WorldWideScience

Sample records for gold activated foils

  1. Nondestructive analysis of silver in gold foil using synchrotron radiation X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kasamatsu, Masaaki; Suzuki, Yasuhiro; Suzuki, Shinichi; Nakanishi, Toshio; Shimoda, Osamu; Nishiwaki, Yoshinori; Miyamoto, Naoki

    2005-01-01

    Small particles of gold foil detached from an indoor decoration might be important evidence to associate a suspect with a crime scene. We have investigated the application of elemental analysis using synchrotron radiation X-ray fluorescence spectrometry to discriminate small particles of gold foil. Eight kinds of gold foil samples collected in Japan were used in the experiments. As a result of synchrotron radiation X-ray fluorescence spectrometry, only two elements, gold and silver, were detected from all gold foil samples. The intensity ratios of AgK α /AuL α showed good correlation with the content ratios of Ag/Au. The variation of intensity ratio within a same sample was sufficiently small compared with those of different samples. Therefore the comparison of this intensity ratio can be an effective method to discriminate small particles originating from different types of gold foil. (author)

  2. Mock-up experiment at Birmingham University for BNCT project of Osaka University – Neutron flux measurement with gold foil

    International Nuclear Information System (INIS)

    Tamaki, S.; Sakai, M.; Yoshihashi, S.; Manabe, M.; Zushi, N.; Murata, I.; Hoashi, E.; Kato, I.; Kuri, S.; Oshiro, S.; Nagasaki, M.; Horiike, H.

    2015-01-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. - Highlights: • Accelerator based neutron source for BNCT is being developed in Osaka University. • Mock-up experiment was carried out at Birmingham University, UK. • Neutronics performance of our assembly was evaluated from gold foil activation. • Gold foil activation was determined by using HPGe detectors. • Validity of the neutronics design code system was confirmed.

  3. Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector

    Science.gov (United States)

    Schlutter, D. J.; Pepin, R. O.

    2005-12-01

    The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.

  4. Measurements of laser generated soft X-ray emission from irradiated gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D. [University of Michigan, 2455 Hayward St., Ann Arbor, Michigan 48109 (United States); Frank, Y.; Raicher, E.; Fraenkel, M. [Soreq Nuclear Research Center, Yavne (Israel)

    2016-11-15

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  5. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  6. Use of special radioactive molds of gold-198 foils for brachytherapy in skin tumors

    International Nuclear Information System (INIS)

    Fernandes, Marco Antonio Rodrigues

    2000-01-01

    This work presents a methodology for manufacturing molds of radioactive gold-198 foils for treatment of skin tumors. The metallic purity of the gold foils produced by the Brazilian market is analyzed and compared to the characteristics of imported materials. Techniques for analyses of the activation homogeneity and dose profile in the plane of the mold are presented. The MicroShield, Version 4 System is used in the theoretical determination of the dose rate along the radioactive molds with different geometries and a comparison with experimental values obtained by optic density readings from special films used in quality control of radiotherapy equipment, dosimetry for thimble ionization chamber and thermoluminescent dosimeters is performed. The dosimeter calibration curve (dose-answer) obtained for the gold-198 energy, is compared with that obtained by a high dose rate iridium-192 small source, commonly used in the brachytherapy procedures. The studies show that the best homogeneity of dose distribution is obtained distributing the radioactive material in the form of concentric rings, with different activities, in number and dimensions dependent on the area to be treated. The method of the radiation dose calculation of the molds presented in this work, is compared with the traditional method used by brachytherapy services for low dose rate. Twenty lesions were treated with the proposed molds. The effectiveness of this methodology is further supported by the cosmetic-therapeutic results of the clinical applications, as well as cost analysis of the procedures. Also, it is analyzed the homogeneity of the dose rate distribution for an irradiated disk with attenuation by two silver coin, objectifying to eliminate loss of mass and consequently uncertainties in the activation when the sections of the disks are made in concentric rings. (author)

  7. Spatial distribution of the neutron flux in the IEA-R1 reactor core obtained by means of foil activation

    International Nuclear Information System (INIS)

    Mestnik Filho, J.

    1979-01-01

    A three-dimensional distribution of the neutron flux in IEA-R1 reactor, obtained by activating gold foils, is presented. The foils of diameter 8mm and thickness 0,013mm were mounted on lucite plates and located between the fuel element plates. Foil activities were measured using a 3x3 inches Nal(Tl) scintilation detector calibrated against a 4πβγ coincidence detector. Foil positions were chosen to minimize the errors of measurement; the overall estimated error on the measured flux is 5%. (Author) [pt

  8. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1979-01-01

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author) [pt

  9. A New Method of Gold Foil Damage Detection in Stone Carving Relics Based on Multi-Temporal 3D LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Miaole Hou

    2016-05-01

    Full Text Available The timely detection of gold foil damage in gold-overlaid stone carvings and the associated maintenance of these relics pose several challenges to both the research and heritage protection communities internationally. This paper presents a new method for detecting gold foil damage by making use of multi-temporal 3D LiDAR point clouds. By analyzing the errors involved in the detection process, a formula is developed for calculation of the damage detection threshold. An improved division method for the linear octree that only allocates memory to the non-blank nodes, is proposed, which improves storage and retrieval efficiency for the point clouds. Meanwhile, the damage-occurrence regions are determined according to Hausdorff distances. Using a triangular mesh, damaged regions can be identified and measured in order to determine the relic’s total damaged area. Results demonstrate that this method can effectively detect gold foil damage in stone carvings. The identified surface area of damaged regions can provide the information needed for subsequent restoration and protection of relics of this type.

  10. Experiments with activated metal foils

    Energy Technology Data Exchange (ETDEWEB)

    Malati, M A [Medway and Maidstone Coll. of Tech., Chatham (UK)

    1978-09-01

    Experiments based on the activation of metal foils by slow neutron bombardment which can be used to demonstrate various aspects of artificial radioactivity are described and discussed. Suitable neutron sources and foils are considered.

  11. Radioactivity analysis in niobium activation foils

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, G.E.

    1995-06-01

    The motivation for this study was to measure and analyze the activity of six (6) niobium (Nb) foils (the x-rays from an internal transition in Nb-93m) and apply this information with previously obtained activation foil data. The niobium data was used to determine the epithermal to MeV range for the neutron spectrum and fluence. The foil activation data was re-evaluated in a spectrum analysis code (STAY`SL) to provide new estimates of the exposure at the Los Alamos Spallation Radiation Effect Facility (LASREF). The activity of the niobium foils was measured and analyzed at the University of Missouri-Columbia (UMC) under the direction of Professor William Miller. The spectrum analysis was performed at the University of Missouri-Rolla (UMR) by Professor Gary Mueller.

  12. Calibration of the nuclear power channels of the IPEN/MB-01 reactor obtained from the measurements of the spatial thermal neutron flux distribution in the reactor core through the irradiation of infinitely diluted gold foils

    International Nuclear Information System (INIS)

    Goncalves, Lucas Batista

    2008-01-01

    Several nuclear parameters are obtained through the gamma spectrometry of targets irradiated in a research reactor core and this is the case of the activation foils which make possible, through the measurements of the activity induced, to determine the neutron flux in the place where they had been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. This work aims to get the power operation of the reactor through of spatial neutron flux distribution in the core of IPEN/MB-01 reactor by the irradiation of infinitely diluted gold foils and prudently located in its interior. These foils were made in the form of metallic alloy in concentration levels such that the phenomena of flux disturbance, as the self-shielding factors to neutrons become worthless. These activation foils has only 1% of dispersed gold atoms in an aluminium matrix content of 99% of this element. The irradiations of foils have been carried through with and without cadmium plate. The total correlation between the average thermal neutron flux obtained by irradiation of infinitely diluted activation foils and the average digital value of current of the nuclear power channels 5 and 6 (non-compensated ionization chambers - CINC), allow the calibration of the nuclear channels of the IPEN/MB-01 reactor. (author)

  13. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap

    International Nuclear Information System (INIS)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-01-01

    Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene–SiO 2 –Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au–graphene–Cu hybrid configuration as an SERS substrate. (paper)

  14. Additional security features for optically variable foils

    Science.gov (United States)

    Marshall, Allan C.; Russo, Frank

    1998-04-01

    For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.

  15. Invitation systems and identification in Late Iron Age southern Scandinavia? The gold foil figures from a new perspective

    DEFF Research Database (Denmark)

    Baastrup, Maria Panum

    2016-01-01

    of a person’s true identity and in the dependency upon magnates in southern Scandinavia during the 6th–8th centuries AD. The gold foil figures may have been tokens issued by the magnate and served as invitations to special events, at a time when there was apparently a preoccupation with organising cult...... activities at the elite residences and restricting places at and admission to such events. The figures did not guarantee that it was the right guests who arrived on these occasions, but presenting this type of token may have minimised the risk of allowing in impostors....

  16. Novel technique of making thin target foil of high density material via rolling method

    Science.gov (United States)

    Gupta, C. K.; Rohilla, Aman; Singh, R. P.; Singh, Gurjot; Chamoli, S. K.

    2018-05-01

    The conventional rolling method fails to yield good quality thin foils of thicknesses less than 2 mg/cm2 for high density materials with Z ≥ 70 (e.g. gold, lead). A special and improved technique has been developed to obtain such low thickness good quality gold foils by rolling method. Using this technique thin gold foils of thickness in the range of 0.850-2.5 mg/cm2 were obtained in the present work. By making use of alcohol during rolling, foils of thickness 1 mg/cm2 can be obtained in shorter time with less effort.

  17. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  18. Beam-foil study of neon in the EUV with foils of carbon, silver and gold

    International Nuclear Information System (INIS)

    Demarest, J.A.; Watson, R.L.; Texas A and M Univ., College Station

    1988-01-01

    A beam-foil study of 40 MeV neon was conducted in the EUV with a 1-meter grazing incidence spectrometer configured with a position sensitive microchannel plate detector. A number of new lines of Ne IX, mainly from transitions to n = 3 levels, were detected in the wavelength region covering 50-350 A. Comparison of the spectra obtained using the different foils revealed that the average charge state of the neon projectiles was nearly one unit higher with carbon than with either of the two metals. Measurements of line intensities versus distance from the foils showed that cascade contributions were greatly reduced for the metals. It was also found that n = 3 states of low l were overpopulated relative to a statistical distribution, irrespective of the foil material. (orig.)

  19. Commercial Gold Nanoparticles on Untreated Aluminum Foil: Versatile, Sensitive, and Cost-Effective SERS Substrate

    Directory of Open Access Journals (Sweden)

    Kristina Gudun

    2017-01-01

    Full Text Available We introduce low-cost, tunable, hybrid SERS substrate of commercial gold nanoparticles on untreated aluminum foil (AuNPs@AlF. Two or three AuNP centrifugation/resuspension cycles are proven to be critical in the assay preparation. The limits of detection (LODs for 4-nitrobenzenethiol (NBT and crystal violet (CV on this substrate are about 0.12 nM and 0.19 nM, respectively, while maximum analytical SERS enhancement factors (AEFs are about 107. In comparative assays LODs for CV measured on AuNPs@Au film and AuNPs@glass are about 0.35 nM and 2 nM, respectively. The LOD for melamine detected on AuNPs@ Al foil is 27 ppb with 3 orders of magnitude for linear response range. Overall, AuNPs@AlF demonstrated competitive performance in comparison with AuNPs@ Au film substrate in SERS detection of CV, NBT, and melamine. To check the versatility of the AuNPs@AlF substrate we also detected KNO3 with LODs of 0.7 mM and SERS EF around 2 × 103, which is on the same order with SERS EF reported for this compound in the literature.

  20. Grafting of gold nanoparticles on polyethyleneterephthalate using dithiol interlayer

    International Nuclear Information System (INIS)

    Reznickova, A.; Kolska, Z.; Zaruba, K.; Svorcik, V.

    2014-01-01

    Two different procedures of grafting of polyethyleneterephthalate (PET), modified by plasma treatment, with gold nanoparticles (nanospheres) are studied. In the first procedure the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with gold nanoparticles. In the second one the PET foil was grafted with gold nanoparticles previously coated by the same dithiol. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and electrokinetic analysis were used for characterization of the polymer surface at different modification steps. Gold nanoparticles were characterized by ultraviolet–visible spectroscopy. The first procedure was found to be more effective. It was proved that the dithiol was chemically bonded to the surface of the plasma activated PET and it mediates subsequent grafting of the gold nanoparticles. - Highlights: • Two different techniques were used for coating of PET with gold nanoparticles. • Grafted GNPs were characterized by XPS, FTIR, UV–vis, zeta potential, AFM. • More effective coating is achieved by deposition of GNPs earlier grafted with thiol. • The studied structures may have potential application in electronics or biomedicine

  1. Scanning tunneling microscopy studies of thin foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Besenbacher, Flemming; Garnaes, Jorgen

    1990-01-01

    In this paper scanning tunneling microscopy (STM) measurements of x-ray mirrors are presented. The x-ray mirrors are 0.3 mm thick dip-lacquered aluminum foils coated with gold by evaporation, as well as state-of-the-art polished surfaces coated with gold, platinum, or iridium. The measurements...

  2. Comparing the effect on the AGS longitudinal emittance of gold ions from the BtA stripping foil with and without a Booster Bunch Merge

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-12-18

    The aim of this note to better understand the effect of merging the Gold bunches in the Booster into one on the resulting AGS longitudinal emittance as compared to not merging them. The reason it matters whether they are merged or not is because they pass through a stripping foil in the BtA line. Data was taken last run (Run 17) for the case where the bunches are not merged, and it will be compared with data from cases where the bunches are merged. Previous data from Tandem operation will also be considered. There are two main pieces to this puzzle. The first is the ε growth associated with the energy spread due to ‘energy straggling’ in the BtA stripping foil and the second is the effective ε growth associated with the energy loss that occurs while passing through the foil. Both of these effects depend on whether or not the Booster bunches have been merged into one.

  3. Validation of MCNP NPP Activation Simulations for Decommissioning Studies by Analysis of NPP Neutron Activation Foil Measurement Campaigns

    Directory of Open Access Journals (Sweden)

    Volmert Ben

    2016-01-01

    Full Text Available In this paper, an overview of the Swiss Nuclear Power Plant (NPP activation methodology is presented and the work towards its validation by in-situ NPP foil irradiation campaigns is outlined. Nuclear Research and consultancy Group (NRG in The Netherlands has been given the task of performing the corresponding neutron metrology. For this purpose, small Aluminium boxes containing a set of circular-shaped neutron activation foils have been prepared. After being irradiated for one complete reactor cycle, the sets have been successfully retrieved, followed by gamma-spectrometric measurements of the individual foils at NRG. Along with the individual activities of the foils, the reaction rates and thermal, intermediate and fast neutron fluence rates at the foil locations have been determined. These determinations include appropriate corrections for gamma self-absorption and neutron self-shielding as well as corresponding measurement uncertainties. The comparison of the NPP Monte Carlo calculations with the results of the foil measurements is done by using an individual generic MCNP model functioning as an interface and allowing the simulation of individual foil activation by predetermined neutron spectra. To summarize, the comparison between calculation and measurement serve as a sound validation of the Swiss NPP activation methodology by demonstrating a satisfying agreement between measurement and calculation. Finally, the validation offers a chance for further improvements of the existing NPP models by ensuing calibration and/or modelling optimizations for key components and structures.

  4. A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, I., E-mail: isabeltissot@gmail.com [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Department of Physics, Faculty of Sciences, University of Lisbon, Campo Grande, 1649-004 Lisbon (Portugal); Troalen, L.G. [National Museums Scotland, Collections Services Department, 242 West Granton Road, Edinburgh EH5 1JA (United Kingdom); Manso, M. [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Faculdade de Belas-Artes da Universidade de Lisboa, Largo da Academia Nacional de Belas-Artes, 1249-058 Lisbon (Portugal); Ponting, M. [Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ (United Kingdom); Radtke, M.; Reinholz, U. [BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter-Strasse 11, 12489 Berlin (Germany); Barreiros, M.A. [LNEG, I.P., Estrada do Paço do Lumiar, 22, 1649-038 Lisbon (Portugal); Shaw, I. [Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ (United Kingdom); Carvalho, M.L. [LIBPhys – UNL, Faculty of Science and Technology, 2829-516 Caparica (Portugal); Guerra, M.F. [ArchAm, UMR 8096 CNRS - Université Paris Sorbonne, MAE, 21 allée de l' Université, 92023 Nanterre (France)

    2015-06-01

    Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (μXRF), Particle Induced X-Ray Emission (µPIXE) and Double Dispersive X-Ray Fluorescence (D{sup 2}XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products. - Highlights: • Multi-analytical protocol based on techniques with different MDLs and spatial resolution • Application of D{sup 2}XRF developed at synchrotron BESSY II for determination of Pt in Au with a MDL of 1 ppm • Egyptian gold alloys have nanoporous corrosion layers where distinct corrosion phases could be identified. • Egyptian gold foils are made with different gold base alloys, but all containing alluvial gold.

  5. A multi-analytical approach to gold in Ancient Egypt: Studies on provenance and corrosion

    International Nuclear Information System (INIS)

    Tissot, I.; Troalen, L.G.; Manso, M.; Ponting, M.; Radtke, M.; Reinholz, U.; Barreiros, M.A.; Shaw, I.; Carvalho, M.L.; Guerra, M.F.

    2015-01-01

    Recent results from a three-year multi-disciplinary project on Ancient Egyptian gold jewellery revealed that items of jewellery from the Middle Kingdom to the New Kingdom were manufactured using a variety of alluvial gold alloys. These alloys cover a wide range of colours and the majority contain Platinum Group Elements inclusions. However, in all the gold foils analysed, these inclusions were found to be absent. In this work a selection of gilded wood and leather items and gold foil fragments, all from the excavations by John Garstang at Abydos (primarily from Middle Kingdom graves), were examined using Scanning Electron Microscopy-Energy Disperse Spectroscopy (SEM-EDS), X-Ray Fluorescence (μXRF), Particle Induced X-Ray Emission (µPIXE) and Double Dispersive X-Ray Fluorescence (D 2 XRF). The work allowed us to characterise the composition of the base-alloys and also to reveal the presence of Pt at trace levels, confirming the use of alluvial gold deposits. Corrosion products were also investigated in the foils where surface tarnish was visually observed. Results showed that the differences in the colour of corrosion observed for the foils are related not only to the thickness of the corrosion layer but also to a multi-layer structure containing the various corrosion products. - Highlights: • Multi-analytical protocol based on techniques with different MDLs and spatial resolution • Application of D 2 XRF developed at synchrotron BESSY II for determination of Pt in Au with a MDL of 1 ppm • Egyptian gold alloys have nanoporous corrosion layers where distinct corrosion phases could be identified. • Egyptian gold foils are made with different gold base alloys, but all containing alluvial gold

  6. Comparison of Americium-Beryllium neutron spectrum obtained using activation foil detectors and NE-213 spectrometer

    International Nuclear Information System (INIS)

    Sunny, Sunil; Subbaiah, K.V.; Selvakumaran, T.S.

    1999-01-01

    Neutron spectrum of Americium - Beryllium (α,n) source is measured with two different spectrometers vis-a-vis activation foils (foil detectors) and NE-213 organic scintillator. Activity induced in the foils is measured with 4π-β-γ sodium iodide detector by integrating counts under photo peak and the saturation activity is found by correcting to elapsed time before counting. The data on calculated activity is fed into the unfolding code, SAND-II to obtain neutron spectrum. In the case of organic scintillator, the pulse height spectrum is obtained using MCA and this is processed with unfolding code DUST in order to get neutron spectrum. The Americium - Beryllium (α,n) neutron spectrum thus obtained by two different methods is compared. It is inferred that the NE-213 scintillator spectrum is in excellent agreement with the values beyond 1MeV. Neutron spectrum obtained by activation foils depends on initial guess spectrum and is found to be in reasonable agreement with NE-213 spectrum. (author)

  7. Nuclear accident dosimetry: the calibration of Geiger-Mueller and 2π proportional counters for sulphur and gold

    International Nuclear Information System (INIS)

    Delafield, H.J.; Reading, A.H.

    1981-10-01

    A reference, 2π precision counter was set up at Harwell and absolutely calibrated for the measurement of sulphur discs ( 32 P) and gold foils ( 198 Au) used in the UK personnel criticality dosimeter. Sample sulphur discs and gold foils were irradiated in the GLEEP reactor at Harwell, counted in the 2π counter, and their activities absolutely assayed by the National Physical Laboratory. The 2π counter was then used to intercalibrate the GM counters used routinely for the assessment of the criticality dosimeter. The mean measured efficiencies of the GM counters were found to be for 32 P in sulphur discs within +- 4%, and for gold ( 198 Au) within +- 6% of the values given by previous calibrations. (author)

  8. Calibration of the nuclear power channels for the cylindrical configuration of the IPEN/MB-01 reactor obtained from the measurements of the spatial neutron flux distribution in the reactor core through the irradiation of gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Silva, Alexandre F. Povoa da; Mura, Luiz Ernesto Credidio; Aredes, Vitor Ottoni Garcia; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br, E-mail: alexpovoa@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The activation foil is one of the most used techniques to obtain and compare nuclear parameters from the nuclear data libraries, given by a gamma spectrometry system. Through the measurements of activity induced in the foils, it is possible to determine the neutron flux profile exactly where it has been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. The objective of this work is to obtain, for a cylindrical configuration, the power generation through a spatial thermal neutron flux distribution in the core of IPEN/MB-01 Reactor, by irradiating gold foils positioned symmetrically into the core. They are put in a Lucite plate which will not interfere in the analysis of the neutron flux, because of its low microscopic absorption cross section for the analyzed neutrons. The foils are irradiated with and without cadmium covered small plates, to obtain the thermal and epithermal neutron flux, through specific equations. The correlation between the average power neutron flux, as a result of the foil's irradiation, and the average power digital neutron flux of the nuclear power channels, allows the calibration of the nuclear channels of the reactor. This same correlation was done in 2008 with the reactor in a rectangular configuration, which resulted in a specific calibration of the power level operation. This calibration cannot be used in the cylindrical configuration, because the nuclear parameters could change, which may lead to a different neutron profile. Furthermore, the precise knowledge of the power neutron flux in the core also validates the mathematics used to calculate the power neutron flux. (author)

  9. Synthesis of radioactive gold nanoparticle in surfactant medium

    International Nuclear Information System (INIS)

    Swadesh Mandal

    2014-01-01

    The present study describes the synthesis of radioactive gold nanoparticle in surfactant medium. Proton irradiated stable 197 Au and radioactive 198 Au were simultaneously used for production of radioactive gold nanoparticle. Face centered cubic gold nanoparticles with size of 4-50 nm were found in proton irradiated gold foil. However, the size of nanoparticle varies with pH using both stable and radioactive gold. (author)

  10. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    Science.gov (United States)

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  11. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    International Nuclear Information System (INIS)

    Engelhaupt, D. E.

    1981-01-01

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readilycorrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature

  12. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils.

    Science.gov (United States)

    Debord, J Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A; Verkhoturov, Stanislav V; Schweikert, Emile A

    2012-04-12

    Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual Au(n) (+q) cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au(100q) (+q) (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au(+)) and projectile disintegration occurs at the exit of even a 5 nm thick foil.

  13. Foil fabrication for the ROMANO event. Revision 1

    International Nuclear Information System (INIS)

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-01-01

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections

  14. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils

    OpenAIRE

    DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.

    2012-01-01

    Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function...

  15. Nanocomposite of polystyrene foil grafted with metallaboranes for antimicrobial activity

    Science.gov (United States)

    Benkocká, Monika; Kolářová, Kateřina; Matoušek, Jindřich; Semerádtová, Alena; Šícha, Václav; Kolská, Zdeňka

    2018-05-01

    The surface of polystyrene foil (PS) was chemically modified. Firstly, the surface was pre-treated with Piranha solution. The activated surface was grafted by selected amino-compounds (cysteamine, ethylenediamine or chitosan) and/or subsequently grafted with five members of inorganic metallaboranes. Selected surface properties were studied by using various methods in order to indicate significant changes before and after individual modification steps of polymer foil. Elemental composition of surface was conducted by using X-ray photoelectron spectroscopy, chemistry and polarity by infrared spectroscopy and by electrokinetic analysis, wettability by goniometry, surface morphology by atomic force microscopy. Antimicrobial tests were performed on individual samples in order to confirm antimicrobial impact. Our results show slight antibacterial activity of PS modified with SK5 for Escherichia coli in comparison with the rest of the tested borane. On the other hand molecules of all tested metallaboranes could easier pierce through bacterial cell of Staphylococcus epidermidis due to absence of outer membrane (phospholipid bilayer). Some borane grafted on PS surface embodies the strong activity for Staphylococcus epidermidis and also for Desmodesmus quadricauda growth inhibition.

  16. Tungsten foil laminate for structural divertor applications – Analyses and characterisation of tungsten foil

    International Nuclear Information System (INIS)

    Reiser, Jens; Rieth, Michael; Dafferner, Bernhard; Hoffmann, Andreas; Yi Xiaoou; Armstrong, David E.J.

    2012-01-01

    It has been attempted for several years to synthesise a tungsten material with a low brittle-to-ductile transition temperature and a high fracture toughness that can be used for structural parts. It was shown in our previous work that tungsten foil is ductile at room temperature and that this ductility can be transformed to bulk by synthesising a tungsten laminate. In this work we want to focus on tungsten foil and assess the microstructure as well as the mechanical properties of the foil. The assessment of the microstructure of 0.1 mm tungsten foil will be performed using electron microscopy. It will be shown that the grains of the tungsten foil have a dimension of 0.5 μm × 3 μm × 15 μm and a clear texture in (1 0 0) 〈0 1 1〉. This texture becomes even more pronounced by annealing. Three-point-bending tests with tungsten foil, as-received, will define the barriers: ductile at room temperature and brittle in liquid nitrogen (−196 °C). This shows that the ductility is a thermally activated process. Recrystallised tungsten foil (annealed for 1 h/2700 °C) shows ductile material behaviour at 200 °C. The paper closes with a discussion on the reasons of the ductility of 0.1 mm tungsten foil. These might be the ultra fine grained (UFG) microstructure or, in other words, a nano microstructure (see tungsten foil as-received), the high amount of mobile edge dislocations, and/or the foil effect, which means that dislocations can move to the surface and are annihilated (see tungsten foil recrystallised).

  17. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  18. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    Energy Technology Data Exchange (ETDEWEB)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K [University of Pennsylvania, Sicklerville, NJ (United States)

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  19. A simple method for determining the activity of large-area beta sources constructed from anodized aluminum foils

    International Nuclear Information System (INIS)

    Stanga, D.

    2014-01-01

    A simple method has been developed for determining the activity of large-area beta reference sources in anodized aluminum foils. It is based on the modeling of the transmission of beta rays through thin foils in planar geometry using Monte Carlo simulation. The method was checked experimentally and measurement results show that the activity of large-area beta reference sources in anodized aluminum foils can be measured with standard uncertainties smaller than the limit of 10% required by ISO 8769. - Highlights: • A method for determining the activity of large-area beta sources is presented. • The method is based on a model of electron transport in planar geometry. • The method makes use of linear programming for determining the activity. • The uncertainty of the method is smaller than 10%

  20. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  1. Uniformity of the soft-x-ray emissions from gold foils irradiated by OMEGA laser beams determined by a two-mirror normal-incidence microscope with multilayer coatings

    International Nuclear Information System (INIS)

    Seely, John F.; Boehly, Thomas; Pien, Gregory; Bradley, David

    1998-01-01

    A two-mirror normal-incidence microscope with multilayer coatings was used to image the soft-x-ray emissions from planar foils irradiated by OMEGA laser beams. The bandpass of the multilayer coatings was centered at a wavelength of 48.3 Angstrom (257-eV energy) and was 0.5 Angstrom wide. Five overlapping OMEGA beams, without beam smoothing, were typically incident on the gold foils. The total energy was 1500 J, and the focused intensity was 6x10 13 Wcm -2 . The 5.8x magnified images were recorded by a gated framing camera at various times during the 3-ns laser pulse. A pinhole camera imaged the x-ray emission in the energy range of >2 keV. On a spatial scale of 10 μm, it was found that the soft-x-ray images at 257 eV were quite uniform and featureless. In contrast, the hard-x-ray images in the energy range of >2 kev were highly nonuniform with numerous features of size 150 μm. copyright 1998 Optical Society of America

  2. Determination of neutron flux with an arbitrary energy distribution by measurement of irradiated foils activity

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2003-01-01

    A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)

  3. Hydrodynamic simulations of light ion beam-matter interactions: ablative acceleration of thin foils

    International Nuclear Information System (INIS)

    Devore, C.R.; Gardner, J.H.; Boris, J.P.; Mosher, D.

    1984-01-01

    A one-dimensional model is used to study the hydrodynamic response of thin foils to bombardment by an intense proton beam. The beam targets are single- and multilayer planar foils of gold and polystyrene. The main conclusion is that the efficiency of conversion of incident beam energy to directed kinetic energy of the target is maximized by using a multilayer design. For beam parameters associated with the Gamble II device at the Naval Research Laboratory, the simulations yield payload velocities of over 5 cm/μs and energy conversion efficiencies of over 30%. The implications of these results for inertial confinement fusion research are discussed. (author)

  4. Thrust augmentation in tandem flapping foils by foil-wake interaction

    Science.gov (United States)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  5. Foil changing apparatus

    International Nuclear Information System (INIS)

    Crist, C.E.; Ives, H.C.; Leifeste, G.T.; Miller, R.B.

    1988-01-01

    A self-contained foil changer apparatus for replenishing foil material across the path of a high energy particle beam is described comprising: a cylindrical hermetically sealed housing comprising an end plate having an aperture defining a beam passageway therethrough; foil supply means disposed inside the housing for storing a foil web and supporting a portion of the web across the beam passageway to form a plane perpendicular to the beam path; a barrel assembly disposed inside the housing; web control means extending through the housing and operably connected to the foil supply means for selectively advancing the foil web to replenish a portion across the beam passageway; and barrel control means extending through the housing and operably connected to the barrel assembly for selectively moving the barrel to and from the advanced and retracted positions

  6. Plastic Flow Induced by Single Ion Impacts on Gold

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Donnelly, S.E.

    1996-01-01

    The formation of holes in thin gold foils as a result of single ion impacts by 200keV Xe ions has been followed using transmission electron microscopy. Video recording provided details of microstructure evolution with a time resolution of 1/30th sec. Hole formation involves the movement by plastic flow of massive amounts of material, on the order of tens of thousands of Au atoms per ion impact. Plastic flow, as a consequence of individual ion impacts, results in a continual filling of both holes and craters as well as a thickening of the gold foil. Changes in morphology during irradiation is attributed to a localized, thermal-spike induced melting, coupled with plastic flow of effected material under the influence of surface forces. copyright 1996 The American Physical Society

  7. WINDOWS: a program for the analysis of spectral data foil activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)

  8. WINDOWS: a program for the analysis of spectral data foil activation measurements

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references

  9. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  10. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  11. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-01

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m 2 /g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m 2/ g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl 2 and NaBH 4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl 2 , however, NaBH 4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m 2 /g for 7 nm and 269 m 2 /g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H + efflux of the Candida species than 15 nm sized gold nanoparticles.

  12. Measurement of high dose rates of 60Co by gamma activation of115In and 111Cd foils

    International Nuclear Information System (INIS)

    Haddad, Kh; Qattan, M.; Taleb, A.

    2009-12-01

    The high gamma dose rate measurement technique using nuclear reaction (γ,(γ ' ') was introduced in this work. This technique is cheap, easy, reliable, and independent of chemical and physical factors, which affect other techniques. The response to the absorbed dose in this technique is linear and can be used for high dose. Cd and In foils were irradiated using 60 Co source and the resulted isomer activities were measured using gamma spectrometer. These foils were calibrated to be used as dosemeter and its results were compared with conventional one. The dose distribution in the irradiation field was determined using In foils. (authors)

  13. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    Science.gov (United States)

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  14. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  15. Natural gold composition studied by proton activation analysis (PAA)

    International Nuclear Information System (INIS)

    Cojocaru, V.; Badica, T.; Popescu, I.V.

    2003-01-01

    The minor and trace element concentration of natural gold is essential for provenance studies of gold archaeological artifacts. In this work proton activation analysis is used in order to find what elements can be put into evidence in natural gold. For that purpose some gold nuggets from Romania were used. It was found that PAA is a good supplemental method to neutron activation analysis. (authors)

  16. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  17. Post-foil interaction in foil-induced molecular dissociation

    International Nuclear Information System (INIS)

    Faibis, A.; Kanter, E.P.; Koenig, W.; Plesser, I.; Vager, Z.

    1985-01-01

    The authors have investigated the foil-induced dissociation of 175- 250- keV/amu CH + , NH + , and OH + , FH + and NeH + ions by coincident detection of the fragment atoms. The dissociation energies corresponding to in-foil and post-foil interactions were deduced from the measured relative flight times of the fragment pairs to a set of detectors downstream from the target. The authors considered final states consisting of a) a proton and a heavy-ion and, b) a hydrogen atom and a heavy-ion. Surprisingly, in both cases the energy released in the post-target interaction shows a similar linear increase with the charge state of the heavy partner

  18. The Anomalous Currents In The Front Foils of the JET Lost Alpha Diagnostic KA-2

    International Nuclear Information System (INIS)

    Cecil, F.E.; Kiptily, V.; Salmi, A.; Horton, A.; Fullard, K.; Murari, A.; Darrow, D.; Hill, K.

    2011-01-01

    We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions (both deuterium and impurity) in the vicinity of the detector (including charge exchange neutrals) and photoemission from scattered UV radiation. Based upon modeling and empirical observation, the latter source appears most likely and, moreover, seems to be applicable to the currents in the front foil during ELMy H-mode plasmas. A very thin gold or nickel foil attached to the present detector aperture is proposed as a solution to this problem, and realistic calculations of expected fluxes of lost energetic neutral beam ions during TF ripple experiments are presented as justification of this proposed solution.

  19. The Anomalous Currents In The Front Foils of the JET Lost Alpha Diagnostic KA-2

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F. E.; Kiptily, V.; Salmi, A.; Horton, A.; Fullard, K.; Murari, A.; Darrow, D.; Hill, K.

    2011-05-04

    We have examined the observed currents in the front foils of the JET Faraday cup lost alpha particle diagnostic KA-2. In particular, we have sought to understand the currents during Ohmic plasmas for which the ion flux at the detectors was initially assumed to be negligible. We have considered two sources of this current: plasma ions both deuterium and impurity in the vicinity of the detector including charge exchange neutrals and photoemission from scattered UV radiation. Based upon modeling and empirical observation, the latter source appears most likely and, moreover, seems to be applicable to the currents in the front foil during ELMy H-mode plasmas. A very thin gold or nickel foil attached to the present detector aperture is proposed as a solution to this problem, and realistic calculations of expected fluxes of lost energetic neutral beam ions during TF ripple experiments are presented as justification of this proposed solution.

  20. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  1. Advanced foil activation techniques for the measurement of within-pin distributions of the 63Cu(n,γ)64Cu reaction rate in nuclear fuel

    International Nuclear Information System (INIS)

    Macku, K.; Jatuff, F.; Murphy, M.F.; Joneja, O.P.; Bischofberger, R.; Chawla, R.

    2006-01-01

    Different foil activation techniques have been used for measuring spatial distributions of the 63 Cu(n,γ) 64 Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235 U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (∼200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63 Cu(n,γ) 64 Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly

  2. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    Science.gov (United States)

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  3. Determination of gold in natural waters by neutron activation-#betta#-spectrometry after preconcentration on activated charcoal

    International Nuclear Information System (INIS)

    Hamilton, T.W.; Ellis, J.; Florence, T.M.

    1983-01-01

    A method for the determination of gold at very low levels in waters is presented. The method involves batchwise pre-concentration of gold from 1 l of water at pH 3-4 onto 0.1 g of activated charcoal by shaking for 5 min and subsequent treatment of the activated charcoal by instrumental neutron activation-#betta#-spectrometry. Activated charcoal quantitatively adsorbs ionic and colloidal gold from solutions prepared with distilled water and also from natural surface waters spiked and equilibrated with these two forms of gold. Three ion-exchange resins were evaluated for pre-concentration purposes; ionic gold removal was quantitative but colloidal gold removal was incomplete. Electrodeposition at a carbon fibre electrode gave similar results. The charcoal pre-concentration technique was tested on solutions containing 198 Au tracer and a total gold concentration of 1 μg l - 1 . The limit of detection of total gold (ionic and colloidal) for the carbon adsorption/neutron activation-#betta#-spectrometry procedure is 0.3 ng l - 1 . The method was used to determine gold in surface waters from auriferous regions. (Auth.)

  4. Charge exchange studies with Gold ions at the Brookhaven Booster and AGS

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Hseuh, H.C.; Roser, T.

    1994-01-01

    Efficient acceleration of Gold ions to ll GeV/nucleon places strong constraints on the vacuum and also on the choice of thickness and material of the necessary stripping foils. Results of a number of detailed experimental studies performed with the Gold beam at the Brookhaven Booster and AGS to determine the relevant electron stripping and pick-up probabilities are presented. Of particular interest is the lifetime of the relatively low energy, partially stripped Gold beam in the Booster and the stripping efficiency to Helium-like AU +77 for injection into the AGS

  5. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  6. Determination of trace gold in rocks and minerals by neutron activation analysis

    International Nuclear Information System (INIS)

    Zhao Yunlong; Zhou Suqing; Liang Yutang

    1988-05-01

    The determination of trace gold in rocks and minerals by neutron activation analysis is described. Two methods are used for pre-separating and concentrating the trace gold in geological samples. one of the methods is that the samples are dissolved in aqua regia solution; activated carbon paper pulp filter is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the activated carbon containing gold was ashed at 650 ∼ 700 deg c. The other method is that the samples are dissolved in aqua regia solution; the polyurethane foam plastic filled with activated carbon is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the foam plastic containing gold was ashed at 650 deg c. The gold in ashes is determinated by neutron activation analysis. The detection limit is 0.004ng/g. The accuracy of the method is examined by gold in reference standard material. The results of this method are in good agreement with the recommended value. For analysis of the trace gold by the methods of instrumental neutron activation analysis and epithermal neutron activation analysis, the interference of 411.8 keV γ-ray from 153 Sm, 152 Eu and fission products of uranium and the correction methods are discussed

  7. Radiochemical neutron activation analysis of gold in geochemical samples

    International Nuclear Information System (INIS)

    Zilliacus, R.

