan G T; Swain, Michael V; Kieser, Jules A

    2010-03-01

    Soldered or cast bars are used as a standard of care in attachment systems supporting maxillary and mandibular implant overdentures. When failures of these bars occur, currently there is a lack of evidence in relation to their specific etiology, location, or nature. To investigate the failure process of a case series of six failed soldered bars, four intact soldered bars, and one intact cast milled bar, which had been supporting implant overdentures. A total of 11 different overdenture bars were removed from patients with different configuration of opposing arches. A failed bar (FB) group (n = 6) had failed soldered overdenture bars, which were recovered from patients following up to 2 years of wear before requiring prosthodontic maintenance and repair. An intact bar (IB) group (n = 5) had both soldered bars and a single cast milled bar, which had been worn by patients for 2 to 5 years prior to receiving other aspects of prosthodontic maintenance. All bars were examined using scanning electron microscopy to establish the possible mode of failure (FB) or to identify evidence of potential failure in the future (IB). Evidence of a progressive failure mode of corrosion fatigue and creep were observed on all the FB and IB usually around the solder areas and nonoxidizing gold cylinder. Fatigue and creep were also observed in all the IB. Where the level of corrosion was substantial, there was no evidence of wear from the matrices of the attachment system. Evidence of an instantaneous failure mode, ductile and brittle overload, was observed on the fracture surfaces of all the FB, within the solder and the nonoxidizing gold cylinders, at the solder/cylinder interface. Corrosion, followed by corrosion fatigue, appears to be a key factor in the onset of the failure process for overdenture bars in this case series of both maxillary and mandibular overdentures. Limited sample size and lack of standardization identify trends only but prevent broad interpretation of the findings.

  18. Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus

    Directory of Open Access Journals (Sweden)

    Xianglong Yu

    2018-05-01

    Full Text Available Goose parvovirus (GPV remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.

  19. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  20. Aging effects on fracture behavior of 63Sn37Pb eutectic solder during tensile tests under the SEM

    International Nuclear Information System (INIS)

    Ding Ying; Wang Chunqing; Li Mingyu; Bang Hansur

    2004-01-01

    This study investigates the influence of aging treatment on fracture behavior of Sn-Pb eutectic solder alloys at different loading rate regime during tensile tests under the scanning electron microscope. In high homologous temperature, the solder exhibit the creep behavior that could be confirmed through the phenomena of grain boundary sliding (GBS) to both as-cast and aged specimens. Owing to the large grain scale after high temperature storage, boundary behavior was limited to some extent for the difficulty in grain rotation and boundary migration. Instead, drastic intragranular deformation occurred. Also, the phase coarsening weakened the combination between lead-rich phase and tin matrix. Consequently, surface fragmentation was detected for the aged specimens. Furthermore, the fracture mechanism changed from intergranular dominated to transgranular dominated with increasing loading rate to both specimens during early stage

  1. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound.

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    Full Text Available Aquaporins (AQPs are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III complexes screened on human red blood cells (hRBC and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50 = 0.8±0.08 µM in hRBC. Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

  2. Plasmonic Optical Fiber Sensor Based on Double Step Growth of Gold Nano-Islands

    Directory of Open Access Journals (Sweden)

    José M. M. M. de Almeida

    2018-04-01

    Full Text Available It is presented the fabrication and characterization of optical fiber sensors for refractive index measurement based on localized surface plasmon resonance (LSPR with gold nano-islands obtained by single and by repeated thermal dewetting of gold thin films. Thin films of gold deposited on silica (SiO2 substrates and produced by different experimental conditions were analyzed by Scanning Electron Microscope/Dispersive X-ray Spectroscopy (SEM/EDS and optical means, allowing identifying and characterizing the formation of nano-islands. The wavelength shift sensitivity to the surrounding refractive index of sensors produced by single and by repeated dewetting is compared. While for the single step dewetting, a wavelength shift sensitivity of ~60 nm/RIU was calculated, for the repeated dewetting, a value of ~186 nm/RIU was obtained, an increase of more than three times. It is expected that through changing the fabrication parameters and using other fiber sensor geometries, higher sensitivities may be achieved, allowing, in addition, for the possibility of tuning the plasmonic frequency.

  3. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus.

    Science.gov (United States)

    Yuan, Jinglei; Wu, Shijia; Duan, Nuo; Ma, Xiaoyuan; Xia, Yu; Chen, Jie; Ding, Zhansheng; Wang, Zhouping

    2014-09-01

    In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Microstructural and mechanical characterization of melt spun process Sn-3.5Ag and Sn-3.5Ag-xCu lead-free solders for low cost electronic assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa Shalaby, Rizk; Kamal, Mustafa [Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, P.O.Box: 35516, Mansoura (Egypt); Ali, Esmail A.M. [Basic Science Department, Faculty of Engineering, University of Science & Technology (Yemen); Gumaan, Mohammed S., E-mail: m.gumaan1@gmail.com [Metal Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, P.O.Box: 35516, Mansoura (Egypt); Basic Science Department, Faculty of Engineering, University of Science & Technology (Yemen)

    2017-04-06

    This paper aims to investigate the reliability of mechanical and creep behavior for the eutectic Sn-Ag and Sn-Ag-Cu Solder joints rapidly solidified after hot compressing (HC) in terms of structural changes and its relationship with thermal behavior, which has been discussed and compared with their properties before HC process by Mustafa et al. (2016) . These solder joints were prepared by melt-spinning technique and tested by HC at 30 MPa pressure and 150 °C for 90 min, their structural, mechanical and thermal properties after HC process have been investigated by X-ray diffraction (XRD), dynamic resonance techniques (DRT) and differential scanning calorimetry (DSC) techniques respectively and compared with these solders before HC. The results revealed that the pressure caused some fractures on the solders morphology surfaces. But some benefits for these solders have been occurred, like eliminating the internal stresses through recrystallization process whose evidence by the particle size increases after they HC, stabilized structure after HC was due to the metastable phases rearrangements, new intermetallic compounds (IMCs) formation, decreasing, melting temperature range (∆T), lattice strains (ƹ) and entropy change (S). These sequential benefits are considered to be the main reasons which lead to decreasing energy loss (Q{sup −1}), creep rate (É›) and thermal stability enhancement. Elastic modulus increment might be due to low elastic lattice distortions after HC, while the stress exponent (n) reduction refers to viscous glide mechanism of deformation after HC instead of climb deformation mechanism before HC.

