WorldWideScience

Sample records for gold atom release

  1. Integer conductance quantization of gold atomic sheets

    Science.gov (United States)

    Kurui, Yoshihiko; Oshima, Yoshifumi; Okamoto, Masakuni; Takayanagi, Kunio

    2008-04-01

    Using a transmission electron microscope combined with a scanning tunneling microscope, we find that a gold (111) or (001) atomic sheet is formed between two gold electrodes. Simultaneous conductance measurements indicate a value in the vicinity of G0 ( =2e2/h : conductance quantum), 2G0 , 3G0 , and 4G0 . Each quantum number is equal to the number of atomic strands. First-principle calculations suggest that the atomic sheet should be deformed to explain this rule. It is likely that the gold atomic sheet is stabilized by an increment of the nonlocal bond because of the deformation.

  2. Trapping and release of citrate-capped gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Darwin R., E-mail: darwin.reyes@nist.gov [Semiconductor Electronics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Mijares, Geraldine I.; Nablo, Brian [Semiconductor Electronics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Briggman, Kimberly A. [Optical Technology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Gaitan, Michael [Semiconductor Electronics Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2011-08-01

    An electrical method to trap and release charged gold nanoparticles onto and from the surface of gold electrodes modified by an alkanethiol self-assembled monolayer (SAM) is presented. To form electrodes coated with gold nanoparticles (GNPs), amine-terminated SAMs on gold electrodes were immersed in a solution of negatively charged citrate-capped GNPs. Accumulation of GNPs on the electrode surface was monitored by a decrease in the impedance of the SAM-modified electrode and by an increase in the electrochemical activity at the electrode as shown through cyclic voltammetry (CV). Electrostatic interactions between the GNPs and the amine-terminated SAM trap the GNPs on the electrode surface. Application of a subsequent negative bias to the electrode initiated a partial release of the GNPs from the electrode surface. Impedance spectroscopy, cyclic voltammetry, ultraviolet-visible (UV-Vis) spectroscopy and atomic force microscopy (AFM) were used to monitor and confirm the attraction of GNPs to and release from the aminealkanethiolated gold electrodes. This work describes a method of trapping and release for citrate-capped GNPs that could be used for on-demand nanoparticle delivery applications such as in assessing and modeling nanoparticle toxicology, as well as for monitoring the functionalization of gold nanoparticles.

  3. Stability of gold atoms and dimers adsorbed on graphene

    International Nuclear Information System (INIS)

    Varns, R; Strange, P

    2008-01-01

    We report density functional theory (DFT) calculations for gold atoms and dimers on the surface of graphene. The calculations were performed using the plane wave pseudopotential method. Calculations were performed for a variety of geometries, and both the graphene surface and gold atoms were allowed to fully relax. In agreement with experiment, our results show that the gold-gold interaction is considerably stronger than the gold-graphene interaction, implying that uniform coverage could not be attained. The minimum energy configuration for a single gold atom is found to be directly above a carbon atom, while for the dimer it is perpendicular to the surface and directly above a carbon-carbon bond. Our results are consistent with previous similar calculations

  4. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  5. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  6. Inelastic scattering and local heating in atomic gold wires

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Brandbyge, Mads; Lorente, N.

    2004-01-01

    We present a method for including inelastic scattering in a first-principles density-functional computational scheme for molecular electronics. As an application, we study two geometries of four-atom gold wires corresponding to two different values of strain and present results for nonlinear...

  7. Ligations of Gold Atoms with Iron Porphyrin

    DEFF Research Database (Denmark)

    Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens

    electrochemistry and electrochemical scanning tunneling microscopy (in situ STM) are explained with this theory. Iron porphyrin is a well-known active redox center of cytochrome c and hemoglobin/myoglobin assisting membrane-crossing electron transfer or blood oxygentransport. The electronic states...... and configurations of iron porphyrin affect the electrochemical properties of the metalloproteins, where the artificial constructed proteins are designed by the mutations of amino residues or the structural optimizations of iron porphyrins. Iron porphyrin adsorption on graphite and graphene surfaces by п-п electron...... stacking has been widely studied and the catalytic activity found to be enhanced warranting the notion of enzyme mimics. Weak physisorption was, however, recently observed by in situ STM, but the electronic properties of iron porphyrin adsorbed on gold has not been addressed before. This issue is, however...

  8. Molecular release from patterned nanoporous gold thin films

    Science.gov (United States)

    Kurtulus, Ozge; Daggumati, Pallavi; Seker, Erkin

    2014-05-01

    Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy, fluorospectrometry, and electrochemical surface characterization to study loading capacity and molecular release kinetics as a function of film properties and discuss underlying mechanisms. The sub-micron-thick sputter-coated nanoporous gold films provide small-molecule loading capacities up to 1.12 μg cm-2 and molecular release half-lives between 3.6 hours to 12.8 hours. A systematic set of studies reveals that effective surface area of the np-Au thin films on glass substrates plays the largest role in determining loading capacity. The release kinetics on the other hand depends on a complex interplay of micro- and nano-scale morphological features.Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chemistry, and biocompatibility. While np-Au's non-biological applications are abundant, its performance in the biomedical field is nascent. In this work, we employ a combination of techniques including nanoporous thin film synthesis, quantitative electron microscopy

  9. Chemically induced magnetism in atomically precise gold clusters.

    Science.gov (United States)

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R

    2014-03-12

    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Arslan, Y.; Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan; Dědina, Jiří

    103-104, JAN-FEB (2015), s. 155-163 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : gold * volatile species generation * quartz atomizers * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  11. Variable temperature investigation of the atomic structure of gold nanoparticles

    International Nuclear Information System (INIS)

    Young, N P; Kirkland, A I; Huis, M A van; Zandbergen, H W; Xu, H

    2010-01-01

    The characterisation of nanoparticle structures is the first step towards understanding and optimising their utility in important technological applications such as catalysis. Using newly developed in-situ transmission electron microscopy (TEM) specimen holders, the temperature dependent atomic structure of gold nanoparticles in the size range 5-12 nm has been investigated. In this size interval, the decahedral morphology has been identified as the most favourable structure at or above room temperature, while particle surface roughening becomes evident above 600 0 C. An icosahedral transition has also been identified at low temperature in particles under 9 nm in diameter. These experimental results are consistent with recently published temperature dependent equilibrium phase maps for gold nanoparticles.

  12. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  13. The gold/ampicillin interface at the atomic scale

    Science.gov (United States)

    Tarrat, N.; Benoit, M.; Giraud, M.; Ponchet, A.; Casanove, M. J.

    2015-08-01

    In the fight against antibiotic resistance, gold nanoparticles (AuNP) with antibiotics grafted on their surfaces have been found to be potent agents. Ampicillin-conjugated AuNPs have been thus reported to overcome highly ampicillin-resistant bacteria. However, the structure at the atomic scale of these hybrid systems remains misunderstood. In this paper, the structure of the interface between an ampicillin molecule AMP and three flat gold facets Au(111), Au(110) and Au(100) has been investigated with numerical simulations (dispersion-corrected DFT). Adsorption energies, bond distances and electron densities indicate that the adsorption of AMP on these facets goes through multiple partially covalent bonding. The stability of the AuNP/AMP nanoconjugates is explained by large adsorption energies and their potential antibacterial activity is discussed on the basis of the constrained spatial orientation of the grafted antibiotic.In the fight against antibiotic resistance, gold nanoparticles (AuNP) with antibiotics grafted on their surfaces have been found to be potent agents. Ampicillin-conjugated AuNPs have been thus reported to overcome highly ampicillin-resistant bacteria. However, the structure at the atomic scale of these hybrid systems remains misunderstood. In this paper, the structure of the interface between an ampicillin molecule AMP and three flat gold facets Au(111), Au(110) and Au(100) has been investigated with numerical simulations (dispersion-corrected DFT). Adsorption energies, bond distances and electron densities indicate that the adsorption of AMP on these facets goes through multiple partially covalent bonding. The stability of the AuNP/AMP nanoconjugates is explained by large adsorption energies and their potential antibacterial activity is discussed on the basis of the constrained spatial orientation of the grafted antibiotic. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03318g

  14. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    KAUST Repository

    Wu, Kunlin

    2012-12-13

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. © 2013 IOP Publishing Ltd.

  15. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Origin of the transition voltage in gold–vacuum–gold atomic junctions

    International Nuclear Information System (INIS)

    Wu Kunlin; Bai Meilin; Hou Shimin; Sanvito, Stefano

    2013-01-01

    The origin and the distance dependence of the transition voltage of gold–vacuum–gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold–vacuum–gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold–vacuum–gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments. (paper)

  17. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  18. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    Science.gov (United States)

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  19. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    Science.gov (United States)

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  20. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles

    Science.gov (United States)

    Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian

    2012-01-01

    Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847

  1. Mechanical properties and formation mechanisms of a wire of single gold atoms

    DEFF Research Database (Denmark)

    Rubio-Bollinger, G.; Bahn, Sune Rastad; Agrait, N.

    2001-01-01

    A scanning tunneling microscope supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab i...... stiffness of the nanostructure is strongly affected by the detailed local atomic arrangement at the chain bases.......A scanning tunneling microscope supplemented with a force sensor is used to study the mechanical properties of a novel metallic nanostructure: a freely suspended chain of single gold atoms. We find that the bond strength of the nanowire is about twice that of a bulk metallic bond. We perform ab...... initio calculations of the force at chain fracture and compare quantitatively with experimental measurements. The observed mechanical failure and nanoelastic processes involved during atomic wire fabrication are investigated using molecular dynamics simulations, and we find that the total effective...

  2. Conduction channels at finite bias in single-atom gold contacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Kobayashi, Nobuhiko; Tsukada, Masaru

    1999-01-01

    We consider the effect of a finite voltage bias on the conductance of single-atom gold contacts. We employ a nonorthogonal spn-tight-binding Hamiltonian combined with a local charge neutrality assumption. The conductance and charge distributions for finite bias are calculated using...

  3. DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.

    Science.gov (United States)

    Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav

    2018-02-08

    Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.

  4. Tunable release of clavam from clavam stabilized gold nanoparticles — Design, characterization and antimicrobial study

    International Nuclear Information System (INIS)

    Manju, V.; Dhandapani, P.; Gurusamy Neelavannan, M.; Maruthamuthu, S.; Berchmans, S.; Palaniappan, A.

    2015-01-01

    A facile one-step approach is developed to synthesize highly stable (up to 6 months) gold nanoparticles (GNPs) using Clavam, pharmaceutical form of amoxicillin which contains a mixture of amoxicillin and potassium salt of clavulanic acid, at room temperature (25–30 °C). The clavam stabilized GNPs are characterized using various techniques including UV–Visible, FT-IR spectrophotometry and transmission electron microscopy (TEM). Tunable release of clavam from clavam stabilized GNPs is demonstrated using intracellular concentrations of glutathione (GSH). The process is monitored using an UV–Vis spectroscopy and the amount of clavam released in terms of amoxicillin concentration is quantitatively estimated using reverse phase high performance liquid chromatographic (RP-HPLC) technique. In vitro study reveals that the clavam released from GNPs' surface was found to show a significant enhancement in antibacterial activity against Escherichia coli and the cause of enhancement is addressed. - Graphical abstract: Stable and nearly monodisperse gold nanoparticles (GNPs) are prepared at room temperature (~ 25–30 °C) using clavam; commercial form of amoxicillin antibiotic. Tunable release of clavam from clavam stabilized GNPs is demonstrated by the addition of varying concentrations of glutathione. Interactions between clavam and gold core are investigated in detail. The mechanism of enhanced antimicrobial activity of clavam released from clavam stabilized GNPs is probed. - Highlights: • Gold nanoparticles (GNPs) are prepared without reducing agent using antibiotic clavam TR . • Our work shed lights on the nature of interaction between the clavam and GNPs. • Sustained release of clavam from clavam stabilized GNPs is demonstrated using glutathione. • Antimicrobial activity of the released clavam is confirmed using various techniques. • Our study suggests that the clavam released from GNPs shows better inhibition of E. coli

  5. Tunable release of clavam from clavam stabilized gold nanoparticles — Design, characterization and antimicrobial study

    Energy Technology Data Exchange (ETDEWEB)

    Manju, V. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006 (India); Dhandapani, P. [Corrosion Materials and Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu, 630006 (India); Gurusamy Neelavannan, M. [Characterization and Measurement lab, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006 (India); Maruthamuthu, S. [Corrosion Materials and Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu, 630006 (India); Berchmans, S. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006 (India); Palaniappan, A., E-mail: palani112@gmail.com [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630006 (India)

    2015-04-01

    A facile one-step approach is developed to synthesize highly stable (up to 6 months) gold nanoparticles (GNPs) using Clavam, pharmaceutical form of amoxicillin which contains a mixture of amoxicillin and potassium salt of clavulanic acid, at room temperature (25–30 °C). The clavam stabilized GNPs are characterized using various techniques including UV–Visible, FT-IR spectrophotometry and transmission electron microscopy (TEM). Tunable release of clavam from clavam stabilized GNPs is demonstrated using intracellular concentrations of glutathione (GSH). The process is monitored using an UV–Vis spectroscopy and the amount of clavam released in terms of amoxicillin concentration is quantitatively estimated using reverse phase high performance liquid chromatographic (RP-HPLC) technique. In vitro study reveals that the clavam released from GNPs' surface was found to show a significant enhancement in antibacterial activity against Escherichia coli and the cause of enhancement is addressed. - Graphical abstract: Stable and nearly monodisperse gold nanoparticles (GNPs) are prepared at room temperature (~ 25–30 °C) using clavam; commercial form of amoxicillin antibiotic. Tunable release of clavam from clavam stabilized GNPs is demonstrated by the addition of varying concentrations of glutathione. Interactions between clavam and gold core are investigated in detail. The mechanism of enhanced antimicrobial activity of clavam released from clavam stabilized GNPs is probed. - Highlights: • Gold nanoparticles (GNPs) are prepared without reducing agent using antibiotic clavam{sup TR}. • Our work shed lights on the nature of interaction between the clavam and GNPs. • Sustained release of clavam from clavam stabilized GNPs is demonstrated using glutathione. • Antimicrobial activity of the released clavam is confirmed using various techniques. • Our study suggests that the clavam released from GNPs shows better inhibition of E. coli.

  6. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury

    DEFF Research Database (Denmark)

    Larsen, Agnete; Kolind, Kristian; Pedersen, Dan Sonne

    2008-01-01

    neural stem cell response. We conclude that bio-liberated gold ions possess pronounced anti-inflammatory and neuron-protective capacities in the brain and suggest that metallic gold has clinical potentials. Intra-cerebral application of metallic gold as a pharmaceutical source of gold ions represents......Traumatic brain injury results in loss of neurons caused as much by the resulting neuroinflammation as by the injury. Gold salts are known to be immunosuppressive, but their use are limited by nephrotoxicity. However, as we have proven that implants of pure metallic gold release gold ions which do...... a completely new medical concept that bypasses the blood-brain-barrier and allows direct drug delivery to inflamed brain tissue....

  7. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth

    DEFF Research Database (Denmark)

    Georgiev, P.; Bojinova, A.; Kostova, B.

    2013-01-01

    In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during...... the synthesis process the nanoparticle s' sizes were obtained. To demonstrate the applicability and the reliability of the proposed experimental approach we studied the nanoparticles growth at two different temperatures by spectrophotometric measurements and compared them with the results from AFM experimental...

  8. Fabrication of atomic-scale gold junctions by electrochemical plating using a common medical liquid

    Science.gov (United States)

    Umeno, A.; Hirakawa, K.

    2005-04-01

    Fabrication of nanometer-separated gold junctions has been performed using "iodine tincture," a medical liquid known as a disinfectant, as an etching/deposition electrolyte. In the gold-dissolved iodine tincture, gold electrodes were grown or eroded slowly enough to form quantum point contacts in an atomic scale. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at room temperature (e: the elementary charge, h: the Planck constant). Iodine tincture is a commercially available common material, which makes the fabrication process to be simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinarily strong acids.

  9. Fabrication Of Atomic-scale Gold Junctions By Electrochemical Plating Technique Using A Common Medical Disinfectant

    Science.gov (United States)

    Umeno, Akinori; Hirakawa, Kazuhiko

    2005-06-01

    Iodine tincture, a medical liquid familiar as a disinfectant, was introduced as an etching/deposition electrolyte for the fabrication of nanometer-separated gold electrodes. In the gold dissolved iodine tincture, the gold electrodes were grown or eroded slowly in atomic scale, enough to form quantum point contacts. The resistance evolution during the electrochemical deposition showed plateaus at integer multiples of the resistance quantum, (2e2/h)-1, at the room temperature. The iodine tincture is a commercially available common material, which makes the fabrication process to be the simple and cost effective. Moreover, in contrast to the conventional electrochemical approaches, this method is free from highly toxic cyanide compounds or extraordinary strong acid. We expect this method to be a useful interface between single-molecular-scale structures and macroscopic opto-electronic devices.

  10. Simulations of quantum transport in nanoscale systems: application to atomic gold and silver wires

    DEFF Research Database (Denmark)

    Mozos, J.L.; Ordejon, P.; Brandbyge, Mads

    2002-01-01

    . The potential drop profile and induced electronic current (and therefore the conductance) are obtained from first principles. The method takes into account the atomic structure of both the nanoscale structure and the semi-infinite electrodes through which the potential is applied. Non-equilibrium Green......'s function techniques are used to calculate the quantum conductance. Here we apply the method to the study of the electronic transport in wires of gold and silver with atomic thickness. We show the results of our calculations, and compare with some of the abundant experimental data on these systems....

  11. Automated installation for atomic emission determination of gold, silver and platinum group metals

    International Nuclear Information System (INIS)

    Zayakina, S.B.; Anoshin, G.N.; Gerasimov, P.A.; Smirnov, A.V.

    1999-01-01

    An automated installation for the direct atomic emission determination of silver, gold and platinum-group metals (Ru) in geological and geochemical materials with software for automated data acquisition and handling is designed and developed. The installation consists of a DFS-458 diffraction spectrograph, a MAES-10 multichannel analyzer of emission spectra, and a dual-jet plasmatron. A library of spectral lines of almost all elements excited in the dual-jet plasmatron is complied [ru

  12. Biological Atomic Force Microscopy for Imaging Gold-Labeled Liposomes on Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ana-María Zaske

    2013-01-01

    Full Text Available Although atomic force microscopy (AFM has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.

  13. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode.

    Science.gov (United States)

    Adams, Kelly L; Jena, Bikash Kumar; Percival, Stephen J; Zhang, Bo

    2011-02-01

    Here we report a new type of microelectrode sensor for single-cell exocytotic dopamine release. The new microsensor is built by forming a gold-nanoparticle (AuNP) network on a carbon fiber microelectrode. First a gold surface is obtained on a carbon fiber microdisk electrode by partially etching away the carbon followed by electrochemical deposition of gold into the pore. The gold surface is chemically functionalized with a sol-gel silicate network derived from (3-mercaptopropyl)trimethoxysilane (MPTS). A AuNP network is formed by immobilizing Au nanoparticles onto the thiol groups in the sol-gel silicate network. The AuNP-network microelectrode has been characterized by scanning electron microscopy (SEM) and steady-state voltammetry. The AuNP-network microelectrode has been used for amperometric detection of exocytotic dopamine secretion from individual pheochromocytoma (PC12) cells. The results show significant differences in the kinetic peak parameters including shorter rise time, decay time, and half-width as compared to a bare carbon fiber electrode equivalent. These results indicate AuNP-network microelectrodes possess an excellent sensing activity for single-cell exocytotic catecholamine release, specifically dopamine. Moreover, key advantageous properties inherent to bare carbon fiber microelectrodes (i.e., rigidity, flexibility, and small size) are maintained in addition to an observed prolonged shelf life stability and resistance to cellular debris fouling and dopamine polymerization.

  14. Light-Regulated Release of Entrapped Drugs from Photoresponsive Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kaniknun Sreejivungsa

    2016-01-01

    Full Text Available Release of a payload in a spatiotemporal fashion has a substantial impact on increasing therapeutic efficacy. In this work, a novel monolayer of gold nanoparticles (AuNPs featuring light-responsive ligands was investigated as a potential drug carrier whose drug release can be triggered by UV light. Hydrophobic molecules were noncovalently entrapped in the compartments of its monolayers. Once irradiated with UV light, the dinitrobenzyl linker was cleaved, leading to release of the entrapped agent. AuNPs were characterized using UV spectrophotometry, TEM, and a zetasizer. A naturally occurring compound extracted from Goniothalamus elegans Ast was chosen as a hydrophobic model drug. Entrapment and release of dye were monitored using fluorimetry. The percent encapsulation of dye was of 13.53%. Entrapped dye can be released upon UV irradiation and can be regulated by changing irradiation time. Up to 83.95±2.2% entrapped dye can be released after irradiation for 20 minutes. In the absence of UV light, dye release was only 19.75%. For comparison purposes, AuNPs having no dinitrobenzyl groups showed a minimal release of 12.23% and 11.69% with and without UV light, respectively. This demonstrated an alternative strategy to encapsulate drugs using a noncovalent approach followed by their controlled release upon UV irradiation.

  15. Modified release paracetamol overdose: a prospective observational study (ATOM-3).

    Science.gov (United States)

    Chiew, Angela L; Isbister, Geoffrey K; Page, Colin B; Kirby, Katharine A; Chan, Betty S H; Buckley, Nicholas A

    2018-02-16

    Modified-release (MR) paracetamol is available in many countries as 665 mg tablets of which 69% is MR and 31% is immediate release. There are concerns that MR paracetamol overdose has higher rates of liver injury despite standard treatment algorithms. The objective of this study was to describe the clinical characteristics and outcomes of acute MR paracetamol overdose. Prospective observational study, recruiting patients from January 2013 to June 2017, from five clinical toxicology units and calls to two Poisons Information Centres in Australia. Included were patients >14 years who ingested ≥10 g or 200 mg/kg (whichever is less) of MR paracetamol. Data collected included demographics, ingestion history, pathology results, treatments, and outcomes including hepatotoxicity (ALT >1000 U/L). In total, 116 patients were recruited, 85(73%) were female. The median dose ingested was 32 g (IQR: 20-49 g) and median time to presentation was 3 h (IQR: 2-9 h). 78(67%) had an initial paracetamol concentration above the nomogram line (150 mg/L at 4 h). A further 12(10%) crossed the nomogram after repeat paracetamol measurements, of which five crossed after two non-toxic levels 4 h apart. Six had a double paracetamol peak, in three occurring >24 h post-ingestion. 113(97%) received acetylcysteine of which 67 received prolonged treatment beyond the standard 21 h. This was because of an elevated paracetamol concentration at the completion of acetylcysteine in 39 (median paracetamol concentration 25 mg/L, IQR: 16-62 mg/L). 21 (18%) developed hepatotoxicity, including six treated within 8 h of ingestion. Activated charcoal and double doses of acetylcysteine did not significantly decrease the risk of hepatotoxicity. Drug regulatory authorities are considering restrictions on MR paracetamol preparations. Following an acute MR paracetamol overdose, this study found that many patients had a persistently elevated paracetamol concentrations, many required

  16. Release criteria for decommissioning of the Shippingport Atomic Power Station

    International Nuclear Information System (INIS)

    Eger, K.J.; Gardner, D.L.; Giordano, R.J.

    1986-01-01

    The United States Department of Energy (DOE) has established guidelines for allowable levels of residual radioactivity at remote sites in the Surplus Facilities Management Program (SFMP). These guidelines specify that doses to the public from this residual radioactivity must not exceed 500 mrem/year (for up to five years) or 100 mrem/year (for a lifetime), regardless of the use of the land. The guidelines also specify that exposures be further limited, depending on ALARA considerations. The decommissioning of the Shippingport Atomic Power Station, done under the auspices of SFMP, is being performed in accordance with these guidelines. It follows that, at the conclusion of the project, the concentrations of residual radioactivity, identified both by isotope and location (x,y,z), must be low enough so that the guidelines (500,100) are not exceeded. Furthermore, the concentrations must be low enough so that additional action which might be taken to reduce them cannot cost effectively decrease the dose to the public. A cost-benefit analysis, based on actual conditions at Shippingport, is being prepared to identify these ''low-enough'' concentrations. Once identified, these concentrations will comprise the release criteria for the site. The analysis will be developed by (1) performing an initial site characterization, (2) employing pathways analyses to compute the dose to a future occupant, (3) costing of proposed site modifications, and (4) repeating a pathways analysis based on each ''as-modified'' location on the site. The result will be a paired set of data relating the cost of modification to the reduction in the dose to the future occupant

  17. Mechanistic insights from atomically precise gold nanocluster-catalyzed reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Shuo Zhao

    2016-10-01

    Full Text Available A trio of thiolate-protected atomically precise gold nanoclusters, [Au23(S-c-C6H1116]–, Au24(SCH2pHtBu20 and [Au25(SCH2CH2pH18]–, are utilized as catalysts for 4-nitrophenol (4-NP reduction to 4-aminophenol (4-AP. Despite nearly identical sizes (~1 nm, the three nanoclusters possess distinctly different atomic packing structures and surface ligand binding modes, which contribute to different catalytic performance. The [Au23(S-c-C6H1116]– nanocluster shows the highest activity with a kinetic rate constant of 0.0370 s−1, which is higher than those of Au24(SCH2pHtBu20 (0.0090 s−1 and [Au25(SCH2CH2pH18]– (0.0242 s−1. Such a trio of gold nanoclusters indicate that the atomic packing mode and electronic structure play a crucial role in determining their catalytic performance.

  18. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Senturk, Hasan Basri; Gundogdu, Ali; Bulut, Volkan Numan; Duran, Celal; Soylak, Mustafa; Elci, Latif; Tufekci, Mehmet

    2007-01-01

    A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 mol L -1 HNO 3 in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 μg L -1 , respectively. The preconcentration factor was 200. The relative standard deviation of the method was -1 . The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples

  19. From tunneling to contact: Inelastic signals in an atomic gold junction from first principles

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Lorente, N.; Paulsson, Magnus

    2007-01-01

    The evolution of electron conductance in the presence of inelastic effects is studied as an atomic gold contact is formed evolving from a low-conductance regime (tunneling) to a high-conductance regime (contact). In order to characterize each regime, we perform density-functional theory (DFT......) calculations to study the geometric and electronic structures, together with the strength of the atomic bonds and the associated vibrational frequencies. The conductance is calculated by, first, evaluating the transmission of electrons through the system and, second, by calculating the conductance change due...... in the tunneling regime to a decrease in conductance in the contact regime when the bias voltage matches a vibrational threshold. Our DFT-based calculations actually show that the effect of vibrational modes in electron conductance is rather complex, in particular, when modes localized in the contact region...

  20. First-principles description of atomic gold chains on Ge(001)

    KAUST Repository

    López-Moreno, S.

    2010-01-25

    We have performed density-functional theory calculations, including the spin-orbit correction, to investigate atomic gold chains on Ge(001). A set of 26 possible configurations of the Au/Ge(001) system with c(4×2) and c(8×2) symmetries is studied. Our data show that the c(4×2) order results in the lowest energy, which is not in direct agreement with recent experiments. Using total-energy calculations, we are able to explain these differences. We address the electronic band structure and apply the Tersoff-Hamann approach to correlate our data to scanning-tunneling microscopy (STM). We obtain two highly competitive structures of the atomic Au chains for which we report simulated STM images in order to clarify the composition of the experimental Au/Ge(001) surface.

  1. Determination of trace elements in refined gold samples by inductively coupled plasma atomic emission spectrometry

    Directory of Open Access Journals (Sweden)

    Steharnik Mirjana

    2013-01-01

    Full Text Available This paper presents a method for determination the trace contents of silver, copper, iron, palladium, zinc and platinum in refined gold samples. Simultaneous inductively coupled plasma atomic emission spectrometer with radial torch position and cross flow nebulizer was used for determination. In order to compare the different calibration strategies, two sets of calibration standards were prepared. The first set was based on matrix matched calibration standards and the second was prepared without the addition of matrix material. Detection limits for matrix matching calibrations were higher for some elements than those without matrix matching. In addition, the internal standardization method was applied and experiments indicated that indium was the best option as internal standard. The obtained results for gold sample by matrix matching and matrix free calibrations were compared with the obtained results by standard addition method. The accuracy of the methods was tested performing recovery test. Recoveries for spiked sample were in the range of 90-115 %. The accuracy of the methods was also tested by analysis of certified reference material of high pure goldAuGHP1. The best results were achieved by matrix free calibration and standard addition method using indium as internal standard at wavelength of 230 nm. [Projekat Ministarstva nauke Republike Srbije, br. 34024: Development of Technologies for Recycling of Precious, Rare and Associated Metals from Solid Waste in Serbia to High Purity Products

  2. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  3. Multifunctional gold nanoparticle layers for controllable capture and release of proteins.

    Science.gov (United States)

    Li, Zhenhua; Liu, Feng; Yuan, Yuqi; Wu, Jingxian; Wang, Hongwei; Yuan, Lin; Chen, Hong

    2017-10-19

    Protein modified functional surfaces have been applied extensively in the field of biomaterials and medicine. Regulation of the amount and activity of proteins on the material surface is always a challenge and a key research issue. A multifunctional micro/nano-composite based surface system for efficient controllable capture and release of proteins is proposed and studied in the present paper. This novel system contains (1) gold nanoparticles (AuNPs) co-modified with an enzyme and poly(methacrylic acid) (PMAA), e.g., AuNP-pyrophosphatase (PPase)-PMAA, as nanostructured protein carriers; (2) gold nanoparticle layers (GNPLs) modified with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), i.e., GNPL-PDMAEMA, as a micro/nano-structured support platform for surface bioactivity regulation. The capture-release of proteins and the regulation of surface bioactivity in this composite surface system were investigated under different conditions. The results showed that the proposed system is capable of protein capture and release with simple adjustment of the pH value from neutral pH to basic pH. When the pH of the system is stabilized at 7.0, the GNPL-PDMAEMA surface could adsorb plenty of AuNP-PPase-PMAA conjugates and maximum surface bioactivity occurred, but when the pH of the system is adjusted to 10.0, the GNPL-PDMAEMA surface could liberate almost all the AuNP-PPase-PMAA conjugates and thus surface bioactivity disappeared. Meanwhile, by cyclical variations between pH 7.0 and pH 10.0, this surface protein capture/release system could realize recycling and reuse of one certain protein multiple times, a series of proteins acting sequentially in accordance with pre-designed procedures, and a functional combination of multiple proteins. This recyclable multifunctional surface with the capability of protein capture/release has great potential in many applications, such as biomonitoring and biomolecule immobilization.

  4. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide.

    Science.gov (United States)

    Posha, Biyas; Nambiar, Sindhu R; Sandhyarani, N

    2018-03-15

    We have constructed an aptamer immobilized gold atomic cluster mediated, ultrasensitive electrochemical biosensor (Apt/AuAC/Au) for LPS detection without any additional signal amplification strategy. The aptamer self-assemble onto the gold atomic clusters makes Apt/AuAC/Au an excellent platform for the LPS detection. Differential pulse voltammetry and EIS were used for the quantitative LPS detection. The Apt/AuAC/Au sensor offers an ultrasensitive and selective detection of LPS down to 7.94 × 10 -21 M level with a wide dynamic range from 0.01 attomolar to 1pM. The sensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the diluted insulin sample with various concentration of LPS and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this sensor provides an efficient and promising detection of an even trace amount of LPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    Science.gov (United States)

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gold nanocages covered by smart polymers for controlled release with near-infrared light.

    Science.gov (United States)

    Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan

    2009-12-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.

  7. Influence of target thickness on the release of radioactive atoms

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Julien, E-mail: guillotjulien@ipno.in2p3.fr [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France); Roussière, Brigitte [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France); Tusseau-Nenez, Sandrine [Physique de la Matière Condensée Ecole Polytechnique/CNRS UMR 7643 – Université Paris Saclay, F-91128 Palaiseau Cedex (France); Barré-Boscher, Nicole; Borg, Elie; Martin, Julien [Institut de Physique Nucléaire CNRS/IN2P3 UMR 8608 – Université Paris Sud – Université Paris Saclay, F-91406 Orsay Cedex (France)

    2017-03-01

    Nowadays, intense exotic beams are needed in order to study nuclei with very short half-life. To increase the release efficiency of the fission products, all the target characteristics involved must be improved (e.g. chemical composition, dimensions, physicochemical properties such as grain size, porosity, density…). In this article, we study the impact of the target thickness. Released fractions measured from graphite and uranium carbide pellets are presented as well as Monte-Carlo simulations of the Brownian motion.

  8. Atomic scattering factor of the ASTRO-H (Hitomi) SXT reflector around the gold's L edges

    DEFF Research Database (Denmark)

    Kikuchi, Naomichi; Kurashima, Sho; Ishida, Manabu

    2016-01-01

    The atomic scattering factor in the energy range of 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) is reported. The large effective area of the SXT makes use of photon spectra above 10 keV viable, unlike most other X-ray satellites with total-reflection mirror optics. Presence of gold's L-edges...... in the energy band is a major issue, as it complicates the function of the effective area. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4-0.7 eV were made in the synchrotron beamline Spring-8 BL01B1. We obtained atomic scattering factors f1 and f......2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henke's atomic scattering factor....

  9. In vitro controlled release of cisplatin from gold-carbon nanobottles via cleavable linkages

    Directory of Open Access Journals (Sweden)

    Li J

    2015-12-01

    Full Text Available Jian Li,1 Sia Lee Yoong,2 Wei Jiang Goh,2 Bertrand Czarny,1 Zhi Yang,1 Kingshuk Poddar,2,3 Michal M Dykas,2,3 Abhijeet Patra,2,3 T Venkatesan,2,3 Tomasz Panczyk,4 Chengkuo Lee,5 Giorgia Pastorin1–3 1Department of Pharmacy, National University of Singapore, 2NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS, 3NUSNNI-NanoCore, National University of Singapore, Singapore; 4Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland; 5Department of Electrical and Computer Engineering, National University of Singapore, Singapore Abstract: Carbon nanotubes’ (CNTs hollow interior space has been explored for biomedical applications, such as drug repository against undesirable inactivation. To further devise CNTs as smart material for controlled release of cargo molecules, we propose the concept of “gold-carbon nanobottles”. After encapsulating cis-diammineplatinum(II dichloride (cisplatin, CDDP in CNTs, we covalently attached gold nanoparticles (AuNPs at the open-tips of CNTs via different cleavable linkages, namely hydrazine, ester, and disulfide-containing linkages. Compared with our previous study in which more than 80% of CDDP leaked from CNTs in 2 hours, AuNPs were found to significantly decrease such spontaneous release to <40%. In addition, CDDP release from AuNP-capped CNTs via disulfide linkage was selectively enhanced by twofolds in reducing conditions (namely with 1 mM dithiothreitol [DTT], which mimic the intracellular environment. We treated human colon adenocarcinoma cells HCT116 with our CDDP-loaded gold-carbon nanobottles and examined the cell viability using lactate dehydrogenase assay. Interestingly, we found that our nanobottles with cleavable disulfide linkage exerted stronger cytotoxic effect in HCT116 compared with normal human fetal lung fibroblast cells IMR-90. Therefore, we infer that our nanobottles strategy with inbuilt disulfide linkage could

  10. Carbon nanotubes randomly decorated with gold clusters: from nano2hybrid atomic structures to gas sensing prototypes

    International Nuclear Information System (INIS)

    Charlier, J-C; Zanolli, Z; Arnaud, L; Avilov, I V; Felten, A; Pireaux, J-J; Delgado, M; Demoisson, F; Reniers, F; Espinosa, E H; Ionescu, R; Leghrib, R; Llobet, E; Ewels, C P; Suarez-Martinez, I; Guillot, J; Mansour, A; Migeon, H-N; Watson, G E

    2009-01-01

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano 2 hybrids is quantified for the detection of toxic species like NO 2 , CO, C 2 H 5 OH and C 2 H 4 .