    1983-01-01

    A fast method for the radiochemical neutron activation analysis of gold in geochemical samples is described. The method is intended for samples having background concentrations of gold. The method is based on the dissolution of samples with hydrofluoric acid and aqua regia followed by the dissolution of the fluorides with boric acid and hydrochloric acid. Gold is then adsorbed on activated carbon by filtrating the solution through a thin carbon layer. The activity measurements are carried out using a Ge(Li)-detector and a multichannel analyzer. The chemical yields of the separation determined by reirradiation vary between 60 and 90%. The detection limit of the method is 0.2 ng/g gold in rock samples. USGS standard rocks and exploration reference materials are analyzed and the results are presented and compared with literature data. (author)

  8. Nanodiamond-Gold Nanocomposites with the Peroxidase-Like Oxidative Catalytic Activity.

    Science.gov (United States)

    Kim, Min-Chul; Lee, Dukhee; Jeong, Seong Hoon; Lee, Sang-Yup; Kang, Eunah

    2016-12-21

    Novel nanodiamond-gold nanocomposites (NDAus) are prepared, and their oxidative catalytic activity is examined. Gold nanoparticles are deposited on carboxylated nanodiamonds (NDs) by in situ chemical reduction of gold precursor ions to produce NDAus, which exhibit catalytic activity for the oxidation of o-phenylenediamine in the presence of hydrogen peroxide similarly to a peroxidase. This remarkable catalytic activity is exhibited only by the gold nanoparticle-decorated NDs and is not observed for either Au nanoparticles or NDs separately. Kinetic oxidative catalysis studies show that NDAus exhibit a ping-pong mechanism with an activation energy of 93.3 kJ mol -1 , with the oxidation reaction rate being proportional to the substrate concentration. NDAus retain considerable activity even after several instances of reuse and are compatible with a natural enzyme, allowing the detection of xanthine using cascade catalysis. Association with gold nanoparticles makes NDs a good carbonic catalyst due to charge transfer at the metal-carbon interface and facilitated substrate adsorption. The results of this study suggest that diverse carbonic catalysts can be obtained by interfacial incorporation of various metal/inorganic substances.

  9. Chromic acid anodizing of aluminum foil

    Science.gov (United States)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  10. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    Science.gov (United States)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  11. The activation analysis of gold in small refractory pebbles

    International Nuclear Information System (INIS)

    Bibby, D.M.; Chaix, R.P.

    1975-08-01

    The gold content of a suite of small pebbles, residual to the milling and leach of a gold bearing ore, has been investigated by means of neutron activation analysis (NAA). An NAA technique presenting a sensitivity of 0.02μgm gold, was used as being appropriate to the samples under investigation. An alternative NAA technique developed with the same sample suite showed a sensitivity of the order of 10 -4 to 10 -5 μgm gold. The NAA techniques developed, are appropriate to the determination of gold in small samples of ore not normally amenable to milling and/or dissolution

  12. Size fraction assaying of gold bearing rocks (for gold extraction) by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ahmed, K.; Dampare, S.B.; Addo, M.A.; Osae, S.; Adotey, D.K.; Adomako, D.

    2005-01-01

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite sample was determined as a function of particle size by using Instrumental Neutron Activation Analysis. The concentrations of gold for the corresponding particle sizes were 16.4 ± 0.17mg/kg for sizes <63μm; 161± 0.75 mg/kg for 63 - 125 μm, 0.53 + 0.03 mg/kg for 125 - 250 μm, 4.66± 0.07 mg/kg for 250 - 355 μm, 1.55 ± 0.06 for 355 - 425 μm, 0.80 ± 0.008 mg/kg for 425 -1000 μm, and 1.27 + 0.05 mg/kg for 1000-2000 μm. The average gold content in a 7.127 kg composite sample based on particle size found to be 3.08 mg/kg. (au)

  13. Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.

    Science.gov (United States)

    Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard

    2017-06-01

    Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synthesis and catalytic activity of the metastable phase of gold phosphide

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Deshani; Nigro, Toni A.E.; Dyer, I.D. [Department of Chemistry, 107 Physical Sciences I, Oklahoma State University, Stillwater, OK 74078 (United States); Alia, Shaun M.; Pivovar, Bryan S. [Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, CO 80401 (United States); Vasquez, Yolanda, E-mail: yolanda.vasquez@okstate.edu [Department of Chemistry, 107 Physical Sciences I, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-10-15

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution

  15. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shantrokha AN

    2009-01-01

    Full Text Available Abstract The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles onEscherichia coliK12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs. Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin–gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  16. Leaching of gold from a mechanically and mechanochemically activated waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2010-03-01

    Full Text Available The intensification of leaching of gold from a waste using mechanical activation (milling in water and mechanochemical activation(milling in thiourea solution were studied as the pretreatment steps. The leaching of “as-received“ sample in an acid thiourea solutionresulted in 78 % Au dissolution, after mechanical activation 98 % and mechanochemical activation up to 99 % of the gold was leachedduring 120 min. The mechanochemical activation resulted in an increase of the specific surface area of the waste from 0.6 m2g-1to a maximum value of 20.5 m2g-1. The activation was performed in an attritor using variable milling times. The physico-chemical changesin the waste as a consequence of mechanochemical activation had a pronounced influence on the subsequent gold extraction.

  17. Epithermal neutron flux in the experimental channels of the RA reactor; Fluks epitermalnih neutrona u eksperimentalnim kanalima reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Dobrosavljevic, N [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Epithermal neutron flux was determined by measuring the cadmium ratio from activation analysis of gold and indium foils. Irradiation was done in experimental channels VK-5, VK-2, VK-7, VK-0, VK-HS next to the core, and next to the fuels elements. Activation of bare foils and foils covered by 0.8 and 1.0 mm thick cadmium foils was done simultaneously. Activity was measured by GM counter. Corrections were done for resonant neutrons self-absorption since the foils used were too thick concerning most important resonances of gold and indium. Final results were presented as spectrum factor r for their direct use in determining the effective neutron cross sections.

  18. Role of hydrogen ions in standard and activation heap leaching of gold

    Science.gov (United States)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  19. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  20. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  1. Tungsten foil laminate for structural divertor applications – Joining of tungsten foils

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Jens, E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Mrotzek, Tobias; Hoffmann, Andreas [PLANSEE SE, Reutte (Austria); Armstrong, D.E.J.; Yi, Xiaoou [University of Oxford, Department of Materials (United Kingdom)

    2013-05-15

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  2. Spallation Neutron Source SNS Diamond Stripper Foil Development

    International Nuclear Information System (INIS)

    Shaw, Robert W.; Plum, Michael A.; Wilson, Leslie L.; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I.; Takagi, A.

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 (micro)g/cm 2 foils as large as 17 x 25 mm 2 have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 (micro)C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H - ) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  3. Substoichiometric neutron activation determination of gold

    International Nuclear Information System (INIS)

    Mitchell, J.W.; Riley, J.E. Jr.; Payne, V.

    1978-01-01

    A highly precise and selective method is described for the determination of traces of gold by substoichiometric extraction from hydrochloric acid with tri-n-octylphosphine sulfide in cyclohexane following thermal neutron activation. Fundamental aspects of the extraction system are discussed and results are reported for the determination of gold in an effluent from a recovery process containing a complexed species of gold and unknown amounts of cyanide, citrate, phosphate, potassium and sodium. Other constituents of the effluent stream include traces of the transition elements Co, Ni, Fe, Cu, Zn, Pb and Sn at concentrations less than 50 ppm. One hour was allowed for the Au 3+ carrier and the 198 Au complexed species in samples and standards to oxidize, exchange, and reach chemical equilibrium. Samples were then equilibrated by shaking with the organic phase for thirty min. The percentage extractions (%E) for the substoichiometric separation of gold from the effluent and from the corresponding comparison standards were monitored. The mean percentage extractions for the substoichiometric separations of carrier from the effluent, and its corresponding standard were 75.3 and 59.3, respectively. These data are estimated to be accurate within +-2.0%. (T.G.)

  4. Low-energy foil aberration corrector

    International Nuclear Information System (INIS)

    Aken, R.H. van; Hagen, C.W.; Barth, J.E.; Kruit, P.

    2002-01-01

    A spherical and chromatic aberration corrector for electron microscopes is proposed, consisting of a thin foil sandwiched between two apertures. The electrons are retarded at the foil to almost zero energy, so that they can travel ballistically through the foil. It is shown that such a low-voltage corrector has a negative spherical aberration for not too large distances between aperture and foil, as well as a negative chromatic aberration. For various distances the third- and fifth-order spherical aberration coefficients and the first- and second-order chromatic aberration coefficients are calculated using ray tracing. Provided that the foils have sufficient electron transmission the corrector is able to correct the third-order spherical aberration and the first-order chromatic aberration of a typical low-voltage scanning electron microscope. Preliminary results show that the fifth-order spherical aberration and the second-order chromatic aberration can be kept sufficiently low

  5. Health status of cows fed maize silage covered with oxo-biodegradable foil

    Directory of Open Access Journals (Sweden)

    Piotr SZTERK

    2017-11-01

    Full Text Available In agricultural practice, silage production uses pure, low density polyethylene foil. This foil, after use, becomes farm waste, having a negative impact on the environment. Instead of conventional foil, an environmentally safe biodegradable foil can be used, made from naturally occurring polymers or from synthetic multiparticulates, easily degradable by microorganisms. Silage covered with this type of foil should be safe for animal health. The purpose of the study was to determine whether oxo-biodegradable film could be used instead of conventional film in agricultural practice, to produce silage that is safe for the cows' health. Dairy cows were fed a partly mixed ratio (PMR, the component of which was silage made of whole maize plants, covered with oxo-biodegradable foil. The cow blood serum was marked for content of: glucose, total protein, cholesterol, triacylglycerols and enzyme activity: aspartic and alanine aminotransferase, γ-glutamyl transferase, alkaline phosphatase and amylase. The total protein concentration in the serum of cows analyzed at the end of the experiment was higher than the commonly accepted normal values. The content of glucose, cholesterol, triacylglycerols and the activity of aspartate and alanine aminotransferase, γ-glutamyl transferase, alkaline phosphatase and amylase was within reference limits. Feeding of silage from whole maize plants covered withoxo-biodegradable foil did not negatively affect the biochemical indicators of the cows' blood serum. The silage proved to be safe for the cows' health.

  6. Energy extraction from a semi-passive flapping-foil turbine with active heave and passive pitch

    Science.gov (United States)

    Boudreau, Matthieu; Dumas, Guy; Gunther, Kevin; CFD Laboratory LMFN Team

    2017-11-01

    Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching motions of optimal flapping-foil turbines, several research groups are now investigating the potential of using unconstrained passive motions. The amplitude, the phase and the frequency of such free motions are thus the result of the interaction of the blade with the flow and its elastic supports, namely springs and dampers. In parallel with our current study on fully-passive flapping-foil turbines, we investigate in this work the possibility of using a semi-passive turbine. Unlike previous semi-passive turbines studied in the literature, we propose a turbine with a passive pitching motion and an active heaving motion constrained to be a sine wave with desired amplitude and frequency. As most of the energy extracted by flapping-foil turbines comes from the heaving motion, it is natural to connect an electric generator to this degree of freedom, thereby allowing one to constrain this motion. It is found that large-amplitude pitching motions leading to a considerable energy extraction can arise under different circumstances and mechanisms, either forced by the heaving motion or driven by an instability of the pitching motion itself. The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Tyler Lewis Clean Energy Research Foundation, Calcul Québec and Compute Canada.

  7. Thick-foils activation technique for neutron spectrum unfolding with the MINUIT routine-Comparison with GEANT4 simulations

    Science.gov (United States)

    Vagena, E.; Theodorou, K.; Stoulos, S.

    2018-04-01

    Neutron activation technique has been applied using a proposed set of twelve thick metal foils (Au, As, Cd, In, Ir, Er, Mn, Ni, Se, Sm, W, Zn) for off-site measurements to obtain the neutron spectrum over a wide energy range (from thermal up to a few MeV) in intense neutron-gamma mixed fields such as around medical Linacs. The unfolding procedure takes into account the activation rates measured using thirteen (n , γ) and two (n , p) reactions without imposing a guess solution-spectrum. The MINUIT minimization routine unfolds a neutron spectrum that is dominated by fast neutrons (70%) peaking at 0.3 MeV, while the thermal peak corresponds to the 15% of the total neutron fluence equal to the epithermal-resonances area. The comparison of the unfolded neutron spectrum against the simulated one with the GEANT4 Monte-Carlo code shows a reasonable agreement within the measurement uncertainties. Therefore, the proposed set of activation thick-foils could be a useful tool in order to determine low flux neutrons spectrum in intense mixed field.

  8. Study on lifetime of C stripping foils

    International Nuclear Information System (INIS)

    Zhang Hongbin; Lu Ziwei; Zhao Yongtao; Li Zhankui; Xu Hushan; Xiao Guoqing; Wang Yuyu; Zhang Ling; Li Longcai; Fang Yan

    2007-01-01

    The carbon stripping foils can be prepared with the AC and DC arc discharge methods, or even sandwiched with AC-DC alternative layers. The lifetime of the carbon stripping foils of 19 μg/cm 2 prepared with different methods and/or structures was measured. The factors affecting the bombarding lifetime of the carbon stripping foils, especially the method of the foil preparation and the structure of the carbon stripping foils, were discussed. It is observed that the foils prepared with the DC arc discharge method have a longer bombarding lifetime than those prepared with the AC arc discharge method. (authors)

  9. Moving foil stripper for a particle accelerator

    International Nuclear Information System (INIS)

    Gorka, A.J. Jr.

    1975-01-01

    Thin foils for stripping a particle beam are stored on the edge of a disk spinning in the accelerator vacuum. Cutting a foil at one edge releases the foil to project beyond the disk for insertion into the beam at a time determined by controlling the phase of the disk. A wiper removes a spent foil from the disk. The foil release and wiper are operable from a remote location. (U.S.)

  10. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sun, G. M. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected.

  11. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  12. New intensifier foils in roentgenologic diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, H K; Schulze, B

    1981-09-01

    The main components of the foils are the carrier layer and the luminescent layer, which are in direct contact through an adhesive layer. Carrier layer and adhesive layer absorb and reflect parts of the light. In order to reduce this effect, modern foils are slightly dyed, mostly in the complementary colour of the emitted light. The luminescent layer is attached to the carrier layer by means of a binder. The mean binder content of the luminescent layer is about 10% of the weight of the luminescent material. The particle or crystal range between 5 and 10 ..mu..m. The luminescent layer thickness varies between 0.1 and 0.5 mm, according to the intensification. The imposing with luminescents consequently increases from 20 up to 100 mg/cm/sup 2/. In most cases the luminescent layer is protected by a thin layer (10 to 20 ..mu..m thick) of a very resistant and well-transparent synthetic resin. A foil combination consists of a front and a rear foil, the rear foil often providing a higher degree of intensification than the front foil. Foil quality is mainly defined by the intensification factor, quality on its part is characterized by the modulation transmission function and by the particle structure of the luminescent layer. Quality indicators are also the durability of the foils and the steadiness of the crystal arrangement in the luminescent layer. The representation quality is deteriorated also by the irregular blackening of the roentgen film, resulting from the statistic fluctuations of the roentgen quantums, which are absorbed in the luminescent layer. This unfavourable feature, termed quantum noise, increases with decreasing irradiation intensity, with increasing film gradation, and with increasing sensivity of the film-foil-system. Moreover, an optimal image quality is only possible when film and foil are in good contact conditions (in the cassette).

  13. The stopping powers and energy straggling of heavy ions in polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Mikšová, R., E-mail: miksova@ujf.cas.cz [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske Mladeze 8, 400 96 Usti nad Labem (Czech Republic); Macková, A.; Malinský, P. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske Mladeze 8, 400 96 Usti nad Labem (Czech Republic); Hnatowicz, V. [Nuclear Physics Institute of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Rez (Czech Republic); Slepička, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-07-15

    The stopping power and energy straggling of {sup 7}Li, {sup 12}C and {sup 16}O ions in thin poly(etheretherketone) (PEEK), polyethylene terephthalate (PET) and polycarbonate (PC) foils were measured in the incident beam energy range of 9.4–11.8 MeV using an indirect transmission method. Ions scattered from a thin gold target at an angle of 150° were registered by a partially depleted PIPS detector, partly shielded with a polymer foil placed in front of the detector. Therefore, the signals from both direct and slowed down ions were visible in the same energy spectrum, which was evaluated by the ITAP code, developed at our laboratory. The ITAP code was employed to perform a Gaussian-fitting procedure to provide a complete analysis of each measured spectrum. The measured stopping powers were compared with the predictions obtained from the SRIM-2008 and MSTAR codes and with previous experimental data. The energy straggling data were compared with those calculated by using Bohr’s, Lindhard–Scharff and Bethe–Livingston theories.

  14. The stopping powers and energy straggling of heavy ions in polymer foils

    International Nuclear Information System (INIS)

    Mikšová, R.; Macková, A.; Malinský, P.; Hnatowicz, V.; Slepička, P.

    2014-01-01

    The stopping power and energy straggling of 7 Li, 12 C and 16 O ions in thin poly(etheretherketone) (PEEK), polyethylene terephthalate (PET) and polycarbonate (PC) foils were measured in the incident beam energy range of 9.4–11.8 MeV using an indirect transmission method. Ions scattered from a thin gold target at an angle of 150° were registered by a partially depleted PIPS detector, partly shielded with a polymer foil placed in front of the detector. Therefore, the signals from both direct and slowed down ions were visible in the same energy spectrum, which was evaluated by the ITAP code, developed at our laboratory. The ITAP code was employed to perform a Gaussian-fitting procedure to provide a complete analysis of each measured spectrum. The measured stopping powers were compared with the predictions obtained from the SRIM-2008 and MSTAR codes and with previous experimental data. The energy straggling data were compared with those calculated by using Bohr’s, Lindhard–Scharff and Bethe–Livingston theories

  15. Computational modeling of plasma-flow switched foil implosions

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1985-01-01

    A ''plasma-flow'', or ''commutator'', switch has been proposed as a means of achieving high dI/dt in a radially imploding metallic foil plasma. In this concept, an axially moving foil provides the initial coaxial gun discharge path for the prime power source and provides and ''integral'' inductive storage of magnetic energy. As the axially moving foil reaches the end of the coaxial gun, a radially imploding load foil is switched into the circuit. The authors have begun two-dimensional computer modeling of the two-foil implosion system. They use a magnetohydrodynamic (MHD) model which includes tabulated state and transport properties of the metallic foil material. Moving numerical grids are used to achieve adequate resolution of the moving foils. A variety of radiation models are used to compute the radiation generated when the imploding load foil converges on axis. These computations are attempting to examine the interaction of the switching foil with the load foil. In particular, they examine the relationship between foil placement and implosion quality

  16. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis.

    Science.gov (United States)

    Junevičius, Jonas; Žilinskas, Juozas; Česaitis, Kęstutis; Česaitienė, Gabrielė; Gleiznys, Darius; Maželienė, Žaneta

    2015-01-01

    In this study, we compared the antimicrobial activity of identical toothpastes differing only in silver or gold nanoparticles against the activity of one of the common toothpastes containing a chemical active ingredient. We also compared the active concentrations of the toothpastes. For this study, we selected "Royal Denta" toothpastes containing silver and gold particles, and the "Blend-A-Med Complete" toothpaste containing zinc citrate as the active ingredient. We used 8 standard microorganism cultures on the basis of their individual mechanisms of protection. The antimicrobial activity of each studied preparation was evaluated at 9 concentrations. Most effective against gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) was the "Silver Technology" – MIC was 0.004-0.0015 g/mL. Neither "Silver Technology" nor "Orange and Gold Technology" had any effect on Escherichia coli or Proteus mirabilis. Antimicrobial activity against the motile bacterium Proteus mirabilis was observed in "Silver Technology", "Orange and Gold Technology", and "Blend-A-Med Complete" – the MIC was 0.015 g/mL or lower. No antimicrobial activity against Candida albicans fungus at the studied concentrations was observed in the "Orange and Gold Technology". The toothpaste "Blend-A-Med" demonstrated the most effective antimicrobial activity - the MIC of 0.0015 g/mL and 0.015 g/mL inhibited Staphylococcus aureus and Enterococcus faecalis, respectively, and the MIC of 0.15 g/mL inhibited the growth of the bacteria Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, and fungus Candida albicans. Silver in toothpaste has a greater antimicrobial effect than gold, but its effect is still inferior to that of a chemical antimicrobial agent.

  17. Lifetimes of carbon foils deposited on etched substrates

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.; Bashkin, S.; Hartog, P.D.; Thomas, G.; Yntema, J.L.

    1981-01-01

    The methods currently in use for producing long-lived carbon foils are listed. The possible common factors which are important in making long lasting foils are a) making a strong, coherent, continuous layer, b) making a foil slack, loose, or baggy, and c) making a foil whose molecular structure minimizes shrinkage. The behavior of foils deposited on etched substrates is compared with foils deposited upon conventional microscope slides

  18. Development of single mask GEM foils in India

    International Nuclear Information System (INIS)

    Pant, L.M.; Mohanty, A.K.; Pinto, O.J.; Gadhadharan, S.; Menon, Pradeep; Sharma, Archana; Oliveira, Rui De; )

    2014-01-01

    There are various techniques available around the globe for making punch through holes for Micro Pattern Gas Detectors (MPGDs), such as Gas Electron Multipliers (GEMs). The GEM foils consists of 5 μm of Cu clad on both the sides of 50 μm polymide (PMMA/kapton) (5/50/5). At present these foils are developed in South Korea without having any adhesive between the Cu and polymide. The available techniques range from chemical etching, reactive plasma etching and laser etching. However, for GEM detectors, having an active area upto 5000 cm 2 , the chemical etching process using a Single Mask has been developed at CERN which is faster from the viewpoint of mass production of such foils for the upgrades which are foreseen in a couple of years with the Large Hadron Collider facility at CERN

  19. Hyaluronan-lecithin foils and their properties

    International Nuclear Information System (INIS)

    BiaIopiotrowicz, Tomasz; Janczuk, BronisIaw; Fiedorowicz, Maciej; Khachatryan, Gohar; Tomasik, Piotr; Bakos, Dusan

    2006-01-01

    Thin, elastic foils of good resistance to the air exposure, patented as wound healing aids, were prepared by evaporation of a blend of lecithin (L) and sodium hyaluronan (H) taken under varying proportions. The contact angle for water, glycerol, formamide, ethylene glycol and diiodomethane, was determined for these foils. The contact angle was correlated against the H:L foil composition. For all liquids but formamide the highest contact angle was noted for the H:L = 2:1 (g g -1 ) ratio. The contact angles provided estimation of the work of adhesion. At the same L:H ratio the work of adhesion was the lowest. It was suggested that lecithin cross-linked hyaluronan. Since the work of adhesion of the studied liquids was similar to that of diiodomethane, it could be concluded that almost all functional groups on the foil surface were completely blocked. Perhaps, at H:L = 2:1 (g g -1 ) a stoichiometric complex of hyaluronic acid with lecithin was formed, and polar functional groups from both reagents were involved. Foils seem to be electrostatic complexes of H with L. Foils with the H:L equal to 2:1 exhibited specific properties confirmed by the IR reflectance spectra of the foils. The thermogravimetry (TG/DTG) also revealed unique thermal behaviour confirming other specific properties of the foil of this composition. For the same ratio a thorough inspection of the scanning electron micrographs (SEM) revealed few irregularly distributed perforations of 1-2 μm in diameter seen as black points, which can be recognized as pores. Properties of the foils determined in the contact angle measurements are nicely backed by the results from thermogravimetric and scanning electron microscopic studies

  20. Foil changer for the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Kilborn, R.I.; Mouris, J.E.; Proulx, D.R.; Weaver, J.F.

    1985-01-01

    Capture of an injected beam in the Chalk River superconducting cyclotron requires that a carbon stripping foil be accurately placed in a dee to intercept the incoming beam. Foil radial position must be precisely adjustable and foils must be easily replaced. A foil changing apparatus has been designed, built and tested to meet these requirements. The main components are a supply magazine, a transport system, and unloading and loading mechanisms. The magazine is on top of the cyclotron. It holds 300 foils and can be isolated from machine vacuum for refilling. Each foil is mounted on a stainless steel frame. A stainless steel roller chain fitted with 33 copper sleeves (shrouds) carries foils, one per shroud, down a dee stem to the midplane. A 12-bit absolute optical shaft encoder senses foil position. To replace a foil a shroud is positioned at the top of the cyclotron, a foil is removed, and another is transferred from the magazine to the empty shroud. Three stepping motors and associated electronics provide mechanical drive and are interfaced with a CAMAC control system

  1. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Moreno-Alvarez, S. A.; Martinez-Castanon, G. A.; Nino-Martinez, N.; Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P.; Ruiz, Facundo

    2010-01-01

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  2. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  3. Gas Gain Measurement Of GEM-Foil In Argon-Carbon Dioxide Mixture

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Vuong Huu Tan; Le Hong Khiem

    2011-01-01

    Nuclear reaction measurement with radioactive beam at low energy plays an important role in nuclear astrophysics and nuclear structure. The trajectory of particle beams can be obtained by using an active gas target, multiple-sampling and tracking proportional chamber (MSTPC), as a proportional counter. Because of intensity of low energy radioactive beam, in the stellar reaction such as (α, p), (p, α), it is necessary to increase the gain for the counter. In this case, a gas electrons multiplier (GEM) foil will be used, so the proportional counter is called GEM-MSTPC. The efficient gas gain of GEM foils which relates to foil thickness and operating pressure was investigated with two type of the foils, 400 μm and 200 μm, in Argon (70%) + Carbon dioxide (30%) mixture. (author)

  4. Validation of computational methods for treatment planning of fast-neutron therapy using activation foil techniques

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Hartwell, J.K.; Harker, Y.D.; Venhuizen, J.R.; Risler, R.

    1997-12-01

    A closed-form direct method for unfolding neutron spectra from foil activation data is presented. The method is applied to measurements of the free-field neutron spectrum produced by the proton-cyclotron-based fast-neutron radiotherapy facility at the University of Washington (UW) School of Medicine. The results compare favorably with theoretical expectations based on an a-priori calculational model of the target and neutron beamline configuration of the UW facility

  5. Direct determination of thermodynamic activities of gold in the systems gold-palladium and gold-silver-palladium

    International Nuclear Information System (INIS)

    Hoehn, R.; Herzig, C.

    1986-01-01

    The thermodynamic activity of the gold component was directly measured in Au-Pd alloys in the concentration range between X Au =0.048 and 0.850 and in the temperature range 1070 and 1300 K. The ratio of the vapour pressures of pure gold and of the gold component of the alloys was determined - after effusion from a Knudsen twin cell and condensation on a collecting plate - by analysing the decay rate of the radioisotopes 195 Au and 198 Au in an intrinsic germanium well-type detector. The partial mixing enthalpy and the partial mixing entropy of Au were directly obtained from these results. By Gibbs-Duhem integration the integral mixing functions were deduced. Similar measurements were performed in several ternary Au-Ag-Pd alloys of fixed mole fraction X Ag /X Pd =1/9. A comparison of the directly measured partial free excess enthalpy of Au in these ternary alloys with data obtained by the approximate models of Kohler, Toop and Bonnier using data of the corresponding three binary systems yields satisfactory agreement. (orig.) [de

  6. Foil changer for the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Hoffmann, C.R.; Kilborn, R.I.; Mouris, J.F.; Proulx, D.R.; Weaver, J.F.

    1985-01-01

    Capture of an injected beam in the Chalk River superconducting cyclotron requires that a carbon stripping foil be accurately placed in a dee to intercept the incoming beam. Foil radial position must be precisely adjustable and foils must be easily replaced. A foil changing apparatus has been designed, built and tested to meet these requirements. The main components are a supply magazine, a transport system, and unloading and loading mechanisms. The magazine is on top of the loading mechanisms. The magazine is on top of the cyclotron. It holds 300 foils and can be isolated from machine vacuum for refilling. Each foil is mounted on a stainless steel frame. A stainless steel roller chain fitted with 33 copper sleeves (shrouds) carries foils, one per shroud, down a dee stem to the midplane. A 12-bit absolute optical shaft encoder senses foil position. To replace a foil a shroud is positioned at the top of the cyclotron, a foil is removed, and another is transferred from the magazine to the empty shroud. Three stepping motors and associated electronics provide mechanical drive and are interfaced with a CAMAC control system

  7. Measurement of thermal, epithermal and fast neutrons fluxes by the activation foil method at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Berretta, J.R.; Fratin, L.; Botelho, S.

    1990-01-01

    The thermal, epithermal and fast neutron fluxes have been determined experimentally by the activation foil method at position GI, located near the IEA-R1 reactor core. The reactions used were 197 Au (n,gamma) 198 Au, for thermal and epithermal neutrons and 27 Na (n,alpha) 24 Na, for fast neutrons. The activities were measured by the 4π(PC)β-γ coincidence method. (author)

  8. Neutron activation for logging the distribution of gold in bore-hole cores

    International Nuclear Information System (INIS)

    Rahmanian, H.; Watterson, J.I.W.

    1992-01-01

    A new method for the non-destructive determination of gold in bore-hole cores has been developed using instrumental neutron activation analysis with a 252 Cf source. The procedure obtains the distribution and concentration of gold along the longitudinal axis of the core i.e. a log of the gold concentration. The accuracy of the method is comparable to fire assay at a level of 2 ppm and has a detection limit of 1 ppm under the conditions used. The assay of the gold is carried out by employing a novel variation of the conventional comparator method using gold wires as both standard and flux monitor. A method is described for logging gold in bore-hole cores using neutron activation with a 160 μg 252 Cf neutron source. The method has a limit of detection of about 1 ppm under the described conditions. (author)

  9. Design of large size segmented GEM foils and Drift PCB for CBM MUCH

    International Nuclear Information System (INIS)

    Saini, J.; Dubey, A.K.; Chattopadhyay, S.

    2016-01-01

    Triple GEM (Gas Electron Multiplier), sector shaped detectors will be used for Muon tracking in the Compressed Baryonic Matter (CBM) experiment at Anti-proton Ion Research (FAIR) facility at Darmstadt, Germany. The sizes of the detectors modules in the Muon Chambers (MUCH) are of the order of 1 meter with active area of about 75cms. Progressive pad geometry is chosen for the readout from these detectors. In construction of these chambers, three GEM foils are stacked on top of each other in a 3/2/2/2 gap configuration. The GEM foils are double layered copper clad 50μm thin Kapton foil. Each GEM foil has millions of holes on it. Foils of large surface area are prone to damages due to discharges owing to the high capacitance of the foil. Hence, these foils have their top surfaces divided into segments of about 100 sq.cm. Further segmentation may be necessary when there are high rate requirements, as in the case of CBM. For the GEM foils of CBM MUCH, a 24 segment layout has been adopted. Short-circuit in any of the GEM-holes will make entire foil un-usable. To reduce such occurrences, segment to segment isolation using opto-coupler in series with the GEM-foil segments has been introduced. Hence, a novel design for GEM chamber drift-PCB and foils has been made. In this scheme, each segment is powered and controlled individually. At the same time, the design takes into account, the space constraints, not only in x-y plane, but also in the z, due to compact assembly of MUCH detector layers

  10. Activation analysis of gold in geological samples (Paper No. RA-24)

    International Nuclear Information System (INIS)

    Das, N.R.; Bhattacharyya, S.N.

    1990-02-01

    The technique of neutron activation analysis (NAA) has been applied to study the distribution of gold in some geological samples. Traces of gold in the samples were preconcentrated in a solid matrix through a chemical procedure involving solvent extraction using MIBK and coprecipitation with PbS. Gold contents in the samples as determined by NAA vary from ppb to ppm levels. (author)

  11. INJECTION CARBON STRIPPING FOIL ISSUES IN THE SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.; LEE, Y.Y.; RAPARIA, D.; WEI, J.

    2001-01-01

    We are reporting the results of studies on issues related to the injection stripping foil in the Spallation Neutron Source (SNS) accumulator ring. The problems related to foil heating and foil lifetime, such as current density distribution and temperature distribution in the foil, are investigated. The impact of injection errors on the beam losses at the foil is studied. The particle traversal rate and the beam losses due to scattering in the foil are summarized. Finally, SNS end-to-end simulation results of the foil-missing rate, the foil-hitting rate and the maximum foil temperature are presented

  12. Characterization of beryllium foil produced by hot rolling

    International Nuclear Information System (INIS)

    Wittenauer, J.; Nieh, T.G.; Waychunas, G.

    1992-01-01

    Beryllium foil is important for a number of aerospace applications including honeycomb structures and metal-matrix composites. In this study, a method of producing beryllium foil directly from powder or flake is demonstrated. A variety of foils were produced in the thickness range 90-300 μm, free from defects such as pinholes and excessive surface roughness, and exhibiting sufficient formability for honeycomb manufacture. Foil produced directly from powder or flake exhibits crystallographic texture, microstructure, and formability equivalent to foil produced from more massive precursors. (Author)

  13. Monitoring the degradation of partly decomposable plastic foils

    Directory of Open Access Journals (Sweden)

    Rétháti Gabriella

    2014-11-01

    Full Text Available We have monitored the behaviour of different polyethylene foils including virgin medium density polyethylene (MDPE, MDPE containing pro-oxydative additives (238, 242 and MDPE with pro-oxydative additives and thermoplastic starch (297 in the soil for a period of one year. A foil based on a blend of polyester and polylactic acid (BASF Ecovio served as degradable control. The experiment was carried out by weekly measurements of conductivity and capacity of the soil, since the setup was analogous to a condenser, of which the insulating layer was the foil itself. The twelve replications allowed monthly sampling; the specimen taken out from the soil each month were tested visually for thickness, mechanical properties, morphological and structural changes, and molecular mass. Based on the obtained capacity values, we found that among the polyethylene foils, the one that contained thermoplastic starch extenuated the most. This foil had the greatest decrease in tensile strength and elongation at break due to the presence of thermoplastic starch. The starch can completely degrade in the soil; thus, the foil had cracks and pores. The polyethylene foils that contained pro-oxydant additives showed smaller external change compared to the virgin foil, since there was no available UV radiation and oxygen for their degradation. The smallest change occurred in the virgin polyethylene foil. Among the five examined samples, the commercially available BASF foil showed the largest extenuation and external change, and it deteriorated the most in the soil.

  14. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles.

    Science.gov (United States)

    Ahmad, Tokeer; Wani, Irshad A; Manzoor, Nikhat; Ahmed, Jahangeer; Asiri, Abdullah M

    2013-07-01

    An eco friendly simple biosynthetic route was used for the preparation of monodisperse and highly crystalline gold and silver nanoparticles using cell free extract of fungus, Candida albicans. Transmission electron microscopic studies show the formation of gold and silver nanocrystals of average size of 5 nm and 30 nm with the specific surface areas of 18.9 m(2)/g and 184.4 m(2)/g respectively. The interaction of gold and silver nanoparticles with proteins has been formulated by FT-IR spectroscopy and thermal gravimetric analysis. The formation of gold and silver nanoparticles was also confirmed by the appearance of a surface plasmon band at 540 nm and 450 nm respectively. The antimicrobial activity of the synthesized gold and silver nanoparticles was investigated against both Staphylococcus aureus and Escherichia coli. The results suggest that these nanoparticles can be used as effective growth inhibitors against the test microorganisms. Greater bactericidal activity was observed for silver nanoparticles. The E. coli, a gram negative bacterium was found to be more susceptible to gold and silver nanoparticles than the S. aureus, a gram positive bacterium. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Particle velocity measurements in laser irradiated foils using ORVIS

    International Nuclear Information System (INIS)

    Sheffield, S.A.; Fisk, G.A.

    1983-01-01

    Aluminum foils from 2- to 200-μm thick have been subjected to a Nd:YAG laser pulse of low irradiance (10 9 W/cm 2 , approx. 10 ns pulse) to produce laser-driven shocks in the foils. The particle velocity history of the foil side opposite the laser deposition was monitored with nanosecond resolution by a velocity interferometer system called ORVIS. These histories indicate a shock reverberation process accelerates the foil. Peak foil velocities can be adequately calculated using a ricket propulsion model developed from experiments at much higher irradiances. A velocity of 1 km/s was developed in a 2-μm-thick free foil in a time of 50 ns. Water-confined foils attained peak particle velocities about three times higher than those of free foils

  16. Collodion-reinforcement and plasma-cleaning of target foils

    Science.gov (United States)

    Stoner, John O.

    2002-03-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed.

  17. Collodion-reinforcement and plasma-cleaning of target foils

    International Nuclear Information System (INIS)

    Stoner, John O.

    2002-01-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed

  18. Correction Factor Analysis Of Foil Activation And The Effect Of Neglecting The Correction On Neutron Flux And Spectrum Measurement; ANALISIS FAKTOR KOREKSI KEPING AKTIVASI DAN PENGARUH PENGABAIANNYA PADA PENGUKURAN FLUKS DAN SPEKTRUM NEUTRON

    Energy Technology Data Exchange (ETDEWEB)

    Radiyanti, Ita Budi; Hamzah, Amir; Pinem, Surian [Multipurpose Reactor Centre Indonesia, Serpong, (Indonesia)

    1996-04-15

    Foil activation method is commonly used in flux and neutron spectrum measurement in nuclear reactor and other research. The effect of the thickness, type of foil material and neutron spectrum shape on the self shielding correction and activities correction on the edges of the foil have been analyzed. Also the effect of neglecting those correction factors on neutron flux and spectrum measurement were analyzed. The calculation of the correction factor has been done by using the program which had been verified for several foils. The foils used are Au, In. Cu, Co and Dy of 0.00254 cm -0.127 cm thickness and 1.27 cm diameter. The result showed that the correction factor foils were not similar due to the variation of activation cross section and neutron spectrum shape. For the neutron spectrum in RS-2 multi purpose reactor GAS using foils of 0.00254 cm thick. The effect of neglecting correction factor on thermal flux measurement for Au, In, Co and Cu were less than -6%, for Dy was about -25%. On epithermal flux measurement for Au and In were about -60%, Co and Dy was -12% and -6%, for Cu less than -2%. The effect of neglecting correction factor on spectrum measurement was the change on the neutron flux density values along neutron energy region.

  19. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  20. Radiation lifetimes and failure mechanisms of carbon stripper foils

    International Nuclear Information System (INIS)

    Auble, R.L.

    1981-01-01

    Measurements of lifetimes of thin carbon foils under heavy-ion irradiation are compiled and recent advances in stripper foil technology are reviewed. The impact of recent foil lifetime improvements, many by more than an order of magnitude, on heavy-ion electrostatic accelerators is discussed. Foil inhomogeneities, particularly those caused by sputtering are suggested to be a prime factor in usable foil lifetimes

  1. Mechanism of adsorption of gold and silver species on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.F.; Steele, C.J.; Hayward, I.P.; Thomas, K.M. [University of Newcastle-upon-Tyne, Newcastle-upon-Tyne (United Kingdom). Northern Carbon Research Labs., Dept. of Chemistry

    1998-12-31

    The adsorption characteristics of gold and silver cyanide anionic species on a suite of active carbons derived from coal, coconut shell and polyacrylonitrile was investigated. The gold and silver cyanide adsorption capacities for both coconut shell and coal derived carbons correlated with total pore volume. Nitric acid treatment of the carbon was detrimental to gold adsorption in spite of the incorporation of oxygen into the carbon through oxidation. The influence of nitrogen functional groups in the carbon structure on gold and silver adsorption was investigated using carbons with very high nitrogen contents derived from polyacrylonitrile.