  5. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  6. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  7. Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution

    Science.gov (United States)

    Choudhury, Soud Farhan; Ladani, Leila

    2016-07-01

    As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.

  8. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Soldering Technology (6th) Proceedings of Annual Seminar, 17-18 February 1982.

    Science.gov (United States)

    1982-02-01

    aspect oF health and safety during this presentation. We are hoping that the work conducted by Van 2 Der Molen in the USA will clarify this issue. FLUX... Der Molen , PROC. OF 5th ANNUAL SEMINAR SOLDERING TECHNOLOGY, Naval Weapons Centre, China Lake, California, February 1981. 3. Burge, Perks, O’Brien...developed a new and innovative solution, which we believe to be a significant advance in the state of the art. In this new design (Fig.l) a FM DER

  10. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode

    International Nuclear Information System (INIS)

    Liu, Hsi-Chien; Tsai, Chung-Che; Wang, Gou-Jen

    2013-01-01

    In this study, an enzymatic glucose biosensor based on a three-dimensional gold nanodendrite (GND) modified screen-printed electrode was developed. The GNDs were electrochemically synthesized on the working electrode component of a commercially available screen-printed electrode using a solution acquired by dissolving bulk gold in aqua regia as the precursor. The 3D GND electrode greatly enhanced the effective sensing area of the biosensor, which improved the sensitivity of glucose detection. Actual glucose detections demonstrated that the fabricated devices could perform at a sensitivity of 46.76 μA mM −1 cm −2 with a linear detection range from 28 μM–8.4 mM and detection limit of 7 μM. A fast response time (∼3 s) was also observed. Moreover, only a 20 μl glucose oxidase is required for detection owing to the incorporation of the commercially available screen-printed electrode. (paper)

  11. Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests

    International Nuclear Information System (INIS)

    Ding, Ying; Wang, Chunqing; Tian, Yanhong; Li, Mingyu

    2007-01-01

    This study investigates the influence of aging treatment on deformation behavior of 96.5Sn3.5Ag eutectic solder alloys with lower strain rate ( -3 s -1 ) during tensile tests under the scanning electron microscope. Results showed that because of the existence of Ag 3 Sn intermetallic particles and the special microstructure of β-Sn phases in Sn3.5Ag solder, grain boundary sliding was not the dominant mechanism any longer for this Pb-free solder. While the interaction of dislocations with the relatively rigid Ag 3 Sn particles began to dominate. For the as-cast specimen, accompanied by partial intragranular cracks, intergranular fracture along the grain boundaries in Sn-Ag eutectic structure or the interphase boundaries between Sn-rich dendrites and Sn-Ag eutectic phases occurred primarily in early tensile stage. However, the boundary behavior was limited by the large Ag 3 Sn particles presented along the Sn-rich dendrites boundaries after aging. Plastic flow was observed in large area, and cracks propagated in a transgranular manner across the Sn-dendrites and Sn-Ag eutectic structure

  12. Effect of Isothermal Aging on the Long-Term Reliability of Fine-Pitch Sn-Ag-Cu and Sn-Ag Solder Interconnects With and Without Board-Side Ni Surface Finish

    Science.gov (United States)

    Lee, Tae-Kyu; Duh, Jeng-Gong

    2014-11-01

    The combined effects on long-term reliability of isothermal aging and chemically balanced or unbalanced surface finish have been investigated for fine-pitch ball grid array packages with Sn-3.0Ag-0.5Cu (SAC305) (wt.%) and Sn-3.5Ag (SnAg) (wt.%) solder ball interconnects. Two different printed circuit board surface finishes were selected to compare the effects of chemically balanced and unbalanced structure interconnects with and without board-side Ni surface finish. NiAu/solder/Cu and NiAu/solder/NiAu interconnects were isothermally aged and thermally cycled to evaluate long-term thermal fatigue reliability. Weibull plots of the combined effects of each aging condition and each surface finish revealed lifetime for NiAu/SAC305/Cu was reduced by approximately 40% by aging at 150°C; less degradation was observed for NiAu/SAC305/NiAu. Further reduction of characteristic life-cycle number was observed for NiAu/SnAg/NiAu joints. Microstructure was studied, focusing on its evolution near the board and package-side interfaces. Different mechanisms of aging were apparent under the different joint configurations. Their effects on the fatigue life of solder joints are discussed.

  13. Study on Mitigation Method of Solder Corrosion for Crystalline Silicon Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Ju-Hee Kim

    2014-01-01

    Full Text Available The corrosion of 62Sn36Pb2Ag solder connections poses serious difficulties for outdoor-exposed photovoltaic (PV modules, as connection degradation contributes to the increase in series resistance (RS of PV modules. In this study, we investigated a corrosion mitigation method based on the corrosion mechanism. The effect of added sacrificial metal on the reliability of PV modules was evaluated using the oxidation-reduction (redox reaction under damp heat (DH conditions. Experimental results after exposure to DH show that the main reason for the decrease in power was a drop in the module’s fill factor. This drop was attributed to the increase of RS. The drop in output power of the PV module without added sacrificial metal is greater than that of the sample with sacrificial metal. Electroluminescence and current-voltage mapping analysis also show that the PV module with sacrificial metal experienced less degradation than the sample without sacrificial metal.