  11. Carbon nanotubes randomly decorated with gold clusters: from nano{sup 2}hybrid atomic structures to gas sensing prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Charlier, J-C; Zanolli, Z [Unite de Physico-Chimie et de Physique des Materiaux (PCPM), European Theoretical Spectroscopy Facility (ETSF), Universite Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium); Arnaud, L; Avilov, I V; Felten, A; Pireaux, J-J [Centre de Recherche en Physique de la Matiere et du Rayonnement (PMR-LISE), Facultes Universitaires Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur (Belgium); Delgado, M [Sensotran, s.l., Avenida Remolar 31, E-08820 El Prat de Llobregat, Barcelona (Spain); Demoisson, F; Reniers, F [Service de Chimie Analytique et Chimie des Interfaces (CHANI), Universite Libre de Bruxelles, Faculte des Sciences, CP255, Boulevard du Triomphe 2, B-1050 Bruxelles (Belgium); Espinosa, E H; Ionescu, R; Leghrib, R; Llobet, E [Department of Electronic Engineering, Universitat Rovira i Virgili, Avenida Paisos Catalans 26, E-43007 Tarragona (Spain); Ewels, C P; Suarez-Martinez, I [Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, 2 rue de la Houssiniere-BP 32229, F-44322 Nantes Cedex 3 (France); Guillot, J; Mansour, A; Migeon, H-N [Departement Science et Analyse des Materiaux, Centre de Recherche Public-Gabriel Lippmann, rue du Brill 41, L-4422 Belvaux (Luxembourg); Watson, G E, E-mail: jean-jacques.pireaux@fundp.ac.b [Vega Science Trust, Unit 118, Science Park SQ, Brighton, BN1 9SB (United Kingdom)

    2009-09-16

    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano{sup 2}hybrids is quantified for the detection of toxic species like NO{sub 2}, CO, C{sub 2}H{sub 5}OH and C{sub 2}H{sub 4}.

  12. Adhesion and Atomic Structures of Gold on Ceria Nanostructures:The Role of Surface Structure and Oxidation State of Ceria Supports

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yuyuan [Northwestern University, Evanston; Wu, Zili [ORNL; Wen, Jianguo [Argonne National Laboratory (ANL); Poeppelmeier, Kenneth R [Northwestern University, Evanston; Marks, Laurence D [Northwestern University, Evanston

    2015-01-01

    Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorod support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.

  13. Manganese dioxide causes spurious gold values in flame atomic-absorption readings from HBr-Br2 digestions

    Science.gov (United States)

    Campbell, W.L.

    1981-01-01

    False readings, apparently caused by the presence of high concentrations of manganese dioxide, have been observed in our current flame atomic-absorption procedure for the determination of gold. After a hydrobromic acid (HBr)-bromine (Br2) leach, simply heating the sample to boiling to remove excess Br2 prior to extraction with methyl-isobutyl-ketone (MIBK) eliminates these false readings. ?? 1981.

  14. Revisiting the physical processes of vapodeposited thin gold films on chemically modified glass by atomic force and surface plasmon microscopies

    Science.gov (United States)

    Roland, Thibault; Khalil, André; Tanenbaum, Aaron; Berguiga, Lotfi; Delichère, Pierre; Bonneviot, Laurent; Elezgaray, Juan; Arneodo, Alain; Argoul, Françoise

    2009-11-01

    The preparation of very thin (at the scale of a few tens of nanometers) gold films by thermal evaporation and deposition on a solid substrate (glass) remains a key step for the elaboration of transparent and sensitive optical biosensors. We study the influence of the glass surface treatment and its thermal conductivity on the structure and composition of evaporated gold films. Using a combination of atomic force microscopy (AFM), high resolution surface plasmon resonance (SPR) imaging, and X-ray photoelectron spectroscopy (XPS), we demonstrate that the grafting of a layer of long chain mercaptant, using 11-mercaptoundecyltrimethoxysilane (SξSi), prior to gold deposition produces a drastic modification of gold inner and surface textures. A thorough investigation of AFM image topography by 2D wavelet-based segmentation method reveals the flat conical shape of the gold surface grains and their shape invariance with the glass surface chemical treatment. However, this treatment leads to a drastic decrease of the mean size and polydispersity of these grains by a factor of 2, thereby lowering the gold surface roughness. The rationale is that the combination of surface forces and thermal transfer drives the formation of homogeneous and flatter gold films.

  15. Closing of Coster-Kronig transitions in multiply ionised gold atoms

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Czarnota, M.; Fijal, I.; Jaskola, M.; Korman, A.; Kretschmer, W.; Pajek, M.; Semaniak, J.

    2003-01-01

    The paper discusses the effect of closing of L- and M-shell Coster-Kronig (CK) transitions in multiply ionised Au atoms, for which the selected CK transitions become energetically forbidden. This effect plays an important role when the Coster-Kronig energy for single-hole configuration is relatively low, being comparable with a change of the electronic binding energies in multiply ionised atom. We show, by using a simplified model, that for gold the effect of closing of CK transitions occurs for strong L 1 -L 3 M 4,5 transition for the L 1 -subshell as well as the M 3 -M 5 N 6,7 and M 4 -M 5 O 3,4 CK transitions for the M 3 - and M 4 -subshell, respectively. We demonstrate that the discussed effect of closing CK transitions substantially changes the X-ray fluorescence and Coster-Kronig yields and thus has to be considered in interpretation of X-rays excited by heavy ion impact

  16. Ionic double layer of atomically flat gold formed on mica templates

    International Nuclear Information System (INIS)

    Chilcott, Terry C.; Wong, Elicia L.S.; Coster, Hans G.L.; Coster, Adelle C.F.; James, Michael

    2009-01-01

    Electrical impedance spectroscopy characterisations of gold surfaces formed on mica templates in contact with potassium chloride electrolytes were performed at the electric potential of zero charge over a frequency range of 6 x 10 -3 to 100 x 10 3 Hz. They revealed constant-phase-angle (CPA) behaviour with a frequency exponent value of 0.96 for surfaces that were also characterised as atomically flat using atomic force microscopy (AFM). As the frequency exponent value was only marginally less than unity, the CPA behaviour yielded a realistic estimate for the capacitance of the ionic double layer. The retention of the CPA behaviour was attributed to specific adsorption of chloride ions which was detected as an adsorption conductance element in parallel with the CPA impedance element. Significant variations in the ionic double layer capacitance as well as the adsorption conductance were observed for electrolyte concentrations ranging from 33 μM to 100 mM, but neither of these variations correlated with concentration. This is consistent with the electrical properties of the interface deriving principally from the inner or Stern region of the double layer.

  17. Temperature effects on the occurrence of long interatomic distances in atomic chains formed from stretched gold nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, M J [Laboratorio Nacional de Luz SIncrotron, CP 6192, 13084-971 Campinas, SP (Brazil); Autreto, P A S; Rodrigues, V; Galvao, D S; Ugarte, D [Instituto de Fisica Gleb Wataghin, UNICAMP, CP 6165, 13083-970 Campinas, SP (Brazil); Legoas, S B [Departamento de Fisica, CCT, Universidade Federal de Roraima, 69304-000 Boa Vista, RR (Brazil); Sato, F, E-mail: dmugarte@ifi.unicamp.br [Departamento de Fisica, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG (Brazil)

    2011-03-04

    The origin of long interatomic distances in suspended gold atomic chains formed from stretched nanowires remains the object of debate despite the large amount of theoretical and experimental work. Here, we report new atomic resolution electron microscopy observations acquired at room and liquid-nitrogen temperatures and theoretical results from ab initio quantum molecular dynamics on chain formation and stability. These new data are suggestive that the long distances are due to contamination by carbon atoms originating from the decomposition of adsorbed hydrocarbon molecules.

  18. Atom and Amine Adsorption on Flat and Stepped Gold Surfaces & Structure, Stability and Spin Ordering in Manganese Sulfide Clusters

    Science.gov (United States)

    Lewoczko, April D.

    In part I, we investigate gold catalysis in the chemistry of organonitrogen compounds. We examine the adsorption of oxygen, nitrogen and sulfur atoms on the gold (111), (100) and (211) surfaces using density functional theory (DFT). Sulfur atoms bind most strongly, followed by oxygen and nitrogen atoms with stronger adsorption for greater coordination to the surface. We see a trend of stronger adsorption to undercoordinated gold, but find it is non-universal with the adsorption strength trend: (111) > (211) > (100). We consider the diffusion of oxygen, nitrogen and sulfur adatoms and find facile long-range diffusion of oxygen atoms on the (100) surface. Lastly, we compare the adsorption of methylamine on gold to that of a selection of alkylamines, methanol and methanethiol. In each case, the ontop site is preferred with stronger adsorption at low coordinated gold. At oxygen atom coverages of 0.125 -- 0.25 ML on Au (111), we find cooperative adsorption of methylamine and oxygen atoms. Energetic costs for adsorbate tilt from the surface normal and rotation about the gold-nitrogen bond are calculated. While methylamine rotation is barrierless on the (111) and (211) surfaces, it has a low energetic barrier for the 0.125 ML and 0.25 ML O atom pre-covered Au (111) surfaces. In part II, we interpret the experimental mass spectrum of small gas phase manganese sulfide clusters using DFT and elucidate the role of ionicity and spin ordering in sizes with special stability, i.e. magic clusters. We first consider nine low lying minima (MnS)6 structures and reveal antiferromagnetic (AFM) spin ordering with a ˜0.1 eV/pair AFM energy benefit and a ˜0.1 A shrinkage of average Mn-Mn distances over clusters with ferromagnetic (FM) spin ordering. We calculate energetic barriers for interconversion between the two lowest lying (MnS)6 isomers and predict an elevated cluster melting temperature due to increased configurational entropy in a pre-melted state. Second, we demonstrate the

  19. Bacterial Toxin-Triggered Drug Release from Gold Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya; Zhang, Li; Olson, Sage; Aryal, Santosh; Obonyo, Marygorret; Vecchio, Kenneth; Huang, Chun-Ming; Zhang, Liangfang

    2011-01-01

    We report a new approach to selectively delivering antimicrobials to the sites of bacterial infections by utilizing bacterial toxins to activate drug release from gold nanoparticle-stabilized phospholipid liposomes. The binding of chitosan modified gold nanoparticles to the surface of liposomes can effectively prevent them from fusing with one another and from undesirable payload release in regular storage or physiological environments. However, once these protected liposomes “see” bacteria that secrete toxins, the toxins will insert into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. Using methicillin-resistant Staphycoccus aureus (MRSA) as a model bacterium and vacomycin as a model anti-MRSA antibiotic, we demonstrate that the synthesized gold nanoparticle-stabilized liposomes can completely release the encapsulated vacomycin within 24 h in the presence of MRSA bacteria and lead to inhibition of MRSA growth as effective as an equal amount of vacomycin loaded liposomes (without nanoparticle stabilizers) and free vacomycin. This bacterial toxin enabled drug release from nanoparticle-stabilized liposomes provides a new, safe and effective approach for the treatment of bacterial infections. This technique can be broadly applied to treat a variety of infections caused by bacteria that secrete pore-forming toxins. PMID:21344925

  20. An overview of the Gold King Mine Release and its Transport and Fate in the Animas and San Juan Rivers

    Science.gov (United States)

    On August 5, 2015, a large acidic mine pool trapped behind a collapsed mine structure and rock debris in the Gold King Mine (GKM) was accidently breached releasing approximately 11.3 million liters (3 million gallons) of low pH (~3) metal contaminated mine drainage into a small t...

  1. Illustration of a fingerprinting method to isolate Gold King Release Metals from Background Concentrations in the San Juan River

    Science.gov (United States)

    Detecting the Gold King Mine metals as the release plume passed was difficult once it entered the San Juan River on August 8, 2015. Plume metals concentrations were relatively low after 200 km of travel and deposition in the Animas River while background concentrations of the sa...

  2. Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Senturk, Hasan Basri; Gundogdu, Ali [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Bulut, Volkan Numan [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 28049 Giresun (Turkey); Duran, Celal [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Soylak, Mustafa [Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Elci, Latif [Department of Chemistry, Faculty of Arts and Sciences, Pamukkale University, 20020 Denizli (Turkey); Tufekci, Mehmet [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2007-10-22

    A simple and accurate method was developed for separation and enrichment of trace levels of gold in environmental samples. The method is based on the adsorption of Au(III)-diethyldithiocarbamate complex on Amberlite XAD-2000 resin prior to the analysis of gold by flame atomic absorption spectrometry after elution with 1 mol L{sup -1} HNO{sub 3} in acetone. Some parameters including nitric acid concentration, eluent type, matrix ions, sample volume, sample flow rate and adsorption capacity were investigated on the recovery of gold(III). The recovery values for gold(III) and detection limit of gold were greater than 95% and 16.6 {mu}g L{sup -1}, respectively. The preconcentration factor was 200. The relative standard deviation of the method was <6%. The adsorption capacity of the resin was 12.3 mg g{sup -1}. The validation of the presented procedure was checked by the analysis of CRM-SA-C Sandy Soil certified reference material. The presented procedure was applied to the determination of gold in some environmental samples.

  3. Release criteria for decommissioning of the Shippingport Atomic Power Station

    International Nuclear Information System (INIS)

    Eger, K.J.; Gardner, D.L.; Giordano, R.J.

    1986-01-01

    The United States Department of Energy (DOE) has established guidelines for allowable levels of residual radioactivity at remote sites in the Surplus Facilities Management Program (SFMP). These guidelines specify that doses to the public from this residual radioactivity must not exceed 500 mrem/year (for up to five years) or 100 mrem/year (for a lifetime), regardless of the use of the land. The guidelines also specify that exposures be further limited, depending on ALARA considerations. A cost-benefit analysis, based on actual conditions at Shippingport, is being prepared to identify these ''low-enough'' concentrations. These concentrations comprise the release criteria for the site. The analysis is developed by performing an initial site characterization, employing pathways analyses to compute the dose to a future occupant, costing of proposed site modifications, and repeating a pathways analysis based on each ''as-modified'' location on the site. The result are paired set of data relating the cost of modification to the reduction in the dose to the occupant. In this paper, details in each of the four major steps needed to prepare the cost-benefit analysis are discussed, as well as the sampling plan and estimated costs for site characterization

  4. A novel drug delivery system of gold nanorods with doxorubicin and study of drug release by single molecule spectroscopy.

    Science.gov (United States)

    Mirza, Agha Zeeshan

    2015-01-01

    The work presented here describes the fabrication of a novel drug delivery system, which consists of gold nanorods and doxorubicin, with the attachment of thioctic acid and folic acid, for the targeted release of drug to cancer cells. Doxorubicin, the potent anticancer drug, is widely used to treat various cancers. Gold nanorods were functionalized chemically to generate active groups for the attachment of drug molecules and subsequently attached to folic acid. The resulting nanostructure was characterized by UV-visible-NIR spectrophotometry, TEM techniques, zeta potential measurement and subsequently used to target folate receptor-expressing cancers cells for the delivery of doxorubicin. We generated a release profile for the release of doxorubicin from the nanostructures in KB cells using single-molecule fluorescence intensity images and fluorescence lifetime images. The results indicated that the nanorods were able to enter the target cells because of the attachment of folic acid and used as a carriers for the targeted delivery of doxorubicin.

  5. Synthesis of PET-PLA/Drug Nanoparticles and Their Effect with Gold Nanoparticles for Controlled Drug Release in Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    K. Sathish Kumar

    2008-01-01

    Full Text Available Polyethylene terephthalate-polylactic acid copolymer (PET-PLA was synthesized from bis (2-hydroxyethyl terephthalate and L-lactic acid oligomer in the presence of manganese antimony glycoxide as a catalyst. The synthesized PET-PLA copolymer was used for controlled drug release systems with gold nanoparticles. Fluorouracil containing PET-PLA nanocapsules was prepared in the presence of gold nanoparticles by solvent evaporation method. The morphologies of the nanocapsules were characterized using scanning electron microscopy and transmission electron microscopy. Controlled release of Fu and Fu@Au was carried out in 0.1 M phosphate buffer (pH 7.4 and 0.1 M HCl solution. The results indicated that the drug release for gold nanoparticles/fluorouracil (Au@Fu incorporated PET-PLA nanocapsules was controlled and slow compared to Fu incorporated PET-PLA nanocapsules. This may be due to the interaction between the gold nanoparticles and fluorouracil in PET-PLA nanocapsules.

  6. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  7. Functionalization of gold and nanocrystalline diamond atomic force microscope tips for single molecule force spectroscopy

    Science.gov (United States)

    Drew, Michael E.

    The atomic force microscope (AFM) has fueled interest in nanotechnology because of its ability to image surfaces at the nanometer level and act as a molecular force sensor. Functionalization of the surface of an AFM tip surface in a stable, controlled manner expands the capabilities of the AFM and enables additional applications in the fields of single molecule force spectroscopy and nanolithography. Two AFM tip functionalizations are described: the assembly of tripodal molecular tips onto gold AFM tips and the photochemical attachment of terminal alkenes to nanocrystalline diamond (NCD) AFM tips. Two separate tripodal molecules with different linker lengths and a monopodal molecule terminated with biotin were synthesized to attach to a gold AFM tip for single molecule force spectroscopy. The immobilization of these molecules was examined by contact angle measurements, spectroscopic ellipsometry, infrared, and near edge x-ray absorption fine structure (NEXAFS) spectroscopy. All three molecules displayed rupture forces that agreed with previously reported values for the biotin--avidin rupture. The tripodal molecular tip displayed narrower distribution in their force histograms than the monopodal molecular tip. The performance of the tripodal molecular tip was compared to the monopodal molecular tip in single molecule force spectroscopy studies. Over repeated measurements, the distribution of forces for the monopodal molecular tip shifted to lower forces, whereas the distribution for the tripodal molecular tip remained constant throughout. Loading rate dependence and control experiments further indicated that the rupture forces of the tripod molecular tips were specific to the biotin--NeutrAvidin interaction. The second functionalization method used the photochemical attachment of undecylenic acid to NCD AFM tips. The photochemical attachment of undecylenic acid to hydrogen-terminated NCD wafer surfaces was investigated by contact angle measurements, x

  8. Separation of gold, palladium and platinum in chromite by anion exchange chromatography for inductively coupled plasma atomic emission spectrometric analysis

    International Nuclear Information System (INIS)

    Choi, Kwang Soon; Lee, Chang Heon; Park, Yeong Jae; Joe, Kih Soo; Kim, Won Ho

    2001-01-01

    A study has been carried out on the separation of gold, iridium, palladium, rhodium, ruthenium and platinum in chromite samples and their quantitative determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). The dissolution condition of the minerals by fusion with sodium peroxide was optimized and chromatographic elution behavior of the rare metals was investigated by anion exchange chromatography. Spectral interference of chromium, a matrix of the minerals, was investigated on determination of gold. Chromium interfered on determination of gold at the concentration of 500 mg/L and higher. Gold plus trace amounts of iridium, palladium, rhodium and ruthenium, which must be preconcentrated before ICP-AES was separated by anion exchange chromatography after reducing Cr(VI) to Cr(III) by H 2 O 2 . AuCl - 4 retained on the resin column was selectively eluted with acetone- HNO 3 -H 2 O as an eluent. In addition, iridium, palladium, rhodium and ruthenium remaining on the resin column were eluted as a group with concentrated HCl. However, platinum was eluted with concentrated HNO 3 . The recovery yield of gold with acetone-HNO 3 -H 2 O was 100.7 ± 2.0 % , and the yields of palladium and platinum with concentrated HCl and HNO 3 were 96.1 ± 1.8% and 96.6 ± 1.3%, respectively. The contents of gold and platinum in a Mongolian chromite sample were 32.6 ± 2.2 μg/g and 1.6 ± 0.14 μg/g, respectively. Palladium was not detected

  9. Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation.

    Science.gov (United States)

    Mathiyazhakan, Malathi; Yang, Yuanxiang; Liu, Yibo; Zhu, Caigang; Liu, Quan; Ohl, Claus-Dieter; Tam, Kam Chiu; Gao, Yu; Xu, Chenjie

    2015-02-01

    Drug-carriers, capable of releasing the drug at the target sites upon external stimuli, are attractive for theranostic applications. In recent years, photo-responsive nanoparticles (NPs) have received considerable attention because of their potentials in providing spatial, temporal, and dosage control over the drug release. However, most of the relevant technologies are still in the process of development and are unprocurable by the clinics. Here, we demonstrated facile fabrication of these photo-responsive NPs by loading hydrophilic gold NPs within thermo-responsive liposomes. Calcein was used as a model drug to evaluate the encapsulation efficiency and the release kinetic profile upon heat/light stimulation. Furthermore, we characterized their size, morphology, phase transition temperature and stability. Finally, we demonstrated that this photo-triggered release might be due to the membrane disruption caused by microbubble cavitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In situ studies on controlling an atomically-accurate formation process of gold nanoclusters.

    Science.gov (United States)

    Yang, Lina; Cheng, Hao; Jiang, Yong; Huang, Ting; Bao, Jie; Sun, Zhihu; Jiang, Zheng; Ma, Jingyuan; Sun, Fanfei; Liu, Qinghua; Yao, Tao; Deng, Huijuan; Wang, Shuxin; Zhu, Manzhou; Wei, Shiqiang

    2015-09-14

    Knowledge of the molecular formation mechanism of metal nanoclusters is essential for developing chemistry for accurate control over their synthesis. Herein, the "top-down" synthetic process of monodisperse Au13 nanoclusters via HCl etching of polydisperse Aun clusters (15 ≤ n ≤ 65) is traced by a combination of in situ X-ray/UV-vis absorption spectroscopy and time-dependent mass spectrometry. It is revealed experimentally that the HCl-induced synthesis of Au13 is achieved by accurately controlling the etching process with two distinctive steps, in sharp contrast to the traditional thiol-etching mechanism through release of the Au(i) complex. The first step involves the direct fragmentation of the initial larger Aun clusters into metastable intermediate Au8-Au13 smaller clusters. This is a critical step, which allows for the secondary size-growth step of the intermediates toward the atomically monodisperse Au13 clusters via incorporating the reactive Au(i)-Cl species in the solution. Such a secondary-growth pathway is further confirmed by the successful growth of Au13 through reaction of isolated Au11 clusters with AuClPPh3 in the HCl environment. This work addresses the importance of reaction intermediates in guiding the way towards controllable synthesis of metal nanoclusters.

  12. Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J. [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lahtinen, Tanja; Salorinne, Kirsi [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Häkkinen, Hannu [Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä (Finland); Palmer, Richard E., E-mail: richardepalmerwork@yahoo.com [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2017-05-15

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au{sub 144}(SCH{sub 2}CH{sub 2}Ph){sub 60} provided by two different research groups. The MP Au clusters were “weighed” by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123–151 atoms, only 3% of clusters matched the theoretically predicted Au{sub 144}(SR){sub 60} structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. - Highlights: • Chemically synthesised gold clusters were “weighed” by atom counting to get true size. • Image simulations show a few percent of clusters have the predicted atomic structure. • But a specific ring-dot feature indicates local icosahedral order in many clusters.

  13. Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release

    DEFF Research Database (Denmark)

    Kyrsting, Anders; Bendix, Pól Martin; Stamou, Dimitrios

    2011-01-01

    Irradiated metallic nanoparticles hold great promise as heat transducers in photothermal applications such as drug delivery assays or photothermal therapy. We quantify the temperature increase of individual gold nanoparticles trapped in three dimensions near lipid vesicles exhibiting temperature...

  14. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  15. Template-Free Supracolloidal Self-Assembly of Atomically Precise Gold Nanoclusters: From 2D Colloidal Crystals to Spherical Capsids.

    Science.gov (United States)

    Nonappa; Lahtinen, Tanja; Haataja, Johannes S; Tero, Tiia-Riikka; Häkkinen, Hannu; Ikkala, Olli

    2016-12-23

    We report supracolloidal self-assembly of atomically precise and strictly monodisperse gold nanoclusters involving p-mercaptobenzoic acid ligands (Au 102 -pMBA 44 ) under aqueous conditions into hexagonally packed monolayer-thick two-dimensional facetted colloidal crystals (thickness 2.7 nm) and their bending to closed shells leading to spherical capsids (d ca. 200 nm), as controlled by solvent conditions. The 2D colloidal assembly is driven in template-free manner by the spontaneous patchiness of the pMBA ligands around the Au 102 -pMBA 44 nanoclusters preferably towards equatorial plane, thus promoting inter-nanocluster hydrogen bonds and high packing to planar sheets. More generally, the findings encourage to explore atomically precise nanoclusters towards highly controlled colloidal self-assemblies. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Determination of Gold in Various Environment Samples by Flame Atomic Absorption Spectrometry Using Dispersive Liquid–Liquid Microextraction Sampling

    Directory of Open Access Journals (Sweden)

    Şerife Saçmacı

    2015-07-01

    Full Text Available A new dispersive liquid–liquid microextraction separation/preconcentration procedure as a rapid sample-preparation technique is proposed for detection of ultra trace amounts of Au(III in various media by flame atomic absorption spectrometry using 1,5-diphenyl-1,3,5-pentanetrione as chelating agent. Carbon tetrachloride and methanol were used as extraction and dispersive solvents, respectively. Various parameters that affect the extraction efficiency such as pH, centrifugation rate and time, chelating agent concentration and sampling volume on the recovery of Au(III were investigated. Under optimum conditions, the enhancement factor of 750, relative standard deviation of 2.7 % and calibration graphs obtained in the concentration range of 0.04–5.6 μg L−1 for gold were obtained. The limit of detection was 1.1 ng L−1. The accuracy of the method was performed by analysis of the certified reference material (CDN-PGMS-10. The developed method was applied successfully to the determination of gold in the catalytic converter, anode slime, ore and seawater samples. The results show that dispersive liquid–liquid microextraction procedure is sensitive, rapid, simple and safe for the separation/preconcentration of gold from complex sample media.

  17. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Science.gov (United States)

    Olejnik, Anna; Nowak, Izabela

    2015-11-01

    Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  18. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    Science.gov (United States)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  19. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection

    Energy Technology Data Exchange (ETDEWEB)

    Shuvaeva, Olga V. [Institute of Inorganic Chemistry, Academician Lavrent' ev Prospect 3, 630090 Novosbirsk (Russian Federation)], E-mail: olga@che.nsk.su; Gustaytis, Maria A.; Anoshin, Gennadii N. [Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Prospect 3, 630090 Novosibirsk (Russian Federation)

    2008-07-28

    A sensitive and very simple method for determination of mercury species in solid samples has been developed involving thermal release analysis in combination with atomic absorption (AAS) detection. The method allows determination of mercury(II) chloride, methylmercury and mercury sulfide at the level of 0.70, 0.35 and 0.20 ng with a reproducibility of the results of 14, 25 and 18%, respectively. The accuracy of the developed assay has been estimated using certified reference materials and by comparison of the results with those of an independent method. The method has been applied for Hg species determination in original samples of lake sediments and plankton.

  20. Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

    International Nuclear Information System (INIS)

    Durgadas, C. V.; Sharma, C. P.; Paul, W.; Rekha, M. R.; Sreenivasan, K.

    2012-01-01

    This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5–5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.Graphical AbstractDrug release induced particle aggregation enhances Raman signals to aid in imaging.

  1. Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.

    1997-01-01

    Very large non-linear effects have been found in cluster-induced metal sputtering over a broad projectile energy interval for the first time. Recently available cluster beams from tandem accelerators have allowed sputtering yield measurements to be made with Au 1 to Au 5 from 20 keV/atom to 5 MeV/atom. The cluster-sputtering yield maxima were found at the same total energy but not at the same energy/atom as expected. For Au 5 a yield as high as 3000 was reached at 150 keV/atom while the Au 1 yield was only 55 at the same velocity. The Sigmund-Claussen thermal spike theory, which fits published data at low energy, cannot reproduce our extended new data set. (author)

  2. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  3. Detection of cold gas releases in space via low energy neutral atom imaging

    International Nuclear Information System (INIS)

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-eV hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper the authors examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, they examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then they review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of angstrom) foils and then electrostatically analyzing these newly created ions to reject the large (> 10 10 cm -2 s -1 ) UV background to which the low energy detectors are sensitive. They conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment

  4. Fragmentation and plasmid strand breaks in pure and gold-doped DNA irradiated by beams of fast hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wyer, J A; Latimer, C J; Shah, M B; Currell, F J [Centre for Plasma Physics, IRCEP, Queen' s University Belfast, BT7 1NN (United Kingdom); Butterworth, K T; Hirst, D G [Experimental Therapeutics Research Group, School of Pharmacy, Queen' s University Belfast, BT9 7BL (United Kingdom); Montenegro, E C [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)], E-mail: jeanwyer@phys.au.dk

    2009-08-07

    The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.

  5. Size Dependence of Atomically Precise Gold Nanoclusters in Chemoselective Hydrogenation and Active Site Structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gao [Carnegie Mellon University (CMU); Jiang, Deen [ORNL; Kumar, Santosh [Carnegie Mellon University (CMU); Chen, Yuxiang [Carnegie Mellon University (CMU); Jin, Rongchao [Carnegie Mellon University (CMU)

    2014-01-01

    We here investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (-SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) in water with H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV-vis spectra which are characteristic of each sized nanoclusters and thus serve as spectroscopic fingerprints . We observe a drastic size-dependence and steric effect of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the CHO and NO2 groups are in close interact with the S-Au-S staples on the gold nanocluster surface; the adsorption of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers the molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.

  6. Controlled release of a sparingly water-soluble anticancer drug through pH-responsive functionalized gold-nanoparticle-decorated liposomes.

    Science.gov (United States)

    Adhikari, Chandan; Das, Anupam; Chakraborty, Anjan

    2015-03-16

    The binding and detachment of carboxyl-modified gold nanoparticles from liposomes is used for controlled drug delivery. This study reveals that the binding and detachment of nanoparticles from liposomes depends on the degree of hydration of the liposomes. Liposomes with a lower hydration level undergo stronger electrostatic interactions with negatively charged gold nanoparticles, thus leading to a slower detachment of the carboxyl-modified gold nanoparticles under gastric conditions. Therefore, under gastric conditions, gold-nanoparticle-decorated dipalmitoylphosphatidylcholine (DPPC) liposomes exhibit an at least ten-times-slower drug release compared to gold-nanoparticle-decorated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, although both liposomes in the bare state fail to pursue controlled release. Our study also reveals that one can modulate the drug-release rate by simply varying the concentration of nanoparticles. This study highlights a novel strategy for the controlled release of drug molecules from liposomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. On the effect of atomic structure on the deactivation of catalytic gold nanoparticles

    International Nuclear Information System (INIS)

    Walsh, M J; Gai, P L; Boyes, E D

    2012-01-01

    Here we present atomic scale studies into the nature of both the internal structure and external surfaces of catalytic Au nanoparticles using aberration corrected in-situ electron microscopy. The activity of catalytic nanoparticles is thought to be highly sensitive to the particles' structure, meaning typical local atomic rearrangements are likely to significantly affect the overall performance of the catalyst. As-deposited Au nanoparticles are found to exhibit a variety of morphologies, with many being internally strained or highly stepped at the surface. Upon heating, surface atoms are observed to minimise the particles' surface energy by restructuring towards planar (111) facets, resulting in the removal of low co-ordinated sites thought to be crucial in catalysis by Au nanoparticles. These results suggest the process of surface energy minimisation made possible by heating may lead to a loss of active sites and consequently contribute to the deactivation of the catalyst.

  8. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies.

    Science.gov (United States)

    Mollick, Safiul Alam; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-28

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture  presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  9. Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers

    International Nuclear Information System (INIS)

    Cerveny, Vaclav; Rychlovsky, Petr; Netolicka, Jarmila; Sima, Jan

    2007-01-01

    The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole. The results attained for the electrochemical mercury cold vapor generation (an absolute limit of detection of 80 pg; peak absorbance, 3σ criterion) were compared with the traditional vapor generation using NaBH 4 as the reducing agent (an absolute limit of detection of 124 pg; peak absorbance, 3σ criterion). The repeatability at the 5 ng ml -1 level was better than 4.1% (RSD) for electrochemical mercury vapor generation and better than 5.6% for the chemical cold vapor generation. The proposed method was applied to the determination the of Hg contents in a certified reference material and in spiked river water samples

  10. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Luteinizing hormone-releasing hormone targeted superparamagnetic gold nanoshells for a combination therapy of hyperthermia and controlled drug delivery.

    Science.gov (United States)

    Mohammad, Faruq; Al-Lohedan, Hamad A

    2017-07-01

    In this, we developed superparamagnetic iron oxide nanoparticles (SPIONs) to be appropriate for the diagnosis and treatment of cancer cells by means of magnetic resonance imaging (MRI) and magnetically controlled hyperthermia/drug delivery (respectively). For the preparation of composite, we started with SPIONs, followed by its coating with gold to form SPIONs@Au, which further conjugated with luteinizing hormone-releasing hormone (LHRH) protein by making use of the cysteamine (Cyst) space linker and finally loaded with 5-Fluororacil (5-Fu) anticancer drug to form SPIONs@Au-Cyst-LHRH_5-Fu composite. Thus formed composite was thoroughly characterized by making use of the instrumental analysis such as HRTEM, EDAX, DLS, TGA, XPS, UV-vis, FTIR, HPLC and SQUID magnetics. We found from the analysis that the particles are spherical in shape, monodispersed with a size distribution of around 6.9nm in powdered dry form, while in solution phase it is 8.7nm. The UV-vis, FTIR, and HPLC studies confirmed for the loading of the 5-Fu drug onto the surface of SPIONs core and the maximum amount of drug that got adsorbed to be about 42%. The SQUID magnetic studies provided the information for the superparamagnetic behavior of the drug loaded SPIONs and the saturation magnetization (Ms) values observed to be about 11emu/g and the blocking temperature (T B ) of 348K. On testing the particles to see the effects of magnetic fluid hyperthermia (MFH) due to some changes in the solvent medium and oscillating frequency, the material seems to be highly active in aqueous medium and the activity gets increased with respect to the applied frequency of oscillation (430Hz>230Hz>44Hz). From the heat release studies, the calculated specific power loss (SPL) values for the SPIONs@Au-Cyst-LHRH_5-Fu composite are at the highest of 1068W/g in water (430Hz) vs the least of 68W/g in toluene (44Hz). Further, the drug release studies tested under the influence of magnetic field provided the information that

  12. Preparation of rifampicin/poly(d,l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique

    CSIR Research Space (South Africa)

    Labuschagne, Philip W

    2014-11-01

    Full Text Available In this work supercritical assisted atomization (SAA) process was used for the co-precipitation of poly(d,l-lactide) (PDLLA) and rifampicin (RIF) as nanoparticles for sustained release applications. The effect of the variation of PDLLA/RIF ratio...

  13. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  14. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    Science.gov (United States)

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  15. Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface.