  2. Dissolution ad uptake of cadmium from dental gold solder alloy implants

    International Nuclear Information System (INIS)

    Bergman, B.; Bergman, M.; Soeremark, R.

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium ( 115 Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of 115 Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver. (author)

  3. Dissolution and uptake of cadmium from dental gold solder alloy implants

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, B; Bergman, M; Soeremark, R [Umeaa Univ. (Sweden); Karolinska Institutet, Stockholm (Sweden))

    1977-01-01

    Pure metallic cadmium was irradiated by means of thermal neutrons. The irradiated cadmium (/sup 115/Cd) was placed in bags of gold foil and the bags were implanted subcutaneously in the neck region of mice. Two and 3 d respectively after implantation the mice were killed, the bags removed and the animals subjected to whole-body autoradiography. The autoradiograms revealed an uptake of /sup 115/Cd in liver and kidney. In another experiment specimens of a cadmium-containing dental gold solder alloy, a cadmium-free dental casting gold alloy and soldered assemblies made of these two alloys were implanted subcutaneously in the neck region of mice. The animals were killed after 6 months; cadmium analysis showed significant increases in the cadmium concentration in liver and kidney of those mice which had been given implants of gold solder alloy. The study clearly shows that due to electrochemical corrosion cadmium can be released from implants and accumulated in the kidneys and the liver.

  4. Fusion welding of thin metal foils

    International Nuclear Information System (INIS)

    Casey, H.

    1975-01-01

    Aspects of fusion welding of thin metal foils are reviewed and the current techniques employed at LASL to join foils are described. Techniques for fusion welding approximately 0.025-mm-thick foils of copper, aluminum, and stainless steels have been developed using both electron beam and laser welding equipment. These techniques, together with the related aspects of joint design, tooling and fixturing, joint preparation, and modifications to the commercially available welding equipment, are included in the review. (auth)

  5. Densities of carbon foils

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.

    1991-01-01

    The densities of arc-evaporated carbon target foils have been measured by several methods. The density depends upon the method used to measure it; for the same surface density, values obtained by different measurement techniques may differ by fifty percent or more. The most reliable density measurements are by flotation, yielding a density of 2.01±0.03 g cm -3 , and interferometric step height with the surface density known from auxiliary measurements, yielding a density of 2.61±0.4 g cm -3 . The difference between these density values mayy be due in part to the compressive stresses that carbon films have while still on their substrates, uncertainties in the optical calibration of surface densities of carbon foils, and systematic errors in step-height measurements. Mechanical thickness measurements by micrometer caliper are unreliable due to nonplanarity of these foils. (orig.)

  6. Characterization of U-Mo Foils for AFIP-7

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  7. An investigation of the impurities in native gold by neutron-activation analysis

    International Nuclear Information System (INIS)

    Erasmus, C.S.; Sellschop, J.P.F.; Hallbauer, D.K.; Novak, E.

    1980-01-01

    Instrumental and radiochemical methods of neutron-activation analysis, developed for the determination of major, minor, and trace impurities in native gold, are described. The gold was obtained from Witwatersrand reefs and from deposits in the Barberton area. It was extracted by decomposition of the ore in cold hydrofluoric acid. Quantitative results are presented for 14 elements found in native gold, and the significance of these elements in relation to the distribution of gold is discussed. The results suggest that there are geochemical differences in native gold from various reefs and deposits

  8. Numerical and experimental investigation of bump foil mechanical behaviour

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2014-01-01

    Corrugated foils are utilized in air foil bearings to introduce compliance and damping thus accurate mathematical predictions are important. A corrugated foil behaviour is investigated experimentally as well as theoretically. The experimental investigation is performed by compressing the foil...

  9. FOIL ELEMENT FOR NUCLEAR REACTOR

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.; Spinrad, B.I.

    1963-07-16

    A method of making a foil-type fuel element is described. A foil of fuel metal is perforated in; regular design and sheets of cladding metal are placed on both sides. The cladding metal sheets are then spot-welded to each other through the perforations, and the edges sealed. (AEC)

  10. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    Science.gov (United States)

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Nuclear target foil fabrication for the Romano Event

    International Nuclear Information System (INIS)

    Weed, J.W.; Romo, J.G. Jr.; Griggs, G.E.

    1984-01-01

    The Vacuum Processes Lab, of LLNL's M.E. Dept. - Material Fabrication Division, was requested to provide 250 coated Parylene target foils for a nuclear physics experiment titled the ROMANO Event. Due to the developmental nature of some of the fabrication procedures, approximately 400 coated foils were produced to satisfy the event's needs. The foils were used in the experiment as subkilovolt x-ray, narrow band pass filters, and wide band ultraviolet filters. This paper is divided into three sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, and (3) foil and substrate inspections

  12. The effect of the oxygen dissolved in the adsorption of gold in activated carbon

    International Nuclear Information System (INIS)

    Navarro, P.; Wilkomirsky, I.

    1999-01-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs

  13. Technical Development Path for Gas Foil Bearings

    Science.gov (United States)

    Dellacorte, Christopher

    2016-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  14. Neutron activation determination of gold in technogenic raw materials with different mineral composition

    Directory of Open Access Journals (Sweden)

    Yudakov Aleksandr A.

    2015-01-01

    Full Text Available The methods used to determine the gold content in the technogenic objects of gold mining were analyzed regarding their non-homogeneity and complexity of chemical and mineral compositions. A possible application of the neutron activation analysis with the use of the californium source of neutrons for determining the content of fine-grained and extra-fine-grained gold in the technogenic objects, including the bottom-ash waste of energy providers, is considered. It was demonstrated that the chemical composition of the sample affects the neuron flux distribution in the sample, which can essentially distort the results of the neutron activation analysis. In order to eliminate possible systematic errors investigations of the effect of the sample mineral composition on the results of the gold determination using the neutron activation analysis were carried out. Namely, a large mass of rock (3-5 kg was loaded into an activation zone using four matrix types such as silicate, carbon-containing, iron-containing, and titanium magnetite. It was shown that there wereno significant difference between the dispersal of the fluxes of thermal and resonance neutrons emitted from 252Cf during activation of the gold-containing technogenic samples with different mineral compositions.

  15. Determination of gold of No. 501 uranium deposits and soil samples by cold leaching gold in dilute aqua regia and collection on activated charcoal

    International Nuclear Information System (INIS)

    Shen Maogen; Yao Liying.

    1989-01-01

    The gold determination method is described by cold leaching gold in dilute aqua regia and collection on activated charcoal and presents the results obtained in determining gold of uranium deposits and soil samples

  16. Electrolysis of Gold from Filtration Waste by Means of Mechanical Activation

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2012-12-01

    Full Text Available The intensification of the gold thiourea leaching from a filtration waste (Košice, Slovakia using mechanical activationas the pretreatment step has been studied. The leaching of “as-received“ sample in an acid thiourea solution resulted in 65 % Audissolution. However, after mechanical activation in a planetary mill 99 % of the gold was leached. The optimum redox potential forelectrolysis is in the range 500-523 mV for the gold extraction 99.79 % from the mechanically activated sample. The mechanicalactivation resulted in an increase of the specific surface area of the waste from 0.7 m2g-1 to a maximum value of 13.5 m2g-1. The physicochemicalchanges in the filtration waste as a consequence of mechanical activation had a pronounced influence on the subsequent goldextraction.

  17. Characterization of laser-cut copper foil X-pinches

    Science.gov (United States)

    Collins, G. W.; Valenzuela, J. C.; Hansen, S. B.; Wei, M. S.; Reed, C. T.; Forsman, A. C.; Beg, F. N.

    2016-10-01

    Quantitative data analyses of laser-cut Cu foil X-pinch experiments on the 150 ns quarter-period, ˜250 kA GenASIS driver are presented. Three different foil designs are tested to determine the effects of initial structure on pinch outcome. Foil X-pinch data are also presented alongside the results from wire X-pinches with comparable mass. The X-ray flux and temporal profile of the emission from foil X-pinches differed significantly from that of wire X-pinches, with all emission from the foil X-pinches confined to a ˜3 ns period as opposed to the delayed, long-lasting electron beam emission common in wire X-pinches. Spectroscopic data show K-shell as well as significant L-shell emission from both foil and wire X-pinches. Fits to synthetic spectra using the SCRAM code suggest that pinching foil X's produced a ˜1 keV, ne ≥ 1023 cm-3 plasma. The spectral data combined with the improved reliability of the source timing, flux, and location indicate that foil X-pinches generate a reproducible, K-shell point-projection radiography source that can be easily modified and tailored to suit backlighting needs across a variety of applications.

  18. Effects of biodegradation and mechanical activation on gold recovery by thiourea leaching

    Science.gov (United States)

    Kušnierová, Mária; Šepelák, Vladimír; Briančin, Jaroslav

    1993-12-01

    The work reported here shows the positive influence of the biodegradation of the crystal lattice of sulfides on the thiourea leaching of gold from an arsenopyrite-pyrite concentrate. Physical processing of the original as well as of the biologically processed concentrate favorably influenced gold recovery. Mechanical activation appears to be unimportant for gold extraction from the investigated concentrate.

  19. Determination of gold in lump by the gamma-activation analysis method

    International Nuclear Information System (INIS)

    Yantsen, V.A.; Ermakov, K.S.

    2006-01-01

    Full text: In the report the installation is described used in the Central gamma-activation analysis laboratory (CGAAL) for express quantitative determination of gold concentration in large powdered samples. The method of gold contents determination for non-crushed samples (pieces up to 100 mm). The given gamma-activation analysis method is widely used in mining industry, and at researches related with selection of optimal technological circuits designed for sorting the pieces of ore and rock materials. By developing this method it is now possible to create the technological collection of separated pieces by size, large by the amount of samples, imitating various sorts (by gold concentration in them) and types (by elemental composition) ores, and, based on these collection, to compare the efficiencies of various enrichment methods by knowing in advance the concentrations of gold in these lumps being the final sorting products. The Gamma-activation analysis method of large pieces is mainly used as foundation for the x-ray radiometric (XRR) method of pieces separation of gold-bearing ores from the deposits mined by the Navoi mining combine. It allows significant increase in the rate of research and development works on selection of the most reliable separation characteristics. Based on these one can develop optimal technological circuits for ore enrichment with portion sorting methods. (author)

  20. Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology

    International Nuclear Information System (INIS)

    Assmann, Walter; Becker, Ricarda; Otto, Henrike

    2013-01-01

    For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting 32 P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of 32 P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the 32 P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of 32 P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated 32 P-foils could extend essentially the application possibilities of LDR-brachytherapy. (orig.)

  1. Determination of gold and platinum in biological materials by radiochemical neutron activation analysis using electrolytic separation of gold

    International Nuclear Information System (INIS)

    Reitz, B.; Heydorn, K.

    1993-01-01

    A new method is presented for the determination of Au and Pt in biological materials based on neutron activation analysis with radiochemical separation of gold. Separation of gold by electrolytic deposition on a niobium cathode ascertains thee highest radiochemical purity without any interference from calcium or other major elements. With 199 Au as indicator for platinum the gold content of the sample not only strongly affects the limit of detection, but also causes interference by double neutron capture. Replicate analyses of BCR Certified Reference Materials No. 184, 185 and 186 were carried out. (author) 18 refs.; 3 figs.; 2 tabs

  2. Carbon stripper foils held in place with carbon fibers

    International Nuclear Information System (INIS)

    Jolivet, Connie S.; Miller, Shawn A.; Stoner, John O.; Ladd, Peter

    2008-01-01

    The Spallation Neutron Source (SNS) currently under construction at Oak Ridge National Laboratory, Oak Ridge, Tennessee, is planned to initially utilize carbon stripper foils having areal densities approximately 260 μg/cm 2 . The projected design requires that each foil be supported by only one fixed edge. For stability of the foil, additional support is to be provided by carbon fibers. The feasibility of manufacturing and shipping such mounted carbon foils produced by arc evaporation was studied using two prototypes. Production of the foils is described. Fibers were chosen for satisfactory mechanical strength consistent with minimal interference with the SNS beam. Mounting of the fibers, and packaging of the assemblies for shipping are described. Ten completed assemblies were shipped to SNS for further testing. Preliminary evaluation of the survivability of the foils in the SNS foil changer is described

  3. Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Mir Ghasem, E-mail: mg-hosseini@tabrizu.ac.ir; Faraji, Masoud; Momeni, Mohamad Mohsen

    2011-03-31

    Au/TiO{sub 2}/Ti electrodes have been prepared by galvanic deposition of gold particles on TiO{sub 2} nanotube substrates. Titanium oxide nanotubes are fabricated by anodizing titanium foil in a Dimethyl Sulfoxide electrolyte containing fluoride. The scanning electron microscopy results indicated that gold particles are homogeneously deposited on the surface of TiO{sub 2} nanotubes. The TiO{sub 2} layers consist of individual tubes of about 40-80 nm diameters. The electro-catalytic behavior of Au/TiO{sub 2}/Ti and flat gold electrodes for the ascorbic acid electro-oxidation was studied by cyclic voltammetry. The results showed that the flat gold electrode is not suitable for the oxidation of ascorbic acid. However, the Au/TiO{sub 2}/Ti electrodes are shown to possess catalytic activity toward the oxidation reaction. Catalytic oxidation peak current showed a linear dependence on the ascorbic acid concentration and a linear calibration curve is obtained in the concentration range of 1-5 mM of ascorbic acid. Also, determination of ascorbic acid in real samples was evaluated. The obtained results were found to be satisfactory. Finally the effects of interference on the detection of ascorbic acid were investigated.

  4. Prism foil from an LCD monitor as a tool for teaching introductory optics

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and image formation in a nontrivial way and are therefore particularly useful for active learning strategies.

  5. Prism foil from an LCD monitor as a tool for teaching introductory optics

    Energy Technology Data Exchange (ETDEWEB)

    Planinsic, Gorazd; Gojkosek, Mihael, E-mail: gorazd.planinsic@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19 (Slovenia)

    2011-03-15

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and image formation in a nontrivial way and are therefore particularly useful for active learning strategies.

  6. Determination of platinum and gold in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Taskaev, E.; Grigorov, T.

    1988-01-01

    A procedure for platinum and gold determination utilizing neutron activation combined with radiochemical separation was developed. The reaction 198 Pt (n, γ) 199 Pt undergoing β decay into 199 Au is used for Pt determination. Four procedures for gold separation are examined: adsorption on untreated polyurethane foam (UPF), extraction with dibutyl sulphide, reduction of gold to elementary state in conc. H 2 SO 4 , and extraction of gold as diethyl-dithiocarbamate complex. The extraction with Cu(DDC) 2 is chosen as the most suitable process and applied to platinum and gold determinations in Bowen's Kale and mice organs, previously treated with Biocisplatinum specimens. (author) 12 refs.; 5 figs

  7. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  8. Properties of polymer foils used as solid-state track detectors

    International Nuclear Information System (INIS)

    Spurny, F.

    1973-05-01

    Polymer foils were studied with a view to their application as solid-state alpha track detectors. The detection efficiency was determined as was its alpha energy dependence and the quality of the surface and the natural background of the foils were evaluated. The kinetics of etching was studied in three selected type of foils. Characteristic constants for the selected foils and methods of etching were calculated. The possible applications of the foils as track detectors are discussed and the effect is dealt with of the selected foil and of the method of chemical etching on the foil applicability in nuclear sciences, especially in fast neutron dosimetry and in alpha spectrometry. (author)

  9. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  10. Determination of gold and indium in sea water by neutron activation analysis

    International Nuclear Information System (INIS)

    Tateno, Yukio; Ohta, Naoichi

    1979-01-01

    A combination of electrodeposition on graphite with neutron activation analysis was used for the determination of gold and indium in sea water. At a potential of -0.70 V vs. the silver-silver chloride electrode, gold and indium were electrolyzed on to a graphite electrode (1.1 cm phi x 0.2 cm) from 100 ml of 0.5 M sodium chloride. Recovery yield of gold was constant at pH from 1 to 3 and was independent of the initial concentration of gold, (0.01 -- 1) ppb. For a 72-h electrolysis at pH 2 the recovery yield of gold was 92%, while that of indium was 32%. The graphite electrode was exposed to a thermal neutron flux of 5.1 x 10 11 or 1.5 x 10 12 n cm -2 s -1 : 5 min exposure for indium and 6 to 12 h for gold. After appropriate decay periods the activities of 198 Au and sup(116m)In were measured for 2000 s and 300 s, respectively, with a 4000-channel pulse-height analyser and a Ge(Li) detector. The total amount of gold in 1 l of a sea water sample (Tokyo Bay) was (0.023 +- 0.001)μg, in which nonelectrolyzable gold was estimated to be 0.005 μg. Indium concentration in the sample was too low to be determined by the present method. Detection limit for indium was 1 ppb. (author)

  11. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-15

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  12. Antimicrobial activities of CuO films deposited on Cu foils by solution chemistry

    International Nuclear Information System (INIS)

    Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2013-01-01

    Monoclinic CuO thin films on Cu foils were successfully synthesized by a simple wet chemical method in alkaline solution with the pH of 13 at room temperature for different lengths of time. The as-synthesized thin films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Formation mechanism of the phase and morphologies was also discussed according to the experimental results. In this research, assemblies of pure CuO nanospindles with different orientations containing in the thin film synthesized for 2 weeks with 400 nm and 413 nm violet emissions showed better antimicrobial activity against S. aureus than E. coli.

  13. Design considerations for foil windows for PET radioisotope targets

    International Nuclear Information System (INIS)

    Hughey, B.J.; Shefer, R.E.; Klinkowstein, R.E.; Welch, M.J.

    1992-01-01

    This paper describes the results of a study performed at SRL to develop analytical and computational techniques for optimizing the design of conduction-cooled foil windows for PET targets. Single foil conduction cooled windows have been found to be good target entrance windows for both low energy accelerators and medium energy cyclotrons. Detailed thermal analysis has given an approximate analytical expression for the maximum temperature reached in a foil window under conditions of realistic ion beam bombardment. The effects of 'hot spots' in the beam density profile were investigated. It was shown that a factor of two safety margin in window design should be adequate to compensate for any possible beam hot spots. In addition, the reduction of foil stress by slack mounting was verified by experiments. The properties of conventional and novel foil materials were investigated for use in conduction cooled windows. Novel foil materials include two-component Al/Ti and Al/Havar foil. Results on the testing of candidate foil materials for thermal conductivity and mechanical strength at elevated temperature were presented. Two optimum foil window geometries were analyzed: a high aspect ratio window and a multiply slotted window. The multiply slotted window combines the advantages of a high aspect ratio foil window with a circular beam strike and is a promising window design for both TCA and cyclotron targets. A multiply slotted window for a N 2 gas target for 15 O production was designed using the methodologies discussed above. This prototype target was successfully tested using the TCA beam at SRL. (author) 6 figs., 3 tabs., 10 refs

  14. [Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology].

    Science.gov (United States)

    Assmann, Walter; Becker, Ricarda; Otto, Henrike; Bader, Markus; Clemente, Lucas; Reinhardt, Sabine; Schäfer, Claus; Schirra, Jörg; Uschold, Stephanie; Welzmüller, Andreas; Sroka, Ronald

    2013-02-01

    For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting (32)P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of (32)P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the (32)P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of (32)P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated (32)P-foils could extend essentially the application possibilities of LDR-brachytherapy. Copyright © 2012. Published by Elsevier GmbH.

  15. Stripping foils for the PSB H- injection system

    CERN Document Server

    Aiba, M; Goddard, B; Weterings, W

    2009-01-01

    Beam physics considerations for the stripping foil of the PSB H- injection system are described, including the arguments for the foil type, thickness, geometry and positioning. The foil performance considerations are described, including expected stripping efficiency, emittance growth, energy straggling, temperature and lifetime. The required movement ranges and tolerances are detailed, together with the assumptions used.

  16. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  17. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    Science.gov (United States)

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  18. Triblock copolymer-mediated synthesis of catalytically active gold nanostructures

    Science.gov (United States)

    Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine

    2018-04-01

    The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.

  19. Recovery of gold from solutions with ammonia and thiosulfate using activated carbon

    OpenAIRE

    Vargas, C.; Navarro, Patricio; Araya, Eyleen; Pávez, F.; Alguacil, Francisco José

    2006-01-01

    The recovery of gold from solutions containing thiosulfate and ammonia using granular activated carbon was studied, evaluating the adsorption and elution stages. The influence of ammonia and thiosulfate concentration and the presence of impurities such as copper and zinc were also evaluated. In the presence of ammonia there was a concentration which maximized the adsorption of gold, while thiosulfate and impurities presence was harmful for the adsorption of gold. During elution, ammonia and t...

  20. Capillary self-alignment of mesoscopic foil components for sensor-systems-in-foil

    International Nuclear Information System (INIS)

    Arutinov, Gari; Smits, Edsger C P; Van Heck, Gert; Van den Brand, Jeroen; Schoo, Herman F M; Mastrangeli, Massimo; Dietzel, Andreas

    2012-01-01

    This paper reports on the effective use of capillary self-alignment for low-cost and time-efficient assembly of heterogeneous foil components into a smart electronic identification label. Particularly, we demonstrate the accurate (better than 50 µm) alignment of cm-sized functional foil dies. We investigated the role played by the assembly liquid, by the size and the weight of assembling dies and by their initial offsets in the self-alignment performance. It was shown that there is a definite range of initial offsets allowing dies to align with high accuracy and within approximately the same time window, irrespective of their initial offset. (paper)

  1. Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity.

    Science.gov (United States)

    Pagno, Carlos H; Costa, Tania M H; de Menezes, Eliana W; Benvenutti, Edilson V; Hertz, Plinho F; Matte, Carla R; Tosati, Juliano V; Monteiro, Alcilene R; Rios, Alessandro O; Flôres, Simone H

    2015-04-15

    Active biofilms of quinoa (Chenopodium quinoa, W.) starch were prepared by incorporating gold nanoparticles stabilised by an ionic silsesquioxane that contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group. The biofilms were characterised and their antimicrobial activity was evaluated against Escherichiacoli and Staphylococcusaureus. The presence of gold nanoparticles produces an improvement in the mechanical, optical and morphological properties, maintaining the thermal and barrier properties unchanged when compared to the standard biofilm. The active biofilms exhibited strong antibacterial activity against food-borne pathogens with inhibition percentages of 99% against E. coli and 98% against S. aureus. These quinoa starch biofilms containing gold nanoparticles are very promising to be used as active food packaging for the maintenance of food safety and extension of the shelf life of packaged foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Elnaz Shaabani

    2017-04-01

    Full Text Available Objective(s: Biological applications of gold nanoparticles have limitations because of the toxic chemicals used in their synthesis. Curcumin can be used as reducing as well as capping agent in synthesis of GNPs to eliminate the cytotoxicity. Conjugation of curcumin to gold also helps in increasing its solubility and bioavailability. Materials and Methods: Here we report synthesis of gold nanoparticles coated with citrate and curcumin and of two different sizes via chemical routes. UV-Vis absorbance spectroscopy, Dynamic Light Scattering and Transmission Electron Microscopy were applied to study the average particle size, size stability of the samples and zeta potential. Fourier transform infrared, Raman Spectroscopy and Fluorescence Spectroscopy were applied for detection of curcumin on the surface of GNPs. The antioxidant activity was evaluated using DPPH assay and Cytotoxicity was evaluated by MTT assay.Results: Particles were synthesized of 6 and 16 nm size. The average particle size was found to be 21.7 ± 5.7 by TEM. The zeta potential on the surface of Cur-GNPs was negative and larger than 25 mV which is a sign of their high stability. The stability of these particles (with different coatings but with similar sizes at different time intervals (up to 3 months and also in different media like cell culture medium, different buffers, glucose and at different pH conditions have been investigated thoroughly. Appearance of functional groups assigned to curcumin in FTIR and SERS spectra are sign of presence of curcumin in the sample. The quenching of the fluorescence in the presence of GNPs reveals the clear indication of the capping and binding of curcumin with GNPs. Cur-GNP1 (16 nm were found to exhibit highest antioxidant activity than other gold nanoparticles. Cytotoxicity evaluation using MTT assay on L929 cell line proved curcumin coated gold nanoparticles were non-toxic up to 40 ppm.Conclusion: The results revealed that larger curcumin

  3. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Bashkin, S.

    1975-01-01

    The application of a heavy-ion accelerator to research in beam-foil spectroscopy requires certain capital equipment which is somewhat unorthodox when viewed from the standpoint of conventional, low-energy nuclear physics. It is necessary that people who wish to expand their accelerator work to include beam-foil studies understand the nature and cost of such major apparatus. We will survey the equipment needs, starting with the particle analyzer at the output of the accelerator and including the equipment used in a variety of beam-foil experiments. Electronic and computer devices will not be discussed since they are essentially identical with those employed in nuclear studies. Considerable attention will be given to optical spectrometers and spectographs including simple instruments which might be used by a laboratory just getting started in beam-foil research, or which has limited financial resources. Attention will be given to the production and use of the exciter foils. We will then discuss some typical beam-foil experiments having to do with the excitation, detection, and analysis of spectral lines from electronic levels in multiply-ionized atoms, and also with the measurement of the mean lives of such levels. Finally, we will review some of the special properties of the beam-foil light source as regards the population of the magnetic sub-states of a given level. Recent work on the character of the emitted light will be presented. That work will deal specifically with the origin of the polarization of the light. The relevant experiments involve varying the angle between the plane of the exciter foil and the particle velocity. (author)

  4. Some observations on the carburization of type 316 stainless steel foil in a low carbon activity sodium environment

    International Nuclear Information System (INIS)

    Thorley, A.W.; Jeffcoat, P.J.

    1982-01-01

    Work currently being undertaken to establish the equilibrium composition of carbides which form in stainless steel foils during their exposure to low carbon activity sodium environment is described. The time it takes the carbon to reach equilibrium during exposure to sodium of different carbon activity is discussed. The lowest carbon activity measureable in test loops where the sodium is just above carburizing to stainless steel is reported. Analytical techniques are used to determine the composition of the carbide and the austenite matrix and hence estimate the carbon activity of the equilibrium structure. This provides a comparison with carbon activity values determined by alternative methods such as the Harwell Carbon Meter and nickel tab techniques

  5. A new, simple and precise method for measuring cyclotron proton beam energies using the activity vs. depth profile of zinc-65 in a thick target of stacked copper foils

    International Nuclear Information System (INIS)

    Asad, A.H.; Chan, S.; Cryer, D.; Burrage, J.W.; Siddiqui, S.A.; Price, R.I.

    2015-01-01

    The proton beam energy of an isochronous 18 MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming ‘thick’ targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the "6"5Zn activity vs. depth profile in the target, with the results obtained using "6"2Zn and "6"3Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25 µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using ‘energy’ as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using "6"5Zn activity profiles and 50-μm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98–18.08), and 18.06±0.12 MeV (95%CI=18.02–18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using "6"5Zn and 50-μm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05 MeV (95%CI=18.00–18.23; NS compared with ‘before’). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders. - Highlights: • Simple

  6. Use of the foil activation method with arbitrary trial functions to determine neutron energy spectra

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-01-01

    Neutron Spectra have been measured by the foil activation method in thirteen different environments in and around the Sandia Pulsed Reactor (SPR-III), the White Sands Missile Range FBR, and the Annular Core Research Reactor (ACRR). The unfolded spectra were obtained by using the SANDII code in a manner which was not dependent on the initial trial. This altered technique is, therefore, better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial functions

  7. Method and apparatus for coating thin foil with a boron coating

    Science.gov (United States)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  8. Differential multi-electron emission induced by swift highly charged gold ions penetrating carbon foils

    Science.gov (United States)

    Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T. J. M.

    2007-05-01

    First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au24+ (11 MeV/u) on a thin carbon foil (28 μg/cm2).

  9. Differential multi-electron emission induced by swift highly charged gold ions penetrating carbon foils

    International Nuclear Information System (INIS)

    Rothard, H.; Moshammer, R.; Ullrich, J.; Kollmus, H.; Mann, R.; Hagmann, S.; Zouros, T.J.M.

    2007-01-01

    First results on swift heavy ion induced electron emission from solids obtained with a reaction microscope are presented. This advanced technique, which is successfully used since quite some time to study electron ejection in ion-atom collisions, combines the measurement of the time-of-flight of electrons with imaging techniques. A combination of electric and magnetic fields guides the ejected electrons onto a position sensitive detector, which is capable to accept multiple hits. From position and time-of-flight measurement the full differential emission characteristics of up to 10 electrons per single incoming ion can be extracted. As a first example, we show energy spectra, angular distributions and the multiplicity distribution of electrons from impact of Au 24+ (11 MeV/u) on a thin carbon foil (28 μg/cm 2 )

  10. Plasmonic Titania Photo catalysts Active under UV and Visible-Light Irradiation: Influence of Gold Amount, Size, and Shape

    International Nuclear Information System (INIS)

    Kowalska, E.; Rau, S.; Kowalska, E.; Kowalska, E.; Ohtani, B.

    2012-01-01

    Plasmonic titania photo catalysts were prepared by titania modification with gold by photo deposition. It was found that for smaller amount of deposited gold (≤ 0.1 wt%), anatase presence and large surface area were beneficial for efficient hydrogen evolution during methanol dehydrogenation. After testing twelve amounts of deposited gold on large rutile titania, the existence of three optima for 0.5, 2 and >6 wt% of gold was found during acetic acid degradation. Under visible light irradiation, in the case of small gold NPs deposited on fine anatase titania, the dependence of photo activity on gold amount was parabolic, and large gold amount (2 wt%), observable as an intensively coloured powder, caused photo activity decrease. While for large gold NPs deposited on large rutile titania, the dependence represented cascade increase, due to change of size and shape of deposited gold with its amount increase. It has been thought that spherical/hemispherical shape of gold NPs, in comparison with rod-like ones, is beneficial for higher level of photo activity under visible light irradiation. For all tested systems and regardless of deposited amount of gold, each rutile Au/TiO 2 photo catalyst of large gold and titania NPs exhibited much higher photo activity than anatase Au/TiO 2 of small gold and titania NPs

  11. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  12. Hybrid-type long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Sugai, Isao; Kato, Hajime

    1989-01-01

    A new method for the preparation of hybrid-type long-lived carbon stripper foils was developed. The new procedure is based on a modification of our controlled dc arc-discharge method. The carbon foils are of the multilayer type and the layers are composed of carbon particles emitted from the electrodes in the ac arc-discharge and from the cathode in the dc arc-discharge. With this simple and powerful method long lived carbon stripper foils can be prepared with higher reliability and reproducibility than with the previous procedure. (orig.)

  13. Radon-thoron discrimination using a polythene foil: an application in uranium exploration

    International Nuclear Information System (INIS)

    Ramola, R.C.; Singh, M.; Sandhu, A.S.; Singh, S.; Virk, H.S.

    1989-01-01

    Integrated measurements of radon concentrations in subsurface soil are being used extensively for uranium exploration and earthquake prediction. For uranium exploration only the radon signals are needed; however, a part of the α-activity may derive from thoron. To exclude thoron, a polythene foil has been used as an anti-thoron membrane to delay the entry of thoron into the detector system so that only the longer lived isotope 222 Rn survives to be measured. A long term integrated measurement has been carried out using LR-115 and CR-39 plastic track detectors. The observed track density has been determined as a function of foil thickness. It is found that a polythene foil of appropriate thickness could be successfully employed for the separation of radon and thoron in soil. (author)

  14. Light-activated microbubbles around gold nanorods for photoacoustic microsurgery

    Science.gov (United States)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2018-02-01

    The increasing interest around imaging and microsurgery techniques based on the photoacoustic effect has boosted active research into the development of exogenous contrast agents that may enhance the potential of this innovative approach. In this context, plasmonic particles as gold nanorods are achieving resounding interest, owing to their efficiency of photothermal conversion, intense optical absorbance in the near infrared region, inertness in the body and convenience for conjugation with ligands of molecular targets. On the other hand, the photoinstability of plasmonic particles remains a remarkable obstacle. In particular, gold nanorods easily reshape into nanospheres and so lose their optical absorbance in the near infrared region, under exposure to few-ns-long laser pulses. This issue is attracting much attention and stimulating ad-hoc solutions, such as the addition of rigid shells and the optimization of multiple parameters. In this contribution, we focus on the influence of the shape of gold nanorods on their photothermal behavior and photostability. We describe the photothermal process in the gold nanorods by modeling their optical absorption and consequent temperature dynamics as a function of their aspect ratio (length / diameter). Our results suggest that increasing the aspect ratio does probably not limit the photostability of gold nanorods, while shifting the plasmonic peak towards wavelengths around 1100 nm, which hold more technological interest.

  15. Neutron activation measurements in research reactor concrete shield

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.; Bozic, M.

    2001-01-01

    The results of activation measurement inside TRIGA research reactor concrete shielding are given. Samples made of ordinary and barytes concrete together with gold and nickel foils were irradiated in the reactor body. Long-lived neutron-induced gamma-ray-emitting radioactive nuclides in the samples were measured with HPGe detector. The most active longlived radioactive nuclides in ordinary concrete samples were found to be 60 Co and 152 Eu and in barytes concrete samples 60 Co, 152 Eu and 133 Ba. Measured activity density of all nuclides was found to decrease almost linearly with depth in logarithmic scale.(author)

  16. Birefringence and dichroism of poly(vinyl-alcohol) foils containing phthalazinium ylids

    Science.gov (United States)

    Rogojanu, Alina; Dascalu, Carmen Felicia; Zelinschi, Beatrice Carmen; Caprosu, Maria; Dorohoi, Dana Ortansa

    2011-10-01

    Pure and colored with phthalazinium ylids poly(vinyl-alcohol) (PVA) foils were stretched under gentile heating. The birefringence of the thin foils was determined with a Babinet compensator standardized for yellow radiation of a Sodium lamp. The determined birefringence of the colored PVA foils is higher than that of the pure PVA foils. This fact indicates that the phthalazinium ylids facilitate the increase in the anisotropy of the stretched foils. The visible absorption electronic band of phthalazinium ylids was used to estimate the dichroic ratio and the degree of order of the ylid molecules in the stretched PVA foils. An increase in dichroism and birefringence with the degree of stretching has been evidenced for uncolored and colored PVA foils.

  17. Analysis of the behavior of gold in silicon by neutron activation method

    International Nuclear Information System (INIS)

    Kohara, Rikusei

    1977-01-01

    Diffusion behavior and distribution of a trace of gold (10 16 Atoms/cm 3 level) in silicon have been investigated by neutron activation analysis and autoradiography. The diffusion coefficient of gold in silicon was expressed by the equation D(cm 2 /s)=5.6 exp (-49kcal/RT), which was approximately 10 5 times as much as that of phosphorus or boron. The solubility of gold in silicon at 1000 0 C and 1100 0 C was (1.9+-0.2)x10 16 and (6.7+-0.7)x10 16 Atoms/cm 3 , respectively. Two factors, in addition to temperature, were found to effect the concentration of gold in silicon. One is an enhanced gold solubility effect in the presence of such impurity elements as phosphorus or arsenic. Another is the similar effect induced by lattice defects in silicon crystals. A possible distribution model of gold in digital devices was proposed from these results. (auth.)

  18. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold

    Energy Technology Data Exchange (ETDEWEB)

    Krajčí, Marian [Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84511 Bratislava (Slovakia); Kameoka, Satoshi; Tsai, An-Pang [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al{sub 2}Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped (211) surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir–Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO–OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  19. BANGERTER FOILS IN THE POSTOPERATIVE MANAGEMENT OF ESOTROPIA.

    Directory of Open Access Journals (Sweden)

    Galina G. Dimitrova

    2014-12-01

    Full Text Available Purpose: To evaluate the application of Bangerter foils in the postoperative management of esotropia Methods: A retrospective study of 200 patients who underwent bimedial recessions for various forms of alternating/alternated esotropia in the period of 2000-2013. In the cases of residual postoperative angle, tendency of recurrence of strabismus and preferred fixation, Bangerter foil was fixed on the corrective glass of the dominant eye- either on the next day of surgery, or on the 10-th postoperative day and was in use for at least 6 months. Results: Bangerter foils were applied in 67(35,1% under corrected patients with a mean residual angle for near 7,01±3,51Δ. Mean residual angle in patients without foils was 3,47±4,06Δ (p<0,001. Statistically significant factors in patients with filters were amblyopia treatment before surgery (p<0,001, anisometropia (p=0,003 and type of esotropia (accommodative vs. non accommodative (p<0,001. Within the group without filters there was a significant increase of the residual angle for near on the third (p<0,001 and sixth month (p=0,036, while within the group with foils angle was not significantly changed (p=0,325; p=0,058 with time. In the group with foils no cases with relapse of strabismus and amblyopia were recorded and even a decrease of the postoperative angle was clinically observed in some patients. Conclusion: To our experience Bangerter foils are a reliable tool in the postoperative management of undercorrected esotropia.

  20. Analysis of Mechanical Properties for GEM Foil

    CERN Document Server

    Chin, Yuk Ming

    2016-01-01

    In view of new assembly technique of the GEM detector; in which three foils stack is stretched to get the uniform gaps among the foils. We studied the mechanical properties of the foil material. We conditioned the samples in different environments to make them extra dry and wet. As holes are the major source of the charge amplification their deformation can effect the detector performance. Therefore in our studies we also studied at which level of the stress the holes deformation is seen. These tensile and holes deformation studies can help to optimize the stress during detector assembly.

  1. New Measurements and Calculations to Characterize the Caliban Pulsed Reactor Cavity Neutron Spectrum by the Foil Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Casoli, P.; Authier, N.; Rousseau, G. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Barsu, C. [Pl. de la fontaine, 25410 Corcelles-Ferrieres (France)

    2011-07-01

    Caliban is a cylindrical metallic core reactor mainly composed of uranium 235. It is operated by the Criticality and Neutron Science Research Laboratory located at the French Atomic Energy Commission research center in Valduc. As with other fast burst reactors, Caliban is used extensively for determining the responses of electronic parts or other objects and materials to neutron-induced displacements. Therefore, Caliban's irradiation characteristics, and especially its central cavity neutron spectrum, have to be very accurately evaluated. The foil activation method has been used in the past by the Criticality and Neutron Science Research Laboratory to evaluate the neutron spectrum of the different facilities it operated, and in particular to characterize the Caliban cavity spectrum. In order to strengthen and to improve our knowledge of the Caliban cavity neutron spectrum and to reduce the uncertainties associated with the available evaluations, new measurements have been performed on the reactor and interpreted by the foil activation method. A sensor set has been selected to sample adequately the studied spectrum. Experimental measured reaction rates have been compared to the results from UMG spectrum unfolding software and to values obtained with the activation code Fispact. Experimental and simulation results are overall in good agreement, although gaps exist for some sensors. UMG software has also been used to rebuild the Caliban cavity neutron spectrum from activation measurements. For this purpose, a default spectrum is needed, and one has been calculated with the Monte-Carlo transport code Tripoli 4 using the benchmarked Caliban description. (authors)

  2. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  3. Hydrogen permeation through metallic foils

    International Nuclear Information System (INIS)

    Bernardi, M.I.B.; Rodrigues, J.A.