  14. Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay.

    Science.gov (United States)

    Saleh, Mona; El-Matbouli, Mansour

    2015-06-01

    Cyprinid herpesvirus-3 (CyHV-3) is a highly infectious pathogen that causes fatal disease in common and koi carp Cyprinus carpio L. CyHV-3 detection is usually based on virus propagation or amplification of the viral DNA using the PCR or LAMP techniques. However, due to the limited susceptibility of cells used for propagation, it is not always possible to successfully isolate CyHV-3 even from tissue samples that have high virus titres. All previously described detection methods including PCR-based assays are time consuming, laborious and require specialized equipment. To overcome these limitations, gold nanoparticles (AuNPs) have been explored for direct and sensitive detection of DNA. In this study, a label-free colorimetric nanodiagnostic method for direct detection of unamplified CyHV-3 DNA using gold nanoparticles is introduced. Under appropriate conditions, DNA probes hybridize with their complementary target sequences in the sample DNA, which results in aggregation of the gold nanoparticles and a concomitant colour change from red to blue, whereas test samples with non complementary DNA sequences remain red. In this study, gold nanoparticles were used to develop and evaluate a specific and sensitive hybridization assay for direct and rapid detection of the highly infectious pathogen termed Cyprinid herpesvirus-3. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review

    International Nuclear Information System (INIS)

    Korotcenkov, Ghenadii; Cho, Beong K.; Brinzari, Vladimir

    2016-01-01

    This review (with 170 refs.) discusses approaches towards surface functionalizaton of metal oxides by gold nanoparticles, and the application of the resulting nanomaterials in resistive gas sensors. The articles is subdivided into sections on (a) methods for modification of metal oxides with gold nanoparticles; (b) the response of gold nanoparticle-modified metal oxide sensors to gaseous species, (c) a discussion of the limitations of such sensors, and (d) a discussion on future tasks and trends along with an outlook. It is shown that, in order to achieve significant improvements in sensor parameters, it is necessary to warrant a good control the size and density of gold nanoparticles on the surface of metal oxide crystallites, the state of gold in the cluster, and the properties of the metal oxide support. Current challenges include an improved reproducibility of sensor preparation, better long-term stabilities, and a better resistance to sintering and poisoning of gold clusters during operation. Additional research focused on better understanding the role of gold clusters and nanoparticles in gas-sensing effects is also required. (author)

  16. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    Directory of Open Access Journals (Sweden)

    Fernandez Cabada T

    2012-03-01

    Full Text Available Tamara Fernandez Cabada1,2,*, Cristina Sanchez Lopez de Pablo1,3,*, Alberto Martinez Serrano2, Francisco del Pozo Guerrero1,3, Jose Javier Serrano Olmedo1,3,*, Milagros Ramos Gomez1–3,* 1Centre for Biomedical Technology, Universidad Politecnica de Madrid, Madrid, Spain; 2Centre for Molecular Biology, "Severo Ochoa" Universidad Autonoma de Madrid, Madrid, Spain; 3Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-bbn, Zaragoza, Spain.*These authors contributed equally to this workBackground: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells.Methods: The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods.Results: Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death.Conclusion: The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development.Keywords: laser irradiation, photothermal therapy, surface plasmon resonance, cancer

  17. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  18. Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode

    Directory of Open Access Journals (Sweden)

    Zhong G

    2015-03-01

    Full Text Available Guangxian Zhong,1,2,* Ruilong Lan,3,* Wenxin Zhang,1,4 Feihuan Fu,5 Yiming Sun,1,4 Huaping Peng,1,4 Tianbin Chen,3 Yishan Cai,6 Ailin Liu,1,4 Jianhua Lin,2 Xinhua Lin1,4 1Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, 2Department of Orthopaedics, 3The Centralab, First Affiliated Hospital of Fujian Medical University, 4Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, 5Department of Endocrinology, The County Hospital of Anxi, Anxi, 6Fujian International Travel Healthcare Center, Fujian Entry-Exit Inspection and Quarantine Bureau, Fuzhou, People’s Republic of China *These authors contributed equally to this work Abstract: A sensitive electrochemical immunosensor was developed for detection of alpha-fetoprotein (AFP based on a three-dimensional nanostructure gold electrode using a facile, rapid, “green” square-wave oxidation-reduction cycle technique. The resulting three-dimensional gold nanocomposites were characterized by scanning electron microscopy and cyclic voltammetry. A “sandwich-type” detection strategy using an electrochemical immunosensor was employed. Under optimal conditions, a good linear relationship between the current response signal and the AFP concentrations was observed in the range of 10–50 ng/mL with a detection limit of 3 pg/mL. This new immunosensor showed a fast amperometric response and high sensitivity and selectivity. It was successfully used to determine AFP in a human serum sample with a relative standard deviation of <5% (n=5. The proposed immunosensor represents a significant step toward practical application in clinical diagnosis and monitoring of prognosis. Keywords: electrochemical immunosensors, three-dimensional nanostructure gold electrode, square-wave oxidation-reduction cycle, alpha-fetoprotein 

  19. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  20. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco; Guillois, Kevin; Tuel, Alain; Petit, Corine; Basset, Jean-Marie; Caps, Valerie