    Science.gov (United States)

    Frank, Bettina; Kahl, Philip; Podbiel, Daniel; Spektor, Grisha; Orenstein, Meir; Fu, Liwei; Weiss, Thomas; Horn-von Hoegen, Michael; Davis, Timothy J; Meyer Zu Heringdorf, Frank-J; Giessen, Harald

    2017-07-01

    We experimentally and theoretically visualize the propagation of short-range surface plasmon polaritons using atomically flat single-crystalline gold platelets on silicon substrates. We study their excitation and subfemtosecond dynamics via normal-incidence two-photon photoemission electron microscopy. By milling a plasmonic disk and grating structure into a single-crystalline gold platelet, we observe nanofocusing of the short-range surface plasmon polariton. Localized two-photon ultrafast electron emission from a spot with a smallest dimension of 60 nm is observed. Our novel approach opens the door toward reproducible plasmonic nanofocusing devices, which do not degrade upon high light intensity or heating due to the atomically flat surface without any tips, protrusions, or holes. Our nanofoci could also be used as local emitters for ultrafast electron bunches in time-resolved electron microscopes.

  16. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    Science.gov (United States)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  17. Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages.

    Science.gov (United States)

    Cheng, Haoyan; Huo, Da; Zhu, Chunlei; Shen, Song; Wang, Wenxia; Li, Haoxuan; Zhu, Zhihong; Xia, Younan

    2018-04-03

    Selenite, one of the inorganic forms of selenium, is emerging as an attractive chemotherapeutic agent owing to its selectivity in eradicating cancer cells. Here we demonstrate a new formulation of nanomedicine based on selenous acid, which is mixed with lauric acid (a phase-change material with a melting point around 43 °C) and then loaded into the cavities of Au nanocages. The Au nanocages can serve as a carrier during cell endocytosis and then as a photothermal agent to melt the lauric acid upon the irradiation with a near-infrared laser, triggering the swift release of selenous acid. The photothermal and chemo therapies can also work synergistically, leading to enhanced destruction of cancer cells relative to normal cells. Our systematic study suggests that the impaired mitochondrial function arising from the ROS generated through combination treatment is responsible for the cell death. This study offers an appealing candidate that holds great promise for synergistic cancer treatment. Published by Elsevier Ltd.

  18. Elimination of the inter-element interferences of iron, gold, molybdenum, tin and antimony when determined in organic solvents by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Aneva, Zara; Arpadjan, Sonja

    1988-01-01

    The mutual interferences in the flame atomic absorption spectrometric determination of iron, gold, molybdenum, tin and antimony after their extraction - pre-concentration as chloride complexes from platinum solutions into isobutyl methyl ketone are investigated. It is suggested that the interferences are caused by chemical reactions in the flame and are influenced by the flame characteristics. The possibility of eliminating the interferences by addition of long-chain quaternary ammonium salts is discussed. (author)

  19. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  20. Modified carbon nanotubes as a sorbent for solid-phase extraction of gold, and its determination by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Moghaddam, Firouzeh Hassani; Behzadi, Mansoureh; Naghizadeh, Matin; Taher, Mohammad Ali

    2015-01-01

    A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L −1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L −1 ) is ±3.8 %, the detection limit is 31 pg L −1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g −1 . The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %. (author)

  1. The effect of the electronic structure, phase transition, and localized dynamics of atoms in the formation of tiny particles of gold

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mubarak, E-mail: mubarak74@comsats.edu.pk, E-mail: mubarak74@mail.com [COMSATS Institute of Information Technology, Department of Physics (Pakistan); Lin, I-Nan [Tamkang University, Department of Physics (China)

    2017-01-15

    In addition to self-governing properties, tiny-sized particles of metallic colloids are the building blocks of large-sized particles; thus, their study has been the subject of a large number of publications. In the present work, it has been discussed that geometry structure of tiny particle made through atom-to-atom amalgamation depends on attained dynamics of gold atoms along with protruded orientations. The localized process conditions direct two-dimensional structure of a tiny particle at atomically flat air-solution interface while heating locally dynamically approached atoms, thus, negate the role of van der Waals interactions. At electronphoton-solution interface, impinging electrons stretch or deform atoms of tiny particles depending on the mechanism of impingement. In addition, to strike regular grid of electrons ejected on split of atoms not executing excitations and de-excitations of their electrons, atoms of tiny particles also deform or stretch while occupying various sites depending on the process of synergy. Under suitable impinging electron streams, those tiny particles in monolayer two-dimensional structure electron states of their atoms are diffused in the direction of transferred energy, thus, coincide to the next adjacent atoms in each one-dimensional array dealing the same sort of behavior. Instantaneously, photons of adequate energy propagate on the surfaces of such electronic structures and modify those into smooth elements, thus, disregard the phenomenon of localized surface plasmons. This study highlights the fundamental process of formation of tiny particles where the role of localized dynamics of atoms and their electronic structure along with interaction to light are discussed. Such a tool of processing materials, in nonequilibrium pulse-based process, opens a number of possibilities to develop engineered materials with specific chemical, optical, and electronic properties.

  2. Self-Assembled Upconversion Nanoparticle Clusters for NIR-controlled Drug Release and Synergistic Therapy after Conjugation with Gold Nanoparticles.

    Science.gov (United States)

    Cai, Huijuan; Shen, Tingting; Kirillov, Alexander M; Zhang, Yu; Shan, Changfu; Li, Xiang; Liu, Weisheng; Tang, Yu

    2017-05-01

    Fabricated three-dimensional (3D) upconversion nanoclusters (abbreviated as EBSUCNPs) are obtained via an emulsion-based bottom-up self-assembly of NaGdF 4 :Yb/Er@NaGdF 4 nanoparticles (abbreviated as UCNPs), which comprise a NaGdF 4 :Yb/Er core and a NaGdF 4 shell. The EBSUCNPs were then coated with a thin mesoporous amino-functionalized SiO 2 shell (resulting in EBSUCNPs@SiO 2 precursor) and further conjugated with gold nanoparticles to give the novel EBSUCNPs@SiO 2 @Au material. Finally, EBSUCNPs@SiO 2 @Au was applied as a biocompatible and efficient drug carrier for doxorubicin (DOX), thus giving rise to a multifunctional EBSUCNPs@SiO 2 -DOX@Au nanocomposite. This final material, EBSUCNPs@SiO 2 -DOX@Au, and the precursor nanoparticles, EBSUCNPs@SiO 2 @Au, were both fully characterized and their luminescence was investigated in detail. In addition, the drug release properties and photothermal effects of EBSUCNPs@SiO 2 -DOX@Au were also discussed. Interestingly, when under NIR irradiation, an increasing DOX release was achieved owing to the thermal effect of the Au NPs after absorbing the green light from the upconversion nanoclusters based on the fluorescence resonance energy transfer (FRET) effect. Thus, a near-infrared (NIR)-controlled "on-off" pattern of drug release behavior can be achieved. Moreover, compared with a single therapy method, the assembled nanocomposites exhibit a good synergistic therapy against cancer cells that combines chemotherapy with photothermal therapy. In addition, the in vitro fluorescence microscopy images of EBSUCNPs@SiO 2 -DOX@Au show a higher enhancement in the red region due to the loading of DOX molecules with respect to EBSUCNPs@SiO 2 @Au. Therefore, this novel multifunctional 3D cluster architecture can be used in the biomedical field after modification and may pave a new way in other application areas of UCNPs clusters.

  3. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  4. Dosimetric perturbation due to scattered rays released by a gold marker used for tumor tracking in external radiotherapy

    International Nuclear Information System (INIS)

    Habara, Kosaku; Furukawa, Takashi; Shimozato, Tomohiro; Obata, Yasunori; Aoyama, Yuichi; Kawanami, Ryota; Hayashi, Naoki; Yasui, Keisuke; Matsuura, Kanji

    2011-01-01

    Image-guided radiation therapy using a gold marker-based tumor tracking technique provides precise patient setup and monitoring. However, the marker consists of high-Z material, and the resulting scattered rays tend to have adverse effects on the dose distribution of radiotherapy. The purpose of this study was to evaluate the dosimetric perturbation due to the use of a gold marker for radiotherapy in the lungs. The relative dose distributions were compared with film measurement, Monte Carlo simulation, and XiO calculation with the multi grid superposition algorithm using two types of virtual lung phantoms, which were composed of tough water phantoms, tough lung phantoms, cork boards, and a 2.0-mm-diameter gold ball. No dose increase and decrease in the vicinity of the gold ball was seen in the XiO calculations, although it was seen in the film measurements and the Monte Carlo simulation. The dose perturbation due to a gold marker cannot be evaluated using XiO calculation with the superposition algorithm when the tumor is near a gold marker (especially within 0.5 cm). To rule out the presence of such dose perturbations due to a gold marker, the distance between the gold marker and the tumor must therefore be greater than 0.5 cm. (author)

  5. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: a ternary system for photothermal drug release.

    Science.gov (United States)

    Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás

    2015-07-22

    We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.

  6. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    International Nuclear Information System (INIS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, KyoungHui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H + (H 2 O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m 3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed

  7. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    KAUST Repository

    Wang, Hongtao

    2012-01-01

    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. © 2012 The Royal Society of Chemistry.

  8. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  9. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement.

    Science.gov (United States)

    Byrne, H L; Gholami, Y; Kuncic, Z

    2017-04-21

    The addition of gold nanoparticles within target tissue (i.e. a tumour) to enhance the delivered radiation dose is a well studied radiotherapy treatment strategy, despite not yet having been translated into standard clinical practice. While several studies have used Monte Carlo simulations to investigate radiation dose enhancement by Auger electrons emitted from irradiated gold nanoparticles, none have yet considered the effects due to escaping fluorescence photons. Geant4 was used to simulate a water phantom containing 10 mg ml -1 uniformly dispersed gold (1% by mass) at 5 cm depth. Incident monoenergetic photons with energies either side of the gold K-edge at 73 keV and 139.5 keV were chosen to give the same attenuation contrast against water, where water is used as a surrogate for biological tissue. For 73 keV incident photons, adding 1% gold into the water phantom enhances the energy deposited in the phantom by a factor of  ≈1.9 while 139.5 keV incident photons give a lower enhancement ratio of  ≈1.5. This difference in enhancement ratio, despite the equivalent attenuation ratios, can be attributed to energy carried from the target into the surrounding volume by fluorescence photons for the higher incident photon energy. The energy de-localisation is maximal just above the K-edge with 36% of the initial energy deposit in the phantom lost to escaping fluorescence photons. Conversely we find that the absorption of more photons by gold in the phantom reduces the number of scattered photons and hence energy deposited in the surrounding volume by up to 6% for incident photons below the K-edge. For incident photons above the K-edge this is somewhat offset by fluorescence. Our results give new insight into the previously unstudied centimetre scale energy deposition outside a target, which will be valuable for the future development of treatment plans using gold nanoparticles. From these results, we can conclude that gold nanoparticles delivered

  10. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Science.gov (United States)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-06-01

    Nanocomposites consisting of iron oxide (Fe2O3) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe2O3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe2O3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe2O3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe2O3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe2O3 nanoparticles. The enhanced energy release of rGO/Al@Fe2O3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe2O3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  11. Gold nanoflowers with mesoporous silica as “nanocarriers” for drug release and photothermal therapy in the treatment of oral cancer using near-infrared (NIR) laser light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wenzhi; Gong, Junxia [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Wang, Yuqian [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Yan [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Zhang, Hongmei [Jilin University, China-Japan Union Hospital, Scientific Research Center (China); Zhang, Weihang; Zhang, Hu; Liu, Xin; Zhang, Tianfu [Jilin University, Department of Stomatology, China-Japan Union Hospital (China); Yin, Wanzhong, E-mail: yinwanzhong88@hotmail.com [First Clinical Hospital of Jilin University, Department of Otorhinolaryngology (China); Yang, Wensheng, E-mail: wsyang@mail.jlu.edu.cn [College of Chemistry, The Key Laboratory of Surface and Interface Chemistry of Jilin Province (China)

    2016-04-15

    In this experiment, we successfully developed nanocarriers in the form of gold nanoflowers coated with two layers of silica for the purposes of drug loading and NIR (near-infrared) photothermal therapy for the treatment of oral cancer. The gold nanoflowers converted NIR laser energy into heat energy. The cores were coated with a thin silica layer (AuNFs@SiO{sub 2}) to protect the gold nanoflowers from intraparticle ripening. The second layer was mesoporous silica (AuNFs@SiO{sub 2}@mSiO{sub 2}), which acted as a nanocarrier for anticancer drug (DOX) loads. The mean effective diameter of the nanoparticles was approximately 150–200 nm, whereas the peak absorption of the AuNFs was 684 nm. After the AuNFs were encapsulated by the silica shells, the plasmonic absorption peak of AuNFs@SiO{sub 2} and AuNFs@SiO{sub 2}@mSiO{sub 2} exhibited a red shift to 718 nm. When exposed to an 808 nm NIR laser, these crystals showed an obvious photothermal conversion in the NIR region and a highly efficient release of DOX. Biocompatibility was assessed in vitro using Cell Counting Kit-8 assays, and the results showed that the nanocarriers induced no obvious cytotoxicity. This nanomaterial could be considered a new type of material that shows promising potential for photothermal-chemotherapy against malignant tumours, including those of oral cancers.

  12. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  13. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    International Nuclear Information System (INIS)

    Yan, Ning; Qin, Lijun; Hao, Haixia; Hui, Longfei; Zhao, Fengqi; Feng, Hao

    2017-01-01

    Highlights: • Energetic rGO/Al@Fe 2 O 3 nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe 2 O 3 unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe 2 O 3 nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe 2 O 3 ) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe 2 O 3 was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe 2 O 3 energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe 2 O 3 composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe 2 O 3 nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe 2 O 3 nanoparticles. The enhanced energy release of rGO/Al@Fe 2 O 3 is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe 2 O 3 composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.

  14. Charge transfer driven surface segregation of gold atoms in 13-atom Au-Ag nanoalloys and its relevance to their structural, optical and electronic properties

    International Nuclear Information System (INIS)

    Chen Fuyi; Johnston, Roy L.

    2008-01-01

    The structural, optical and electronic properties of 13-atom Ag-Au nanoalloys are determined by a combination of global optimization using semi-empirical potentials and density functional theory calculations. A family of Au surface-segregated structures are found for core-shell Ag n Au 13-n (n = 1, 2, 3, 5, 7, 8, 9, 12) and hollow Ag n Au 13-n (n = 4, 6, 10, 11) clusters, whose stability is enhanced by directional charge transfer. The atomic ordering in core-shell structures is related to the electric dipole moment and odd-numbered surface Au-atom clusters have high moments. Their ferroelectric and ferromagnetic properties provide a potential approach for tailoring their surface plasmonic modes

  15. Defect Stabilized Gold Atoms on Graphene as Potential Catalysts for Ethylene Epoxidation: A First-principles Investigation

    KAUST Repository

    Liu, Xin

    2015-11-24

    We performed a first-principles based investigation on the potential role of Au atoms stabilized by defects on graphene in ethylene epoxidation. We showed that the interactions between the Au atoms and vacancies on graphene not only make the Au atomic diffusion a 2.10 eV endothermic process, but also tune the energy level of Au-d states for the activation of O2 and ethylene and promote the formation and dissociation of the peroxametallacycle intermediate. The catalytic cycle of ethylene epoxidation is initiated with the formation of a peroxametallacycle intermediate by the coadsorbed ethylene and O2, through the dissociation of which an ethylene epoxide molecule and an adsorbed O atom are formed. Then, gaseous ethylene reacts with the remnant O atom directly for the formation of another ethylene epoxide molecule. The desorption of ethylene epoxide is facilitated by the subsequent adsorption of O2 or ethylene and a new reaction cycle initiates. The calculated energy barriers for the formation and dissociation of the peroxametallacycle intermediate and the regeneration of Au sites are 0.30, 0.84 and 0.18 eV, respectively, and are significantly lower than those for aldehyde formation. These findings suggest the potential high catalytic performance of these Au atoms for ethylene epoxidation.

  16. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    Science.gov (United States)

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2017-05-01

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  17. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes

    2012-09-20

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  18. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

    Directory of Open Access Journals (Sweden)

    Samer Darwich

    2011-02-01

    Full Text Available One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM. Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (–CH3 and hydroxyl (–OH terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity. Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles.

  19. Gold atomic clusters extracting the valence electrons to shield the carbon monoxide passivation on near-monolayer core-shell nanocatalysts in methanol oxidation reactions.

    Science.gov (United States)

    Chen, Tsan-Yao; Li, Hong Dao; Lee, Guo-Wei; Huang, Po-Chun; Yang, Po-Wei; Liu, Yu-Ting; Liao, Yen-Fa; Jeng, Horng-Tay; Lin, Deng-Sung; Lin, Tsang-Lang

    2015-06-21

    Atomic-scale gold clusters were intercalated at the inter-facet corner sites of Pt-shell Ru-core nanocatalysts with near-monolayer shell thickness. We demonstrated that these unique clusters could serve as a drain of valence electrons in the kink region of the core-shell heterojunction. As jointly revealed by density functional theory calculations and valence band spectra, these Au clusters extract core-level electrons to the valence band. They prevent corrosion due to protonation and enhance the tolerance of CO by increasing the electronegativity at the outermost surface of the NCs during the methanol oxidation reaction (MOR). In these circumstances, the retained current density of Pt-shell Ru-core NCs is doubled in a long-term (2 hours) MOR at a fixed voltage (0.5 V vs. SCE) by intercalating these sub-nanometer gold clusters. Such novel structural confinement provides a possible strategy for developing direct-methanol fuel cell (DMFC) modules with high power and stability.

  20. Axially chiral allenyl gold complexes.

    Science.gov (United States)

    Johnson, Alice; Laguna, Antonio; Gimeno, M Concepción

    2014-09-17

    Unprecedented allenyl gold complexes have been achieved starting from triphenylpropargylphosphonium bromide. Two different coordination modes of the allene isomer of triphenylphosphoniumpropargylide to gold have been found depending on the gold oxidation state. Bromo-, pentafluorophenyl-, and triphenylphosphine-gold(I) allenyl complexes were prepared in which the α carbon coordinates to the gold(I) center. A chiral pentafluorophenyl-gold(III) allenyl complex with the gold atoms coordinated to the γ carbon was also prepared. All the complexes have been structurally characterized by X-ray diffraction showing the characteristic distances for a C═C═C unit.

  1. Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajendra N., E-mail: rngcyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rana, Anoop Raj Singh [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Aziz, Md. Abdul; Oyama, Munetaka [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan)

    2011-05-05

    A gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide (AuNP/MWNT/ITO) electrode has been used for monitoring the effect of paracetamol (PAR) on the release of epinephrine (EPI) in human urine. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EPI and PAR with acceleration of electron transfer rate as compared to MWNT/ITO and AuNP/ITO. An apparent shift of the oxidative potential towards less positive potential with a marked increase in peak currents is observed in square wave voltammetry at AuNP/MWNT/ITO electrode. The calibration curves for the simultaneous determination of PAR and EPI showed an excellent linear response, ranging from 5.0 x 10{sup -9} mol L{sup -1} to 80.0 x 10{sup -9} mol L{sup -1} for both the compounds. The detection limits for the simultaneous determination of PAR and EPI were found to be 46 x 10{sup -10} mol L{sup -1} and 42 x 10{sup -10} mol L{sup -1} respectively. The proposed method has been successfully applied for the simultaneous determination of PAR and EPI in human urine. It is observed that gold nanoparticles attached with multi-wall carbon nanotube catalyze the oxidation of EPI and PAR.

  2. Atomic composition and stability of Langmuir-Blodgett monolayers based on siloxane dimer of quaterthiophene on the surface of polycrystalline gold

    Science.gov (United States)

    Komolov, A. S.; Lazneva, E. F.; Zhukov, Yu. M.; Pshenichnyuk, S. A.; Agina, E. V.; Dominskii, D. I.; Anisimov, D. S.; Parashchuk, D. Yu.

    2017-12-01

    Atomic composition of monolayers based on siloxane dimer of quaterthiophene deposited by Langmuir-Blodgett technique on a silicon dioxide surface partially covered by gold film and the stability of these monolayers upon surface treatment by Ar+ ions bombardment have been studied. Experimental results for the chemical composition of a series of studied surfaces have been obtained by X-ray photoelectron spectroscopy (XPS) by recording XPS spectra of C 1s, O 1s, S 2 p, and Au 4 f core levels. The relative concentration of Au and Si substrate atoms and the composition of ex situ prepared surface under study were determined within 10-15%, which indicates that Langmuir-Blodgett monolayers based on siloxane dimer of quaterthiophene form continuous coating in a considerable extent. Prior to the treatment of the studied surface by Ar+ ions bombardment, carbon- and oxygen-containing surface adsorbates provided a considerable contribution to the results of XPS measurements. The surface cleaning by Ar+ ions with energy 3 keV at electric current through sample of 1 μA in several 30-s steps has led to the etching of surface adsorbates and next Langmuir-Blodgett films of the siloxane dimer of quaterthiophene.

  3. Spectroscopic Study of the Interaction of Carboxyl-Modified Gold Nanoparticles with Liposomes of Different Chain Lengths and Controlled Drug Release by Layer-by-Layer Technology.

    Science.gov (United States)

    Kanwa, Nishu; De, Soumya Kanti; Adhikari, Chandan; Chakraborty, Anjan

    2017-12-21

    In this article, we investigate the interactions of carboxyl-modified gold nanoparticles (AuC) with zwitterionic phospholipid liposomes of different chain lengths using a well-known membrane probe PRODAN by steady-state and time-resolved spectroscopy. We use three zwitterionic lipids, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), which are widely different in their phase transition temperatures to form liposome-AuC assemblies. The steady-state and time-resolved studies indicate that the AuC brings in stability toward liposomes by local gelation. We observe that the bound AuC detach from the surface of the liposomes under pH ≈ 5 due to protonation of the carboxyl group, thus eliminating the electrostatic interaction between nanoparticles and head groups of liposomes. The detachment rate of AuC from the liposome-AuC assemblies is different for the aforementioned liposomes due to differences in their fluidity. We exploited the phenomena for the controlled release of a prominent anticancer drug Doxorubicin (DOX) under acidic conditions for different zwitterionic liposomes. The drug release rate was further optimized by coating of liposome-AuC assemblies with oppositely charged polymer (P), polydiallyldimethylammonium chloride, followed by a mixture of lipids L (DMPC:DMPG) and again with a polymer in a layer-by-layer fashion to obtain capsule-like structures. This system is highly stable for weeks, as confirmed by field-emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM) imaging, and inhibits premature release. The layer coating was confirmed by hydrodynamic size and zeta potential measurements of the systems. The capsules obtained are of immense importance as they can control release of the drug from the systems to a large extent.

  4. Electrochemical generation of arsenic volatile species using a gold/mercury amalgam cathode. Determination of arsenic by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Andrea Caiminagua

    2015-03-01

    Full Text Available The electrochemical generation of arsenic volatile species (arsine using an Au/Hg amalgam cathode in a 0.5 M H2SO4 solution, is described. Results were compared with those obtained with other cathodes commonly used for generation of arsine. The effects of the electrolytic conditions and interferent ions have been studied. Results show that the Au/Hg cathode has better tolerance to interference and higher repeatability than cathodes made out of platinum (Pt, gold (Au, reticulated glassy carbon (RGC, lead (Pb. Under optimized conditions, a 0.027 μg L−1 (3σ detection limit for As(III in aqueous solutions and a 2.4% relative standard deviation for a 0.1 μg L−1 As(III were obtained. The accuracy of the method was verified by determination of As in a certified reference material. The proposed method was applied to the determination of As in spiked tap water samples.

  5. The effect of root canal preparation on the surface roughness of WaveOne and WaveOne Gold files: atomic force microscopy study.

    Science.gov (United States)

    Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah; Plotino, Gianluca

    2018-02-01

    To examine the surface topography of intact WaveOne (WO; Dentsply Sirona Endodontics) and WaveOne Gold (WOG; Dentsply Sirona Endodontics) nickel-titanium rotary files and to evaluate the presence of alterations to the surface topography after root canal preparations of severely curved root canals in molar teeth. Forty-eight severely curved canals of extracted molar teeth were divided into 2 groups ( n = 24/each group). In group 1, the canals were prepared using WO and in group 2, the canals were prepared using WOG files. After the preparation of 3 root canals, instruments were subjected to atomic force microscopy analysis. Average roughness and root mean square values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way analysis of variance and post hoc Tamhane's tests at 5% significant level. The surface roughness values of WO and WOG files significantly changed after use in root canals ( p < 0.05). The used WOG files exhibited higher surface roughness change when compared with the used WO files ( p < 0.05). Using WO and WOG Primary files in 3 root canals affected the surface topography of the files. After being used in root canals, the WOG files showed a higher level of surface porosity value than the WO files.

  6. Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Saygi, Kadriye O.; Soylak, Mustafa

    2008-01-01

    A method for solid phase extraction (SPE) of gold(III) using Dowex M 4195 chelating resin has been developed. The optimum experimental conditions for the quantitative sorption of gold(III), pH, effect of flow rates, eluent types, sorption capacity and the effect of diverse ions on the sorption of gold(III) have been investigated. The chelating resin can be reused for more than 100 cycles of sorption-desorption without any significant change in sorption of gold(III) ions. The recovery values for gold(III) and detection limit (LOD) of gold were greater than 95% and 1.61 μg L -1 , respectively. The preconcentration factor was 31. The relative standard deviation of the method was -1 . The proposed method has been applied for the determination of gold(III) in some real samples including water, soil and sediment samples

  7. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  8. Surface-initiated atom-transfer radical polymerization of 3-O-methacryloyl-1,2:5,6-di- O-isopropylidene-alpha- D-glucofuranoside onto gold surface.

    Science.gov (United States)

    Yoon, Kuk Ro; Ramaraj, B; Lee, Seungho; Yu, Jong-Sung; Choi, Insung S

    2009-03-01

    A sugar-containing polymer was grown on gold surface by surface-initiated atom-transfer radical polymerization (SI-ATRP) of methacrylate monomer, 3-O-methacryloyl-1,2:5,6-di-O-isopropylidene-alpha-D-glucofuranoside (MAIpGIc), using 1,4,8,11-tetraaza-1,4,8,11-tetramethylcyclotetradecane (Me(4)Cyclam) as ligand, 2-bromopropionyl moiety attached on the gold surface as initiator, and Copper(I) bromide as catalyst, respectively, in tetrahydrofuran (THF) medium. The resultant sugar film was characterized by polarized infrared external reflectance spectroscopy (PIERS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), ellipsometry, and contact angle goniometry. The IR peaks characteristics of poly(3-O-methacryloyl-alpha,beta-D-glucopyranoside) (PMAGlc), broad O--H stretch at approximately 3400 cm(-1), and C==O ester stretch at approximately 1748 cm(-1) observed in PIERS spectra demonstrate the formation of PMAGlc on the gold surface. The AFM and SEM images show the polymer growth away from the gold surface without visible domain boundaries, and it further confirms the formation of sugar coating. The method described in the article would be beneficial in many areas, such as pathogen detection and biosensors, considering the biological importance of carbohydrate polymers. (c) 2008 Wiley Periodicals, Inc.

  9. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  10. An electrochemical metalloimmunoassay based on a colloidal gold label.

    Science.gov (United States)

    Dequaire, M; Degrand, C; Limoges, B

    2000-11-15

    A novel, sensitive electrochemical immunoassay has been developed using a colloidal gold label that, after oxidative gold metal dissolution in an acidic solution, was indirectly determined by anodic stripping voltammetry (ASV) at a single-use carbon-based screen-printed electrode (SPE). The use of disposable electrodes allows for simplified measurement in 35 microL of solution. The method was evaluated for a noncompetitive heterogeneous immunoassay of an immunoglobulin G (IgG) and a concentration as low as 3 x 10(-12) M was determined, which is competitive with colorimetric ELISA or with immunoassays based on fluorescent europium chelate labels. The high performance of the method is related to the sensitive ASV determination of gold(III) at a SPE (detection limit of 5 x 10(-9) M) and to the release of a large number of gold(III) ions from each gold particle anchored on the immunocomplex (e.g., 1.7 x 10(5) gold atoms are theoretically contained in a 18-nm spherical gold particle).

  11. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  12. Environmental transformation and distribution of mercury released from gold mining and its implications on human health in Tanzania, studied by nuclear techniques. Highlights and achievements

    International Nuclear Information System (INIS)

    Ikingura, Justinian R.

    2002-01-01

    Tanzania experienced unprecedented rush for gold mining in late 1980s and early 1990s when a similar gold rush was taking place in Latin America and other developing countries because of good gold market prices. The gold rush in Tanzania was also prompted by the socioeconomic and political transformations that were taking place in the country. The liberalization of mining policy and regulations by the government allowed foreign and local private investment in mining and encouraged small-scale mining and gold trade. Because of the liberalization, thousands of local miners, mostly from rural communities, rushed to gold mining for subsistence income. The use of mercury in gold recovery became widespread in Tanzania as a result of the gold rush. From 1992/93, the Department of Geology of the University of Dar es Salaam (UDSM in collaboration with the National Environment Management Council (NEMC) initiated studies to assess the extent of mercury pollution in the country. Further studies on mercury and other heavy metal pollution were undertaken between 1993 and 1997 by UDSM, under a broader project on 'Environmental Aspects of Mining and Industrialization in Tanzania', supported by the Swedish Agency for Research Cooperation with Developing Countries SAREC (Sida/SAREC). The above studies revealed the presence of elevated mercury concentrations in gold-ore tailings and river sediment in several gold mining areas. Studies to evaluate environmental transformation, partition and bioaccumulation of mercury in different environmental matrices and the long-term impact of mercury pollution have not been done. The present research project was initiated to provide scientific database necessary to better understand the environmental behaviour and cycling of mercury in the southwest Lake Victoria goldfields. Such data are necessary in the evaluation of environmental impacts of mercury pollution and in the mitigation of adverse impacts on the ecosystems and human health

  13. Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey)], E-mail: mtuzen@gop.edu.tr; Saygi, Kadriye O. [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)

    2008-08-15

    A method for solid phase extraction (SPE) of gold(III) using Dowex M 4195 chelating resin has been developed. The optimum experimental conditions for the quantitative sorption of gold(III), pH, effect of flow rates, eluent types, sorption capacity and the effect of diverse ions on the sorption of gold(III) have been investigated. The chelating resin can be reused for more than 100 cycles of sorption-desorption without any significant change in sorption of gold(III) ions. The recovery values for gold(III) and detection limit (LOD) of gold were greater than 95% and 1.61 {mu}g L{sup -1}, respectively. The preconcentration factor was 31. The relative standard deviation of the method was <5%. The adsorption capacity of the resin was 8.1 mg g{sup -1}. The proposed method has been applied for the determination of gold(III) in some real samples including water, soil and sediment samples.

  14. Evaluation of the effect of 16% carbamide peroxide gel (Nite White on mercury release from Iranian and foreign spherical and admixed amalgams by cold vapor atomic absorption method

    Directory of Open Access Journals (Sweden)

    Kasraie Sh.

    2008-04-01

    Full Text Available Background and Aim: Nowadays, esthetic dentistry has become an important part of modern dentistry. Bleaching is considered as a conservative, safe and effective way for treatment of discolored teeth. Although bleaching is commonly used on anterior teeth, the bleaching gel may come into contact with patient's former amalgam restorations and result in corrosive effects, dissolution of amalgam phases and increasing release of mercury. Mercury released from dental amalgam during mouthguard bleaching can be absorbed and increase the total mercury body burden. The aim of this study was to determine the amount of mercury released from Iranian and foreign brands of amalgams with spherical and admixed particles, polished and unpolished, after 16%carbamide peroxide gel application.Materials and Methods: This experimental in vitro study was performed on 256 Iranian and foreign amalgam samples with spherical and admixed particles. The provided samples were put in distilled water and classified according to the type of amalgam, shape of particles and quality of surface polishing. The test samples were placed in Nite White 16% carbamid peroxide gel and control samples were put in phosphate buffer (Ph=6.5 for 14 and 28 hours. The amount of released mercury was calculated using AVA-440 Mercury Analysis System (Thermo Jarrell Ash model SH/229 with cold-vapor atomic absorption. Data were analyzed using t-test, four way and three way ANOVA tests with P<0.05 as the level of significance.Results: 16% Nite White carbamide peroxide gel caused a significant increase in amount of mercury released from amalgams in all groups (P<0.05. Mercury release from Iranian amalgam was higher than that from the foreign brands (P<0.05. There was no significant difference in mercury released from spherical and admixed amalgams (P>0.05. The amount of mercury released from Iranian and foreign amalgams was time dependent (P<0.05. Furthermore, the amount of mercury released from

  15. Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition.

    Science.gov (United States)

    Benson, David M; Tsang, Chu F; Sugar, Joshua D; Jagannathan, Kaushik; Robinson, David B; El Gabaly, Farid; Cappillino, Patrick J; Stickney, John L

    2017-05-31

    Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.

  16. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    Science.gov (United States)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions

  17. Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Da; Zheng, Aixian; Li, Juan; Wu, Ming; Wu, Lingjie; Wei, Zuwu; Liao, Naishun; Zhang, Xiaolong; Cai, Zhixiong; Yang, Huanghao; Liu, Gang; Liu, Xiaolong; Liu, Jingfeng

    2017-01-01

    This study describes smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable prodrug release, in demand photodynamic therapy and aggregation induced photothermal ablation of hepatocellular carcinoma. The nanoplatform is consist of monodispersed gold nanoparticle (GNP) that is binding to HCC cell specific targeting aptamers (TLS11a) through Au-S bond; the aptamer is labeled with Ce6 at the 5'end and coordinated with Cu(II) through (GA) 10 repeating bases to load AQ4N at the 3' end. In normal physiological conditions, the fluorescence and ROS generation ability of Ce6 are quenched by GNPs via RET; but in cancerous cells, the fluorescence and the ROS generation of Ce6 could be recovered by cleavage of Au-S bond through high level of intracellular GSH for real-time imaging and in demand PDT. Meanwhile, the prodrug AQ4N release could be triggered by acid-cleavage of coordination bonds, then accompanied by a release of Cu(II) that would induce the electrostatic aggregation of GNPs for photo-thermal ablation; furthermore, the significantly enhanced chemotherapy efficiency could be achieved by PDT produced hypoxia to convert AQ4N into AQ4. In summary, here described nanoplatform with tumor cell specific responsive properties and programmable PDT/PTT/chemotherapy functions, might be an interesting synergistic strategy for HCC treatment.

  18. Nuclear reactor for release of nuclear energy, without a chain reaction using the simultaneous implosion of three, or more, atomic nuclei

    International Nuclear Information System (INIS)

    Pedrick, A.P.

    1976-01-01

    A modified form of what is known as a 'streaking nuclear reactor' is described. In this type of reactor it is proposed to obtain release of nuclear energy from atomic nuclei by stripping such nuclei of their electron clouds or shells, to form a high temperature plasma, and breaking nucleons off the surface of the nuclei. In the apparatus described it is proposed to break up nuclei by causing three or more nuclei to collide with each other at very high velocity. Streams of nuclei, stripped of their electron clouds are directed into a reactor vessel to a focal point or implosion center along three or more ducts, equi-angularly spaced around the implosion center in the same plane, the arrangement being such as to permit mutual simultaneous collision of three or more of the nuclei. The importance of achieving a release of nuclear energy in this manner is that it may be able to use any chemical element that can be converted to a plasma, but it is most likely to be successful with elements of high atomic number, such as Pb or Bi. (U.K.)

  19. Adsorption-induced restructuring of gold nanochains

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet

    2002-01-01

    The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the st......The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...... with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains...