    1987-01-01

    The process of electrolytic permeation of hydrogen through metallic foils is studied. A double electrolytic cell, in glass, in which the two compartments of reaction are separated by a metallic foil to be studied, was built. As direct result, the hydrogen diffusion coefficient in the metal is obtained. The hydrogen diffusion coefficients in the palladium and, in austenitic stainless steels 304 and 304 L, used in the Angra-1 reactor, were obtained. Samples of stainless steels with and without welding, were used. (Author) [pt

  4. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin Theodore [The Ohio State Univ., Columbus, OH (United States)

    2008-01-01

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 1016 protons with an average energy of about 3MeV. This is far more than the 1012 protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH3 coatings on 5 μm gold foils are compared with typical contaminants which are approximately equivalent to CH1.7. It will be shown that there was a factor of 1.25 ± 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 1019W/cm2. The total number of protons from either target type was on the order of 1010. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 1020 W/cm2. In this experiment 1012 protons were seen from both erbium hydride and

  5. P-type diamond stripper foils for tandem ion accelerators

    International Nuclear Information System (INIS)

    Phelps, A.W.; Koba, R.

    1989-01-01

    The authors are developing a stripper foil composed of a p-type diamond membrane. This diamond stripper foil should have a significantly longer lifetime than any conventional stripper foil material. To be useful for stripper foils, the boron-doped blue diamond films must be thinner than 0.8 μm and pore-free. Two methods are compared for their ability to achieve a high nucleation areal density on a W substrate. Some W substrates were first coated with think layer of boron (≤20 nm) in order to enhance nucleation. Other W substrates were scratched with submicron diamond particles. A schematic diagram of the stripper foil is shown. Stripper foils were created by etching away the central area of W substrates. The diamond membrane was then supported by an annulus of W. Tungsten was selected as a ring-support material because of its high electrical and thermal conductivity, relatively low thermal expansion, and proven suitability as a substrate for diamond CVD. Warping or fracture of the diamond film after substrate etch-back was investigated

  6. Automatic spark counting of alpha-tracks in plastic foils

    International Nuclear Information System (INIS)

    Somogyi, G.; Medveczky, L.; Hunyadi, I.; Nyako, B.

    1976-01-01

    The possibility of alpha-track counting by jumping spark counter in cellulose acetate and polycarbonate nuclear track detectors was studied. A theoretical treatment is presented which predicts the optimum residual thickness of the etched foils in which completely through-etched tracks (i.e. holes) can be obtained for alpha-particles of various energies and angles of incidence. In agreement with the theoretical prediction it is shown that a successful spark counting of alpha-tracks can be performed even in polycarbonate foils. Some counting characteristics, such as counting efficiency vs particle energy at various etched foil thicknesses, surface spark density produced by electric breakdowns in unexposed foils vs foil thickness, etc. have been determined. Special attention was given to the spark counting of alpha-tracks entering thin detectors at right angle. The applicability of the spark counting technique is demonstrated in angular distribution measurements of the 27 Al(p,α 0 ) 24 Mg nuclear reaction at Ep = 1899 keV resonance energy. For this study 15 μm thick Makrofol-G foils and a jumping spark counter of improved construction were used. (orig.) [de

  7. Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation

    Directory of Open Access Journals (Sweden)

    Svensson S

    2014-02-01

    Full Text Available Sara Svensson,1,2 Magnus Forsberg,1,2 Mats Hulander,1,2 Forugh Vazirisani,1,2 Anders Palmquist,1,2 Jukka Lausmaa,2,3 Peter Thomsen,1,2 Margarita Trobos1,21Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 2BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden; 3SP Technical Research Institute of Sweden, Borås, SwedenAbstract: The role of material surface properties in the direct interaction with bacteria and the indirect route via host defense cells is not fully understood. Recently, it was suggested that nanostructured implant surfaces possess antimicrobial properties. In the current study, the adhesion and biofilm formation of Staphylococcus epidermidis and human monocyte adhesion and activation were studied separately and in coculture in different in vitro models using smooth gold and well-defined nanostructured gold surfaces. Two polystyrene surfaces were used as controls in the monocyte experiments. Fluorescent viability staining demonstrated a reduction in the viability of S. epidermidis close to the nanostructured gold surface, whereas the smooth gold correlated with more live biofilm. The results were supported by scanning electron microscopy observations, showing higher biofilm tower formations and more mature biofilms on smooth gold compared with nanostructured gold. Unstimulated monocytes on the different substrates demonstrated low activation, reduced gene expression of pro- and anti-inflammatory cytokines, and low cytokine secretion. In contrast, stimulation with opsonized zymosan or opsonized live S. epidermidis for 1 hour significantly increased the production of reactive oxygen species, the gene expression of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, IL-6, and IL-10, as well as the secretion of TNF-α, demonstrating the ability of the cells to elicit a response and actively phagocytose prey. In addition, cells cultured on the smooth

  8. Neutron activation analysis of geological samples for gold and accessory elements power reactor

    International Nuclear Information System (INIS)

    Burmistrenko, Yu.N.; Medvedev, A.A.; Kovalenko, V.V.; Markov, A.V.

    1986-01-01

    Possibility of using a power reactor for neutron activation analysis to detect gold and accompanying elements in geological samples of a region was investigated. Specimens (gold-containing samples and standards) were irradiated in a spare channel for ionization chambers located outside the core in graphite reflector. Spectrometry was conducted with the help of a semiconducting detector with LP 4900 multichannel analizer. Sensitivity threshold for gold was (1-3)10 -6 % - (1-2)10 -5 %. It is shown that this method can be used not only for gold detection but for high-sensitive multielement analysis of geological samples

  9. Level of daily physical activity in chronic obstructive pulmonary disease (COPD) patients according to GOLD classification.

    Science.gov (United States)

    Rodó-Pin, Anna; Balañá, Ana; Molina, Lluís; Gea, Joaquim; Rodríguez, Diego A

    2017-02-09

    The Global Initiative for Chronic Obstructive Lung Disease (GOLD guideline) for patients with chronic obstructive pulmonary disease does not adequately reflect the impact of the disease because does not take into account daily physical activity (DPA). Forty eight patients (12 in each GOLD group) were prospectively recruited. DPA was evaluated by accelerometer. Patients were classified into 3 levels of activity (very inactive, sedentary, active). No significant differences in levels of physical activity among GOLD groups (P=.361) were observed. The percentages of very inactive patients were 33% in group A, 42% in group B, 42% in group C and 59% in group D. In addition, high percentage of sedentary patients were observed through 4 groups, in group A (50%), B and C (42%, each), and group D (41%). COPD patients has very low levels of physical activity at all stages of GOLD classification even those defined as low impact (such as GOLD A). Is necessary to detect patients at risk who might benefit from specific interventions. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    International Nuclear Information System (INIS)

    Bedogni, R.; Gómez-Ros, J.M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-01-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  11. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Science.gov (United States)

    Bedogni, R.; Gómez-Ros, J. M.; Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Pérez, L.; Angelone, M.; Tana, L.

    2012-08-01

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  12. Workplace testing of the new single sphere neutron spectrometer based on Dysprosium activation foils (Dy-SSS)

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Gomez-Ros, J.M. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Esposito, A.; Gentile, A.; Chiti, M.; Palacios-Perez, L. [INFN-LNF (Frascati National Laboratories), Via E. Fermi n. 40-00044 Frascati (Italy); Angelone, M. [ENEA C.R. Frascati, C.P. 65, 00044 Frascati (Italy); Tana, L. [A.O. Universitaria Pisana-Ospedale S. Chiara, Via Bonanno Pisano, Pisa (Italy)

    2012-08-21

    A photon insensitive passive neutron spectrometer consisting of a single moderating polyethylene sphere with Dysprosium activation foils arranged along three perpendicular axes was designed by CIEMAT and INFN. The device is called Dy-SSS (Dy foil-based Single Sphere Spectrometer). It shows nearly isotropic response in terms of neutron fluence up to 20 MeV. The first prototype, previously calibrated with 14 MeV neutrons, has been recently tested in workplaces having different energy and directional distributions. These are a 2.5 MeV nearly mono-chromatic and mono-directional beam available at the ENEA Frascati Neutron Generator (FNG) and the photo-neutron field produced in a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa). Both neutron spectra are known through measurements with a Bonner Sphere Spectrometer. In both cases the experimental response of the Dy-SSS agrees with the reference data. Moreover, it is demonstrated that the spectrometric capability of the new device are independent from the directional distribution of the neutron field. This opens the way to a new generation of moderation-based neutron instruments, presenting all advantages of the Bonner sphere spectrometer without the disadvantage of the repeated exposures. This concept is being developed within the NESCOFI@BTF project of INFN (Commissione Scientifica Nazionale 5).

  13. Aluminium-gold reference material for the k0-standardisation of neutron activation analysis

    International Nuclear Information System (INIS)

    Ingelbrecht, C.; Peetermans, F.; Corte, F. de; Wispelaere, A. de; Vandecasteele, C.; Courtijn, E.; Hondt, P. d'

    1991-01-01

    Gold is an excellent comparator material for the k 0 -standardisation of neutron activation analysis because of its convenient and well defined nuclear properties. The most suitable form for a reference material is a dilute aluminium-gold alloy, for which the self-shielding effect for neutrons is small. Castings of composition Al-0.1 wt.% Au were prepared by crucible-less levitation melting, which gives close control of ingot composition with minimal contamination of the melt. The alloy composition was checked using induction-coupled plasma source emission spectrometry. The homogeneity of the alloy was measured by neutron activation analysis and a relative standard deviation of the gold content of 0.30% was found (10 mg samples). Metallography revealed a homogeneous distribution of AuAl 2 particles. The alloy was certified as Reference Materials CBNM-530, with certified gold mass fraction 0.100±0.002 wt.%. (orig.)

  14. The determination, by x-ray-fluorescence spectrometry, of gold in activated charcoal

    International Nuclear Information System (INIS)

    Austen, C.E.

    1977-01-01

    A rapid method is described for the determination of gold in activated charcoal by X-ray-fluorescence spectrometry. Compensation for matrix effects is achieved by means of platinum that is added for use as an internal standard. Calibration is achieved by use of a series of synthetic standards that are made by the spiking of barren charcoal with gold and platinum. The limit of determination is about 8 p.p.m. of gold, and the relative standard deviation is 1,2 per cent at a concentration level of 2300 p.p.m

  15. Forming of electron beams from a betatron by foils scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A P; Shishov, V A [N.N. Petrov Research Inst. of Oncology, Leningrad (USSR). Laboratory of High Energics

    1976-12-01

    The technique of forming electron beams by one scattering foil and one compensating foil is discussed. This method provides a means for producing large-size uniform dose distributions with much smaller losses in dose rate as compared with conventional beam forming by ine foil. Moreover, the energy losses involved in this process and the background of concomitant bremsstrahlung are much less. A techinque of calculation to determine approximate parameters of the compensating foils is described.

  16. Neutron activation analysis of gold and prospectiveness of its application

    International Nuclear Information System (INIS)

    Tong Chunhan.

    1988-01-01

    NAA of gold is a method of high sensitivity and high percision, especially when epithermal neutron activation is applied. NAA is particularly emphasized in the process of gold reference standards preparation. In addition to the pure instrumental NAA, the NAA with pre-enrichment before sctivation is developed. This technque has been successfully used in assessment of micro and fine grained Au-Ag-phlymetal ores in Guixian, Guangxi. Through this example, prospectiveness of NAA application in Au-Ag-prospecting, fast assessment and trace element geochemistry investigation is seen

  17. Method of fabricating a uranium-bearing foil

    Science.gov (United States)

    Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  18. Light Barrier for Non-Foil Packaging

    Science.gov (United States)

    2010-12-16

    foil and all-plastic materials were retorted and a second set of all-plastic packaged entrees were Microwave Sterilized on the Washington State...Copolymers for Retort Applications; SPE Polyolefins and Flexible Packaging Conference: Society of Plastics Engineers. Newtown. CT, 43pp. Thellen C...Final Scientific Report Light Barrier for Non-Foil Packaging Contract No. W911QY-08-C-0132 Final Scientific Report Contract No. W911QY-08-C-0132

  19. Method of stabilizing Nb3Sn superconducting foils

    International Nuclear Information System (INIS)

    Kruzliak, J.; Lences, P.; Allarova, H.

    1982-01-01

    The stabilization of niobium-tin Nb 3 Sn superconducting foils with copper is carried out by deposition or by diffusion in pure copper or in a tin bath containing different copper levels, with the surface etched or unetched. The foils are covered with a copper film at a temperature of 300 to 5O0 degC using a tin solder, spread on a copper, silver or nickel layer deposited on the foil surface from solutions for electroless plating. The bond between the surface of the superconducting foil and the electroless plated metal layer is annealed in a controlled atmosphere or in a vacuum at a temperature of 200 to 500 degC for over 20 to 60 minutes. The copper stabilization layer can also be produced electrolytically. (J.B.)

  20. The stripping foil test stand in the Linac4 transfer line

    CERN Document Server

    Weterings, W; Noulibos, R; Sillanoli, Y; van Trappen, P

    2015-01-01

    The 160 MeV H− beam from the Linac4 (L4) linear accelerator at CERN will be injected into the proton synchrotron booster (PSB) with a new H− charge-exchange injection system. It will include a stripping foil, to convert H− into protons by stripping off the electrons. To gain experience with these very fragile foils, prior to the installation in the PSB, and test different foil materials and thicknesses, lifetimes of the foils, the foil changing mechanism and interlocking functions, a stripping foil test stand will be installed in the L4 transfer line in 2015. This paper describes the mechanical design of the system and discusses the test possibilities and parameters.

  1. The stripping foil test stand in the Linac4 transfer line

    International Nuclear Information System (INIS)

    Weterings, W.; Bracco, C.; Noulibos, R.; Sillanoli, Y.; Trappen van, P.

    2015-01-01

    The 160 MeV H - beam from the Linac4 (L4) linear accelerator at CERN will be injected into the proton synchrotron booster (PSB) with a new H - charge-exchange injection system. It will include a stripping foil, to convert H - into protons by stripping off the electrons. To gain experience with these very fragile foils, prior to the installation in the PSB, and test different foil materials and thicknesses, lifetimes of the foils, the foil changing mechanism and interlocking functions, a stripping foil test stand will be installed in the L4 transfer line in 2015. This paper describes the mechanical design of the system and discusses the test possibilities and parameters. (author)

  2. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    Science.gov (United States)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  3. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  4. Interaction of relativistic H- ions with thin foils

    International Nuclear Information System (INIS)

    Mohagheghi, A.H.

    1990-09-01

    The response of relativistic H - ions to thin carbon foils was investigated for beam energies ranging from 226 MeV to 800 MeV. For the foil thicknesses we have studied, ranging from 15 to 300 μg/cm 2 , an appreciable fraction of the H - beam survives intact, some H - ions are stripped down to protons, and the remainder is distributed over the states of H 0 . This experiment is different from the low energy studies in that the projectile velocity is comparable to the speed of light, leading to an interaction time of typically less than a femtosecond. The present results challenge the theoretical understanding of the interaction mechanisms. An electron spectrometer was used to selectively field-ionize the Rydberg states, 9 < n < 17, at beam energies of 581 MeV and 800 MeV. The yield of low-lying states were measured by Doppler tuning a Nd:YAG laser to excite transitions to a Rydberg state which was then field-ionized and detected. A simple model is developed to fit the yield of each state as a function of foil thickness. The simple model is successful in predicting the general features of the yield data. However, the data are suggestive of a more complex structure in the yield curves. The yield of a given state depends strongly on the foil thickness, demonstrating that the excited states are formed during the passage of the ions through a foil. The optimum thickness to produce a given state increases with the principal quantum number of the state suggesting an excitation process which is at least pratially stepwise. The results of a Monte Carlo simulation are compared with the experimental data to estimate the distribution of the excited states coming out of a foil. The distributions of the excited states and their dependence on foil thickness are discussed

  5. Comparison of carbon stripper foils produced by ARC discharge and laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ophel, T.R.; Rhode, A.; Lobanov, N.; Weisser, D.C.; Turkentine, R.; Wolf, B.; Wlliman, R.G. [Australian National Univ. Canberra, ACT (Australia). Research School of Physical Sciences and Engineering

    1998-06-01

    The present work describes a series of investigations which compared the arc-deposited foils, prepared at ANU with a batch of foils from Munich, prepared by laser-ablation. The two foil types were bombarded with a beam of 6.8 MeV of {sup 197}Au recording their behaviour and monitoring the total stripped current. Optical and electron spectroscopy was carried out and indicate that the arc-deposited foils were relatively amorphous and smooth, while the laser-ablated foils appears to be much more crystalline. It was found that the average useful lifetimes of the Munich foils were at least ten times longer than arc-deposited foils. Furthermore, they maintained a constant beam output during the time in marked contrast to the arc-deposited foils, for which the output decreased quite rapidly. The longevity, and no less importantly, the constant beam output of the laser-ablated foils have emerged as critical to the continuance of the ERDA program. More significantly though, such qualities have provoked re-examination of likely energies for heavy beams that could be obtained with the Linac booster if foil stripping were used in the 14UD terminal, rather than gas that had previously been considered the only viable option. A program is in progress to explore the means to produce laser-ablated foils, or their equivalent, locally. Extended abstract. 1 ref., 2 figs.

  6. Comparison of carbon stripper foils produced by ARC discharge and laser ablation

    International Nuclear Information System (INIS)

    Ophel, T.R.; Rhode, A.; Lobanov, N.; Weisser, D.C.; Turkentine, R.; Wolf, B.; Wlliman, R.G.

    1998-01-01

    The present work describes a series of investigations which compared the arc-deposited foils, prepared at ANU with a batch of foils from Munich, prepared by laser-ablation. The two foil types were bombarded with a beam of 6.8 MeV of 197 Au recording their behaviour and monitoring the total stripped current. Optical and electron spectroscopy was carried out and indicate that the arc-deposited foils were relatively amorphous and smooth, while the laser-ablated foils appears to be much more crystalline. It was found that the average useful lifetimes of the Munich foils were at least ten times longer than arc-deposited foils. Furthermore, they maintained a constant beam output during the time in marked contrast to the arc-deposited foils, for which the output decreased quite rapidly. The longevity, and no less importantly, the constant beam output of the laser-ablated foils have emerged as critical to the continuance of the ERDA program. More significantly though, such qualities have provoked re-examination of likely energies for heavy beams that could be obtained with the Linac booster if foil stripping were used in the 14UD terminal, rather than gas that had previously been considered the only viable option. A program is in progress to explore the means to produce laser-ablated foils, or their equivalent, locally

  7. Neutron transport calculation for Activation Evaluation for Decommissioning of PET cyclotron Facility

    Science.gov (United States)

    Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko

    2017-09-01

    In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.

  8. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  9. Effects of crystalline structure in the transmission of ions through thin foils

    International Nuclear Information System (INIS)

    Archubi, Claudio

    2005-01-01

    Two fundamental aspects of ion transmission through thin foils are analyzed in this thesis.1) Energy loss.2) Angular distribution.The subject is studied in three different approaches: Theoretically, experimentally and by numerical simulations.In the theoretical approach, the models for the calculation of the energy loss and angular distribution are discussed.They are showed to be unsatisfactory to explain the effects of crystalline structure at low energies.A model is developed to estimate the angular dispersion due to the elastic scattering between the projectile and the target electrons. Simultaneously, angular distribution and energy loss measurements have been performed bombarding polycrystalline and monocrystalline gold and polycrystalline aluminum targets with protons and helium ions with energies in the range of 4-10 keV, together with a detailed study of the foils by electron transmission microscopy techniques.The experimental results are compared with the results of a numerical simulation code, modified and extended in the scope of this thesis.The results show an important influence of crystalline structure and the different targets defects in the angular distribution.This influence is much lower in the case of the angular behaviour of the energy loss (being almost negligible in the case of protons).The most relevant characteristic of the angular behaviour of the energy loss in the case of helium ions is that it is necessary to assume in the simulation method an impact parameter dependence of the stopping coefficient to obtain an agreement between simulation and experimental results [es

  10. Design of foil implosion system for Pioneer I experiments

    International Nuclear Information System (INIS)

    Erickson, D.J.; Caird, R.S.; Fowler, C.M.

    1985-01-01

    A foil implosion system is described that integrates an explosive flux-compression generator, a flat plate feed section with power conditioning switches, and a vacuum electrode region containing a cylindrical foil/plasma load. Power conditioning, obtained with an explosive-driven plasma compression opening switch and explosive-actuated closing switches, provides a submicrosecond multimegampere pulse for the implosion of an aluminum plasma. The flat plate section is configured for bidirectional feed to the coaxial vacuum electrodes. Important considerations in the design of the vacuum power flow region include gap failure, feed symmetry, and radial diagnostic access. The system presently accommodates a foil radius of 3 cm. Innovative foil insertion and clamping techniques are also described

  11. Effects of film/foil interactions on X-ray image quality - experimental studies

    International Nuclear Information System (INIS)

    Maurer, H.J.; Goos, F.

    1985-01-01

    When assessing the quality of X-ray images, the interaction between film and foil should never be left out of account. Except for the case of green-emitting foils which require green-emitting films, films and foils are normally regarded separately, so that many variations are possible. The authors review the interaction between film and foil under practical aspects. Studies published so far have concentrated either on the amplification factor of foils or an the object imaging characteristics of certain films. Systematic studies on the interaction between film and foil have never been carried out. (orig.) [de

  12. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    Energy Technology Data Exchange (ETDEWEB)

    Gelis, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Brown, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wiedmeyer, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO42- from the fission products, since most of the interfering anions (e.g., CO32-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retain and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.

  13. Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation.

    Science.gov (United States)

    Guan, Y; Hensen, E J M

    2009-11-07

    Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au L(III) edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold atoms upon reduction. The resulting gold clusters exhibit a very high intrinsic activity in the hydrogenation of 1,3-butadiene, which is at least one order of magnitude higher than that of the nanometre-sized gold particles in the non-leached parent catalyst. These findings point to a very strong structure sensitivity of the gold-catalyzed hydrogenation of dienes.

  14. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  15. Health status of cows fed maize silage covered with oxo-biodegradable foil

    OpenAIRE

    Piotr SZTERK; Piotr DORSZEWSKI; Małgorzata GRABOWICZ; Lucyna PODKÓWKA

    2017-01-01

    In agricultural practice, silage production uses pure, low density polyethylene foil. This foil, after use, becomes farm waste, having a negative impact on the environment. Instead of conventional foil, an environmentally safe biodegradable foil can be used, made from naturally occurring polymers or from synthetic multiparticulates, easily degradable by microorganisms. Silage covered with this type of foil should be safe for animal health. The purpose of the study was to determine whether oxo...

  16. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    Science.gov (United States)

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.

  17. The Los Alamos foil implosion project

    International Nuclear Information System (INIS)

    Brownell, J.; Parker, J.; Bartsch, R.; Benage, J.; Bowers, R.; Cochrane, J.; Forman, P.; Goforth, J.; Greene, A.; Kruse, H.

    1993-01-01

    The goal of the Los Alamos foil implosion project is to produce an intense (>100 TW), multi-megajoule, laboratory soft x-ray source for material studies and fusion experiments. The concept involves the implosion of annular, current-carrying, cylindrical metallic plasmas via their self-magnetic forces. The project features inductive storage systems using both capacitor banks and high explosive-driven flux compression generators as prime energy sources. Fast opening switches are employed to shorten the electrical pulses. The program will be described and activities to date will be summarized

  18. Actinide Foil Production for MPACT Research

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  19. Recovery of gold from solutions with ammonia and thiosulfate using activated carbon

    International Nuclear Information System (INIS)

    Vargas, C.; Navarro, P.; Araya, E.; Pavez, F.; Alguacil, F. J.

    2006-01-01

    The recovery of gold from solutions containing thiosulfate and ammonia using granular activated carbon was studied,evaluating the adsorption and elution stages. The influence of ammonia and thiosulfate concentration and the presence of impurities such as copper and zinc were also evaluated. In the presence of ammonia there was a concentration which maximized the adsorption of gold, while thiosulfate and impurities presence was harmful for the adsorption of gold. during elution, ammonia and thiosulfate concentration, pH regulator and temperature were evaluated. Ammonia favored the process as long as thiosulfate showed a maximum starting from which the elution diminishes. The effect of the pH regulator was very important; If was revealed that when the pH was regulated with caustic ammonia, a synergic effect appeared which favored the elution. Temperature favored the elution process, with activation energy of 9.13 kJ/mol. (Author) 25 refs

  20. Wavelength shifting reflector foils for liquid Ar scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Manuel [Physik Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2013-07-01

    Liquid argon is used as a scintillator in several present and upcoming experiments. In Gerda it is used as a coolant, shielding and will be instrumented to become an active veto in Phase II. Its scintillation light has a wavelength of 128 nm, that gets absorbed by quartz. In order to measure the light using photo multiplier tubes (PMT) for cryogenic temperatures which have a quartz window, it is converted to longer wavelength by coated reflector foils. The conversion efficiency and stability of several such coatings was optimized using VM2000 and Tetratex separately as reflector foils. The efficiency has been measured in a liquid Ar set up build especially for this purpose. It employs a 3'' low radioactivity PMT of type R11065-10 from Hamamatsu, the favorite photo sensor candidate to be used in Gerda.

  1. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  2. A suspended boron foil multi-wire proportional counter neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-11

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 µm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the {sup 10}B(n,α){sup 7}Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal–neutron detection efficiency for enriched {sup 10}B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  3. A suspended boron foil multi-wire proportional counter neutron detector

    Science.gov (United States)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.

    2014-12-01

    Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.

  4. Dosimetric response of united, commercially available CTA foils for 60Co gamma rays

    International Nuclear Information System (INIS)

    Peimel-Stuglik, Z.

    2001-01-01

    The usefulness of two kinds of untinted CTA foils: Fuji CTR-125 dosimetric foil and technical CTA-T foil, produced by 'Zaklady Chemiczne, 'Gorzow Wielkopolski' as support for light-sensitive layers of amateur photo-films, for 60 Co gamma ray dosimetry was investigated. In spite of rather bad physical parameters of the technical foil (spread of foil thickness, high and different initial absorbance) the dosimetric response of both foils for 60 Co gamma rays was similar. The CTA-T foil can be used for routine dosimetry providing that dosimetric signals have to be calculated exactly as recommended by the ASTM (American Society for Testing and Materials) standard, i.e. as the difference of absorbance of irradiated and (the same) non-irradiated foil. Any other approach may lead to high errors of dose evaluation. The last is true also for other CTA foils, especially after long self-life. (author)

  5. Comparison of results of assaying and neutron activation analysis when determining gold and silver content

    International Nuclear Information System (INIS)

    Vaganov, P.A.; Bulnaev, A.I.; Kulikov, V.D.; Mejer, V.A.; Zakharevich, K.V.

    1977-01-01

    Compared are results of simultaneous determination of gold and silver content in rock samples by the methods of neutron activation analysis and assaying. Rock samples were irradiated by thermal neutron flux of 5x10 13 nxcm -2 xs -1 during 12 hours. The gold content was determined in 8-12 days after irradiation, and silver content in 40-50 days. T he gold content determination was performed by 411.8 keV γ quanta of 198 Au. To establish the silver content two analytical lines of sup(110m)Ag isomer with the energy of 657.7 and 937.4 keV were used. The sensitivity threshold of Au content determination amounts to 3x10 -6 % (or 1x10 -9 g) and that for Ag is 2x10 -40 % (using γ line with the energy of 657.7 keV). The comparison of the results of assaying and neutron-activation analysis has shown for silver a good agreement between the both methods, the coefficient of pair correlation being equal to 0.997. For gold the divergence between the methods is observed. The activation analysis provides on the average lower values of gold content

  6. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  7. Development, characterization and qualification of first GEM foils produced in India

    Science.gov (United States)

    Shah, Aashaq; Ahmed, Asar; Gola, Mohit; Sharma, Ram Krishna; Malhotra, Shivali; Kumar, Ashok; Naimuddin, Md.; Menon, Pradeep; Srinivasan, K.

    2018-06-01

    The increasing demand for Gas Electron Multiplier (GEM) foils has been driven by their application in many current and proposed high-energy physics experiments. Micropack, a Bengaluru-based company, has established and commercialized GEM foils for the first time in India. Micropack used the double-mask etching technique to successfully produce 10 cm × 10 cm GEM foil. In this paper, we report on the development as well as the geometrical and electrical properties of these foils, including the size uniformity of the holes and leakage current measurements. Our characterization studies show that the foils are of good quality and satisfy all the necessary quality control criteria.

  8. Positron annihilation lifetime spectroscopy study of Kapton thin foils

    Science.gov (United States)

    Kanda, G. S.; Ravelli, L.; Löwe, B.; Egger, W.; Keeble, D. J.

    2016-01-01

    Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 μm and 25 μm Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.

  9. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    Science.gov (United States)

    Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian

    2015-07-01

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  10. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    Energy Technology Data Exchange (ETDEWEB)

    Gatea, Florentina; Teodor, Eugenia Dumitra, E-mail: eu-teodor@yahoo.com [National Institute for Biological Sciences, Centre of Bioanalysis (Romania); Seciu, Ana-Maria [National Institute for Biological Sciences, Cellular and Molecular Biology Department (Romania); Covaci, Ovidiu Ilie [SARA Pharm Solutions (Romania); Mănoiu, Sorin [National Institute for Biological Sciences, Cellular and Molecular Biology Department (Romania); Lazăr, Veronica [University of Bucharest, Faculty of Biology (Romania); Radu, Gabriel Lucian [University “Politehnica” Bucharest, Faculty of Applied Chemistry and Materials Science (Romania)

    2015-07-15

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  11. Ti foil light in the ATA [Advanced Test Accelerator] beam

    International Nuclear Information System (INIS)

    Slaughter, D.R.; Chong, Y.P.; Goosman, D.R.; Rule, D.W.; Fiorito, R.B.

    1987-09-01

    An experiment is in progress to characterize the visible light produced when a Ti foil is immersed in the ATA 2 kA, 43 MeV beam. Results obtained to date indicate that the optical condition of the foil surface is a critical determinant of these characteristics, with a very narrow angular distribution obtained when a highly polished and flat foil is used. These data are consistent with the present hypothesis that the light is produced by transition radiation. Incomplete experiments to determine the foil angle dependence of the detected light and its polarization are summarized and remaining experiments are described

  12. Apparatus and process for ultrasonic seam welding stainless steel foils

    Science.gov (United States)

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  13. Thermohydrodynamic analysis of airfoil bearing based on bump foil structure

    Directory of Open Access Journals (Sweden)

    S.Y. Maraiy

    2016-09-01

    Full Text Available The load carrying capacity of the gas foil bearing depends on the material properties and the configuration of the underlying bump strip’s structure. This paper presents three different cases for selecting the dimensions of the foil bearing to guarantee the highest possible load carrying capacity. It focuses on three main parameters that affect the compliance number; these parameters are the length of bump in θ direction, the pitch of bump foil, and the thickness of bump foil. It also studies the effect of changing these parameters on load carrying capacity according to both isothermal and thermohydrodynamic approaches.

  14. Effect of foil orientation on damage accumulation during irradiation in magnesium and annealing response of dislocation loops

    International Nuclear Information System (INIS)

    Khan, A.K.; Yao, Z.; Daymond, M.R.; Holt, R.A.

    2012-01-01

    Highlights: ► Effect of foil orientation on electron irradiation damage in Mg is analyzed. ► Prism plane defects increases in prism foils as compared to basal foils. ► Basal faults were interstitial and prism plane defects were mixed in character. ► Shrinkage of interstitial dislocations takes place by the self diffusion mechanism. - Abstract: The effect of foil orientation on damage accumulation behavior in commercial purity magnesium is investigated by in situ electron and ion irradiation. Transmission electron microscope has been used to study the dislocation loops formed by the agglomeration of point defects during irradiation. It has been observed that the ratio of prism plane to basal plane defects increases as the foil orientation is changed from basal to the prism foil. The ratio of vacancy to interstitial defects also increases in prism foils as compared to the basal foils. This point defect accumulation behavior is reversed when magnesium is irradiated with 1 MeV Kr 2+ ions and the formation of basal plane dislocation loops were only observed in prism foils and did not take place in the basal foils. Analysis showed that all the basal plane dislocation loops have Burgers vector of the type 1/(6〈202 ¯ 3〉) and are interstitial in nature whereas prism plane dislocation loops have Burgers vector of the type 1/(3〈112 ¯ 0〉) and are of mixed interstitial/vacancy in character. In situ annealing experiments at different temperatures performed on electron irradiated magnesium foils suggest that those dislocation loops that become thermodynamically unstable anneal out in a matter of few seconds whereas other stable dislocation loops continue to shrink by absorbing surrounding vacancy clusters. The activation energy for the shrinkage of the interstitial dislocation loops has been derived and the results show that the shrinkage of interstitial dislocation loops takes place by the mechanism of vacancy assisted self diffusion.

  15. Intrinsic stress modulation in diamond like carbon films with incorporation of gold nanoparticles by PLA

    Science.gov (United States)

    Panda, Madhusmita; Krishnan, R.; Krishna, Nanda Gopala; Madapu, Kishore K.; Kamruddin, M.

    2018-04-01

    Intrinsic stress modulation in the diamond-like carbon (DLC) coatings with incorporation of gold nanoparticles was studied qualitatively from Raman shift. The films were deposited on Si (1 0 0) substrates by using Pulsed laser ablation (PLA) of pure pyrolytic graphite target and with a gold foil on it. Films compositional and chemical behavior was studied by X-ray photoelectron spectroscopy (XPS) and Visible Raman spectroscopy, respectively. The sp3 content obtained from XPS shows dramatic variation in DLC, DLC-Au(100), DLC-Au(200) and DLC-Au(300) as 39%, 41%, 47% and 66% with various gold contentsas 0%, 12%, 7.3% and 4.7%, respectively. The Raman spectra of DLC/Au films showed G-peak shift towards lower wavenumber indicating the reduction of intrinsic stress (internal compressive stress). The sp2, sp3 fraction in the films are also determined from FWHM (G-Peak).

  16. LENA Conversion Foils Using Single-Layer Graphene, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our key innovation will be the use of single-layer graphene as LENA conversion foils, with appropriate microgrids and nanogrids to support the foils. Phase I...

  17. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tin-coated lead foil capsules for wine bottles. 189... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES PROHIBITED FROM USE IN HUMAN FOOD... lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one...

  18. Transient oxidation of Al-deposited Fe-Cr-Al alloy foil

    International Nuclear Information System (INIS)

    Andoh, A.

    1997-01-01

    The oxide phases formed on an Al-deposited Fe-Cr-Al alloy foil and an Fe-Cr-Al alloy foil of the same levels of Al and (La+Ce) contents, and their oxidation kinetics have been studied in air at 1173 and 1373 K using TGA, XRD and SEM. Al deposition promotes the growth of metastable aluminas (θ-Al 2 O 3 , γ-Al 2 O 3 ). Scales consisting of θ-Al 2 O 3 and a small amount of α-Al 2 O 3 develop on the Al-deposited foil at 1173 K and exhibit the whisker-type morphology. In the early stage of oxidation at 1373 K, thick scales consisting of θ-Al 2 O 3 and α-Al 2 O 3 grow rapidly on the Al-deposited foil. The transformation from θ-Al 2 O 3 to α-Al 2 O 3 is very fast, and the scales result in only α-Al 2 O 3 . In contrast, α-Al 2 O 3 scales containing a minor amount of FeAl 2 O 4 develop on the alloy foil. The growth rate of α-Al 2 O 3 scales on the Al-deposited foil is smaller than that on the alloy foil and very close to that on NiAl at 1373 K. (orig.)

  19. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    International Nuclear Information System (INIS)

    Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James; Clarke, Kester Diederik; Scott, Jeffrey E.; Montalvo, Joel Dwayne; Papin, Pallas; Ansell, George S.

    2017-01-01

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Al cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.

  20. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alexander, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mccabe, Rodney James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clarke, Kester Diederik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scott, Jeffrey E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montalvo, Joel Dwayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ansell, George S. [Colorado School of Mines, Golden, CO (United States)

    2017-01-20

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Al cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.

  1. Spectra from foil-excited molybdenum ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Cecchi, J.L.; Kruse, T.H.

    1978-01-01

    The extreme-ultraviolet spectra (5 to 55 nm) for foil-excited molybdenum ions have been measured using 22 to 200 MeV beams from the Brookhaven National Laboratory MP tandem Van de Graaff accelerator facility, 20 μg/cm 2 C stripping foils, and a grazing incidence spectrometer. The mean ion charge states (13 to 28) and the narrow distribution widths (about 2 charge states) were accurately predictable from experimental parameters. Where possible, comparisons are given with Mo radiation from tokamaks, vacuum sparks, and laser-excited plasmas

  2. Process for producing molybdenum foil and collapsible tubing

    Science.gov (United States)

    Bretts, G. R.; Gavert, R. B.; Groschke, G. F.

    1971-01-01

    Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.

  3. Development of a new foil compounded from carbon nanotubes and sputter-deposition carbon

    International Nuclear Information System (INIS)

    Hiroo Hasebe; Hironori Kuboki; Hiroki Okuno; Isao Yamane; Hiroshi Imao; Nobuhisa Fukunishi; Masayuki Kase; Osamu Kamigaito

    2014-01-01

    New carbon-nanotube-sputter-deposition-carbon (CNT-SDC) foils were developed and used in the U beam time at the RIKEN RI Beam Factory (RIBF) from October to December 2011. The lifetimes of these new foils were drastically extended, and stable, high-intensity U beams were successfully provided to users. The lifetime of the CNT-SDC foils was 2-5 C, which was 100 times longer than those of static C-foils previously used. The qualitative analysis of the CNT-SDC foils clearly showed that the CNT structure and bundles were broken by beam irradiation. In addition, it was found that CNT bundles in the CNT-SDC foil were grown after the carbon deposition procedure. This structure was considered to be the reason that the CNT-SDC foils maintain advantages of both CNT and SDC foils. (author)

  4. Simultaneous laser cutting and welding of metal foil to edge of a plate

    Science.gov (United States)

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  5. Decontamination with pasty pickling agents forming a strippable foil

    International Nuclear Information System (INIS)

    Weichselgartner, H.