    2016-01-01

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  1. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    KAUST Repository

    Laveille, Paco

    2016-01-20

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  2. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  3. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  4. Aerobic Oxidation of Benzyl Alcohol on a Strontium-Based Gold Material: Remarkable Intrinsic Basicity and Reusable Catalyst

    Directory of Open Access Journals (Sweden)

    Karla Patrícia R. Castro

    2018-02-01

    Full Text Available The development of stable and active gold catalysts has arisen as a significant strategy for oxidation of alcohols. Nano-size PVA-stabilized gold nanoparticles immobilized on Sr(OH2 by colloidal deposition presented high catalytic activity for benzyl alcohol oxidation. In 2.5 h, 2 bar of O2 and without extra-base addition, the calcined support reached 54.6% (100 °C and 67.4% (140 °C of conversion, presenting the remarkable and unexplored intrinsic basicity that strontium-based materials retain. With sub-stoichiometric K2CO3 adding, under the same catalytic conditions, the catalyst conducted the reaction with similar activity, but with excellent reusability in the process, without any gold leaching. We investigated the influence that the support synthesis method and the solvent used for the NPs stabilization have on the oxidation activity. The produced materials were fully characterized by XPS, Rietveld refinement, and TEM.

  5. Characterisation of a thiosulphate-sulphite gold electrodeposition process

    International Nuclear Information System (INIS)

    J-Liew, M.; Sobri, S.; Roy, S.

    2005-01-01

    Electrodeposition of soft gold is an important process in the fabrication of micro devices for electronics, optics etc. Traditional gold electroplating is based on a gold cyanide process which is not applicable for the stringent requirements in state of the art micro device manufacture. Newcastle University has been involved in the development of an industrial process based on a mixed ligand electrolyte-the gold thiosulphate-sulphite system. Here we present methods for the formulation of this electrolyte in the laboratory which ensure bath stability and process compatibility. In addition, we have carried out spectrophotometry to elucidate the possible reasons of its chemical stability. Standard rotating disk and cyclic voltammetry has been carried out to determine the electrochemical behaviour of the gold thiosulphate-sulphite system. The changes in electrochemical behaviour as the bath ages are also discussed

  6. Microstructure and adhesion strength of Sn-9Zn-xAg lead-free solders wetted on Cu substrate

    International Nuclear Information System (INIS)

    Chang, T.-C.; Chou, S.-M.; Hon, M.-H.; Wang, M.-C.

    2006-01-01

    The microstructure and adhesion strength of the Sn-9Zn-xAg lead-free solders wetted on Cu substrates have been investigated by differential scanning calorimetry, optical microscopy, scanning electron microscopy, energy dispersive spectrometry and pull-off testing. The liquidus temperatures of the Sn-9Zn-xAg solder alloys are 222.1, 226.7, 231.4 and 232.9 deg. C for x = 2.5, 3.5, 5.0 and 7.5 wt%, respectively. A flat interface can be obtained as wetted at 350 deg. C at a rate of 11.8 mm/s. The adhesion strength of the Sn-9Zn-xAg/Cu interfaces decreases from 23.09 ± 0.31 to 12.32 ± 1.40 MPa with increasing Ag content from 2.5 to 7.5 wt% at 400 deg. C. After heat treatment at 150 deg. C, the adhesion strength of the Sn-9Zn-xAg/Cu interface decreases with increasing aging time

  7. Seed Mediated Growth of Gold Nanoparticles Based on Liquid Arc Discharge

    International Nuclear Information System (INIS)

    Ashkarran, Ali Akbar

    2013-01-01

    We report studies on the growth of gold nanoparticles by a seed-mediated approach in solution. The synthetic method is adapted from one we published earlier (Ashkarran et al. Appl. Phys. A 2009, 96, 423). The synthesized gold nanoparticles were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, optical imaging and atomic force microscopy (AFM). Optical absorption spectroscopy of the prepared samples at 15 A arc current in HAuCl 4 solution shows a surface plasmon resonance around 520 nm. It is found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal nanoparticles. The intensity of the plasmonic peak of the prepared gold nanoparticles for 1 minute arc duration gradually increases due to seed mediation for up to 6 hours. The formation time of gold nanoparticles at higher seed concentrations is less than that at lower seed concentrations. (plasma technology)

  8. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  9. Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon

    Science.gov (United States)

    Vishiti, A.; Suh, C. E.; Lehmann, B.; Egbe, J. A.; Shemang, E. M.

    2015-11-01

    The Batouri area hosts lode-gold mineralization under several-m-thick lateritic cover. Pitting to bed rock on a geochemical Au anomaly defined from previous reconnaissance soil sampling identified five horizons ranging from saprock at the base to laterite at the top. Analysis of bulk samples from each horizon by fire assay shows that most of the horizons are barren although 119 ppb and 48 ppb Au values were obtained from one laterite horizon and one saprolite horizon, respectively, from two separate pits. All the horizons were panned and particulate gold was also recovered only from these two horizons. The gold grains from both horizons are morphologically and compositionally indistinguishable with rare quartz, pyrite and galena inclusions. The grains have irregular, sub-rounded, bean to elongated shapes and they show a remarkable core-rim zonation. Electron microprobe analysis of the grains recorded high gold content in the rims (86.3-100 wt%) and along fissures within the grains (95.1-100 wt%). The cores are relatively Ag rich (11.8-14 wt% Ag) while the rims (0.63-13.7 wt% Ag, most of the values fall within the lower limit of this range) and fissures (0.03-5.02 wt% Ag) are poor in Ag. The low Ag concentration in the rims and along fissures is attributed to preferential leaching of Ag; a process recognized in gold grains and platiniferous alloys from alluvia. The core composition of the grains is similar to that of primary gold composition in the bedrock. These results show that gold in the soil is relic particulate gold derived from the primary source with no evidence of secondary gold precipitation in the weathering cycle. In all the pits no horizon was systematically enriched in gold suggesting there has been no chemical remobilization of gold in this environment. Rather the dispersion of gold here is in the particulate form. Therefore combining particulate gold features with assay data is relevant to exploration in such tropical environments.

  10. Surface modifications of dental ceramic implants with different glass solder matrices: in vitro analyses with human primary osteoblasts and epithelial cells.

    Science.gov (United States)

    Markhoff, Jana; Mick, Enrico; Mitrovic, Aurica; Pasold, Juliane; Wegner, Katharina; Bader, Rainer

    2014-01-01

    Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.

  11. Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells

    Science.gov (United States)

    Mick, Enrico

    2014-01-01

    Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants. PMID:25295270

  12. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  13. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    Science.gov (United States)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  14. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    Science.gov (United States)

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  15. A PIXE mini-beam setup at the Bonn cyclotron for archeometric metal analyses

    International Nuclear Information System (INIS)

    Weber, J.; Beier, T.; Diehl, U.; Lambrecht, D.; Mommsen, H.; Pantenburg, F.J.

    1990-01-01

    The exact analysis of the elemental composition at and around a soldering joint of an antique piece of jewelry can elucidate the joining technologies and give hints of the genuineness of the object. As analytical method we use PIXE, which is nondestructive, multielemental and with fundamental parameter calculations gives absolute concentration values. To obtain the necessary spot size of the H 2 + beam at the Bonn cyclotron we use a piezo-controlled diaphragm, whose demagnified image is focussed on the target by two magnetic quadrupole triplets. With an electrostatic deflector the beam spot of 0.1x0.3 mm 2 size can be moved 2 mm in each direction on the target. With a laser beam, which simulates the ion beam, an irregularly shaped archeological object can be positioned. The laser is also used to obtain the alignment of the target surface to the ion beam direction and the small beam size makes it easier to find a flat part on the surface of the object; both of these are important preconditions for using the fundamental parameter method. A scan over a joint of modern gold alloys demonstrates the ability to detect soldering joints. The analysis of four pieces of Roman gold jewelry found in the area of Cologne and Bonn shows examples of brazing with a solder as well as diffusion soldering. (orig.)

  16. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  17. Corrosion Damage Investigation of Silver-Soldered Stainless Steel Orthodontic Appliances Used in Vivo / Ocena Zniszczeń Korozyjnych Używanych In Vivo Stałych Aparatów Ortodontycznych O Połączeniach Lutowanych Na Bazie Srebra

    Directory of Open Access Journals (Sweden)

    Łępicka M.

    2015-12-01

    Full Text Available Processes of destruction of products used in orthodontic treatment, e.g. fixed orthodontic appliances, microimplants or dental prostheses considerably limit its operational lifetime and comfort and safety of patients. The objective of the research was to evaluate and assess corrosion damage to silver-soldered stainless steel rapid palatal expansion Hyrax devices. Used in vivo for 2 or 6 months, respectively, RPE (rapid palatal expansion devices were analyzed macroscopically and in a scanning electron microscope with an energy X-ray analyzer for signs of corrosion. The evaluated appliances showed discernible differences between the overall condition of the noble solders and the stainless steel elements. The Ag-rich solders were chiefly covered in corrosion pits, whereas stainless steel wires, molar bands and Hyrax screws presented corrosion-free surfaces. What is more, the EDS analysis showed differential element composition of the solders. According to the results, noble materials, such as Ag-rich solders, can corrode in a salivary environment when coupled with stainless steel. The selective leaching processes are observed.

  18. Hydrogen peroxide biosensor based on DNA-Hb modified gold electrode

    International Nuclear Information System (INIS)

    Kafi, A.K.M.; Fan Yin; Shin, Hoon-Kyu; Kwon, Young-Soo

    2006-01-01

    A hydrogen peroxide (H 2 O 2 ) biosensor based on DNA-hemoglobin (Hb) modified electrode is described in this paper. The sensor was designed by DNA and hemoglobin dropletting onto gold electrode surface layer by layer. The sensor based on the direct electron transfer of iron of hemoglobin showed a well electrocatalytic response to the reduction of the H 2 O 2 . This sensor offered an excellent electrochemical response for H 2 O 2 concentration below micromole level with high sensitivity and selectivity and short response time. Experimental conditions influencing the biosensor performance such as, pH, potential were optimized and assessed. The levels of the RSD's ( 2 O 2 was observed from 10 to 120 μM with the detection limit of 0.4 μM (based on the S/N = 3)

  19. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    Science.gov (United States)

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    Science.gov (United States)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  1. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  2. Fabrication and characterization of gold nanocrown arrays on a gold film for a high-sensitivity surface plasmon resonance biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Munsik; Kim, Nak-hyeon; Eom, Seyoung [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Tae Woo [School of East–West Medical Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Byun, Kyung Min, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Park, Hyeong-Ho, E-mail: hyeongho.park@kanc.re.kr [Nano Process Division, Korea Advanced Nano Fab Center, Suwon 443-270 (Korea, Republic of)

    2015-07-31

    We report on a versatile method to fabricate gold nanocrown arrays on a thin gold film based on ultraviolet nanoimprint lithography and tilted evaporation technique. We realize highly ordered 2-dimensional nanocrown arrays and characterize their sizes and morphologies using scanning electron microscopy. To demonstrate an enhanced surface plasmon resonance (SPR) detection by the fabricated gold nanocrown samples, biosensing experiments are performed by measuring SPR angle shift for biotin–streptavidin interaction and bulk refractive index change of dielectric medium. We hope that the suggested plasmonic platform with a high sensitivity could be extended to a variety of biomolecular binding reactions. - Highlights: • Gold nanocrown arrays are produced by nanoimprint lithography and tilted evaporation. • Use of gold nanocrown arrays can improve the sensor sensitivity significantly. • Improved sensitivity is due to enhanced field–matter interaction at gold nanocrowns.

  3. Ceramic ball grid array package stress analysis

    Science.gov (United States)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  4. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  5. Determination of Patulin Using Amperometric Tyrosinase Biosensors Based on Electrodes Modified with Carbon Nanotubes and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    R.M. Varlamova

    2016-06-01

    Full Text Available New amperometric biosensors based on platinum screen printed electrodes modified with multi-walled carbon nanotubes, gold nanoparticles, and immobilized enzyme – tyrosinase have been developed for determination of patulin in the concentrations of 1·10–6 – 8·10–12 mol/L with an error of no more than 0.063. The best conditions for obtaining gold nanoparticles have been chosen. The conditions for immobilization of multi-walled carbon nanotubes and gold nanoparticles on the surface of the planar electrode have been revealed. The conditions for functioning of the proposed biosensors have been identified. The results have been used to control the content of patulin in food products within and lower than the maximum allowable levels.

  6. Economical surface treatment of die casting dies to prevent soldering in high pressure casting

    International Nuclear Information System (INIS)

    Fraser, D.T.; Jahedi, M.Z.

    2001-01-01

    This paper describes the use of a gas oxidation treatment of H13 tool steel to develop a compact iron oxide layer at the surface of core pins to prevent soldering in high pressure die casting. The performance of oxide layers in the protection of die steel against soldering during high pressure die casting was tested in a specially designed die using removable core pins and Al-11 Si-3 Cu casting alloy. The gas oxidation treatment can be applied at low temperatures and to large areas of the die surface. In addition this process is very cost effective compared to other coating processes such as physical vapour deposition (PVD), or thermo-reactive diffusion (TRD) coatings. This work demonstrated that surface treatment producing pure magnetite (Fe 3 O 4 ) layers are more protective than oxide layers containing a combination of Fe 3 O 4 (magnetite) and Fe 3 O 3 (haematite). The magnetite layer acts as a barrier between the die steel/casting alloy interface and prevents the formation of inter-metallic phases. Optical microscopy and scanning electron microscope were used to determine the thickness of the oxide layer, while X-ray diffraction was performed to determine the oxide phase structure

  7. A Reagentless Amperometric Formaldehyde-Selective Chemosensor Based on Platinized Gold Electrodes.

    Science.gov (United States)

    Demkiv, Olha; Smutok, Oleh; Gonchar, Mykhailo; Nisnevitch, Marina

    2017-05-06

    Fabrication and characterization of a new amperometric chemosensor for accurate formaldehyde analysis based on platinized gold electrodes is described. The platinization process was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis and cyclic voltamperometry. The produced electrodes were characterized using scanning electron microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl) enabled an essential increase in the chemosensor's selectivity for the target analyte. The sensitivity of the best chemosensor prototype to formaldehyde is uniquely high (28180 A·M -1 ·m -2 ) with a detection limit of 0.05 mM. The chemosensor remained stable over a one-year storage period. The formaldehye-selective chemosensor was tested on samples of commercial preparations. A high correlation was demonstrated between the results obtained by the proposed chemosensor, chemical and enzymatic methods ( R = 0.998). The developed formaldehyde-selective amperometric chemosensor is very promising for use in industry and research, as well as for environmental control.

  8. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  9. Graphene- gold based nanocomposites applications in cancer diseases; Efficient detection and therapeutic tools.

    Science.gov (United States)

    Al-Ani, Lina A; AlSaadi, Mohammed A; Kadir, Farkaad A; Hashim, Najihah M; Julkapli, Nurhidayatullaili M; Yehye, Wageeh A

    2017-10-20

    Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Simulations of Interdigitated Electrode Interactions with Gold Nanoparticles for Impedance-Based Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Scott MacKay

    2015-09-01

    Full Text Available In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations.

  11. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates

    KAUST Repository

    Martins, P. A. T.; Alsaiari, Shahad K.; Julfakyan, Khachatur; Nie, Z.; Khashab, Niveen M.

    2017-01-01

    We present a reconstituted lipoprotein-based nanoparticle platform comprising a curcumin fluorescent motif and an NIR responsive gold core. This multifunctional nanosystem is successfully used for aggregation-dependent fluorescence detection and photothermal disassembly of insoluble amyloid aggregates.

  12. Self-assembled lipoprotein based gold nanoparticles for detection and photothermal disaggregation of β-amyloid aggregates

    KAUST Repository

    Martins, P. A. T.

    2017-01-10

    We present a reconstituted lipoprotein-based nanoparticle platform comprising a curcumin fluorescent motif and an NIR responsive gold core. This multifunctional nanosystem is successfully used for aggregation-dependent fluorescence detection and photothermal disassembly of insoluble amyloid aggregates.

  13. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    International Nuclear Information System (INIS)

    Thapliyal, Neeta Bachheti; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar; Cherukupalli, Srinivasulu

    2017-01-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  14. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Neeta Bachheti, E-mail: thapliyaln@ukzn.ac.za; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar, E-mail: karpoormath@ukzn.ac.za; Cherukupalli, Srinivasulu

    2017-05-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  15. A novel gold nanoparticle-DNA aptamer-based plasmonic chip for rapid and sensitive detection of bacterial pathogens

    DEFF Research Database (Denmark)

    Sun, Yi; Phuoc Long, Truong; Wolff, Anders

    2016-01-01

    Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers...

  16. Gold leaching by organic base polythionates: new non-toxic and secure technology

    OpenAIRE

    Smolyaninov, Vladislav; Shekhvatova, Galina; Vainshtein, Mikhail

    2014-01-01

    The article present a review on own experimental and some published data which are related with the gold leaching. It is well-known that the most common and usual process of the leaching with cyanide can be dangerous, needs a great water consumption, and additional costs for remediation of the poisoned and toxic sites. The experimental data described production of poythionates which are not toxic but perspective for the prosperous gold leaching. The paper dedicated to the safe gold leaching w...

  17. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  18. GOLD predictivity mapping in French Guiana using an expert-guided data-driven approach based on a regional-scale GIS

    Science.gov (United States)

    Cassard, Daniel; Billa, Mario; Lambert, Alain; Picot, Jean-Claude; Husson, Yves

    2008-05-01

    The realistic estimation of gold mining in French Guiana requires including the numerous illegal gold washing activities in predictivity mapping. The combination of a classical approach, based on the algebraic method of Knox-Robinson and Groves, with innovative processing grid-type geochemical and radiometric data, as well as cluster analysis technique provides a better understanding of the structure of studied mineralized areas.

  19. Colorimetric detection of Cr (VI) based on the leaching of gold nanoparticles using a paper-based sensor.

    Science.gov (United States)

    Guo, Jian-Feng; Huo, Dan-Qun; Yang, Mei; Hou, Chang-Jun; Li, Jun-Jie; Fa, Huan-Bao; Luo, Hui-Bo; Yang, Ping

    2016-12-01

    Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Lai, Hong-Zheng; Wang, Sin-Ge; Wu, Ching-Yi; Chen, Yu-Chie

    2015-02-17

    Staphylococcus aureus is one of the common pathogenic bacteria responsible for bacterial infectious diseases and food poisoning. This study presents an analytical method based on the affinity nanoprobe-based mass spectrometry that enables detection of S. aureus in aqueous samples. A peptide aptamer DVFLGDVFLGDEC (DD) that can recognize S. aureus and methicillin-resistant S. aureus (MRSA) was used as the reducing agent and protective group to generate DD-immobilized gold nanoparticles (AuNPs@DD) from one-pot reactions. The thiol group from cysteine in the peptide aptamer, i.e., DD, can interact with gold ions to generate DD-immobilized AuNPs in an alkaline solution. The generated AuNPs@DD has an absorption maximum at ∼518 nm. The average particle size is 7.6 ± 1.2 nm. Furthermore, the generated AuNPs@DD can selectively bind with S. aureus and MRSA. The conjugates of the target bacteria with AuNPs were directly analyzed by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The gold ions generated from the AuNPs@DD anchored on the target bacteria were monitored. Gold ions (m/z 197 and 394) were only generated from the conjugates of the target bacterium-AuNP@DD in the SALDI process. Thus, the gold ions could be used as the indicators for the presence of the target bacteria. The detection limit of S. aureus using this method is in the order of a few tens of cells. The low detection limit is due to the ease of generation of gold cluster ion derived from AuNPs under irradiation with a 355 nm laser beam. Apple juice mixed with S. aureus was used as the sample to demonstrate the suitability of the method for real-world application. Because of its low detection limit, this approach can potentially be used to screen the presence of S. aureus in complex samples.

  1. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. 78 FR 72139 - Nevada Gold Corp.; Order of Suspension of Trading

    Science.gov (United States)

    2013-12-02

    ... current and accurate information concerning the securities of Nevada Gold Corp. (``Nevada Gold'') because of questions regarding the accuracy of assertions by Nevada Gold, and by others, to investors in..., and financial condition. Nevada Gold is a Delaware corporation based in Del Mar, California. The...

  3. Investigation of the effect of support thermal treatment on gold-based catalysts' activity towards propene total oxidation

    International Nuclear Information System (INIS)

    Lamallem, M.; Cousin, R.; Thomas, R.; Siffert, St.; Aissi, F.; Aboukais, A.

    2009-01-01

    This paper reports a study on the effect of support thermal treatment on the activity of gold-based catalysts for the total oxidation of propene. Ce 0.3 Ti 0.7 O 2 supports were prepared using sol-gel method. These compounds are calcined at 400, 500 and 600 C. Physico-chemical properties of synthesized materials were characterized by means of XRD, DR/UV-vis and H 2 -TPR. Then gold was deposited on these supports by the deposition precipitation method. Thus the catalytic activity of these solids in the propene oxidation was evaluated. On the basis of the catalytic results, a better activity is obtained when gold is deposited on Ce 0.3 Ti 0.7 O 2 support previously calcined at 400 C under air. (authors)

  4. Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jana Markhoff

    2014-01-01

    Full Text Available Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP and aluminum toughened zirconia (ATZ were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.

  5. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  6. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters.

    Science.gov (United States)

    Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2015-01-25

    In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Novel glucose biosensor based on a glassy carbon electrode modified with hollow gold nanoparticles and glucose oxidase

    International Nuclear Information System (INIS)

    Wang, W.; Ying, S.; Zhang, Z.; Huang, S.

    2011-01-01

    A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0 x 10 -6 to 4.6 x 10 -5 M of glucose, with a detection limit of 1.6 x 10 -6 M (S/N = 3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks. (author)

  9. Are GOLD ABCD groups better associated with health status and costs than GOLD 1234 grades? A cross-sectional study

    NARCIS (Netherlands)

    M.R.S. Boland (Melinde); A. Tsiachristas (Apostolos); A.L. Kruis (Annemarije); N.H. Chavannes (Nicolas); M.P.M.H. Rutten-van Mölken (Maureen)

    2014-01-01

    markdownabstract__Abstract__ Aims: To investigate the association of the GOLD ABCD groups classification with costs and health-related quality of life (HR-QoL) and to compare this with the GOLD 1234 grades classification that was primarily based on lung function only. Methods: In a

  10. Gold/silver/gold trilayer films on nanostructured polycarbonate substrates for direct and label-free nanoplasmonic biosensing.

    Science.gov (United States)

    López-Muñoz, Gerardo A; Estévez, M-Carmen; Vázquez-García, Marc; Berenguel-Alonso, Miguel; Alonso-Chamarro, Julián; Homs-Corbera, Antoni; Lechuga, Laura M

    2018-05-01

    Ultrasmooth gold/silver/gold trilayer nanostructured plasmonic sensors were obtained using commercial Blu-ray optical discs as nanoslits-based flexible polymer substrates. A thin gold film was used as an adhesion and nucleation layer to improve the chemical stability and reduce the surface roughness of the overlying silver film, without increasing ohmic plasmon losses. The structures were physically and optically characterized and compared with nanostructures of single gold layer. Ultrasmooth and chemically stable trilayer nanostructures with a surface roughness <0.5 nm were obtained following a simple and reproducible fabrication process. They showed a figure of merit (FOM) value up to 69.2 RIU -1 which is significantly higher (more than 95%) than the gold monolayer counterpart. Their potential for biosensing was demonstrated by employing the trilayer sensor for the direct and refractometric (label-free) detection of C-reactive protein (CRP) biomarker in undiluted urine achieving a Limit of Detection (LOD) in the pM order. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  12. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    Science.gov (United States)

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  13. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    Science.gov (United States)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  14. Hydrothermal Gold Mineralization and Structural Controls near May ...

    African Journals Online (AJOL)

    Mickiale

    controlled gold mineralized zones of gold near Workamba. .... consists of rounded to sub-rounded clasts of blue quartz eyes and varies in size from ... Based on the field observation, petrographic study and their cross cutting relationships; four.

  15. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  16. The creep behavior of In-Ag eutectic solder joints

    International Nuclear Information System (INIS)

    Reynolds, H.L.; Kang, S.H.; Morris, J.W. Jr.; Univ. of California, Berkeley, CA

    1999-01-01

    The addition of 3 wt.% Ag to In results in a eutectic composition with improved mechanical properties while only slightly lowering the melting temperature. Steady-state creep properties of In-Ag eutectic solder joints have been measured using constant load tests at 0, 30, 60, and 90 C. Constitutive equations are derived to describe the creep behavior. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Two parallel mechanisms were observed for the In-Ag eutectic joints. The high-stress mechanism is a bulk mechanism with a thermal dependence dominated by the thermal dependence of creep in the In-rich matrix. The low-stress mechanism is a grain boundary mechanism. Results of this work are discussed with regard to creep behavior of typical eutectic systems

  17. Red gold analysis by using gamma absorption tchnique

    International Nuclear Information System (INIS)

    Kurtoglu, A.; Tugrul, A.B.

    2001-01-01

    Gold is a valuable metal and also preferable materials for antique artefacts and some advanced technology products. It can be offered for the analysis of the gold as namely; neutron activation analysis, X-ray florescence technique, Auger spectroscopy, atomic absorption and wet chemistry. Some limitations exist in practice for these techniques, especially in the points of financial and applicability concepts. An advanced a practical technique is gamma absorption technique for the gold alloys. This technique is based on discontinuities in the absorption coefficient for gamma rays at corresponding to the electronic binding energies of the absorber. If irradiation is occurred at gamma absorption energy for gold, absorption rates of the red gold changes via the gold amounts in the alloy. Red gold is a basic and generally preferable alloy that has copper and silver additional of the gold in it. The gold amount defines as carat of the gold. Experimental studies were observed for four different carats of red gold; these are 8, 14, 18 and 22 carats. K-edge energy level of the gold is on 80 keV energy. So, Ba-133 radioisotope is preferred as the gamma source because of it has gamma energy peak in that energy. Experiments observed in the same geometry for all samples. NaI(Tl) detector and multichannel analyser were used for measurements. As a result of the experiments, the calibration curves could be drawn for red gold. For examine this curve, unknown samples are measured in experimental set and it can be determined the carat of it with the acceptability. So the red gold analysis can be observed non-destructively, easily and quickly by using the gamma absorption technique

  18. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  19. The use of gold nanoparticle aggregation for DNA computing and logic-based biomolecular detection

    International Nuclear Information System (INIS)

    Lee, In-Hee; Yang, Kyung-Ae; Zhang, Byoung-Tak; Lee, Ji-Hoon; Park, Ji-Yoon; Chai, Young Gyu; Lee, Jae-Hoon

    2008-01-01

    The use of DNA molecules as a physical computational material has attracted much interest, especially in the area of DNA computing. DNAs are also useful for logical control and analysis of biological systems if efficient visualization methods are available. Here we present a quick and simple visualization technique that displays the results of the DNA computing process based on a colorimetric change induced by gold nanoparticle aggregation, and we apply it to the logic-based detection of biomolecules. Our results demonstrate its effectiveness in both DNA-based logical computation and logic-based biomolecular detection

  20. Gold nanoparticles extraction from dielectric scattering background

    Science.gov (United States)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.