  20. Combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) studies of glucose oxidase (GOx) immobilised onto self-assembled monolayer on the gold film

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.; Gooding, J.; Erokin, P.; Short, K.

    1999-01-01

    In fabrication of biosensors, self-assembled monolayers (SAM) are an attractive method of immobilising enzymes at electrode surface since it allows precise control over the amount and spatial distribution of the immobilized enzyme. The covalent attachment of glucose oxidase (GOx) to a carboxylic terminated SAM chemisorbed onto gold films was achieved via carbodiimide activation of the carboxylic acids to a reactive intermediate susceptible to nucleophilic attack by amines on free lysine chains of the enzyme. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) measurements were used for characterisation of GOx modified gold surfaces. Tapping mode AFM studies have revealed that GOx molecules form slightly disordered arrays of pentagonal or hexagonal clusters. Observed features of immobilised GOx are distributed as a submonolayer on the SAM surface which has allowed visualisation of native and unfolded enzyme structure. The presence of the SAM and enzyme on the gold surface was detected by XPS spectroscopy. Spectra show typical peaks for the C 1s, O 1s and N 1s regions. A kinetic study of the adsorption of GOx onto activated SAM using in-situ QCM allowed determination the amount of immobilised GOx on the layer and consequently the optimal immobilisation conditions. Performance parameters of the biosensor such as sensitivity to glucose concentration as a function of enzyme loading were evaluated amperometrically using the redox mediator p-benzoquinone

  1. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  2. Dynamics of Pseudomonas aeruginosa azurin and its Cys3Ser mutant at single crystal gold surfaces investigated by cyclic voltammetry and atomic force microscopy

    DEFF Research Database (Denmark)

    Friis, Esben P.; Andersen, Jens Enevold Thaulov; Madsen, Lars Lithen

    1997-01-01

    Cyclic voltammetry of Pseudomonas aeruginosa azurin on polycrystalline gold is reversible (E0=360mV vs she;50mM ammonium acetate) but the voltammetric signals decay with time constants of about 3x10-3 s-1. No signal is observed for monocrystalline Au(111). Cys3Ser azurin is electrochemically...... into the solution, recovering the free Au(111) surface. The cyclic voltammetry and AFM data are consistent with time dependent adsorption of the azurins on gold via the disulphide bridge (wild-type) or free thiol group (Cys3Ser mutant)....

  3. Helium release from metals with face-centered cubic structure

    International Nuclear Information System (INIS)

    Sciani, V.; Lucki, G.; Jung, P.

    1984-01-01

    The helium release from gold sheets of 5 and 54 μm of thickness and helium concentrations from 10 -9 to 10 -5 ap of He during the isothermal and linear annealing is studied. The helium was put in the sample through the implantation of alpha particles, with variable energy,in the cyclotron. The free diffusion of the atoms of the helium, where the diffusion coefficient follows an Arrhenius law is studied. (E.G.) [pt

  4. Exploring the dynamics of hydrogen atom release from the radical-radical reaction of O(3P) with C3H5

    International Nuclear Information System (INIS)

    Joo, Sun-Kyu; Kwon, Lee-Kyoung; Lee, Hohjai; Choi, Jong-Ho

    2004-01-01

    The gas-phase radical-radical reaction dynamics of O( 3 P)+C 3 H 5 →H( 2 S)+C 3 H 4 O was studied at an average collision energy of 6.4 kcal/mol in a crossed beam configuration. The ground-state atomic oxygen [O( 3 P)] and allyl radicals (C 3 H 5 ) were generated by the photolysis of NO 2 and the supersonic flash pyrolysis of allyl iodide, respectively. Nascent hydrogen atom products were probed by the vacuum-ultraviolet-laser induced fluorescence spectroscopy in the Lyman-α region centered at 121.6 nm. With the aid of the CBS-QB3 level of ab initio theory, it has been found that the barrierless addition of O( 3 P) to C 3 H 5 forms the energy-rich addition complexes on the lowest doublet potential energy surface, which are predicted to undergo a subsequent direct decomposition step leading to the reaction products H+C 3 H 4 O. The major counterpart C 3 H 4 O of the probed hydrogen atom is calculated to be acrolein after taking into account the factors of barrier height, reaction enthalpy, and the number of intermediates involved along the reaction pathway. The nascent H-atom Doppler profile analysis shows that the average center-of-mass translational energy of the H+C 3 H 4 O products and the fraction of the total available energy released as the translational energy were determined to be 3.83 kcal/mol and 0.054, respectively. On the basis of comparison with statistical calculations, the reaction proceeds through the formation of short-lived addition complexes rather than statistical, long-lived intermediates, and the polyatomic acrolein product is significantly internally excited at the moment of the decomposition

  5. Exploring the dynamics of hydrogen atom release from the radical-radical reaction of O(3P) with C3H5

    Science.gov (United States)

    Joo, Sun-Kyu; Kwon, Lee-Kyoung; Lee, Hohjai; Choi, Jong-Ho

    2004-05-01

    The gas-phase radical-radical reaction dynamics of O(3P)+C3H5→H(2S)+C3H4O was studied at an average collision energy of 6.4 kcal/mol in a crossed beam configuration. The ground-state atomic oxygen [O(3P)] and allyl radicals (C3H5) were generated by the photolysis of NO2 and the supersonic flash pyrolysis of allyl iodide, respectively. Nascent hydrogen atom products were probed by the vacuum-ultraviolet-laser induced fluorescence spectroscopy in the Lyman-α region centered at 121.6 nm. With the aid of the CBS-QB3 level of ab initio theory, it has been found that the barrierless addition of O(3P) to C3H5 forms the energy-rich addition complexes on the lowest doublet potential energy surface, which are predicted to undergo a subsequent direct decomposition step leading to the reaction products H+C3H4O. The major counterpart C3H4O of the probed hydrogen atom is calculated to be acrolein after taking into account the factors of barrier height, reaction enthalpy, and the number of intermediates involved along the reaction pathway. The nascent H-atom Doppler profile analysis shows that the average center-of-mass translational energy of the H+C3H4O products and the fraction of the total available energy released as the translational energy were determined to be 3.83 kcal/mol and 0.054, respectively. On the basis of comparison with statistical calculations, the reaction proceeds through the formation of short-lived addition complexes rather than statistical, long-lived intermediates, and the polyatomic acrolein product is significantly internally excited at the moment of the decomposition.

  6. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  7. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  8. Environmental transformation and distribution of mercury released from gold mining and its implications on human health in Tanzania, studied by nuclear techniques

    International Nuclear Information System (INIS)

    Ikingura, Justinian R.

    2002-01-01

    The dispersion and transformation of mercury in the southwest Lake Victoria gold fields was investigated through field and laboratory studies in order to evaluate the environmental impact and human health risks due to mercury pollution from small-scale gold mining in Tanzania. River sediment, gold-ore tailings, fish, and lichens were analyzed for their mercury content to determine mercury contamination levels. Mercury concentrations in the tailings from Rwamagaza mine were in the range of 165 to 232 mg/kg while at the Mugusu mine the maximum concentration was 6 mg/kg in the river sediment contaminated by the tailings. The dispersion of mercury along the Mabubi River downstream of the gold-ore processing site at the Mugusu mine decreased rapidly to less than 0.5 mg/kg at a distance of 4 km, and less than 0.1 mg/kg at 9 km. Granulometrical analysis of mercury distribution indicated highest mercury concentrations to be associated with the grain size fraction <212 mm in the sediment. Total mercury concentrations in eight fish species from the Lake Victoria at Nungwe Bay were generally very low and varied from 2 to 34, μg/kg (w.w). The lowest concentrations were found in Tilapia and the highest in Nile perch. The percentage of methylmercury in the fish muscle ranged from 65 to 97%. These results suggest that mercury contamination from gold mining operations in the southwest Lake Victoria goldfields has not led to any significant increase in environmental methylmercury levels that could be reflected in high mercury concentrations in the fish. Based on these results, fish consumption from the Nungwe Bay area of the Lake Victoria does not pose any human health risks on account of very low mercury levels in the fish at present. Mercury concentrations in two lichen species, Parmelia and Usnea, in the Geita Forest Reserve around the Mugusu mine ranged from 0.10 to 3.10 μg/g (d.w.). The mercury concentration in the lichens decreased away from the mine village, indicating the

  9. Effect of gold nanoparticle on stability of the DNA molecule: A study of molecular dynamics simulation.

    Science.gov (United States)

    Izanloo, Cobra

    2017-09-02

    An understanding of the mechanism of DNA interactions with gold nanoparticles is useful in today medicine applications. We have performed a molecular dynamics simulation on a B-DNA duplex (CCTCAGGCCTCC) in the vicinity of a gold nanoparticle with a truncated octahedron structure composed of 201 gold atoms (diameter ∼1.8 nm) to investigate gold nanoparticle (GNP) effects on the stability of DNA. During simulation, the nanoparticle is closed to DNA and phosphate groups direct the particles into the major grooves of the DNA molecule. Because of peeling and untwisting states that are occur at end of DNA, the nucleotide base lies flat on the surface of GNP. The configuration entropy is estimated using the covariance matrix of atom-positional fluctuations for different bases. The results show that when a gold nanoparticle has interaction with DNA, entropy increases. The results of conformational energy and the hydrogen bond numbers for DNA indicated that DNA becomes unstable in the vicinity of a gold nanoparticle. The radial distribution function was calculated for water hydrogen-phosphate oxygen pairs. Almost for all nucleotide, the presence of a nanoparticle around DNA caused water molecules to be released from the DNA duplex and cations were close to the DNA.

  10. Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface

    International Nuclear Information System (INIS)

    Xie, Yunfeng; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-01

    A novel quartz crystal microbalance (QCM) sensor has been developed for highly selective and sensitive detection of Pb 2+ by exploiting the catalytic effect of Pb 2+ ions on the leaching of gold nanoparticles from the surface of a QCM sensor. The use of self-assembled gold nanoparticles (AuNPs) strongly enlarges the size of the interface and thus amplifies the analytical response resulting from the loss of mass. This results in a very low detection limit for Pb 2+ (30 nM). The high selectivity is demonstrated by studying the effect of potentially interfering ions both in the absence and presence of Pb 2+ ions. This simple and well reproducible sensor was applied to the determination of lead in the spiked drinking water. This work provides a novel strategy for fabricating QCM sensors towards Pb 2+ in real samples. (author)

  11. Environmental transformation and distribution of mercury released from gold mining and its implications on human health in Tanzania, studied by nuclear techniques

    International Nuclear Information System (INIS)

    Ikingura, Justinian R.

    2001-01-01

    The catchment areas of Lake Victoria in Tanzania are impacted by mercury contamination from small-scale gold mining activities. A preliminary survey of the mercury contamination has indicated in some cases mercury concentrations that are higher than background levels in soil and river sediment downstream of the mining areas. Average mercury concentration in contaminated soil is in the order of 3.4 mg/kg whereas in river sediment the concentration is about 4.9 mg/kg. Mercury concentrations in fish from a few areas of the Lake Victoria close to gold mining areas are in the range of 2-20 ppb. These fish mercury concentrations are surprisingly low considering the extent of mercury contamination in the Lake Victoria catchment. The dynamics of mercury cycling and their long-term impact on mercury levels in fish and other aquatic organisms in the Lake Victoria gold fields still need to be clarified. Research activities for the first year (2000) will concentrate on the determination of total mercury distribution patterns among soil, river water, sediment, and biota (fish, and other aquatic biota) in two areas (Mugusu-Nungwe Bay and Imweru-Bukombe Bay) of the Lake Victoria gold fields. The relationships between local tropical soil-sediment- and water-chemistry and the distribution of mercury in the contaminated areas will be investigated. Data from this work will be used in the identification and selection of suitable bio-monitors for mercury contamination and human health risk assessment in the study areas. In the second year, the project will focus mainly on methylmercury production and partition between sediment, water and biota in contaminated local tropical sediments. The main factors influencing the methylation and distribution of mercury species will be evaluated in laboratory experiments and extrapolated to environmental conditions. The results of the project will have important implications in mercury pollution monitoring, mitigation, and health risk assessment not

  12. Acid-facilitated product release from a Mo(IV) center: relevance to oxygen atom transfer reactivity of molybdenum oxotransferases.

    Science.gov (United States)

    Li, Feifei; Talipov, Marat R; Dong, Chao; Bali, Sofia; Ding, Keying

    2018-03-01

    We report that pyridinium ions (HPyr + ) accelerate the conversion of [Tp*Mo IV OCl(OPMe 3 )] (1) to [Tp*Mo IV OCl(NCCH 3 )] (2) by 10 3 -fold, affording 2 in near-quantitative yield; Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate. This novel reactivity and the mechanism of this reaction were investigated in detail. The formation of 2 followed pseudo-first-order kinetics, with the observed pseudo-first-order rate constant (k obs ) linearly correlated with [HPyr + ]. An Eyring plot revealed that this HPyr + -facilitated reaction has a small positive value of ∆S ‡ indicative of a dissociative interchange (I d ) mechanism, different from the slower associative interchange (I a ) mechanism in the absence of HPyr + marked with a negative ∆S ‡ . Interestingly, log(k obs ) was found to be linearly correlated to the acidity of substituted pyridinium ions. This novel reactivity is further investigated using combined DFT and ab initio coupled cluster methods. Different reaction pathways, including I d , I a , and possible alternative routes in the absence or presence of HPyr + , were considered, and enthalpy and free energies were calculated for each pathway. Our computational results further underscored that the I d route is energetically favored in the presence of HPyr + , in contrast with the preferred I a -NNO pathway in the absence of HPyr + . Our computational results also revealed molecular-level details for the HPyr + -facilitated I d route. Specifically, HPyr + initially becomes hydrogen-bonded to the oxygen atom of the Mo(IV)-OPMe 3 moiety, which lowers the activation barrier for the Mo-OPMe 3 bond cleavage in a rate-limiting step to dissociate the OPMe 3 product. The implications of our results were discussed in the context of molybdoenzymes, particularly the reductive half-reaction of sulfite oxidase.

  13. Grafting of Gold Nanoparticles on Glass Using Sputtered Gold Interlayers

    OpenAIRE

    Kvítek, Ondřej; Hendrych, Robin; Kolská, Zdeňka; Švorčík, Václav

    2014-01-01

    Three-step preparation of nanostructured Au layer on glass substrate is described. The procedure starts with sputtered gold interlayer, followed by grafting with dithiols and final coverage with gold nanoparticles (AuNPs). Successful binding of dithiols on the sputtered Au film was confirmed by X-ray photoelectron spectroscopy measurement. AuNPs bound to the surface were observed using atomic force microscopy. Both single nanoparticles and their aggregates were observed. UV-Vis spectra show b...

  14. Poly(1-vinylimidazole) functionalized magnetic ion imprinted polymer for fast and selective extraction of trace gold in geological, environmental and biological samples followed by graphite furnace atomic absorption spectrometry detection

    Science.gov (United States)

    Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin

    2018-05-01

    In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.

  15. Precipitation of lamellar gold nanocrystals in molten polymers

    Science.gov (United States)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  16. PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy.

    Science.gov (United States)

    Pereira, Maira Alves; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Ramaldes, Gilson Andrade; Cardoso, Valbert Nascimento

    2008-01-01

    The present work describes the preparation, characterization and labelling of conventional and surface-modified nanocapsules (NC) with 99m Tc-HMPAO. The size, size distribution and homogeneity were determined by photon correlation spectroscopy (PCS) and zeta potential by laser doppler anemometry. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The stability and release profile of the NC were determined in vitro in plasma. The results showed that the use of methylene blue induces significant increase in the encapsulation efficiency of 99m Tc-HMPAO, from 24.4 to 49.8% in PLA NC and 22.37 to 52.93% in the case of PLA-PEG NC (P<0.05) by improving the complex stabilization. The average diameter of NC calculated by PCS varied from 216 to 323 nm, while the average diameter determined by AFM varied from 238 to 426 nm. The AFM analysis of diameter/height ratios suggested a greater homogeneity of the surface-modified PLA-PEG nanocapsules compared to PLA NC concerning their flattening properties. The in vitro release of the 99m Tc-HMPAO in plasma medium was faster for the conventional PLA NC than for the surface-modified NC. For the latter, 60% of the radioactivity remained associated with NC, even after 12h of incubation. The results suggest that the surface-modified 99m Tc-HMPAO-PLA-PEG NC was more stable against label leakage in the presence of proteins and could present better performance as radiotracer in vivo.

  17. Analysis of the Transport and Fate of Metals Released From the Gold King Mine in the Animas and San Juan Rivers

    Science.gov (United States)

    This project’s objectives were to provide analysis of water quality following the release of acid mine drainage in the Animas and San Juan Rivers in a timely manner to 1) generate a comprehensive picture of the plume at the river system level, 2) help inform future monitoring eff...

  18. Environmental consequences of postulate plutonium releases from Atomics International's Nuclear Materials Development Facility (NMDF), Santa Susana, California, as a result of severe natural phenomena

    International Nuclear Information System (INIS)

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Atomics International's Nuclear Materials Development Facility (NMDF), in the Santa Susana site, California. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the earthquake, and the 150-mph and 170-mph tornadoes are above the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 μCi/m 2 . The deposition values following the 110-mph and the 130-mph tornadoes are below the EPA proposed guideline

  19. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  20. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  1. Construction of mixed mercaptopropionic acid/alkanethiol monolayers of controlled composition by structural control of a gold substrate with underpotentially deposited lead atoms.

    Science.gov (United States)

    Shimazu, Katsuaki; Kawaguchi, Toshikazu; Isomura, Takao

    2002-01-30

    Mixed monolayers of 3-mercaptopropionic acid (MPA) and alkanethiols of various chain lengths have been constructed on Au based on a novel concept, namely, control of the composition of the component thiols in mixed monolayers by controlling the surface structure of the substrate. The Au substrate surface was first modified with underpotentially deposited Pb (UPD Pb) atoms, followed by the formation of a self-assembled monolayer (SAM) of alkanethiol. The UPD Pb atoms were then oxidatively stripped from the surface to create vacant site, on which MPA was adsorbed to finally form the mixed monolayers. The surface coverages of Pb, alkanethiol and MPA, and the total numbers of thiols were determined using an electrochemical quartz crystal microbalance, X-ray photoelectron spectroscopy, and reductive desorption voltammetry. These results demonstrate that the surface coverage of MPA in the mixed monolayers is determined by the initial coverage of UPD Pb. Fourier transform infrared spectra also support this conclusion. The observed single peak in the cyclic voltammogram for the reductive desorption shows that MPA and alkanethiol do not form their single-component domains. Scanning tunneling microscopy revealed the single-row pinstripe structure for all the thiol adlayers formed during each step of the preparation. This shows that the surface structure of the mixed monolayers is determined by the structure of the initially formed SAM on Au partially covered with UPD Pb.

  2. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging

    Science.gov (United States)

    Lee, Hannah J.; Liu, Yang; Zhao, Jun; Zhou, Min; Bouchard, Richard R.; Mitcham, Trevor; Wallace, Michael; Stafford, R. Jason; Li, Chun; Gupta, Sanjay; Melancon, Marites P.

    2013-01-01

    Doxorubicin-loaded hollow nanoshells (Dox@PEG-HAuNS) increases the efficacy of photothermal ablation (PTA) by not only mediating efficient PTA but also through chemotherapy, and therefore have potential utility for local anticancer therapy. However, in vivo real-time monitoring of Dox release and temperature achieved during the laser ablation technique has not been previously demonstrated before. In this study, we used fluorescence optical imaging to map the release of Dox from Dox@PEG-HAuNS and photoacoustic imaging to monitor the tumor temperature achieved during near-infrared laser–induced photothermal heating in vitro and in vivo. In vitro, treatment with a 3-W laser was sufficient to initiate the release of Dox from Dox@PEG-HAuNS (1:3:1 wt/wt, 1.32×1012 particles/mL). Laser powers of 3 and 6 W achieved ablative temperatures of more than 50 °C. In 4T1 tumor–bearing nude mice that received intratumoral or intravenous injections of Dox@PEG-HAuNS, fluorescence optical imaging (emission wavelength = 600 nm, excitation wavelength = 500 nm) revealed that the fluorescence intensity in surface laser–treated tumors 24 h after treatment was significantly higher than that in untreated tumors (p=0.015 for intratumoral, p=0.008 for intravenous). Similar results were obtained using an interstitial laser to irradiate tumors following the intravenous injection of Dox@PEG-HAuNS (p=0.002 at t=24h). Photoacoustic imaging (acquisition wavelength = 800 nm) revealed that laser treatment caused a substantial increase in tumor temperature, from 37 °C to ablative temperatures of more than 50 °C. Ex vivo analysis revealed that the fluorescence intensity of laser-treated tumors was twice as high as that of untreated tumors (p=0.009). Histological analysis confirmed that intratumoral injection of Dox@PEG-HAuNS and laser treatment caused significantly more tumor necrosis compared to tumors that were not treated with laser (pimaging and photoacoustic imaging are promising

  4. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  5. Short-Term Nitrogen and Phosphorus Release during the Disturbance of Surface Sediments: A Case Study in an Urbanised Estuarine System (Gold Coast Broadwater, Australia

    Directory of Open Access Journals (Sweden)

    Ryan J.K. Dunn

    2017-04-01

    Full Text Available Understanding the effects of sediment disturbances on nutrient loadings is important for the management of estuarine settings. This study investigated the initial influence of sediment disturbance on water column nutrient concentrations in a shallow estuarine setting within the Gold Coast Broadwater, using a laboratory-based approach. Undisturbed sediment cores (200 mm Ø × 330 mm length, plexiglass were incubated before and after being subjected to a disturbance event, to investigate the effect on the immediate and subsequent short-term water column nutrient concentrations. Sediment NH4+bio and PO43−bio concentrations ranged from 150 to 478 and 1.50 to 8.56 nmol g−1 dry wt, respectively. Water column NH4+ concentrations underwent the greatest increase (>1000% or approx. 14 times greater immediately following disturbance, with mean effluxes increasing by >300%. Thereafter, water column NH4+ concentrations and efflux rates declined to near initial pre-disturbance concentrations. Water column NH4+ concentrations accounted for 0.58%–5.50% of the depth-integrated sediment NH4+bio concentration, indicating mobilization of the sediment bound exchangeable NH4+. The observed changes in PO43− concentrations and fluxes were much lower in comparison to those observed for N-species. Following disturbance, increases in the water column PO43− concentration accounted for 7.16%–8.22% depth-integrated sediment bioavailable PO43− at +1 and +2 hours, and 5.65% at +7 hours, respectively. These results provide important insight into the potential implications of disturbance events, such as vessel activities and dredging operations, within the case study region, providing information for potential management options and relevant water quality concerns.

  6. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  7. Gold Nanoparticles Cytotoxicity

    Science.gov (United States)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  8. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  9. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...

  10. Gold and silver/Si nanocomposite layers

    Energy Technology Data Exchange (ETDEWEB)

    Kleps, Irina [National Institute for Research and Development in Microtechnologies (IMT-Bucharest), P.O. Box 38-160, Bucharest (Romania)], E-mail: irinak@imt.ro; Danila, Mihai; Angelescu, Anca; Miu, Mihaela; Simion, Monica; Ignat, Teodora; Bragaru, Adina [National Institute for Research and Development in Microtechnologies (IMT-Bucharest), P.O. Box 38-160, Bucharest (Romania); Dumitru, Lucia; Teodosiu, Gabriela [Institute of Biology, 296 Splaiul Independentei, P.O. Box 56-53, Bucharest, 060031 (Romania)], E-mail: biologie@ibiol.ro

    2007-09-15

    Ag and Au nanolayers were realised by physical and chemical deposition methods on porous silicon (PS) nanostructured surfaces for biomedical applications: support for living cells, biodegradable material for the slow release of drugs/minerals, and as a bioactive material for scaffolds. Au nanoparticles on nanocrystalline Si are widely used in increasing substrate biocompatibility properties. It has an electrochemical potential of + 0.332 mV and surface energy around 25 erg/cm{sup 2}, close to those of living tissues. The Au nanocrystallites orientation on nanocrystalline Si substrates is also of great interest for application in biochemistry; the Au (111)/nc-Si surface has a higher density of atoms compared with Au (100); this favours the attachment of a higher number of atoms and bio-molecules on the gold surface. Ag nanoparticles on nanocrystalline Si are important for the latter's anti-microbial properties. In minute concentrations, Ag is highly toxic to germs while relatively non-toxic to human cells. Microbes are unlikely to develop a resistance against silver, as they do against conventional and highly targeted antibiotics. The Au and Ag nanoparticles/silicon nanocomposite layers as-deposited and thermally treated were investigated by optical microscopy, X-ray diffraction, and biological tests using eukaryotic and prokaryotic cell cultures. The experimental results sustain the use of Au/Si and Ag/Si or combined Ag/Au/Si nanocomposite structures as biocompatible and anti-microbial matrix.

  11. Grafting of Gold Nanoparticles on Glass Using Sputtered Gold Interlayers

    Directory of Open Access Journals (Sweden)

    Ondřej Kvítek

    2014-01-01

    Full Text Available Three-step preparation of nanostructured Au layer on glass substrate is described. The procedure starts with sputtered gold interlayer, followed by grafting with dithiols and final coverage with gold nanoparticles (AuNPs. Successful binding of dithiols on the sputtered Au film was confirmed by X-ray photoelectron spectroscopy measurement. AuNPs bound to the surface were observed using atomic force microscopy. Both single nanoparticles and their aggregates were observed. UV-Vis spectra show broadening of surface plasmon resonance peak after AuNPs binding caused by aggregation of AuNPs on the sample surface. Zeta potential measurements suggest that a large part of the dithiol molecules are preferentially bound to the gold interlayer via both –SH groups.

  12. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles – A review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Sharma, Anoop Kumar; Poulsen, Morten

    2015-01-01

    . In addition, gold released from dental restorations has been reported to increase the risk of developing gold hypersensitivity. Regarding genotoxicity, in vitro studies indicate that gold nanoparticles induce DNA damage in mammalian cells. In vivo, gold nanoparticles induce genotoxic effects in Drosophila...

  13. Neutron microtomography of voids in gold

    Directory of Open Access Journals (Sweden)

    Pavel Trtik

    2017-01-01

    Full Text Available Pilot attempt of the neutron microtomography of voids in gold carried out using the Neutron Microscope instrument is presented in the paper. The paper demonstrates that neutron microtomography provides viable alternative to X-ray imaging for the assessment of porosity in high atomic number materials. The model sample based on gold with artificially induced void system reveals segmented porosity with 5.4 micrometres voxel size and the spatial resolution close to 10 micrometres.

  14. Small gold clusters on graphene, their mobility and clustering: A DFT study

    OpenAIRE

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V.

    2010-01-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendenc...

  15. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  16. A theoretical study of CH4 dissociation on pure and gold-alloyed Ni(111) surfaces

    DEFF Research Database (Denmark)

    Kratzer, P.; Hammer, Bjørk; Nørskov, Jens Kehlet

    1996-01-01

    to the surface is responsible for the highest real mode. Alloying the surface with gold also affects the reactivity of the Ni atoms on adjacent surface sites. The dissociation barrier is increased by 16 and 38 kJ/mol for a Ni atom with one or two gold neighbors, respectively. We attribute these changes...... to a shift in the local density of d states at the nickel atoms in the neighborhood of gold. (C) 1996 American Institute of Physics....

  17. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  18. Ion induced segregation in gold nanostructured thin films on silicon

    International Nuclear Information System (INIS)

    Ghatak, J.; Satyam, P.V.

    2008-01-01

    We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au 2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 x 10 13 , 1 x 10 14 and 5 x 10 14 ions cm -2 at a high beam flux of 6.3 x 10 12 ions cm -2 s -1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 x 10 13 ions cm -2 ) transport has been found to be associated with the formation of gold silicide (Au 5 Si 2 ). At a high fluence value of 5 x 10 14 ions cm -2 , disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.

  19. Gold in Modern Economy

    Directory of Open Access Journals (Sweden)

    Boryshkevych Olena V.

    2014-01-01

    Full Text Available The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in the gold market during 1968 – 2013 and identifies main factors that determine the gold price. It identifies interconnection between the state of the gold market and financial markets of countries. The study showed that namely geopolitical and economic instability restricts the spectrum of financial assets for investing and gold is not only a safe investment object but also a profitable one.

  20. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  1. Physicochemical Properties of Gold Nanostructures Deposited on Glass

    Directory of Open Access Journals (Sweden)

    Zdenka Novotna

    2014-01-01

    Full Text Available Properties of gold films sputtered onto borosilicate glass substrate were studied. UV-Vis absorption spectra were used to investigate optical parameters. XRD analysis provided information about the gold crystalline nanostructure, the texture, and lattice parameter and biaxial tension was also determined by the XRD method. The surface morphology was examined by atomic force microscopy (AFM; chemical structure of sputtered gold nanostructures was examined by X-ray photoelectron spectroscopy (ARXPS. The gold crystallites are preferentially [111] oriented on the sputtered samples. Gold deposition leads to dramatic changes in the surface morphology in comparison to pristine glass substrate. Oxygen is not incorporated into the gold layer during gold deposition. Experimental data on lattice parameter were also confirmed by theoretical investigations of nanoclusters using tight-binding potentials.

  2. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  3. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  4. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    Science.gov (United States)

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Heat transport through atomic contacts.

    Science.gov (United States)

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-05-01

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  6. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  7. Corrosion of gold alloys and titanium in artificial saliva

    International Nuclear Information System (INIS)

    Brune, D.; Evje, D.

    1982-01-01

    Two types of gold alloys and one type of pure titanium have been submitted to corrosion in artificial saliva for periods of up to about 2 months. The release of copper, gold and silver from the gold alloys as well as titanium from the titanium matrix was measured with nuclear tracer technique. The physical/chemical state of the corrosion products of gold alloys referring to the ionic state or presence in particulate form has been examined retaining the particulate matter on a glass filter. Copper was observed to be mainly present in the ionic state. Considerable amounts of gold were observed to be retained on the glass filter explained by the presence of gold in particulate form or as a compentent of a dispersed collloidal phase. The estimation of the release of titanium was registered by the tracer nuclide 46 Sc assuming particulate matter to be deteriorated from the titanium surface. (author)

  8. Gold in semen: Level in seminal plasma and spermatozoa of normal ...

    African Journals Online (AJOL)

    The study was conducted to understand the amount of gold in semen of normal and different infertile conditions. Gold was estimated in normal (n38) and pathological conditions (n86) by employing Atomic Absorption Spectrophotometer. Gold level observed in seminal plasma was as follows: in normozoospermia (n38) ...

  9. Gold in semen: Level in seminal plasma and spermatozoa of normal ...

    African Journals Online (AJOL)

    K.P. Skandhan

    2016-07-01

    Jul 1, 2016 ... Abstract The study was conducted to understand the amount of gold in semen of normal and dif- ferent infertile conditions. Gold was estimated in normal (n38) and pathological conditions (n86) by employing Atomic Absorption Spectrophotometer. Gold level observed in seminal plasma was as follows: in ...

  10. MCNP6.1 simulations for low-energy atomic relaxation: Code-to-code comparison with GATEv7.2, PENELOPE2014, and EGSnrc

    Science.gov (United States)

    Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon

    2018-01-01

    Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.

  11. Novel Catalysis by Gold: A Modern Alchemy

    Science.gov (United States)

    Haruta, Masatake

    Gold has long been neglected as a catalyst because of its chemical inertness. However, when gold is deposited as nanoparticles on carbon and polymer materials as well as on base metal oxides and hydroxides, it exhibits unique catalytic properties for many reactions such as CO oxidation at a temperature as low as 200 K, gas phase direct epoxidation of propylene, and aerobic oxidation of glucose to gluconic acid. The structure-catalytic activity correlations are discussed with emphasis on the contact structure, support selection, and the size control of gold particles. Gold clusters with diameters smaller than 2 nm are expected to exhibit novel properties in catalysis, optics, and electronics depending on the size (number of atoms), shape, and the electronic and chemical interaction with the support materials. The above achievements and attempts can be regarded as a modern alchemy that creates valuables by means of the noblest element with little practical use.

  12. optimization of flame atomic absorption spectrometry

    African Journals Online (AJOL)

    unesco

    gold, tin, tungsten, mercury, base metals, uranium, coal, sulphur and other mining activities, as for example, abandoned Machavie Gold Mine near Potchefstroom, South Africa (4), although its crustal average is only 2 mg/kg (3). And subsequently, it is released from the solids through the various processes of dissolution, ...

  13. The in vitro formation of placer gold by bacteria

    Science.gov (United States)

    Southam, Gordon; Beveridge, Terrance J.

    1994-10-01

    A laboratory simulation was developed to provide mechanistic information about placer (nugget) gold development in the natural environment. To initiate the simulation, ionic gold was immobilized to a high capacity by Bacillus subtilis 168 (116.2 μg/mg dry weight bacteria) as fine-grained intracellular colloids (5-50 nm). During the low-temperature diagenesis experiment (60°C), the release of organics due to bacterial autolysis coincided with the in vitro formation of hexagonal-octahedral gold crystals (20 μm). This octahedral gold was observed to aggregate, forming fine-grained placer gold (50 μm). In addition to achieving a fundamental understanding into secondary gold deposition, a significant economic benefit could be realized by employing this environmentally safe procedure to concentrate widely dispersed gold in placer deposits to facilitate mining by conventional methodologies.

  14. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

    of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...... value maximization forces the manager of high type to extract the gold.The implications are three-fold. First, all managers (except the lowest type) extract the gold too soon compared to the first-best policy of leaving the gold in the mine forever. Second, a manager of high type extracts the gold......  Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...

  15. Synthesis of gold nanoparticles with different atomistic structural characteristics

    International Nuclear Information System (INIS)

    Esparza, R.; Rosas, G.; Lopez Fuentes, M.; Sanchez Ramirez, J.F.; Pal, U.; Ascencio, J.A.; Perez, R.

    2007-01-01

    A chemical reduction method was used to produce nanometric gold particles. Depending on the concentration of the main reactant compound different nanometric sizes and consequently different atomic structural configurations of the particles are obtained. Insights on the structural nature of the gold nanoparticles are obtained through a comparison between digitally-processed experimental high-resolution electron microscopy images and theoretically-simulated images obtained with a multislice approach of the dynamical theory of electron diffraction. Quantum molecular mechanical calculations, based on density functional theory, are carried out to explain the relationships between the stability of the gold nanoparticles, the atomic structural configurations and the size of nanoparticles

  16. Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Suerfu, B.; Xu, J. [Department of Physics, Princeton University, Princeton, NJ (United States); Ivantchenko, V. [Ecoanalytica, Moscow (Russian Federation); Geant4 Associates International Ltd, Hebden Bridge (United Kingdom); Mantero, A. [SWHARD srl, via Greto di Cornigliano 6r, 16152 Genova (Italy); Brown, J.M.C. [School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland (United Kingdom); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Francis, Z. [Université Saint Joseph, Faculty of Sciences, Department of Physics, Beirut (Lebanon); Karamitros, M. [Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN (United States); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-04-01

    A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.

  17. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Roy, Kamalika; Lahiri, Susanta; Sinha, P.