    1991-01-01

    This paper describes the development of an in-situ decontamination procedure by applying onto the contaminated surface (in an one-step or multi-step process) pasty, chemically aggressive agents causing dilution and adsorption of the contaminant and then hardening to form a strippable foil. The use of such a foil will result in following advantages, with respect to usual techniques: - sensibly shorter operation duration resulting in lower personnel doses; - reduction of the arising secondary waste volume because there is no need for washing; the volume of the spent strippable foil is much smaller than currently used water volumes; - optimal conditioning of the radioactive waste due to its fixation in a solid (foil); - an accidental contamination in a controlled area can easily be fixed and covered avoiding its propagation

  6. Instrumental neutron activation determination of gold in mineral raw materials using a californium neutron source

    International Nuclear Information System (INIS)

    Shilo, N.A.; Ippolitov, E.G.; Ivanenko, V.V.; Kustov, B.N.; Zheleznov, V.V.; Aristov, G.N.; Kovalenko, V.V.; Kondrat'ev, N.B.

    1983-01-01

    A facility using a californium neutron source and a method for the neutron activation analysis of gold were developed. The sensitivity of the determination is 0.1 g/t. The causes of random and systematic errors have been studied. It is concluded that in prospection and evaluation of gold ore deposists, the traditional test tube analysis for gold may be replaced with the developed method. (author)

  7. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  8. Design and validation of a photon insensitive multidetector neutron spectrometer based on Dysprosium activation foils

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.; Bedogni, R.; Palermo, I.; Esposito, A.; Delgado, A.; Angelone, M.; Pillon, M.

    2011-01-01

    This communication describes a photon insensitive passive neutron spectrometer consisting of Dysprosium (Dy) activation foils located along three perpendicular axes within a single moderating polyethylene sphere. The Monte Carlo code MCNPX 2.6 was used to optimize the spatial arrangement of the detectors and to derive the spectrometer response matrix. Nearly isotropic response in terms of neutron fluence for energies up to 20 MeV was obtained by combining the readings of the detectors located at the same radius value. The spectrometer was calibrated using a previously characterized 14 MeV neutron beam produced in the ENEA Frascati Neutron Generator (FNG). The overall uncertainty of the spectrometer response matrix at 14 MeV, assessed on the basis of this experiment, was ±3%.

  9. Investigation of electrically exploded large area foil for current switching

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Boyko, A.M.; Kostyukov, V.N.; Kuzyaev, A.I.; Kulagin, A.A.; Mamyshev, V.I.; Mezhevov, A.B.; Nechaev, A.I.; Petrukhin, A.A.; Protasov, M.S.; Shevtsov, V.I.; Yakubov, V.B.

    1990-01-01

    The possibility of microsecond ∼40 MA current switching from EMG into a quasiconstant inductive load by an electrically exploded foil is investigated. The copper foil of large area, S ∼ 10 4 cm 2 , was placed between thin-walled insulators into a coaxial transmission line (TL). This paper shows a conceptual device scheme. To feed a foil opening switch (FOS), a disc explosive magnetic generator (DEMG) with 20 μs current rise time was employed. An inductive coaxial load was connected to a FOS at a moment, that was close to the foil vaporization start by means of an axisymmetric explosive current commutator (ECC)

  10. A new method for making long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Sugai, Isao; Ishii, Sabro; Hattori, Toshiyuki; Muto, Hideshi; Takahashi, Yohsuke; Kato, Hajime; Yamazaki, Kuniaki.

    1989-01-01

    We have developed a new method for preparation of long-lived carbon stripper foils, based on the modification of our 'controlled DC arc-discharge method'. The carbon foils consist of multi-layers, and carbon particles in each layer are emitted from the electrode in AC arc-discharge or from the cathode electrode in DC arc-discharge. The lifetimes of the carbon foils made by the new method are equal to or longer than those prepared by the controlled DC arc-discharge method. The new method is simple and powerful to make long-lived carbon stripper foils with higher reliability and reproducibility than the previous method. (author)

  11. Examination of the picture properties of luminescence memory foils

    International Nuclear Information System (INIS)

    Ewert, U.; Heine, S.; Nockemann, C.; Stade, J.; Tillack, G.R.; Wessel, H.; Zscherpel, U.; Mattis, A.

    1995-01-01

    Luminescence memory foils are a new medium for radiography without films. They are known by the name of image plates or digital memory foils. The suitability of such systems for industrial radiography is examined. (orig.) [de

  12. A state enumeration of the foil knot

    OpenAIRE

    Ramaharo, Franck; Rakotondrajao, Fanja

    2017-01-01

    We split the crossings of the foil knot and enumerate the resulting states with a generating polynomial. Unexpectedly, the number of such states which consist of two components are given by the lazy caterer's sequence. This sequence describes the maximum number of planar regions that is obtained with a given number of straight lines. We then establish a bijection between this partition of the plane and the concerned foil splits sequence.

  13. Transient extracellular application of gold nanostars increases hippocampal neuronal activity.

    Science.gov (United States)

    Salinas, Kirstie; Kereselidze, Zurab; DeLuna, Frank; Peralta, Xomalin G; Santamaria, Fidel

    2014-08-20

    With the increased use of nanoparticles in biomedical applications there is a growing need to understand the effects that nanoparticles may have on cell function. Identifying these effects and understanding the mechanism through which nanoparticles interfere with the normal functioning of a cell is necessary for any therapeutic or diagnostic application. The aim of this study is to evaluate if gold nanoparticles can affect the normal function of neurons, namely their activity and coding properties. We synthesized star shaped gold nanoparticles of 180 nm average size. We applied the nanoparticles to acute mouse hippocampal slices while recording the action potentials from single neurons in the CA3 region. Our results show that CA3 hippocampal neurons increase their firing rate by 17% after the application of gold nanostars. The increase in excitability lasted for as much as 50 minutes after a transient 5 min application of the nanoparticles. Further analyses of the action potential shape and computational modeling suggest that nanoparticles block potassium channels responsible for the repolarization of the action potentials, thus allowing the cell to increase its firing rate. Our results show that gold nanoparticles can affect the coding properties of neurons by modifying their excitability.

  14. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming.

    Science.gov (United States)

    Wang, Xiao; Li, Cong; Ma, Youjuan; Shen, Zongbao; Sun, Xianqing; Sha, Chaofei; Gao, Shuai; Li, Liyin; Liu, Huixia

    2016-07-13

    This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils) and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils) were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  15. Radiochemical study of the reactions of heavy ions with gold

    International Nuclear Information System (INIS)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions

  16. Radiochemical study of the reactions of heavy ions with gold

    Energy Technology Data Exchange (ETDEWEB)

    Binder, I.

    1977-07-01

    Thick gold foils have been bombarded with heavy-ion projectiles at energies above the Coulomb barrier. The radioactive products were identified and their yields measured using gamma-ray spectrometry and an extensive series of computer programs developed for the data analysis. The total mass-yield distribution was extracted from the data using charge-dispersion curves inferred from the experimental results. One observes a change in the mass-yield distributions corresponding to primarily fusion-fission tractions occurring with the lighter projectiles Ne-20 and Ar-40 and deep-inelastic transfer reactions predominating with heavier Kr-84, Kr-86, and Xe-136 projectiles. For the deep-inelastic transfer reaction, more mass transfer is seen to occur for a higher incident projectile energy, and the Gaussian distribution of products shows exponential tailing. The preferred direction for mass transfer is from gold to the projectile nucleus. Sequential fission is a likely fate for nucludes beyond the lead shell closure. The ''gold finger'' is explained as a combination of mass transfer, nucleon evaporation and sequential fission. The yields of gold nuclides indicate a superposition of two reaction mechanisms, quasi-elastic and deep-inelastic. The angular momentum involved with each mechanism determines which of two isomeric states is the end product of the nuclear reaction. Suggestions are offered regarding the possibility of synthesizing super-heavy elements by use of heavy-ion nuclear reactions.

  17. Production and thickness determination of thin plastic scintillator foils

    International Nuclear Information System (INIS)

    Xiao, B.; Lee, S.; Hagel, K.; Haddad, F.; Li, J.; Lou, Y.; Mdeiwayeh, N.; Tezkratt, R.; Wada, R.; Utley, D.; Natowitz, J.B.

    1995-01-01

    A method of making large thin plastic scintillator foils with good uniformity is presented. The use of Fourier Transform Infrared Spectroscopy (FTIR) to test the foil uniformity and to establish an empirical thickness calibration curve is described. ((orig.))

  18. Selecting foils for identification lineups: matching suspects or descriptions?

    Science.gov (United States)

    Tunnicliff, J L; Clark, S E

    2000-04-01

    Two experiments directly compare two methods of selecting foils for identification lineups. The suspect-matched method selects foils based on their match to the suspect, whereas the description-matched method selects foils based on their match to the witness's description of the perpetrator. Theoretical analyses and previous results predict an advantage for description-matched lineups both in terms of correctly identifying the perpetrator and minimizing false identification of innocent suspects. The advantage for description-matched lineups should be particularly pronounced if the foils selected in suspect-matched lineups are too similar to the suspect. In Experiment 1, the lineups were created by trained police officers, and in Experiment 2, the lineups were constructed by undergraduate college students. The results of both experiments showed higher suspect-to-foil similarity for suspect-matched lineups than for description-matched lineups. However, neither experiment showed a difference in correct or false identification rates. Both experiments did, however, show that there may be an advantage for suspect-matched lineups in terms of no-pick and rejection responses. From these results, the endorsement of one method over the other seems premature.

  19. UV Ink-Jet printability and durability of stone and foil

    Directory of Open Access Journals (Sweden)

    Tadeja Muck

    2014-07-01

    Full Text Available he use of ultraviolet (UV printing technology has impacted printing industry in last years due to its applicability on many different »absorptive« as well as »non-absorptive« printing materials. The printability of building materials and recycled foils is relatively unknown. For primary building materials like stones, functionality can be explored with the use of UV printing technology; increased visual, informative effect or even “creative printing” of buildings. Also several aspects of recycled foils reusability as a printing material could be find (printed packaging material or also like secondary building materials. In the present study, printability of the stone and recycled foil and durability of UV prints was explored by means of macroscopically and microscopically characterization. Results indicate that higher print quality can be achieved on polished stone and on coated foil, which surfaces have higher smoothness. Durability of UV prints at freezing is higher at unpolished stone and coated foil that is at materials with the higher surface energy.

  20. Composite Design for a Foiling Optimist Dinghy

    Directory of Open Access Journals (Sweden)

    Carolyn Oddy

    2018-02-01

    Full Text Available In April 2017, a foiling Optimist dingy designed entirely by students, was successfully tested under standard sailing conditions in the waters outside Gothenburg. In order to achieve take of wind speeds as low as 6 m/s, a stiff and lightweight design of the dinghy and its foiling components was necessary. There have been few successful attempts to make an Optimist foil in a stable manner, as such there were no standards or recommendations available for the design. Therefore, a simulation driven structural design methodology for hydrofoils, centreboards, centreboard-to-hull connections, and necessary hull reinforcements using sandwich structures was adopted. The proposed design was then manufactured, allowing for a significantly stiffer hull and a 20% decrease in weight over a conventional Optimist. Excluding the rig and sail, the final weight came to 27 kg.

  1. Dynamic environmental control mechanisms for pneumatic foil constructions

    Science.gov (United States)

    Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John

    2017-11-01

    Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.

  2. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  3. An Experimental Study on Micro Clinching of Metal Foils with Cutting by Laser Shock Forming

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2016-07-01

    Full Text Available This paper describes a novel technique for joining similar and dissimilar metal foils, namely micro clinching with cutting by laser shock forming. A series of experiments were conducted to study the deformation behavior of single layer material, during which many important process parameters were determined. The process window of the 1060 pure aluminum foils and annealed copper foils produced by micro clinching with cutting was analyzed. Moreover, similar material combination (annealed copper foils and dissimilar material combination (1060 pure aluminum foils and 304 stainless steel foils were successfully achieved. The effect of laser energy on the interlock and minimum thickness of upper foils was investigated. In addition, the mechanical strength of different material combinations joined by micro clinching with cutting was measured in single lap shearing tests. According to the achieved results, this novel technique is more suitable for material combinations where the upper foil is thicker than lower foil. With the increase of laser energy, the interlock increased while the minimum thickness of upper foil decreased gradually. The shear strength of 1060 pure aluminum foils and 304 stainless steel foils combination was three times as large as that of 1060 pure aluminum foils and annealed copper foils combination.

  4. Assessment of gold exposure and contamination in galvanizing workplace by neutron activation analysis

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Amaral, A.M.; Maia, E.C.P.; Albinati, C.C.B.

    2007-01-01

    Gold is not included in the current list of elements considered essential to humans and there are many controversies related to its toxicity. According to the chemical characteristics of the element, Au 1+ is favored for binding at sites with S donor, such as sulfhydryl group (-SH) in proteins in biological systems. This tendency raises the possibility of health-related risk, mainly linked to a long-term exposure to high and low levels of gold. This paper highlights the determination of gold by instrumental neutron activation analysis (INAA) during the assessment of exposure levels to metals and possible workers' contamination in three galvanizing factories applying the same processes. This assessment is aimed at giving support to Worker's Health Awareness Program of the Municipal Department of Health of Belo Horizonte, Minas Gerais, Brazil. INAA, mix of k 0 and monostandard methods was applied to air filter, hair and toenail samples, and to urine samples. Solvent extraction of gold was carried out followed by comparative INAA. The results revealed that gold was present in all matrixes, indicating the exposure in the workplace and suggesting endogenous contamination. Is gold playing a role as a toxic element? (author)

  5. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  6. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Bashkin, S.

    1974-01-01

    Practical aspects of the application of low-energy accelerators to research in beam-foil spectroscopy are discussed, and the kinds of equipment and associated costs are described in some detail. Some typical beam-foil experiments, emphasizing the most recent studies, are treated so as to show how relatively simple facilities can be used to produce physics of great interest

  7. Activation analysis for platinum in gold and metals of the platinum group through 199Au

    International Nuclear Information System (INIS)

    Foerster, H.

    1976-01-01

    Platinum was determined in gold and in metals of the platinum group through 199 Au by activation analysis. The matrix was separated at the end of irradiation before the daughter nuclide was formed. Gold was separated by extraction with MIBK from 1

  8. Determination of concentration levels of arsenic, gold and antimony in particle-size fractions of gold ore using Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Nyarku, M.

    2009-02-01

    Instrumental Neutron Activation Analysis (INAA) has been used to quantify the concentrations of arsenic, gold and antimony in particle-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd, was first fractionated into fourteen (14) particle-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 microns and grains >2000 microns were not considered for analysis. Results of the sieving were analysed with easysieve software. The < 36 microns sub fraction was found to be the optimum, hosting bulk of all three elements. For arsenic, the element was found to be highly concentrated in < 36 to +100 microns size fractions and erratically distributed from +150 microns fraction and above. For gold, in exception of the sub fraction <36 which had exceptionally high concentration, the element is distributed in all the size fractions but slightly 'plays out' in the +150 to +400 microns fractions. Antimony occurrence in the sample was relatively high in <36 microns size fraction followed by 600 - 800, 800 - 1000, 400 - 600 and 36 - 40 microns size fractions in that order. Gold content in the sample was far higher than that of arsenic and antimony. Gold concentration in the composite sample was in the range 564 - 8420 ppm. Arsenic levels were higher as compared to antimony. The range of arsenic concentration in the composite sample was 14.33 - 186.92 ppm. Antimony concentration was in the range 1.09 - 9.48 ppm. (au)

  9. Investigating concentration distributions of arsenic, gold and antimony in grain-size fractions of gold ore using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nyarku, M.; Nyarko, B.J.B.; Serfor-Armah, Y.; Osae, S.

    2010-01-01

    Instrumental neutron activation analysis (INAA) has been used to quantify concentrations of arsenic (As), gold (Au) and antimony (Sb) in grain-size fractions of a gold ore. The ore, which was taken from the Ahafo project site of Newmont Ghana Gold Ltd., was fractionated into 14 grain-size fractions using state-of-the-art analytical sieve machine. The minimum sieve mesh size used was 36 μm and grains >2000 μm were not considered for analysis. Result of the sieving was analysed with easysieve (registered) software. The<36 μm subfraction was found to be the optimum, hosting bulk of all three elements. Arsenic was found to be highly concentrated in<36-100 μm size fractions and erratically distributed in from 150 μm fraction and above. For gold, with the exception of the subfraction <36 μm which had exceptionally high concentration, the element was found to be approximately equally distributed in all the size fractions but slightly 'played out' in 150-400 μm size fractions. Antimony occurrence in the sample was relatively high in <36 μm size fraction followed by 600, 800, 400 and 36 μm size fractions in that order. Gold content in the sample was comparatively far greater than arsenic and antimony; this is indicative of level of gold mineralization in the concession where the sample ore was taken. The concentration of gold in the composite sample was in the range 564-8420 ppm as compared to 14.33-186.92 ppm for arsenic and 1.09-9.48 ppm for antimony. Elemental concentrations were correlated with each other and with grain-size fractions and the relationships between these descriptive parameters were established.

  10. PENGEMBANGAN FOIL NACA SERI 2412 SEBAGAI SISTEM PENYELAMAN MODEL KAPAL SELAM

    Directory of Open Access Journals (Sweden)

    Ali Munazid

    2015-06-01

    Full Text Available Bentuk  foil menghasilkan gaya angkat (lift force ketika foil dilewati oleh aliran fluida  karena adanya pengaruh interaksi antara aliran fluida dengan permukaan foil yang mengakibatkan tekanan permukaan atas lebih kecil dari permukaan bawah. Bagaimana mengaplikasikan teori foil pada hydroplane kapal selam sebagai  system penyelaman, dengan membalik foil maka lift force tersebut menjadi gaya ke bawah, dengan demikian memungkinkan kapal selam dapat menyelam, melayang dan bermanouver di bawah air, seperti halnya gerak pesawat terbang yang terbang dan melayang dengan menggunakan sayap. Dilakukan penelitian dan pengamatan terhadap kemampuan penyelaman (diving plan dari foil NACA seri 2412 pada model kapal selam, dengan mencari nilai Cl (coefisien lift di Laboratorium, serta mendesain bentuk badan kapal selam dan analisa gaya-gaya yang bekerja pada model kapal selam, jumlah gaya-gaya yang bekerja keatas lebih rendah dari gaya-gaya ke bawah maka kapal selam mampu menyelam. Penerapan Hydroplane sebagai diving plane dapat diterapkan, kemampuan penyelaman dipengaruhi oleh sudut flip  Hydroplane dan kecepatan model, semakin besar kecepatan dan sudut flip maka semakin besar kedalaman penyelaman yang dapat dilakukan.

  11. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  12. Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities.

    Science.gov (United States)

    Manivasagan, Panchanathan; Alam, Moch Syaiful; Kang, Kyong-Hwa; Kwak, Minseok; Kim, Se-Kwon

    2015-06-01

    Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.

  13. Measurement of neutron spectra in varied environments by the foil-activation method with arbitrary trials

    International Nuclear Information System (INIS)

    Kelly, J.G.; Vehar, D.W.

    1987-12-01

    Neutron spectra have been measured by the foil-activation method in 13 different environments in and around the Sandia Pulsed Reactor, the White Sands Missile Range Fast Burst Reactor, and the Sandia Annular Core Research Reactor. The spectra were obtained by using the SANDII code in a manner that was not dependent on the initial trial. This altered technique is better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial-dependent methods. For some of the configurations, studies have also been made of how well the solution is determined in each energy region. The experimental methods and the techniques used in the analyses are thoroughly explained. 34 refs., 51 figs., 40 tabs

  14. Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones - an agricultural waste.

    Science.gov (United States)

    Soleimani, Mansooreh; Kaghazchi, Tahereh

    2008-09-01

    In this study, hard shell of apricot stones was selected from agricultural solid wastes to prepare effective and low cost adsorbent for the gold separation from gold-plating wastewater. Different adsorption parameters like adsorbent dose, particle size of activated carbon, pH and agitation speed of mixing on the gold adsorption were studied. The results showed that under the optimum operating conditions, more than 98% of gold was adsorbed onto activated carbon after only 3h. The equilibrium adsorption data were well described by the Freundlich and Langmuir isotherms. Isotherms have been used to obtain thermodynamic parameters. Gold desorption studies were performed with aqueous solution mixture of sodium hydroxide and organic solvents at ambient temperatures. Quantitative recovery of gold ions is possible by this method. As hard shell of apricot stones is a discarded as waste from agricultural and food industries, the prepared activated carbon is expected to be an economical product for gold ion recovery from wastewater.

  15. Effect of the physical properties of activated carbon in the gold adsorption from cyanide media

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.

    2010-01-01

    The effect of the physical properties of an activated carbon such as pore size distribution, specific surface, pore average diameter, in the gold adsorption from cyanide solution with the gold to the Au (CN) - 2 form, was studied. To meet the proposed objectives two carbons were studied: carbon A with specific surface of 985 m 2 / g, 57 % of micropores and 1.85 nm as average diameter of pores and carbon B with specific surface of 786 m 2 / g, 27 % and pores of 2.35 nm as average diameter of pores; both granular carbons made from coconut shell. Batch adsorption tests were performed in a reactor of 500 ml of capacity with mechanical stirring at constant temperature. The effect of cations present in the aqueous solutions such as Ca 2 +, Na+, K+ and Li+, the effect of pore size distribution, the effect of average pore diameter and surface area were evaluated in function of the rate and amount of gold adsorbed on the activated carbons denominated as A and B. The results to indicate that the physical properties of an activated carbon are an important factor in the gold adsorption process in terms of rate and amount of adsorbed gold. The carbon B with 786 m 2 / g of specific surface area reached a higher load per unit area (0.02 mg Au/m 2 ) in relation to the carbon B of 985 m 2 / g which had a load of 0.01 mg Au / m 2 , after 6 h of contact carbon-solution. The rate adsorption of gold in both carbons is controlled by mass transfer in the liquid film surrounding the carbon particles to short times or small loads of gold in the particles, far from equilibrium. Applying a first order kinetic model, it was obtained that the ratio of the kinetic constants for carbons A and B, ie (kB / kA), fluctuates in a value of 3 for the different cations in study. In general it is possible to say that the rate adsorption and the amount of adsorbed gold increased with the increase in macropores and with the increasing pore average diameter. The presence of cations favors the gold

  16. Determination of gold by neutron activation analysis in some selected precambrian rocks from Eastern India

    International Nuclear Information System (INIS)

    Das, N.R.; Bhattacharyya, S.N.; Chakraborty, P.S.

    1976-01-01

    Gold was determined in epidiorite schist from Kunderkocha, in green phyllite from near Sausel in granodiorite from Kunderkocha and in galena quartz vein from Sausel by neutron activation analysis. The analysis was carried out both in destructive and non-destructive ways followed by γ-ray spectrometry. The process of preconcentration involves digestion of the rock samples with hydrofluoric acid and its dissolution in aqua regia solution, extraction of gold from the aqua regia solution by methylisobutyl ketone, back extraction of gold from the organic to the aqueous layer, and coprecipitation of gold by a known amount (0.7 g) of lead sulphide. The amounts of gold that were determined in the respective rock samples varied in the range 10 -4 -10 -6 %. Besides gold, some other trace constituents such as As, Ag, Sb, W, Se, La, Sn, etc. were also detected and their approximate order of occurence was determined. (T.G.)

  17. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  18. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.

    Science.gov (United States)

    Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin

    2016-04-01

    Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).

  19. A study of molecular effects in beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Andresen, B.; Veje, E.

    1979-01-01

    Relative populations of ns + nd levels in hydrogen as functions of the principal quantum number n have been measured with beams of H + , H 2 + , and H 3 + impinging on thin carbon foils at 25 keV/amu and 100 keV/amu. Enhancements of 20% and 45% for dimer and trimer clusters are observed uniformly for all levels. A possible explanation in terms of screening of the Coulomb repulsion between the protons inside the foil, thus reducing the effective thickness of the foil, is given. All relative populations closely follow an nsup(P) power law with p = -4.0 and -3.7 at 25 keV/amu and 100 keV/amu, respectively, in perfect analogy with atomic collision experiments. O + /O 2 + -foil excitations at 100 keV and 155 keV show a simular molecular effect, but in reverse with a larger mean charge produced by the dimer. (Auth.)

  20. Effects of stern-foil submerged elevation on the lift and drag of a hydrofoil craft

    Science.gov (United States)

    Suastika, K.; Apriansyah

    2018-03-01

    Effects of the stern-foil submerged elevation on the lift and drag of a hydrofoil craft are studied by using computational fluid dynamics (CFD) and by considering three alternative stern-foil submerged elevations. The submerged elevation of the front foil is kept constant in all the alternatives. From among the alternatives, the deepest stern-foil placement results in the highest stern-foil lift with the highest foil’s lift-to-drag ratio. However, considering the lift-to-drag ratio of the whole foil-strut-hull system, the shallowest stern-foil placement results in the highest lift-to-drag ratio. The struts and the foil’s submerged elevation significantly affects the drag of the whole foil-strut-hull system.

  1. Stresses in the foil of an electron accelerator extraction channel

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Makarenko, T.I.; Tokmakov, I.L.

    1983-01-01

    Stresses in the foil of an electron accelerator extraction channel are assessed with account of contributions of thermal expansion and stress concentrations during switchings. Optimization of extraction grid parameters of the electron accelerator extraction channel and choice of foil material for high current electron beam is conducted. It is suggested that an extraction grid with circular cells and Al-Mg foil should be used. A simple formula applicable for design calculations is proposed for evaluation of stress concentration coefficient during phase switchings

  2. Utilization of surface active sites on gold in preparation of highly reactive interfaces for alcohols electrooxidation in alkaline media

    International Nuclear Information System (INIS)

    Cherevko, Serhiy; Kulyk, Nadiia; Chung, Chan-Hwa

    2012-01-01

    Graphical abstract: - Abstract: Pt/Au and Pd/Au surface interfaces show very high activity in electrocatalytic oxidation of alcohols in alkaline media. In this work, we present a method for preparation of such structures, which is based on galvanic displacement of the more noble gold with the less noble elements, and investigate their electrocatalytic properties. We propose that active states atoms on the surface of gold may be replaced with Pt and Pd. The generation of active sites on gold is achieved by cathodization in acidic solution. We show that depending on the cathodization time (active sites amount) gold surface electrochemistry changes from that resembling Au to the one typical for pure Pt. The Pt/Au structures prepared with a trace amount of platinum show extremely high electrocatalytic activity. The peak current of methanol oxidation on the Pt/Au electrode is more than an order of magnitude higher than that of the platinum film electrode and more than two orders of magnitude higher than that on the gold unactivated electrode. The difference in the peak current of ethanol oxidation between the Pt/Au and Pt electrodes is ca. 25 times. Moreover, similar deposition of Pt and Pd on active sites on high surface area gold prepared by hydrogen evolution assisted deposition and improved electrocatalytic properties of such structures toward alcohols oxidation is shown.

  3. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard; Vej-Hansen, Ulrik Grønbjerg; Larsen, Britt Hvolbæk

    2011-01-01

    We investigate how the chemical reactivity of gold nanoparticles depends on the cluster size and shape using a combination of simulation techniques at different length scales, enabling us to model at the atomic level the shapes of clusters in the size range relevant for catalysis. The detailed......-coordinated active sites is found, and their reactivities are extracted from models based on Density Functional Theory calculations. This enables us to determine the chemical activity of clusters in the same range of particle sizes that is accessible experimentally. The variation of reactivity with particle size...... is in excellent agreement with experiments, and we conclude that the experimentally observed trends are mostly explained by the high reactivity of under-coordinated corner atoms on the gold clusters. Other effects, such as the effect of the substrate, may influence the reactivities significantly, but the presence...

  4. Dynamics of laser mass-limited foil interaction at ultra-high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas (MoE) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, Y.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q. [College of Science, National University of Defense Technology, Changsha 410073 (China); Pukhov, A. [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf (Germany)

    2014-05-15

    By using three-dimensional particle-in-cell simulations with synchrotron radiation damping incorporated, dynamics of ultra-intense laser driven mass-limited foils is presented. When a circularly polarized laser pulse with a peak intensity of ∼10{sup 22} W/cm{sup 2} irradiates a mass-limited nanofoil, electrons are pushed forward collectively and a strong charge separation field forms which acts as a “light sail” and accelerates the protons. When the laser wing parts overtake the foil from the foil boundaries, electrons do a betatron-like oscillation around the center proton bunch. Under some conditions, betatron-like resonance takes place, resulting in energetic circulating electrons. Finally, bright femto-second x rays are emitted in a small cone. It is also shown that the radiation damping does not alter the foil dynamics radically at considered laser intensities. The effects of the transverse foil size and laser polarization on x-ray emission and foil dynamics are also discussed.

  5. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  6. Monolithic exploding foil initiator

    Science.gov (United States)

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  7. Preparation of self-supporting metallic foils of nickel isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the fourth report on the practical methods of target preparation for use in low energy nuclear experiments following the previous one (INS-J-150). An electroplating method has been developed as a dependable and reproducible technique for making self-supporting metallic foils of nickel in the thickness range of 0.5 to 10 mg/cm 2 . The procedures minimized the necessary amount of material so that nickel isotopes could be processed economically. Impurity contamination of the nickel foils during the electroplating process was less than 500 ppm, and the thickness variation in each foil was less than 3% of the central thickness. (auth.)

  8. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  9. Calculation of electron transmission through aluminium foil

    International Nuclear Information System (INIS)

    Abroyan, M.A.; Mel'ker, A.I.; Mikhajlin, A.I.; Sirotinkin, V.V.; Tokmakov, I.L.

    1987-01-01

    Calculated by Monte Carlo method energy and angular distributions of electrons transmitted through aluminium foil with 50 μm thickness are presented. 200-500 electron energy ranges and angles of electron incidence on foil from 0 to 40 deg C are considered. That allows to use results for more universal accelerator group, for example, for accelerators with scanning beam used in industry. The received values of angular and energy characteristics allow to increase essentially estimation accuracy of accelerator extraction devices and dose distribution on irradiating item

  10. Theoretical evaluation of self-shielding factors due to scattering resonances in foils

    International Nuclear Information System (INIS)

    Selander, W.N.

    1960-06-01

    A semi-analytical method is given for evaluating self-shielding factors for activation measurements which use thin foils having neutron scattering resonances. The energy loss by scattering in the foil is taken into account. The energy-dependent neutron angular distribution is expanded as a double series, the coefficients of which are (energy dependent) solutions of an infinite set of coupled integral equations. These are truncated in some suitable manner and solved numerically. The leading term of the series is proportional to the average, or effective flux in the activation sample. The product of this terra and the neutron capture cross-section is integrated numerically over the resonance to give the resonance self-shielding correction. Figure 4 shows resonance self-shielding factors derived in this mariner for the 132ev resonance in Co-59 and figure 5 shows similar results for the two Mn-55 resonances at 337ev and 1080ev. Self-shielding factors for 1/v capture are not significantly different from unity. (author)

  11. Determination of gold in some Myanmar indigenous medicines by neutron activation analysis

    International Nuclear Information System (INIS)

    Myint U.; Sein Sein Yi

    1995-01-01

    Gold has been determined in two Myanmar indigenous medicines TMF 14 (Devaauthada), TMF 15 (Shwe Thwe Say) by neutron activation analysis using an Am(Be) radionuclide neutron source. The activity of 411 keV of the 198 Au has been measured. (author). 2 refs., 1 fig., 1 tab

  12. Benchmark calculation for radioactivity inventory using MAXS library based on JENDL-4.0 and JEFF-3.0/A for decommissioning BWR plants

    Directory of Open Access Journals (Sweden)

    Tanaka Ken-ichi

    2016-01-01

    Full Text Available We performed benchmark calculation for radioactivity activated in a Primary Containment Vessel (PCV of a Boiling Water Reactor (BWR by using MAXS library, which was developed by collapsing with neutron energy spectra in the PCV of the BWR. Radioactivities due to neutron irradiation were measured by using activation foil detector of Gold (Au and Nickel (Ni at thirty locations in the PCV. We performed activation calculations of the foils with SCALE5.1/ORIGEN-S code with irradiation conditions of each foil location as the benchmark calculation. We compared calculations and measurements to estimate an effectiveness of MAXS library.

  13. DML and Foil Measurements of ETA Beam Radius

    International Nuclear Information System (INIS)

    Nexsen, W; Weir, J

    2005-01-01

    Simultaneous measurements of the ETA beam radius have been made with a quartz foil and a diamagnetic loop (DML). While the measurements agreed at some settings they diverged at others. While the DML measures the rms radius of the total beam, the foil measures mainly the core and the divergence can be explained by the presence of a low density halo. Evidence of such a halo from other measurements is presented

  14. Alignment and orientation effects in beam-foil experiments

    International Nuclear Information System (INIS)

    Band, Y.B.

    1975-01-01

    A theory of the orientation and alignment of atoms observed upon emergence from tilted foils is presented. The interaction with the foil surface is taken into account in the production process of particular states. Once they are produced, the evolution of these states, under the influence of the residual field near the surface, is calculated in the fashion introduced by Eck. The most general effect of this evolution is presented

  15. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    Science.gov (United States)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and

  16. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  17. Intense heavy ion beam-induced effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, Katharina

    2016-08-01

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  18. Finite Element Modelling of Bends and Creases during Folding Ultra Thin Stainless Steel Foils

    NARCIS (Netherlands)

    Datta, K.; Akagi, H.; Geijselaers, Hubertus J.M.; Huetink, Han

    2003-01-01

    Finite Element Modelling of an ultra thin foil of SUS 304 stainless steel is carried out. These foils are 20 mm and below in thickness. The development of stresses and strains during folding of these foils is studied. The objective of this study is to induce qualities of paper in the foils of

  19. New Gold(I) Organometallic Compounds with Biological Activity in Cancer Cells

    NARCIS (Netherlands)

    Bertrand, Benoit; de Almeida, Andreia; van der Burgt, Evelien P. M.; Picquet, Michel; Citta, Anna; Folda, Alessandra; Rigobello, Maria Pia; Le Gendre, Pierre; Bodio, Ewen; Casini, Angela

    N-Heterocyclic carbene gold(I) complexes bearing a fluorescent coumarin ligand were synthesized and characterized by various techniques. The compounds were examined for their antiproliferative effects in normal and tumor cells in vitro; they demonstrated moderate activity and a certain degree of

  20. Compressor ported shroud for foil bearing cooling

    Science.gov (United States)

    Elpern, David G [Los Angeles, CA; McCabe, Niall [Torrance, CA; Gee, Mark [South Pasadena, CA

    2011-08-02

    A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

  1. Investigation of methods to prepare carbon foils and to determine their thicknesses

    International Nuclear Information System (INIS)

    Xu Guoji; Guan Shouren; Luo Xinghua; Meng Xiangjin

    1988-01-01

    The development and study of methods to prepare carbon foils and to determine their thicknesses are described. The methods of making carbon foils consist of carbon-arc evaporation, resistance heating, electron bombardment, cracking ethylene and centrifugal precipitation. Weighing, α-particle measurement, Rutherford backscattering and spectrophotometer are used to determine the thickness of carbon foils

  2. Beyond the Great Wall: gold of the silk roads and the first empire of the steppes.

    Science.gov (United States)

    Radtke, Martin; Reiche, Ina; Reinholz, Uwe; Riesemeier, Heinrich; Guerra, Maria F

    2013-02-05

    Fingerprinting ancient gold work requires the use of nondestructive techniques with high spatial resolution (down to 25 μm) and good detection limits (micrograms per gram level). In this work experimental setups and protocols for synchrotron radiation induced X-ray fluorescence (SRXRF) at the BAMline of the Berlin electron storage ring company for synchrotron radiation (BESSY) in Berlin for the measurement of characteristic trace elements of gold are compared considering the difficulties, shown in previous works, connected to the quantification of Pt. The best experimental conditions and calculation methods were achieved by using an excitation energy of 11.58 keV, a silicon drift chamber detector (SDD) detector, and pure element reference standards. A detection limit of 3 μg/g has been reached. This newly developed method was successfully applied to provenancing the Xiongnu gold from the Gol Mod necropolis, excavated under the aegis of the United Nations Educational, Scientific and Cultural Organization (UNESCO). The composition of the base alloys and the presence of Pt and Sn showed that, contrary to what is expected, the gold foils from the first powerful empire of the steppes along the Great Wall were produced with alluvial gold from local placer deposits located in Zaamar, Boroo, and in the Selenga River.

  3. Electrochemical etching of a niobium foil in methanolic HF for electrolytic capacitor

    International Nuclear Information System (INIS)

    Kim, Kyungmin; Park, Jiyoung; Cha, Gihoon; Yoo, Jeong Eun; Choi, Jinsub

    2013-01-01

    Electrochemical etching of niobium foil in order to enlarge the surface area for the application in electrolytic capacitor was carried out in a methanolic electrolyte. We found that the pit density and depth are not linearly proportional to concentration of HF and applied potential: there is the optimal concentration of HF at each applied potential. The optimal etching condition was obtained at 50 V in 0.99 vol.% HF, which exhibited the capacitance of 350 μF cm −2 . Pit density and depth of pits on electrochemical etched Nb foil under different conditions were counted from SEM images and electrochemical impedance spectroscopy (EIS) of the etched Nb foils was carried out for the capacitance measurement. Equivalent circuit model showing less than 5% error was suggested for applying to the etched niobium foil. - Highlights: • Surface enlargement of Nb foil can be achieved by electrochemical etching in methanolic HF. • Electrolytic capacitor of etched niobium foil exhibits a capacitance of 350 μF cm −2 . • The method provides a way of developing commercially viable process

  4. Region-selective electroless gold plating on polycarbonate sheets by UV-patterning in combination with silver activating

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Qinghua [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zijin' gang Campus, Hangzhou 310058 (China); Chen Hengwu, E-mail: hwchen@zju.edu.c [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zijin' gang Campus, Hangzhou 310058 (China); Wang Yi [Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Zijin' gang Campus, Hangzhou 310058 (China)

    2010-02-28

    A simple, time- and cost-effective approach for region-selective metalization of polycarbonate (PC) surface has been established by combining photoresist-free UV-patterning with tin- and amine-free silver activating and electroless gold plating. The surface of PC sheets was exposed to the UV lights emitted from a low-pressure mercury lamp through a photomask, the micro pattern on the mask being transferred to the PC surface due to the photochemical generation of carboxyl groups on the UV-exposed region. The UV-exposed PC sheets were then treated with an ammoniacal AgNO{sub 3} solution, so that the silver ions were chemisorbed by the photochemically generated carboxyl groups. When the Ag{sup +}-adsorbed PC sheet was immersed into an electroless gold plating bath, shiny gold film quickly deposited on the UV-exposed region, resulting in the formation of a micro gold devices on the PC surface. The whole plating process including UV-exposure, surface activating and gold plating can be completed in about 3-4 h. Attenuated total reflection Fourier transformation infrared spectrometer (ATR-FT-IR), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and scanning electron microscope (SEM) were employed to trace the surface change during the plating process. Cyclic voltammetry (CV) and Scotch-tape test were employed to characterize the electrochemical properties and adhesion strength of the prepared micro gold devices, respectively. The prepared micro gold electrodes were demonstrated for amperometric detection of hydrogen peroxide.