    2006-01-01

    Authors have reported preconcentration of 152 Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  18. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  19. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  20. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  1. Fast ultrasound-assisted treatment of urine samples for chronopotentiometric stripping determination of mercury at gold film electrodes

    International Nuclear Information System (INIS)

    Munoz, Rodrigo A.A.; Felix, Fabiana S.; Augelli, Marcio A.; Pavesi, Thelma; Angnes, Lucio

    2006-01-01

    This work describes an efficient, fast, and reliable analytical methodology for mercury determination in urine samples using stripping chronopotentiometry at gold film electrodes. The samples were sonicated in the presence of concentrated HC1 and H 2 O 2 for 15 min in order to disrupt the organic ligands and release the mercury. Thirty samples can be treated over the optimized region of the ultrasonic bath. This sample preparation was enough to allow the accurate stripping chronopotentiometric determination of mercury in the treated samples. No background currents and no passivation of the gold film electrode due to the sample matrix were verified. The samples were also analyzed by cold vapour atomic absorption spectrometry (CV-AAS) and good agreement between the results was verified. The analysis of NIST SRM 2670 (Toxic Metals in Freeze-Dried Urine) also validated the proposed electroanalytical method. Finally, this method was applied for mercury evaluation in urine of workers exposed to hospital waste incinerators

  2. Skin contact with gold and gold alloys.

    Science.gov (United States)

    Rapson, W S

    1985-08-01

    3 types of reaction to gold merit discussion. First, there is the effect known as black dermographism, in which stroking with certain metals immediately produces well-defined black lines on the skin. Some gold alloys are amongst such metals. The evidence indicates that the effect is the result of impregnation of the skin with black metallic particles generated by mechanical abrasion of the metal by contaminants of the skin. There is no positive and unequivocal evidence of the ability of metals to mark uncontaminated skin so rapidly that it is possible to write upon it. Secondly there are the 2 related phenomena of the wear of gold jewelry, and the susceptibility to certain individuals to blackening of the skin where it is in contact with such jewelry. The occurrence of smudge, as it is often called, is not very common, but is brought to the attention of most jewelers from time to time. In extreme cases it may make it embarrassing for the person concerned to wear metallic jewelry. It would appear as if gold smudge also results mainly from mechanical abrasion of jewelry, though this may be aided and/or supplemented in some instances by corrosion of gold or gold alloy induced by certain components of the sweat. Finally, there is the question of true allergic responses to contact of the skin with gold and its alloys. Judging from the very few cases which have been recorded, such responses are extremely rare. Some recent observations on the reactions of metallic gold with amino acids and of reaction to contact of the skin with gold on the part of rheumatoid arthritis patients undergoing gold therapy, are, however, relevant in this connection.

  3. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  4. Bioaccumulation and effects of sediment-associated gold- and graphene oxide nanoparticles on Tubifex tubifex

    DEFF Research Database (Denmark)

    Zhang, Panhong; Selck, Henriette; Tangaa, Stine Rosendal

    2017-01-01

    With the development of nanotechnology, gold (Au) and graphene oxide (GO) nanoparticles have been widely used in various fields, resulting in an increased release of these particles into the environment. The released nanoparticles may eventually accumulate in sediment, causing possible...

  5. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  6. Red gold analysis by using gamma absorption tchnique

    International Nuclear Information System (INIS)

    Kurtoglu, A.; Tugrul, A.B.

    2001-01-01

    Gold is a valuable metal and also preferable materials for antique artefacts and some advanced technology products. It can be offered for the analysis of the gold as namely; neutron activation analysis, X-ray florescence technique, Auger spectroscopy, atomic absorption and wet chemistry. Some limitations exist in practice for these techniques, especially in the points of financial and applicability concepts. An advanced a practical technique is gamma absorption technique for the gold alloys. This technique is based on discontinuities in the absorption coefficient for gamma rays at corresponding to the electronic binding energies of the absorber. If irradiation is occurred at gamma absorption energy for gold, absorption rates of the red gold changes via the gold amounts in the alloy. Red gold is a basic and generally preferable alloy that has copper and silver additional of the gold in it. The gold amount defines as carat of the gold. Experimental studies were observed for four different carats of red gold; these are 8, 14, 18 and 22 carats. K-edge energy level of the gold is on 80 keV energy. So, Ba-133 radioisotope is preferred as the gamma source because of it has gamma energy peak in that energy. Experiments observed in the same geometry for all samples. NaI(Tl) detector and multichannel analyser were used for measurements. As a result of the experiments, the calibration curves could be drawn for red gold. For examine this curve, unknown samples are measured in experimental set and it can be determined the carat of it with the acceptability. So the red gold analysis can be observed non-destructively, easily and quickly by using the gamma absorption technique

  7. Nuclear shape transition in light gold isotopes

    International Nuclear Information System (INIS)

    Wallmeroth, K.; Bollen, G.; Dohn, A.; Egelhof, P.; Kroenert, U.; Heyde, K.; Coster, C. de; Wood, J.L.; Kluge, H.J.; European Organization for Nuclear Research, Geneva; European Organization for Nuclear Research, Geneva

    1989-01-01

    The hyperfine structure and isotope shifts of short-lived gold isotopes with 185≤A≤190 and the 11/2 - isomer of 189 Au have been investigated by application of on-line resonance ionization mass spectroscopy. A detection efficiency of ε=10 -8 for gold atoms was observed at a background of about one event per 1000 laser shots. The deduced charge radii show a drastic change between A=187 and A=186 which is interpreted as an onset of strong deformation (β 2 ≅ 0.25) in 186 Au and 185 Au due to the influence of the π1h 9/2 intruder orbital. (orig.)

  8. Structure and reactivity of a mononuclear gold(II) complex

    Science.gov (United States)

    Preiß, Sebastian; Förster, Christoph; Otto, Sven; Bauer, Matthias; Müller, Patrick; Hinderberger, Dariush; Hashemi Haeri, Haleh; Carella, Luca; Heinze, Katja

    2017-12-01

    Mononuclear gold(II) complexes are very rare labile species. Transient gold(II) species have been suggested in homogeneous catalysis and in medical applications, but their geometric and electronic structures have remained essentially unexplored: even fundamental data, such as the ionic radius of gold(II), are unknown. Now, an unprecedentedly stable neutral gold(II) complex of a porphyrin derivative has been isolated, and its structural and spectroscopic features determined. The gold atom adopts a 2+2 coordination mode in between those of gold(III) (four-coordinate square planar) and gold(I) (two-coordinate linear), owing to a second-order Jahn-Teller distortion enabled by the relativistically lowered 6s orbital of gold. The reactivity of this gold(II) complex towards dioxygen, nitrosobenzene and acids is discussed. This study provides insight on the ionic radius of gold(II), and allows it to be placed within the homologous series of nd9 Cu/Ag/Au divalent ions and the 5d8/9/10 Pt/Au/Hg 'relativistic' triad in the periodic table.

  9. The effect of cysteine on electrodeposition of gold nanoparticle

    International Nuclear Information System (INIS)

    Dolati, A.; Imanieh, I.; Salehi, F.; Farahani, M.

    2011-01-01

    Highlights: → Cysteine was found as an appropriate additive for electrodeposition of gold nanoparticles. → The deposition mechanism of gold nanoparticle was determined as instantaneous nucleation. → Oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits. - Abstract: The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of gold nanoparticle electrodeposited was studied in KOH solution, where oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits.

  10. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  11. Single-atom contacts with a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Kroeger, J; Neel, N; Sperl, A; Wang, Y F; Berndt, R

    2009-01-01

    The tip of a cryogenic scanning tunnelling microscope is used to controllably contact single atoms adsorbed on metal surfaces. The transition between tunnelling and contact is gradual for silver, while contact to adsorbed gold atoms is abrupt. The single-atom junctions are stable and enable spectroscopic measurements of, e.g., the Abrikosov-Suhl resonance of single Kondo impurities.

  12. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  13. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    2008-01-01

    Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough...... in silico methods are here proposed for apoptosis studies and for AMG studies.   Methods   MR - heating of high concentration micrometer gold and low concentration nano gold.   CSLM of ethidum bromide stained cell lines, with and witout gold and automated image processing.   AMG gold uptake study...

  14. Ballistic transport in gold [110] nanowire

    Science.gov (United States)

    Kurui, Yoshihiko; Oshima, Yoshifumi; Okamoto, Masakuni; Takayanagi, Kunio

    2009-03-01

    Conductance of gold nanowire elongated along the [110] direction (gold [110] nanowire) was measured during many breaking procedures, while simultaneously acquiring transmission electron microscope images. The conductance histogram exhibits a series of peaks whose conductance values increased nearly in steps of the conductance quantum, G0 =2e^2/h. However thick nanowires above 10G0 showed dequantization, where the increment was only 0.9G0. The structure for each peak was determined to be either an atomic sheet or a hexagonal prism. The number of conductance channels calculated for each atomic structure by first principles theory, coincided well with the peak index in the conductance histogram. The present study shows that the [110] nanowire behave as ballistic conductors, and a conductance peak appears whenever a conductance channel is opened.

  15. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  16. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  17. Preparation and characterization of graphene oxide encapsulated gold nanoparticles.

    Science.gov (United States)

    Yun, Yong Ju; Song, Ki-Bong

    2013-11-01

    We present a simple approach for the fabrication of graphene oxide-encapsulated gold nanoparticles using graphene oxide sheet-wrapping via electrostatic self-assembly. By mixing bovine serum albumin molecule-functionalized gold nanoparticles with graphene oxide dispersion, positively charged bovine serum albumin/gold nanoparticles easily assembled with negatively charged graphene oxide sheets through electrostatic interaction. Transmittance electron microscopy, scanning electron microscopy, atomic force microscopy, and Raman spectroscopy were used to confirm the encapsulation of graphene oxide on gold nanoparticles. Interestingly, graphene oxide sheets wrapping mainly occurs along the main body of single or a few gold nanoparticles. Additionally, by measuring the ultraviolet-visible spectroscopy spectrum, we found that the surface plasmon resonances band of the graphene oxide-encapsulated gold nanoparticles was found to become red-shifted compared to that of pristine gold nanoparticles, whereas similar to that of bovine serum albumin-coated gold nanoparticles. These results indicating that most of graphene oxide-encapsulated gold nanoparticles have good monodispersity and spherical shape. These resulting materials may potentially serve as a platform for plasmon resonance electron transfer spectroscopy or a probe for low level biosensing.

  18. Magnetism in nanocrystalline gold.

    Science.gov (United States)

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  19. Oligochitosan-stabilized photoluminescent gold nanoconstructs for optical bioimaging

    OpenAIRE

    Yoo, Donghyuck; Lee, Dongwon

    2017-01-01

    Background Gold nanoclusters (AuNCs) are typically composed of several to tens of gold atoms which are stabilized with biomacromolecules such as bovine serum albumin (BSA). Au NCs fluoresces in the visible to near infrared region, in a size-dependent manner. AuNCs solutions have potential as fluorophore in a wide range of biomedical applications such as biodetection, biosensing and bioimaging in vitro and in vivo. However, their stability and harsh condition of preparation limit their biomedi...

  20. Controlled Aspect Ratios of Gold Nanorods in Reduction-Limited Conditions

    Directory of Open Access Journals (Sweden)

    Jong-Yeob Kim

    2011-01-01

    Full Text Available Aspect ratios of gold nanorods have been finely modified in reduction-limited conditions via two electrochemical ways: by changing the amount of a growth solution containing small gold clusters in the presence of already prepared gold nanorods as seeds or by changing electrolysis time in the presence or absence of a silver plate. While the atomic molar ratio of gold in the growth solution to gold in the seed solution is critical in the former method, the relative molar ratio of gold ions to silver ions in the electrolytic solution is important in the latter way for the control of the aspect ratios of gold nanorods. The aspect ratios of gold nanorods decrease with an increase of electrolysis time in the absence of a silver plate, but they increase with an increase of electrolysis time in the presence of a silver plate.

  1. Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation

    International Nuclear Information System (INIS)

    Abyaneh, Majid Kazemian; Paramanik, D; Varma, S; Gosavi, S W; Kulkarni, S K

    2007-01-01

    Gold-polymethylmethacrylate (PMMA) nanocomposites were fabricated with a photoreduction method using UV irradiation. The irradiated samples are compared with unirradiated ones to investigate the mechanism of gold nanoparticle formation and the effect of UV irradiation and polymer matrix on the morphology of the particles. The triangular gold nanoparticles were formed in polymer medium at a specific concentration of gold salt and UV exposure. The particle size decreased when the gold salt to polymer ratio was increased. The samples were analysed using UV-Vis spectroscopy, Fourier transform infrared spectrometry, atomic force microscopy, x-ray diffraction, small angle x-ray scattering and x-ray photoelectron spectroscopy. The interfacial interaction of Au nanoparticles and PMMA polymer has been discussed

  2. The fcc structure isomerization in gold nanoclusters.

    Science.gov (United States)

    Zhuang, Shengli; Liao, Lingwen; Li, Man-Bo; Yao, Chuanhao; Zhao, Yan; Dong, Hongwei; Li, Jin; Deng, Haiteng; Li, Lingling; Wu, Zhikun

    2017-10-12

    Structural isomerization is an important concept in organic chemistry and it is recently found to be applicable to thiolated gold nanoparticles. However, to the best of our knowledge, the isomerization with the kernel structure of the cluster changed while maintaining fcc packing was not previously found. Here, we report such a structural isomerization by synthesizing a novel gold nanocluster and solving its atomic structure. The as-obtained novel gold nanocluster Au 52 (PET) 32 (PET = phenylethanethiolate) has completely the same Au/S molar ratio as a well-known gold nanocluster Au 52 (TBBT) 32 (TBBT = 4-tert-butyl-benzenethiolate) but an essentially different fcc structure. As a result of fcc structure isomerization, Au 52 (PET) 32 has remarkably different UV/vis/NIR absorption from Au 52 (TBBT) 32 . Another interesting finding in this work is that the kernel of Au 52 (PET) 32 has high-indexed (311)-like facets, which is not previously reported in the structures of gold nanoclusters to the best of our knowledge.

  3. Determination of gold in geological samples - the present and the future

    International Nuclear Information System (INIS)

    Feriancik, E.

    1997-01-01

    This paper reviews some analytical techniques which have been described for the gold analysis of geological materials: spectrophotometry; flame atomic absorption spectrometry; graphite coupled plasma atomic emission spectrometry; inductively coupled plasma atomic emission spectrometry; inductively coupled plasma-mass spectrometry; neutron activation; electro-analysis methods and fire assay

  4. Carbon monoxide adsorption on silver doped gold clusters.

    Science.gov (United States)

    De Haeck, Jorg; Veldeman, Nele; Claes, Pieterjan; Janssens, Ewald; Andersson, Mats; Lievens, Peter

    2011-03-24

    Well controlled gas phase experiments of the size and dopant dependent reactivity of gold clusters can shed light on the surprising discovery that nanometer sized gold particles are catalytically active. Most studies that investigate the reactivity of gold clusters in the gas phase focused on charged, small sized clusters. Here, reactivity measurements in a low-pressure reaction cell were performed to investigate carbon monoxide adsorption on neutral bare and silver doped gold clusters (Au(n)Ag(m); n = 10-45; m = 0, 1, 2) at 140 K. The size dependence of the reaction probabilities reflects the role of the electronic shells for the carbon monoxide adsorption, with closed electronic shell systems being the most reactive. In addition, the cluster's reaction probability is reduced upon substitution of gold atoms for silver. Inclusion of a single silver atom causes significant changes in the reactivity only for a few cluster sizes, whereas there is a more general reduction in the reactivity with two silver atoms in the cluster. The experimental observations are qualitatively explained on the basis of a Blyholder model, which includes dopant induced features such as electron transfer from silver to gold, reduced s-d hybrization, and changes in the cluster geometry.

  5. Mercury use in small scale gold mining in Ghana: an assessment of its impact on miners

    International Nuclear Information System (INIS)

    Biagya, Robert Yakubu

    2002-12-01

    Small scale gold mining is responsible for about 5% of Ghana’s annual gold production. It is estimated that between 80,000 and 100,000 people are engaged in small scale gold mining either on part-time or permanent basis. Amalgamation is the preferred method used by small scale gold miners for extracting free gold from its ores. The rate at which mercury, an important input in this method, is discharged into the atmosphere and water bodies is alarming. This research describes the various mining and processing methods in small scale gold mining and the extent of mercury use and releases to the environment. It discusses mercury and its human and environmental effects. It defines the various forms of mercury, routes of exposure, toxic effects. The levels of exposure to mercury by all groups of small scale gold miners are determined, and the impacts on the miners and the environment are assessed. It concludes that: • Mercury is mainly released into the environment as a result of small scale gold mining through spillage of elemental mercury and evaporation of mercury from the amalgam and sponge gold when they are heated on open fire. • Mercury in environmental samples from small scale gold mining areas is well above standard limit values. • Mercury released into the environment through small scale gold mining impacts negatively on the miners themselves and the general environment. Finally, it recommends the need for the adoption of mercury emission reduction strategies for dealing with the mercury problem. (au)

  6. Interaction of aromatic molecules with small gold clusters

    Science.gov (United States)

    Molina, Luis M.; López, María. J.; Alonso, Julio A.

    2017-09-01

    Ab initio density functional simulations have been performed to study the adsorption of aromatic molecules (benzene and toluene) on small Aun clusters. The calculations reveal a strong interaction between gold and π electrons of benzene, accompanied by a small electronic charge transfer from benzene to gold. We report a variety of binding conformations, with varying degrees of contact between the carbon atoms in benzene and the cluster. Therefore, the interaction between the aromatic part of molecules involved in the synthesis of fine chemicals catalyzed by gold must not be neglected, and could play an important role during some reaction stages.

  7. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  8. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  9. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  10. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  11. Structural and functional aspects of trypsin–gold nanoparticle interactions: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Nidhin, Marimuthu [Department of Chemistry, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India); Ghosh, Debasree [Department of Nanotechnology, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India); Yadav, Himanshu; Yadav, Nitu [Department of Chemistry, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India); Majumder, Sudip, E-mail: sudip22m@gmail.com [Department of Chemistry, Amity School of Applied Sciences, Center for Nanoscience and Technology, Amity University Haryana Amity Education Valley, Gurgaon, Haryana 122413 (India)

    2015-12-15

    Highlights: • Trypsin undergoes activation on incubation with gold nanoparticles. • Enhanced activity depends on the stoichiometry of the mixture. • Higher concentration of nanoparticles damage stability and conformation of trypsin. • Gold nanoparticles undergo morphological change on incubation with trypsin. - Abstract: Trypsin (Trp) is arguably the most important member of the serine proteases. Constructs made up of gold nanoparticles (GNP) with trypsin have been known to exhibit increased efficiency and stability in various experiments. Here we report simple Trp–GNP constructs mixed in different trypsin-to-GNP ratios which exhibit higher efficiencies in biochemical assay, varying resistance to autolysis and higher ability in cell trypsinization. Trp–GNP constructs in different trypsin-to-GNP ratios exhibit prolonged and sustained activity compared to native trypsin in N-α-p-benzoyl-p-nitroanilide (BAPNA) assay as monitored by UV-Visible spectroscopy. The activity was monitored as a function of decreasing rate of linear release of p-nitro aniline (resulting from the cleavage of BAPNA by trypsin) with time during the assay, whose absorbance was measured at 410 nm (λ{sub max} p-nitro aniline). We have done extensive studies to understand structural basis of this trypsin GNP interaction by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and circular dichroism (CD) techniques. Our findings suggest that on interaction, the gold nanoparticles probably form an adherent layer on trypsin that effectively changes the morphology and dimensions of the nanoconstructs. However, trypsin-to-GNP ratio is extremely important, as higher concentration of GNP might damage the conformation of protein. Stability studies related to denaturation show that 1:1 Trp–GNP constructs exhibit maximum stability and high efficiency in all assays performed.

  12. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  13. Fungal Biorecovery of Gold From E-waste.

    Science.gov (United States)

    Bindschedler, Saskia; Vu Bouquet, Thi Quynh Trang; Job, Daniel; Joseph, Edith; Junier, Pilar

    2017-01-01

    Waste electric and electronic devices (e-waste) represent a source of valuable raw materials of great interest, and in the case of metals, e-waste might become a prized alternative source. Regarding gold, natural ores are difficult to mine due to their refractory nature and the richest ores have almost all been exploited. Additionally, some gold mining areas are present in geopolitically unstable regions. Finally, the gold mining industry produces toxic compounds, such as cyanides. As a result, the gold present in e-waste represents a nonnegligible resource (urban mining). Extraction methods of gold from natural ores (pyro- and hydrometallurgy) have been adapted to this particular type of matrix. However, to propose novel approaches with a lower environmental footprint, biotechnological methods using microorganisms are being developed (biometallurgy). These processes use the extensive metabolic potential of microbes (algae, bacteria, and fungi) to mobilize and immobilize gold from urban and industrial sources. In this review, we focus on the use of fungi for gold biomining. Fungi interact with gold by mobilizing it through mechanical attack as well as through biochemical leaching by the production of cyanides. Moreover, fungi are also able to release Au through the degradation of cyanide from aurocyanide complexes. Finally, fungi immobilize gold through biosorption, bioaccumulation, and biomineralization, in particular, as gold nanoparticles. Overall, the diversity of mechanisms of gold recycling using fungi combined with their filamentous lifestyle, which allows them to thrive in heterogeneous and solid environments such as e-waste, makes fungi an important bioresource to be harnessed for the biorecovery of gold. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Gold emissivities for hydrocode applications

    International Nuclear Information System (INIS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-01-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroes superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroes emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations

  15. Effects of gold coating on experimental implant fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2009-01-01

    -kinase activation. The present study investigated whether gilding implant Surfaces augmented early implant osseointegration and implant fixation by its modulatory effect on the local inflammatory response. Ion release was traced by autometallographic silver enhancement. Gold-coated cylindrical porous coated Ti6Al4V...... implants Were inserted press-fit in the proximal part of tibiae in nine canines and control implants without gold inserted contralateral. Observation time was 4 weeks. Biomechanical push-out tests showed that implant,,, with gold coating had decrease in mechanical strength and stiffness....... Histomorphometrical analyses showed gold-coated implants had a decrease in overall total bone-to-implant contact of 35%. Autometallographic analysis revealed few cells loaded with gold close to the gilded implant surface. The findings demonstrate that gilding of implants negatively, affects mechanical strength...

  16. Radiation-electrochemistry of the colloidal gold micro-electrode: Hydrogen formation by organic free radicals

    International Nuclear Information System (INIS)

    Westerhausen, J.; Henglein, A.; Lilie, J.

    1981-01-01

    Various organic free radicals as well as Ni + ions produce hydrogen in the presence of some 10 -4 M of colloidal gold. The gold catalyst was prepared via the reduction of HAuCl 4 either thermally by citrate or by γ-irradiation. The organic radicals were radiolytically produced. The mechanism of H 2 formation includes electron transfer from the organic radicals to the gold particles, storage of a large number of electrons per gold particle, conversion of the electrons into adsorbed H-atoms and desorption of the latter to form H 2 . - The rates of some of these steps were measured using the method of pulse radiolysis. 1-Hydroxy-1-methyl ethyl radicals, (CH 3 ) 2 COH, react with colloidal gold particles almost diffusion controlled provided that the gold particles are not charged with excess electrons. Charged gold particles react at a substantially lower rate. The stored electrons live seconds or even minutes depending on their number per gold particle. In the stationary state, up to 0.38 Coulomb of electrons could be stored per liter of a 2.9x10 -4 molar gold solution, each gold particle carrying about 39 electrons. A comparison is also made between the catalytic activities of colloidal gold and silver. Due to the relative fast conversion of electrons into adsorbed H-atoms, colloidal gold has less capacity for the storage of electrons than colloidal silver. - The dependence of the hydrogen yield on the pH of the solution, the concentration of gold, the size of the gold particles, the concentration of the polyvinyl alcohol stabilizer, and the intensity of radiation was also investigated. At high intensities, some of the radicals are destroyed in a gold catalysed disproportionation. (orig.)

  17. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    International Nuclear Information System (INIS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-01-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV– visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  18. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  19. Modified gold electrodes based on thiocytosine/guanine-gold nanoparticles for uric and ascorbic acid determination

    International Nuclear Information System (INIS)

    Vulcu, Adriana; Grosan, Camelia; Muresan, Liana Maria; Pruneanu, Stela; Olenic, Liliana

    2013-01-01

    The present paper describes the preparation of new modified surfaces for electrodes based on guanine/thiocytosine and gold nanoparticles. The gold nanoparticles were analyzed by UV–vis spectroscopy and transmission electron microscopy (TEM) and it was found that they have diameters between 30 and 40 nm. The layers were characterized by specular reflectance infrared spectroscopy (FTIR-RAS) and by atomic force microscopy (AFM). The thickness of layers was found to be approximately 30 nm for TC layers and 300 nm for GU layers. Every layer was characterized as electrochemical sensor (by cyclic voltammetry) both for uric acid and ascorbic acid determinations, separately and in their mixture. The modified sensors have good calibration functions with good sensitivity (between 1.145 and 1.406 mA cm −2 /decade), reproducibility ( t hiocytosine (Au T C) and gold g uanine (Au G U) layers

  20. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  1. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  2. Ionic Strength Mediated Self-Organization of Gold Nanocrystals: An AFM Study

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene

    2002-01-01

    The deposition of charge-stabilized colloidal gold nanocrystals on silicon substrates, derivatized with (aminopropyl)triethoxysilane (APTES), is studied using atomic force microscopy. The influence of ionic strength on the spatial distribution of gold nanocrystal assemblies is analyzed in terms of

  3. Influencing the binding selectivity of self-assembled cyclodextrin monolayers on gold through their architecture

    NARCIS (Netherlands)

    de Jong, M.R.; Huskens, Jurriaan; Reinhoudt, David

    2001-01-01

    Cyclodextrin derivatives modified with seven thioether moieties (1) or with one thiol moiety (2) bind to gold. Monolayers on gold of 1 or mixed monolayers of 2 and mercaptoundecanol were characterized by electrochemistry, wettability, and atomic force microscopy (AFM). Monolayers of 1 are

  4. Double Layer of a Gold Electrode Probed by AFM Force Measurements

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Duval, J.F.L.; Leeuwen, van H.P.; Lyklema, J.; Cohen Stuart, M.A.

    2003-01-01

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by

  5. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  6. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  7. Exotic atoms

    International Nuclear Information System (INIS)

    Backenstoss, G.

    1986-01-01

    Recent developments in the field of exotic atoms are presented. The improved quality of accelerator facilities and experimental techniques leads to a more precise determination of data. This opens new fields in nuclear and particle physics to which exotic atoms may contribute valuable knowledge. (author)

  8. An easy way to obtain thin gold film on silica glass substrate by chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Lamic-Humblot, Anne-Félicie, E-mail: anne-felicie.lamic@upmc.fr [Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie, Paris 6, 4 place Jussieu 75005, Paris France (France); Casale, Sandra [Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie, Paris 6, 4 place Jussieu 75005, Paris France (France); Léger, Cédric; Alpérine, Serge [Sagem Défense Sécurité, 72–74, Rue de la Tour Billy, 95100, Argenteuil France (France); Louis, Catherine [Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie, Paris 6, 4 place Jussieu 75005, Paris France (France)

    2013-07-31

    Physical methods of metal deposition under ultra-high vacuum conditions are currently used to manufacture electrically conductive surfaces. In the case of silica glass, a supplementary oxide layer is usually required to avoid the uncontrolled growth of metal nanoparticles on the surface. Here, we present a simple chemical method which allows the formation of a high density of small gold nanoparticles forming a film on bare silica glass surface. The deposition of gold takes place at ambient pressure and in water followed by a thermal treatment that leads to the formation a gold film of 6 nm thickness according to atomic force microscopy experiments. This film consists of juxtaposed nanoparticles, which insures electrical conductivity under vacuum, as attested by the possibility of doing scanning electron microscopy imaging without carbon coating. - Highlights: • Gold film is formed with a chemical process. • Gold film is made of juxtaposed gold nanoparticles • Gold film electrically conductive in the conditions of Scanning Electron Microscopy.

  9. Properties of gold clusters and molecule-coated gold clusters as studied by molecular modeling

    OpenAIRE

    Walderhaug, Martin E

    2016-01-01

    The properties of small gold clusters are studied by use of density functional theory (DFT). A method validation study is conducted to choose a suitable DFT method. Geometry optimizations are performed on a number of different clusters, and their cohesive energies are computed. The charge distribution in the Au20 cluster is studied, both in the presence and absence of an electric field. The results are interpreted in terms of a model for the atomic charges in the cluster derived from electron...

  10. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature

    International Nuclear Information System (INIS)

    Ishida, Tadashi; Nakajima, Yuuki; Fujita, Hiroyuki; Endo, Junji; Collard, Dominique

    2009-01-01

    Gold diffusion into silicon at room temperature was observed in real time with atomic resolution. Gold nanoclusters were formed on a silicon surface by an electrical discharge between a silicon tip and a gold coated tip inside an ultrahigh-vacuum transmission electron microscope (TEM) specimen chamber. At the moment of the gold nanocluster deposition, the gold nanoclusters had a crystalline structure. The crystalline structure gradually disappeared due to the interdiffusion between silicon and gold as observed after the deposition of gold nanoclusters. The shape of the nanocluster gradually changed due to the gold diffusion into the damaged silicon. The diffusion front between silicon and gold moved toward the silicon side. From the observations of the diffusion front, the gold diffusivity at room temperature was extracted. The extracted activation energy, 0.21 eV, matched the activation energy in bulk diffusion between damaged silicon and gold. This information is useful for optimizing the hybridization between solid-state and biological nanodevices in which gold is used as an adhesive layer between the two devices.

  11. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  12. Silver and gold in the Protein Data Bank.

    Science.gov (United States)

    Carugo, Oliviero

    2017-10-01

    The structural features of the silver and gold sites in protein crystal structures extracted from the Protein Data Bank have been investigated. It is observed that both cations have nearly always low oxidations states (+1) and low coordination numbers, adopt standard stereochemistries, and interact preferentially (particularly gold) with sulfur donor atoms of cysteine and methionine side-chains. Interestingly, gold cation have been very often refined with occupancy minor than 1.0 and are very often "naked", in the sense that no donor atoms are sufficiently close to the metal cation. This apparently strange observation points out towards the need to develop specific and efficient validation tools for these elements when they are coordinated to proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Secret in the Margins: Rutherford's Gold Foil Experiment

    Science.gov (United States)

    Aydin, Sevgi; Hanuscin, Deborah L.

    2011-01-01

    In this article, the authors describe a lesson that uses the 5E Learning Cycle to help students not only understand the atomic model but also how Ernest Rutherford helped develop it. The lesson uses Rutherford's gold foil experiment to focus on three aspects of the nature of science: the empirical nature of science, the tentativeness of scientific…

  14. Structural properties of gold clusters at different temperatures

    CSIR Research Space (South Africa)

    Mahladisa, MA

    2005-09-01

    Full Text Available A series of gold clusters consisting of aggregates of from 13 to 147 atoms was studied using the Sutton-Chen type many-body potential in molecular dynamics simulations. The properties of these clusters at temperatures from 10 K to 1000 K were...

  15. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  16. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  17. Orthogonal chemical functionalization of patterned gold on silica surfaces.

    Science.gov (United States)

    Palazon, Francisco; Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane; Chevolot, Yann; Cloarec, Jean-Pierre

    2015-01-01

    Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge.

  18. Orthogonal chemical functionalization of patterned gold on silica surfaces

    Directory of Open Access Journals (Sweden)

    Francisco Palazon

    2015-12-01

    Full Text Available Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica was demonstrated by X-ray photoelectron spectroscopy (XPS as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM. These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors is a major challenge.

  19. Breaking gold nano-junctions simulation and analysis

    DEFF Research Database (Denmark)

    Lauritzen, Kasper Primdal

    Simulating the movements of individual atoms allows us to look at and investigate the physical processes that happen in an experiment. In this thesis I use simulations to support and improve experimental studies of breaking gold nano-junctions. By using molecular dynamics to study gold nanowires, I...... can investigate their breaking forces under varying conditions, like stretching rate or temperature. This resolves a confusion in the literature, where the breaking forces of two different breaking structures happen to coincide. The correlations between the rupture and reformation of a gold junction......, to predict the structure of a gold junction just as it breaks. This method is based on artificial neural networks and can be used on experimental data, even when it is trained purely on simulated data. The method is extended to other types of experimental traces, where it is trained without the use...

  20. Formation of Silver and Gold Dendrimer Nanocomposites

    International Nuclear Information System (INIS)

    Balogh, Lajos; Valluzzi, Regina; Laverdure, Kenneth S.; Gido, Samuel P.; Hagnauer, Gary L.; Tomalia, Donald A.

    1999-01-01

    Structural types of dendrimer nanocomposites have been studied and the respective formation mechanisms have been described, with illustration of nanocomposites formed from poly(amidoamine) PAMAM dendrimers and zerovalent metals, such as gold and silver. Structure of {(Au(0)) n- PAMAM} and {(Ag(0)) n- PAMAM} gold and silver dendrimer nanocomposites was found to be the function of the dendrimer structure and surface groups as well as the formation mechanism and the chemistry involved. Three different types of single nanocomposite architectures have been identified, such as internal ('I'), external ('E') and mixed ('M') type nanocomposites. Both the organic and inorganic phase could form nanosized pseudo-continuous phases while the other components are dispersed at the molecular or atomic level either in the interior or on the surface of the template/container. Single units of these nanocomposites may be used as building blocks in the synthesis of nanostructured materials

  1. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin.

    Science.gov (United States)

    Golshan, Marzieh; Salami-Kalajahi, Mehdi; Mirshekarpour, Mina; Roghani-Mamaqani, Hossein; Mohammadi, Maryam

    2017-07-01

    The aim of current work is synthesis 4th-generation-poly(propylene imine) (PPI)-dendrimer modified gold nanoparticles (Au-G4A) as nanocarriers for doxorubicin (DOX) and studying in vitro drug release kinetics from nanocarriers into different media. Accordingly, AuNPs were synthesized by reduction of chloroauric acid (HAuCl 4 ) aqueous solution with trisodium citrate and modified with cysteamine to obtain amine-functionalized (Au-NH 2 ) nanoparticles. Au-NH 2 nanoparticles were used as multifunctional cores and participated in Michael addition of acrylonitrile and reduction process by lithium aluminum hydride (LAH) to synthesize Au-G4A nanoparticles. Also, peripheral primary amine groups of Au-G4A were conjugated with folic acid (FA) (Au-G4F) to study the bioconjugation effect on drug release behavior of nanostructures. Ultraviolet spectroscopy (UV-vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) were used to approve the synthesis of different nanostructures. Finally, Au-G4A and Au-G4F samples were loaded with DOX and exposed to environments with different pH values to examine the release properties of nanostructures. Also, drug release kinetics was investigated by fitting of experimental data with different release models. As a result, synthesized dendritic structures showed Higuchi and Korsmeyer-Peppas models release behavior due to better solubility of drug in release media with respect to dendrimer cavities and drug release through polymeric matrix respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Instability of the topological surface state in Bi2Se3 upon deposition of gold

    Science.gov (United States)

    Polyakov, A.; Tusche, C.; Ellguth, M.; Crozier, E. D.; Mohseni, K.; Otrokov, M. M.; Zubizarreta, X.; Vergniory, M. G.; Geilhufe, M.; Chulkov, E. V.; Ernst, A.; Meyerheim, H. L.; Parkin, S. S. P.

    2017-05-01

    Momentum-resolved photoemission spectroscopy indicates the instability of the Dirac surface state upon deposition of gold on the (0001) surface of the topological insulator Bi2Se3 . Based on the structure model derived from extended x-ray absorption fine structure experiments showing that gold atoms substitute bismuth atoms, first-principles calculations provide evidence that a gap appears due to hybridization of the surface state with gold d states near the Fermi level. Our findings provide insights into the mechanisms affecting the stability of the surface state.

  3. Photoemission on gold-55-clusters derived from gold-phosphine AuP(C6H5)3Cl

    International Nuclear Information System (INIS)

    Quinten, M.; Sander, I.; Steiner, P.; Kreibig, U.; Fauth, K.; Schmid, G.

    1991-01-01

    We measured XPS and UPS spectra of gold clusters with 55 atoms, embedded in an electrically isolating phosphine matrix, and of gold-phosphine, from which the clusters were chemically derived. Compared to the spectra of bulk gold the valence band spectrum and the core level spectra of the clusters showed shifts of the peaks and the fermi level to higher binding energies. The shift of the peaks could qualitatively be interpreted by a final state effect. We succeeded in a separation of bulk and surface contributions to the core level spectra and in a reasonable quantitative analysis of the valence band spectrum of the clusters. The Au 4f core level spectrum of gold-phosphine showed two peaks at 1.5 eV higher binding energies than the corresponding peaks of the clusters. (orig.)

  4. Sulfur ligand mediated electrochemistry of gold surfaces and nanoparticles: what, how, and why

    DEFF Research Database (Denmark)

    Chi, Qijin; Ford, Michael J.; Halder, Arnab

    2017-01-01

    Gold surfaces are widely used in electrochemistry whilst gold nanoparticles have very many uses, with both the surfaces and the particles often being protected by sulfur-bound organic ligands. The ligands not only provide chemical stability but also directly participate in many desired processes....... This review considers the diversity of known atomic structures for gold-sulfur interfaces, how these structures facilitate a diversity of mechanisms in electrochemical applications, and why this is possible based on recent advances in the basic understanding of the electronic structure of gold-sulfur bonds...

  5. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  6. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  7. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  8. ENVIRONMENTAL MONITORING AT THE NALUNAQ GOLD MINE, SOUTH GREENLAND, 2015

    DEFF Research Database (Denmark)

    Bach, Lis; Birch Larsen, Morten

    the monitoring in 2014, the area has been without any activity. The mining company Angel Mining Gold A/S closed its gold production in November 2013 where after the Nalunaq area was affected by decommissioning and restoration until August 2014. The gold was extracted by chemical extraction with cyanide (carbon......This twelfth environmental monitoring programme was conducted in the Nalunaq area, about 40 km from Nanortalik, South Greenland, from 18-31 August 2015. The environmental monitoring programme is conducted to discover and avoid unwanted environmental impacts of the former mining industry. Since......-in-pulp). Due to the use of cyanide to extract gold from the ore, there was strict monitoring with the outflow of cyanide from the mine to the valley during the production period, and monitoring will continue for 5 years after the closure. Also, extensive monitoring is conducted to reveal release of metals...

  9. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  10. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...... are increasingly being noted, there is little analysis of miners' mobility patterns and material outcomes. In this article, on the basis of a sample survey and interviews at two gold-mining sites in Tanzania, we probe when and why miners leave one site in favour of another. Our findings indicate that movement...

  11. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  12. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  13. Gold geochemistry and mineralogy of till fines: a new approach for data integration

    Directory of Open Access Journals (Sweden)

    Vladimir Knauf

    2000-01-01

    Full Text Available A new method of heavy mineral (HM separation and assessment of gold grade was compared with the results of conventional AAS analysis. Sixteen gold micronuggets and a number of particles of native metal and metal alloys (brass, tin, bismuth, lead were extracted from 100 g of till fines (< 50 μm. From the size, number, and composition of micronuggets, the total gold grade (58 ppb of till fines was evaluated. The assessments agree well with the results of AASanalysis (57 ppb. A slightly lower value (44 ppb was obtained by Flame Atomic Absorption Analysis with Fire Assay (FAAS FA method of the extracted HM. Mineralogical investigations allow identification of two types of gold micronuggets thus revealing a complex origin for the geochemical anomaly. The association of brass-pyroxene (Mg# = 80–82 with complex gold-brass-lead-tin intergrowths indicates that some gold in till is derived from ultramafic rocks.

  14. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  15. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  16. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  17. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...

  18. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  19. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  20. Effect of temperature on atom-atom collision chain length in metals

    International Nuclear Information System (INIS)

    Makarov, A.A.; Demkin, N.A.; Lyashchenko, B.G.

    1981-01-01

    Focused atom-atom collision chain lengths are calculated for fcc-crystals with account of thermal oscillations. The model of solid spheres with the Born-Merier potential has been used in the calculations. The dependence of chain lengths on the temperature, energy and movement direction of the first chain atom for Cu, Au, Ag, Pb, Ni is considered. The plot presented shows that the chain lengths strongly decrease with temperature growth, for example, for the gold at T=100 K the chain length equals up to 37 interatomic spacings, whereas at T=1000 K their length decreases down to 5 interatomic distances. The dependence of the energy loss by the chain atoms on the atom number in the chain is obtained in a wide range of crystal temperature and the primary chain atom energy [ru

  1. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  2. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of Strachlyde, Scotland. He is a leading scientist in the electronics field. He was among the British scientists who developed radar during ...

  3. Atomic Power

    African Journals Online (AJOL)

    that atom-produced electricity began to be more economic than electricity produced by conventional means. In the A.G.R., the uranium metal fuel elements are replaced by uranium dioxide, the higher gas temperatures permitting a more efficient steam cycle and allowing several economies. Initially a reactor of this type was ...

  4. Atomic Warrior

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Atomic Warrior. Shabhana Narasimhan. Book Review Volume 6 Issue 9 September 2001 pp 106-109. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0106-0109. Author Affiliations.

  5. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Science.gov (United States)

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable backs...

  6. Sub-10 ohm resistance gold films prepared by removal of ligands from thiol-stabilized 6 nm gold nanoparticles.

    Science.gov (United States)

    Sugden, Mark W; Richardson, Tim H; Leggett, Graham

    2010-03-16

    The optical and electrical properties of dodecanethiol-stabilized nanoparticles (6 nm diameter gold core) have been investigated over a range of film thicknesses and temperatures. The surface plasmon resonance absorbance is found to be dependent on temperature. Heating of the nanoparticle film causes desorption of the thiol from the surface of the gold nanoparticle, resulting in irreversible changes to the absorption spectra of the nanoparticle film. Atomic force microscopy images of the samples before and after heating for different film thicknesses reveal structural changes and increased domain connectivity for thicker films leading to sub-10 ohm resistances measured for the 15-layer film.

  7. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  8. Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Hosseini, Seyedeh Maedeh; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2015-12-01

    We synthesized manganese oxides supported on gold nanoparticles (diameter oxide is deposited on the gold nanoparticles. The compounds were characterized by scanning electron microscopy, energy-dispersive spectrometry, high-resolution transmission electron microscopy, X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy. In the next step, the water-oxidizing activities of these compounds in the presence of cerium(IV) ammonium nitrate as a non-oxo transfer oxidant were studied. The results show that these compounds are good catalysts toward water oxidation with a turnover frequency of 1.0 ± 0.1 (mmol O2/(mol Mn·s)). A comparison with other previously reported Mn oxides and important factors influencing the water-oxidizing activities of Mn oxides is also discussed.

  9. Growth of pentacene on clean and modified gold surfaces

    International Nuclear Information System (INIS)

    Kaefer, Daniel; Ruppel, Lars; Witte, Gregor

    2007-01-01

    The growth and evolution of pentacene films on gold substrates have been studied. By combining complementary techniques including scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy, near-edge x-ray-absorption fine structure, and x-ray diffraction, the molecular orientation, crystalline structure, and morphology of the organic films were characterized as a function of film thickness and growth parameters (temperature and rate) for different gold substrates ranging from Au(111) single crystals to polycrystalline gold. Moreover, the influence of precoating the various gold substrates with self-assembled monolayers (SAM's) of organothiols with different chemical terminations has been studied. On bare gold the growth of pentacene films is characterized by a pronounced dewetting while the molecular orientation within the resulting crystalline three-dimensional islands depends distinctly on the roughness and cleanliness of the substrate surface. After completion of the first wetting layer where molecules adopt a planar orientation parallel to the surface the molecules continue to grow in a tilted fashion: on Au(111) the long molecular axis is oriented parallel to the surface while on polycrystalline gold it is upstanding oriented and thus parallels the crystalline orientation of pentacene films grown on SiO 2 . On SAM pretreated gold substrates the formation of a wetting layer is effectively suppressed and pentacene grows in a quasi-layer-by-layer fashion with an upstanding orientation leading to rather smooth films. The latter growth mode is observed independently of the chemical termination of the SAM's and the roughness of the gold substrate. Possible reasons for the different growth mechanism as well as consequences for the assignment of spectroscopic data of thin pentacene film are discussed

  10. Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation.

    Science.gov (United States)

    Guan, Y; Hensen, E J M

    2009-11-07

    Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au L(III) edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold atoms upon reduction. The resulting gold clusters exhibit a very high intrinsic activity in the hydrogenation of 1,3-butadiene, which is at least one order of magnitude higher than that of the nanometre-sized gold particles in the non-leached parent catalyst. These findings point to a very strong structure sensitivity of the gold-catalyzed hydrogenation of dienes.

  11. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Tufail, Saba; Sherwani, Asif; Sajid, Mohammad; Raman, Suri C; Azam, Amir; Owais, Mohammad

    2011-01-01

    Background Nanomaterials are considered to be the pre-eminent component of the rapidly advancing field of nanotechnology. However, developments in the biologically inspired synthesis of nanoparticles are still in their infancy and consequently attracting the attention of material scientists throughout the world. Keeping in mind the fact that microorganism-assisted synthesis of nanoparticles is a safe and economically viable prospect, in the current study we report Candida albicans-mediated biological synthesis of gold nanoparticles. Methods and results Transmission electron microscopy, atomic force microscopy, and various spectrophotometric analyses were performed to characterize the gold nanoparticles. The morphology of the synthesized gold particles depended on the abundance of C. albicans cytosolic extract. Transmission electron microscopy, nanophox particle analysis, and atomic force microscopy revealed the size of spherical gold nanoparticles to be in the range of 20–40 nm and nonspherical gold particles were found to be 60–80 nm. We also evaluated the potential of biogenic gold nanoparticles to probe liver cancer cells by conjugating them with liver cancer cell surface-specific antibodies. The antibody-conjugated gold particles were found to bind specifically to the surface antigens of the cancer cells. Conclusion The antibody-conjugated gold particles synthesized in this study could successfully differentiate normal cell populations from cancerous cells. PMID:22072868

  12. The RHIC gold rush

    CERN Document Server

    Schäfer, T

    2003-01-01

    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  13. Radioactive gold ring dermatitis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.A.; Aldrich, J.E. (Dalhousie Univ., Halifax, Nova Scotia (Canada))

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  14. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  15. Direct evidence of oxidized gold on supported gold catalysts.

    Science.gov (United States)

    Fu, L; Wu, N Q; Yang, J H; Qu, F; Johnson, D L; Kung, M C; Kung, H H; Dravid, V P

    2005-03-10

    Supported gold catalysts have drawn worldwide interest due to the novel properties and potential applications in industries. However, the origin of the catalytic activity in gold nanoparticles is still not well understood. In this study, time-of-flight secondary ion mass spectroscopy (TOF-SIMS) has been applied to investigate the nature of gold in Au (1.3 wt %)/gamma-Al2O3 and Au (2.8 wt %)/TiO2 catalysts prepared by the deposition-precipitation method. The SIMS spectrum of the supported gold catalysts presented AuO-, AuO2-, and AuOH- ion clusters. These measurements show direct evidence for oxidized gold on supported gold catalysts and may be helpful to gaining better understanding of the origin of the catalytic activity.

  16. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  17. Comparison of amino acids interaction with gold nanoparticle.

    Science.gov (United States)

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  18. Programmable solid state atom sources for nanofabrication

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  19. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine.

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza; Khan, Naveed Ahmed

    2015-12-14

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  20. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  1. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    ' particles with Pd-shell/Au-core and Au-shell/Pd-core morphologies, have been prepared and immobilized on both activated carbon and TiO2 supports. These have subsequently been compared as catalysts for the direct production of H2O2 and for benzyl alcohol oxidation in an attempt to elucidate the optimum particle morphology/support combination for both these reactions. Aberration corrected analytical electron microscopy has been used extensively to characterize these sol-immobilized materials. In particular, the STEM -HAADF technique has provided invaluable new (and often unexpected) information on the atomic structure, elemental distribution within particles, and compositional variations between particles for these controlled catalyst preparations. In addition, we have been able to compare their differing thermal stability and sintering behaviors, and to demonstrate that they have quite varying wetting interactions with activated carbon and TiO2 supports. Over the course of their lifetime, many supported metal catalysts exposed to elevated temperatures tend to de-activate by nanoparticle sintering, which decreases the overall exposed metal surface area and the number of active sites available for catalysis. It is sometimes desirable to devise chemical re-dispersion treatments whereby the mean size of the particles is reduced and the catalytic activity regenerated. In this work, the possibility of re-dispersing gold nanoparticles by a simple low temperature methyl iodide (CH3 I) treatment has been investigated. A variety of characterization techniques, including EXAFS, XRD, XPS, UV-DRS and STEM-HAADF imaging has been applied to samples before and after CH3 I treatment, in an attempt to determine the efficacy of the re-dispersion method. It is shown that re-dispersion of Au nanoparticles on activated carbon, graphite, Al2 O3 and TiO2 substrates is possible to varying degrees. A complete re-dispersion of `bulk' gold nanoparticles down to the atomic scale has been achieved on

  2. Atomic scale investigation of silicon nanowires and nanoclusters

    Directory of Open Access Journals (Sweden)

    Gourbilleau Fabrice

    2011-01-01

    Full Text Available Abstract In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold and dopant (boron in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers.

  3. Gold--a controversial sensitizer

    DEFF Research Database (Denmark)

    Bruze, M; Andersen, Klaus Ejner

    1999-01-01

    of clinical relevance, i.e., causing or aggravating a contact dermatitis. In this paper, these steps are discussed with regard to gold. With our present knowledge of contact allergy-allergic contact dermatitis, we do not recommend including gold sodium thiosulfate in the standard series. It should be applied......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason...

  4. Thin Metallic Films from Solvated Metal Atoms.

    Science.gov (United States)

    1987-07-14

    research has developed over the past two decades that deals with the generation of atoms of metals (by metal evaporation, and the interaction of these...Departamento de Quimica , Universidad de Concepcion, Cassilla 3-:, c oncepcion, Chile. -I{ - ~ *~.’JS*~M 4 .~4\\ 821 19 the gold particles were negatively...flocculation were observed, as shown in table a Generally about 0.1 g In was Suspended in 100-200 nl solvent. Several approacies to characterization of

  5. Enhancement of gold grade through arsenic removal in the gold concentrate using sulfuric acid baking and hot water leaching

    Science.gov (United States)

    On, Hyun-sung; Lim, Dae-hack; Myung, Eun-ji; Kim, Hyun-soo; Park, Cheon-young

    2017-04-01

    In order to improve gold recovery, in general, the roasting process is carried out on gold concentrate. However in this process, Arsenic(As) is released from the gold concentrate and valuable elements such as Fe, Cu, Zn and Pb are converted into oxides. This causes air pollution through the release of As and loss of valuable elements by discarding the oxide minerals in the tailings. In order to prevent the release of As and the loss of valuable metals, an acid baking experiment was carried out on the gold concentrate with the addition of an H2SO4 solution. The baking effect, H2SO4 concentration effect and the effects of changing the baking time were examined using an electric furnace. In experimental results, soluble metal sulfates such as Rhomboclase and Mikasite were formed in the baked samples as seen through XRD analysis. In hot(70 degree Celsius) water leaching of the roast and baked samples, As the contents leached were 60 times more in the baked sample than the roast sample, and the Fe, Cu, Zn and Pb contents were 17, 10, 14, 13 times in the baked sample than in the roast sample, respectively. In the water leached solid-residues, the maximum gold grade was upgraded by 33% due to the acid baking effect. It is confirmed that acid baking with H2SO4 prevented As release into the air and the recovery of valuable metals through hot water leaching such as Fe, Cu, Zn and Pb which were formerly discarded in the tailings. Acknowledgment : This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea

  6. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  7. Bats, cyanide, and gold mining

    Science.gov (United States)

    Clark, Donald R.

    1991-01-01

    Although the boom days of prospectors and gold nuggets are long gone, modern technology enables gold to continue to be extracted from ore. Unfortunately, the extraction method has often been disastrous for bats and other wildlife, an issue I first became aware of in early 1989. Phone calls from Drs. Merlin Tuttle and Elizabeth Pierson, a BCI member and bat researcher from Berkeley, California, alerted me that bats were dying from apparent cyanide poisoning at gold mines in the western United States.

  8. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  9. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

    International Nuclear Information System (INIS)

    Ashraf, S.; Khalid, Z. M.; Hussain, I.

    2013-01-01

    Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

  10. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  11. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  12. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  13. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  14. Chiral gold nanowires with boerdijk-coxeter-bernal structure

    KAUST Repository

    Zhu, Yihan

    2014-09-10

    A Boerdijk-Coxeter-Bernal (BCB) helix is made of linearly stacked regular tetrahedra (tetrahelix). As such, it is chiral without nontrivial translational or rotational symmetries. We demonstrate here an example of the chiral BCB structure made of totally symmetrical gold atoms, created in nanowires by direct chemical synthesis. Detailed study by high-resolution electron microscopy illustrates their elegant chiral structure and the unique one-dimensional "pseudo-periodicity". The BCB-type atomic packing mode is proposed to be a result of the competition and compromise between the lattice and surface energy.

  15. In-vitro Synthesis of Gold Nanoclusters in Neurons

    Science.gov (United States)

    2016-04-01

    a few hundred atoms are an emerging class of luminescent nanomaterials . These NCs typically have diameters less than 2 nm, approaching the Fermi...the fluorescence intensity under pressure due to ligand conformation changes for select gold NC (AuNC) systems.4 Thus, these nanomaterials could...methods such as magnetic resonance imaging.5 Thus, diagnosis relies heavily on self-reported symptoms and is often undiagnosed even though mTBIs and

  16. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  17. Observation of shell effects in nanowires for the noble metals copper, silver and gold

    OpenAIRE

    Mares, A. I.; van Ruitenbeek, J. M.

    2005-01-01

    We extend our previous shell effect observation in gold nanowires at room temperature under ultra high vacuum to the other two noble metals: silver and copper. Similar to gold, silver nanowires present two series of exceptionally stable diameters related to electronic and atomic shell filling. This observation is in concordance to what was previously found for alkali metal nanowires. Copper however presents only electronic shell filling. Remarkably we find that shell structure survives under ...

  18. An XPS study of tarnishing of a gold mask from a pre-Columbian culture

    International Nuclear Information System (INIS)

    Bastidas, D.M.; Cano, E.; Gonzalez, A.G.; Fajardo, S.; Lleras-Perez, R.; Campo-Montero, E.; Belzunce-Varela, F.J.; Bastidas, J.M.

    2008-01-01

    The tarnishing originated on a hammered gold mask was analysed. Red tarnishing was observed after three years of storage in an indoor environment in the Gold Museum of Banco de la Republica, Bogota, Colombia. Silver sulphide (Ag 2 S) and silver sulphate (Ag 2 SO 4 ) compounds were identified as the origin of the tarnishing phenomenon, which is attributed to environmental contamination. Atomic absorption spectroscopy (AAS) and X-ray photoelectron spectroscopy (XPS) techniques were used

  19. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  20. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  1. Anoxia stimulates microbially catalyzed metal release from Animas River sediments†

    OpenAIRE

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.; Wilkins, Michael J.

    2017-01-01

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold Ki...

  2. Decision no 2009-DC-0155 of the 15. of September 2009 by the Nuclear Safety Authority specifying the limits of releases in the environment of liquid and gaseous effluents of base nuclear installations n. 18, 35, 40, 49, 50, 72, 77 and 101 operated by the Atomic Energy Commissariat (CEA) in its Saclay Centre, located on the districts of Saclay, Saint-Aubin and Villiers-le-Bacle (Essonne department)

    International Nuclear Information System (INIS)

    2009-01-01

    This document contains references to the different legal and official documents (codes, orders, minister's opinion, public surveys, administrative authorizations, local community opinion) at the root of this specification of limits related to releases in the environment of liquid and gaseous effluents of base nuclear installations of the Saclay Centre operated by the Atomic Energy Commissariat (CEA). Tables present the limits for different radioactive emissions (carbon 14, hydrogen 3, iodine, radioactive rare earths, and other alpha, beta and gamma emitters) from these different installations, but also the maximum admitted concentrations for gaseous chemical effluents (HCl, HF, NOx, CO, and so on), as well as limits for thermal releases

  3. Phantom atom

    International Nuclear Information System (INIS)

    Ludwig, K.; Voigt, S.

    1993-01-01

    The Society for People Living under Threat has been supporting those affected by radiation (Uranium decay), nuclear weapons testing, nuclear power stations and waste disposal since the mid-sixties. Through a great number of meetings, press releases and campaigns, it has succeeded in bringing the theme into the public spotlight in Germany, particularly within the ecology movement. The initial hesitation in supporting the indigenous peoples threatened by radiation contamination has given way to broad consensus and support. The ecology and human rights movement have united the need to listen to and give support to those of whom no-one speaks. (orig./DG) [de

  4. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  5. Complexity of gold nanoparticle formation disclosed by dynamics study

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten

    2013-01-01

    Although chemically synthesized gold nanoparticles (AuNPs) from gold salt (HAuCl4) are among the most studied nanomaterials, understanding the formation mechanisms is a challenge mainly due to limited dynamics information. A range of in situ methods with down to millisecond (ms) time resolution...... have been employed in the present report to monitor time-dependent physical and chemical properties in aqueous solution during the chemical synthesis. Chemical synthesis of AuNPs is a reduction process accompanied by release of ions and protons, and formation of solid particles. Dynamic information...... from redox potential, pH, conductivity, and turbidity of the solution enables distinct observation of reduction and nucleation/growth of AuNPs phases. The dynamics of the electrochemical potential shows that reduction of gold salt (HAuCl 4 and its hydrolyzed forms) occurs via intermediate [AuCl 2...

  6. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  7. Preparation of Ultrafine Colloidal Gold Particles using a Bioactive Molecule

    Science.gov (United States)

    Pal, Anjali

    2004-02-01

    Synthesis of nanometer-sized particles with new physical properties is an area of tremendous interest. In metal particles, the changes in size modify the electron density in the particles, which shifts the plasmon band. The most significant size effects occur when the particles are ultrafine (size is synthesis of ultrafine metal particles is enormously important to exploit their unique and selective application. Here we report a novel method for the synthesis of ultrafine gold particles in the size range of 0.5-3 nm using dopamine hydrochloride (dhc), an important neurotransmitter. This is the first time where such an important bioactive molecule like dhc has been used as a reagent for the transformation of Au(III) to Au(0). The synthesis is carried out, for the first time, either in simple aqueous or in a nonionic micellar (for example Triton X-100 (TX-100)) medium. The gold sol has a beautiful yellow-brown color showing λmax at 470 nm. The appearance of the absorption peak at substantially shorter wavelength (usually gold sol absorbs at ˜520 nm) indicates that the particles are very small. The method discussed here is very simple, reproducible and does not involve any reagent, which contains 'P' or 'S' atoms. Also in this case no polymer or dendrimer or thiol-related stabilizer is used. The effects of different parameters (such as the presence or absence of O2, temperature, TX-100 concentration and dhc concentration) on the formation of ultrafine gold particles are discussed. The effects of 3-mercapto propionic acid and pyridine on the ultrafine gold sol are also studied and compared with those on photochemically prepared gold sol. It is observed that 3-mercapto propionic acid dampens the plasmon absorption at 470 nm of ultrafine gold particles. Pyridine, on the other hand, has no effect on the particles.

  8. Atomic magnetometer

    Science.gov (United States)

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  9. Directed organization of gold nanoclusters on silver nanowires: A step forward in heterostructure assembly

    Science.gov (United States)

    Sharma, Jadab; Vivek, J. P.; Vijayamohanan, Kunjukrishna P.; Singh, Poonam; Dharmadhikari, C. V.

    2006-05-01

    We investigate the directed assembly of tridecylamine protected gold nanoclusters of 4-5nm size on functionalized silver nanowires of 55-60nm diameter and the electron transfer behavior of this integrated structure using transmission electron microscopy, non-contact atomic force microscopy, and scanning tunneling microscopy/spectroscopy. Linear I-V for bare silver nanowire suggests metallic behavior but high tunnel resistance indicates presence of insulating layer on the surface. Identical I-Vs obtained for isolated gold nanoparticle and heterostructure suggests that electron transport across nanowires in the latter is governed by gold nanoparticles in contrast to expected ballistic or diffusive transport along their length.

  10. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  11. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  12. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  13. Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics

    Science.gov (United States)

    Jelveh, Salomeh; Chithrani, Devika B.

    2011-01-01

    The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research. PMID:24212654

  14. Gold Nanostructures as a Platform for Combinational Therapy in Future Cancer Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Jelveh, Salomeh [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, ON (Canada); Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Chithrani, Devika B., E-mail: devika.chithrani@rmp.uhn.on.ca [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); STTARR Innovation Centre, Toronto Medical Discovery Tower, Toronto, ON (Canada)

    2011-03-04

    The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs), gold nanorods (GNRs), gold nanoshells (GNSs) and gold nanocages (GNCs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options and recent developments in cancer research show that the incorporation of gold nanostructures into these protocols has enhanced tumor cell killing. These nanostructures further provide strategies for better loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy and photodynamic therapy. In addition, the heat generation capability of gold nanostructures upon exposure to UV or near infrared light is being used to damage tumor cells locally in photothermal therapy. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. In this review article, the recent progress in the development of gold-based NPs towards improved therapeutics will be discussed. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents, holds an array of promising directions for cancer research.

  15. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  16. Illustration of a fingerprinting method to isolate Gold King ...

    Science.gov (United States)

    Detecting the Gold King Mine metals as the release plume passed was difficult once it entered the San Juan River on August 8, 2015. Plume metals concentrations were relatively low after 200 km of travel and deposition in the Animas River while background concentrations of the same metals were high due to high sediment load in the San Juan River. A metal fingerprinting technique was used to isolate metals in the Gold King release from background using the measured concentrations of the 23 TAL metals (Metal/Cynaide Target Analyte List) available with most water samples. The method associates the concentration of trace metals to that of aluminum or iron as representative of the dominant metals in the geologic substrate. Metal concentrations can be plotted together, as in Figure 1A, or the ratio can be computed for each sample for use as a value, such as plotted in time in Figure 1B. The correlation technique allowed maximum use of typically available water sample data to isolate Gold King metals as contaminants within the varying background concentrations associated with the natural sediments of the San Juan River. To be presented at the New Mexico Water Institute Symposium, 2nd Annual Conference on Environmental Conditionsof the Animas and San Juan Watersheds with Emphasis on Gold King Mine and Other Mine Waste Issues.

  17. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Yang, Pengfei; Li, Gang; Zhang, Tiancai, E-mail: tczhang@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China); Liang, Junjun [Department of Physics, Shanxi University, Taiyuan 030006 (China)

    2014-03-17

    We investigate the transmission of single-atom transits based on a strongly coupled cavity quantum electrodynamics system. By superposing the transit transmissions of a considerable number of atoms, we obtain the absorption spectra of the cavity induced by single atoms and obtain the temperature of the cold atom. The number of atoms passing through the microcavity for each release is also counted, and this number changes exponentially along with the atom temperature. Monte Carlo simulations agree closely with the experimental results, and the initial temperature of the cold atom is determined. Compared with the conventional time-of-flight (TOF) method, this approach avoids some uncertainties in the standard TOF and sheds new light on determining temperature of cold atoms by counting atoms individually in a confined space.

  18. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  19. Green Chemistry Techniques for Gold Nanoparticles Synthesis

    Science.gov (United States)

    Cannavino, Sarah A.; King, Christy A.; Ferrara, Davon W.

    Gold nanoparticles (AuNPs) are often utilized in many technological and research applications ranging from the detection of tumors, molecular and biological sensors, and as nanoantennas to probe physical processes. As these applications move from the research laboratory to industrial settings, there is a need to develop efficient and sustainable synthesis techniques. Recent research has shown that several food products and beverages containing polyphenols, a common antioxidant, can be used as reducing agents in the synthesis of AuNPs in solution. In this study, we explore a variety of products to determine which allow for the most reproducible solution of nanoparticles based on the size and shapes of particles present. We analyzed the AuNPs solutions using extinction spectroscopy and atomic force microscopy. We also develop a laboratory activity to introduce introductory chemistry and physics students to AuNP synthesis techniques and analysis.

  20. Bacterial leaching of pyritic gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J. [Monash Univ., Clayton, VIC (Australia). Dept. of Physics; Jay, W.H. [Monash Univ., Clayton, VIC (Australia). Chemical Engineering Department

    1996-12-31

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. {sup 57}Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS{sub 2}, and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  1. Assembly of Conjugated Polymers- Gold Nanoparticles

    Science.gov (United States)

    Osti, Naresh; Etampawala, Thusitha; Ratnaweera, Dilru; Bunz, Uwe; Rotello, Vincent; Perahia, Dvora

    2010-03-01

    The formation of hydrophilic modified disubstituted para-polyphenyleneethylene (PPE) nanoparticles (NP) complexes in aqueous media and their assemblies have been investigated. Both PPEs and gold NPs are electro-optically active. Controlling their association would allow formation of electro-optical tunable responsive materials. Small Angle Neutron Scattering (SANS) in conjunction with Atomic Force Microscopy (AFM) has been used to characterize the structures of the complexes formed. SANS studies have shown that spherical core shell NP-P complexes are formed in dilute solutions, with the gold NPs surrounded by almost fully stretched out PPE chains. With increasing the concentration of the NP-PPE complex in solution chains which consist of the basic core-shell aggregated are observed. These NP-PPE complexes were allowed to assemble at a solid surface. While the basic building block, observed by AFM, remains spherical, they assemble in different ways from random 2-d arrays to cable like structures, depending on the interaction of the NP with the PPEs and the nature of the PPE side chains.

  2. Bacterial leaching of pyritic gold ores

    International Nuclear Information System (INIS)

    Gagliardi, F.M.; Cashion, J.D.; Brown, L.J.; Jay, W.H.

    1996-01-01

    The bacterial oxidation process is well known in nature but has only recently come under investigation as a viable and relatively clean method of gold recovery from ores. However there is currently little information about the process at an atomic scale. It is known that the bacterial attack progresses preferentially along grain boundaries which is precisely where the gold has been deposited from aqueous infiltration. Samples have been obtained from the Wiluna mine in Western Australia consisting of the original ore, 2 pre-treatments, and from six successive bacterial reactors. 57 Fe Moessbauer spectra taken at room temperature show only two quadrupole split doublets which can be ascribed to pyrite, FeS 2 , and arsenopyrite, FeAsS. However, the presence of any superparamagnetic oxide or oxyhydroxide species would be expected to give a spectrum very similar to that of pyrite and would be undetectable in small quantities. At a temperature of 5K, a broad magnetically split sextet is observable with a mean hyperfine field of approximately 50T. This field is characteristic of magnetically ordered ferric iron surrounded by an octahedron of oxygens. The intensity and characteristics of this subspectrum alters through the series and interpretations will be given on the oxidation products of the bacterial leaching

  3. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  4. Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe

    International Nuclear Information System (INIS)

    Xu, Yaqiong; Hun, Xu; Liu, Fang; Wen, Xiaolong; Luo, Xiliang

    2015-01-01

    We describe a biosensor for dopamine that is based on the use of a gold electrode modified with carbon nanoparticles (CNPs) coupled to thionine labeled gold nanoparticles (AuNPs) acting as signal amplifiers. The biosensor was constructed by first modifying the CNPs on the gold electrode and adsorbing the thionine on the surface of the AuNPs, and then linking the complementary strand of the dopamine aptamer to the AuNPs via gold-thiol chemistry. Next, dopamine aptamer is added and the duplex is formed on the surface. On addition of a sample containing dopamine, it will interact with aptamer and cause the release of the electrochemical probe which then will be adsorbed on the surface of the CNP-modified gold electrode and detected by differential pulse voltammetry. The current is linearly related to the concentration of dopamine in the 30 nM to 6.0 μM ranges. The detection limit is as low as 10 nM, and the RSD is 3.1 % at a 0.3 μM level (for n = 11). The protocol was successfully applied to the determination of dopamine in spiked human urine samples. We perceive that this method holds promise as a widely applicable platform for aptamer-based electrochemical detection of small molecules. (author)

  5. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  6. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  7. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    Science.gov (United States)

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  8. Size-dependent production of radicals in catalyzed reduction of Eosin Y using gold nanorods

    International Nuclear Information System (INIS)

    Weng, Guojun; Qi, Ying; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Gold nanostructures have been widely used as catalysts for chemical processes, energy conversion, and pollution control. The size of gold nanocatalysts is thus paramount for their catalytic activity. In this paper, gold nanorods with different sizes were prepared by means of the improved seeding growth approach by adding aromatic additive. The sizes and aspect ratios of the obtained gold nanorods were calculated according to the TEM characterization. Then, we studied the catalytic activities of gold nanorods using a model reaction based on the reduction of Eosin Y by NaBH 4 . By monitoring the absorption intensities of the radicals induced by gold nanorods in real time, we observed the clear size-dependent activity in the conversion of EY 2− to EY 3− . The conversion efficiency indicated that the gold nanorods with the smallest size were catalytically the most active probably due to their high number of coordinatively unsaturated surface atoms. In addition, a compensation effect dominated by the surface area of nanorods was observed in this catalytic reduction, which could be primarily attributed to the configuration of Eosin Y absorbed onto the surfaces of gold nanorods

  9. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    Science.gov (United States)

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles

    International Nuclear Information System (INIS)

    Shen, Li; Chen, Jing; Li, Na; He, Pingli; Li, Zhen

    2014-01-01

    Highlights: • Tetracyclines directly reduce aurate into gold nanoparticles. • Gold nanoparticles showed characteristic plamson absorbance at 526 nm. • Quantitative detection of tetracyclines with the colorimetric assay. • Tetracyclines spiked urine samples can be detected with the assay. - Abstract: A colorimetric assay utilizing the formation of gold nanoparticles was developed to detect tetracycline antibiotics in fluidic samples. Tetracycline antibiotics showed the capability of directly reducing aurate salts into atomic gold which form gold nanoparticles spontaneously under proper conditions. The resulted gold nanoparticles showed characteristic plasmon absorbance at 526 nm, which can be visualized by naked eyes or with a spectrophotometer. UV–vis absorbance of the resulted gold nanoparticles is correlated directly with the concentrations of tetracycline antibiotics in the solution, allowing for quantitative colorimetric detection of tetracycline antibiotics. Reaction conditions, such as pH, temperature, reaction time, and ionic strength were optimized. Sensitivity of the colorimetric assay can be enhanced by the addition of gold nanoparticle seeds, a LOD as low as 20 ng mL −1 can be achieved with the help of seed particles. The colorimetric assay showed minimum interference from ethanol, methanol, urea, glucose, and other antibiotics such as sulfonamides, amino glycosides etc. Validity of the method was also evaluated on urine samples spiked with tetracycline antibiotics. The method provides a broad spectrum detection method for rapid and sensitive detection of reductive substances such as tetracycline antibiotics in liquid and biological samples

  11. Reduction of the Work Function of Gold by N-Heterocyclic Carbenes

    KAUST Repository

    Kim, Hye Kyung

    2017-04-12

    N-Heterocyclic carbenes (NHCs) bind strongly to gold and other metals. This work experimentally probes the effect of NHCs on the work function (WF) of gold for the first time, theoretically analyzes the origin of this effect, and examines the effectiveness of NHC-modified gold as an electron-injecting electrode. UV photoelectron spectroscopy shows the WF of planar gold is reduced by nearly 2 eV to values of 3.3–3.5 eV. This effect is seen for NHCs with various heterocyclic cores, and with either small or large N,N′-substituents. DFT calculations indicate the WF reduction results from both the interface dipole formed between the NHC and the gold and from the NHC molecular dipole. For N,N′-diisopropyl-NHCs, an important contributor to the former is charge transfer associated with coordination of the carbene carbon atom to gold. In contrast, the carbene carbon of N,N′-2,6-diisopropylphenyl-NHCs is not covalently bound to gold, resulting in a lower interface dipole; however, a larger molecular dipole partially compensates for this. Single-layer C60 diodes with NHC-modified gold as the bottom electrode demonstrate high rectification ratios and show that these electrodes can act as effective electron-injecting contacts, suggesting they may be useful for a variety of materials applications.