  5. Validation of calculated self-shielding factors for Rh foils

    Science.gov (United States)

    Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.

    2010-10-01

    Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.

  6. Modified Monkman–Grant relationship for austenitic stainless steel foils

    Energy Technology Data Exchange (ETDEWEB)

    Osman Ali, Hassan, E-mail: hassaninsan@gmail.com [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Tamin, Mohd Nasir, E-mail: taminmn@fkm.utm.my [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2013-02-15

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman–Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ε{sub min},ε{sub r},t{sub r} can be expressed using the modified Monkman–Grant equation with exponent m′= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m′ = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman–Grant ductility factor λ{sup ′} saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ{sup ′} increases drastically (λ{sup ′}=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  7. Effects of polymer corrosion inhibitor on widening etch tunnels of aluminum foil for capacitor

    International Nuclear Information System (INIS)

    Ban, Chaolei; He, Yedong; Shao, Xin; Wang, Zhishen

    2014-01-01

    Highlights: •With PSSA, the exterior surface dissolution of etched Al foil is suppressed. •With PSSA, the interior surface dissolution of etched Al foil is facilitated. •With PSSA, the tunnels are widened along the entire length. •With PSSA, the area and capacitance of etched Al foil are significantly improved. -- Abstract: We investigated the effects of polymeric corrosion inhibitor polystyrene sulfonic acid (PSSA) additive to 3% HNO 3 solution on widening tunnels of pre-etched aluminum foil by electrochemical DC etching for aluminum electrolytic capacitors, using scanning electron microscopy and polarization curves. With trace PSSA, the dissolution of exterior surface of etch tunnels of Al foil is suppressed and the dissolution of interior surface of etch tunnels of Al foil is facilitated, respectively. The tunnels transform from circular cone to circular column in shape and pits-merging on the surface is weakened, leading to significant increase in the surface area and specific capacitance of the Al foil. The amounts of reduced thickness and weight of Al foil during the widening process of etch tunnels can be decreased if PSSA is employed

  8. Modeling of high-pressure generation using the laser colliding foil technique

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-03-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed.

  9. Modeling of high-pressure generation using the laser colliding foil technique

    International Nuclear Information System (INIS)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-01-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed

  10. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity

    Science.gov (United States)

    Zayed, Mervat F.; Eisa, Wael H.

    2014-03-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  11. Experimental and theoretical analysis of a rigid rotor supported by air foil bearings

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Hansen, Asger J. T.; Santos, Ilmar

    2015-01-01

    The popularity of compressors utilizing foil bearings is increasing. Their mechanical design is challenging, and an accurate prediction of the bearing coefficients is important. A mathematical model taking into account the foil structure, and the detailed geometry of a three pad foil bearing...

  12. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    International Nuclear Information System (INIS)

    Hönnicke, M.G.; Delben, G.J.; Godoi, W.C.; Swinka-Filho, V.

    2014-01-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films

  13. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    Science.gov (United States)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  14. Self-propulsion of a pitching foil

    Science.gov (United States)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  15. Gold Supported on Graphene Oxide: An Active and Selective Catalyst for Phenylacetylene Hydrogenations at Low Temperatures

    DEFF Research Database (Denmark)

    Shao, Lidong; Huang, Xing; Teschner, Detre

    2014-01-01

    A constraint to industrial implementation of gold-catalyzed alkyne hydrogenation is that the catalytic activity was always inferior to those of other noble metals. In this work, gold was supported on graphene oxide (Au/GO) and used in a hydrogenation application. A 99% selectivity toward styrene...

  16. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  17. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.; Le, Duy; Echeverrí a, Elena M.; Nguyen, Ariana E.; Rawal, Takat B; Naghibi Alvillar, Sahar; Kandyba, Viktor; Al-Mahboob, Abdullah; Losovyj, Yaroslav B.; Katsiev, Khabiboulakh; Valentin, Michael D.; Huang, Chun-Yu; Gomez, Michael J.; Lu, I-Hsi; Guan, Alison; Barinov, Alexei; Rahman, Talat S; Dowben, Peter A.; Bartels, Ludwig

    2017-01-01

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  18. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.

    2017-12-09

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  19. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    Science.gov (United States)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  20. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  1. Gas permeability of thin polyimide foils prepared by in-situ polymerisation

    International Nuclear Information System (INIS)

    Stolarz, Anna; Varlam, Mihai; Wellum, Roger

    2008-01-01

    The entrance windows to the gas detector chambers as well as to the target containers used in high-energy and high-intensity accelerators must be as thin as possible to minimise energy losses of the particles used in astrophysics and nuclear physics studies. Because of their good physical properties, polyimide foils are often considered as suitable material for such windows, but commercially available foils, having a thickness greater than 7-8 μm (>1 mg/cm 2 ), would cause energy losses of particles significant for some nuclear reactions studied. Foils prepared by in-situ polymerisation can, however, be as thin as 0.07 μm (∼10 μg/cm 2 ). The permeability of 4 μm foils produced by in-situ polymerisation has been measured at room temperature for He and Ar. For He measurements were performed in the pressure range of 4-70 mbar and for Ar in the range of 20-140 mbar and the permeability was found to be in good agreement with the values published for the thicker commercial foils

  2. The target-to-foils shift in simultaneous and sequential lineups.

    Science.gov (United States)

    Clark, Steven E; Davey, Sherrie L

    2005-04-01

    A theoretical cornerstone in eyewitness identification research is the proposition that witnesses, in making decisions from standard simultaneous lineups, make relative judgments. The present research considers two sources of support for this proposal. An experiment by G. L. Wells (1993) showed that if the target is removed from a lineup, witnesses shift their responses to pick foils, rather than rejecting the lineups, a result we will term a target-to-foils shift. Additional empirical support is provided by results from sequential lineups which typically show higher accuracy than simultaneous lineups, presumably because of a decrease in the use of relative judgments in making identification decisions. The combination of these two lines of research suggests that the target-to-foils shift should be reduced in sequential lineups relative to simultaneous lineups. Results of two experiments showed an overall advantage for sequential lineups, but also showed a target-to-foils shift equal in size for simultaneous and sequential lineups. Additional analyses indicated that the target-to-foils shift in sequential lineups was moderated in part by an order effect and was produced with (Experiment 2) or without (Experiment 1) a shift in decision criterion. This complex pattern of results suggests that more work is needed to understand the processes which underlie decisions in simultaneous and sequential lineups.

  3. Acceleration of polyethelene foils by laser driven ablation

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Burginyon, G.A.; Haas, R.A.

    1974-01-01

    The production of thermonuclear energy, by laser driven implosion of spherical DT shells, with achievable laser technology, requires the development of an efficient and stable implosion. Certain aspects of the acceleration of the spherical shells can be studied experimentally by irradiating thin, 5 to 25 μm, polyethelene foils. The results of foil acceleration experiments performed using a Nd:YAG-Glass laser capable of producing 150 J, 1 nsec pulses will be discussed. The dynamics of the accelerated foil, the ion blow off, high energy electron spectrum (6 to 180 keV), x-ray spectrum (1 to 150 keV) the spatial distribution of the x-ray emission, the laser beam focal spot energy distribution, the laser temporal pulse shape and spectrum for reflected and transmitted radiation have all been measured simultaneously. The results of these measurements are compared with detailed numerical simulations. (U.S.)

  4. Electrophoretically applied dielectrics for amorphous metal foils used in pulsed power saturable reactors

    International Nuclear Information System (INIS)

    Sharp, D.J.; Harjes, H.C.; Mann, G.A.

    1989-01-01

    Amorphous metal foil-wound inductors have been tested as ferromagnetic saturable inductive elements for pulsed-power (multi-terawatt) switching modules in the inertial confinement fusion program at Sandia National Laboratories. In simulated capacitor testing premature dielectric breakdown of thin polyethylene terephthalate film insulation in the inductor windings occurs at considerably below 2500 V. This appears to be due to inadvertant dielectric damage from micro-spikes on the amorphous foil surface. Electron micrographs and dielectric breakdown data illustrate that electrophoretically-applied dielectric coatings, deposited from organic aqueous colloid dispersions, can be used to provide insulating coatings on the foil which provide a 240% improvement (6000 V) in the breakdown strength of wound amorphous foil inductors. The theory and operation of a dedicated electrophoretic continuous coating system is described. The machine was constructed and successfully applied for dielectric coating of amorphous metal foil. Additional possible applications exist for practical dielectric coating of metallic films or foils used in various commercial wound-type capacitor structures. 7 refs., 9 figs

  5. Characteristics of a plasma flow field produced by a metal array bridge foil explosion

    Science.gov (United States)

    Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN

    2018-07-01

    To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.

  6. Forensic discrimination of aluminum foil by SR-XRF and ICP-AES

    International Nuclear Information System (INIS)

    Kasamatsu, Masaaki; Suzuki, Yasuhiro; Suzuki, Shinichi; Miyamoto, Naoki; Watanabe, Seiya; Shimoda, Osamu; Takatsu, Masahisa; Nakanishi, Toshio

    2010-01-01

    The application of synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) was investigated for the forensic discrimination of aluminum foil by comparisons of the elemental components. Small fragments (1 x 1 mm) were taken from 4 kinds of aluminum foils produced by different manufactures and used for measurements of the XRF spectrum at BL37XU of SPring-8. A comparison of the XRF spectra was effective for the discrimination of aluminum foils from different sources, because significant differences were observed in the X-ray peak intensities of Fe, Cu, Zn, Ga, Zr and Sn. These elements, except for Zr and Sn in the aluminum foils and NIST SRM1258 (Aluminium Alloy 6011), were also determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The observed values of Fe, Cu, Zn and Ga in NIST standard samples by ICP-AES showed satisfactorily good agreements with the certified or information values with relative standard deviations from 1.1% for Zn to 6.7% for Ga. The observed values for the aluminum foils by ICP-AES were compared with those by SR-XRF. Correlation coefficients from 0.997 for Cu/Fe to 0.999 for Zn/Fe and Ga/Fe were obtained between the ratio of the elemental concentration by ICP-AES and normalized the X-ray intensity by SR-XRF. This result demonstrates that a comparison of the normalized X-ray intensity is nearly as effective for the discrimination of aluminum foils as quantitative analysis by ICP-AES. Comparisons of the analytical results by SR-XRF allow the discrimination of all aluminum foils using only a 1 mm 2 fragment with no destruction of the samples. (author)

  7. The effect of chordwise flexibility on flapping foil propulsion in quiescent fluid

    Science.gov (United States)

    Shinde, Sachin; Arakeri, Jaywant

    2010-11-01

    Motivated to understand the role of wing flexibility of flying creatures during hovering, we experimentally study the effect of chordwise flexibility on the flow generated in quiescent fluid by a sinusoidally pitching rigid symmetrical foil with a flexible flap attached at the trailing edge. This foil produces a narrow, coherent jet containing reverse Karman vortex street, and a corresponding thrust. The thrust and flow is similar to that produced by a hovering bird or insect, however the mechanism seems to be different from known hovering mechanisms. Novelty of the present hovering mechanism is that the thrust generation is due to the coordinated pushing action of rigid foil and flexible flap. We identify the flow and vortex generation mechanism. This foil produces jet flows over a range of flapping frequencies and amplitudes. In contrast, the foil without flap i.e. with rigid trailing edge produces a weak, divergent jet that meanders randomly. Appending a flexible flap to the foil suppresses jet-meandering and strengthens the jet. Flexibility of flap is crucial in determining the flow structure. This study is useful in designing MAVs and thrusters.

  8. Molecular imaging of banknote and questioned document using solvent-free gold nanoparticle-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Tang, Ho-Wai; Wong, Melody Yee-Man; Chan, Sharon Lai-Fung; Che, Chi-Ming; Ng, Kwan-Ming

    2011-01-01

    Direct chemical analysis and molecular imaging of questioned documents in a non/minimal-destructive manner is important in forensic science. Here, we demonstrate that solvent-free gold-nanoparticle-assisted laser desorption/ionization mass spectrometry is a sensitive and minimal destructive method for direct detection and imaging of ink and visible and/or fluorescent dyes printed on banknotes or written on questioned documents. Argon ion sputtering of a gold foil allows homogeneous coating of a thin layer of gold nanoparticles on banknotes and checks in a dry state without delocalizing spatial distributions of the analytes. Upon N(2) laser irradiation of the gold nanoparticle-coated banknotes or checks, abundant ions are desorbed and detected. Recording the spatial distributions of the ions can reveal the molecular images of visible and fluorescent ink printed on banknotes and determine the printing order of different ink which may be useful in differentiating real banknotes from fakes. The method can also be applied to identify forged parts in questioned documents, such as number/writing alteration on a check, by tracing different writing patterns that come from different pens.

  9. The foil equilibration method for carbon in sodium

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H; Frees, G; Peric, Z [Karlsruhe Nuclear Research Center, Institute of Materials and Solid State Research, Karlsruhe (Germany)

    1980-05-01

    Among the non-metallic impurities in sodium, carbon plays an important role since at high temperatures the structural materials exposed to sodium are subject to carburization and decarburization depending on the carbon activity of the sodium. Carburization of austenitic stainless steels leads to reduction in ductility and fatigue properties whereas decarburization results in a decrease in the high temperature creep strength. A knowledge of the carbon activities in sodium will help understanding of the carbon transfer phenomena in operating sodium systems of the fast reactors, and also carbon diffusion, microstructural stability and mechanical behaviour of materials under different service conditions. An understanding of the carbon behaviour in sodium becomes difficult in view of the complexities of the different species present as elemental carbon, carbide, acetylide, carbonate, and cyanide. Carbon estimation techniques for sodium presently in use are: chemical analytical methods, on-line carbon monitors, and oil equilibration method. Various chemical methods have been developed for the estimation of different species like acetylide, cyanide, carbonate, elemental carbon, and total carbon in sodium. All these methods are time consuming and subject to various errors. The on-line monitors developed for carbon in sodium are able to give continuous indication of carbon activities and have higher sensitivity than the chemical methods. A still more simple method for the determination of carbon activities is by the foil equilibration first published by Natesan et al. Because of its simplicity like the vanadium wire equilibration for oxygen it is being used widely for the estimation of carbon activities in sodium systems. Carbon concentrations in operating sodium systems estimated by this procedure by applying solubility relation to carbon activities have yielded very low values of carbon, lower than the sensitivity limits of the chemical estimation methods. Foil

  10. The foil equilibration method for carbon in sodium

    International Nuclear Information System (INIS)

    Borgstedt, H.; Frees, G.; Peric, Z.

    1980-01-01

    Among the non-metallic impurities in sodium, carbon plays an important role since at high temperatures the structural materials exposed to sodium are subject to carburization and decarburization depending on the carbon activity of the sodium. Carburization of austenitic stainless steels leads to reduction in ductility and fatigue properties whereas decarburization results in a decrease in the high temperature creep strength. A knowledge of the carbon activities in sodium will help understanding of the carbon transfer phenomena in operating sodium systems of the fast reactors, and also carbon diffusion, microstructural stability and mechanical behaviour of materials under different service conditions. An understanding of the carbon behaviour in sodium becomes difficult in view of the complexities of the different species present as elemental carbon, carbide, acetylide, carbonate, and cyanide. Carbon estimation techniques for sodium presently in use are: chemical analytical methods, on-line carbon monitors, and oil equilibration method. Various chemical methods have been developed for the estimation of different species like acetylide, cyanide, carbonate, elemental carbon, and total carbon in sodium. All these methods are time consuming and subject to various errors. The on-line monitors developed for carbon in sodium are able to give continuous indication of carbon activities and have higher sensitivity than the chemical methods. A still more simple method for the determination of carbon activities is by the foil equilibration first published by Natesan et al. Because of its simplicity like the vanadium wire equilibration for oxygen it is being used widely for the estimation of carbon activities in sodium systems. Carbon concentrations in operating sodium systems estimated by this procedure by applying solubility relation to carbon activities have yielded very low values of carbon, lower than the sensitivity limits of the chemical estimation methods. Foil

  11. Determination of gold and silver in geological standard samples MGI by instrument neutron activation analysis

    International Nuclear Information System (INIS)

    Lu Huijiuan; Zhou; Yunlu

    1987-01-01

    Gold and silver in geological standard samples MGI were determined by instrument neutron activation analysis. The various interferences of nuclides were considered. Corrected factors of the geometry in different positions have been determined. Using the geological standard sample MGM and radiochemical separation neutron activation method as reference, the reliability of this method is proved. Gold content in samples is 0.4-0.009 g/t, silver content is 9-0.3 g/t. Standard deviation is less than 3.5%, the precision of the measurement is 4.8-11.6%

  12. Dosimetric response of united, commercially available CTA foils for sup 6 sup 0 Co gamma rays

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two kinds of untinted CTA foils: Fuji CTR-125 dosimetric foil and technical CTA-T foil, produced by 'Zaklady Chemiczne, 'Gorzow Wielkopolski' as support for light-sensitive layers of amateur photo-films, for sup 6 sup 0 Co gamma ray dosimetry was investigated. In spite of rather bad physical parameters of the technical foil (spread of foil thickness, high and different initial absorbance) the dosimetric response of both foils for sup 6 sup 0 Co gamma rays was similar. The CTA-T foil can be used for routine dosimetry providing that dosimetric signals have to be calculated exactly as recommended by the ASTM (American Society for Testing and Materials) standard, i.e. as the difference of absorbance of irradiated and (the same) non-irradiated foil. Any other approach may lead to high errors of dose evaluation. The last is true also for other CTA foils, especially after long self-life.

  13. Investigation of the effect of support thermal treatment on gold-based catalysts' activity towards propene total oxidation

    International Nuclear Information System (INIS)

    Lamallem, M.; Cousin, R.; Thomas, R.; Siffert, St.; Aissi, F.; Aboukais, A.

    2009-01-01

    This paper reports a study on the effect of support thermal treatment on the activity of gold-based catalysts for the total oxidation of propene. Ce 0.3 Ti 0.7 O 2 supports were prepared using sol-gel method. These compounds are calcined at 400, 500 and 600 C. Physico-chemical properties of synthesized materials were characterized by means of XRD, DR/UV-vis and H 2 -TPR. Then gold was deposited on these supports by the deposition precipitation method. Thus the catalytic activity of these solids in the propene oxidation was evaluated. On the basis of the catalytic results, a better activity is obtained when gold is deposited on Ce 0.3 Ti 0.7 O 2 support previously calcined at 400 C under air. (authors)

  14. Magazine for handling stripping foils in a particle accelerator

    International Nuclear Information System (INIS)

    Gorka, A.J. Jr.

    1975-01-01

    Thin foils for stripping a particle beam are stored in a magazine that is operable remotely to display an individual foil, release it when it is spent, and repeat this process. The magazine is operable in the high-vacuum, high-radiation environment in the interior of a particle accelerator, and it uses the magnetic field of the accelerator to operate the display and dropping mechanism. (U.S.)

  15. Personnel Neutron Monitoring at AB Atomenergi

    International Nuclear Information System (INIS)

    Hagsgaard, S.; Widell, C.O.

    1964-02-01

    The routine personnel monitoring of fast neutrons is carried out by the counting of tracks in a nuclear emulsion. The tracks are counted in a microscope on a projection screen. This is a very tedious job and is only done on irradiated films which are counted over 6 mm 2 . The irradiated films are selected according to the recorded dose on the gamma film. It is often difficult to tell how much the visible tracks have faded during a two-weeks period. Fortunately the fading does not often exceed 20 % for this period. If the dosimeter has been gamma-irradiated, it may be difficult to recognize the proton tracks. If the film is stored for some time before being developed, this gamma fog will to some extent fade away. For large neutron doses a foil activation dosimeter is used. This dosimeter consists of a cadmium-shielded phosphorus foil, a cadmium shielded gold foil and an unshielded gold foil. The phosphorus foil has to be counted shortly after exposure

  16. Personnel Neutron Monitoring at AB Atomenergi

    Energy Technology Data Exchange (ETDEWEB)

    Hagsgaard, S; Widell, C O

    1964-02-15

    The routine personnel monitoring of fast neutrons is carried out by the counting of tracks in a nuclear emulsion. The tracks are counted in a microscope on a projection screen. This is a very tedious job and is only done on irradiated films which are counted over 6 mm{sup 2}. The irradiated films are selected according to the recorded dose on the gamma film. It is often difficult to tell how much the visible tracks have faded during a two-weeks period. Fortunately the fading does not often exceed 20 % for this period. If the dosimeter has been gamma-irradiated, it may be difficult to recognize the proton tracks. If the film is stored for some time before being developed, this gamma fog will to some extent fade away. For large neutron doses a foil activation dosimeter is used. This dosimeter consists of a cadmium-shielded phosphorus foil, a cadmium shielded gold foil and an unshielded gold foil. The phosphorus foil has to be counted shortly after exposure.

  17. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    Science.gov (United States)

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  18. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  19. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99 mTc for medical purposes is currently produced from the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers. (author)

  20. Irradiation tests of 99Mo isotope production targets employing uranium metal foils

    International Nuclear Information System (INIS)

    Hofman, G.L.; Wiencek, T.C.; Wood, E.L.; Snelgrove, J.L.; Suripto, A.; Nasution, H.; Lufti-Amin, D.; Gogo, A.

    1996-01-01

    Most of the world's supply of 99m Tc for medical purposes is currently produced form the decay of 99 Mo derived from the fissioning of high-enriched uranium (HEU). Substitution of low-enriched uranium (LEU) metal foils for the HEU UO 2 used in current target designs will allow equivalent 99 Mo yields with little change in target geometries. Substitution of uranium metal for uranium alloy and aluminide in other target designs will also allow the conversion of HEU to LEU. Several uranium-metal-foil targets have been fabricated at ANL and irradiated to prototypic burnup in the Indonesian RSG-GAS reactor. Postirradiation examination of the initial test indicated that design modifications were required to allow the irradiated foil to be removed for chemical processing. The latest test has shown good irradiation behavior, satisfactory dismantling and foil removal when the U-foil is separated from its containment by metallic, fission-recoil absorbing barriers

  1. Extraction of gold and mercury from sea water with bismuth diethyldithiocarbamate prior to neutron activation-. gamma. -spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.C.; Lo, J.M.; Wai, C.M. (Idaho Univ. Moscow (USA). Dept. of Chemistry)

    1983-11-01

    Gold and mercury in sea water can be selectively extracted by bismuth diethyldithiocarbamate into chloroform at pH <= 1. The matrix species and many other trace elements in the system are effectively removed during extraction. When neutron activation-..gamma..-spectrometry is used, the detection limits for gold and mercury are 0.001 and 0.01 ..mu..g l/sup -1/, respectively. The relative precision is 9% for gold and 13% for mercury.

  2. Personnel neutron dosimetry applications of track-size distributions on electrochemically etched CR-39 foils

    International Nuclear Information System (INIS)

    Hankins, D.E.; Homann, S.G.; Westermark, J.

    1988-01-01

    The track-size distribution on electrochemically etched CR-39 foils can be used to obtain some limited information on the incident neutron spectra. Track-size distributions on CR-39 foils can also be used to determine if the tracks were caused by neutrons or if they are merely background tracks (which have a significantly different track-size distribution). Identifying and discarding the high-background foils reduces the number of foils that must be etched. This also lowers the detection limit of the dosimetry system. We have developed an image analyzer program that can more efficiently determine the track density and track-size distribution, as well as read the laser-cut identification numbers on each foil. This new image analyzer makes the routine application of track-size distributions on CR-39 foils feasible. 2 refs., 3 figs

  3. Highly sensitive urea sensing with ion-irradiated polymer foils

    International Nuclear Information System (INIS)

    Fink, Dietmar; Muñoz Hernandez, Gerardo; Alfonta, Lital

    2012-01-01

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms – tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  4. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Directory of Open Access Journals (Sweden)

    Jandro L. Abot

    2018-02-01

    Full Text Available Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more.

  5. Foil Strain Gauges Using Piezoresistive Carbon Nanotube Yarn: Fabrication and Calibration

    Science.gov (United States)

    Góngora-Rubio, Mário R.; Kiyono, César Y.; Mello, Luis A. M.; Cardoso, Valtemar F.; Rosa, Reinaldo L. S.; Kuebler, Derek A.; Brodeur, Grace E.; Alotaibi, Amani H.; Coene, Marisa P.; Coene, Lauren M.; Jean, Elizabeth; Santiago, Rafael C.; Oliveira, Francisco H. A.; Rangel, Ricardo; Thomas, Gilles P.; Belay, Kalayu; da Silva, Luciana W.; Moura, Rafael T.; Seabra, Antonio C.; Silva, Emílio C. N.

    2018-01-01

    Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more. PMID:29401745

  6. Monte Carlo simulation of positron induced secondary electrons in thin carbon foils

    International Nuclear Information System (INIS)

    Cai, L H; Yang, B; Ling, C C; Beling, C D; Fung, S

    2011-01-01

    Emission of secondary electrons induced by the passage of low energy positrons through thin carbon foils was studied by the Monte Carlo method. The positron and electron elastic cross sections were calculated by partial wave analysis. The inelastic positron-valence-electron was described by the energy loss function obtained from dielectric theory. The positron-core-electron interaction was modelled by the Gryzinski's excitation function. Positron transport inside the carbon foil was simulated in detail. Secondary electrons created by positrons and high energy secondary electrons through inelastic interactions were tracked through the foil. The positron transmission coefficient and secondary electron yielded in forward and backward geometry are calculated and dependences on positron energy and carbon foil thickness are discussed.

  7. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  8. Transient and steady state behaviour of elasto–aerodynamic air foil bearings, considering bump foil compliance and top foil inertia and flexibility: A numerical investigation

    DEFF Research Database (Denmark)

    Nielsen, Bo Bjerregaard; Santos, Ilmar F.

    2017-01-01

    utilise two types of eight-node isoparametric elements. The rotor is modelled as a rigid body without rotational inertia, i.e. as a journal. The bump foil is included via a bilinear version of the simple elastic foundation model. This paper introduces the bilinear simple elastic foundation model, which...

  9. Stripper foil failure modes and cures at the Oak Ridge Spallation Neutron Source

    Directory of Open Access Journals (Sweden)

    M. A. Plum

    2011-03-01

    Full Text Available The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H^{0} excited states created during the H^{-} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H^{-} beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  10. Brazing Inconel 625 Using the Copper Foil

    Science.gov (United States)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  11. Transmission of fast molecular ions through thin foils

    International Nuclear Information System (INIS)

    Pietsch, W.J.; Gemmell, D.S.; Cooney, P.J.; Kanter, E.P.; Kurath, D.; Ratkowski, A.J.; Vager, Z.; Zabransky, B.J.

    1979-01-01

    New results on the transmission of fast molecular ions through thin foils are presented and a mechanism for the transmission process is proposed. The main feature of the postulated mechanism is that a finite fraction of the incident molecular beam does not undergo a strong Coulomb explosion while traversing the foil. Because the emerging fragments are at large internuclear separations, there is an enhanced probability for the formation of bound, long-range, excited electronic states following electron capture at the rear surface of the target

  12. Charge-state distributions of 100, 175, 275, and 352 MeV gold ions emerging from thin carbon foils

    International Nuclear Information System (INIS)

    Martin, J.A.; Auble, R.L.; Erb, K.A.; Jones, C.M.; Olsen, D.K.

    1985-01-01

    These measurements were undertaken as a consequence of our failure early this year to accelerate Au +46 ions in the Oak Ridge Isochronous Cyclotron using an injected beam of 352 MeV 197 Au +17 from the 25 MV tandem accelerator. Following that unsuccessful test, we made a preliminary measurement of the charge-state distribution of 352 MeV 197 Au ions emerging from a carbon foil using the bending magnet that is a part of the cyclotron beam injection system. The measured mean charge was approx.38.5, about 4.5 charge-states lower than predicted by the Sayer semi-empirical formula. The measurements reported here were done more precisely and systematically confirm that preliminary result. 12 refs., 5 figs., 4 tabs

  13. Charge-state distributions of 100, 175, 275, and 352 MeV gold ions emerging from thin carbon foils

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.A.; Auble, R.L.; Erb, K.A.; Jones, C.M.; Olsen, D.K.

    1985-01-01

    These measurements were undertaken as a consequence of our failure early this year to accelerate Au/sup +46/ ions in the Oak Ridge Isochronous Cyclotron using an injected beam of 352 MeV /sup 197/Au/sup +17/ from the 25 MV tandem accelerator. Following that unsuccessful test, we made a preliminary measurement of the charge-state distribution of 352 MeV /sup 197/Au ions emerging from a carbon foil using the bending magnet that is a part of the cyclotron beam injection system. The measured mean charge was approx.38.5, about 4.5 charge-states lower than predicted by the Sayer semi-empirical formula. The measurements reported here were done more precisely and systematically confirm that preliminary result. 12 refs., 5 figs., 4 tabs.

  14. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  15. 75 FR 1596 - Grant of Authority for Subzone Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock...

    Science.gov (United States)

    2010-01-12

    ... Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its...-purpose subzone at the aluminum foil liner stock manufacturing and distribution facilities of Reynolds... manufacturing and distribution of aluminum foil liner stock and aluminum foil at the facilities of Reynolds...

  16. Visualization and Measurement of the Deflagration of JA2 Bonded to Various Metal Foils

    Science.gov (United States)

    2016-01-01

    foil. Tapes had an acrylic -adhesive backing applied by the manufacturer. The conductive material, whether foil or tape, ran approximately ¾ the...event were obtained such that the 0.5-inch surface was facing the camera with the foil on the right edge. The thicknesses and tape/foil configuration...adhesive type, there were differences. A 2-mil Al tape was obtained from McMaster-Carr (product No. 7925A1). It had a 2- mil-thick acrylic adhesive

  17. Effects of the Addictives on Etching Characteristics of Aluminum Foil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.K.; Jang, J.M.; Chi, C.S. [Kookmin University, Seoul (Korea); Shin, D.C. [Sungnam Polytechnic, Sungnam (Korea); Lee, J.H.; Oh, H.J. [Hanseo University, Seosan (Korea)

    2001-01-01

    The effects of additives in the HCI etching solution on etching behaviors of aluminium foil as dielectric film for electrolytic capacitors were investigated. The etch pits formed in 1M hydrochloric acid containing ethylene glycol as an additive contain more fine and homogeneous etch tunnels compared to thoese in 1 M hydrochloric acid only, which led to the increase in the effective internal surface area of aluminum foil. After anodizing of aluminum foil etched in etching solutions, the LCR meter results have shown that the capacitance of dielectric film etched in hydrochloric acid with ethylene glycol was increased remarkably compared to that etched in hydrochloric acid only. (author). 21 refs., 10 figs.

  18. Slowing down of 100 keV antiprotons in Al foils

    Science.gov (United States)

    Nordlund, K.

    2018-03-01

    Using energy degrading foils to slow down antiprotons is of interest for producing antihydrogen atoms. I consider here the slowing down of 100 keV antiprotons, that will be produced in the ELENA storage ring under construction at CERN, to energies below 10 keV. At these low energies, they are suitable for efficient antihydrogen production. I simulate the antihydrogen motion and slowing down in Al foils using a recently developed molecular dynamics approach. The results show that the optimal Al foil thickness for slowing down the antiprotons to below 5 keV is 910 nm, and to below 10 keV is 840 nm. Also the lateral spreading of the transmitted antiprotons is reported and the uncertainties discussed.

  19. Gold nanoparticles synthesis and biological activity estimation in vitro and in vivo.

    Science.gov (United States)

    Rieznichenko, L S; Dybkova, S M; Gruzina, T G; Ulberg, Z R; Todor, I N; Lukyanova, N Yu; Shpyleva, S I; Chekhun, V F

    2012-01-01

    The aim of the work was the synthesis of gold nanoparticles (GNP) of different sizes and the estimation of their biological activity in vitro and in vivo. Water dispersions of gold nanoparticles of different sizes have been synthesized by Davis method and characterized by laser-correlation spectroscopy and transmission electron microscopy methods. The GNP interaction with tumor cells has been visualized by confocal microscopy method. The enzyme activity was determined by standard biochemical methods. GNP distribution and content in organs and tissues have been determined via atomic-absorption spectrometry method; genotoxic influence has been estimated by "Comet-assay" method. The GNP size-dependent accumulation in cultured U937 tumor cells and their ability to modulate U937 cell membrane Na(+),K(+)-АТР-ase activity value has been revealed in vitro. Using in vivo model of Guerin carcinoma it has been shown that GNP possess high affinity to tumor cells. Our results indicate the perspectives of use of the synthesized GNP water dispersions for cancer diagnostics and treatment. It's necessary to take into account a size-dependent biosafety level of nanoparticles.

  20. Foil bearing performance in liquid nitrogen and liquid oxygen

    Science.gov (United States)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  1. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  2. Compliant Foil Journal Bearings - Investigation of Dynamic Properties

    DEFF Research Database (Denmark)

    Larsen, Jon Steffen; Santos, Ilmar

    . The influence of explicit and implicit boundary conditions are also investigated. Theoretical results for pressures, shaft equilibrium positions and film thickness are presented and compared to experimental results [17, 19]. A good agreement between experimental and theoretical results are found for large loads....../compliance of the foil structure is presented. The compliance of the foil structure is incorporated implicitly in the Reynolds equation which is accomplished through a modification of the film gap function [8]. The resulting non-linear equation is perturbed and solved by use of the finite element method following...

  3. Real-time simulator for designing electron dual scattering foil systems.

    Science.gov (United States)

    Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M

    2014-11-08

    The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system

  4. Determination of thorium in native gold by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Liu, Y.; Kraehenbuehl, U.

    1995-01-01

    Thorium concentrations in 11 native gold samples from different sources, e.g. placer gold, vein and lode gold were determined. Thorium was determined by radiochemical separation and measurement of protactinium from irradiated native gold samples. The chemical yield of the separation procedures is 90%. Other elements were measured by gamma-ray spectroscopy. The radiochemical separation procedures described in this work make accurate determination of Th concentrations in native gold at picogram concentrations possible. (orig.)

  5. On the use of Indium ({sup 115}In) activation foils for the study of neutron radiation field surrounding a not shielded cyclotron; Sobre o uso de folhas de ativacao de Indio ({sup 115}In) para o estudo do campo de radiacao neutronica ao redor de um ciclotron nao blindado

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana, E-mail: amgr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencia e Tecnologia das Radiacoes, Minerais e Materiais; Rodrigues, Sergio Luiz Moreira; Andrade, Ricardo Severino [Centro de Desenvolvimento da Tecnologia Nuclear (SECPRA/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Pesquisa e Producao de Radiofarmacos; Lacerda, Marco Aurelio de Sousa [Centro de Desenvolvimento da Tecnologia Nuclear (SEPRA/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Protecao Radiologica; Silva, Teogenes Augusto da [Centro de Desenvolvimento da Tecnologia Nuclear (SERAS/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico das Radiacoes Aplicadas a Saude

    2011-10-26

    Use activation foils of {sup 115}In were evaluated for study of neutron radiation field surrounding a non shielded 16.5 MeV cyclotron, during the production of fluorine-18. Two foils of {sup 115}In were used which were exposed to the neutron flux of target-chamber of the GEPETtrace-8 of CDTN/CNEN, Brazil. The first foil were positioned in front of cyclotron beam, and the second one in the diametral opposed position to the beam. It was possible to distinguish for the first foil the 417 keV photo peaks, attributed to the thermal and the 417 keV neutrons attributed to the fast neutrons. On the second foil it was only distinguished the 417 keV photopeak. The results had shown that it is possible to evaluate the fast and thermal neutron fraction surrounding the cyclotron by using indium foils. However, the short half life of the {sup 115}In makes unviable the simultaneous irradiation of a great number of foils

  6. Measurements by activation foils and comparative computations by MCNP code

    International Nuclear Information System (INIS)

    Kyncl, J.

    2008-01-01

    Systematic study of the radioactive waste minimisation problem is subject of the SPHINX project. Its idea is that burning or transmutation of the waste inventory problematic part will be realized in a nuclear reactor the fuel of which is in the form of liquid fluorides. In frame of the project, several experiments have been performed with so-called inserted experimental channel. The channel was filled up by the fluorides mixture, surrounded by six fuel assemblies with moderator and placed into LR-0 reactor vessel. This formation was brought to critical state and measurement with activation foil detectors were carried out at selected positions of the inserted channel. Main aim of the measurements was to determine reaction rates for the detectors mentioned. For experiment evaluation, comparative computations were accomplished by code MCNP4a. The results obtained show that very often, computed values of reaction rates differ substantially from the values that were obtained from the experiment. This contribution deals with analysis of the reasons of these differences from the point of view of computations by Monte Carlo method. The analysis of concrete cases shows that the inaccuracy of reaction rate computed is caused mostly by three circumstances:-space region that is occupied by detector is relatively very small;- microscopic effective cross-section R(E) of the reaction changes strongly with energy just in the energy interval that gives the greatest contribution to the reaction; - in the energy interval that gives the greatest contribution to reaction rate, the error of the computed neutron flux is great. These circumstances evoke that the computation of reaction rate with casual accuracy submits extreme demands on computing time. (Author)

  7. Spectroscopic Measurements of Planar Foil Plasmas Driven by a MA LTD

    Science.gov (United States)

    Patel, Sonal; Yager-Elorriaga, David; Steiner, Adam; Jordan, Nick; Gilgenbach, Ronald; Lau, Y. Y.

    2014-10-01

    Planar foil ablation experiments are being conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The experiment consists of a 400 nm-thick, Al planar foil and a current return post. An optical fiber is placed perpendicular to the magnetic field and linear polarizers are used to isolate the pi and sigma lines. The LTD is charged to +/-70 kV with approximately 400-500 kA passing through the foil. Laser shadowgraphy has previously imaged the plasma and measured anisotropy in the Magneto Rayleigh-Taylor (MRT) instability. Localized magnetic field measurements using Zeeman splitting during the current rise is expected to yield some insight into this anisotropy. Initial experiments use Na D lines of Al foils seeded with sodium to measure Zeeman splitting. Several ion lines are also currently being studied, such as Al III and C IV, to probe the higher temperature core plasma. In planned experiments, several lens-coupled optical fibers will be placed across the foil, and local magnetic field measurements will be taken to measure current division within the plasma. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant DGE 1256260.

  8. An active nano-supported interface designed from gold nanoparticles embedded on ionic liquid for depositing DNA

    International Nuclear Information System (INIS)

    Lu Liping; Kang Tianfang; Cheng Shuiyuan; Guo Xiurui

    2009-01-01

    The use of an active nano-interface designed from gold nanoparticles embedded on ionic liquid for DNA damage resulted from formalehyde (HCHO) is reported in this article. The active nano-interface was fabricated by depositing gold nanoparticles on the ionic liquid 1-butyl-3-methylimidazolium tetrafluroborate ([bmim][BF 4 ]). A glassy carbon electrode modified by this composite film was fabricated to immobilize DNA for probing into the damage resulted from HCHO. The modifying process was characterized by X-ray photoelectron spectroscopy, atomic force microscopy and electrochemistry involving electrochemical impedance spectroscopy. It was found that the modified film performs effectively in studying the DNA damage by electrocatalytic activity toward HCHO oxidation.

  9. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials

    Science.gov (United States)

    Pepin, Robert O.; Schlutter, Dennis J.; Becker, Richard H.; Reisenfeld, Daniel B.

    2012-07-01

    We report compositions and fluxes of light noble gases in the solar wind (SW), extracted by stepped pyrolysis and amalgamation from gold collector materials carried on the Genesis Solar Wind Sample Return Mission. Results are compared with data from other laboratories on SW-He, Ne and Ar distributions implanted in Genesis aluminum, carbon, and silicon collectors and extracted by laser ablation. Corrections for mass-dependent losses (“backscatter”) of impinging SW ions due to scattering from the collector material are substantially larger for gold than for these lower atomic weight targets. We assess such losses by SRIM simulation calculations of SW backscatter from gold which are applied to the measurements to recover the composition of the incident SW. Averaged results of integrated stepped pyrolysis and single-step amalgamation measurements, with 1σ errors, are as follows: for SW-Ne and Ar isotope ratios (3He/4He was not measured), 20Ne/22Ne = 14.001 ± 0.042, 21Ne/22Ne = 0.03361 ± 0.00018, 36Ar/38Ar = 5.501 ± 0.014; for SW element ratios, 4He/20Ne = 641 ± 15, 20Ne/36Ar = 51.6 ± 0.5; and for SW fluxes in atoms cm-2 s-1 at the Genesis L1 station, 4He = 1.14 ± 0.04 × 107, 20Ne = 1.80 ± 0.06 × 104, 36Ar = 3.58 ± 0.11 × 102. Except for the 21Ne/22Ne and 20Ne/36Ar ratios, these values are in reasonable accord (within ∼1-3σ) with measurements on different collector materials reported by one or both of two other Genesis noble gas research groups. We further find, in three stepped pyrolysis experiments on gold foil, that He, Ne and Ar are released at increasing temperatures without elemental fractionation, in contrast to a pyrolytic extraction of a single non-gold collector (Al) where the release patterns point to mass-dependent thermal diffusion. The pyrolyzed gold foils exhibit enhancements, relative to sample totals, in 20Ne/22Ne and 21Ne/22Ne ratios evolved at low temperatures. The absence of elemental fractionation in pyrolytic release from gold

  10. Temperature dependence of the beam-foil interaction

    International Nuclear Information System (INIS)

    Gay, T.J.; Berry, H.G.

    1978-01-01

    The beam energy dependence between 50 and 200 keV of the linear polarization fraction (M/I) of the 2s 1 S--3p 1 P, 5016 A transition in He I on temperature was measured. The thin carbon exciter foils were heated externally by nichrome resistance elements. The measurements of Hight et al. are duplicated; the energy and current dependences are the same for corresponding between beam heating and external heating. It was also observed that γ, the number of slow secondary electrons produced per incident ion, decreases with increasing foil temperature. These two effects, in conjunction, offer a plausible explanation for the variation of polarization with beam current density. 5 figures

  11. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly

  12. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    Merchant, A.R.; Lobanov, N.; Elliman, R.G.; Ophel, T.R.; Rode, A.; Weisser, D.C.; Turkentine, R.B.

    1998-01-01

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp 3 -like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  13. Foil Bearing Coating Behavior in CO2

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Matthew [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pasch, James Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fleming, Darryn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The Sandia S-CO2 Recompression Closed Brayton Cycle (RCBC) utilizes a series of gas foil bearings in its turbine-alternator-compressors. At high shaft rotational speed these bearings allow the shaft to ride on a cushion of air. Conversely, during startup and shutdown, the shaft rides along the foil bearing surface. Low-friction coatings are used on bearing surfaces in order to facilitate rotation during these periods. An experimental program was initiated to elucidate the behavior of coated bearing foils in the harsh environments of this system. A test configuration was developed enabling long duration exposure tests, followed by a range of analyses relevant to their performance in a bearing. This report provides a detailed overview of this work. The results contained herein provide valuable information in selecting appropriate coatings for more advanced future bearing-rig tests at the newly established test facility in Sandia-NM.

  14. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    Science.gov (United States)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  15. Long-Term Memory for Pictures under Conditions of Difficult Foil Discriminability.

    Science.gov (United States)

    Homa, Donald; Viera, Cynthia

    Research has demonstrated that subjects are sensitive to both thematic and non-thematic information in pictorial stimuli. Three experiments were conducted to investigate memory for pictures under conditions of difficult foil discriminability and lengthy retention intervals. The foils differed from the studied persons in the number and quality of…

  16. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    Energy Technology Data Exchange (ETDEWEB)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil); Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Laboratório de Instrumentação Nuclear; Carvalho, M.L. [Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa (Portugal); Zanatta, E.M. [Museu Imperial, Petropolis, RJ (Brazil). Laboratório de Conservação e Restauração; Cesareo, R., E-mail: rc.nardes@gmail.com [Instituto de Matemática e Física, Universidade de Sassari (Italy)

    2017-07-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  17. Evaluation of the gold leaf thickness in the coating of the imperial horse-drawn carriage emperor D. Pedro II

    International Nuclear Information System (INIS)

    Nardes, R.C.; Sanches, F.A.C.R.A.; Gama Filho, H.S.; Santos, R.S.; Oliveira, D.F.; Anjos, M.J.; Assis, J.T.; Lopes, R.T.; Zanatta, E.M.

    2017-01-01

    In this study, the presence of gold in the coatings of the emperor D. Pedro’s II Berlin device, part of the Imperial Museum of Petropolis, Brazil, was verified. Then perform was evaluation of the thickness of the gold leaf, using the technique of X-Ray Fluorescence, measuring peak intensities (Kα / Kβ or Lα / Lβ) of the elements of interest in the layer. It was possible to verify in the XRF spectra the presence of four elements: Ti, Fe, Au and Pb. The Pb was present at all sampling points, which indicates the presence of lead carbonate (lead-white) as preparation layer. The presence of Au at some sampling points indicates that several parts of the Berlin devices were covered with gold leaf. The presence of Ti and Fe is due to the application of golden mica over the entire length of the berlin device during the process of last restoration. The presence of the mica layer on the gold covering was relevant for gold thickness determination. The average value of the gold thickness obtained was 0.62 ± 0.51 μm, with a coefficient of variation of 83% and a confidence interval of 0.49-0.75 μm (α = 0.05). The values are compatible with the thickness of gold foil normally found in the coating of pieces of wood from the same period that the Berlin device was built. (author)

  18. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    Science.gov (United States)

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Direct Filling Golds: An In-Vitro Study of Microleakage as a Function of Condensation Force: An In-Vivo Study of Marginal Quality

    Science.gov (United States)

    1979-01-01

    three teeth in vivo in dogs . All three showed penetration surrounding the restorations. No mention was made as to whether a cavity varnish was...gingival reactions to gold foil restorations. J Periodontal 46:614, 1975. 12. Christensen, C.J.: -iologic implications of dental restorations. J -m Acad...1ack, C.17.: An investignr-ian of the physical characters of thle huna. tee--: in relation to their diseases and to practical dental o-ierations

  20. Structural stiffness and Coulomb damping in compliant foil journal bearings: Theoretical considerations

    Science.gov (United States)

    Ku, C.-P. Roger; Heshmat, Hooshang

    1994-07-01

    Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.

  1. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    Energy Technology Data Exchange (ETDEWEB)

    Adams, David P. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hirschfeld, Deidre A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hooper, Ryan J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Manuel, Michelle V. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

  2. Geochemical indicators of gold ore fields

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.G.

    1995-01-01

    The principles of selection of indicators for genetic reconstructions and prognostic valuations of gold mineralization of diverse morphological and geochemical types have been substantiated. The neutron-activation analysis with radiochemical separation and detection limit of 1-10 -8 %, instrumental neutron-activation analysis and atomic-absorption analysis are the main methods of determination of gold low contents in the rocks, as well as diverse elements, including transition, rare earth elements and tellurium, in gold. 50 refs.; 1 fig.; 3 tabs

  3. Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: Dependence on the foil thickness and projectile atomic number

    CERN Document Server

    Sato, Y; Muramatsu, M; Murakami, T; Yamada, S; Kobayashi, C; Kageyama, Y; Miyoshi, T; Ogawa, H; Nakabushi, H; Fujimoto, T; Miyata, T; Sano, Y

    2003-01-01

    We measured the charge fraction of 6.0 MeV/n heavy ions (C, Ne, Si, Ar, Fe and Cu) with a carbon foil at the NIRS-HIMAC injector. At this energy they are stripped with a carbon foil before being injected into two synchrotron rings with a maximum energy of 800 MeV/n. In order to find the foil thickness (D sub E) at which an equilibrium charge state distribution occurs, and to study the dependence of the D sub E -values on the projectile atomic number, we measured the exit charge fractions for foil thicknesses of between 10 and 350 mu g/cm sup 2. The results showed that the D sub E -values are 21.5, 62.0, 162, 346, 121, 143 mu g/cm sup 2 for C, Ne, Si, Ar, Fe, Cu, respectively. The fraction of Ar sup 1 sup 8 sup + ions was actually improved to 33% at 320 mu g/cm sup 2 from approx 15% at 100 mu g/cm sup 2. For Fe and Cu ions, the D sub E -values were found to be only 121 and 143 mu g/cm sup 2; there is a large gap between Ar and Fe, which is related to the differences in the ratio of the binding energy of the K-...

  4. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    Science.gov (United States)

    Casoli, Pierre; Grégoire, Gilles; Rousseau, Guillaume; Jacquet, Xavier; Authier, Nicolas

    2016-02-01

    CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  5. Characterization of the CALIBAN Critical Assembly Neutron Spectra using Several Adjustment Methods Based on Activation Foils Measurement

    Directory of Open Access Journals (Sweden)

    Casoli Pierre

    2016-01-01

    Full Text Available CALIBAN is a metallic critical assembly managed by the Criticality, Neutron Science and Measurement Department located on the French CEA Center of Valduc. The reactor is extensively used for benchmark experiments dedicated to the evaluation of nuclear data, for electronic hardening or to study the effect of the neutrons on various materials. Therefore CALIBAN irradiation characteristics and especially its central cavity neutron spectrum have to be very accurately evaluated. In order to strengthen our knowledge of this spectrum, several adjustment methods based on activation foils measurements are being studied for a few years in the laboratory. Firstly two codes included in the UMG package have been tested and compared: MAXED and GRAVEL. More recently, the CALIBAN cavity spectrum has been studied using CALMAR, a new adjustment tool currently under development at the CEA Center of Cadarache. The article will discuss and compare the results and the quality of spectrum rebuilding obtained with the UMG codes and with the CALMAR software, from a set of activation measurements carried out in the CALIBAN irradiation cavity.

  6. Design of organic complementary circuits and systems on foil

    CERN Document Server

    Abdinia, Sahel; Cantatore, Eugenio

    2015-01-01

    This book describes new approaches to fabricate complementary organic electronics, and focuses on the design of circuits and practical systems created using these manufacturing approaches. The authors describe two state-of-the-art, complementary organic technologies, characteristics and modeling of their transistors and their capability to implement circuits and systems on foil. Readers will benefit from the valuable overview of the challenges and opportunities that these extremely innovative technologies provide. ·         Demonstrates first circuits implemented using specific complementary organic technologies, including first printed analog to digital converter, first dynamic logic on foil and largest complementary organic circuit ·         Includes step-by-step design from single transistor level to complete systems on foil ·         Provides a platform for comparing state-of-the-art complementary organic technologies and for comparing these with other similar technologies, spec...

  7. Determination of Gold Traces in 4th Century B.C. Silver Coins By Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Ronen, Y.; Kubani, G.

    2004-01-01

    A method based on non-destructive neutron activation analysis was developed for measuring traces of gold in silver. This method requires a very small neutron source and, in this study, it was Am-Be of 5μCi. With a small neutron source, the equipment is not expensive and radiation protection problems are reduced. Our method was applied to ancient silver coins from the 4th-3rd centuries B.C. These coins were obols minted in Gaza and Yehud coins minted in Jerusalem. It was found that there is gold in all of them. Their relative gold content was found to be between 7*10 -3 and 8.9*10 - 3 with a relative accuracy of less than 7%. The gold content in silver coins can serve as a ''finger prints' for the origin of the silver

  8. Establishment of gold-quartz standard GQS-1

    Science.gov (United States)

    Millard, Hugh T.; Marinenko, John; McLane, John E.

    1969-01-01

    A homogeneous gold-quartz standard, GQS-1, was prepared from a heterogeneous gold-bearing quartz by chemical treatment. The concentration of gold in GQS-1 was determined by both instrumental neutron activation analysis and radioisotope dilution analysis to be 2.61?0.10 parts per million. Analysis of 10 samples of the standard by both instrumental neutron activation analysis and radioisotope dilution analysis failed to reveal heterogeneity within the standard. The precision of the analytical methods, expressed as standard error, was approximately 0.1 part per million. The analytical data were also used to estimate the average size of gold particles. The chemical treatment apparently reduced the average diameter of the gold particles by at least an order of magnitude and increased the concentration of gold grains by a factor of at least 4,000.

  9. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  10. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  11. Flapping foil power generator performance enhanced with a spring-connected tail

    Science.gov (United States)

    Liu, Zhengliang; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2017-12-01

    The flexibility effects on the performance of a flapping foil power generator are numerically studied by using the immersed boundary-lattice Boltzmann method at a Reynolds number of 1100. The flapping foil system consists of a rigid NACA0015 foil undergoing harmonic pitch and plunge motions and a passively actuated flat plate pinned to the trailing edge of the rigid foil. The flexibility is modeled by a torsional spring model at the conjuncture of the rigid foil and the tail. Here, a parametric study on mass density and natural frequency is conducted under the optimum kinematic condition of the rigid system identified from the literature and numerical simulations made for reduced frequency f* = 0.04-0.24 and pitch amplitude θ0 = 40°-90°. Four typical cases are discussed in detail by considering time histories of hydrodynamic loads and tail deformations under the optimal and non-optimal kinematic conditions. Results show that under the rigid-system optimal kinematic condition, a tail with appropriate mass density (μ = 0.60) and resonant frequency ( fr*=1.18 ) can improve the maximum efficiency by 7.24% accompanied by an increase of 6.63% in power compared to those of a rigid foil with a rigid tail. This is because the deflection of the tail reduces the low pressure region on the pressure surface (i.e., the lower surface during the upstroke or the upper surface during the downstroke) caused by the leading edge vortex after the stroke reversal, resulting in a higher efficiency. At high flapping frequencies, a spring-connected tail ( fr*=0.13 ) eliminates the large spike in the moment observed in high stiffness cases, reducing the power required for the pitch motion, resulting in 117% improvement in efficiency over that with a rigid tail at a reduced frequency of 0.24.

  12. The transmission of fast molecular ions through thin foils

    International Nuclear Information System (INIS)

    Pietsch, W.J.; Gemmell, D.S.; Cooney, P.J.; Kanter, E.P.; Kurath, D.; Ratkowski, A.J.; Vager, Z.; Zabransky, B.J.

    1980-01-01

    We present new results on the transmission of fast molecular ions through thin foils and propose a mechanism for the transmission process. The main feature of the postulated mechanism is that a finite fraction of the incident molecular beam does not undergo a strong Coulomb explosion while traversing the foil. Because the emerging fragments are at large internuclear separations, there is an enhanced probability for the formation of bound, long-range, excited electronic states following electron capture at the rear surface of the target. (orig.)

  13. Numerical Analysis of Thermal Stresses around Fasteners in Composite Metal Foils

    Science.gov (United States)

    Nammi, S. K.; Butt, J.; –L Mauricette, J.; Shirvani, H.

    2017-12-01

    The process of composite metal foil manufacturing (CMFM) has reduced a number of limitations associated with commercial additive manufacturing (AM) methods. The existing metal AM machines are restricted by their build envelope and there is a growing market for the manufacture of large parts using AM. These parts are subsequently manufactured in fragments and are fastened together. This paper analyses the thermal stresses around cylindrical fasteners for three layered metal composite parts consisting of aluminium foil, brazing paste and copper foil layers. The investigation aims to examine the mechanical integrity of the metallurgically bonded aluminium/copper foils of 100 micron thickness manufactured in a disc shape. A cylindrical fastener set at an elevated temperature of 100 °C is fitted in the middle of the disc which results in a steady-state thermal distribution. Radial and shear stresses are computed using finite element method which shows that non-zero shear stresses developed by the copper layer inhibit the axial slippage of the fastener and thereby establishing the suitability of rivet joints for CMFM parts.

  14. CREAM - a Cosmic Radiation Effects and Activation Monitor for space experiments: Pt. 1

    International Nuclear Information System (INIS)

    Mapper, D.; Stephen, J.H.; Farren, J.; Stimpson, B.P.; Bolus, D.J.; Ellaway, A.M.

    1987-12-01

    A detailed account is given of the design and construction of the experimental CREAM packages, intended for flight in the mid-deck area of the Space Transport System (Shuttle) Mission in 1986. The complete experiment involved; 1) a self-contained and battery powered activation monitor for measuring energy losses of charged particles; 2) CR-39 and Kapton polymer solid state nuclear track detectors for the detection of ionising particles; 3) metal foils of nickel, titanium and gold for neutron monitoring; and 4) thermoluminescent detectors for dosimetry measurements of the radiation background. The circuit design and detailed functioning of the active monitor is fully described, together with a complete discussion of the principles and operation of the passive monitors. (author)

  15. Installation and development of neutron radiography in the nuclear reactor (IEAR-1) of the Instituto de Energia Atomica, Brazil

    International Nuclear Information System (INIS)

    Fuga, R.

    1979-01-01

    Investigations on the field of Neutron Radiography have been performed at the IEAR-1, swimming pool reactor utilizing a collimated neutron beam and the so-called photographic transfer method as a mean of detection. The test object (sample) is placed between the neutron source (reactor core) and the gold foil. The acitivity of its different points is the inverse measure of the neutrons absorbed in the test sample at the corresponding points. The activity distribution on the gold foil is determined again by exposing it to an X-ray film. A multichannel type collimator consisting of an assemblage of stainless steel tubes inside an aluminium mantle (tube) was used as a direction beam selector. Improvements have been introduced in respect to the reduction of angular divergence and neutron scattering. To improve further the quality of the radiographs another collimator type has been developed using boric acid as a neutron absorber and moderator. Flux measurements by means of gold foil activation at reactor positions of interest were necessary to eliminate errors originating of different neutron flux values. The dependence of film darkening upon the neutron flux and other factors have been discussed. Finally neutron-and gama-radiographs of the same objects were evaluated in comparison. (author) [pt

  16. Flapping propulsion with side-by-side pitching foils

    Science.gov (United States)

    Huera-Huarte, Francisco

    2016-11-01

    Fish schools are one of the most common types of collective behaviour observed in nature. One of the reasons why fish swim in groups, is to reduce the cost of transport of the school. In this work we explore the propulsive performance of two foils flapping in a symmetric configuration, i.e. with an out-of-phase flapping motion. Direct thrust measurements and Particle Image Velocimetry (PIV) allowed a detailed examination of the forces and the wake generated by the system, for different kinematics (swept angles and frequencies) and shaft separations. For certain specific cases, volumetric PIV shows major differences on how the different structures in the wake of the system evolve, depending on the imposed kinematics and the side-by-side separation between the foils. Results obtained will be compared against data produced with isolated flapping foils with similar imposed kinematics, with the aim to better understand the interactions between both and the performance of the system as a whole. The author would like to acknowledge the financial support provided by the Spanish Ministerio de Economia y competitividad (MINECO) through Grant DPI2015-71645-P.

  17. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    OpenAIRE

    Idrus, Arifudin; Nur, I; Warmada, I. W; Fadlin, Fadlin

    2011-01-01

    DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This pa...

  18. Selecting lineup foils in eyewitness identification experiments: experimental control and real-world simulation.

    Science.gov (United States)

    Clark, S E; Tunnicliff, J L

    2001-06-01

    Experimental research on eyewitness identification follows a standard principle of experimental design. Perpetrator-present and perpetrator-absent lineups are constructed with the same foils, so that the two conditions are identical except for the presence or absence ofthe trueperpetrator ofthe crime. However, this aspect of the design simulates conditions that do not correspond to those of real criminal investigations. Specifically, these conditions can create perp-absent lineups in which the foils are selected based on their similarity to an unknown person--the real perpetrator. Analysis of the similarity relations predicts that when foils for perp-absent lineups are selected based on their match to the perpetrator the false identification rate will be lower than if the foils are selected based on their match to the innocent suspect. This prediction was confirmed in an experiment that compared these two perp-absent lineup conditions. These results suggest that false identification rates in previous experiments would have been higher if the foils had been selected based on their match to the innocent suspect, rather than the absent perpetrator.

  19. Investigations on electroluminescent tapes and foils in relation to their applications in automotive

    Science.gov (United States)

    Plotog, Ioan

    2015-02-01

    The electroluminescent (EL) tapes or foils having barrier films for an additional level of protection against the toughest environments conditions, offer a large area of applications. The EL lights, due to their characteristics, began to be used not only in the entertainment industry, but also for automotive and aerospace applications. In the paper, the investigations regarding EL foils technical performances in relation to their applications as light sources in automotive ambient light were presented. The experiments were designed based on the results of EL foils electrical properties previous investigations done in laboratory conditions, taking into account the range of automotive ambient temperatures for sinusoidal alternative supply voltage. The measurements for different temperatures were done by keeping the EL foils into electronic controlled oven that ensures the dark enclosure offering conditions to use a lux-meter in order to measure and maintain under control light emission intensity. The experiments results define the EL foils characteristics as load in automotive ambient temperatures condition, assuring so the data for optimal design of a dedicated inverter.

  20. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-01-01

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm 2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm 2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm 2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197 Au − (∼9MeV, ∼1μA) and 63 Cu − (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp 3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I D /I G ) measured by the Raman spectroscopy is 0.78

  1. Room temperature thin foil SLIM-cut using an epoxy paste: experimental versus theoretical results

    International Nuclear Information System (INIS)

    Bellanger, Pierre; Serra, Joao; Bouchard, Pierre-Olivier; Bernacki, Marc

    2015-01-01

    The stress induced lift-off method (SLIM) -cut technique allows the detachment of thin silicon foils using a stress inducing layer. In this work, results of SLIM-cut foils obtained using an epoxy stress inducing layer at room temperature are presented. Numerical analyses were performed in order to study and ascertain the important experimental parameters. The experimental and simulation results are in good agreement. Indeed, large area (5 × 5 cm 2 ) foils were successfully detached at room temperature using an epoxy thickness of 900 μm and a curing temperature of 150 °C. Moreover, three foils (5 × 3 cm 2 ) with thickness 135, 121 and 110 μm were detached from the same monocrystalline substrate. Effective minority carrier lifetimes of 46, 25 and 20 μs were measured using quasi-steady-state photoconductance technique in these foils after iodine ethanol surface passivation. (paper)

  2. The development of fast tantalum foil targets for short-lived isotopes

    CERN Document Server

    Bennett, J R J; Drumm, P V; Ravn, H L

    2003-01-01

    The development of fast tantalum foil targets for short-lived isotopes was discussed. It was found that the effusion was faster but the diffusion out of the foils was a limiting factor. The performance of the targets at ISOLDE with beams of **1**1Li, **1**2Be and **1**4Be was also analyzed. (Edited abstract) 13 Refs.

  3. GLASS AND SILICON FOILS FOR X-RAY SPACE TELESCOPE MIRRORS

    Directory of Open Access Journals (Sweden)

    M. MIKA

    2011-12-01

    Full Text Available Unique observations delivered by space X-ray imaging telescopes have been significantly contributing to important discoveries of current astrophysics. The telescopes’ most crucial part is a high throughput, heavily nested mirror array reflecting X-rays and focusing them to a detector. Future astronomical projects on large X-ray telescopes require novel materials and technologies for the construction of the reflecting mirrors. The future mirrors must be lightweight and precisely shaped to achieve large collecting area with high angular resolution of a few arc sec. The new materials and technologies must be cost-effective as well. Currently, the most promising materials are glass or silicon foils which are commercially produced on a large scale. A thermal forming process was used for the precise shaping of these foils. The forced and free slumping of the foils was studied in the temperature range of hot plastic deformation and the shapes obtained by the different slumping processes were compared. The shapes and the surface quality of the foils were measured by a Taylor Hobson contact profilemeter, a ZYGO interferometer and Atomic Forced Microscopy. In the experiments, both heat-treatment temperature and time were varied following our experiment design. The obtained data and relations can be used for modelling and optimizing the thermal forming procedure.

  4. Preparation of the in-house neutron detectors and the software needed to process experimental data

    International Nuclear Information System (INIS)

    Haddad, Kh.; Haj-Hassan, H.; Helal, W.

    2007-04-01

    In - house neutron activation detectors were prepared in this work using pure commercial gold. The neutron self-shielding factors in the foils for both thermal and epithermal neutrons have been determined experimentally. The work shows good results repeatability and good agreement with certified activation monitors. the software KHW for neutron flux measurements using local and standards gold foils was designed and performed locally. it deals as well with irradiated uranium spectrums to calculate some important fission product ratios for neutron flux measurement. Some experiments were performed to investigate the possibility of using uranium, produced in the pilot plant, as fission neutron detector. The results shows the possibility of using fission product ratios to determine the cooling time of the samples. It shows also the possibility of using fission and activation product ratios as an indicators of neutron fluences ratios.(author)

  5. Oxidation and creep failure of alloy 617 foils at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K.; Ko, G.D.; Li, F.X. [Department of Mechanical Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of); Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Gwangju 500 757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr

    2008-08-31

    The microstructure of thermally grown oxides (TGO) and the creep properties of alloy 617 were investigated. Oxidation and creep tests were performed on 100 {mu}m thick foils at 800-1000 deg. C in air environment, while the thickness of TGO was monitored in situ. According to energy dispersive X-ray (EDX) mapping micrographs observation, superficial dense oxides, chromia (Cr{sub 2}O{sub 3}), which was thermodynamically unstable at 1000 deg. C, and discrete internal oxides, alumina ({alpha}-Al{sub 2}O{sub 3}), were found. Consequently, the weight of the foil specimen decreased due to the spalling and volatilization of the Cr{sub 2}O{sub 3} oxide layer after an initial weight-gaining. Secondary and tertiary creeps were observed at 800 deg. C, while the primary, secondary and tertiary creeps were observed at 1000 deg. C. Dynamic recrystallization occurred at 800 deg. C and 900 deg. C, while partial dynamic recrystallization at 1000 deg. C. The apparent activation energy, Q{sub app}, for the creep deformation was 271 kJ/mol, which was independent of the applied stress.

  6. Effect of thickness of foil strippers in transmission of beams through 15 UD pelletron accelerator at IUAC

    International Nuclear Information System (INIS)

    Ojha, S.; Pankaj Kumar; Gargari, S.; Joshi, R.; Abhilash; Kabiraj, D.; Chopra, S.

    2009-01-01

    15 UD Pelletron accelerator at IUAC, New Delhi is equipped with a foil stripper and a gas stripper at high voltage terminal. Besides these, we have foil stripper assemblies at High Energy Dead Section (HEDS) of Pelletron and after analyser magnet. Incoming negative ion looses electrons when they pass through the strippers at terminal and becomes positively charged. The next foil stripper at HEDS increases the positive charge state of ion by removing more electrons which helps in delivering beams at higher energy. Typical thickness of carbon foils loaded in the foil stripper assembly in the terminal is around 4 microgram per square centimetre (4 μg/cm 2 ). Thicker foils were installed in the terminal assembly to study the effect of thickness of foil on charge state distribution and transmission of ion beams. Charge state distribution of ions produced out of molecular beam was also studied. In this paper we present and discuss the results and observations with thicker foils on ion as well as molecular beams. (author)

  7. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  8. Stripping Foil Issues for H- Injection into the CERN PSB at 160 MeV

    CERN Document Server

    Goddard, B; Bracco, C; Carli, C; Meddahi, M; Weterings, W J M

    2010-01-01

    Beam physics considerations for the stripping foil of the 160 MeV PSB H- injection systems are described, including the arguments for the foil type, thickness, geometry and positioning. The foil performance considerations are described, including expected stripping efficiency, emittance growth, energy straggling, temperature and lifetime. The different beam loss mechanisms are quantified in the context of the aperture limits, operational considerations and collimation requirements.

  9. Determination of neutron spectra formed by 40-MeV deuteron bombardment of a lithium target with multi-foil activation technique

    CERN Document Server

    Maekawa, F; Wada, M; Wilson, P P H; Ikeda, Y

    2000-01-01

    Neutron flux spectra at an irradiation field produced by a 40-MeV deuteron bombardment on a thick lithium-target at Forschungszentrum Karlsruhe, Germany, have been determined by the multi-foil activation technique. Twenty-seven dosimetry reactions having a wide energy range of threshold energies up to 38 MeV were employed as detectors for the neutron flux spectra extending to 55 MeV. The spectra were adjusted with the SAND-II code with the experimental reaction rates based on an iterative method. The adjusted spectra validated quantitatively the Monte Carlo deuteron-lithium (d-Li) neutron source model code (M sup C DeLi) which was used to calculate initial guess spectra and also has been used for IFMIF nuclear designs. Accuracy of the adjusted spectra was approx 10% that was suitable for successive integral tests of activation cross section data.

  10. Vortex wakes of a flapping foil

    DEFF Research Database (Denmark)

    Schnipper, Teis; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present an experimental study of a symmetric foil performing pitching oscillations in a vertically flowing soap film. By varying the frequency and amplitude of the oscillation we visualize a variety of wakes with up to 46 vortices per oscillation period, including von Karman vortex street...

  11. Charge-state-distributions of foil-excited heavy Rydberg atoms

    International Nuclear Information System (INIS)

    Faibis, A.; Kanter, E.P.; Koenig, W.; Zabransky, B.J.

    1985-01-01

    Studies of foil-excited fast (MeV/amu) heavy ions have demonstrated large yields of high Rydberg atoms formed in such beams. Further experiments have suggested a strong target-thickness dependence of the yields of such atoms. These results have been puzzling in view of the supposed short mean free paths of such atoms in solids. In an effort to better understand these results, the authors have measured the yields of Rydberg atoms (napprox.100-200) in foil-excited 32 S ions at an incident energy of 125 MeV

  12. Dissociation of fast HeH+ ions in foils and gases

    International Nuclear Information System (INIS)

    Gemmell, D.S.; Cooney, P.J.; Pietsch, W.J.; Ratkowski, A.J.; Vager, Z.

    1978-01-01

    To gain understanding of phenomena observed when very simple light diatomic ions are incident at high velocities upon thin foils and gaseous targets, an extensive set of measurements on the dissociation products arising from beams of HeH + was made. Experimental and calculated joint distributions in energy and angle for protons emerging (near the beam direction) from an 85-A carbon foil bombarded by 2.0-MeV HeH + ions are presented

  13. Non-linear sputtering effects induced by MeV energy gold clusters

    International Nuclear Information System (INIS)

    Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.

    1993-09-01

    Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab

  14. Expectations for the Laguna foil implosion experiments

    International Nuclear Information System (INIS)

    Greene, A.; Brownell, J.; Caird, R.; Goforth, J.; Price, R.; Trainor, J.

    1987-01-01

    Building on the results achieved in the Pioneer shot series, the Los Alamos Trailmaster project is embarking on the Laguna foil implosion experiments. In this series a Mark-IX helical generator will be coupled to an explosively formed fuse opening switch, a surface-tracking closing switch, and a vacuum power flow and load chamber. In this paper the system design will be discussed and results from zero-, one-, and two-dimensional MHD simulations will be presented. It is anticipated that the generator will provide more than 10 MA of which ∼5.5 MA will be switched to the 5-cm-radius, 2-cm-high, 250-nm-thick aluminum foil load. This should give rise to a 1 μs implosion with more than 100 kJ of kinetic energy

  15. Magnetic collimation and metal foil filtering for electron range and fluence modulation

    International Nuclear Information System (INIS)

    Phaisangittisakul, N.; D'Souza, W.D.; Ma Lijun

    2004-01-01

    We investigated the use of magnetically collimated electron beams together with metal filters for electron fluence and range modulation. A longitudinal magnetic field collimation method was developed to reduce skin dose and to improve the electron beam penumbra. Thin metal foils were used to adjust the energies of magnetically collimated electrons. The effects for different types of foils such as Al, Be, Cu, Pb, and Ti were studied using Monte Carlo calculations. An empirical pencil beam dose calculation model was developed to calculate electron dose distributions under magnetic collimation and foil modulation. An optimization method was developed to produce conformal dose distributions for simulated targets such as a horseshoe-shaped target. Our results show that it is possible to produce an electron depth dose enhancement peak using similar techniques of producing a spread-out Bragg peak. In conclusion, our study demonstrates new aspects of using magnetic collimation and foil filtration for producing fluence and range modulated electron dose distributions

  16. Template directed synthesis of plasmonic gold nanotubes with tunable IR absorbance.

    Science.gov (United States)

    Bridges, Colin R; Schon, Tyler B; DiCarmine, Paul M; Seferos, Dwight S

    2013-04-01

    A nearly parallel array of pores can be produced by anodizing aluminum foils in acidic environments. Applications of anodic aluminum oxide (AAO) membranes have been under development since the 1990's and have become a common method to template the synthesis of high aspect ratio nanostructures, mostly by electrochemical growth or pore-wetting. Recently, these membranes have become commercially available in a wide range of pore sizes and densities, leading to an extensive library of functional nanostructures being synthesized from AAO membranes. These include composite nanorods, nanowires and nanotubes made of metals, inorganic materials or polymers. Nanoporous membranes have been used to synthesize nanoparticle and nanotube arrays that perform well as refractive index sensors, plasmonic biosensors, or surface enhanced Raman spectroscopy (SERS) substrates, as well as a wide range of other fields such as photo-thermal heating, permselective transport, catalysis, microfluidics, and electrochemical sensing. Here, we report a novel procedure to prepare gold nanotubes in AAO membranes. Hollow nanostructures have potential application in plasmonic and SERS sensing, and we anticipate these gold nanotubes will allow for high sensitivity and strong plasmon signals, arising from decreased material dampening.

  17. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Science.gov (United States)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  18. Arsenic, gold and mercury concentration levels in freshwater fish by neutron activation analysis

    International Nuclear Information System (INIS)

    Ndiokwere, C.L.

    1983-01-01

    Elemental concentrations of arsenic, gold and mercury have been determined in flesh tissues of freshwater fish species from some Nigerian rivers. The technique of neutron activation followed by radiochemical separation of the isotopes of interest has been applied. The concentrations of 0.04 to 0.87 μg g -1 and 0.4 to 1.33 μg g -1 obtained for gold and mercury, respectively, in the samples are much higher than the values reported in the literature for freshwater fish. The arsenic concentration range of 0.07 to 0.42 μg g -1 is within the reported range. The high concentration levels of these heavy metals can be attributed to local contamination of the rivers. (author)

  19. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  20. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

    Science.gov (United States)

    Lichter, Samantha G; Escudié, Mathilde C; Stacey, Alastair D; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas V; Kua, Dunstan C; Lee, Aaron Z; McGowan, Ceara; Saunders, Alexia L; Burns, Owen; Nayagam, David A X; Williams, Richard A; Garrett, David J; Meffin, Hamish; Prawer, Steven

    2015-01-01

    As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  2. Propulsive performance of pitching foils with variable chordwise flexibility

    Science.gov (United States)

    Zeyghami, Samane; Moored, Keith; Lehigh University Team

    2017-11-01

    Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.

  3. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  4. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  5. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  6. Ultrathin foils used for low-energy neutral atom imaging of the terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Barraclough, B.L.

    1993-01-01

    Magnetospheric imaging by remote detection of low-energy neutral atoms (LENAs) that are created by charge exchange between magnetospheric plasma ions and neutral geocoronal atoms has been proposed as a method to provide global information of magnetospheric dynamics. For LENA detecting, carbon foils can be implemented to (1) ionize the LENAs and electrostatically remove them from the large background of solar UV scattered by the geocorona to which LENA detectors (e.g., microchannel plates) are sensitive and (2) generate secondary electrons to provide coincidence and/or LENA trajectory information. Quantification of LENA-foil interactions are crucial in defining LENA imager performance. The authors present equilibrium charge state distributions due to foil contamination from exposure to air. Angular scattering that results from the projectile-foil interaction is quantified and is shown to be independent of the charge state distribution

  7. Neutron activation studies on JET

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Forrest, R.A.; Edwards, J.E.G.

    2001-01-01

    Extensive neutron transport calculations have been performed to determine the neutron spectrum at a number of points throughout the JET torus hall. The model has been bench-marked against a set of foil activation measurements which were activated during an experimental campaign with deuterium/tritium plasmas. The model can predict the neutron activation of the foils on the torus hall walls to within a factor of three for reactions with little sensitivity to thermal neutrons. The use of scandium foils with and without a cadmium thermal neutron absorber was a useful monitor of the thermal neutron flux. Conclusions regarding the usefulness of other foils for benchmarking the calculations are also given

  8. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-01-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter. (author)

  9. Electroplating fission-recoil barriers onto LEU-metal foils for 99Mo-production targets

    International Nuclear Information System (INIS)

    Smaga, J.A.; Sedlet, J.; Conner, C.; Liberatore, M.W.; Walker, D.E.; Wygmans, D.G.; Vandegrift, G.F.

    1997-10-01

    Electroplating experiments on uranium foil have been conducted in order to develop low-enriched uranium composite targets suitable for the production of 99 Mo. Preparation of the foil surface prior to plating was found to play a key role in the quality of the resultant coating. A surface preparation procedure was developed that produces both zinc and nickel coatings with the desired level of coating adherence and coverage. Modifications of the existing plating processes now need investigation to improve to uniformity of the plating thickness, especially at the foil perimeter

  10. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  11. Destruction of metallic foils under laser radiation

    International Nuclear Information System (INIS)

    Khokhlov, N.P.; Lisitsyn, Yu.V.; Mineev, V.N.; Ivanov, A.G.

    1975-01-01

    Experimental results are presented which illustrate the process of destruction of aluminium, lead and tantalum foils under irradiation of a neodymium laser, working in free generation regime with a power density varying from 5.10 5 - 5.10 6 wt/sq.cm. Calorimeters and photocells sensitive to the radiation with lambda=1.06 have been used for measuring the energy and recording the shape of the radiation pulse incident onto the target and passing through the disintegration products. The weight of the target has been determined prior to and after the experiment to find out the weight of Δm material expelled from the target. Rates of product scattering and a target destruction period, an amount of the material expelled and parameters of the radiation passing through the disintegration products have been determined as a function of the power density and an angle of the radiation incidence on the surface of the specimens. Average densities and absorption coefficients of the disintegration products of the foils under study have been assessed. A comparison of the characteristics of the metal foil (t 1 j) destruction in Pb-Ta-Al series with the metal thermal properties in this series shows that the destruction characteristics periodically vary as heat capacity, thermal conduction, evaporation heat and melting heat alter. A period of the target destruction becomes longer and the expelled mass smaller as the aforesaid thermal properties of the metals in Pb-Ta-Al series intensity [ru

  12. Micron-scale resolution radiography of laser-accelerated and laser-exploded foils using an yttrium x-ray laser

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.; Celliers, P.; Moreno, J.C.; Mrowka, S.; Perry, T.S.; Wan, A.S.

    1994-09-01

    The authors have imaged laser-accelerated foils and exploding foils on the few-micron scale using an yttrium x-ray laser (155 angstrom, 80 eV, ∼200 ps duration) and a multilayer mirror imaging system. At the maximum magnification of 30, resolution was of order one micron. The images were side-on radiographs of the foils. Accelerated foils showed significant filamentation on the rear-side (away from the driving laser) of the foil, although the laser beam was smoothed. In addition to the narrow rear-side filamentation, some shots revealed larger-scale plume-like structures on the front (driven) side of the Al foil. These plumes seem to be little-affected by beam smoothing and are likely a consequence of Rayleigh-Taylor instability. The experiments were carried out at the Nova two-beam facility

  13. Thrombogenicity tests on ar-irradiated polycarbonate foils

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Gustavo F.; Rizzutto, Marcia A.; Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala; Tabacniks, Manfredo H., E-mail: g.ferraz@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Fisica; Delgado, Adriana O. [Universidade Federal de Sao Carlos (UFSCAR), Sorocaba, SP (Brazil); Cunha, Tatiana F. [Biosintesis P and D do Brasil, Sao Paulo, SP (Brazil); Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia

    2013-07-01

    Understanding polymer surface properties is extremely important for the most wide range of their applications, from basic coating to the most complex composites and biomaterials. Low energy ion beam irradiation of polymer can improve such surface properties. By modifying its surface biocompatibility, polymers are excellent candidates for biomaterials, due to its malleability and low weight, when compared to metals. In this work, we irradiated 30-μm Bisphenol-A Polycarbonate foils with 23-keV Argon ion beam at six different doses. Aluminium foils were simultaneously irradiated in order to measure the doses by Rutherford Backscattering Spectroscopy. The surface modifications after the argon ion beam irradiation were analyzed by water contact angle measurements and atomic force microscopy. Platelet adhesion tests were used in order to investigate thrombogenicity, showing a growing tendency with the irradiated Argon dose. (author)

  14. Thrombogenicity tests on ar-irradiated polycarbonate foils

    International Nuclear Information System (INIS)

    Trindade, Gustavo F.; Rizzutto, Marcia A.; Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala; Tabacniks, Manfredo H.; Cunha, Tatiana F.; Higa, Olga Z.

    2013-01-01

    Understanding polymer surface properties is extremely important for the most wide range of their applications, from basic coating to the most complex composites and biomaterials. Low energy ion beam irradiation of polymer can improve such surface properties. By modifying its surface biocompatibility, polymers are excellent candidates for biomaterials, due to its malleability and low weight, when compared to metals. In this work, we irradiated 30-μm Bisphenol-A Polycarbonate foils with 23-keV Argon ion beam at six different doses. Aluminium foils were simultaneously irradiated in order to measure the doses by Rutherford Backscattering Spectroscopy. The surface modifications after the argon ion beam irradiation were analyzed by water contact angle measurements and atomic force microscopy. Platelet adhesion tests were used in order to investigate thrombogenicity, showing a growing tendency with the irradiated Argon dose. (author)

  15. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  16. Simulation of turn-by-turn passage of protons through the H-minus stripping foil in booster

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-07-06

    Equations for transverse emittance growth due to multiple passes of circulating proton beam through the H-minus stripping foil in Booster were developed in [1]. These were based on simple principles of statistics and simple assumptions about the initial distribution of particles incident on the foil. It was assumed there that the foil dimensions and position of the incoming beam are such that all particles hit the foil on every turn around the machine. In the present note we assume only that all incoming H-minus ions from Linac hit the foil and are stripped of their electrons. The resulting protons circulate indefinitely around the machine. Setups in which the foil width is reduced so that not all protons hit the foil on every turn are studied here by simulation. The aim is to determine the effectiveness of such setups in reducing the emittance growth of circulating proton beam during the injection of H-minus beam. The simulations also serve as a check of the equations developed in [1], and vice versa. The particulars of the simulation setup are given in Sections 1 through 11. Figures 1 through 12 show simulation results for the case in which all particles hit the foil on every turn. The results are in good agreement with those obtained from the equations of reference [1]. Figures 13 through 19 show simulation results for various setups in which the foil width is reduced. These results are summarized in Section 12. In all gures the horizontal axis gives the turn number. The unit of the vertical axis is micrometers ( m) in all plots of emittance.

  17. Foil Panel Mirrors for Nonimaging Applications

    Science.gov (United States)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  18. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  19. Silver, gold, and alloyed silver–gold nanoparticles: characterization and comparative cell-biologic action

    International Nuclear Information System (INIS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li Zian; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-01-01

    Silver, gold, and silver–gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15–25 nm), gold (5–6 nm), and silver–gold (50:50; 10–12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver–gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver–gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver–gold nanoparticles in the concentration range of 5–20 μg mL −1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  20. High temperature creep of single crystals of gold, silver and solid solution gold silver 50-50

    International Nuclear Information System (INIS)

    Dorizzi, Paul

    1973-01-01

    We have studied in compression creep along a direction, single crystals of gold, silver and a 50-50 gold-silver solid solution. The experiments were made at temperatures above 0.7 Tf. We have shown that under these conditions and for these three metals a new slip system is operating: the deformation is due to the slip of dislocations having a 1/2 burgers vector on the {110} planes. For gold the activation energy for creep is equal to the self-diffusion energy. We found the same result for silver when the contribution of divacancies to the self-diffusion energy is taken into account. For the alloy the activation energy for creep is very close to the self-diffusion energy of gold in a 50-50 gold-silver alloy, gold being the slower diffusing species in the alloy. The curves giving the creep rate versus the stress can be fitted with the following laws: ε 0 = σ 5 for gold; ε 0 = σ 2,2 for silver and ε 0 = σ 2,5 for the alloy. The dislocation substructure was studied using the crystalline contrast given by the electron microprobe. This new method gives images which are very sensitive to the sub-grains misorientation. The substructure is made of parallelepipedic cells divided by tilt boundaries that are perpendicular to the {110} slip planes. (author) [fr

  1. Foil deposition alpha collector probe for TFTR's D-T phase

    International Nuclear Information System (INIS)

    Hermann, H.W.; Darrow, D.S.; Timberlake, J.; Zweben, S.J.; Chong, G.P.; Pitcher, C.S.; Macaulay-Newcombe, R.G.

    1995-03-01

    A new foil deposition alpha collector sample probe has been developed for TFTR's D-T phase. D-T fusion produced alpha particles escaping from the plasma are implanted in nickel foils located in a series of collimating ports on the detector. The nickel foils are removed from the tokamak after exposure to one or more plasma discharges and analyzed for helium content. This detector is intended to provide improved alpha particle energy resolution and pitch angle coverage over existing lost alpha detectors, and to provide an absolutely calibrated cross-check with these detectors. The ability to resolve between separate energy components of alpha particle loss is estimated to be ∼ 20%. A full 360 degree of pitch angle coverage is provided for by 8 channels having an acceptance range of ∼ 53 degree per channel. These detectors will be useful in characterizing classical and anomalous alpha losses and any collective alpha instabilities that may be excited during the D-T campaign of TFTR

  2. Adsorption-induced restructuring of gold nanochains

    DEFF Research Database (Denmark)

    Bahn, Sune Rastad; Lopez, Nuria; Nørskov, Jens Kehlet

    2002-01-01

    The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the st......The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly...... with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains...

  3. Zika Vaccine Development: Flavivirus Foils

    Science.gov (United States)

    2016-09-01

    Martins, Bavari, Zika Vaccine Development 1 Zika Vaccine Development: Flavivirus Foils Martins KAO, Bavari S. The current Zika virus...States government. The rapid response to Zika is perhaps the first of its kind, and it undoubtedly has been made possible by the lessons learned from...the response to the 2014 Ebola virus outbreak in West Africa. However, Zika virus is not Ebola virus. As of February 2016 there were only 296

  4. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  5. Numerical simulation of the pressure pulses produced by a pressure screen foil rotor

    International Nuclear Information System (INIS)

    Feng, M.; Ollivier-Gooch, C.; Gooding, R.W.; Olson, J.A.

    2003-01-01

    Pressure screening is the most industrially efficient and effective means of removing contaminants that degrade the appearance and strength of paper and fractionating fibres for selective treatments and specialty products. A critical design component of a screen is the rotor which produces pressure pulses on the screen cylinder surface to keep the screening apertures clear. To understand the effect of the key design and operating variables for a NACA 0012 foil rotor, a computational fluid dynamic (CFD) simulation tool was developed with FLUENT software, and the numerical results were compared with experimental measurements. The computational results of pressure pulses were shown to be in good agreement with experimental pressure measurements over a wide range of foil tip-speeds, clearances and angles of attack. In addition, it was shown that the magnitude of the pressure pulse peak increases as the rotating speed increases linearly with the square of tip-speed for all the angles of attack studied. The maximum negative pressure pulse occurred for the foil at 5 degrees angle of attack. Flow began to separate from foil surface near the screen plate beyond 10 degrees angle of attack. The positive pressure peak near the leading edge of the foil is completely eliminated for foils operating at a positive angle of attack. The magnitude of the negative pressure peak increased as clearance decreased. In addition to, and more important than, these specific results, we have shown that CFD is a viable tool for the optimal design and operation of rotors in industrial pressure screens. (author)

  6. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  7. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vispute, R D [Blue Wave Semiconductors; Ermer, Henry K [Blue Wave Semiconductors; Sinsky, Phillip [Blue Wave Semiconductors; Seiser, Andrew [Blue Wave Semiconductors; Shaw, Robert W [ORNL; Wilson, Leslie L [ORNL; Harris, Gary [Howard University; Piazza, Fabrice [Pontifica Universidad Catolica Madre y Maestra, Dominican Republic

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development

  8. A convenient way to double the capacity of a NEC type foil stripper

    International Nuclear Information System (INIS)

    Chapman, K.R.

    1988-01-01

    A convenient method is described to increase the capacity of a NEC type terminal stripper. This renders the necessity for tank entry to renew foils less frequent. This is especially useful when the use of heavy ion beams renders foil lifetimes very short. (orig.)

  9. Neutron spectrum determination of d(20)+Be source reaction by the dosimetry foils method

    Czech Academy of Sciences Publication Activity Database

    Štefánik, Milan; Bém, Pavel; Majerle, Mitja; Novák, Jan; Šimečková, Eva

    2017-01-01

    Roč. 140, NOV (2017), s. 466-470 ISSN 0969-806X R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : multi-foil activation technique * accelerator-based neutron source * neutron spectrometry * Gamma-ray spectrometry * reaction rate * charged particle accelerator Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.315, year: 2016

  10. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils

    Science.gov (United States)

    Nechifor, Cristina-Delia; Zelinschi, Carmen Beatrice; Dorohoi, Dana-Ortansa

    2014-03-01

    The aim of our paper is to evidence the influence of Gamma and UV radiations on the induced birefringence of poly(vinyl alcohol) stretched foils. Thin foils of PVA were prepared and dried without modifying their surfaces. The polymeric foils were irradiated from 15 min to 6 h using UV and Gamma radiations. The induced by stretching under heating birefringence of PVA films was measured at λ = 589.3 nm with a Babinet Compensator. Physico-chemical processes (photo stabilization, photo degradation, oxidation) induced by irradiation of polymer matrix influence both the stretching degree and the anisotropy of etired foils. An increase of birefringence versus the stretching ratio of the PVA foils was evidenced for all studied samples. The dependence of the birefringence on the exposure time, stretching ratio and nature of radiation was also confirmed.

  11. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    Science.gov (United States)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2018-03-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  12. SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

    Science.gov (United States)

    Kohl, Manfred; Ossmer, Hinnerk; Gueltig, Marcel; Megnin, Christof

    2017-12-01

    In the early nineties, microelectromechanical systems (MEMS) technology has been still in its infancy. As silicon (Si) is not a transducer material, it was clear at the very beginning that mechanically active materials had to be introduced to MEMS in order to enable functional microdevices with actuation capability beyond electrostatics. At that time, shape memory alloys (SMAs) have been available in bulk form, mainly as SMA wires and SMA plates. On the macro scale, these materials show highest work densities compared to other actuation principles in the order of 107 J/m3, which stimulated research on the integration of SMA to MEMS. Subsequently, two approaches for producing planar materials have been initiated (1) magnetron sputtering of SMA thin films and (2) the integration of rolled SMA foils, which both turned out to be very successful creating a paradigm change in microactuation technology. The following review covers important milestones of the research and development of SMA foil-based microactuators including materials characterization, design engineering, technology, and demonstrator development as well as first commercial products.

  13. The effect of the oxygen dissolved in the adsorption of gold in activated carbon; Efecto del oxigeno disuelto en la adsorcion de oro en carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P. [Universidad de Santiago. Chile (Chile); Wilkomirsky, I. [Universidad de Concepcion. Chile (Chile)

    1999-07-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs.

  14. Thermal neutron flux measurements in the rotary specimen rack of the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G. do Prado; Rodrigues, Rogério R.; Souza, Luiz Claudio A., E-mail: souzarm@cdtn.br, E-mail: rrr@cdtn.br, E-mail: lcas@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The thermal neutron flux in the rotary specimen rack of the IPR-R1 TRIGA reactor at the Nuclear Technology Development Center (CDTN), Belo Horizonte, Brazil, has been measured by the neutron activation method, using bare and cadmium covered gold foils. Those foils were irradiated in the rotary specimen rack with the reactor at 100 kW. The reactor core configuration has 63 fuel elements, composed of 59 original aluminum-clad elements and 4 stainless steel-clad fuel elements. The gamma activities of the foils were measured using Ge spectrometer. The perturbations of the thermal neutron flux caused by the introduction of an absorbing foil into the medium were considered in order to obtain accurate determination of the flux. The thermal neutron flux obtained was 7.4 x 10{sup 11} n.cm{sup -2}.s{sup -1}. (author)

  15. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    Science.gov (United States)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  16. Development of Coincidence Method for Determination Thermal Neutron Flux on RSG-GAS

    International Nuclear Information System (INIS)

    Bakhri, Syaiful; Hamzah, Amir

    2004-01-01

    The research to develop detection radiation system using coincidence method has been done to determine thermal neutron flux in RS1 and RS2 irradiation facilities RSG-GAS. At this research has arranged beta-gamma coincidence equipment system and parameter of measurement according to Au-198 beta-gamma spectrum. Gold foils that have irradiated for period of time, counted, and the activities of radiation is analyzed to get neutron flux. Result of research indicate that systems measurement of absolute activity with gamma beta coincidence method functioning well and can be applied at activity measurement of gold foil for irradiation facility characterization. The results show that thermal neutron flux in RS1 and RS2, respectively is 2.007E+12 n/cm 2 s and 2.147E+12 n/cm 2 s. To examine the system performance, the result was compared to measure activity using high resolution of Hp Ge detector and achieved discrepancy is about 1.26% and 6.70%. (author)

  17. The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing

    Science.gov (United States)

    Bruckner, Robert

    2013-01-01

    An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.

  18. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  19. Study of nuclear tracks on different polycarbonate foils and their feasibility for use in personnel monitoring

    International Nuclear Information System (INIS)

    Jayalakshmi, V.; Rohatgi, Rupali; Sathian, Deepa; Marathe, P.K.; Nair, Sarala; Chourasiya, G.; Kannan, S.

    2009-01-01

    CR-39 (PDAC) a solid state nuclear track detector, is used as a routine personnel monitor. 1800 workers are being monitored quarterly for fast neutron using CR-39 foils. These foils procured from Pershore Mouldings, UK are very expensive and indigenous development will make the foils cost effective. The aim of this paper is to find a suitable alternative to the imported CR-39 foils for use in personnel monitoring. The foils from three different manufacturers have been compared with CR-39 foils from Pershore Moulding, UK, presently in use. Out of the three, only sample no 1 is promising. It has a background and sensitivity comparable with CR-39 presently used. The sample 2 is CR-39 being developed in India, has a relatively high background and poor sensitivity. Efforts are being made to improve the quality of this sample. The sample 3 was a poly carbonate from local manufacturer which produced very few tracks and the standard deviation of track counts was very large and hence not useful for personnel monitoring. (author)

  20. Slowing down of 100 keV antiprotons in Al foils

    Directory of Open Access Journals (Sweden)

    K. Nordlund

    2018-03-01

    Full Text Available Using energy degrading foils to slow down antiprotons is of interest for producing antihydrogen atoms. I consider here the slowing down of 100 keV antiprotons, that will be produced in the ELENA storage ring under construction at CERN, to energies below 10 keV. At these low energies, they are suitable for efficient antihydrogen production. I simulate the antihydrogen motion and slowing down in Al foils using a recently developed molecular dynamics approach. The results show that the optimal Al foil thickness for slowing down the antiprotons to below 5 keV is 910 nm, and to below 10 keV is 840 nm. Also the lateral spreading of the transmitted antiprotons is reported and the uncertainties discussed. Keywords: Antiprotons, Stopping power, Slowing down, Molecular dynamics

  1. Comparison of EXAFS Foil Spectra from Around the World

    International Nuclear Information System (INIS)

    Kelly, S.D.; Bare, S.R.; Greenlay, N.; Azevedo, G.; Balasubramanian, M.; Barton, D.; Chattopadhyay, S.; Fakra, S.; Johannessen, B.; Newville, M.; Pena, J.; Pokrovski, G.S; Proux, O.; Priolkar, K.; Ravel, B.; Webb, S.M.

    2010-01-01

    The EXAFS spectra of Cu and Pd foil from many different beamlines and synchrotrons are compared to address the dependence of the amplitude reduction factor (S 0 2 ) on beamline specific parameters. Even though S 0 2 is the same parameter as the EXAFS coordination number, the value for S 0 2 is given little attention, and is often unreported. The S 0 2 often differs for the same material due to beamline and sample attributes, such that no importance is given to S 0 2 -values within a general range of 0.7 to 1.1. EXAFS beamlines have evolved such that it should now be feasible to use standard S 0 2 values for all EXAFS measurements of a specific elemental environment. This would allow for the determination of the imaginary energy (Ei) to account for broadening of the EXAFS signal rather than folding these errors into an effective S 0 2 -value. To test this concept, we model 11 Cu-foil and 6 Pd-foil EXAFS spectra from around the world to compare the difference in S 0 2 - and Ei-values.

  2. Large area flexible lighting foils using distributed bare LED dies on polyester substrates

    NARCIS (Netherlands)

    Ende, D.A. van den; Kusters, R.H.L.; Cauwe, M.; Waal, A. van der; Brand, J. van den

    2013-01-01

    Integration of LEDs on flexible foil substrates is of interest for flexible lighting applications and for backlights for flexible displays. Such a large area lighting device can be made by integrating a matrix of closely spaced LEDs on a flexible foil substrate. Preferably, these LEDs are integrated

  3. Physical Activity Characteristics across GOLD Quadrants Depend on the Questionnaire Used.

    Directory of Open Access Journals (Sweden)

    Heleen Demeyer

    Full Text Available The GOLD multidimensional classification of COPD severity combines the exacerbation risk with the symptom experience, for which 3 different questionnaires are permitted. This study investigated differences in physical activity (PA in the different GOLD quadrants and patient's distribution in relation to the questionnaire used.136 COPD patients (58±21% FEV1 predicted, 34F/102M completed COPD assessment test (CAT, clinical COPD questionnaire (CCQ and modified Medical Research Council (mMRC questionnaire. Exacerbation history, spirometry and 6MWD were collected. PA was objectively measured for 2 periods of 1 week, 6 months apart, in 5 European centres; to minimise seasonal and clinical variation the average of these two periods was used for analysis.GOLD quadrants C+D had reduced PA compared with A+B (3824 [2976] vs. 5508 [4671] steps.d-1, p<0.0001. The choice of questionnaire yielded different patient distributions (agreement mMRC-CAT κ = 0.57; CCQ-mMRC κ = 0.71; CCQ-CAT κ = 0.72 with different clinical characteristics. PA was notably lower in patients with an mMRC score ≥2 (3430 [2537] vs. 5443 [3776] steps.d-1, p <0.001 in both the low and high risk quadrants.Using different questionnaires changes the patient distribution and results in different clinical characteristics. Therefore, standardization of the questionnaire used for classification is critical to allow comparison of different studies using this as an entry criterion.ClinicalTrials.gov NCT01388218.

  4. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza

    2015-01-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)

  5. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  6. High quality graphene synthesized by atmospheric pressure CVD on copper foil

    OpenAIRE

    Trinsoutrot, Pierre; Rabot, Caroline; Vergnes, Hugues; Delamoreanu, Alexandru; Zenasni, Aziz; Caussat, Brigitte

    2013-01-01

    International audience; Graphene was synthesized at 1000 °C by Atmospheric Pressure Chemical Vapor Deposition on copper foil from methane diluted in argon and hydrogen. The influence of the main synthesis parameters was studied on 2 × 2 cm2 foils in order to obtain continuous monolayer graphenewithout crystalline defect. The uniformity, crystal quality and number of layers of graphenewere analyzed by Raman spectroscopy and Scanning Electronic Microscopy. First, an increase of the annealing pr...

  7. Connection factor calculation for isotopic neutron flux measurements with foil detectors

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-01-01

    Thermal and resonance neutron self-shielding factors, neutron flux distortion and edge effects as well as a connection factor for neutron flux profile around a foil detector have been calculated. A general expression for resonance self shielding factor is presented in order to take into account the most important resonances for a given isotope. A computer program SPRESYTER.BAS was written and results for In-115 and Au-197 foils are given

  8. Large-area thin self-supporting carbon foils with MgO coatings

    Science.gov (United States)

    Stolarz, Anna; Maier-Komor, Peter

    2002-03-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  9. Gold Redox Catalysis through Base-Initiated Diazonium Decomposition toward Alkene, Alkyne, and Allene Activation.

    Science.gov (United States)

    Dong, Boliang; Peng, Haihui; Motika, Stephen E; Shi, Xiaodong

    2017-08-16

    The discovery of photoassisted diazonium activation toward gold(I) oxidation greatly extended the scope of gold redox catalysis by avoiding the use of a strong oxidant. Some practical issues that limit the application of this new type of chemistry are the relative low efficiency (long reaction time and low conversion) and the strict reaction condition control that is necessary (degassing and inert reaction environment). Herein, an alternative photofree condition has been developed through Lewis base induced diazonium activation. With this method, an unreactive Au I catalyst was used in combination with Na 2 CO 3 and diazonium salts to produce a Au III intermediate. The efficient activation of various substrates, including alkyne, alkene and allene was achieved, followed by rapid Au III reductive elimination, which yielded the C-C coupling products with good to excellent yields. Relative to the previously reported photoactivation method, our approach offered greater efficiency and versatility through faster reaction rates and broader reaction scope. Challenging substrates such as electron rich/neutral allenes, which could not be activated under the photoinitiation conditions (<5 % yield), could be activated to subsequently yield the desired coupling products in good to excellent yield. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V.; Mehlhorn, T.; Razorenov, S.V.; Utkin, A.V.

    1999-01-01

    This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure

  11. Determination of integral cross sections of 3H in Al foils monitors irradiated by protons with energies ranging from 40 to 2600 MeV

    Science.gov (United States)

    Titarenko, Yu. E.; Batyaev, V. F.; Chauzova, M. V.; Chauzova, M. V.; Kashirin, I. A.; Malinovskiy, S. V.; Pavlov, K. V.; Rogov, V. I.; Titarenko, A. Yu.; Zhivun, V. M.; Mashnik, S. G.; Stankovskiy, A. Yu.

    2016-05-01

    The results of 3H production in Al foil monitors (˜ 59 mg/cm2 thickness) are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ˜ 14 mg/cm2 thickness together with foils of Cr (˜ 395 mg/cm2 thickness) and 56Fe (˜ 332 mg/cm2 thickness) by protons of different energies in a range of 0.04 - 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U-10 under the ISTC Project # 3266 in 2006-2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β-spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x)3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.

  12. Determination of integral cross sections of 3H in Al foils monitors irradiated by protons with energies ranging from 40 to 2600 MeV

    Directory of Open Access Journals (Sweden)

    Titarenko Yu.E.

    2016-01-01

    Full Text Available The results of 3H production in Al foil monitors (∼ 59 mg/cm2 thickness are presented. These foils have been irradiated in 15×15 mm polyethylene bags of ∼ 14 mg/cm2 thickness together with foils of Cr (∼ 395 mg/cm2 thickness and 56Fe (∼ 332 mg/cm2 thickness by protons of different energies in a range of 0.04 – 2.6 GeV. The diameters of all the foils were 10.5 mm. The irradiations were carried out at the ITEP accelerator U–10 under the ISTC Project # 3266 in 2006–2009. 3H has been extracted from Al foils using an A307 Sample Oxidizer. An ultra low level liquid scintillation spectrometer Quantulus1220 was used to measure the 3H β–spectra and the SpectraDec software package was applied for spectra processing, deconvolution and 3H activity determination. The values of the Al (p, x3H reaction cross sections obtained in these experiments are compared with data measured at other labs and with results of simulations by the MCNP6 radiation transport code using the CEM03.03 event generator.

  13. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  14. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    Science.gov (United States)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  15. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    Science.gov (United States)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  16. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    International Nuclear Information System (INIS)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-01-01

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production

  17. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    Science.gov (United States)

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  18. On the preparation of self-supporting zinc target foils of separated isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the second report on the practical method of preparation of targets for nuclear experiments following the previous one (INS-TL-121 (in Japanese)). In this report, a method is described for the preparation of self-supporting zinc foils from ZnO. The thicknesses of target foils and their uniformity were measured with an α-ray thickness gauge. (auth.)

  19. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  20. Glyco-gold nanoparticles: synthesis and applications

    OpenAIRE

    Compostella, Federica; Pitirollo, Olimpia; Silvestri, Alessandro; Polito, Laura

    2017-01-01

    Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco ...

  1. First experience with carbon stripping foils for the 160 MeV H- injection into the CERN PSB

    Science.gov (United States)

    Weterings, Wim; Bracco, Chiara; Jorat, Louise; Noulibos, Remy; van Trappen, Pieter

    2018-05-01

    160 MeV H- beam will be delivered from the new CERN linear accelerator (Linac4) to the Proton Synchrotron Booster (PSB), using a H- charge-exchange injection system. A 200 µg/cm2 carbon stripping foil will convert H- into protons by stripping off the electrons. The H- charge-exchange injection principle will be used for the first time in the CERN accelerator complex and involves many challenges. In order to gain experience with the foil changing mechanism and the very fragile foils, in 2016, prior to the installation in the PSB, a stripping foil test stand has been installed in the Linac4 transfer line. In addition, parts of the future PSB injection equipment are also temporarily installed in the Linac4 transfer line for tests with a 160 MeV H- commissioning proton beam. This paper describes the foil changing mechanism and control system, summarizes the practical experience of gluing and handling these foils and reports on the first results with beam.

  2. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    Science.gov (United States)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  3. The Fabrication Technology Development of Uniform U and U-Mo Foil by Twin Roll Casting

    International Nuclear Information System (INIS)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Woo, Y. M.; Kim, J. D.; Oh, J. M.; Sim, M. S.

    2012-01-01

    Uranium foil samples, of which the technology was developed by KAERI around 2000, were distributed to 6 countries including USA in connection with CRP of IAEA. A problem of thickness irregularity was issued so that cold work was done on it. Due to the pin hole and preferred orientation occurrence an additional development project was raised. It was presumed that the irregularity would be influenced by the eddy flow of the melt. So the melt feeding system was changed from pressurized melt flow to gravity-forced flow for more stable melt flow. And then It was tried that the bulgies on the foil surface were eliminated by deforming with a pressing roll. To save the production cost the expensive quartz crucible was replaced with a common graphite plugging crucible system with repeatable use. The loss of very expensive LEU material from melt leak of open nozzle in quartz crucible could be excluded. A new foil collection winding system was adopted so that the quickly coming-out foil could be taken without rumpling. The equipment was test-run with Cu as surrogate. Some drawbacks found during test-running were solved by modifying several parts. Cu foils could be produced with optimized conditions successfully. DU metal was also used for test-running the modified equipment and then some related modifications were done. Finally DU foils meeting the requesting specification could be produced. The length was longer than 10 m. The foil thickness ranged from 140 μm to 300 μm. On observation and measurement the thickness homogeneity was evaluated to be improved a little

  4. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Directory of Open Access Journals (Sweden)

    Delin Tang

    Full Text Available Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  5. Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling.

    Science.gov (United States)

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the 'cross-shear' zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling.

  6. Flow over a traveling wavy foil with a passively flapping flat plate

    Science.gov (United States)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  7. Electronic excitation in transmission of relativistic H- ions through thin foils

    International Nuclear Information System (INIS)

    Reinhold, C.O.; Kuerpick, P.; Burgdoerfer, J.; Yoshida, S.

    1998-01-01

    The authors describe a theoretical model to study the transmission of relativistic H - ions through thin carbon foils. The approach is based on a Monte Carlo solution of the Langevin equation describing electronic excitations of the atoms during the transport through the foil. Calculations for the subshell populations of outgoing hydrogen atoms are found to be in good agreement with recent experimental data on an absolute scale and show that there exists a propensity for populating extreme Stark states

  8. Large-area thin self-supporting carbon foils with MgO coatings

    CERN Document Server

    Stolarz, A

    2002-01-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 mu g/cm sup 2 , coated with approximately 4 mu g/cm sup 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm sup 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  9. Large-area thin self-supporting carbon foils with MgO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Stolarz, Anna E-mail: anna@slcj.uw.edu.pl; Maier-Komor, Peter

    2002-03-11

    Large area self-supporting carbon foils in the thickness of range of 8-22 {mu}g/cm{sup 2}, coated with approximately 4 {mu}g/cm{sup 2} MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm{sup 2}. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  10. Tandem accelerator transmission and life measurement of 50 keV/amu Au ions using stripper foil made by INS

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Satoshi; Takahashi, Tsutomu; Shima, Kunihiro [Tsukuba Univ., Ibaraki (Japan). Tandem Accelerator Center; Sugai, Isamu; Oyaizu, Mitsuhiro

    1996-12-01

    The role of stripper foil is the charge exchange of ions. The thickness for attaining equilibrium in charge exchange becomes thinner as ions become lower speed and heavier. Accordingly, for the stripper foil, thin foil thickness is demanded in addition to the demand of long life. The stripper foil made by INS, University of Tokyo, is recognized as its long life. In the 12 UD PELETRON tandem accelerator in University of Tsukuba, in order to meet the demand of users to use heavy ions, the use of long life stripper foil has become urgent necessity. Therefore, as for the foil made by INS, the life by Au ion irradiation and the Au ion transmission were measured four times. As to the features of the test of this time, irradiation was carried out under the severe condition for the foil of low speed Au ions, and the change of beam transmission with time lapse was observed in addition to the life. The method of measurement is explained. The preparation of foils and the determination of their thickness are reported. As the results, the lifetime of the foils made by INS and the thickness dependence and time dependence or dose dependence of the transmission of low speed, heavy Au-197 ions are described. (K.I.)

  11. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  12. Surface structure deduced differences of copper foil and film for graphene CVD growth

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junjun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Hu, Baoshan, E-mail: hubaoshan@cqu.edu.cn [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wei, Zidong; Jin, Yan [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Zhengtang [Department of Chemical and Biomolecular Engineering, The Hongkong University of Science and Technology, Kowloon (Hong Kong); Xia, Meirong [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Pan, Qingjiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080 (China); Liu, Yunling [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-05-01

    Highlights: • We demonstrate the significant differences between Cu foil and film in the surface morphology and crystal orientation distribution. • The different surface structure leads to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. • Nucleation densities and growth rate differences at the initial growth stages on the Cu foil and film were investigated and discussed. Abstract: Graphene was synthesized on Cu foil and film by atmospheric pressure chemical vapor deposition (CVD) with CH₄ as carbon source. Electron backscattered scattering diffraction (EBSD) characterization demonstrates that the Cu foil surface after the H₂-assisted pre-annealing was almost composed of Cu(1 0 0) crystal facet with larger grain size of ~100 μm; meanwhile, the Cu film surface involved a variety of crystal facets of Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0), with the relatively small grain size of ~10 μm. The different surface structure led to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. Further data demonstrate that the Cu foil enabled more nucleation densities and faster growth rates at the initial growth stages than the Cu film. Our results are beneficial for understanding the relationship between the metal surface structure and graphene CVD growth.

  13. Method for fabrication of ceramic dielectric films on copper foils

    Science.gov (United States)

    Ma, Beihai; Narayanan, Manoj; Dorris, Stephen E.; Balachandran, Uthamalingam

    2015-03-10

    The present invention provides a method for fabricating a ceramic film on a copper foil. The method comprises applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250.degree. C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450.degree. C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750.degree. C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas. In some embodiments an additional layer of the sol-gel composition is applied onto the ceramic film and the drying, pyrolyzing and crystallizing steps are repeated for the additional layer to build up a thicker ceramic layer on the copper foil. The process can be repeated one or more times if desired.

  14. Geological and technological evaluation of gold-bearing mineral material after photo-electrochemical activation leaching

    Science.gov (United States)

    Manzyrev, DV

    2017-02-01

    The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles -10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.

  15. Flexible AMOLED display on polyethylene napthalate (PEN) foil with metal-oxide TFT backplane

    NARCIS (Netherlands)

    Tripathi, A.K.; Putten, B. van der; Steen, J.L. van der; Tempelaars, K.; Cobb, B.; Ameys, M.; Ke, T.H.; Myny, K.; Steudel, S.; Nag, M.; Schols, S.; Vicca, P.; Smout, S.; Genoe, J.; Heremans, P.; Yakimets, I.; Gelinck, G.H.

    2012-01-01

    We present a top emitting monochrome AMOLED display with 85dpi resolution using an amorphous Indium-Gallium-Zinc-Oxide (IGZO) TFT backplane on PEN-foil. Maximum processing temperature was limited to 150 °C in order to ensure an overlay accuracy < 3μm on PEN foil. The backplane process flow is based

  16. Optimizing dc-resistance of a foil wounded toroidal inductor combining matlab and comsol

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    An optimization routine is presented to optimize the shape of a foil winding of a toroid inductor in terms of the DC resistance. MATLAB was used to define the geometry of the foil winding and COMSOL was used to import the geometry and create a 3D finite element model. The initial parameters...

  17. X-ray emission, ablation pressure, and preheating for foils irradiated at 0. 26. mu. m wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-11-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 ..mu..m laser at intensities approx.10/sup 15/ W cm/sup -2/ are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 ..mu..m), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant.

  18. X-ray emission, ablation pressure, and preheating for foils irradiated at 0.26 μm wavelength

    International Nuclear Information System (INIS)

    Pepin, H.; Fabbro, R.; Faral, B.; Amiranoff, F.; Virmont, J.; Cottet, F.; Romain, J.P.

    1985-01-01

    The x-ray emission, ablation pressure, and preheating for foils irradiated with a 0.26 μm laser at intensities approx.10 15 W cm -2 are studied. The foils are Al with various thicknesses, coated or uncoated with CH or Au. The x-ray emission and conversion efficiency are obtained with a multichannel x-ray diode spectrometer, the ablation pressures are deduced from shock transit times, and the rear temperatures are inferred from x-ray pyrometry. For thin foils (<<12 μm), the rear temperatures can be predicted reasonably well with the use of the front x-ray spectra. For thick foils shock preheating is dominant

  19. High-resolution x-ray imaging of planar foils irradiated by the Nike KrF laser

    International Nuclear Information System (INIS)

    Brown, C.; Seely, J.; Feldman, U.; Obenschain, S.; Bodner, S.; Pawley, C.; Gerber, K.; Sethian, J.; Mostovych, A.; Aglitskiy, Y.; Lehecka, T.; Holland, G.

    1997-01-01

    Thin plastic (CH) foils were irradiated by the Naval Research Laboratory Nike [Obenschain et al., Phys. Plasmas 3, 2098 (1996)] KrF laser and were imaged in the x-ray and extreme ultraviolet regions with two-dimensional spatial resolution in the 3 endash 10 μm range. The CH foils were backlit by a silicon plasma. A spherically curved quartz crystal produced monochromatic images of the Si +12 resonance line radiation with energy 1865 eV that was transmitted by the CH foils. Instabilities that were seeded by linear ripple patterns on the irradiated sides of CH foils were observed. The ripple patterns had periods in the 31 endash 125 μm range and amplitudes in the 0.25 endash 5.0 μm range. The silicon backlighter emission was recorded by an x-ray spectrometer, and the 1865 eV resonance line emission was recorded by a fast x-ray diode. The multilayer mirror telescope recorded images of the C +3 1550 Angstrom emission (energy 8.0 eV) from the backside of the CH foils. copyright 1997 American Institute of Physics

  20. Use of gold and silver standards based on phenol-formalde-hyde resin in assay-activation analysis of geological samples

    International Nuclear Information System (INIS)

    Aliev, A.I.; Drynkin, V.I.; Lejpunskaya, D.I.; Nedostup, T.V.

    1976-01-01

    Using standards on phenol-formaldehyde resin base for assaying-activation analysis of geological specimens for gold and silver has bee the advantage of uniformly distributing Au and Ag in spesimens and possible preparing tablets of practically any form or size. The validity and accuracy of these standards have been studied for the cases of short irradiation. Conventional point standards were used as reference standards. The experiments carried out have shown that tablet resol standards are suitable for a mass assaying-activation analysis for gold and silver at practically any concentrations