  12. Small gold clusters on graphene, their mobility and clustering: a DFT study.

    Science.gov (United States)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V

    2011-05-25

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au(4)(D) cluster is the ground state structure, whereas the Y-shaped Au(4)(Y) becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au(3). All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au(1-4) on graphene along the C-C bonds.

  13. Small gold clusters on graphene, their mobility and clustering: a DFT study

    International Nuclear Information System (INIS)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V

    2011-01-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au 4 D cluster is the ground state structure, whereas the Y-shaped Au 4 Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au 3 . All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au 1-4 on graphene along the C-C bonds.

  14. Small gold clusters on graphene, their mobility and clustering: a DFT study

    Science.gov (United States)

    Amft, Martin; Sanyal, Biplab; Eriksson, Olle; Skorodumova, Natalia V.

    2011-05-01

    Motivated by the experimentally observed high mobility of gold atoms on graphene and their tendency to form nanometer-sized clusters, we present a density functional theory study of the ground state structures of small gold clusters on graphene, their mobility and clustering. Our detailed analysis of the electronic structures identifies the opportunity to form strong gold-gold bonds and the graphene-mediated interaction of the pre-adsorbed fragments as the driving forces behind gold's tendency to aggregate on graphene. While clusters containing up to three gold atoms have one unambiguous ground state structure, both gas phase isomers of a cluster with four gold atoms can be found on graphene. In the gas phase the diamond-shaped Au4D cluster is the ground state structure, whereas the Y-shaped Au4Y becomes the actual ground state when adsorbed on graphene. As we show, both clusters can be produced on graphene by two distinct clustering processes. We also studied in detail the stepwise formation of a gold dimer out of two pre-adsorbed adatoms, as well as the formation of Au3. All reactions are exothermic and no further activation barriers, apart from the diffusion barriers, were found. The diffusion barriers of all studied clusters range from 4 to 36 meV only, and are substantially exceeded by the adsorption energies of - 0.1 to - 0.59 eV. This explains the high mobility of Au1 - 4 on graphene along the C-C bonds.

  15. Shape evolution of gold nanoparticles

    International Nuclear Information System (INIS)

    Wang, Y. Q.; Liang, W. S.; Geng, C. Y.

    2010-01-01

    The tetraoctylammonium bromide-stabilized gold nanoparticles have been successfully fabricated. The shape evolution of these nanoparticles under different annealing temperatures has been investigated using high-resolution transmission electron microscopy. After an annealing at 100 o C for 30 min, the average diameters of the gold nanoparticles change a little. However, the shapes of gold nanoparticles change drastically, and facets appear in most nanoparticles. After an annealing at 200 o C for 30 min, not only the size but also the shape changes a lot. After an annealing at 300 o C for 30 min, two or more gold nanoparticles coalesce into bigger ones. In addition, because of the presence of Cu grid during the annealing, some gold particles become the nucleation sites of Cu 2 O nanocubes, which possess a microstructure of gold-particle core/Cu 2 O shell. These Au/Cu 2 O heterostructure nanocubes can only be formed at a relatively high temperature (≥300 o C). The results can provide some insights on controlling the shapes of gold nanoparticles.

  16. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  17. Relativistic elementary atoms

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1989-01-01

    The physics of relativistic elementary atoms,i.e. of Coulomb bound states of elementary particles, like positronium, pionium or an atom of μ + π - , is presented. The atom lifetimes and processes, in which the atoms are produced, are discussed. The interaction of the atoms with matter is also described. A simple derivation of most results is given. 33 refs. (author)

  18. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  19. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  20. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  1. Atom lasers and nonlinear atom optics

    International Nuclear Information System (INIS)

    Deng Lu

    2000-01-01

    Two recent experimental breakthroughs in the field of atomic physics are reported: the realization of a well-collimated, widely tunable, quasi-continuous wave atom laser, and the generation of matter waves via coherent multi-wave mixing. The former is a critical step towards a continuous wave, high brightness atom laser while the latter has opened a new field of research: nonlinear atom optics

  2. Optical dipole mirror for cold atoms based on a metallic diffraction grating

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Bartoszek-Bober, Dobroslawa; Panas, Roman

    2014-01-01

    We report on the realization of a plasmonic dipole mirror for cold atoms based on a metallic grating coupler. A cloud of atoms is reflected by the repulsive potential generated by surface plasmon polaritons (SPPs) excited on a reflection gold grating by a 780 nm laser beam. Experimentally...

  3. Optical dipole mirror for cold atoms based on a metallic diffraction grating

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Bartoszek-Bober, Dobroslawa; Panas, Roman

    We report on the realization of a plasmonic dipole mirror for cold atoms based on a metallic grating coupler. A cloud of atoms is reflected by the repulsive potential generated by surface plasmon polaritons (SPPs) excited on a reflection gold grating by a 780 nm laser beam. Experimentally...

  4. Atomically Dispersed Au-(OH)x Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria [Tufts; (ORNL)

    2013-03-27

    We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au–O–TiOx sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this “excess” gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.

  5. Depth sectioning combined with atom-counting in HAADF STEM to retrieve the 3D atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Alania, M.; Altantzis, T.; De Backer, A.; Lobato, I.; Bals, S.; Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be

    2017-06-15

    Aberration correction in scanning transmission electron microscopy (STEM) has greatly improved the lateral and depth resolution. When using depth sectioning, a technique during which a series of images is recorded at different defocus values, single impurity atoms can be visualised in three dimensions. In this paper, we investigate new possibilities emerging when combining depth sectioning and precise atom-counting in order to reconstruct nanosized particles in three dimensions. Although the depth resolution does not allow one to precisely locate each atom within an atomic column, it will be shown that the depth location of an atomic column as a whole can be measured precisely. In this manner, the morphology of a nanoparticle can be reconstructed in three dimensions. This will be demonstrated using simulations and experimental data of a gold nanorod. - Highlights: • Depth sectioning in HAADF STEM is combined with atom-counting. • This can be used to retrieve the 3D atomic structure. • The theoretical precision with atoms can be located is investigated. • An algorithm is introduced to reconstruct the morphology of a nanoparticle. • The method is applied to reconstruct a gold nanorod.

  6. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  7. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  8. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  9. Investigation of secondary cluster ion emission from self-assembled monolayers of alkanethiols on gold with ToF-SIMS

    International Nuclear Information System (INIS)

    Schroeder, M.; Sohn, S.; Arlinghaus, H.F.

    2004-01-01

    Self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems for studying the emission processes of secondary ions from thin organic layers on metal substrates under keV ion bombardment. In this experimental study, we focus on the emission processes of gold-hexadecanethiolate cluster ions, which are not well understood yet. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements on SAMs of hexadecanethiols (HDT, CH 3 -(CH 2 ) 15 -SH) on gold substrates. The gold-hexadecanethiolate cluster ions Au x M y - show intense peaks in mass spectra of negatively charged secondary ions under 10 keV Ar + bombardment. Around the corresponding peaks, a characteristic peak pattern of additional ions is observed. We analyzed the contribution of different cluster ions formed by an attachment or a loss of several hydrogen atoms and their isotope patterns to the individual peaks of the peak pattern. We found two different types of gold-hexadecanethiolate cluster ions. The first type has only one parent ion with no hydrogen atom attached. The second type has two parent ions, one without attachment of hydrogen atoms and another with one additional hydrogen atom. Moreover, we found a universally valid sum formula, which predicts the most intense peak in the peak pattern of all gold-hexadecanethiolate cluster ions analyzed

  10. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  11. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  12. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  13. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  14. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  15. Gold based bulk metallic glass

    Science.gov (United States)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  16. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  17. [History of gold--with danish contribution to tuberculosis and rheumatoid arthritis].

    Science.gov (United States)

    Norn, Svend; Permin, Henrik; Kruse, Poul R; Kruse, Edith

    2011-01-01

    Gold has a long history as a therapeutic agent, first as gold particles and colloidal gold, then as a soluble salt made by the alchemists, and potable gold was recommended almost as a panacea against different diseases. Gold compounds were introduced in the treatment of tuberculosis, based initially on the reputation of Robert Koch, who found gold cyanide effective against Mycobacterium tuberculosis in cultures. Although several investigations of gold salts showed no convincing effect in experimental tuberculosis in guinea pigs, the idea of using gold compounds as chemotherapy was furthermore encouraged from the work of Paul Ehrlich with arsenicals. The enthusiasm and the craving desperately for a remedy for tuberculosis forced Danish physicians, in the mid-1920s to treat tuberculosis with Sanocrysin (gold sodium thiosulfate). Professor Holger Møllgaard, in collaboration with the clinicians the professors Knud Secher and Knud Faber, was the theoretical promoter of the project. He recommended sanocrysin-antiserum therapy, since sanocrysin caused serious reactions in tuberculosis animals, possible by releasing toxins from tubercle bacilli "killed" by sanocrysin. However the enthusiastic response to sanocrysin in Europe declined along by controlled trials and reports on toxicity in the 1930s. The belief that rheumatoid arthritis was a form of tuberculosis caused a renaissance in chrysotherapy. In France Jacques Forestier obtained encouraging results in the treatment of rheumatoid arthritis with myochrysine and other gold salts, and he pointed out the disease modifying effect of chrysotherapy. In Denmark Knud Secher, who was the clinical initiator of Sanocrysin therapy in tuberculosis, now became the founder of chrysotherapy in rheumatoid arthritis. Although new potential agents are now taking over in the treatment of arthritis, it is still believed, that there is a place for the chrysotherapy. However a new future for gold, in the form of nanoparticles, appears on

  18. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  19. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  20. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.; Hu, Dehong; Orr, Galya; Murphy, Catherine J.; Hamers, Robert J.; Pedersen, Joel A.

    2016-01-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes contain a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.

  1. Cytotoxicity and terminal differentiation of human oral keratinocyte by indium ions from a silver-palladium-gold-indium dental alloy.

    Science.gov (United States)

    Lee, Jung-Hwan; Seo, Sang-Hee; Lee, Sang-Bae; Om, Ji-Yeon; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-02-01

    Dental alloys containing indium (In) have been used in dental restoration for two decades; however, no study has investigated the biological effects of In ions, which may be released in the oral cavity, on human oral keratinocytes. The objective of the present study was to investigate the biological effects of In ions on human oral keratinocyte after confirming their release from a silver-palladium-gold-indium (Ag-Pd-Au-In) dental alloy. As a corrosion assay, a static immersion tests were performed by detecting the released ions in the corrosion solution from the Ag-Pd-Au-In dental alloy using inductively coupled plasma atomic emission spectroscopy. The cytotoxicity and biological effects of In ions were then studied with In compounds in three human oral keratinocyte cell lines: immortalized human oral keratinocyte (IHOK), HSC-2, and SCC-15. Higher concentrations of In and Cu ions were detected in Ag-Pd-Au-In (PAg-Pd-Au, and AgCl deposition occurred on the surface of Ag-Pd-Au-In after a 7-day corrosion test due to its low corrosion resistance. At high concentrations, In ions induced cytotoxicity; however, at low concentrations (∼0.8In(3+)mM), terminal differentiation was observed in human oral keratinocytes. Intracellular ROS was revealed to be a key component of In-induced terminal differentiation. In ions were released from dental alloys containing In, and high concentrations of In ions resulted in cytotoxicity, whereas low concentrations induced the terminal differentiation of human oral keratinocytes via increased intracellular ROS. Therefore, dental alloys containing In must be biologically evaluated for their safe use. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  3. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  4. Analysis of the behavior of gold in silicon by neutron activation method

    International Nuclear Information System (INIS)

    Kohara, Rikusei

    1977-01-01

    Diffusion behavior and distribution of a trace of gold (10 16 Atoms/cm 3 level) in silicon have been investigated by neutron activation analysis and autoradiography. The diffusion coefficient of gold in silicon was expressed by the equation D(cm 2 /s)=5.6 exp (-49kcal/RT), which was approximately 10 5 times as much as that of phosphorus or boron. The solubility of gold in silicon at 1000 0 C and 1100 0 C was (1.9+-0.2)x10 16 and (6.7+-0.7)x10 16 Atoms/cm 3 , respectively. Two factors, in addition to temperature, were found to effect the concentration of gold in silicon. One is an enhanced gold solubility effect in the presence of such impurity elements as phosphorus or arsenic. Another is the similar effect induced by lattice defects in silicon crystals. A possible distribution model of gold in digital devices was proposed from these results. (auth.)

  5. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, A. L. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon esq. Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Cabrera L, L. I. [UNAM-UAEM, Centro Conjunto de Investigacion en Quimica Sustentable, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico)

    2015-07-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  6. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    International Nuclear Information System (INIS)

    Gonzalez M, A. L.; Cabrera L, L. I.

    2015-01-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  7. Microbial mediated preparation, characterization and optimization of gold nanoparticles.

    Science.gov (United States)

    Barabadi, Hamed; Honary, Soheila; Ebrahimi, Pouneh; Mohammadi, Milad Ali; Alizadeh, Ahad; Naghibi, Farzaneh

    2014-01-01

    The need for eco-friendly and cost effective methods for nanoparticles synthesis is developing interest in biological approaches which are free from the use of toxic chemicals as byproducts. This study aimed to biosynthesize and optimize the size of gold nanoparticles which produced by biotechnological method using Penicillium crustosum isolated from soil. Initially, Penicillium crustosum was grown in fluid czapek dox broth on shaker at 28 °C and 200 rpm for ten days and then the supernatant was separated from the mycelia to convert AuCl₄ solution into gold nanoparticles. The synthesized nanoparticles in the optimum conditions were formed with fairly well-defined dimensions and good monodispersity. The characterizations were done by using different methods (UV-Visible Spectroscopy, Fluorescence, FT-IR, AFM (Atomic Force Microscopy) and DLS (Dynamic Light Scattering). The bioconversion was optimized by Box-Behnken experimental design. The results show that the effective factors in this process were concentration of AuCl₄, pH of medium and temperature of shaker incubator. The R(2) value was calculated to be 0.9999 indicating the accuracy and ability of the polynomial model. It can be concluded that the use of multivariate analysis facilitated to find out the optimum conditions for the biosynthesis of gold nanoparticles induced by Penicillium crustosum in a time and cost effective process. The current approach suggested that rapid synthesis of gold nanoparticles would be suitable for developing a biological process for mass scale production of formulations.

  8. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  9. Gold-ISH: a nano-size gold particle-based phylogenetic identification compatible with NanoSIMS.

    Science.gov (United States)

    Kubota, Kengo; Morono, Yuki; Ito, Motoo; Terada, Takeshi; Itezono, Shogo; Harada, Hideki; Inagaki, Fumio

    2014-06-01

    The linkage of microbial phylogenetic and metabolic analyses by combining ion imaging analysis with nano-scale secondary ion mass spectrometry (NanoSIMS) has become a powerful means of exploring the metabolic functions of environmental microorganisms. Phylogenetic identification using NanoSIMS typically involves probing by horseradish peroxidase-mediated deposition of halogenated fluorescent tyramides, which permits highly sensitive detection of specific microbial cells. However, the methods require permeabilization of target microbial cells and inactivation of endogenous peroxidase activity, and the use of halogens as the target atom is limited because of heavy background signals due to the presence of halogenated minerals in soil and sediment samples. Here, we present "Gold-ISH," a non-halogen phylogenetic probing method in which oligonucleotide probes are directly labeled with Undecagold, an ultra-small gold nanoparticle. Undecagold-labeled probes were generated using a thiol-maleimide chemical coupling reaction and they were purified by polyacrylamide gel electrophoresis. The method was optimized with a mixture of axenic (13)C-labeled Escherichia coli and Methanococcus maripaludis cells and applied to investigate sulfate-reducing bacteria in an anaerobic sludge sample. Clear gold-derived target signals were detected in microbial cells using NanoSIMS ion imaging. It was concluded that Gold-ISH can be a useful approach for metabolic studies of naturally occurring microbial ecosystems using NanoSIMS. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Deposition of gold nanoparticles on glass substrate by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Garza, Maria de la; Hernandez, Tomas; Colas, Rafael; Gomez, Idalia

    2010-01-01

    Ultrasonic spray pyrolysis was used to deposit gold nanoparticles on a glass substrate using ZrO 2 as a surrounding medium. The deposition was made using three flow rates of caring gas. The characterization was made by UV-Vis spectroscopy, X-ray diffraction, scanning electronic microscopy and atomic force microscopy. The UV-Vis spectra showed that the surface plasmon resonance peak, indicative of the presence of gold nanoparticles, was shown to shift towards the red spectrum as the flow rate increased; this shift can be associated to the change in size of the particles, which are assumed to grow on a {1 1 1} planes, as was detected by X-ray diffraction. Gold nanoparticles of spheroidal morphology with a relation of around 2:1 were detected by scanning electron microscopy, these observations were confirmed by atomic force microscopy.

  11. Nano Indentation Inspection of the Mechanical Properties of Gold Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Armen Verdyan

    2007-10-01

    Full Text Available The morphology and the local mechanical properties of gold nitride thin films were studied by atomic force microscope (AFM. Gold nitride films were deposited for the first time on silicon substrate without any buffer layer at room temperature by reactive pulsed laser ablation deposition (RPLD. The films were fabricated on (100 Si wafers by RPLD technique in which KrF excimer laser was used to ablate a gold target in N2 atmosphere (0.1 GPa-100 Pa and ambient temperature. Scanning electron microscopy (SEM and atomic force microscopy inspections showed that the films were flat plane with rms roughness in the range of 35.1 nm-3.6 nm, depending on the deposition pressure. Rutherford backscattering spectrometry (RBS and energy dispersion spectroscopy (EDS used to detect the nitrogen concentration in the films, have revealed a composition close to Au3N. The film

  12. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  13. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Czech Academy of Sciences Publication Activity Database

    Novotná, Z.; Rimpelová, S.; Juřík, P.; Veselý, M.; Kolská, Z.; Hubáček, Tomáš; Borovec, Jakub; Švorčík, V.

    2017-01-01

    Roč. 12, JUN (2017), č. článku 424. ISSN 1556-276X R&D Projects: GA MŠk LM2015075 Institutional support: RVO:60077344 Keywords : polyetheretherketone * plasma treatment * gold sputtering * atomic force microscopy Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.833, year: 2016

  14. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  15. Early stages of growth of gold layers sputter deposited on glass and silicon substrates

    Czech Academy of Sciences Publication Activity Database

    Malinský, Petr; Slepička, P.; Hnatowicz, Vladimír; Švorčík, V.

    2012-01-01

    Roč. 7, č. 241 (2012), s. 1-7 ISSN 1931-7573 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : sputtering * gold layer * glass * silicon * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.524, year: 2012

  16. Electrochemical release of amine molecules from carbamate-based, electroactive self-assembled monolayers.

    Science.gov (United States)

    Hong, Daewha; Kang, Kyungtae; Hong, Seok-Pyo; Shon, Hyun Kyong; Son, Jin Gyeong; Lee, Tae Geol; Choi, Insung S

    2012-01-10

    In this paper, carbamate-based self-assembled monolayers (SAMs) of alkanethiolates on gold were suggested as a versatile platform for release of amine-bearing molecules in response to the electrical signal. The designed SAMs underwent the electrochemical oxidation on the gold surface with simultaneous release of the amine molecules. The synthesis of the thiol compounds was achieved by coupling isocyanate-containing compounds with hydroquinone. The electroactive thiol was mixed with 11-mercaptoundecanol [HS(CH(2))(11)OH] to form a mixed monolayer, and cyclic votammetry was used for the characterization of the release behaviors. The mixed SAMs showed a first oxidation peak at +540 mV (versus Ag/AgCl reference electrode), indicating the irreversible conversion from carbamate to hydroquinone groups with simultaneous release of the amine molecules. The analysis of ToF-SIMS further indicated that the electrochemical reaction on the gold surface successfully released amine molecules.

  17. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    Directory of Open Access Journals (Sweden)

    Shahzadi Shamaila

    2016-04-01

    Full Text Available Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM analysis confirmed the size and X-ray diffractometry (XRD analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria.

  18. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alla Bucharskaya

    2016-08-01

    Full Text Available Gold nanoparticles (AuNPs of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT/photodynamic (PDT therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells.

  19. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles.

    Science.gov (United States)

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-08-09

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells.

  20. Long-term stability of surfactant-free gold nanostars

    Science.gov (United States)

    Vega, Marienette Morales; Bonifacio, Alois; Lughi, Vanni; Marsi, Stefano; Carrato, Sergio; Sergo, Valter

    2014-11-01

    This work investigates the long-term stability of suspensions of surfactant-free gold nanostars with mean diameter of 78 ± 13 nm (measured from tip to tip across the nanostar).We monitored the optical and morphological properties of the nanostars over the course of several days after synthesis by observing the changes in the UV-visible absorption spectra and mean radius of curvature of the nanostar tips. An aging process can be observed, evident in the blunting of the nanostar tips, leading to a blue shift in the absorption maximum. Stability is greatly improved by depositing on the nanostars a monolayer of mercaptopropionic acid (MPA), possibly because of the formation of the gold-sulfur (Au-S) bond that limits the mobility of the Au atoms. Capping the nanostars with MPA is an easy additional step for extending the stability of the nanostars in suspension without significantly affecting the original plasmonic resonance band.

  1. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    Science.gov (United States)

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  2. Molecular dynamics simulation of gold cluster growth during sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-05-14

    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  3. Imaging {Au0-PAMAM} Gold-dendrimer Nanocomposites in Cells

    International Nuclear Information System (INIS)

    Bielinska, Anna; Eichman, Jonathan D.; Lee, Inhan; Baker, James R.; Balogh, Lajos

    2002-01-01

    Dendrimer nanocomposites (DNC) are hybrid nanoparticles formed by the dispersion and immobilization of guest atoms or small clusters in dendritic polymer matrices. They have a great potential in biomedical applications due to their controlled composition, predetermined size, shape and variable surface functionalities. In this work, d=5-25 nm spherical nanoparticles composed of gold and poly(amidoamine) (PAMAM) dendrimers have been selected to demonstrate this nanoparticle based concept. {Au(0) n -PAMAM} gold dendrimer nanocomposites with a well-defined size were synthesized and imaged by transmission electron microscopy both in vitro and in vivo. DNC have also the potential to be used for imaging and drug delivery vehicles either by utilizing bioactive guests or through the incorporation of radioactive isotopes, such as Au-198

  4. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  5. Studies on Arsenic Release and its Mitigation from Tailings Dam ...

    African Journals Online (AJOL)

    Studies on Arsenic Release and its Mitigation from Tailings Dam Using Nanomagnetite Particles. ... Ghana Mining Journal ... Abstract. Knowledge of the geochemistry of As in tailings material after beneficiation of gold-bearing sulphidic ores is necessary to comprehend the nature, stability and mobilization of As into the ...

  6. Preparation and characterization of slow release formulations of ...

    African Journals Online (AJOL)

    *

    Slow release (SR) of pesticides is an interesting approach in Integrated Pest. Management (IPM) ... particles - and in spite of its low water solubility, it has been reported as a surface water pollutant6. Even though it has .... double sided carbon tapes) and sputter coated with gold (20 nm) on an Edwards Pirani 501 Scan Coat.

  7. Multi-technique characterization of gold electroplating on silver substrates for cultural heritage applications

    Science.gov (United States)

    Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.

    2017-09-01

    This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.

  8. Use of cellulose derivatives on gold surfaces for reduced nonspecific adsorption of immunoglobulin G.

    Science.gov (United States)

    Volden, Sondre; Zhu, Kaizheng; Nyström, Bo; Glomm, Wilhelm R

    2009-09-01

    This study addresses the design of protein-repellent gold surfaces using hydroxyethyl- and ethyl(hydroxyethyl) cellulose (HEC and EHEC) and hydrophobically modified analogues of these polymers (HM-HEC and HM-EHEC). Adsorption behavior of the protein immunoglobulin G (IgG) onto pure gold and gold surfaces coated with cellulose polymers was investigated and described by quartz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and contact angle measurements (CAM). Surfaces coated with the hydrophobically modified cellulose derivatives were found to significantly outperform a reference poly(ethylene glycol) (PEG) coating, which in turn prevented 90% of non-specific protein adsorption as compared to adsorption onto pure gold. HEC and EHEC prevented around 30% and 60% of the IgG adsorption observed on pure gold, while HM-HEC and HM-EHEC were both found to completely hinder biofouling when deposited on the gold substrates. Adsorption behavior of IgG has been discussed in terms of polymer surface coverage and roughness of the applied surfaces, together with hydrophobic interactions between protein and gold, and also polymer-protein interactions.

  9. GOLD NANOPARTICLES ENCAPSULATED IN A POLYMERIC MATRIX OF SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    Oana Lelia POP

    2016-11-01

    Full Text Available Plasmonic nanoparticles can be used as building blocks for the design of multifunctional systems based on polymeric capsules. The use of functionalised particles in therapeutics and imaging and understanding their effect on the cell functions are among the current challenges in nanobiotechnology and nanomedicine. The aim of the study was to manufacture and characterize polymeric microstructures by encapsulating plasmonic gold nanoparticles in biocompatible matrix of sodium alginate. The gold nanoparticles were obtained by reduction of tetracluoroauric acid with sodium citrate. To characterize the microcapsules, UV-Vis and FTIR spectroscopy, optical and confocal microscopy experiments were performed. In vitro cytotoxicity tests on HFL-1 cells were also performed. The capsules have spherical shape and 120 μm diameter. The presence of encapsulated gold nanoparticles is also shown by confocal microscopy. In vitro tests show that the microcapsules are not cytotoxic upon 24 h of cells exposure to microcapsules concentrations ranging from 2.5 to 25 capsules per cell. The obtained microcapsules of sodium alginate loaded with plasmonic gold nanoparticles could potentially be considered as release systems for biologically relevant molecules.

  10. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis.

    Science.gov (United States)

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori

    2014-04-07

    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  11. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  12. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  13. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  14. Sedentary nestlings of Wood Stork as monitors of mercury contamination in the gold mining region of the Brazilian Pantanal

    Energy Technology Data Exchange (ETDEWEB)

    Nassif Del Lama, Silvia, E-mail: dsdl@ufscar.br [Laboratorio Genetica de Aves, Departamento de Genetica e Evolucao, Universidade Federal de Sao Carlos, Rodovia Washington Luis km 235, 13565-905 Sao Carlos, Sao Paulo (Brazil); Dosualdo Rocha, Cristiano [Laboratorio Genetica de Aves, Departamento de Genetica e Evolucao, Universidade Federal de Sao Carlos, Rodovia Washington Luis km 235, 13565-905 Sao Carlos, Sao Paulo (Brazil); Figueiredo Jardim, Wilson [Institute of Chemistry, State University of Campinas, P.O. Box 6154, 13083-970 Sao Paulo (Brazil); Tsai, Jo-Szu; Frederick, Peter Crawford [Department of Wildlife Ecology and Conservation, P.O. Box 110430, University of Florida, Gainesville, FL 32611 (United States)

    2011-11-15

    Sedentary organisms that are at top trophic levels allow inference about the level of local mercury contamination. We evaluated mercury contamination in feather tissue of nestling Wood Storks (Mycteria americana), sampled in different parts of the Brazilian Pantanal that were variably polluted by mercury releases from gold mining activities. Levels of mercury in feathers sampled in seven breeding colonies were determined by atomic absorption spectroscopy, and the mean value of mercury concentration was 0.557 {mu}g/g, dry weight (n=124), range 0.024-4.423 {mu}g/g. From this total sample, 21 feathers that represent 30% of nestlings collected in Porto da Fazenda and Tucum colonies, in the northern region, ranged from 1.0 to 4.43 {mu}g/g, dry weight (median value=1.87 {mu}g/g). We found significant differences among regions (H=57.342; p=0<0.05). Results suggest that permanently flooded areas, or along mainstream rivers are more contaminated by mercury than dry areas, regardless of the distance from the gold mining center, which is located in the northern Pantanal. Highest values found in nestlings feathers were similar to those found in feathers of adult birds and in tissues of adult mammals that are less sedentary and were captured in the same region of Pantanal. These findings indicate that mercury released has been biomagnified and it is present in high concentrations in tissues of top consumers. We suggest a program to monitor mercury availability in this ecosystem using sedentary life forms of top predators like Wood Storks or other piscivorous birds. - Highlights: Black-Right-Pointing-Pointer Sedentary stork nestlings were used for the first time to show local mercury contamination of Pantanal. Black-Right-Pointing-Pointer Differences were found among regions but they are not explained only by distance from the gold mining. Black-Right-Pointing-Pointer Permanently flooded areas and areas along mainstream rivers are more contaminated than dry areas. Black

  15. Sedentary nestlings of Wood Stork as monitors of mercury contamination in the gold mining region of the Brazilian Pantanal

    International Nuclear Information System (INIS)

    Nassif Del Lama, Silvia; Dosualdo Rocha, Cristiano; Figueiredo Jardim, Wilson; Tsai, Jo-Szu; Frederick, Peter Crawford

    2011-01-01

    Sedentary organisms that are at top trophic levels allow inference about the level of local mercury contamination. We evaluated mercury contamination in feather tissue of nestling Wood Storks (Mycteria americana), sampled in different parts of the Brazilian Pantanal that were variably polluted by mercury releases from gold mining activities. Levels of mercury in feathers sampled in seven breeding colonies were determined by atomic absorption spectroscopy, and the mean value of mercury concentration was 0.557 μg/g, dry weight (n=124), range 0.024–4.423 μg/g. From this total sample, 21 feathers that represent 30% of nestlings collected in Porto da Fazenda and Tucum colonies, in the northern region, ranged from 1.0 to 4.43 μg/g, dry weight (median value=1.87 μg/g). We found significant differences among regions (H=57.342; p=0<0.05). Results suggest that permanently flooded areas, or along mainstream rivers are more contaminated by mercury than dry areas, regardless of the distance from the gold mining center, which is located in the northern Pantanal. Highest values found in nestlings feathers were similar to those found in feathers of adult birds and in tissues of adult mammals that are less sedentary and were captured in the same region of Pantanal. These findings indicate that mercury released has been biomagnified and it is present in high concentrations in tissues of top consumers. We suggest a program to monitor mercury availability in this ecosystem using sedentary life forms of top predators like Wood Storks or other piscivorous birds. - Highlights: ► Sedentary stork nestlings were used for the first time to show local mercury contamination of Pantanal. ► Differences were found among regions but they are not explained only by distance from the gold mining. ► Permanently flooded areas and areas along mainstream rivers are more contaminated than dry areas. ► Mercury has been biomagnified in Pantanal and it is found in high concentrations in top

  16. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  17. Surface Chemistry of Gold Nanorods.

    Science.gov (United States)

    Burrows, Nathan D; Lin, Wayne; Hinman, Joshua G; Dennison, Jordan M; Vartanian, Ariane M; Abadeer, Nardine S; Grzincic, Elissa M; Jacob, Lisa M; Li, Ji; Murphy, Catherine J

    2016-10-04

    Gold nanorods have garnered a great deal of scientific interest because of their unique optical properties, and they have the potential to greatly impact many areas of science and technology. Understanding the structure and chemical makeup of their surfaces as well as how to tailor them is of paramount importance in the development of their successful applications. This Feature Article reviews the current understanding of the surface chemistry of as-synthesized gold nanorods, methods of tailoring the surface chemistry of gold nanorods with various inorganic and organic coatings/ligands, and the techniques employed to characterize ligands on the surface of gold nanorods as well as the associated measurement challenges. Specifically, we address the challenges of determining how thick the ligand shell is, how many ligands per nanorod are present on the surface, and where the ligands are located in regiospecific and mixed-ligand systems. We conclude with an outlook on the development of the surface chemistry of gold nanorods leading to the development of a synthetic nanoparticle surface chemistry toolbox analogous to that of synthetic organic chemistry and natural product synthesis.

  18. Potential roughness near lithographically fabricated atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Andersson, L. M.; Wildermuth, Stefan

    2007-01-01

    Potential roughness has been reported to severely impair experiments in magnetic microtraps. We show that these obstacles can be overcome as we measure disorder potentials that are reduced by two orders of magnitude near lithographically patterned high-quality gold layers on semiconductor atom chip...... substrates. The spectrum of the remaining field variations exhibits a favorable scaling. A detailed analysis of the magnetic field roughness of a 100-μm -wide wire shows that these potentials stem from minute variations of the current flow caused by local properties of the wire rather than merely from rough...

  19. Pair distribution function analysis applied to decahedral gold nanoparticles

    International Nuclear Information System (INIS)

    Nakotte, H; Silkwood, C; Kiefer, B; Karpov, D; Fohtung, E; Page, K; Wang, H-W; Olds, D; Manna, S; Fullerton, E E

    2017-01-01

    The five-fold symmetry of face-centered cubic (fcc) derived nanoparticles is inconsistent with the translational symmetry of a Bravais lattice and generally explained by multiple twinning of a tetrahedral subunit about a (joint) symmetry axis, with or without structural modification to the fcc motif. Unlike in bulk materials, five-fold twinning in cubic nanoparticles is common and strongly affects their structural, chemical, and electronic properties. To test and verify theoretical approaches, it is therefore pertinent that the local structural features of such materials can be fully characterized. The small size of nanoparticles severely limits the application of traditional analysis techniques, such as Bragg diffraction. A complete description of the atomic arrangement in nanoparticles therefore requires a departure from the concept of translational symmetry, and prevents fully evaluating all the structural features experimentally. We describe how recent advances in instrumentation, together with the increasing power of computing, are shaping the development of alternative analysis methods of scattering data for nanostructures. We present the application of Debye scattering and pair distribution function (PDF) analysis towards modeling of the total scattering data for the example of decahedral gold nanoparticles. PDF measurements provide a statistical description of the pair correlations of atoms within a material, allowing one to evaluate the probability of finding two atoms within a given distance. We explored the sensitivity of existing synchrotron x-ray PDF instruments for distinguishing four different simple models for our gold nanoparticles: a multiply twinned fcc decahedron with either a single gap or multiple distributed gaps, a relaxed body-centered orthorhombic (bco) decahedron, and a hybrid decahedron. The data simulations of the models were then compared with experimental data from synchrotron x-ray total scattering. We present our experimentally

  20. Pair distribution function analysis applied to decahedral gold nanoparticles

    Science.gov (United States)

    Nakotte, H.; Silkwood, C.; Page, K.; Wang, H.-W.; Olds, D.; Kiefer, B.; Manna, S.; Karpov, D.; Fohtung, E.; Fullerton, E. E.

    2017-11-01

    The five-fold symmetry of face-centered cubic (fcc) derived nanoparticles is inconsistent with the translational symmetry of a Bravais lattice and generally explained by multiple twinning of a tetrahedral subunit about a (joint) symmetry axis, with or without structural modification to the fcc motif. Unlike in bulk materials, five-fold twinning in cubic nanoparticles is common and strongly affects their structural, chemical, and electronic properties. To test and verify theoretical approaches, it is therefore pertinent that the local structural features of such materials can be fully characterized. The small size of nanoparticles severely limits the application of traditional analysis techniques, such as Bragg diffraction. A complete description of the atomic arrangement in nanoparticles therefore requires a departure from the concept of translational symmetry, and prevents fully evaluating all the structural features experimentally. We describe how recent advances in instrumentation, together with the increasing power of computing, are shaping the development of alternative analysis methods of scattering data for nanostructures. We present the application of Debye scattering and pair distribution function (PDF) analysis towards modeling of the total scattering data for the example of decahedral gold nanoparticles. PDF measurements provide a statistical description of the pair correlations of atoms within a material, allowing one to evaluate the probability of finding two atoms within a given distance. We explored the sensitivity of existing synchrotron x-ray PDF instruments for distinguishing four different simple models for our gold nanoparticles: a multiply twinned fcc decahedron with either a single gap or multiple distributed gaps, a relaxed body-centered orthorhombic (bco) decahedron, and a hybrid decahedron. The data simulations of the models were then compared with experimental data from synchrotron x-ray total scattering. We present our experimentally

  1. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  2. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  3. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  4. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  5. Dissolution ad uptake of cadmium from dental gold solder alloy implants

    International Nuclear Information System (INIS)

    Bergman, B.; Bergman, M.; Soeremark, R.

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium ( 115 Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of 115 Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver. (author)

  6. Role of Gold Nanoparticles in Early Detection of Oral Cancer

    Directory of Open Access Journals (Sweden)

    P Sanjay Reddy

    2010-01-01

    Nanotechnology is the science of the small; the very small. It is the use and manipulation of matter at a tiny scale. At this size, atoms and molecules work differently and provide a variety of surprising and interesting uses. These nanoparticles can be used to detect/mondor cancer (by utilizing or adding optical, magnetic, and fluorescent properties. This novel imaging tool can lead to significant improvements in cancer therapy due to earlier detection, accurate staging and microtumor identification. In this review, we will summarize the current state of the art of gold nanoparticles in early detection of oral cancer.

  7. Electronic Structure of Cdse Nanowires Terminated With Gold ...

    African Journals Online (AJOL)

    Bheema

    The CdSe nanowires are generated by relaxation of fragments, Cd6Se6, Cd10Se10 and Cd14Se14, of the wurtzite structure of CdSe crystal. The valence electron configurations used are (5d. 10. 6s. 1. ) for Au, 4d. 10. 5s. 2 for Cd and 4s. 2. 4p. 4 for Se atoms. A plane wave cut-off of 179.7 eV is used for bare gold cluster and ...

  8. News/Press Releases

    Data.gov (United States)

    Office of Personnel Management — A press release, news release, media release, press statement is written communication directed at members of the news media for the purpose of announcing programs...

  9. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    Science.gov (United States)

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

  10. A GoldSim Model for Colloid Facilitated Nuclide Transport

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-01-01

    Recently several total system performance assessment (TSPA) programs, called 'template' programs, ready for the safety assessment of radioactive waste repository systems which are conceptually modeled have been developed by utilizing GoldSim and AMBER at KAERI. It is generally believed that chelating agents (chelators) that could be disposed of together with radioactive wastes in the repository and natural colloids available in the geological media affect on nuclides by enhancing their transport in the geological media. A simple GoldSim module to evaluate such quantitative effects, by which colloid and chelator-facilitated nuclide release cases could be modeled and evaluated is introduced. Effects of the chelators alone are illustrated with the case associated with well pumping scenario in a hypothetical repository system

  11. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities.

    Science.gov (United States)

    Jin, Rongchao; Zeng, Chenjie; Zhou, Meng; Chen, Yuxiang

    2016-09-28

    Colloidal nanoparticles are being intensely pursued in current nanoscience research. Nanochemists are often frustrated by the well-known fact that no two nanoparticles are the same, which precludes the deep understanding of many fundamental properties of colloidal nanoparticles in which the total structures (core plus surface) must be known. Therefore, controlling nanoparticles with atomic precision and solving their total structures have long been major dreams for nanochemists. Recently, these goals are partially fulfilled in the case of gold nanoparticles, at least in the ultrasmall size regime (1-3 nm in diameter, often called nanoclusters). This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties of atomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles (such as the stability, metal-ligand interfacial bonding, ligand assembly on particle surfaces, aesthetic structural patterns, periodicities, and emergence of the metallic state) and to develop a range of potential applications such as in catalysis, biomedicine, sensing, imaging, optics, and energy conversion. Although most of the research activity currently focuses on thiolate-protected gold nanoclusters, important progress has also been achieved in other ligand-protected gold, silver, and bimetal (or alloy) nanoclusters. All of these types of unique nanoparticles will bring unprecedented opportunities, not only in understanding the fundamental questions of nanoparticles but also in opening up new horizons for scientific studies of nanoparticles.

  12. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  13. Atomic Fuel, Understanding the Atom Series. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor…

  14. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  15. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  16. PHYSICS: Toward Atom Chips.

    Science.gov (United States)

    Fortágh, József; Zimmermann, Claus

    2005-02-11

    As a novel approach for turning the peculiar features of quantum mechanics into practical devices, researchers are investigating the use of ultracold atomic clouds above microchips. Such "atom chips" may find use as sensitive probes for gravity, acceleration, rotation, and tiny magnetic forces. In their Perspective, Fortagh and Zimmermann discuss recent advances toward creating atom chips, in which current-carrying conductors in the chips create magnetic microtraps that confine the atomic clouds. Despite some intrinsic limits to the performance of atom chips, existing technologies are capable of producing atom chips, and many possibilities for their construction remain to be explored.

  17. THE ORNL ATOM PROBE

    OpenAIRE

    Miller, M.

    1986-01-01

    The ORNL Atom Probe is a microanalytical tool for studies in materials science. The instrument is a combination of a customized version of the vacuum system of the VG FIM-100 atom probe, an ORNL-designed microcomputer-controlled digital timing system, and a double curved CEMA Imaging Atom Probe detector. The atom probe combines four instruments into one - namely a field ion microscope, an energy compensated time-of-flight mass spectrometer, an imaging atom probe, and a pulsed laser atom probe.

  18. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  19. Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids

    DEFF Research Database (Denmark)

    Hassanain, Waleed A.; Izake, Emad L.; Schmidt, Michael Stenbæk

    2017-01-01

    the extractor nanoparticles within 5min by manipulating the pH environment of the nanoparticles. The regenerated extractor nanoparticles maintained their capture efficiency and, therefore, were re-used to capture of MC-LR from successive samples. The released purified toxin was screened within 10min on gold......A highly sensitive nanosensing method for the combined selective capture and SERS detection of Microcystin-LR (MC-LR) in blood plasma has been developed. The new method utilizes gold coated magnetic nanoparticles that are functionalized with anti MC-LR antibody Fab' fragments for the selective...... capture of MC-LR from aqueous media and blood plasma. Using an oriented immobilization approach, the Fab' fragments are covalently attached to gold surface to form a monolayer with high capture efficiency towards the toxin. After the selective capture, the purified MC-LR molecules were released from...

  20. Simulating the Fate and Transport of an Acid Mine Drainage Release

    Science.gov (United States)

    On August 5, 2015, approximately 3 million gallons of acid mine drainage were released from the Gold King Mine into Cement Creek in the San Juan River watershed (CO, NM, UT). The release further mobilized additional metals, which resulted in a large mass of solids and dissolved m...

  1. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    Science.gov (United States)

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.

  2. Land Use Change Driven by Gold Mining; Peruvian Amazon

    Science.gov (United States)

    Swenson, J. J.; Carter, C. E.; domec, J.; Delgado, C. I.

    2011-12-01

    Many factors such as poverty, ineffective institutions and environmental regulations may prevent developing countries from managing how natural resources are extracted to meet a strong market demand. Extraction for some resources has reached such proportions that evidence is measurable from space. We present recent evidence of the global demand for a single commodity and the ecosystem destruction resulting from commodity extraction, recorded by satellites for one of the most biodiverse areas of the world. We find that since 2003, recent mining deforestation in Madre de Dios, Peru is increasing nonlinearly alongside a constant annual rate of increase in international gold price (~18%/yr). We detect that the new pattern of mining deforestation (1915 ha/year, 2006-2009) is outpacing that of nearby settlement deforestation. We show that gold price is linked with exponential increases in Peruvian national mercury imports over time (R2 = 0.93, p = 0.04, 2003- 2009). Given the past rates of increase we predict that mercury imports may more than double for 2011 (~500 t/year). Virtually all of Peru's mercury imports are used in artisanal gold mining. Much of the mining increase is unregulated/ artisanal in nature, lacking environmental impact analysis or miner education. As a result, large quantities of mercury are being released into the atmosphere, sediments and waterways. Other developing countries endowed with gold deposits are likely experiencing similar environmental destruction in response to recent record high gold prices. The increasing availability of satellite imagery ought to evoke further studies linking economic variables with land use and cover changes on the ground.

  3. Evidence for a gold trimer on the Si(111)-√{ 21} ×√{ 21}-(Ag + Au) surface

    Science.gov (United States)

    Takahashi, Toshio; Yamaguchi, Yudai; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Tajiri, Hiroo

    2018-02-01

    The structure of the Si(111)-√{ 21} ×√{ 21}-(Ag + Au) surface is studied using surface X-ray diffraction and fluorescence yield measurements. The fluorescence measurements indicate that there are three gold atoms in the unit cell. From the analysis of the diffraction data, it is shown that the gold atoms form a trimer with an interatomic distance of 2.8 Å and that the sides of the trimer are almost parallel to the Si(111)-1 × 1 fundamental vectors, similar to that in the Si(111)-√{ 3} ×√{ 3}-Au structure.

  4. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  5. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  6. Gold nanocages: from synthesis to theranostic applications.

    Science.gov (United States)

    Xia, Younan; Li, Weiyang; Cobley, Claire M; Chen, Jingyi; Xia, Xiaohu; Zhang, Qiang; Yang, Miaoxin; Cho, Eun Chul; Brown, Paige K

    2011-10-18

    some of the most recent advances in the use of Au nanocages for a broad range of theranostic applications. First, we describe their use as tracers for tracking by multiphoton luminescence. Gold nanocages can also serve as contrast agents for photoacoustic (PA) and mutimodal (PA/fluorescence) imaging. In addition, these nanostructures can be used as photothermal agents for the selective destruction of cancerous or diseased tissue. Finally, Au nanocages can serve as drug delivery vehicles for controlled and localized release in response to external stimuli such as NIR radiation or high-intensity focused ultrasound (HIFU).

  7. XPS and NEXAFS study of tyrosine-terminated propanethiol assembled on gold

    CERN Document Server

    Petoral, R M

    2003-01-01

    Tyrosine-terminated propanethiol (TPT), tyrosine linked to 3-mercaptopropionic acid through an amide bond, is adsorbed to gold surfaces. The adsorbates are characterized by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). XPS is used to investigate the chemical binding and electronic structure of the monolayer. Strong molecular binding of the tyrosine derivative on the gold surface through the sulfur atom is attained. Angle-dependent XPS results shows that TPT molecules are oriented with the sulfur atoms molecularly oriented close to the gold surface and that the phenol moiety is oriented away from the gold surface. Average orientation of the adsorbate on gold is deduced using the NEXAFS results. It shows that the main molecular axis is tilted approximately 38 deg. relative to the Au surface normal. The ring plane of the phenol moiety exhibits a preferential orientation with an average tilt angle of the normal of the ring plane from the surfa...

  8. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  9. Gold grade of epithermal gold ore at Lamuntet, Brang Rea, West Sumbawa District, West Nusa Tenggara Province, Indonesia

    Science.gov (United States)

    Ernawati, Rika; Idrus, Arifudin; TBMP, Himawan

    2017-06-01

    Lamuntet is one of gold ore mining area carried out by the Artisanal Small scale Gold Mining (ASGM) located in West Sumbawa, Indonesia. Most of the miners at this area are not the local miners but also those from other regions. Mineralization of this area is strong identified as low sulfidation epithermal system. There are two blocks of this mining location, namely, Ngelampar block with an area of 0.164 km2 and Song block with an area of 0.067 km2. This study was focused on Ngelampar block. The characteristic of epithermal system is the existence of quartz vein with comb, vuggy, and sugary texture. The aim of this research was to analyze the gold grade and other metals, such as Cu, Ag, Pb, As, Zn, and Hg. The research methods included literature study from previous researches, field work, laboratory work, and interpretation. The literature study was performed on previous researches with similar study area. The field work comprised of direct observation and sampling. Fieldwork was done for a week to obtain gold ore/vein. Sixteen samples were analyzed to obtain the grade of ore/metal. The Hg laboratory analysis was then performed on the six samples with the highest gold grade. Laboratory works were conducted at Intertek Jakarta by using Fire Assay (FA) for gold grade and Atomic Absorption Spectrophotometry (AAS) for Cu, Ag, Pb, As, Zn, and Hg. Results of the analysis showed the range of Au was grade (0.1 ppm - 27.8 ppm), Cu was 26 ppm -1740 ppm, Pb was 101 ppm- >4000 ppm, Zn of 73 ppm- >10,000 ppm, Ag of 3 ppm -185 ppm, As was 150 ppm-6530 ppm, and Hg of 0.08 ppm - 1.89 ppm. L1 and L15 had high grade for all values (Au, Ag, Zn, Cu, As, and Hg). Gold mineralization was formed as electrum because of Ag content is higher than 20%. Associated minerals of the samples in the study area were galena, sphalerite, arsenopyrite, and chalcopyrite which showed the characteristic of rich base metal of Pb, Zn, and Cu at LS epithermal.

  10. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  11. Lamellar multilayer hexadecylaniline-modified gold nanoparticle

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  12. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  13. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  14. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  15. Deep Space Atomic Clock

    Data.gov (United States)

    National Aeronautics and Space Administration — The Deep Space Atomic Clock (DSAC) project will develop a small, low mass atomic clock based on mercury-ion trap technology and demonstrate it in space providing the...

  16. Fabrication of Photothermal Stable Gold Nanosphere/Mesoporous Silica Hybrid Nanoparticle Responsive to Near-Infrared Light.

    Science.gov (United States)

    Cheng, Bei; Xu, Peisheng

    2017-01-01

    Various gold nanoparticles have been explored in biomedical systems and proven to be promising in photothermal therapy and drug delivery. Among them, nanoshells were regarded as traditionally strong near infrared absorbers that have been widely used to generate photothermal effect for cancer therapy. However, the nanoshell is not photo-thermal stable and thus is not suitable for repeated irradiation. Here, we describe a novel discrete gold nanostructure by mimicking the continuous gold nanoshell-gold/mesoporous silica hybrid nanoparticle (GoMe). It possesses the best characteristics of both conventional gold nanoparticles and mesoporous silica nanoparticles, such as excellent photothermal converting ability as well as high drug loading capacity and triggerable drug release.

  17. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  18. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  19. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    Navigation with Atom Interferometers Mary F. Locke and Frank A. Narducci Avionics Department Naval Air Systems Command Patuxent River, Md...20670 Abstract: In this article, we review the basic physics of an atom interferometer. We highlight the usefulness of atom interferometers for...inertial navigation due to their high phase sensitivity to both linear acceleration and angular rotation, but also the drawback that a single atom

  20. Uptake, translocation, and toxicity of gold nanorods in maize

    Science.gov (United States)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in

  1. Atomic Ferris wheel beams

    OpenAIRE

    Lembessis, Vasileios E.

    2017-01-01

    We study the generation of atom vortex beams in the case where an atomic wave-packet, moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  2. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  3. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  4. Protein-encapsulated gold cluster aggregates: the case of lysozyme

    Science.gov (United States)

    Baksi, Ananya; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Goswami, N.; Pal, S. K.; Pradeep, T.

    2013-02-01

    We report the evolution and confinement of atomically precise and luminescent gold clusters in a small protein, lysozyme (Lyz) using detailed mass spectrometric (MS) and other spectroscopic investigations. A maximum of 12 Au0 species could be bound to a single Lyz molecule irrespective of the molar ratio of Lyz : Au3+ used for cluster growth. The cluster-encapsulated protein also forms aggregates similar to the parent protein. Time dependent studies reveal the emergence of free protein and the redistribution of detached Au atoms, at specific Lyz to Au3+ molar ratios, as a function of incubation time, proposing inter-protein metal ion transfer. The results are in agreement with the studies of inter-protein metal transfer during cluster growth in similar systems. We believe that this study provides new insights into the growth of clusters in smaller proteins.We report the evolution and confinement of atomically precise and luminescent gold clusters in a small protein, lysozyme (Lyz) using detailed mass spectrometric (MS) and other spectroscopic investigations. A maximum of 12 Au0 species could be bound to a single Lyz molecule irrespective of the molar ratio of Lyz : Au3+ used for cluster growth. The cluster-encapsulated protein also forms aggregates similar to the parent protein. Time dependent studies reveal the emergence of free protein and the redistribution of detached Au atoms, at specific Lyz to Au3+ molar ratios, as a function of incubation time, proposing inter-protein metal ion transfer. The results are in agreement with the studies of inter-protein metal transfer during cluster growth in similar systems. We believe that this study provides new insights into the growth of clusters in smaller proteins. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33180b

  5. Measuring total mercury due to small-scale gold mining activities to determine community vulnerability in Cihonje, Central Java, Indonesia.

    Science.gov (United States)

    Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko

    2016-01-01

    This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area.

  6. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  7. Charge transfer interactions in oligomer coated gold nanoclusters

    International Nuclear Information System (INIS)

    Newmai, M. Boazbou; Kumar, Pandian Senthil

    2016-01-01

    Gold nanoclusters were synthesized by a bottom-up synergistic approach of in-situ oligomerization of the monomer, N-vinyl pyrrolidone (NVP) and simultaneous weak reduction of Au-NVP complexes in the absence of any other external energy sources, thereby making these tiny gold clusters as the most elemental building blocks to construct further novel nano/microstructures with application potentials. It is well-known that metal clusters with less than 2 nm size do not show the usual surface plasmon band, because of the presence of a band-gap at the fermi level. Nevertheless, our present oligomer coated gold clusters show a discrete intense band at around 630 nm, which could very well be attributed to the charge transfer between the oligomer chain and the surface Au atoms. Such kind of sacrificial plasmon induced charge transfer interaction, observed for the very first time to the best of our knowledge, were also strongly corroborated through the enhancement / shifting of specific vibrational / rotational peaks as observed from the FTIR and Raman measurements as a function of the metal oxidation states, thus representing a new prototype for an efficient solar energy conversion probe.

  8. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Seema, E-mail: seemanara@mnnit.ac.in [Department of Applied Mechanics (Biotechnology), Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Tripathi, Vinay [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Singh, Harpal [Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Shrivastav, Tulsidas G. [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India)

    2010-12-03

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL{sup -1} with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  9. Structure and nanotribology of thermally deposited gold nanoparticles on graphite

    International Nuclear Information System (INIS)

    Cihan, Ebru; Özoğul, Alper; Baykara, Mehmet Z.

    2015-01-01

    Graphical abstract: - Highlights: • Structure and tribology of thermally deposited AuNPs on HOPG have been studied. • Well-faceted, hexagonal AuNPs are formed on HOPG upon post-deposition annealing. • The crystalline character of the AuNPs is confirmed via TEM measurements. • AFM measurements reveal a “2/3” power law dependence of friction on load on AuNPs. • Friction forces at AuNP edges evolve linearly with increasing height and load. - Abstract: We present experiments involving the structural and frictional characterization of gold nanoparticles (AuNP) thermally deposited on highly oriented pyrolytic graphite (HOPG). The effect of thermal deposition amount, as well as post-deposition annealing on the morphology and distribution of gold on HOPG is studied via scanning electron microscopy (SEM) measurements, while transmission electron microscopy (TEM) is utilized to confirm the crystalline character of the nanoparticles. Lateral force measurements conducted via atomic force microscopy (AFM) under ambient conditions are employed to investigate the nanotribological properties of the gold nanoparticles as a function of normal load. Finally, the increase in lateral force experienced at the edges of the nanoparticles is studied as a function of normal load, as well as nanoparticle height. As a whole, our results constitute a comprehensive structural and frictional characterization of the AuNP/HOPG material system, forming the basis for nanotribology experiments involving the lateral manipulation of thermally deposited AuNPs on HOPG via AFM under ambient conditions.

  10. Reactive pulsed laser deposition of gold nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P. [University of Salento, Department of Physics, 73100 Lecce (Italy); Fernandez, M. [University of Salento, Department of Physics, 73100 Lecce (Italy); Leggieri, G. [University of Salento, Department of Physics, 73100 Lecce (Italy)]. E-mail: leggieri@le.infn.it; Luches, A. [University of Salento, Department of Physics, 73100 Lecce (Italy); Martino, M. [University of Salento, Department of Physics, 73100 Lecce (Italy); Romano, F. [University of Salento, Department of Physics, 73100 Lecce (Italy); Tunno, T. [University of Salento, Department of Physics, 73100 Lecce (Italy); Valerini, D. [University of Salento, Department of Physics, 73100 Lecce (Italy); Verdyan, A. [Science Department, Holon Academic Institute of Technology, Holon 58102 (Israel); Soifer, Y.M. [Science Department, Holon Academic Institute of Technology, Holon 58102 (Israel); Azoulay, J. [Science Department, Holon Academic Institute of Technology, Holon 58102 (Israel); Meda, L. [IGD Polimeri Europa S.p.A, Novara (Italy)

    2007-07-31

    We report on the growth and characterization of gold nitride thin films on Si <1 0 0> substrates at room temperature by reactive pulsed laser ablation. A pure (99.95%) Au target was ablated with KrF excimer laser pulses in nitrogen containing atmosphere (N{sub 2} or NH{sub 3}). The gas ambient pressure was varied in the range 0.1-100 Pa. The morphology of the films was studied by using optical, scanning electron and atomic force microscopy, evidencing compact films with RMS roughness in the range 3.6-35.1 nm, depending on the deposition pressure. Rutherford backscattering spectrometry and energy dispersion spectroscopy (EDS) were used to detect the nitrogen concentration into the films. The EDS nitrogen peak does not decrease in intensity after 2 h annealing at 250 deg. C. Film resistivity was measured using a four-point probe and resulted in the (4-20) x 10{sup -8} {omega} m range, depending on the ambient pressure, to be compared with the value 2.6 x 10{sup -8} {omega} m of a pure gold film. Indentation and scratch measurements gave microhardness values of 2-3 GPa and the Young's modulus close to 100 GPa. X-ray photoemission spectra clearly showed the N 1s peak around 400 eV and displaced with respect to N{sub 2} phase. All these measurements point to the formation of the gold nitride phase.

  11. Bioactive gold(i) complexes with 4-mercaptoproline derivatives.

    Science.gov (United States)

    Gutiérrez, Alejandro; Cativiela, Carlos; Laguna, Antonio; Gimeno, M Concepción

    2016-09-14

    Unprecedented gold(i) bioconjugates bearing non-proteinogenic amino acid 4-mercaptoproline species as bioorganic ligands have been prepared. Firstly, the synthesis of Boc-Pro(SH)-OMe (1) has been accomplished by standard procedures. The subsequent reaction of 1 with [AuCl(PR3)] gives complexes Boc-Pro(SAuPR3)-OMe (PR3 = PPh3 (2), PPh2Py (3)). Starting from complex 2 several structural modifications have been performed, in addition to the incorporation of a different phosphine in 3, such as the formation of the acid Boc-Pro(SAuPPh3)-OH (4), the synthesis of a dipeptide derivative by coupling the amino acid glycine tert-butyl ester Boc-Pro(SAuPPh3)-Gly-O(t)Bu (5), or the coordination of another gold phosphine fragment to the sulfur atom as in [Boc-Pro(SAuPPh3)2-OMe]OTf (6). The cytotoxic activity in vitro of these complexes has been evaluated against three different tumor human cell lines, A549 (lung carcinoma), Jurkat (T-cell leukaemia) and MiaPaca2 (pancreatic carcinoma). All the complexes displayed excellent cytotoxic activity with IC50 values in the low μM range and even in the nM range in some cases. Structure-Activity Relationships (SAR) observed from this family of complexes opens the possibility of designing more potent and selective promising gold(i) anticancer agents.

  12. Measurement of the atom number distribution in an optical tweezer using single-photon counting

    International Nuclear Information System (INIS)

    Fuhrmanek, A.; Sortais, Y. R. P.; Grangier, P.; Browaeys, A.

    2010-01-01

    We demonstrate in this paper a method to reconstruct the atom number distribution of a cloud containing a few tens of cold atoms. The atoms are first loaded from a magneto-optical trap into a microscopic optical dipole trap and then released in a resonant light probe where they undergo a Brownian motion and scatter photons. We count the number of photon events detected on an image intensifier. Using the response of our detection system to a single atom as a calibration, we extract the atom number distribution when the trap is loaded with more than one atom. The atom number distribution is found to be compatible with a Poisson distribution.

  13. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites

    Energy Technology Data Exchange (ETDEWEB)

    Loskutov, Alexander I., E-mail: ailoskutov@yandex.ru [Moscow State Technological University STANKIN (Russian Federation); Guskova, Olga A. [Leibniz Institute of Polymer Research Dresden (Germany); Grigoriev, Sergey N.; Oshurko, Vadim B. [Moscow State Technological University STANKIN (Russian Federation); Tarasiuk, Aleksei V. [Russian Academy of Medical Sciences, FSBI “Zakusov Institute of Pharmacology” (Russian Federation); Uryupina, Olga Ya. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2016-08-15

    A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.

  14. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    Science.gov (United States)

    Burygin, G. L.; Khlebtsov, B. N.; Shantrokha, A. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2009-08-01

    The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles on Escherichia coli K12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs). Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin-gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  15. Synthesis and physico-chemical characterization of gold nanoparticles softly coated by AOT

    International Nuclear Information System (INIS)

    Longo, A.; Calandra, P.; Casaletto, M.P.; Giordano, C.; Venezia, A.M.; Liveri, V.Turco

    2006-01-01

    Size-controlled gold nanoparticles/surfactant stable systems were prepared by the combined action of the solvated metal atom dispersion (SMAD) technique and confinement in anhydrous sodium bis(2-ethylhexyl)sulfosuccinate (AOT) micellar solution. From liquid samples, by evaporation of the organic solvent, solid gold nanoparticle-surfactant liquid crystals composites were obtained. Sample characterization was performed by X-ray diffraction (SAXS and WAXS), XPS spectroscopy and UV-vis-NIR spectroscopy. All experimental data consistently revealed the coexistence of two gold nanoparticle size populations: bigger nanoparticles (size 20-50 A) and smaller ones (size of few A). The two differently-sized gold nanoparticles can be separated by resuspending the gold/surfactant nanocomposite in n-heptane. This operation causes the slow selective precipitation of the bigger nanoparticles softly coated by surfactant leaving, in the surnatant, only the smaller Au nanoparticles. The latter were found to be entrapped in the core of AOT reversed micelles and stabilised by the surfactant adsorption on their surface. Such nanoparticles, as shown by SAXS data, slowly rearrange to a narrower size distribution giving a surnatant containing stable and finely size-controlled gold nanoparticles

  16. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shantrokha AN

    2009-01-01

    Full Text Available Abstract The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles onEscherichia coliK12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs. Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin–gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  17. Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

    International Nuclear Information System (INIS)

    Reznickova, Alena; Kolska, Zdenka; Hnatowicz, Vladimir; Svorcik, Vaclav

    2011-01-01

    Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.

  18. A correlation found between gold concentration in blood and patch test reactions in patients with coronary stents.

    Science.gov (United States)

    Ekqvist, Susanne; Svedman, Cecilia; Lundh, Thomas; Möller, Halvon; Björk, Jonas; Bruze, Magnus

    2008-09-01

    Patients with dental gold restorations are known to have a higher level of gold concentration in blood (B-Au). To further investigate, in a study on patients with intracoronary stents and contact allergy to metals, the gold and nickel release from stainless steel stent with (Au stent) and without (Ni stent) gold plating. A total of 460 patients treated with stenting underwent patch testing with metals, and information on gold and nickel exposure and blood samples were collected. About 200 blood samples were randomly selected and the analysis of B-Au and nickel concentration in blood (B-Ni) was made using inductively coupled plasma mass spectrometry. There was a correlation between the intensity of Au patch test reaction and B-Au (P stent gave a fivefold higher B-Au than a Ni stent. Gold is released from the Au stent and patients with a Au stent have a fivefold higher B-Au than patients with an Ni stent. The patch test reactions for gold were correlated with B-Au.

  19. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  20. Ultrasonic inspection of fake gold jewelry

    Science.gov (United States)

    Pauzi Ismail, Mohamad; Sani, Suhairy; Shofri, Faris Syazwan bin Mohd; Harun, Mohd.; Omar, Norlaili Binti

    2018-01-01

    Hollow jewelry made from combination of gold and other material was found in the market. At the outside it is made of gold and the inside layer is made of other material. X-ray fluorescent method cannot detect the inside material that was covered by gold. This paper explained the experimental result of ultrasonic inspection of fake gold used for jewelry. The ultrasonic pulse echo contact method was used to measure longitudinal wave velocity in the gold jewelry. The results of measurements are explained and discussed.

  1. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  2. Understanding ligand effects in gold clusters using mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2016-01-01

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  3. Understanding ligand effects in gold clusters using mass spectrometry.

    Science.gov (United States)

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  4. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  5. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  6. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  7. Cold Atom Interferometry

    International Nuclear Information System (INIS)

    Zhan Mingsheng; Li Ke; Wang Ping; Kong Lingbo; Wang Xiaorui; Li Runbing; Tu Xianhua; He Lingxiang; Wang Jin; Lu Baolong

    2007-01-01

    In this article the recent experimental works on cold atoms carried out at Wuhan Institute of Physics and Mathematics (WIPM) are reported. These include the experimental realization of Bose-Einstein condensation (BEC), different type of cold atom interferometers, and bichromatic electromagnetically-induced transparency (EIT). We have realized Bose-Einstein condensates of 87 Rb dilute atomic gases. The apparatus consists of two horizontally mounted magneto-optic-traps (MOTs) and a QUIC magnetic trap. Nearly 3x10 8 atoms were trapped in the second MOT, and up to 1.2x10 8 atoms were adiabatically transferred to the QUIC trap. A pure condensate with about 1.1x10 5 atoms at about 30 nK was achieved. We also demonstrated two type of cold atom interferometers, the Sagnac and Ramsey interference fringes were recorded with contrast of up to 37%

  8. Contacting nanowires and nanotubes with atomic precision for electronic transport

    KAUST Repository

    Qin, Shengyong

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes. © 2012 American Institute of Physics.

  9. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    Directory of Open Access Journals (Sweden)

    Rahman WN

    2014-05-01

    Full Text Available Wan Nordiana Rahman,1,2 Stéphanie Corde,3,4 Naoto Yagi,5 Siti Aishah Abdul Aziz,1 Nathan Annabell,2 Moshi Geso21School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia; 2Division of Medical Radiation, School of Medical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC, 3Radiation Oncology, Prince of Wales Hospital, High Street, Randwick, 4Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; 5Japanese Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, JapanAbstract: Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3

  10. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  11. Scanning tunneling microscopy studies of glucose oxidase on gold surface

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.G.; Gooding, J.J.

    2002-01-01

    Full text: Three immobilization methods have been used for scanning tunneling microscopy (STM) studies of glucose oxidase (GOD) on gold. They are based on a) physical adsorption from solution, b) microcontact printing and c) covalent bonding onto self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA). The STM images are used to provide information about the organization of individual GOD molecules and more densely packed monolayers of GOD on electrode surfaces, thus providing information of the role of interfacial structure on biosensor performance. The use of atomically flat gold substrates enables easy distinction of deposited enzyme features from the flat gold substrate. Microcontact printing is found to be a more reliable method than adsorption from solution for preparing individual GOD molecules on the gold surface STM images of printed samples reveal two different shapes of native GOD molecules. One is a butterfly shape with dimensions of 10 ± 1 nm x 6 ± 1 nm, assigned to the lying position of molecule while the second is an approximately spherical shape with dimensions of 6.5 ± 1 nm x 5 ± 1nm assigned to a standing position. Isolated clusters of 5 to 6 GOD molecules are also observed. With monolayer coverage, GOD molecules exhibit a tendency to organize themselves into a two dimensional array with adequate sample stability to obtain high-resolution STM images. Within these two-dimensional arrays are clearly seen repeating clusters of five to six enzyme molecules in a unit STM imaging of GOD monolayers covalently immobilized onto SAM (MPA) are considerably more difficult than when the enzyme is adsorbed directly onto the metal. Cluster structures are observed both high and low coverage despite the fact that native GOD is a negatively charged molecule. Copyright (2002) Australian Society for Electron Microscopy Inc

  12. Au70S20(PPh3)12: an intermediate sized metalloid gold cluster stabilized by the Au4S4 ring motif and Au-PPh3 groups.

    Science.gov (United States)

    Kenzler, Sebastian; Schrenk, Claudio; Frojd, Andrew R; Häkkinen, Hannu; Clayborne, Andre Z; Schnepf, Andreas

    2018-01-02

    Reducing (Ph 3 P)AuSC(SiMe 3 ) 3 with l-Selectride® gives the medium-sized metalloid gold cluster Au 70 S 20 (PPh 3 ) 12 . Computational studies show that the phosphine bound Au-atoms not only stabilize the electronic structure of Au 70 S 20 (PPh 3 ) 12 , but also behave as electron acceptors leading to auride-like gold atoms on the exterior.

  13. Gold Complexes for Therapeutic Purposes: an Updated Patent Review (2010-2015).

    Science.gov (United States)

    Nardon, Chiara; Pettenuzzo, Nicolò; Fregona, Dolores

    2016-01-01

    Gold has always aroused great interest in the history of mankind. It has been used for thousands of years for jewelry, religious cult valuables, durable goods and in the art world. However, few know that such a precious and noble metal was exploited in the past by the ancients also for its therapeutic properties. More recently, in the twentieth century some complexes containing gold centers in the oxidation state +1 were studied for the treatment of the rheumatoid arthritis and the orally-administered drug Auranofin was approved by the FDA in 1985. From the chemical point of view, gold derivatives deserve special attention due to the unique position of this metal within the periodic table, which results in unconventional relativistic effects and, ultimately, in the highest electronegativity, electron affinity and redox potential among all metals. In this review, after an introduction concerning the use of gold complexes in medicine, we have examined all the patents internationally or nationally published in the years 2010-2015 (until December 31, 2015) and describing new inorganic compounds containing gold(I) and gold(III) with proved therapeutic properties. These patents were filed to mainly protect compounds with promising anticancer and anti-inflammatory activities (total 18 and 4, respectively). In particular, this work explores both coordination compounds containing ligands with various donor atoms (e.g., N-, O-, S- and -P) and organo-gold derivatives with at least one Au-C bond. The toxicological profile and the intracellular targets reported for some among the patented gold derivatives are discussed.

  14. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  15. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  16. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  17. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    Science.gov (United States)

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  19. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  20. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf