WorldWideScience

Sample records for gold 199 target

  1. Preparation of 199Tl using the electroplating gold targets on the internal target installation of cyclotron

    International Nuclear Information System (INIS)

    Zhou Dehai; Xie Degao; Chao Yangshu; Liao Fuquan; Zhang Youfa; Wang Zefu

    1992-01-01

    The separative conditions of 199 Tl from Cu, Au and Ga by reaction 197 Au(α, 2n) 199 Tl on the internal target installation of cyclotron is studied. The α-particle energy is selected in the range of 24-15 MeV. The cumulative current intensities of such α-particle beams bombarding the gold target at 150-200 μA are 1200 μA · h and 1500 μA · h respectively. The radiochemical separation of 199 Tl is carried out with isopropyl ether extraction and anions exchange from the irradiated gold targets. The radioactivities of 199 Tl and 200 Tl are 2.3 x 10 5 Bq and 7.1 x 10 2 Bq, and 200 Tl makes up 0.29% of the total radioactivity. The impurity elements contained 1 ml of 199 TlCl injection solution are Au 199 TlCl has been used in clinical experiments in vivo and relatively good results have been obtained

  2. The adsorption of Tl(I), Au(III), Cu(II) and the separation of 199Tl from alpha bombardment of gold target with PDB-18C6

    International Nuclear Information System (INIS)

    Zhou Dehai; Zhou Jimeng

    1989-01-01

    The adsorptive behavior of polymer of methyl aldehyde of dibenzo-18-crown-6 (PDB-18C6) in hydrochloric acid medium is studied and it is shown that the adsorption of T1(I), Au(III), and Cu(II) depends on the particle size of the crown ether resins, hydrochloric acid concentration and amount of the crown ether resins used. The difference in the adsorption behavior of different particle sizes of crown ether resins may be used for separating Tl(I), Au(III), and Cu(II) ions. The best eluant of Tl(I) and Au(III) is 0.4 mol/l perchloric acid and 2-ethoxy-ethanol. The recovery for Tl(I) is 82-98.8%. The gold target is bombarded in a 1.2 m cyclotron with 25-27 MeV α-particle with a cumulative beam intensities of 27μA·h, and 199 Tl is separated from the gold target with PDB-18C6. γ-spectrometry has shown that the Tl obtained is 199 Tl of high purity containing only about 0.50% 200 Tl

  3. Preliminary investigations on the preparation of gold nanoparticles intrinsically radiolabeled with 199Au

    International Nuclear Information System (INIS)

    Vimalnath, K.V.; Chakraborty, Sudipta; Dash, Ashutosh

    2016-01-01

    Radiolabeled nanoparticles are of great interest in the current perspective of the nuclear medicine. Water dispersible materials with nanoscale dimensions are finding role in biomedical application owing to their size. These particles can access otherwise unreachable regions in tumor mainly due to Enhanced Permeability and Retention (EPR) effect. Nanoparticles of gold (AuNPs) can bind to a wide range of biologically active molecules with functional groups that have high affinity for the gold surface. Sulfur containing compounds (e.g. thiols, disulfides), organic phosphates, amines, PEG, etc. are some of the well known surface modifiers. Functional thiolates, oligonucleotides, peptides and PEGs are introduced upon subsequent bimolecular substitution of a ligand by a functional thiol easily attached to AuNPs. Owing to its favourable decay characteristics 199 Au (T 1/2 = 3.15 d, E âmax = 474 keV, Eg 158.4 keV (36.9 %) and 208.2 keV (8.4 %)) is an attractive radionuclide for theragnostic applications. In the present work, we have carried out preliminary radiochemical investigations on the preparation of gold nanoparticles intrinsically radiolabeled with 199 Au for its potential utility as a theragnostic agent targeted delivery to the tumors

  4. Activation analysis for platinum in gold and metals of the platinum group through 199Au

    International Nuclear Information System (INIS)

    Foerster, H.

    1976-01-01

    Platinum was determined in gold and in metals of the platinum group through 199 Au by activation analysis. The matrix was separated at the end of irradiation before the daughter nuclide was formed. Gold was separated by extraction with MIBK from 1

  5. CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite.

    Science.gov (United States)

    Alarfaj, Nawal Ahmad; El-Tohamy, Maha Farouk; Oraby, Hesham Farouk

    2018-04-11

    The clinical detection of carbohydrate antigen 19-9 (CA 19-9), a tumor marker in biological samples, improves and facilitates the rapid screening and diagnosis of pancreatic cancer. A simple, low cost, fast, and green synthesis method to prepare a viable carbon quantum dots/gold (CQDs/Au) nanocomposite fluorescence immunosensing solution for the detection of CA 19-9 was reported. The present method is conducted by preparing glucose-derived CQDs using a microwave-assisted method. CQDs were employed as reducing and stabilizing agents for the preparation of a CQDs/Au nanocomposite. The immobilized anti-CA 19-9-labeled horseradish peroxidase enzyme (Ab-HRP) was anchored to the surface of a CQDs/Au nanocomposite by a peptide interaction between the carboxylic and amine active groups. The CA 19-9 antigen was trapped by another monoclonal antibody that was coated on the surface of microtiter wells. The formed sandwich capping antibody-antigen-antibody enzyme complex had tunable fluorescence properties that were detected under excitation and emission wavelengths of 420 and 530 nm. The increase in fluorescence intensities of the immunoassay sensing solution was proportional to the CA 19-9 antigen concentration in the linear range of 0.01-350 U mL -1 and had a lower detection limit of 0.007 U mL -1 . The proposed CQDs/Au nanocomposite immunoassay method provides a promising tool for detecting CA 19-9 in human serum.

  6. Preparation of 199Tl and its labelled compound

    International Nuclear Information System (INIS)

    Zhou Dehai; Guan Changtian; Kuang Anren

    1991-10-01

    Usually, 199 Ti is obtained by the nuclear reaction of 197 Au(α, 2n) 199 Tl. A gold target with 50±0.1 mm in diameter, 0.8 mm in thickness and 99.99% in purity was mounted in a cyclotron beam line. The target was bombarded by α particles with the energy of 25∼27 MeV and the beam current of 15∼20μA. The irradiated gold target was dissolved by aqua regia. Then the saturated aqueous solution of SO 2 was added. The 199 Tl(III)reduced to 199 Tl(I). The deposit of gold was removed. For separation of 199 Tl)I), about 5 mL of raw material solution obtained was transferred to 201 x 8 type anion exchange resin column which had been equilibrated with 4 mol/L HCl. The 199 Tl(I) and Au(III) were desorbed separately with the eluants (90% of aqueous diamide solution,, and 2 mol/L HCL∼5% thiourea) at the flow rate of 0.25 mL/min. After separation, the 10 mL concentrated nitric acid was added to the 199 Tl collected solution to destroy and remove the aqueous diamide solution, then 4 mol/L HCl was added and heated up to remove NO 3 - . The TlCl injection with pH = 5 was made up by using physiological saline. After filtering the 199 TlCl injection was sterilized at 137.3 kPa, 120 deg C about 30 min in an autoclave. The 199 TlCl injection was used in the animal pyrogen, a bacterial, safety, dispensation and myocardial imaging experiments. The good results have been obtained. Now it has undergone clinical experiments

  7. Preparation of 199Tl radionuclide on U-120 (R-7M) cyclotron

    International Nuclear Information System (INIS)

    Glukhov, G.G.; Komov, A.I.; Maslennikov, Yu.S.; Malinin, A.B.; Skuridin, V.S.

    1989-01-01

    The possibility of preparation of 199 Tl radionuclide, which can be successfully used instead of thallium-201 in radiopharmaceutical compound for medicine diagnosis due to nuclear-physical characteristics, is studied. It is established that thallium-199 free from thallium-298, but with thallium-200 impurity, is formed under irradiation of gold-197 target by 27.2-28 MeV energy α-particles. The construction of a thin-layer gold target allowing to decrease thallium-200 impurity up to >0.5 % is developed and tested. Perspectivity of thallium-199 production at domestic cyclotrons P-7M and u-120 is shown. 4 refs.; 2 figs.; 3 tabs

  8. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells.

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V; Guha, Sushovan; Pautler, Robia G; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.

  9. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pissuwan, Dakrong [University of Technology Sydney, Institute for Nanoscale Technology (Australia); Valenzuela, Stella M. [University of Technology Sydney, Department of Medical and Molecular Biosciences (Australia)], E-mail: stella.valenzuela@uts.edu.au; Killingsworth, Murray C. [Sydney South West Pathology Service (Australia)], E-mail: murray.killingsworth@swsahs.nsw.gov.au; Xu, Xiaoda; Cortie, Michael B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)], E-mail: michael.cortie@uts.edu.au

    2007-12-15

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation ({approx}1x10{sup 5} to 1x10{sup 10} W/m{sup 2}). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10{sup 2} W/m{sup 2} being sufficient, provided that a total fluence of {approx}30 J/cm{sup 2} is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm{sup 2} resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  10. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Science.gov (United States)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  11. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    International Nuclear Information System (INIS)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-01-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (∼1x10 5 to 1x10 10 W/m 2 ). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10 2 W/m 2 being sufficient, provided that a total fluence of ∼30 J/cm 2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm 2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells

  12. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  13. Gold-manganese nanoparticles for targeted diagnostic and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-10

    Imagine the possibility of non-invasive, non-radiation based Magnetic resonance imaging (MRI) in combating cardiac disease. Researchers at the Savannah River National Laboratory (SRNL) are developing a process that would use nanotechnology in a novel, targeted approach that would allow MRIs to be more descriptive and brighter, and to target specific organs. Researchers at SRNL have discovered a way to use multifunctional metallic gold-manganese nanoparticles to create a unique, targeted positive contrast agent. SRNL Senior Scientist Dr. Simona Hunyadi Murph says she first thought of using the nanoparticles for cardiac disease applications after learning that people who survive an infarct exhibit up to 15 times higher rate of developing chronic heart failure, arrhythmias and/or sudden death compared to the general population. Without question, nanotechnology will revolutionize the future of technology. The development of functional nanomaterials with multi-detection modalities opens up new avenues for creating multi-purpose technologies for biomedical applications.

  14. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  15. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.

    Science.gov (United States)

    Alexander, Colleen M; Hamner, Kristen L; Maye, Mathew M; Dabrowiak, James C

    2014-07-16

    In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle. Cytotoxicity studies using SK-N-SH neuroblastoma cells with drug loaded delivery vehicles were carried out using a variety of exposure times (1-48 h) and recovery times (1-72 h), and in order to access the effects of varying amounts of attached FA, in culture media deficient in FA. DOX loaded delivery vehicles having 50% of the DNA strands with attached FA were more cytotoxic than when all of the strands contained FA. Since FA stimulates cell growth, the reduced cytotoxicity of vehicles fully covered with FA suggests that the stimulatory effects of FA can more than compensate for the cytotoxic effects of the drug on the cell population. While attachment of hexa-ethylene glycol PEG(18) to the surface of the delivery vehicle had no effect on cytotoxicity, 100% FA plus the thermoresponsive polymer resulted in IC50 = 0.48 ± 0.01 for an exposure time of 24 h and a recovery time of 1 h, which is an order of magnitude more cytotoxic than free DOX. Confocal microscopic studies using fluorescence detection showed that SK-N-SH neuroblastoma cells exposed to DOX-loaded vehicles have drug accumulation inside the cell and, in the case of vehicles with attached FA and thermoresponsive polymer, the drug appears more concentrated. Since the biological target of DOX is DNA, the latter

  16. Alteration zones: are they a good target for gold deposits in Egypt

    International Nuclear Information System (INIS)

    Botros, N.S.

    2002-01-01

    Extensive rock alterations are a clearly visible characteristic of most Egyptian gold deposits and occurrences. The alterations occur either surrounding the auriferous quartz veins and/or structurally controlled by specific structural features, such as fractures and shear surfaces. Some samples of these alteration zones have proved to be anomalously enriched in gold while others are completely barren. Accordingly there is a controversy on the merit of alteration zones as good lead to gold. Here, the various types of wall rocks wall-rock alteration are reviewed with a discussion on the possible reaction that could have generated them. It is concluded that two main styles of alterations could be recognized in the field. The first results during the liberation of gold from the source rocks, and is characterized by being widely distributed and spatial relation to major structures. The second style, however, is related to the deposition of gold and is recognizable only within a few meters of the auriferous quartz veins. The potentiality of each style is discussed and applications of concept are offered. In general, alterations accompanying the liberation of gold are not completely devoid of gold, but may still retain some gold depending on the mineralogical siting of gold in the source rocks. Moreover, this type of alteration is a good criterion for the presence of gold in the nearby sites. Alterations accompanying deposition of gold, on the other hand, constitute a good target for gold particularly the portions that are dissected by minor quartz veins, veinlets and stockworks (silicification) where gold is believed to migrate to such sites with silica liberated during the different types of alterations. The presence of some efficient precipitants, such as sulphides, carbonates, clay minerals, sericites, iron oxides, chlorite and graphite in the alteration zones is a good indicator of the alteration zone. (author)

  17. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  18. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties.

    Science.gov (United States)

    Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah

    2017-11-01

    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  20. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  1. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  2. 2-D simulation of hohlraum targets for HIDIF: gold vs. beryllium converters

    International Nuclear Information System (INIS)

    Honrubia, J.J.; Meyer-ter-Vehn, J.

    2000-01-01

    Two cylindrical hohlraum targets for heavy-ion-fusion are compared from the point of view of total ion-energy required to ignite a specified capsule. Target a, a simple bare gold cylindrical cavity behaves much more efficiently than Target b, the former one internally cladded with solid beryllium where convenient, to ensure ion energy conversion to X-rays mainly in this cladding. A discussion of the problem is provided. (authors)

  3. Biological rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-induced ABT-199 resistance in mantle cell lymphoma.

    Science.gov (United States)

    Chiron, David; Dousset, Christelle; Brosseau, Carole; Touzeau, Cyrille; Maïga, Sophie; Moreau, Philippe; Pellat-Deceunynck, Catherine; Le Gouill, Steven; Amiot, Martine

    2015-04-20

    The aggressive biological behavior of mantle cell lymphoma (MCL) and its short response to current treatment highlight a great need for better rational therapy. Herein, we investigate the ability of ABT-199, the Bcl-2-selective BH3 mimetic, to kill MCL cells. Among MCL cell lines tested (n = 8), only three were sensitive (LD50 < 200 nM). In contrast, all primary MCL samples tested (n = 11) were highly sensitive to ABT-199 (LD50 < 10 nM). Mcl-1 and Bcl-xL both confer resistance to ABT-199-specific killing and BCL2/(BCLXL+MCL1) mRNA ratio is a strong predictor of sensitivity. By mimicking the microenvironment through CD40 stimulation, we show that ABT-199 sensitivity is impaired through activation of NF-kB pathway and Bcl-x(L) up-regulation. We further demonstrate that resistance is rapidly lost when MCL cells detach from CD40L-expressing fibroblasts. It has been reported that ibrutinib induces lymphocytosis in vivo holding off malignant cells from their protective microenvironment. We show here for two patients undergoing ibrutinib therapy that mobilized MCL cells are highly sensitive to ABT-199. These results provide evidence that in situ ABT-199 resistance can be overcome when MCL cells escape from the lymph nodes. Altogether, our data support the clinical application of ABT-199 therapy both as a single agent and in sequential combination with BTK inhibitors.

  4. Gold markers for tumor localization and target volume delineation in radiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Christiansen, Hans; Hess, Clemens Friedrich; Hermann, Robert Michael; Liersch, Thorsten; Ghadimi, Michael; Rothe, Hilka

    2009-01-01

    In locally advanced rectal cancer, neoadjuvant radiochemotherapy is indicated. To improve target volume definition for radiotherapy planning, the potential of implanted gold markers in the tumor region was evaluated. In nine consecutive patients, two to three gold markers were implanted in the tumor region during rigid rectoscopy. Computed tomography scans were performed during treatment planning. All electronic portal imaging devices (EPIDs) recorded during treatment series were analyzed. All patients underwent complete tumor resection with meticulous histopathologic examination. The gold markers could easily be implanted into the mesorectal tissue at the caudal tumor border without any complications. They were helpful in identifying the inferior border of the planning target volume in order to spare normal tissue (in particular anal structures). No significant shift of the markers was found during the course of therapy. Marker matching of the EPIDs did not improve patient positioning in comparison to bone structure matching. The former position of at least one marker could be identified in all patients during histopathologic examination. The use of gold marker enables a more precise definition of the target volume for radiotherapy in patients with rectal cancer. This could eventually allow a better protection of anal structures of patients with a tumor localization = 5 cm cranial of the anal sphincter. The implantation of the gold markers improved communication between the surgeon, the radiooncologist and the pathologist resulting in intensified exchange of relevant informations. (orig.)

  5. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    Science.gov (United States)

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  6. Targeted Inhibition of the miR-199a/214 Cluster by CRISPR Interference Augments the Tumor Tropism of Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Hypoxic Condition

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2016-01-01

    Full Text Available The human induced pluripotent stem cell (hiPSC provides a breakthrough approach that helps overcoming ethical and allergenic challenges posed in application of neural stem cells (NSCs in targeted cancer gene therapy. However, the tumor-tropic capacity of hiPSC-derived NSCs (hiPS-NSCs still has much room to improve. Here we attempted to promote the tumor tropism of hiPS-NSCs by manipulating the activity of endogenous miR-199a/214 cluster that is involved in regulation of hypoxia-stimulated cell migration. We first developed a baculovirus-delivered CRISPR interference (CRISPRi system that sterically blocked the E-box element in the promoter of the miR-199a/214 cluster with an RNA-guided catalytically dead Cas9 (dCas9. We then applied this CRISPRi system to hiPS-NSCs and successfully suppressed the expression of miR-199a-5p, miR-199a-3p, and miR-214 in the microRNA gene cluster. Meanwhile, the expression levels of their targets related to regulation of hypoxia-stimulated cell migration, such as HIF1A, MET, and MAPK1, were upregulated. Further migration assays demonstrated that the targeted inhibition of the miR-199a/214 cluster significantly enhanced the tumor tropism of hiPS-NSCs both in vitro and in vivo. These findings suggest a novel application of CRISPRi in NSC-based tumor-targeted gene therapy.

  7. Targeted Therapy Combined with Immune Modulation Using Gold Nanoparticles for Treating Metastatic Colorectal Cancer

    Science.gov (United States)

    2017-09-01

    stimulate the body’s immune system to target and attack cancer cells. Another part of our research includes coating these gold nanoparticles with...change in animal care is the introduction of doxycycline through food chow in addition to drinking water. The dose of doxycycline from the drinking water

  8. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    Science.gov (United States)

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  9. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1.

    Directory of Open Access Journals (Sweden)

    Christian Lacks Lino Cardenas

    Full Text Available As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF, remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls. In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that

  10. Targeting of Pancreatic Cancer with Magneto-Fluorescent Theranostic Gold Nanoshells

    Science.gov (United States)

    Chen, Wenxue; Ayala-Orozco, Ciceron; Biswal, Nrusingh C.; Perez-Torres, Carlos; Bartels, Marc; Bardhan, Rizia; Stinnet, Gary; Liu, Xian-De; Ji, Baoan; Deorukhkar, Amit; Brown, Lisa V.; Guha, Sushovan; Pautler, Robia G.; Krishnan, Sunil; Halas, Naomi J; Joshi, Amit

    2014-01-01

    Aim We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. Materials and Methods Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the NIR dye ICG, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. Results AntiNGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2 weighted MR imaging with higher tumor contrast than can be obtained using long-circulating but non-targeted PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. Conclusions Theranostic gold nanoshells with embedded NIR and MR contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy. PMID:24063415

  11. Proteinticle/gold core/shell nanoparticles for targeted cancer therapy without nanotoxicity.

    Science.gov (United States)

    Kwon, Koo Chul; Ryu, Ju Hee; Lee, Jong-Hwan; Lee, Eun Jung; Kwon, Ick Chan; Kim, Kwangmeyung; Lee, Jeewon

    2014-10-08

    PGCS-NPs (40 nm) with excellent photo-thermal activity are developed, on the surface of which affibody peptides with specific affinity for EGFR and many small gold dots (1-3 nm) are densely presented. The IV-injected PGCS-NPs into EGFR-expressing tumor-bearing mice successfully perform targeted and photothermal therapy of cancer. It seems that the small gold dots released from disassembled PGCS-NPs are easily removed and never cause in vivo toxicity problems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery?

    Science.gov (United States)

    Cheng, Yu; Meyers, Joseph D; Agnes, Richard S; Doane, Tennyson L; Kenney, Malcolm E; Broome, Ann-Marie; Burda, Clemens; Basilion, James P

    2011-08-22

    EGF-modified Au NP-Pc 4 conjugates showed 10-fold improved selectivity to the brain tumor compared to untargeted conjugates. The hydrophobic photodynamic therapy drug Pc 4 can be delivered efficiently into glioma brain tumors by EGF peptide-targeted Au NPs. Compared to the untargeted conjugates, EGF-Au NP-Pc 4 conjugates showed 10-fold improved selectivity to the brain tumor. This delivery system holds promise for future delivery of a wider range of hydrophobic therapeutic drugs for the treatment of hard-to-reach cancers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    Science.gov (United States)

    Kopwitthaya, Atcha; Yong, Ken-Tye; Hu, Rui; Roy, Indrajit; Ding, Hong; Vathy, Lisa A.; Bergey, Earl J.; Prasad, Paras N.

    2010-08-01

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  14. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  15. Biocompatible PEGylated gold nanorods as colored contrast agents for targeted in vivo cancer applications

    Energy Technology Data Exchange (ETDEWEB)

    Kopwitthaya, Atcha; Hu Rui; Roy, Indrajit; Ding Hong; Vathy, Lisa A; Bergey, Earl J; Prasad, Paras N [Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260-4200 (United States); Yong, Ken-Tye, E-mail: ktyong@ntu.edu.sg, E-mail: pnprasad@buffalo.edu [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-08-06

    In this contribution, we report the use of a PEGylated gold nanorods formulation as a colored dye for tumor labeling in vivo. We have demonstrated that the nanorod-targeted tumor site can be easily differentiated from the background tissues by the 'naked eye' without the need of sophisticated imaging instruments. In addition to tumor labeling, we have also performed in vivo toxicity and biodistribution studies of PEGylated gold nanorods in vivo by using BALB/c mice as the model. In vivo toxicity studies indicated no mortality or adverse effects or weight changes in BALB/c mice treated with PEGylated gold nanorods. This finding will provide useful guidelines in the future development of diagnostic probes for cancer diagnosis, optically guided tumor surgery, and lymph node mapping applications.

  16. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Rathinaraj, Pierson; Lee, Kyubae; Choi, Yuri; Park, Soo-Young; Kwon, Oh Hyeong; Kang, Inn-Kyu

    2015-01-01

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  17. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rathinaraj, Pierson [Auckland University of Technology, Institute of Biomedical Technologies (New Zealand); Lee, Kyubae; Choi, Yuri; Park, Soo-Young [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of); Kwon, Oh Hyeong [Kumoh National Institute of Technology, Department of Polymer Science and Engineering (Korea, Republic of); Kang, Inn-Kyu, E-mail: ikkang@knu.ac.kr [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of)

    2015-07-15

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  18. Rational Design of Multifunctional Gold Nanoparticles via Host-Guest Interaction for Cancer-Targeted Therapy.

    Science.gov (United States)

    Chen, Wei-Hai; Lei, Qi; Luo, Guo-Feng; Jia, Hui-Zhen; Hong, Sheng; Liu, Yu-Xin; Cheng, Yin-Jia; Zhang, Xian-Zheng

    2015-08-12

    A versatile gold nanoparticle-based multifunctional nanocomposite AuNP@CD-AD-DOX/RGD was constructed flexibly via host-guest interaction for targeted cancer chemotherapy. The pH-sensitive anticancer prodrug AD-Hyd-DOX and the cancer-targeted peptide AD-PEG8-GRGDS were modified on the surface of AuNP@CD simultaneously, which endowed the resultant nanocomposite with the capability to selectively eliminate cancer cells. In vitro studies indicated that the AuNP@CD-AD-DOX/RGD nanocomposite was preferentially uptaken by cancer cells via receptor-mediated endocytosis. Subsequently, anticancer drug DOX was released rapidly upon the intracellular trigger of the acid microenvirenment of endo/lysosomes, inducing apoptosis in cancer cells. As the ideal drug nanocarrier, the multifunctional gold nanoparticles with the active targeting and controllable intracellular release ability hold the great potential in cancer therapy.

  19. Control of surface quality of sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zheng Wei; Zhang Lin; Sun Jingyuan; Chen Jing

    2010-01-01

    The morphology, composition and causes of defects are analyzed to reduce defects on the gold layer prepared by electrochemical deposition from sulfite solution, and to improve the surface quality of sub-millimeter cylindrical gold targets, by means of SEM and EDS. The effects of current density, metallic impurity, organic pollution, pre-deposition parameters and mandrel quality on the quality of the gold plating are discussed, along with their mechanisms. The result indicates that the current density must be controlled strictly. The optimal current density ranges from 2.4 to 3.2 mA/cm 2 when the concentration of gold ranges from 13 to 22 g/L, and from 2.0 to 2.6 mA/ cm 2 when the concentration of gold ranges from 5 to 13 g/L. The parameters of predeposition must be optimized and the predeposition time should be no longer than 1 minute to improve the surface quality. In addition, organic pollution should be removed from the bath, and the mandrels should be of good quality without oxide on their surfaces. (authors)

  20. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    Science.gov (United States)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  1. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    Science.gov (United States)

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  2. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study

    Directory of Open Access Journals (Sweden)

    Reuveni T

    2011-11-01

    Full Text Available Tobi Reuveni1, Menachem Motiei1, Zimam Romman2, Aron Popovtzer3, Rachela Popovtzer11Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-ilan University, Ramat Gan, 2GE HealthCare, Tirat Hacarmel, 3Department of Otorhinolaryngology, Head and Neck Surgery and Onology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah Tiqwa, IsraelAbstract: In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes.Keywords: functional computed tomography, molecular imaging, gold nanoparticles, biologically targeted in vivo imaging, contrast agents

  3. Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells

    Science.gov (United States)

    Jiwaji, Meesbah; Sandison, Mairi E.; Reboud, Julien; Stevenson, Ross; Daly, Rónán; Barkess, Gráinne; Faulds, Karen; Kolch, Walter; Graham, Duncan; Girolami, Mark A.; Cooper, Jonathan M.; Pitt, Andrew R.

    2014-01-01

    Introduction Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. PMID:24926959

  4. The Golden Target: Analyzing the Tracking Performance of Leveraged Gold ETFs

    OpenAIRE

    Tim Leung; Brian Ward

    2015-01-01

    This paper studies the empirical tracking performance of leveraged ETFs on gold, and their price relationships with gold spot and futures. For tracking the gold spot, we find that our optimized portfolios with short-term gold futures are highly effective in replicating prices. The market-traded gold ETF (GLD) also exhibits a similar tracking performance. However, we show that leveraged gold ETFs tend to underperform their corresponding leveraged benchmark. Moreover, the underperformance worse...

  5. Gold Nanorods Targeted to Delta Opioid Receptor: Plasmon-Resonant Contrast and Photothermal Agents

    Directory of Open Access Journals (Sweden)

    Kvar C. Black

    2008-01-01

    Full Text Available Molecularly targeted gold nanorods were investigated for applications in both diagnostic imaging and disease treatment with cellular resolution. The nanorods were tested in two genetically engineered cell lines derived from the human colon carcinoma HCT-116, a model for studying ligand-receptor interactions. One of these lines was modified to express delta opioid receptor (δOR and green fluorescent protein, whereas the other was receptor free and expressed a red fluorescent protein, to serve as the control. Deltorphin, a high-affinity ligand for δOR, was stably attached to the gold nanorods through a thiol-terminated linker. In a mixed population of cells, we demonstrated selective imaging and destruction of receptor-expressing cells while sparing those cells that did not express the receptor. The molecularly targeted nanorods can be used as an in vitro ligand-binding and cytotoxic treatment assay platform and could potentially be applied in vivo for diagnostic and therapeutic purposes with endoscopic technology.

  6. Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California

    Science.gov (United States)

    Hollister, V.F.; Silberman, M.L.

    1995-01-01

    The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.

  7. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells.

    Science.gov (United States)

    Kumar, Sathish Sundar Dhilip; Mahesh, Ayyavu; Antoniraj, M Gover; Rathore, Hanumant Singh; Houreld, N N; Kandasamy, Ruckmani

    2018-04-01

    In this study, the green synthesis of gum kondagogu capped gold nanoparticles (GK-GNPs) was prepared using a naturally available polysaccharide. The anionic gum capped GK-GNPs enabled the successful coupling of folic acid (FA) and fluorescein isothiocyanate (FITC) to produce a fluorescently labelled GNP (F2-GNP). F2-GNPs were further characterized using different physicochemical methods Cellular viability, cellular imaging, and targeted delivery of F2-GNPs were further evaluated in both folate receptor positive (MCF-7) and folate receptor negative (A549) cancer cells. Physicochemical characterization revealed a nanoparticle with a small size (37 nm), smooth surface (surface charge of -23.7 mV), crystallinity of gold nanoparticles and existence of gum kondagogu in the F2-GNPs. Cellular uptake of F2-GNPs indicated a greater affinity towards folate receptor positive cells. This study shows that the F2-GNPs is as an effective nanocarrier for targeted drug delivery and cellular imaging via folate receptors. Copyright © 2017. Published by Elsevier B.V.

  8. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    International Nuclear Information System (INIS)

    Diagaradjane, P; Deorukhkar, A; Sankaranarayanapillai, M; Singh, P; Manohar, N; Tailor, R; Cho, S; Goodrich, G; Krishnan, S

    2015-01-01

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  9. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Diagaradjane, P [M.D. Anderson Cancer Center, Houston, TX (United States); Deorukhkar, A; Sankaranarayanapillai, M; Singh, P [The UT MD Anderson Cancer Center, Houston, TX (United States); Manohar, N; Tailor, R; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Goodrich, G [Nanospectra Biosciences Inc, Houston, TX (United States); Krishnan, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  10. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications.

    NARCIS (Netherlands)

    Mandal, S.; Bakeine, G.J.; Krol, S.; Ferrari, C.; Clerici, A.M.; Zonta, C.; Cansolino, L.; Ballarini, F.; Bortolussi, S.; Stella, S.; Protti, N.; Bruschi, P.; Altieri, S.

    2011-01-01

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were

  11. Design, development and characterization of multi-functionalized gold nanoparticles for biodetection and targeted boron delivery in BNCT applications

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Subhra [Department of Tumor Immunology, Radboud University Nijmegen Medical Centre (Netherlands); Bakeine, Gerald J., E-mail: Jamesbakeine1@yahoo.com [Department of Internal Medicine and Therapeutics-Section of Clinical Toxicology, University of Pavia, Piazza Botta 10, 27100 Pavia (Italy); Krol, Silke [Institute of Neurology, Fondazione IRCCS Carlo Besta, Milan (Italy); Ferrari, Cinzia; Clerici, Anna M.; Zonta, Cecilia; Cansolino, Laura [Department of Surgery, Laboratory of Experimental Surgery, University of Pavia (Italy); Ballarini, Francesca [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bortolussi, Silva [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Stella, Subrina; Protti, Nicoletta [Department of Nuclear and Theoretical Physics, University of Pavia (Italy); Bruschi, Piero [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy); Altieri, Saverio [Department of Nuclear and Theoretical Physics, University of Pavia (Italy)] [National Institute of Nuclear Physics (INFN), Section of Pavia (Italy)

    2011-12-15

    The aim of this study is to optimize targeted boron delivery to cancer cells and its tracking down to the cellular level. To this end, we describe the design and synthesis of novel nanovectors that double as targeted boron delivery agents and fluorescent imaging probes. Gold nanoparticles were coated with multilayers of polyelectrolytes functionalized with the fluorescent dye (FITC), boronophenylalanine and folic acid. In vitro confocal fluorescence microscopy demonstrated significant uptake of the nanoparticles in cancer cells that are known to overexpress folate receptors. - Highlights: Black-Right-Pointing-Pointer Synthesis of multi-labeled gold nanoparticles for selective boron delivery to tumor cells. Black-Right-Pointing-Pointer Tumor selectivity is achieved through folic acid receptor targeting. Black-Right-Pointing-Pointer Optical fluorescent microscopy allows tracking of cellular uptake of the gold nanoparticle. Black-Right-Pointing-Pointer In vitro tests demonstrate selective nanoparticle up in folate receptor positive tumor cells.

  12. Comment: 199 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available nal Institute for Basic Biology) licensed under CC Attribution2.1 Japan メダカ近交系 Hd-rR系統 南日本集団由来の純系。 メダカで最初にゲノム解読が行われた系統。 撮影:成瀬清(基礎生物学...研究所) Photo: Kiyoshi Naruse (National Institute for Basic Biology) bando 2009/09/30 11:23:24 2010/01/14 20:09:43 ... ...Japanese medaka Oryzias latipes Oryzias_latipes_L.png 199.png Kiyoshi Naruse (Natio

  13. Production of nuclear fragments from the interactions of 24 GeV/c protons in a gold target

    CERN Document Server

    Herz, A J; O'Sullivan, D; Thompson, A

    1976-01-01

    Lexan polycarbonate track detectors have been used to determine the charge and energy spectra of nuclear fragments with Z>or=6 and with kinetic energies as low as approximately=1.0 MeV/nucleon emitted from a thin gold target bombarded with 24 GeV/c protons. (8 refs).

  14. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    International Nuclear Information System (INIS)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-01-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 10"8 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer. (paper)

  15. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  16. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  17. Near-Infrared Light Responsive Folate Targeted Gold Nanorods for Combined Photothermal-Chemotherapy of Osteosarcoma.

    Science.gov (United States)

    Li Volsi, Anna; Scialabba, Cinzia; Vetri, Valeria; Cavallaro, Gennara; Licciardi, Mariano; Giammona, Gaetano

    2017-04-26

    Folate-targeted gold nanorods (GNRs) are proposed as selective theranostic agents for osteosarcoma treatment. An amphiphilic polysaccharide based graft-copolymer (INU-LA-PEG-FA) and an amino derivative of the α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide functionalized with folic acid (PHEA-EDA-FA), have been synthesized to act as coating agents for GNRs. The obtained polymer-coated GNRs were characterized in terms of size, shape, zeta potential, chemical composition, and aqueous stability. They protected the anticancer drug nutlin-3 and were able to deliver it efficiently in different physiological media. The ability of the proposed systems to selectively kill tumor cells was tested on U2OS cancer cells expressing high levels of FRs and compared with human bronchial epithelial cells (16HBE) and human dermal fibroblasts (HDFa). The property of the nanosystems of efficiently controlling drug release upon NIR laser irradiation and of acting as an excellent hyperthermia agent as well as Two Photon Luminescence imaging contrast agents was demonstrated. The proposed folate-targeted GNRs have also been tested in terms of chemoterapeutic and thermoablation efficacy on tridimensional (3-D) osteosarcoma models.

  18. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    International Nuclear Information System (INIS)

    Cherry, M.L.; Denes-Jones, P.

    1994-03-01

    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab

  19. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Thovhogi, Ntevheleni; Sibuyi, Nicole [Medical Research Council, Diabetes Research Group (South Africa); Meyer, Mervin [University of the Western Cape, Biotechnology Department, DST/Mintek Nanotechnology Innovation Centre (South Africa); Onani, Martin [University of the Western Cape, Chemistry Department (South Africa); Madiehe, Abram, E-mail: amadiehe@csir.co.za [Medical Research Council, Diabetes Research Group (South Africa)

    2015-02-15

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  20. Prostate-Specific Membrane Antigen Targeted Gold Nanoparticles for Theranostics of Prostate Cancer.

    Science.gov (United States)

    Mangadlao, Joey Dacula; Wang, Xinning; McCleese, Christopher; Escamilla, Maria; Ramamurthy, Gopalakrishnan; Wang, Ziying; Govande, Mukul; Basilion, James P; Burda, Clemens

    2018-04-24

    Prostate cancer is one of the most common cancers and among the leading causes of cancer deaths in the United States. Men diagnosed with the disease typically undergo radical prostatectomy, which often results in incontinence and impotence. Recurrence of the disease is often experienced by most patients with incomplete prostatectomy during surgery. Hence, the development of a technique that will enable surgeons to achieve a more precise prostatectomy remains an open challenge. In this contribution, we report a theranostic agent (AuNP-5kPEG-PSMA-1-Pc4) based on prostate-specific membrane antigen (PSMA-1)-targeted gold nanoparticles (AuNPs) loaded with a fluorescent photodynamic therapy (PDT) drug, Pc4. The fabricated nanoparticles are well-characterized by spectroscopic and imaging techniques and are found to be stable over a wide range of solvents, buffers, and media. In vitro cellular uptake experiments demonstrated significantly higher nanoparticle uptake in PSMA-positive PC3pip cells than in PSMA-negative PC3flu cells. Further, more complete cell killing was observed in Pc3pip than in PC3flu cells upon exposure to light at different doses, demonstrating active targeting followed by Pc4 delivery. Likewise, in vivo studies showed remission on PSMA-expressing tumors 14 days post-PDT. Atomic absorption spectroscopy revealed that targeted AuNPs accumulate 4-fold higher in PC3pip than in PC3flu tumors. The nanoparticle system described herein is envisioned to provide surgical guidance for prostate tumor resection and therapeutic intervention when surgery is insufficient.

  1. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    International Nuclear Information System (INIS)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-01-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats

  2. Targeted delivery using peptide-functionalised gold nanoparticles to white adipose tissues of obese rats

    Science.gov (United States)

    Thovhogi, Ntevheleni; Sibuyi, Nicole; Meyer, Mervin; Onani, Martin; Madiehe, Abram

    2015-02-01

    Obesity is a complex metabolic disease of excessive fat accumulation. It is a worldwide epidemic affecting billions of people. Current pharmacological treatment of obesity remains limited and ineffective due to systemic drug toxicity and undesirable side effects. The current epidemic raises a serious need for development of safer drugs to treat obesity. Nanotechnology-based drug delivery system for administering pharmaceutical compound to achieve therapeutic effects is currently an exciting field in cancer treatment. Drug delivery involves either modification of drug release profile, absorption, distribution and/or elimination, for the benefit of improving drug efficacy and safety. Therefore, nanotechnology holds promise in the treatment of diseases including obesity. Gold nanoparticles (GNPs) functionalised with different biomolecules have been successfully used as drug delivery, labelling and imaging tools in biomedical research. In this study, the binding-specificity and targeting ability of adipose homing peptide (AHP)-functionalised GNPs (AHP-GNPs) were evaluated using flow cytometry and inductively coupled plasma-optical emission spectroscopy. Caco-2 cells and rats fed either chow or a high-fat diet were treated with either unfunctionalised GNPs or AHP-GNPs. Cellular uptake of GNPs was detected in cells treated with AHP-GNPs and not those treated with GNPs alone. Binding of AHP to cells was both temperature- and concentration-dependent. Compared to rats treated with GNPs alone, treatment of obese rats with AHP-GNPs resulted in the targeted delivery of the GNPs to the white adipose tissue (WAT). This paper reports the successful targeting of AHP-functionalised GNPs to WAT of obese rats.

  3. Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Millenbaugh NJ

    2015-03-01

    Full Text Available Nancy J Millenbaugh,1 Jonathan B Baskin,1 Mauris N DeSilva,1 W Rowe Elliott,1 Randolph D Glickman2 1Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, Joint Base San Antonio-Fort Sam Houston, TX, USA; 2Department of Ophthalmology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USAPurpose: The continued emergence of multidrug resistant bacterial infections and the decline in discovery of new antibiotics are major challenges for health care throughout the world. This situation has heightened the need for novel antimicrobial therapies as alternatives to traditional antibiotics. The combination of metallic nanoparticles and laser exposure has been proposed as a strategy to induce physical damage to bacteria, regardless of antibiotic sensitivity. The purpose of this study was to test the antibacterial effect of antibody-targeted gold nanoparticles combined with pulsed laser irradiation.Methods: Gold nanoparticles conjugated to antibodies specific to Staphylococcus aureus peptidoglycan were incubated with suspensions of methicillin-resistant and methicillin-sensitive S. aureus (MRSA and MSSA. Bacterial suspensions were then exposed to 8 ns pulsed laser irradiation at a wavelength of 532 nm and fluences ranging from 1 to 5 J/cm2. Viability of the bacteria following laser exposure was determined using colony forming unit assays. Scanning electron microscopy was used to confirm the binding of nanoparticles to bacteria and the presence of cellular damage.Results: The laser-activated nanoparticle treatment reduced the surviving population to 31% of control in the MSSA population, while the survival in the MRSA population was reduced to 58% of control. Significant decreases in bacterial viability occurred when the laser fluence exceeded 1 J/cm2, and this effect was linear from 0 to 5 J/cm2 (r2=0.97. Significantly less bactericidal effect was observed for nonfunctionalized nanoparticles or

  4. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  5. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Catarina Roma-Rodrigues

    2017-01-01

    Full Text Available Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  6. Tumor Microenvironment Modulation via Gold Nanoparticles Targeting Malicious Exosomes: Implications for Cancer Diagnostics and Therapy.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R

    2017-01-14

    Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

  7. Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells.

    Science.gov (United States)

    Shi, Xiangyang; Wang, Su He; Lee, Inhan; Shen, Mingwu; Baker, James R

    2009-11-01

    Dendrimer-based nanotechnology significantly advances the area of targeted cancer imaging and therapy. Herein, we compared the difference of surface acetylated fluorescein isocyanate (FI) and folic acid (FA) modified generation 5 (G5) poly(amidoamine) dendrimers (G5.NHAc-FI-FA), and dendrimer-entrapped gold nanoparticles with similar modifications ([(Au(0))(51.2)-G5.NHAc-FI-FA]) in terms of their specific internalization to FA receptor (FAR)-overexpressing cancer cells. Confocal microscopic studies show that both G5.NHAc-FI-FA and [(Au(0))(51.2-)G5.NHAc-FI-FA] exhibit similar internalization kinetics regardless of the existence of Au nanoparticles (NPs). Molecular dynamics simulation of the two different nanostructures reveals that the surface area and the FA moiety distribution from the center of the geometry are slightly different. This slight difference may not be recognized by the FARs on the cell membrane, consequently leading to similar internalization kinetics. This study underlines the fact that metal or inorganic NPs entrapped within dendrimers interact with cells in a similar way to that of dendrimers lacking host NPs. 2009 Wiley Periodicals, Inc.

  8. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  9. SU-F-T-666: Molecular-Targeted Gold Nanorods Enhances the RBE of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, A; Sahoo, N; Krishnan, S; Diagaradjane, P [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: In recent years, proton beam radiation therapy (PBRT) has gained significant attention in the treatment of tumors in anatomically complex locations. However, the therapeutic benefit of PBRT is limited by a relative biological effectiveness (RBE) of just 1.1. The purpose of this study is to evaluate whether this limitation can be overcome by artificially enhancing the RBE using molecular-targeted gold nanorods (GNRs). Methods: Molecular-targeting of GNRs was accomplished using Cetuximab (antibody specific to epidermal growth factor receptor that is over-expressed in tumors) conjugated GNRs (cGNRs) and their binding affinity to Head and Neck cancer cells was confirmed using dark field microscopy and Transmission Electron Microscopy (TEM). The radiosensitization potential of cGNRs when irradiated with photon (6MV) and proton (100 and 160 MeV) beams was determined using clonogenic assays. The RBE at 10% surviving fraction (RBE{sub 10}) for proton therapies at central and distal locations of SOBP was calculated with respect to 6 MV photons. IgGconjugated GNRs (iGNRs) were used as controls in all experiments. Results: cGNRs demonstrated significant radiosensitization when compared to iGNRs for 6MV photons (1.14 vs 1.04), 100 MeV protons (1.19 vs 1.04), and 160 MeV protons (1.17 vs 1.04). While RBE10 for proton beams at the center of SOBP revealed similar effects for both 100 and 160 MeV (RBE{sup 10}=1.39 vs 1.38; p>0.05), enhanced radiosensitization was observed at the distal SOBP with 100 MeV beams demonstrating greater effect than 160 MeV beams (RBE{sup 10}=1.79 vs 1.6; p<0.05). Conclusion: EGFR-targeting GNRs significantly enhance the RBE of protons well above the accepted 1.1 value. The enhanced RBE observed for lower energy protons (100 MeV) and at the distal SOBP suggests that low energy components may play a role in the observed radiosensitization effect. This strategy holds promise for clinical translation and could evolve as a paradigm-changing approach

  10. TU-F-CAMPUS-T-04: Using Gold Nanoparticles to Target Mitochondria in Radiation Therapy

    International Nuclear Information System (INIS)

    McNamara, A; McMahon, S; Lin, Y; Paganetti, H; Schuemann, J; Kuncic, Z

    2015-01-01

    Purpose: The mitochondrion, like the cell nucleus, contains genetic material and plays several critical roles that determine the cell viability, including neutralization of free radicals within the cell. Studies have shown that irradiated cells with impaired mitochondria will incur more damage to the cell nucleus. This study investigates the potential use of GNPs to enhance radiation-induced damage to the organelle. Methods: The compositions of the organelles of a JURKAT cell were determined experimentally. Using Monte Carlo simulations, we investigate the significance of dose enhancement in a monoenergetic (10–50 keV and 6 MeV) x-ray irradiated cell cytoplasm, consisting of the experimentally determined composition. We also investigate the track structure of secondary electrons in the mitochondria using Geant4-DNA in the presence and absence of GNPs for incident protons and photons. The biological effect was determined using an approach based on the local effect model, assuming the mitochondrial DNA (mtDNA) was the primary target. Results: Adding 0.01% of gold to the cell cytoplasm material can cause substantial dose enhancement, dependent on the incident x-ray energy. Track structure Monte Carlo (MC) simulations show an increased number of ionization events within the mitochondrion structure. The close proximity of GNPs to the mtDNA storing nucleoid may cause the mtDNA to receive doses above ∼100 Gy for keV x-rays, leading to mitochondrial dysfunction. Conclusion: A substantial increase in ionization events can occur in the mitochondria in the presence of GNPs. If GNPs can be delivered to tumors and attached to a sufficient number of mitochondria inside the tumor cells, mitochondrial induced cell death could be a prevalent cause of cell death. The biological structures developed here will be included in the biological MC toolkit, TOPAS-nBio

  11. TU-F-CAMPUS-T-04: Using Gold Nanoparticles to Target Mitochondria in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, A [Massachusetts General Hospital & Harvard Med. Sch., Boston, MA (United States); McMahon, S [Massachusetts General Hospital, Boston, Ma (United States); Lin, Y [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Paganetti, H; Schuemann, J [Massachusetts General Hospital, Boston, MA (United States); Kuncic, Z [University of Sydney, Sydney, NSW (Australia)

    2015-06-15

    Purpose: The mitochondrion, like the cell nucleus, contains genetic material and plays several critical roles that determine the cell viability, including neutralization of free radicals within the cell. Studies have shown that irradiated cells with impaired mitochondria will incur more damage to the cell nucleus. This study investigates the potential use of GNPs to enhance radiation-induced damage to the organelle. Methods: The compositions of the organelles of a JURKAT cell were determined experimentally. Using Monte Carlo simulations, we investigate the significance of dose enhancement in a monoenergetic (10–50 keV and 6 MeV) x-ray irradiated cell cytoplasm, consisting of the experimentally determined composition. We also investigate the track structure of secondary electrons in the mitochondria using Geant4-DNA in the presence and absence of GNPs for incident protons and photons. The biological effect was determined using an approach based on the local effect model, assuming the mitochondrial DNA (mtDNA) was the primary target. Results: Adding 0.01% of gold to the cell cytoplasm material can cause substantial dose enhancement, dependent on the incident x-ray energy. Track structure Monte Carlo (MC) simulations show an increased number of ionization events within the mitochondrion structure. The close proximity of GNPs to the mtDNA storing nucleoid may cause the mtDNA to receive doses above ∼100 Gy for keV x-rays, leading to mitochondrial dysfunction. Conclusion: A substantial increase in ionization events can occur in the mitochondria in the presence of GNPs. If GNPs can be delivered to tumors and attached to a sufficient number of mitochondria inside the tumor cells, mitochondrial induced cell death could be a prevalent cause of cell death. The biological structures developed here will be included in the biological MC toolkit, TOPAS-nBio.

  12. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Horwood, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stadermann, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percent gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.

  13. The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model.

    Science.gov (United States)

    Yang, Xiaoping; Su, Lih-Jen; La Rosa, Francisco G; Smith, Elizabeth Erin; Schlaepfer, Isabel R; Cho, Suehyun K; Kavanagh, Brian; Park, Wounjhang; Flaig, Thomas W

    2017-07-27

    Gold nanoparticles treated with near infrared (NIR) light can be heated preferentially, allowing for thermal ablation of targeted cells. The use of novel intravesical nanoparticle-directed therapy in conjunction with laser irradiation via a fiber optic cystoscope, represents a potential ablative treatment approach in patients with superficial bladder cancer. To examine the thermal ablative effect of epidermal growth factor receptor (EGFR)-directed gold nanorods irradiated with NIR light in an orthotopic urinary bladder cancer model. Gold nanorods linked to an anti-EGFR antibody (Conjugated gold NanoRods - CNR) were instilled into the bladder cavity of an orthotopic murine xenograft model with T24 bladder cancer cells expressing luciferase. NIR light was externally administered via an 808 nm diode laser. This treatment was repeated weekly for 4 weeks. The anti-cancer effect was monitored by an in vivo imaging system in a non-invasive manner, which was the primary outcome of our study. The optimal approach for an individual treatment was 2.1 W/cm 2 laser power for 30 seconds. Using this in vivo model, NIR light combined with CNR demonstrated a statistically significant reduction in tumor-associated bioluminescent activity ( n  = 16) compared to mice treated with laser alone ( n  = 14) at the end of the study ( p  = 0.035). Furthermore, the CNR+NIR light treatment significantly abrogated bioluminescence signals over a 6-week observation period, compared to pre-treatment levels ( p  = 0.045). Photothermal tumor ablation with EGFR-directed gold nanorods and NIR light proved effective and well tolerated in a murine in vivo model of urinary bladder cancer.

  14. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Kirkby, Charles, E-mail: charles.kirkby@albertahealthservices.ca; Ghasroddashti, Esmaeel [Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta T1J 1W5 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N2 (Canada)

    2015-02-15

    Purpose: Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. Methods: The PENELOPE MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dose on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated—considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness—and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. Results: For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. Conclusions: Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly

  15. 46 CFR 199.202 - Rescue boats.

    Science.gov (United States)

    2010-10-01

    ... SYSTEMS FOR CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.202 Rescue boats... 46 Shipping 7 2010-10-01 2010-10-01 false Rescue boats. 199.202 Section 199.202 Shipping COAST... least one rescue boat approved under approval series 160.156 that is equipped as specified in table 199...

  16. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, Ross I., E-mail: rberbeco@partners.org; Detappe, Alexandre [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Tsiamas, Panogiotis [Department of Radiation Oncology, St. Jude Children’s Hospital, Memphis, Tennessee 38105 (United States); Parsons, David; Yewondwossen, Mammo; Robar, James [Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 1V7 (Canada)

    2016-01-15

    Purpose: Previous studies have introduced gold nanoparticles as vascular-disrupting agents during radiation therapy. Crucial to this concept is the low energy photon content of the therapy radiation beam. The authors introduce a new mode of delivery including a linear accelerator target that can toggle between low Z and high Z targets during beam delivery. In this study, the authors examine the potential increase in tumor blood vessel endothelial cell radiation dose enhancement with the low Z target. Methods: The authors use Monte Carlo methods to simulate delivery of three different clinical photon beams: (1) a 6 MV standard (Cu/W) beam, (2) a 6 MV flattening filter free (Cu/W), and (3) a 6 MV (carbon) beam. The photon energy spectra for each scenario are generated for depths in tissue-equivalent material: 2, 10, and 20 cm. The endothelial dose enhancement for each target and depth is calculated using a previously published analytic method. Results: It is found that the carbon target increases the proportion of low energy (<150 keV) photons at 10 cm depth to 28% from 8% for the 6 MV standard (Cu/W) beam. This nearly quadrupling of the low energy photon content incident on a gold nanoparticle results in 7.7 times the endothelial dose enhancement as a 6 MV standard (Cu/W) beam at this depth. Increased surface dose from the low Z target can be mitigated by well-spaced beam arrangements. Conclusions: By using the fast-switching target, one can modulate the photon beam during delivery, producing a customized photon energy spectrum for each specific situation.

  17. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles

    NARCIS (Netherlands)

    Cormode, David P.; Roessl, Ewald; Thran, Axel; Skajaa, Torjus; Gordon, Ronald E.; Schlomka, Jens-Peter; Fuster, Valentin; Fisher, Edward A.; Mulder, Willem J. M.; Proksa, Roland; Fayad, Zahi A.

    2010-01-01

    To investigate the potential of spectral computed tomography (CT) (popularly referred to as multicolor CT), used in combination with a gold high-density lipoprotein nanoparticle contrast agent (Au-HDL), for characterization of macrophage burden, calcification, and stenosis of atherosclerotic

  18. Safety and efficacy of targeted hyperthermia treatment utilizing gold nanorod therapy in spontaneous canine neoplasia.

    Science.gov (United States)

    Schuh, Elizabeth M; Portela, Roberta; Gardner, Heather L; Schoen, Christian; London, Cheryl A

    2017-10-02

    Hyperthermia is an established anti-cancer treatment but is limited by tolerance of adjacent normal tissues. Parenteral administration of gold nanorods (NRs) as a photosensitizer amplifies the effects of hyperthermia treatment while sparing normal tissues. This therapy is well tolerated and has demonstrated anti-tumor effects in mouse models. The purpose of this phase 1 study was to establish the safety and observe the anti-tumor impact of gold NR enhanced (plasmonic) photothermal therapy (PPTT) in client owned canine patients diagnosed with spontaneous neoplasia. Seven dogs underwent gold NR administration and subsequent NIR PPTT. Side effects were mild and limited to local reactions to NIR laser. All of the dogs enrolled in the study experienced stable disease, partial remission or complete remission. The overall response rate (ORR) was 28.6% with partial or complete remission of tumors at study end. PPTT utilizing gold nanorod therapy can be safely administered to canine patients. Further studies are needed to determine the true efficacy in a larger population of canine cancer patients and to and identify those patients most likely to benefit from this therapy.

  19. Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial Modeling of Geophysical, Geochemical, and Geological Data

    Science.gov (United States)

    Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto

    2012-03-01

    This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial modeling techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity models include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold geochemical anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil geochemical anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.

  20. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound.

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    Full Text Available Aquaporins (AQPs are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III complexes screened on human red blood cells (hRBC and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50 = 0.8±0.08 µM in hRBC. Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

  1. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting.

    Science.gov (United States)

    Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María

    2018-03-25

    Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Synthesis and Bioevaluation of Iodine-131 Directly Labeled Cyclic RGD-PEGylated Gold Nanorods for Tumor-Targeted Imaging

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2017-01-01

    Full Text Available Introduction. Radiolabeled gold nanoparticles play an important role in biomedical application. The aim of this study was to prepare iodine-131 (131I-labeled gold nanorods (GNRs conjugated with cyclic RGD and evaluate its biological characteristics for targeted imaging of integrin αvβ3-expressing tumors. Methods. HS-PEG(5000-COOH molecules were applied to replace CTAB covering the surface of bare GNRs for better biocompatibility, and c(RGDfK peptides were conjugated onto the carboxyl terminal of GNR-PEG-COOH via EDC/NHS coupling reactions. The nanoconjugate was characterized, and 131I was directly tagged on the surface of GNRs via AuI bonds for SPECT/CT imaging. We preliminarily studied the characteristics of the probe and its feasibility for tumor-targeting SPECT/CT imaging. Results. The [131I]GNR-PEG-cRGD probe was prepared in a simple and rapid manner and was stable in both PBS and fetal bovine serum. It targeted selectively and could be taken up by tumor cells mainly via integrin αvβ3-receptor-mediated endocytosis. In vivo imaging, biodistribution, and autoradiography results showed evident tumor uptake in integrin αvβ3-expressing tumors. Conclusions. These promising results showed that this smart nanoprobe can be used for angiogenesis-targeted SPECT/CT imaging. Furthermore, the nanoprobe possesses a remarkable capacity for highly efficient photothermal conversion in the near-infrared region, suggesting its potential as a multifunctional theranostic agent.

  3. RGD peptide-targeted polyethylenimine-entrapped gold nanoparticles for targeted CT imaging of an orthotopic model of human hepatocellular carcinoma

    Science.gov (United States)

    Zhou, Benqing; Wang, Meng; Zhou, Feifan; Song, Jun; Qu, Junle; Chen, Wei R.

    2018-02-01

    We report the synthesis and characterization of arginine-glycine-aspartic acid (RGD) peptide-targeted polyethylenimine (PEI)-entrapped gold nanoparticles (RGD-Au PENPs) for targeted CT imaging of hepatic carcinomas in situ. In this work, PEI sequentially modified with polyethylene glycol (PEG), and RGD linked-PEG was used as a nanoplatform to prepare AuNPs, followed by complete acetylation of PEI surface amines. We showed that the designed RGD-Au PENPs were colloidally stable and biocompatible in the given concentration range, and could be specifically taken up by αvβ3 integrin-overexpressing liver cancer cells in vitro. Furthermore, in vivo CT imaging results revealed that the particles displayed a great contrast enhancement of hepatic carcinomas region, and could target to hepatic carcinomas region in situ. With the proven biodistribution and histological examinations in vivo, the synthesized RGD-Au PENPs show a great formulation to be used as a contrast agent for targeted CT imaging of different αvβ3 integrin receptoroverexpressing tumors.

  4. pH-Sensitive Reversible Programmed Targeting Strategy by the Self-Assembly/Disassembly of Gold Nanoparticles.

    Science.gov (United States)

    Ma, Jinlong; Hu, Zhenpeng; Wang, Wei; Wang, Xinyu; Wu, Qiang; Yuan, Zhi

    2017-05-24

    A reversible programmed targeting strategy could achieve high tumor accumulation due to its long blood circulation time and high cellular internalization. Here, targeting ligand-modified poly(ethylene glycol) (PEG-ligand), dibutylamines (Bu), and pyrrolidinamines (Py) were introduced on the surface of gold nanoparticles (Au NPs) for reversible shielding/deshielding of the targeting ligands by pH-responsive self-assembly. Hydrophobic interaction and steric repulsion are the main driving forces for the self-assembly/disassembly of Au NPs. The precise self-assembly (pH ≥ 7.2) and disassembly (pH ≤ 6.8) of Au NPs with different ligands could be achieved by fine-tuning the modifying molar ratio of Bu and Py (R m ), which followed the formula R m = 1/(-0.0013X 2 + 0.0323X + 1), in which X is the logarithm of the partition coefficient of the targeting ligand. The assembled/disassembled behavior of Au NPs at pH 7.2 and 6.8 was confirmed by transmission electron microscopy and dynamic light scattering. Enzyme-linked immunosorbent assays and cellular uptake studies showed that the ligands could be buried inside the assembly and exposed when disassembled. More importantly, this process was reversible, which provides the possibility of prolonging blood circulation by shielding ligands associated with the NPs that were effused from tumor tissue.

  5. 46 CFR 199.262 - Rescue boats.

    Science.gov (United States)

    2010-10-01

    ... SYSTEMS FOR CERTAIN INSPECTED VESSELS Additional Requirements for Cargo Vessels § 199.262 Rescue boats. (a) Each cargo vessel must carry at least one rescue boat. Each rescue boat must be approved under approval... 46 Shipping 7 2010-10-01 2010-10-01 false Rescue boats. 199.262 Section 199.262 Shipping COAST...

  6. 46 CFR 199.261 - Survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft. 199.261 Section 199.261 Shipping COAST... SYSTEMS FOR CERTAIN INSPECTED VESSELS Additional Requirements for Cargo Vessels § 199.261 Survival craft. (a) Each survival craft must be approved and equipped as follows: (1) Each lifeboat must be a totally...

  7. 49 CFR 199.115 - Contractor employees.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Contractor employees. 199.115 Section 199.115... § 199.115 Contractor employees. With respect to those employees who are contractors or employed by a contractor, an operator may provide by contract that the drug testing, education, and training required by...

  8. 49 CFR 199.245 - Contractor employees.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Contractor employees. 199.245 Section 199.245... Prevention Program § 199.245 Contractor employees. (a) With respect to those covered employees who are contractors or employed by a contractor, an operator may provide by contract that the alcohol testing...

  9. 30 CFR 19.9 - Performance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Performance. 19.9 Section 19.9 Mineral... MINING PRODUCTS ELECTRIC CAP LAMPS § 19.9 Performance. In addition to the general design and the safety... respect to performance, as follows: (a) Time of burning and candlepower. Permissible electric cap lamps...

  10. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages.

    Science.gov (United States)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M; Gao, Feng; Xia, Younan; Wang, Lihong V

    2010-08-24

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bioconjugated with [Nle(4),D-Phe(7)]-alpha-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bioconjugated AuNCs enhanced contrast approximately 300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS).

  11. In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages

    Science.gov (United States)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M.; Gao, Feng; Xia, Younan; Wang, Lihong V.

    2010-01-01

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bio-conjugated with [Nle4,D-Phe7]-α-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bio-conjugated AuNCs enhanced contrast ~300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS). PMID:20731439

  12. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Dimitrov, I.G.; Atanasov, P.A.; Alexandrov, M.T.

    2012-01-01

    Highlights: ► Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. ► The alteration of the produced colloids during one month was investigated. ► Optical transmission spectra of the samples were measured from 350 to 800 nm. ► TEM measurements were made of as-prepared colloids and on the 30-th day. ► Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  13. Gold-Coated Iron Composite Nanospheres Targeted the Detection of Escherichia coli

    Directory of Open Access Journals (Sweden)

    İlker Dinçer

    2013-03-01

    Full Text Available We report the preparation and characterization of spherical core-shell structured Fe3O4–Au magnetic nanoparticles, modified with two component self-assembled monolayers (SAMs consisting of 3–mercaptophenylboronic acid (3–MBA and 1–decanethiol (1–DT. The rapid and room temperature synthesis of magnetic nanoparticles was achieved using the hydroxylamine reduction of HAuCl4 on the surface of ethylenediaminetetraacetic acid (EDTA-immobilized iron (magnetite Fe3O4 nanoparticles in the presence of an aqueous solution of hexadecyltrimetylammonium bromide (CTAB as a dispersant. The reduction of gold on the surface of Fe3O4 nanoparticles exhibits a uniform, highly stable, and narrow particle size distribution of Fe3O4–Au nanoparticles with an average diameter of 9 ± 2 nm. The saturation magnetization value for the resulting nanoparticles was found to be 15 emu/g at 298 K. Subsequent surface modification with SAMs against glucoside moieties on the surface of bacteria provided effective magnetic separation. Comparison of the bacteria capturing efficiency, by means of different molecular recognition agents 3–MBA, 1–DT and the mixed monolayer of 3–MBA and 1–DT was presented. The best capturing efficiency of E. coli was achieved with the mixed monolayer of 3–MBA and 1–DT-modified nanoparticles. Molecular specificity and selectivity were also demonstrated by comparing the surface-enhanced Raman scattering (SERS spectrum of E. coli-nanoparticle conjugates with bacterial growth media.

  14. Disulfide-induced self-assembled targets : A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-01-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol-modified probes, each of which specifically

  15. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NARCIS (Netherlands)

    Shokri, E. (Ehsan); M. Hosseini (Morteza); Davari, M.D. (Mehdi D.); Ganjali, M.R. (Mohammad R.); M.P. Peppelenbosch (Maikel); F. Rezaee (Farhad)

    2017-01-01

    textabstractA modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which

  16. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    Science.gov (United States)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  17. Information Extraction and Interpretation Analysis of Mineral Potential Targets Based on ETM+ Data and GIS technology: A Case Study of Copper and Gold Mineralization in Burma

    International Nuclear Information System (INIS)

    Wenhui, Du; Yongqing, Chen; Nana, Guo; Yinglong, Hao; Pengfei, Zhao; Gongwen, Wang

    2014-01-01

    Mineralization-alteration and structure information extraction plays important roles in mineral resource prospecting and assessment using remote sensing data and the Geographical Information System (GIS) technology. Choosing copper and gold mines in Burma as example, the authors adopt band ratio, threshold segmentation and principal component analysis (PCA) to extract the hydroxyl alteration information using ETM+ remote sensing images. Digital elevation model (DEM) (30m spatial resolution) and ETM+ data was used to extract linear and circular faults that are associated with copper and gold mineralization. Combining geological data and the above information, the weights of evidence method and the C-A fractal model was used to integrate and identify the ore-forming favourable zones in this area. Research results show that the high grade potential targets are located with the known copper and gold deposits, and the integrated information can be used to the next exploration for the mineral resource decision-making

  18. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    Science.gov (United States)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  19. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    Science.gov (United States)

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  1. Hybrid gold nanoparticles in molecular imaging and radiotherapy

    International Nuclear Information System (INIS)

    Katti, K.V.; Kannan, R.; Katti, K.; Kattumuri, V.; Pandrapragada, R.; Rahing, V.; Cutler, C.; Boote, E.; Casteel, S.W.; Smith, C.J.; Robertson, J.D.; Jurrison, S.

    2006-01-01

    Metallic nanoparticles, because of their size, chemical and physical properties, are particularly attractive as therapeutic probes in treating cancer. Central to any clinical advances in nanoparticulate based therapy will be to produce hybrid nanoparticles that can be targeted to vascular, extracellular or cell surface receptors. Development of hybrid nanoparticles that specifically target cancer vasculature has received considerable attention. Most cancers have leaky vasculature and the defective vascular architecture, created due to the rapid vascularisation necessary to serve fast growing cancers, in combination with poor lymphatic drainage allows increased permeation and retention effects. The leaky vasculature, because of higher porosity and permeability, serve as natural high affinity targets to metallic nanoparticles. Another attractive approach toward the application of nanotechnology to nanomedicine is the utility of nanoparticles that display inherent therapeutic properties. For example radioactive gold nanoparticles present attractive prospects in therapy of cancer. The radioactive properties of Au-198 (β(max) = 0.96 MeV; t(1/2) = 2.7 d) and Au-199 (β(max) 0.46 MeV; t(1/2) = 3.14 d) make them ideal candidates for use in radiotherapeutic applications. In addition, they both have imageable gamma emissions for dosimetry and pharmacokinetic studies and Au-199 can be made carrier-free by indirect methods. Gold nanoparticles are of interest for treatment of disease as they can deliver agents directly into cells and cellular components with a higher concentration of radioactivity, e.g. higher dose of radioactivity, to cancerous tumor cells

  2. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    Science.gov (United States)

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. 46 CFR 199.201 - Survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft. 199.201 Section 199.201 Shipping COAST... craft. (a) Each survival craft must be approved and equipped as follows: (1) Each lifeboat must be... addition to the survival craft required in paragraph (b)(1) of this section, additional liferafts must be...

  4. Macrocluster desorption effect caused by single MCI: charges of gold clusters (2-20 nm) desorbed due to electronic processes induced by fission fragment bombardment in nanodispersed gold targets

    International Nuclear Information System (INIS)

    Baranov, I.; Jarmiychuk, S.; Kirillov, S.; Novikov, A.; Obnorskii, V.; Pchelintsev, A.; Wien, K.; Reimann, C.

    1999-01-01

    In this work the charge state of the negatively charged gold nanocluster ions (2-20 nm) that were desorbed from nanodispersed gold islet targets by 252 Cf fission fragments via electronic processes is studied. Mean cluster charge was calculated as a ratio of mean cluster mass to mean mass-to-charge ratio . Cluster masses were measured by means of a collector technique employing transmission electron microscopy and scanning force microscopy, while m/q was measured by means of a tandem TOF-spectrometer. It is shown that the nanocluster ions are mostly multiply charged (2-16e) and the charge increases non-linearly with the cluster size. The results are discussed

  5. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    Science.gov (United States)

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Gold nanorods coupled with upconverting nanophosphors for targeted thermal ablation and imaging of bladder cancer cells (Conference Presentation)

    Science.gov (United States)

    Cho, Suehyun K.; Su, Lih-Jen; Flaig, Thomas W.; Park, Wounjhang

    2016-09-01

    NaYF4:Yb3+,Er3+ upconverting nanophosphors (UCNPs) are robust and stable nanoparticles that absorb near-infrared (NIR) photons and emit green and red visible photons through energy transfer upconversion. This mechanism provides UCNPs several advantages as a bioimaging agent over traditional fluorescence imaging agent in that NIR excitation allows high-contrast imaging without autofluorescence and that they can be used for deep-tissue imaging. However, additional surface modification of UCNPs is necessary for them to be biocompatible. We use an amphiphilic polymer (poly(maleic anhydride-alt-octadecene) (PMAO) and a hetero-functional polyethylene glycol with amine and thiol ends (NH2-PEG-SH)) to make the UCNPs water-soluble. This reaction yields a carboxylic group that allows functionalization with anti-epidermal growth factor receptor (aEGFR), which provides specific binding of UCNPs to EGFR-expressing bladder cancer cells. Additionally, the thiol ends of the PEGylated UCNPs are able to bind with gold nanorods (AuNRs) to create UCNP-AuNR complexes. The localized surface plasmon of the AuNR then allow localized heating of HTB9 bladder cancer cells, enabling in situ cell killing upon detection by UCNP fluorescence. Here, we report a successful synthesis, surface modification and conjugation of aEGFR functionalized UCNP-AuNR complexes and in vitro imaging and thermal ablation studies using them. Synthesis and surface modification of UCNP-AuNR complexes are confirmed by electron microscopy. Then, a combination of brightfield, NIR confocal fluorescence, and darkfield microscopy on the UCNP-AuNR treated bladder cancer cells revealed successful cancer targeting and imaging capabilities of the complex. Finally, cell viability assay showed that NIR irradiation of UCNP-AuNR conjugated cells resulted highly selective cell killing.

  7. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    Energy Technology Data Exchange (ETDEWEB)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Estado de México 52750 (Mexico); Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A. [Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico); Varela-González, A. [Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico)

    2014-05-21

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold.

  8. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    International Nuclear Information System (INIS)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B.; Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A.; Varela-González, A.

    2014-01-01

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold

  9. Protecting the Green Behind the Gold: Catchment-Wide Restoration Efforts Necessary to Achieve Nutrient and Sediment Load Reduction Targets in Gold Coast City, Australia

    Science.gov (United States)

    Waltham, Nathan J.; Barry, Michael; McAlister, Tony; Weber, Tony; Groth, Dominic

    2014-10-01

    The Gold Coast City is the tourist center of Australia and has undergone rapid and massive urban expansion over the past few decades. The Broadwater estuary, in the heart of the City, not only offers an array of ecosystems services for many important aquatic wildlife species, but also supports the livelihood and lifestyles of residents. Not surprisingly, there have been signs of imbalance between these two major services. This study combined a waterway hydraulic and pollutant transport model to simulate diffuse nutrient and sediment loads under past and future proposed land-use changes. A series of catchment restoration initiatives were modeled in an attempt to define optimal catchment scale restoration efforts necessary to protect and enhance the City's waterways. The modeling revealed that for future proposed development, a business as usual approach to catchment management will not reduce nutrient and sediment loading sufficiently to protect the community values. Considerable restoration of upper catchment tributaries is imperative, combined with treatment of stormwater flow from intensively developed sub-catchment areas. Collectively, initiatives undertaken by regulatory authorities to date have successfully reduced nutrient and sediment loading reaching adjoining waterways, although these programs have been ad hoc without strategic systematic planning and vision. Future conservation requires integration of multidisciplinary science and proactive management driven by the high ecological, economical, and community values placed on the City's waterways. Long-term catchment restoration and conservation planning requires an extensive budget (including political and societal support) to handle ongoing maintenance issues associated with scale of restoration determined here.

  10. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-01

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg 2+ ), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg 2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T (25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg 2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg 2+ –T coordination chemistry. The chelated Hg 2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH 4 and Ru(NH 3 ) 6 3+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg 2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg 2+ . The strategy afforded exquisite selectivity for Hg 2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg 2+ in spiked tap-water samples, and the recovery was 87.9–113.8%

  11. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  12. Modulating antibody affinity towards the transferrin receptor to increase brain uptake of anti-transferrin receptor antibody targeted gold nanoparticles

    DEFF Research Database (Denmark)

    Johnsen, Kasper Bendix; Bak, Martin; Melander, Fredrik

    2017-01-01

    by silver enhancement and light microscopy. Electron microscopy showed that the particles had been efficiently endocytosed into the endothelial cells of the BBB. A small fraction of particles could also be detected in the brain parenchyma, which was underscored by measuring the gold content in brain...

  13. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    Science.gov (United States)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  14. 46 CFR 199.290 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Stowage of survival craft. 199.290 Section 199.290... of survival craft. (a) To meet the requirements of § 199.130(b)(1), each lifeboat— (1) On a cargo... required under § 199.261(e), no stowage position or muster and embarkation station for a survival craft on...

  15. Anti-CD30-targeted gold nanoparticles for photothermal therapy of L-428 Hodgkin’s cell [Erratum

    Directory of Open Access Journals (Sweden)

    Qu X

    2013-04-01

    Full Text Available ErratumQu X, Yao C, Wang J, Li Z, Zhang Z. International Journal of Nanomedicine. 2012;7:6095–6103. The caption for Figure 4 was incorrect in the published paper. The correct Figure 4 caption is as follows:Figure 4 Photothermal treatments of L-428 cells with gold-BerH2 conjugates. (A Without laser irradiation; (B with 532 nm laser irradiation with 50 mW, 5 pulses.Read the original article

  16. Spectroscopic diagnostic of gold plasma

    International Nuclear Information System (INIS)

    Busquet, M.

    1986-01-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included [fr

  17. Spectroscopic diagnostic of gold plasma

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M.

    1986-06-01

    Results of a simulation of a gold-aluminium alloy target irradiated by laser are presented. FCI code has been used with a processing out of LTE of atomic physics of gold and of multigroup photonics. Emission and reabsorption of gold and aluminium lines are included.

  18. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    Science.gov (United States)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Determination of platinum and gold in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Taskaev, E.; Grigorov, T.

    1988-01-01

    A procedure for platinum and gold determination utilizing neutron activation combined with radiochemical separation was developed. The reaction 198 Pt (n, γ) 199 Pt undergoing β decay into 199 Au is used for Pt determination. Four procedures for gold separation are examined: adsorption on untreated polyurethane foam (UPF), extraction with dibutyl sulphide, reduction of gold to elementary state in conc. H 2 SO 4 , and extraction of gold as diethyl-dithiocarbamate complex. The extraction with Cu(DDC) 2 is chosen as the most suitable process and applied to platinum and gold determinations in Bowen's Kale and mice organs, previously treated with Biocisplatinum specimens. (author) 12 refs.; 5 figs

  20. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Science.gov (United States)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-08-01

    Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor-liquid-solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  1. 32 CFR 199.2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... CIVILIAN HEALTH AND MEDICAL PROGRAM OF THE UNIFORMED SERVICES (CHAMPUS) § 199.2 Definitions. (a) General... terminology is “treatment through prayer and spiritual means,” which is employed by an authorized Christian... rendered, regardless of the terminology used. Abuse. For the purposes of this part, abuse is defined as any...

  2. 46 CFR 199.10 - Applicability.

    Science.gov (United States)

    2010-10-01

    ... located. Other regulations may also apply. 3 Not including vessels solely navigating the Great Lakes of... (4) Vessels solely navigating the Great Lakes of North America and the River Saint Lawrence as far... number and type of survival craft specified in table 199.630 of this part and cargo vessels in oceans and...

  3. Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Suerfu, B.; Xu, J. [Department of Physics, Princeton University, Princeton, NJ (United States); Ivantchenko, V. [Ecoanalytica, Moscow (Russian Federation); Geant4 Associates International Ltd, Hebden Bridge (United Kingdom); Mantero, A. [SWHARD srl, via Greto di Cornigliano 6r, 16152 Genova (Italy); Brown, J.M.C. [School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland (United Kingdom); Bernal, M.A. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, SP (Brazil); Francis, Z. [Université Saint Joseph, Faculty of Sciences, Department of Physics, Beirut (Lebanon); Karamitros, M. [Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, IN (United States); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-04-01

    A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields.

  4. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    Science.gov (United States)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-04-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.

  5. Ru(II)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents.

    Science.gov (United States)

    Martínez-Calvo, Miguel; Orange, Kim N; Elmes, Robert B P; la Cour Poulsen, Bjørn; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2016-01-07

    The development of Ru(II) functionalized gold nanoparticles 1–3·AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1–3·AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1–3·AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.

  6. Carbon-13 isotope effects on 199Hg nuclear shielding

    International Nuclear Information System (INIS)

    Sebald, Angelika; Wrackmeyer, Bernd

    1985-01-01

    Secondary 13 C/ 12 C isotope effects on 199 Hg nuclear shielding (Δdeltasup(i)( 199 Hg)) are of interest because of the unusual shift to high frequency which has been observed for a few alkyl mercury compounds. Continuing interest in the NMR parameters of mercury compounds prompted a search for the values Δdeltasup(i)( 199 Hg) in a greater variety of organomercurials. This should help to find out about the range of Δdeltasup(i)( 199 Hg) and to obtain a firmer basis for the discussion of the high-frequency shifts. The data and experimental conditions are given for chemical shifts delta 199 Hg, coupling constants sup(n)J( 199 Hg 13 C) and 13 C/ 12 C isotope shifts Δdeltasup(i)( 199 Hg) of fourteen 199 Hg organomercury compounds. The results are discussed. (author)

  7. Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets--"Sand Out and Gold Stays".

    Science.gov (United States)

    Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T; Wang, Hong; Yang, Xiao-feng

    2016-02-01

    To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of "Sand out and Gold stays," where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.

  8. Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets – “Sand out and Gold Stays”

    Science.gov (United States)

    Shao, Ying; Chernaya, Valeria; Johnson, Candice; Yang, William Y.; Cueto, Ramon; Sha, Xiaojin; Zhang, Yi; Qin, Xuebin; Sun, Jianxin; Choi, Eric T.; Wang, Hong; Yang, Xiao-feng

    2016-01-01

    To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: 1) Histone enzymes are differentially expressed in cardiovascular, immune and other tissues; 2) Our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, histone methylation/demethylation are in the highest varieties; and 3) Histone enzymes are more downregulated than upregulated in metabolic diseases and Treg polarization/differentiation, but not in tumors. These results have demonstrated a new working model of “sand out and gold stays,” where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity. PMID:26746407

  9. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma.

    Science.gov (United States)

    Minna, Emanuela; Romeo, Paola; De Cecco, Loris; Dugo, Matteo; Cassinelli, Giuliana; Pilotti, Silvana; Degl'Innocenti, Debora; Lanzi, Cinzia; Casalini, Patrizia; Pierotti, Marco A; Greco, Angela; Borrello, Maria Grazia

    2014-05-15

    Thyroid cancer incidence is rapidly increasing. Papillary Thyroid Carcinoma (PTC), the most frequent hystotype, usually displays good prognosis, but no effective therapeutic options are available for the fraction of progressive PTC patients. BRAF and RET/PTC are the most frequent driving genetic lesions identified in PTC. We developed two complementary in vitro models based on RET/PTC1 oncogene, starting from the hypothesis that miRNAs modulated by a driving PTC-oncogene are likely to have a role in thyroid neoplastic processes. Through this strategy, we identified a panel of deregulated miRNAs. Among these we focused on miR-199a-3p and showed its under-expression in PTC specimens and cell lines. We demonstrated that miR-199a-3p restoration in PTC cells reduces MET and mTOR protein levels, impairs migration and proliferation and, more interesting, induces lethality through an unusual form of cell death similar to methuosis, caused by macropinocytosis dysregulation. Silencing MET or mTOR, both involved in survival pathways, does not recapitulate miR-199a-3p-induced cell lethality, thus suggesting that the cooperative regulation of multiple gene targets is necessary. Integrated analysis of miR-199a-3p targets unveils interesting networks including HGF and macropinocytosis pathways. Overall our results indicate miR-199a-3p as a tumor suppressor miRNA in PTC.

  10. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion

    Directory of Open Access Journals (Sweden)

    Shen Qingli

    2010-08-01

    Full Text Available Abstract Background Micro-ribonucleic acid (miRNA-199a-5p has been reported to be decreased in hepatocellular carcinoma (HCC compared to normal tissue. Discoidin domain receptor-1 (DDR1 tyrosine kinase, involved in cell invasion-related signaling pathway, was predicted to be a potential target of miR-199a-5p by the use of miRNA target prediction algorithms. The aim of this study was to investigate the role of miR-199a-5p and DDR1 in HCC invasion. Methods Mature miR-199a-5p and DDR1 expression were evaluated in tumor and adjacent non-tumor liver tissues from 23 patients with HCC undergoing liver resection and five hepatoma cell lines by the use of real-time quantitative RT-PCR (qRT-PCR analysis. The effect of aberrant miR-199a-5p expression on cell invasion was assessed in vitro using HepG2 and SNU-182 hepatoma cell lines. Luciferase reporter assay was employed to validate DDR1 as a putative miR-199a-5p target gene. Regulation of DDR1 expression by miR-199a-5p was assessed by the use qRT-PCR and western blotting analysis. Results A significant down-regulation of miR-199a-5p was observed in 65.2% of HCC tissues and in four of five cell lines. In contrast, DDR1 expression was significantly increased in 52.2% of HCC samples and in two of five cell lines. Increased DDR1 expression in HCC was associated with advanced tumor stage. DDR1 was shown to be a direct target of miR-199a-5p by luciferase reporter assay. Transfection of miR-199a-5p inhibited invasion of HepG2 but not SNU-182 hepatoma cells. Conclusions Decreased expression of miR-199a-5p contributes to increased cell invasion by functional deregulation of DDR1 activity in HCC. However, the effect of miR-199a-5p on DDR1 varies among individuals and hepatoma cell lines. These findings may have significant translational relevance for development of new targeted therapies as well as prognostic prediction for patients with HCC.

  11. 40 CFR 265.199 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Tank Systems § 265.199 Special requirements for incompatible wastes. (a... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 265.199 Section 265.199 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  12. 40 CFR 264.199 - Special requirements for incompatible wastes.

    Science.gov (United States)

    2010-07-01

    ... DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for incompatible wastes. 264.199 Section 264.199 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  13. 26 CFR 1.199-0 - Table of contents.

    Science.gov (United States)

    2010-04-01

    .... This section lists the section headings that appear in §§ 1.199-1 through 1.199-9. § 1.199-1Income... property. (2) Examples. (3) Hedging transactions. (i) In general. (ii) Currency fluctuations. (iii) Effect... general. (2) Example. (3) Net operating loss carrybacks and carryovers. (4) Losses used to reduce taxable...

  14. 46 CFR 199.180 - Training and drills.

    Science.gov (United States)

    2010-10-01

    ... problems of hypothermia, first aid treatment for hypothermia, and other appropriate first aid procedures... 46 Shipping 7 2010-10-01 2010-10-01 false Training and drills. 199.180 Section 199.180 Shipping... LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Requirements for All Vessels § 199.180 Training and drills...

  15. 46 CFR 199.230 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Stowage of survival craft. 199.230 Section 199.230... Stowage of survival craft. (a) To meet the requirements of § 199.130(b)(1), each lifeboat on a passenger... height of a survival craft must take into account the vessel's escape provisions, the vessel's size, and...

  16. 22 CFR 19.9 - Pension benefits for former spouses.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Pension benefits for former spouses. 19.9 Section 19.9 Foreign Relations DEPARTMENT OF STATE PERSONNEL BENEFITS FOR SPOUSES AND FORMER SPOUSES OF PARTICIPANTS IN THE FOREIGN SERVICE RETIREMENT AND DISABILITY SYSTEM § 19.9 Pension benefits for former spouses. ...

  17. 49 CFR 199.113 - Employee assistance program.

    Science.gov (United States)

    2010-10-01

    ... TESTING Drug Testing § 199.113 Employee assistance program. (a) Each operator shall provide an employee assistance program (EAP) for its employees and supervisory personnel who will determine whether an employee... 49 Transportation 3 2010-10-01 2010-10-01 false Employee assistance program. 199.113 Section 199...

  18. 46 CFR 199.03 - Relationship to international standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Relationship to international standards. 199.03 Section 199.03 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LIFESAVING APPLIANCES AND ARRANGEMENTS LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS General § 199.03 Relationship to international...

  19. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ryan D. [Rush University Medical Center, Department of Anatomy and Cell Biology (United States); Cole, Lisa E.; Roeder, Ryan K., E-mail: rroeder@nd.edu [University of Notre Dame, Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program (United States)

    2012-10-15

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate (l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  20. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles.

    Science.gov (United States)

    Rubio-Navarro, Alfonso; Carril, Mónica; Padro, Daniel; Guerrero-Hue, Melanie; Tarín, Carlos; Samaniego, Rafael; Cannata, Pablo; Cano, Ainhoa; Villalobos, Juan Manuel Amaro; Sevillano, Ángel Manuel; Yuste, Claudia; Gutiérrez, Eduardo; Praga, Manuel; Egido, Jesús; Moreno, Juan Antonio

    2016-01-01

    Macrophages play an important role in rhabdomyolysis-acute kidney injury (AKI), although the molecular mechanisms involved in macrophage differentiation are poorly understood. We analyzed the expression and regulation of CD163, a membrane receptor mainly expressed by anti-inflammatory M2 macrophages, in rhabdomyolysis-AKI and developed targeted probes for its specific detection in vivo by MRI. Intramuscular injection of glycerol in mice promoted an early inflammatory response, with elevated proportion of M1 macrophages, and partial differentiation towards a M2 phenotype in later stages, where increased CD163 expression was observed. Immunohistological studies confirmed the presence of CD163-macrophages in human rhabdomyolysis-AKI. In cultured macrophages, myoglobin upregulated CD163 expression via HO-1/IL-10 axis. Moreover, we developed gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody that specifically targeted CD163 in kidneys from glycerol-injected mice, as determined by MRI studies, and confirmed by electron microscopy and immunological analysis. Our findings are the first to demonstrate that CD163 is present in both human and experimental rhabdomyolysis-induced AKI, suggesting an important role of this molecule in this pathological condition. Therefore, the use of probes targeting CD163-macrophages by MRI may provide important information about the cellular composition of renal lesion in rhabdomyolysis.

  1. Gold nanoprobes for theranostics

    Science.gov (United States)

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  2. Developmental Decline in the MicroRNA 199a (miR-199a)/miR-214 Cluster in Human Fetal Lung Promotes Type II Cell Differentiation by Upregulating Key Transcription Factors.

    Science.gov (United States)

    Mishra, Ritu; Benlhabib, Houda; Guo, Wei; Lerma Cervantes, Connie B; Mendelson, Carole R

    2018-06-01

    The major surfactant protein, SP-A (a product of the SFTPA gene), serves as a marker of type II pneumocyte differentiation and surfactant synthesis. SFTPA expression in cultured human fetal lung (HFL) epithelial cells is upregulated by hormones that increase cyclic AMP (cAMP) and activate TTF-1/NKX2.1 and NF-κB. To further define mechanisms for type II cell differentiation and induction of SP-A, we investigated roles of microRNAs (miRNAs). Using microarray to identify differentially expressed miRNAs in HFL epithelial cells during type II cell differentiation in culture, we observed that members of the miRNA 199a (miR-199a)/miR-214 cluster were significantly downregulated during differentiation. Validated and predicted targets of miR-199a-3p/miR-199a-5p and miR-214, which serve roles in type II cell differentiation (COX-2, NF-κB p50/p65, and CREB1), and the CREB1 target, C/EBPβ, were coordinately upregulated. Accordingly, overexpression of miR-199a-5p, miR-199a-3p, or miR-214 mimics in cultured HFL epithelial cells decreased COX-2, NF-κB p50/p65, CREB1, and C/EBPβ proteins, with an associated inhibition of SP-A expression. Interestingly, overexpression of the EMT factor, ZEB1, which declines during cAMP-induced type II cell differentiation, increased pri-miR-199a and reduced the expression of the targets NF-κB/p50 and COX-2. Collectively, these findings suggest that the developmental decline in miR-199a/miR-214 in HFL causes increased expression of critical targets that enhance type II cell differentiation and SP-A expression. Copyright © 2018 American Society for Microbiology.

  3. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  4. Measurement of the isotope effect of the diffusion of silver and gold in gold and of silver in silver-gold alloys

    International Nuclear Information System (INIS)

    Wolter, D.

    1974-01-01

    The silver isotopes Ag 105 and Agsup(110m) and the gold isotopes Au 195 and Au 199 were used for isotope effect measurements. The isotope effect of the gold self-diffusion was measured on four monocrystals samples at about 850 0 C, that of silver in gold monocrystals at five different temperatures between 731 0 C and 1050 0 C. Furthermore, the isotope effect for silver at 904 0 C was measured on seven silver-gold alloys of varying silver concentration. The correlation factor was determined from the measurements. (HPOE/LH) [de

  5. Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation

    Directory of Open Access Journals (Sweden)

    Ronald Herrera

    2017-12-01

    Full Text Available In a town located in a desert area of Northern Chile, gold and copper open-pit mining is carried out involving explosive processes. These processes are associated with increased dust exposure, which might affect children’s respiratory health. Therefore, we aimed to quantify the causal attributable risk of living close to the mines on asthma or allergic rhinoconjunctivitis risk burden in children. Data on the prevalence of respiratory diseases and potential confounders were available from a cross-sectional survey carried out in 2009 among 288 (response: 69 % children living in the community. The proximity of the children’s home addresses to the local gold and copper mine was calculated using geographical positioning systems. We applied targeted maximum likelihood estimation to obtain the causal attributable risk (CAR for asthma, rhinoconjunctivitis and both outcomes combined. Children living more than the first quartile away from the mines were used as the unexposed group. Based on the estimated CAR, a hypothetical intervention in which all children lived at least one quartile away from the copper mine would decrease the risk of rhinoconjunctivitis by 4.7 percentage points (CAR: − 4.7 ; 95 % confidence interval ( 95 % CI: − 8.4 ; − 0.11 ; and 4.2 percentage points (CAR: − 4.2 ; 95 % CI: − 7.9 ; − 0.05 for both outcomes combined. Overall, our results suggest that a hypothetical intervention intended to increase the distance between the place of residence of the highest exposed children would reduce the prevalence of respiratory disease in the community by around four percentage points. This approach could help local policymakers in the development of efficient public health strategies.

  6. Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation.

    Science.gov (United States)

    Herrera, Ronald; Berger, Ursula; von Ehrenstein, Ondine S; Díaz, Iván; Huber, Stella; Moraga Muñoz, Daniel; Radon, Katja

    2017-12-27

    In a town located in a desert area of Northern Chile, gold and copper open-pit mining is carried out involving explosive processes. These processes are associated with increased dust exposure, which might affect children's respiratory health. Therefore, we aimed to quantify the causal attributable risk of living close to the mines on asthma or allergic rhinoconjunctivitis risk burden in children. Data on the prevalence of respiratory diseases and potential confounders were available from a cross-sectional survey carried out in 2009 among 288 (response: 69 % ) children living in the community. The proximity of the children's home addresses to the local gold and copper mine was calculated using geographical positioning systems. We applied targeted maximum likelihood estimation to obtain the causal attributable risk (CAR) for asthma, rhinoconjunctivitis and both outcomes combined. Children living more than the first quartile away from the mines were used as the unexposed group. Based on the estimated CAR, a hypothetical intervention in which all children lived at least one quartile away from the copper mine would decrease the risk of rhinoconjunctivitis by 4.7 percentage points (CAR: - 4.7 ; 95 % confidence interval ( 95 % CI): - 8.4 ; - 0.11 ); and 4.2 percentage points (CAR: - 4.2 ; 95 % CI: - 7.9 ; - 0.05 ) for both outcomes combined. Overall, our results suggest that a hypothetical intervention intended to increase the distance between the place of residence of the highest exposed children would reduce the prevalence of respiratory disease in the community by around four percentage points. This approach could help local policymakers in the development of efficient public health strategies.

  7. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Setti, Grazielle O.; Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J.; Joanni, Ednan; Jesus, Dosil P.

    2015-01-01

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets

  8. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Setti, Grazielle O. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Mamián-López, Mónica B.; Pessoa, Priscila R.; Poppi, Ronei J. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil); Joanni, Ednan, E-mail: ednan.joanni@cti.gov.br [Renato Archer Information Technology Center, Rodovia Dom Pedro I (SP-65), Km 143,6 – Amarais, 13069-901 Campinas, SP (Brazil); Jesus, Dosil P. [Institute of Chemistry, University of Campinas, Campinas, P.O. Box 6154, 13083-970 Campinas, SP (Brazil)

    2015-08-30

    Graphical abstract: - Highlights: • ITO nanowires were grown by the sputtering method using a new synthesis procedure. • By changing the deposition parameters the morphology and dimensions of the nanostructures were modified. • Seed layer thickness was an important factor for obtaining branched nanowires. • SERS substrates having good performance and a high application potential were produced. • The first Raman results for our substrates are already comparable to commercial substrates. - Abstract: Indium Tin oxide (ITO) nanowires were deposited by RF sputtering over oxidized silicon using ITO and Indium targets. The nanowires grew on the substrate with a catalyst layer of Indium by the vapor–liquid–solid (VLS) mechanism. Modifications in the deposition conditions affected the morphology and dimensions of the nanowires. The samples, after being covered with gold, were evaluated as surface-enhanced Raman scattering (SERS) substrates for detection of dye solutions and very good intensifications of the Raman signal were obtained. The SERS performance of the samples was also compared to that of a commercial SERS substrate and the results achieved were similar. To the best of our knowledge, this is the first time ITO nanowires were grown by the sputtering technique using oxide and metal targets.

  9. [Regulation of microRNA-199a on adhesion, migration and invasion ability of human endometrial stromal cells].

    Science.gov (United States)

    Dai, Lan; Gu, Li-ying; Zhu, Jie; Shi, Jun; Wang, Yao; Ji, Fang; Di, Wen

    2011-11-01

    To study the regulation of microRNA 199a (miR-199a) on adhesion, migration and invasion ability of human eutopic endometrial stromal cells (ESC) from patients with endometriosis. ESC were transfected with miR-199a mimics or negative control (NC) RNA by lipofectamine 2000. The adhesion, migration and invasion ability of ESC were detected by cell adhesion assay, scratch assay, cell migration assay and matrigel invasion assay, respectively. Luciferase reporter assay was used to evaluate whether IKKβ was the target gene of miR-199a. The expression of ikappa B kinase beta (IKKβ), inhibitory kappa B alpha (IκB-α), phospho-IκB-α(p-IκB-α) and nuclear factor-kappa B (NF-κB) protein were measured by western blot. (1) Adhesion potential: the adhesion inhibitory rates were (14 ± 4)% in miR-199a group and 0 in control group, which showed significant difference (P scratch assay, ESC transfected with miR-199a exhibited a lower scratch closure rate than that of controls. In migration and invasion assays, the migration and invasion ability of miR-199a group were significantly decreased compared with those of NC group [130 ± 31 vs. 247 ± 36 (P < 0.01); 63 ± 15 vs. 133 ± 17 (P < 0.01), respectively]. (3) The luciferase activity of miR-199a group was significantly lowered than that of control group [0.160 ± 0.006 vs. 0.383 ± 0.083 (P < 0.01)]. The protein levels of IKKβ, p-IκB-α, IκB-α and NF-κB of 0.350 ± 0.195, 0.443 ± 0.076, 1.970 ± 0.486 and 0.454 ± 0.147 in miR-199a group were significantly different compared with the NC group in which the protein levels were set at 1.000 (P < 0.01). miR-199a can inhibit the adhesion, migration and invasion of the ESC. IKKβ is the target gene of miR-199a in ESC. One of the mechanisms of the inhibition effect is probably that miR-199a inhibits the activation of NF-κB signaling pathway by targeting IKKβ gene.

  10. Photothermal Effect Enhanced Cascade-Targeting Strategy for Improved Pancreatic Cancer Therapy by Gold Nanoshell@Mesoporous Silica Nanorod.

    Science.gov (United States)

    Zhao, Ruifang; Han, Xuexiang; Li, Yiye; Wang, Hai; Ji, Tianjiao; Zhao, Yuliang; Nie, Guangjun

    2017-08-22

    Pancreatic cancer, one of the leading causes of cancer-related mortality, is characterized by desmoplasia and hypovascular cancerous tissue, with a 5 year survival rate of targeting (mediated by photothermal effect and molecular receptor binding) and photothermal treatment-enhanced gemcitabine chemotherapy, under mild near-infrared laser irradiation condition. GNRS significantly improved gemcitabine penetration and accumulation in tumor tissues, thus destroying the dense stroma barrier of pancreatic cancer and reinforcing chemosensitivity in mice. Our current findings strongly support the notion that further development of this integrated plasmonic photothermal strategy may represent a promising translational nanoformulation for effective treatment of pancreatic cancer with integral cascade tumor targeting strategy and enhanced drug delivery efficacy.

  11. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies

    Directory of Open Access Journals (Sweden)

    Spadavecchia J

    2016-02-01

    Full Text Available Jolanda Spadavecchia,1,2,* Dania Movia,3,* Caroline Moore,3,4 Ciaran Manus Maguire,3,4 Hanane Moustaoui,2 Sandra Casale,1 Yuri Volkov,3,4 Adriele Prina-Mello3,4 1Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris VI, Paris, 2Centre National de la recherche française, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures, and Properties of Biomaterials and Therapeutic Agents, Université Paris 13, Sorbonne Paris Cité, Bobigny, France; 3AMBER Centre, CRANN Institute, 4Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland *These authors contributed equally to this work Abstract: The main objective of this study was to optimize and characterize a drug delivery carrier for doxorubicin, intended to be intravenously administered, capable of improving the therapeutic index of the chemotherapeutic agent itself, and aimed at the treatment of pancreatic cancer. In light of this goal, we report a robust one-step method for the synthesis of dicarboxylic acid-terminated polyethylene glycol (PEG-gold nanoparticles (AuNPs and doxorubicin-loaded PEG-AuNPs, and their further antibody targeting (anti-Kv11.1 polyclonal antibody [pAb]. In in vitro proof-of-concept studies, we evaluated the influence of the nanocarrier and of the active targeting functionality on the anti-tumor efficacy of doxorubicin, with respect to its half-maximal effective concentration (EC50 and drug-triggered changes in the cell cycle. Our results demonstrated that the therapeutic efficacy of doxorubicin was positively influenced not only by the active targeting exploited through anti-Kv11.1-pAb but also by the drug coupling with a nanometer-sized delivery system, which indeed resulted in a 30-fold decrease of doxorubicin EC50, cell cycle blockage, and drug localization in the cell nuclei. The cell internalization pathway was strongly influenced by the active targeting of the Kv11.1 subunit of the human Ether-à-go-go related gene

  12. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma

    Science.gov (United States)

    Wang, Ruizhi; Luo, Yu; Yang, Shuohui; Lin, Jiang; Gao, Dongmei; Zhao, Yan; Liu, Jinguo; Shi, Xiangyang; Wang, Xiaolin

    2016-09-01

    Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The early and effective diagnosis has always been desired. Herein, we present the preparation and characterization of hyaluronic acid (HA)-modified, multifunctional nanoparticles (NPs) targeting CD44 receptor-expressing cancer cells for computed tomography (CT)/magnetic resonance (MR) dual-mode imaging. We first modified amine-terminated generation 5 poly(amidoamine) dendrimers (G5.NH2) with an Mn chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), fluorescein isothiocyanate (FI), and HA. Then, gold nanoparticles (AuNPs) were entrapped within the above raw product, denoted as G5.NH2-FI-DOTA-HA. The designed multifunctional NPs were formed after further Mn chelation and purification and were denoted as {(Au0)100G5.NH2-FI-DOTA(Mn)-HA}. These NPs were characterized via several different techniques. We found that the {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} NPs exhibited good water dispersibility, stability under different conditions, and cytocompatibility within a given concentration range. Because both AuNPs and Mn were present in the product, {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} displayed a high X-ray attenuation intensity and favorable r1 relaxivity, which are advantageous properties for targeted CT/MR dual-mode imaging. This approach was used to image HCC cells in vitro and orthotopically transplanted HCC tumors in a unique in vivo model through the CD44 receptor-mediated endocytosis pathway. This work introduces a novel strategy for preparing multifunctional NPs via dendrimer nanotechnology.

  13. Targeting the Full Length of the Motor End Plate Regions in the Mouse Forelimb Increases the Uptake of Fluoro-Gold into Corresponding Spinal Cord Motor Neurons

    Directory of Open Access Journals (Sweden)

    Andrew Paul Tosolini

    2013-05-01

    Full Text Available Lower motor neuron dysfunction is one of the most debilitating motor conditions. In this regard, transgenic mouse models of various lower motor neuron dysfunctions provide insight into the mechanisms underlying these pathologies and can also aid the development of new therapies. Viral-mediated gene therapy can take advantage of the muscle-motor neuron topographical relationship to shuttle therapeutic genes into specific populations of motor neurons in these mouse models. In this context, motor end plates (MEPs are highly specialised regions on the skeletal musculature that offer direct access to the pre-synaptic nerve terminals, henceforth to the spinal cord motor neurons. The aim of this study was two-folded. First it was to characterise the exact position of the MEP regions for several muscles of the mouse forelimb using acetylcholinesterase histochemistry. This MEP-muscle map was then used to guide a series of intramuscular injections of Fluoro-Gold (FG in order to characterise the distribution of the innervating motor neurons. This analysis revealed that the MEPs are typically organised in an orthogonal fashion across the muscle fibres and extending throughout the full width of each muscle. Furthermore, targeting the full length of the MEP regions gave rise to a seemingly greater number of labelled motor neurons that are organised into columns spanning through more spinal cord segments than previously reported. The present analysis suggests that targeting the full width of the muscles’ MEP regions with FG increases the somatic availability of the tracer. This process ensures a greater uptake of the tracer by the pre-synaptic nerve terminals, hence maximising the labelling in spinal cord motor neurons. This investigation should have positive implications for future studies involving the somatic delivery of therapeutic genes into motor neurons for the treatment of various motor dysfunctions.

  14. Use of new threshold detector 199Hg(n,n')/sup 199m/Hg for neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Sakurai, K.

    1982-01-01

    The nuclear data for the 199 Hg(n,n')/sup 199m/Hg reaction are reviewed and the data are used for neutron spectrum unfolding. The neutron spectrum of the YAYOI glory-hole is unfolded by SAND II with 10 nuclear reactions including the 199 Hg(n,n')/sup 199m/Hg reaction. The ratio of the measured reaction rate to the calculated reaction rate is about 1:1.1 for the guess spectrum. The 199 Hg(n,n')/sup 199m/Hg, 115 In(n,n')/sup 115m/In, 103 Rh(n,n')/sup 103m/Rh reactions should be useful threshold detectors for the neutron dosimetry with low level fast neutron flux

  15. Bioassisted Phytomining of Gold

    Science.gov (United States)

    Maluckov, Biljana S.

    2015-05-01

    Bioassisted phytomining implies targeted use of microorganisms and plants for the selective recovery of the metal. Metals from undissolved compounds are dissolved by applying specially chosen microorganisms and therefore become available to the hyperaccumulating plants. In the article, the selective extraction method of base metals and the precious metal gold by using microorganisms and plants is discussed.

  16. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  17. Immunological properties of gold nanoparticles.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2017-03-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo . For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.

  18. WE-G-BRE-09: Targeted Radiotherapy Enhancement During Accelerated Partial Breast Irradiation (ABPI) Using Controlled Release of Gold Nanoparticles (GNPs)

    International Nuclear Information System (INIS)

    Cifter, G; Ngwa, W; Chin, J; Cifter, F; Sajo, E; Sinha, N; Bellon, J

    2014-01-01

    Purpose: Several studies have demonstrated low rates of local recurrence with brachytherapy-based accelerated partial breast irradiation (APBI). However, long-term outcomes on toxicity (e.g. telangiectasia), and cosmesis remain a major concern. The purpose of this study is to investigate the dosimetric feasibility of using targeted non-toxic radiosensitizing gold nanoparticles (GNPs) for localized dose enhancement to the planning target volume (PTV) during APBI while reducing dose to normal tissue. Methods: Two approaches for administering the GNPs were considered. In one approach, GNPs are assumed to be incorporated in a micrometer-thick polymer film on the surface of routinely used mammosite balloon applicators, for sustained controlled in-situ release, and subsequent treatment using 50-kVp Xoft devices. In case two, GNPs are administered directly into the lumpectomy cavity e.g. via injection or using fiducials coated with the GNP-loaded polymer film. Recent studies have validated the use of fiducials for reducing the PTV margin during APBI with 6 MV beams. An experimentally determined diffusion coefficient was used to determine space-time customizable distribution of GNPs for feasible in-vivo concentrations of 43 mg/g. An analytic calculational approach from previously published work was employed to estimate the dose enhancement due to GNPs (2 and 10 nm) as a function of distance up to 1 cm from lumpectomy cavity. Results: Dose enhancement due to GNP was found to be about 130% for 50-kVp x-rays, and 110% for 6-MV external beam radiotherapy, 1 cm away from the lumpectomy cavity wall. Higher customizable dose enhancement could be achieved at other distances as a function of nanoparticle size. Conclusion: Our preliminary results suggest that significant dose enhancement can be achieved to residual tumor cells targeted with GNPs during APBI with electronic brachytherapy or external beam therapy. The findings provide a useful basis for developing nanoparticle

  19. 12 CFR 19.9 - Ex parte communications.

    Science.gov (United States)

    2010-01-01

    ... parte communication means any material oral or written communication relevant to the merits of an... communication is oral, a memorandum stating the substance of the communication) to be placed on the record of... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Ex parte communications. 19.9 Section 19.9...

  20. 7 CFR 800.199 - Conflict-of-interest provisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Conflict-of-interest provisions. 800.199 Section 800... Delegations, Designations, Approvals, Contracts, and Conflicts of Interest § 800.199 Conflict-of-interest...) Prohibited conflicts of interest. Unless waived on a case-by-case basis by the Administrator under section 11...

  1. 26 CFR 1.199-6 - Agricultural and horticultural cooperatives.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Agricultural and horticultural cooperatives. 1....199-6 Agricultural and horticultural cooperatives. (a) In general. A patron who receives a qualified... cooperative (cooperative) (as defined in paragraph (f) of this section) is allowed a deduction under § 1.199-1...

  2. 46 CFR 199.130 - Stowage of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Stowage of survival craft. 199.130 Section 199.130... craft. (a) General. Each survival craft must be stowed— (1) As close to the accommodation and service spaces as possible; (2) So that neither the survival craft nor its stowage arrangements will interfere...

  3. 46 CFR 199.70 - Personal lifesaving appliances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Personal lifesaving appliances. 199.70 Section 199.70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LIFESAVING APPLIANCES AND ARRANGEMENTS... appliances. (a) Lifebuoys. Each vessel must carry lifebuoys approved under approval series 160.150 as follows...

  4. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  5. Gold Returns

    OpenAIRE

    Robert J. Barro; Sanjay P. Misra

    2013-01-01

    From 1836 to 2011, the average real rate of price change for gold in the United States is 1.1% per year and the standard deviation is 13.1%, implying a one-standard-deviation confidence band for the mean of (0.1%, 2.1%). The covariances of gold's real rate of price change with consumption and GDP growth rates are small and statistically insignificantly different from zero. These negligible covariances suggest that gold's expected real rate of return--which includes an unobserved dividend yiel...

  6. Microrna-199a-5p Functions as a Tumor Suppressor via Suppressing Connective Tissue Growth Factor (CTGF) in Follicular Thyroid Carcinoma.

    Science.gov (United States)

    Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun

    2016-04-11

    BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.

  7. Fourier transform nuclear magnetic resonance studies of 199Hg

    International Nuclear Information System (INIS)

    Krueger, H.; Lutz, O.; Nolle, A.; Schwenk, A.

    1975-01-01

    199 Hg Fourier Transform NMR studies of various solutions of diverse mercury salts in H 2 O and D 2 O or in the appropriate protonated and deuterated acids are reported for both Hg 2 ++ and Hg ++ . In the different solutions investigated the 199 Hg line positions depend on the concentration of the solution, on the solvents and their isotopic composition and on the temperature of the sample. A ratio of the Larmor frequency of 199 Hg and of 2 H in a Hg(NO 3 ) 2 solution in dilute DNO 3 is given. Using this ratio and the measured chemical shifts, a ratio of the Larmor frequencies of 199 Hg for infinite dilution relative to 2 H in pure D 2 O is given. From this a g 1 -factor for 199 Hg is derived and compared with the g 1 -factor of an optical pumping experiment. The resulting shielding constant is sigma (hydrated 199 Hg ++ versus 199 Hg atom) = -24.32(5) x 10 -4 . This yields an atomic reference scale for all measured NMR line shifts of mercury. (orig.) [de

  8. A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer

    Directory of Open Access Journals (Sweden)

    Huang S

    2017-07-01

    Full Text Available Shengnan Huang,1,* Chunming Li,2,* Weiping Wang,1 Huanjie Li,1 Zhi Sun,3 Chengzhi Song,4 Benyi Li,5 Shaofeng Duan,6,7 Yurong Hu1,8,9 1Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China; 2Department of Pharmacy, Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing, People’s Republic of China; 3Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 4School of Physical Sciences, University of Science and Technology of China, Hefei, People’s Republic of China; 5Department of Urology and Cancer Center, the University of Kansas Medical Center, Kansas City, KS, USA; 6College of Pharmacy, Henan University, Kaifeng, People’s Republic of China; 7Department of Orthopedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 8Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, People’s Republic of China; 9Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The combination of photothermal therapy and chemotherapy (photothermal–­chemotherapy is a promising strategy for cancer therapy. Gold nanocages (AuNCs, with hollow and porous structures and unique optical properties, have become a rising star in the field of drug delivery. Here, we designed a novel targeted drug delivery system based on functionalized AuNCs and evaluated their therapeutic effects in vitro and in vivo. We then loaded doxorubicin into this promising system, designated as DHTPAuNCs consisting of hyaluronic acid-grafted and A54 peptide-targeted PEGylated AuNCs. Its formation was corroborated by ultraviolet

  9. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  10. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    Science.gov (United States)

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linlin [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384 (China); Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Tae-Hyun; Kim, Hae-Won [Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN) & College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Ahn, Jin-Chul [Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, 330-714 (Korea, Republic of); Kim, So Yeon, E-mail: kimsy@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Chemical Engineering Education, College of Education, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2016-10-01

    Activatable theranostics with the capacity to respond to a given stimulus have recently been intensively explored to develop more specific, individualized therapies for various diseases, and to combine diagnostic and therapeutic capabilities into a single agent. In this work, we designed tumor-targeting ligand-conjugated block copolymer-gold nanoparticle (AuNP) conjugates as multifunctional nanocarriers of the hydrophobic photosensitizer (PS), verteporfin (Verte), for simultaneous photodynamic therapy and imaging of cancers. Folic acid (FA)-conjugated block copolymers composed of polyethylene glycol (PEG) and poly-β-benzyl-L-aspartate (PBLA) were attached to citrate-stabilized AuNPs through a bidentate dihydrolipoic acid (DHLA) linker. The resulting AuNP conjugates (FA-PEG-P(Asp-Hyd)-DHLA-AuNPs) were significantly more stable than unmodified AuNPs, and their optical properties were not affected by pH. The hydrophobic PS, Verte, was covalently incorporated onto the surfaces of the AuNP conjugates through a pH-sensitive linkage, which increased the water solubility of Verte from < 1 μg/ml to > 2000 μg/ml. The size of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte as determined by light-scattering measurements was about 110.3 nm, and FE-SEM and FE-TEM images showed that these nanoparticles were spherical and showed adequate dispersivity after modification. In particular, an in vitro cell study revealed high intracellular uptake of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte (about 98.62%) and marked phototoxicity after laser irradiation compared with free Verte. These results suggest that FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte has great potential as an effective nanocarrier for dual imaging and photodynamic therapy. - Highlights: • We designed theranostic nanocarriers for photodynamic therapy and imaging of cancers. • AuNP conjugates had a spherical shape and a narrow size distribution with a mean diameter of 110.3 nm. • Cellular uptake of free Verte was 18.86%, whereas that of Au

  12. 32 CFR 199.12 - Third party recoveries.

    Science.gov (United States)

    2010-07-01

    ... of § 199.10 of this part. However, the proper exercise of the right to appeal benefit or provider... (including amounts paid by TRICARE for both inpatient and outpatient care). Prior to assertion and final...

  13. 32 CFR 199.24 - TRICARE Reserve Select.

    Science.gov (United States)

    2010-07-01

    ...) MISCELLANEOUS CIVILIAN HEALTH AND MEDICAL PROGRAM OF THE UNIFORMED SERVICES (CHAMPUS) § 199.24 TRICARE Reserve... rules and procedures as may be appropriate to the area involved. (4) Terminology. Certain terminology is...

  14. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T1&T2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy.

    Science.gov (United States)

    Wang, Guannan; Qian, Kun; Mei, Xifan

    2018-06-14

    Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe 3 O 4 -Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T 1 &T 2 -MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.

  15. Determination of gold and platinum in biological materials by radiochemical neutron activation analysis using electrolytic separation of gold

    International Nuclear Information System (INIS)

    Reitz, B.; Heydorn, K.

    1993-01-01

    A new method is presented for the determination of Au and Pt in biological materials based on neutron activation analysis with radiochemical separation of gold. Separation of gold by electrolytic deposition on a niobium cathode ascertains thee highest radiochemical purity without any interference from calcium or other major elements. With 199 Au as indicator for platinum the gold content of the sample not only strongly affects the limit of detection, but also causes interference by double neutron capture. Replicate analyses of BCR Certified Reference Materials No. 184, 185 and 186 were carried out. (author) 18 refs.; 3 figs.; 2 tabs

  16. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Heng-Jun [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China); Wang, Li-Qing [Department of Anesthesia, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003 (China); Xu, Qing-Sheng; Fan, Zuo-Xu; Zhu, Yu; Jiang, Hao; Zheng, Xiu-Jue; Ma, Yue-Hui [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China); Zhan, Ren-Ya, E-mail: zhanry148@163.com [Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang (China)

    2016-11-15

    Inflammatory response played an important role in the progression of spinal cord injury (SCI). Several miRNAs were associated with the pathology of SCI. However, the molecular mechanism of miRNA involving in inflammatory response in acute SCI (ASCI) was poorly understood. Sprague-Dawley (SD) rats were divided into 2 groups: control group (n=6) and acute SCI (ASCI) group (n=6). The expression of miR-199b and IκB kinase β-nuclear factor-kappa B (IKKβ-NF-κB) signaling pathway were evaluated by quantitative reverse transcription-PCR (qRT-PCR) in rats with ASCI and in primary microglia activated by lipopolysaccharide (LPS). We found that downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rats after ASCI and in activated microglia. miR-199b negatively regulated IKKβ by targeting its 3′- untranslated regions (UTR) through using luciferase reporter assay. Overexpression of miR-199b reversed the up-regulation of IKKβ, p-p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in LPS-treated BV2 cells assessed by western blotting analysis. In addition, BMS-345541 reversed the up-regulation effects of miR-199b inhibitor on the expression of TNF-α and IL-1β. In the SCI rats, overexpression of miR-199b attenuated ASCI and decreased the expression of IKKβ-NF-κB signaling pathway and TNF-α and IL-1β. These results indicated that miR-199b attenuated ASCI at least partly through IKKβ-NF-κB signaling pathway and affecting the function of microglia. Our findings suggest that miR-199b may be employed as therapeutic for spinal cord injury. - Highlights: • Downregulation of miR-199b and activation of IKKβ/NF-κB were observed in rat after SCI. • miR-199b negatively regulated IKKβ by targeting its 3′-UTR. • miR-199b overexpression reversed the increasing IKKβ, p-p65, TNF-α and IL-1β in LPS-treated BV2. • BMS-345541 reversed the up-regulation of TNF-α and IL-1β induced by miR-199b inhibitor. • Overexpression of miR-199b

  17. Gold Museum

    OpenAIRE

    Efraín Sánchez Cabra

    2003-01-01

    On 22 december 1939, the Banco de la República, the Central Bank of Colombia, purchased a 23.5 centimetres high pre-Columbian gold arte fact weighing 777·7 grams that was to become the Gold M useum's foundation stone. Described as a Quimbaya poporo, it is a masterpiece of pre-Hispanic goldwork, an object of beauty whose brightly burnished body and neck, crowned with four sphere-like or naments, rest on an exquisite cast metal tiligree base and which seems to ftoat in a space of its own. The b...

  18. Immunological properties of gold nanoparticles

    OpenAIRE

    Dykman, Lev A.; Khlebtsov, Nikolai G.

    2016-01-01

    In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be...

  19. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  20. A 3'-untranslated region (3'UTR induces organ adhesion by regulating miR-199a* functions.

    Directory of Open Access Journals (Sweden)

    Daniel Y Lee

    Full Text Available Mature microRNAs (miRNAs are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.

  1. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.

    Science.gov (United States)

    Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.

  2. Using mineralogy to optimize gold recovery by direct cyanidation

    Science.gov (United States)

    Venter, D.; Chryssoulis, S. L.; Mulpeter, T.

    2004-08-01

    The complete and accurate gold deportments of direct cyanide leach residues provide a clear picture of the occurrence of unrecovered gold and identify causes for poor extraction. Based on the independent measurement of each form and carrier of unleached gold, opportunities for recovery optimization can be assessed more accurately by providing meaningful targets and can help identify the means to achieve such targets. In ten of 14 leach plants surveyed, 23% of the unrecovered gold could be extracted without finer grinding.

  3. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  4. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  5. TH-B-204-03: TG-199: Implanted Markers for Radiation Treatment Verification

    International Nuclear Information System (INIS)

    Wang, Z.

    2016-01-01

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  6. TH-B-204-00: Implanted Markers for Radiation Therapy and TG 199 Update

    International Nuclear Information System (INIS)

    2016-01-01

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  7. TH-B-204-03: TG-199: Implanted Markers for Radiation Treatment Verification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. [Duke University Medical Center (United States)

    2016-06-15

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  8. TH-B-204-00: Implanted Markers for Radiation Therapy and TG 199 Update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  9. 46 CFR 199.203 - Marshalling of liferafts.

    Science.gov (United States)

    2010-10-01

    ... LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.203 Marshalling of liferafts. (a) Each passenger vessel must have a lifeboat or rescue boat for each six liferafts when— (1) Each lifeboat and rescue boat is loaded with its full complement of persons; and (2) The...

  10. 46 CFR 199.176 - Markings on lifesaving appliances.

    Science.gov (United States)

    2010-10-01

    ... ARRANGEMENTS LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Requirements for All Vessels § 199.176 Markings on lifesaving appliances. (a) Lifeboats and rescue boats. Each lifeboat and rescue boat must be plainly marked as follows: (1) Each side of each lifeboat and rescue boat bow must be marked in block...

  11. 27 CFR 26.199d - Customs inspection and release.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Customs inspection and... Shipment of Bulk Distilled Spirits From Puerto Rico, Without Payment of Tax, for Transfer From Customs Custody to Internal Revenue Bond § 26.199d Customs inspection and release. On receipt of a properly...

  12. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  13. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sun, G. M.

    2016-01-01

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected

  14. A Preliminary Study on Detecting Fake Gold Bars Using Prompt Gamma Activation Analysis: Simulation of Neutron Transmission in Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sun, G. M. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to develop fake gold bar detecting method by using Prompt-gamma activation analysis (PGAA) facility at the Korea Atomic Energy Research Institute (KAERI). PGAA is an established nuclear analytical technique for non-destructive determination of elemental and isotopic compositions. For a preliminary study on detecting fake gold bar, Monte Carlo simulation of neutron transmission in gold bar was conducted and the possibility for detecting fake gold bar was confirmed. Under the gold bullion standard, it guaranteed the government would redeem any amount of currency for its value in gold. After the gold bullion standard ended, gold bars have been the target for investment as ever. But it is well known that fake gold bar exist in the gold market. This cannot be identified easily without performing a testing as it has the same appearance as the pure gold bar. In order to avoid the trading of fake gold bar in the market, they should be monitored thoroughly. Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected.

  15. Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer

    DEFF Research Database (Denmark)

    Azhdarzadeh, Morteza; Atyabi, Fatemeh; Saei, Amir Ata

    2016-01-01

    Favorable physiochemical properties and the capability to accommodate targeting moieties make superparamegnetic iron oxide nanoparticles (SPIONs) popular theranostic agents. In this study, we engineered SPIONs for magnetic resonance imaging (MRI) and photothermal therapy of colon cancer cells...

  16. Evaluation of clinical value of serum CA19-9

    International Nuclear Information System (INIS)

    Lv Haifeng; Lin Zhiyu; Lu Xiaozhuo; Chen Yini

    2003-01-01

    The article is to study the clinical significance of serum CA19-9 in diagnosing malignant tumor occurred in digestive system and to select cut off values for differentiating diagnosis of a pancreatic neoplasms and pancreatitis. Using chemiluminescence immunoassay, serum CA19-9 level of below subjects were analyzed: control group (n=21); digestive system neoplasm group (n=125, with 7 cases conformed as pancreatic cancer); non-neoplastic disease group (n=387, with 15 cases conformed as pancreatitis secondary to destructive cholangitis). Receiver operating characteristic (ROC) curve was used for analyzing results and selecting cut off values. When cut off value was 18.4 kU/L, sensibility for conforming a digestive system neoplasm was 60.8%, while its related specificity against control group and non-neoplastic disease group was 95. 2% and 68.2%, respectively. Sensibility for diagnosing pancreatic neoplasm was 85.7%, while its related specificity against control group and non-pancreatic origin tumor group was 95.0% and 63.1%, respectively. When 37 kU/L was chosen as cut off value, specificity for differentiating diagnosis of pancreatic neoplasm and pancreatitis secondary to destructive cholangitis rose from 13.3% to 46.7%. Serum CA19-9 could be used as an aid in detecting digestive system neoplastic disease; it is a reliable marker for pancreatic neoplasm. Raising cut off value may help to differentiate pancreatic neoplasm and pancreatitis secondary to destructive cholangitis

  17. Identification of bile survivin and carbohydrate antigen 199 in distinguishing cholangiocarcinoma from benign obstructive jaundice.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Zhang, Qiangbo; Jin, Bin; Zhu, Min; Zhang, Zongli

    2017-01-01

    To investigate whether bile survivin and carbohydrate antigen 199 (CA199) can be helpful in distinguishing cholangiocarcinoma (malignant obstructive jaundice) from benign obstructive jaundice. Receiver operating characteristic curve was used to evaluate the feasibility of bile survivin and CA199 in differentiating cholangiocarcinoma from benign obstructive jaundice. The area under the curve for survivin and CA199 in bile and serum were 0.780 (p jaundice.

  18. Comparing the Suitability of Autodock, Gold and Glide for the Docking and Predicting the Possible Targets of Ru(II-Based Complexes as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2013-03-01

    Full Text Available In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II such as the rapta-based complexes formulated as [Ru(η6-p-cymeneL2(pta] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.

  19. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Performance characteristics of CA 19-9 radioimmunoassay and clinical significance of serum CA 19-9 assay in patients with malignancy

    International Nuclear Information System (INIS)

    Kim, S.E.; Shong, Y.K.; Cho, B.Y.; Kim, N.K.; Koh, C.S.; Lee, M.H.; Hong, K.S.

    1985-01-01

    To evaluate the performance characteristics of CA 19-9 radioimmunoassay and the clinical significance of serum CA 19-9 assay in patients with malignancy, serum CA 19-9 levels were measured by radioimmunoassay using monoclonal antibody in 135 normal controls, 81 patients with various untreated malignancy, 9 patients of postoperative colon cancer without recurrence and 20 patients with benign gastrointestinal diseases, who visited Seoul National University Hospital from June, 1984 to March, 1985. (Author)

  1. 21 CFR 1.99 - Costs chargeable in connection with relabeling and reconditioning inadmissible imports.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Costs chargeable in connection with relabeling and reconditioning inadmissible imports. 1.99 Section 1.99 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GENERAL ENFORCEMENT REGULATIONS Imports and Exports § 1.99 Costs...

  2. 37 CFR 1.99 - Third-party submission in published application.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Third-party submission in published application. 1.99 Section 1.99 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND... Provisions Information Disclosure Statement § 1.99 Third-party submission in published application. (a) A...

  3. 46 CFR 199.40 - Evaluation, testing and approval of lifesaving appliances and arrangements.

    Science.gov (United States)

    2010-10-01

    ... appliances and arrangements. 199.40 Section 199.40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LIFESAVING APPLIANCES AND ARRANGEMENTS LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS General § 199.40 Evaluation, testing and approval of lifesaving appliances and arrangements. (a) Each item of...

  4. miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes

    Directory of Open Access Journals (Sweden)

    Keita Tsujimura

    2015-09-01

    Full Text Available Rett syndrome (RTT is a neurodevelopmental disorder caused by MECP2 mutations. Although emerging evidence suggests that MeCP2 deficiency is associated with dysregulation of mechanistic target of rapamycin (mTOR, which functions as a hub for various signaling pathways, the mechanism underlying this association and the molecular pathophysiology of RTT remain elusive. We show here that MeCP2 promotes the posttranscriptional processing of particular microRNAs (miRNAs as a component of the microprocessor Drosha complex. Among the MeCP2-regulated miRNAs, we found that miR-199a positively controls mTOR signaling by targeting inhibitors for mTOR signaling. miR-199a and its targets have opposite effects on mTOR activity, ameliorating and inducing RTT neuronal phenotypes, respectively. Furthermore, genetic deletion of miR-199a-2 led to a reduction of mTOR activity in the brain and recapitulated numerous RTT phenotypes in mice. Together, these findings establish miR-199a as a critical downstream target of MeCP2 in RTT pathogenesis by linking MeCP2 with mTOR signaling.

  5. Elevated serum CA 19-9 at screening tests: underlying conditions and role of abdominopelvic CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Yang [University of Louisville, Department of Radiology and Molecular Imaging Research Center, Louisville, KY (United States); Seoul National University Hospital, Department of Radiology, Healthcare System Gangnam Center, Seoul (Korea, Republic of); Kim, Se Hyung [Seoul National University Hospital, Department of Radiology and the Institute of Radiation Medicine, Seoul (Korea, Republic of); Kim, Soo Young [Seoul National University Hospital, Department of Radiology, Healthcare System Gangnam Center, Seoul (Korea, Republic of); Bundang CHA Hospital, Department of Radiology, Bundang (Korea, Republic of)

    2014-10-15

    To investigate underlying conditions of patients with elevated CA 19-9 at screening tests and to evaluate diagnostic performance of abdominopelvic CT. One hundred and thirteen patients with elevated CA 19-9 (>37 U/ml) who underwent abdominopelvic CT in a screening program were selected. Underlying conditions were determined by reviewing all available data and follow-up records. Patients were categorized into malignancy, benign, and normal/non-related disease groups. Their mean CA 19-9 and percent of patients with CA 19-9 ≥ 100 U/ml were compared. Diagnostic sensitivity of CT for detecting underlying conditions of elevated CA 19-9 was analysed. Seventeen patients (17/113, 15 %) had 17 elevated CA 19-9-related malignancies, and 55 patients (55/113, 48.7 %) had 70 benign diseases. Mean CA 19-9 and percent of patients with CA 19-9 ≥ 100 U/ml in the malignancy group were significantly higher than in the two other groups. CT detected all except one malignant lesion with a detection sensitivity of 94.1 % (16/17). Of 70 CA 19-9-related benign diseases, CT detected 34 benign diseases (48.6 %) providing an alternative diagnosis for elevated CA 19-9. Abdominopelvic CT is not only useful in detecting malignancies, but can also diagnose alternative benign causes of elevated CA 19-9 in asymptomatic screening tests. (orig.)

  6. Interfering Effect of Black Tea Consumption on Diagnosis of Pancreatic Cancer by CA 19-9.

    Science.gov (United States)

    Al-Janabi, Ali Abdul Hussein S; Tawfeeq, Ekhlas F

    2017-06-01

    The study aims to determine the possible effects of black tea consumption on the level of CA 19-9 antigen in the human body. The level of CA 19-9 was measured in 270 healthy individuals who consumed heavy amounts of black tea. About 43.3 % of involved individuals were revealed to have elevated levels of CA 19-9. Males with high values of CA 19-9 represented the greatest number of involved individuals. The cutoff value of high levels of CA 19-9 in all individuals was ranged 69-105 U/ml. Consuming heavy amounts of black tea could be considered an important interfering factor that affects the levels of CA 19-9. The cutoff or predictive value of CA 19-9 in heavy-consuming people of black tea was determined.

  7. Chitosan Stabilized Gold-Folate-Poly(lactide-co-glycolide) Nanoplexes Facilitate Efficient Gene Delivery in Hepatic and Breast Cancer Cells.

    Science.gov (United States)

    Akinyelu, Jude; Singh, Moganavelli

    2018-07-01

    The biodegradable polymer, poly(lactide-co-glycolide) is a popular polymer of choice in many nanotherapeutic studies. Herein, we report on the synthesis and evaluation of four chitosan stabilized poly(lactide-co-glycolide) nanoparticles with and without coating with gold, and the targeting ligand, folic acid, as potential non-viral gene delivery vectors. The poly(lactide-co-glycolide) nanoparticles were synthesized via nanoprecipitation/solvent evaporation method in conjunction with the surface functionalizing folic acid and chitosan. The physiochemical properties (morphology, particle size, zeta potential, folic acid/chitosan presence, DNA binding), and biological properties (nuclease protection, in vitro cytotoxicity and transfection potential in human kidney, hepatocellular carcinoma and breast adenocarcinoma cells), of all four gene bound nanoparticles were evaluated. Gel retardation assays confirmed that all the nanoparticles were able to successfully bind the reporter plasmid, pCMV-luc DNA at varying weight ratios. The gold-folate-poly(lactide-co-glycolide) nanoplexes with the highest binding efficiency (w/w ratio 4:1), best protected the plasmid DNA as evidenced from the nuclease protection assays. Furthermore, these nanoplexes presented as spherical particles with an average particle size of 199.4 nm and zeta potential of 35.7 mV. Folic acid and chitosan functionalization of the nanoparticles was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy. All nanoplexes maintained over 90% cell viability in all cell lines investigated. Interestingly, the gold-folate-poly(lactide-co-glycolide) nanoplexes showed a greater transgene activity in the hepatic and breast cancer cells compared to the other nanocomplexes in the same cell lines. The favorable size, colloidal stability, low cytotoxicity, significant transgene expression, and nuclease protection ability in vitro, all provide support for the use of gold

  8. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Grant, J; Wolfe, A; Gillin, M; Krishnan, S [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-15

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved

  9. MiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway

    Directory of Open Access Journals (Sweden)

    Long Jia

    2013-12-01

    Full Text Available MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3' untranslated regions (3' UTRs of messenger RNAs (mRNAs. Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expressed in skeletal muscle and was induced during C2C12 myoblasts differentiation. We also identified and confirmed several genes of the IGF-1/AKT/mTOR signal pathway, including IGF-1, mTOR, and RPS6KA6, as important cellular targets of miR-199a-3p in myoblasts. Overexpression of miR-199a-3p partially blocked C2C12 myoblast differentiation and the activation of AKT/mTOR signal pathway, while interference of miR-199a-3p by antisense oligonucleotides promoted C2C12 differentiation and myotube hypertrophy. Thus, our studies have established miR-199a-3p as a potential regulator of myogenesis through the suppression of IGF-1/AKT/mTOR signal pathway.

  10. Performance Characteristics of CA 19-9 Radioimmunoassay and Clinical Significance of Serum CA 19-9 Assay in Patients with Malignancy

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Shong, Young Kee; Cho, Bo Youn; Kim, Noe Kyeong; Koh, Chang Soon; Lee, Mun Ho; Hong, Seong Woon; Hong, Kee Suk

    1985-01-01

    To evaluate the performance characteristics of CA 19-9 radioimmunoassay and the clinical significance of serum CA 19-9 assay in patients with malignancy, serum. CA 19-9 levels were measured by radioimmunoassay using monoclonal antibody in 135 normal controls, 81 patients with various untreated malignancy, 9 patients of postoperative colon cancer without recurrence and 20 patients with benign gastrointestinal diseases, who visited Seoul National University Hospital from June, 1984 to March, 1985. The results were as follows; 1) The CA 19-9 radioimmunoassay was simple to perform and can be completed in one work day. And the between-assay reproducibility and the assay recovery were both excellent. 2) The mean serum CA 19-9 level in 135 normal controls was 8.4±4.2 U/mL. Normal upper limit of serum CA 19-9 was defined as 21.0 U/mL. 4 out of 135 (3.0%) normal controls showed elevated CA 19-9 levels above the normal upper limit. 3) One out of 20 (5.0%) patients with benign gastrointestinal diseases showed elevated serum CA 19-9 level above the normal upper limit. 4) In 81 patients with various untreated malignancy, 41 patients (50.6%) showed elevated serum CA 19-9 levels. 66.7% of 18 patients with colorectal cancer, 100% of 2 patients with pancreatic cancer, 100% of 3 patients with common bile duct cancer, 47.1% of 17 patients with stomach cancer, 28.6% of 28 patients with hepatoma and 60.0% of 5 gastrointestinal tract cancers showed elevated serum CA 19-9 levels. 5) The sensitivities of serum CA 19-9 related to respectability in colorectal and stomach cancer were 33.3% in resectable colorectal cancer, 83.3% in unresectable colorectal cancer, 41.7% in resectable stomach cancer, 60.0% in unresectable stomach cancer respectively. 6) The sensitivity of serum CA 19-9 in 9 patients of postoperative colorectal cancer without recurrence were 33.3% and significantly decreased compared with that of untreated colorectal cancer, 66.7% (p<0.05). 7) In Patients with colorectal cancer

  11. Separation of {sup 195(m,g),197m}Hg from bulk gold target by liquid-liquid extraction using hydrophobic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaustab; Lahiri, Susanta [Saha Institute of Nuclear Physics, Kolkata (India). Chemical Sciences Div.; Maiti, Moumita [Indian Institute of Technology Roorkee, Roorkee (India). Dept. of Physics

    2017-07-01

    The {sup 195(m,g),197m}Hg radionuclides were produced in accelerator when natural Au foil was irradiated with 23 MeV protons. The no-carrier-added (NCA) Hg radioisotopes were separated from the bulk Au target by liquid-liquid extraction (LLX) employing hydrophobic RTILs 1-butyl-3-methylimidazolium hexafluorophosphate([C{sub 4}mim][PF{sub 6}]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([bmim][Tf{sub 2}N]) as extractant with HNO{sub 3} and HCl. In each case, bulk Au was extracted into the RTIL phase leaving NCA Hg-radionuclides in the aqueous phase. The RTILs were recovered by washing with 1 M K{sub 2}S{sub 2}O{sub 5} and freshly prepared 1 M FeSO{sub 4}. The reported separation methods follow green chemistry approach as it does not involve any volatile reagents.

  12. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-04-01

    Full Text Available Linlin Zhang,1,2,* Arun K lyer,3,4,* Xiaoqian Yang,1 Eisuke Kobayashi,1 Yuqi Guo,1,2 Henry Mankin,1 Francis J Hornicek,1 Mansoor M Amiji,3 Zhenfeng Duan1 1Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA; 2Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China; 3Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts, USA; 4Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA *These authors contributed equally to this work Abstract: Our prior screening of microRNAs (miRs identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS successfully. Western blotting analysis and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma cells. These results demonstrate that a lipid-modified dextran

  13. A 3′-Untranslated Region (3′UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    Science.gov (United States)

    Lee, Daniel Y.; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W.; Deng, Zhaoqun; Yang, Burton B.

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3′UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3′UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3′UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3′UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3′UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3′UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3′UTR may be an approach in the development of gene therapy. PMID:19223980

  14. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  15. Templated in-situ synthesis of gold nanoclusters conjugated to drug target bacterial enoyl-ACP reductase, and their application to the detection of mercury ions using a test stripe

    International Nuclear Information System (INIS)

    Ding, Han; Li, Hongwei; Liu, Pengchang; Wu, Yuqing; Shen, Jiacong; Hiltunen, J. Kalervo; Chen, Zhijun

    2014-01-01

    Fluorescent gold nanoclusters (AuNCs) were synthesized using a drug target bacterial enoyl-ACP reductase (FabI) as a template. The physical and chemical properties of the AuNCs were studied by UV-vis absorption, fluorescence, X-ray photoelectron spectroscopy and TEM. The AuNCs-FabI conjugate was prepared by in situ reduction of tetrachloroaurate in the presence of FabI. The conjugated particles were loaded onto nylon membranes by taking advantage of the electrostatic interaction between the negatively charged AuNCs-FabI and the nylon film which is positively charged at pH 7.4. This results in the formation of a test stripe with sensor spots that can be used to detect Hg(II) ion in the 1 nM to 10 μM concentration range. The test stripes are simple, convenient, selective, sensitive, and can be quickly read out with bare eyes after illumination with a UV lamp. (author)

  16. Gold in plants

    International Nuclear Information System (INIS)

    Girling, C.A.; Peterson, P.J.

    1980-01-01

    Many plants have the ability to take up gold from the soil and to accumulate it in their tisssue. Advances have been made in understanding these processes to the point where their exploitation in the field of prospecting for gold appears practically feasible. Neutron activation analysis is used for the determination of the small quantities of gold in plants

  17. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  18. Time-reversal-violating Schiff moment of 199Hg

    International Nuclear Information System (INIS)

    Jesus, J.H. de; Engel, J.

    2005-01-01

    We calculate the Schiff moment of the nucleus 199 Hg, created by πNN vertices that are odd under parity (P) and time-reversal (T). Our approach, formulated in diagrammatic perturbation theory with important core-polarization diagrams summed to all orders, gives a close approximation to the expectation value of the Schiff operator in the odd-A Hartree-Fock-Bogoliubov ground state generated by a Skyrme interaction and a weak P- and T-odd pion-exchange potential. To assess the uncertainty in the results, we carry out the calculation with several Skyrme interactions, the quality of which we test by checking predictions for the isoscalar-E1 strength distribution in 208 Pb, and estimate most of the important diagrams we omit

  19. Well drilling summary report for well 199-N-106A

    International Nuclear Information System (INIS)

    Walker, L.D.

    1996-02-01

    Past liquid waste disposal practices within the 100-N Area have resulted in the contamination of the underlying sediments and groundwater. The release of large volumes of liquid effluent to the 1301-N and 1325-N Liquid Waste Disposal Facilities caused the transport of 90 Sr and other contaminants to the groundwater. Further discussion of 100-N Area hydrogeology is provided in Hartman and Lindsey (1993). A pump-and-treat system combined with a vertical barrier is the preferred alternative for the N Springs Expedited Response Action. This document is a compilation of the data collected during the drilling of well 199-N-106A, an extraction well for the 100-N Pump-and-Treat Project

  20. Levels and Transition Rates in {sup 199}Au

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G; Baecklin, A; Fogelberg, B

    1967-10-15

    The decay of {sup 199}Pt to {sup 199}Au (T{sub 1/2} = 30.8 min) has been investigated using a Ge(Li) detector and a double focusing beta spectrometer. 34 transitions were found and multipolarities were assigned for 11 of these, including a 55.15 keV M2 + (0.9 {+-} 0.5) % E3 isomeric transition. Using these data together with the results of {gamma}-{gamma} and {beta}-{gamma} coincidence measurements, a decay scheme containing 9 excited levels and 25 transitions was constructed and spin and parity assignments were made. Using the delayed coincidence technique half-lives were determined for 3 levels and upper limits were obtained for 5 additional levels. The following levels were found: 77.21 {+-} 0.03 keV (1/2{sup +}, 1.1 {+-} 0.1 ns ); 316.98 {+-} 0.10 (5/2{sup +}, < 55 ps); 323.57 {+-}0.09 keV ((1/2), 3/2{sup +}, 35 {+-}20 ps); 493.59 {+-}0.10 keV (7/2{sup +}, < 35 ps ) ; 542.82 {+-} 0.07 keV (5/2{sup +}, < 30 ps ) ; 548.65 {+-} 0.09 keV (11/2{sup -}); 734.44 {+-}0.11 keV (7/2{sup -}, 0.36 {+-} 0.04 ns); 791.47 {+-} 0.15 keV (3/2{sup +}, 5/2{sup +}, < 50 ps); and 967.98 {+-} 0.20 keV (3/2{sup (+)}, 5/2{sup (+)}, < 100 ps ). The decay properties of the lowest excited positive parity levels are discussed in terms of de-Shalit's core excitation model.

  1. Selective modification of NMR relaxation time in human colorectal carcinoma by using gadolinium-diethylenetriaminepentaacetic acid conjugated with monoclonal antibody 19-9.

    Science.gov (United States)

    Curtet, C; Tellier, C; Bohy, J; Conti, M L; Saccavini, J C; Thedrez, P; Douillard, J Y; Chatal, J F; Koprowski, H

    1986-01-01

    Monoclonal antibody 19-9 (mAb 19-9) against human colon adenocarcinoma was conjugated with gadolinium X diethylenetriaminepentaacetic acid (Gd X DTPA) and used as a contrast agent in nuclear magnetic resonance (NMR) in an effort to improve tumor target selectivity in nude mice. The data indicate that Gd X DTPA-mAb 19-9 in solution decreased the T1 relaxation of water protons at 90 MHz in direct proportion to the gadolinium concentration, and this effect was greater than in Gd X DTPA solutions. T1 relaxation time at 90 MHz, measured in tumors removed from nude mice 24 hr after injection of Gd X DTPA-mAb 19-9 (Gd, 20 mumol/kg; 16 DTPA molecules per mAb molecule), was significantly decreased (by 15%) as compared with the control group. Similar results were obtained in tumors from mice injected with Gd X DTPA-mAb 19-9 solutions in which Gd was used at 2, 6, or 10 mumol/kg (16 DTPA molecules per mAb molecule). These doses are lower than those commonly used for Gd X DTPA (10-100 mumol/kg) as contrast agent. Tumor localization by the Gd X DTPA-mAb 19-9 complex containing radioactive Gd (0.3 microCi/microgram of 153Gd) to confirm scintigraphy revealed significant concentrations of the complex (5% of the injected dose per gram of tissue) in the tumor. Scan images recorded in planar scintigraphy at day 5 showed good visualization of tumors. Images PMID:3459174

  2. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    International Nuclear Information System (INIS)

    Sherman, Laura S.; Blum, Joel D.; Basu, Niladri; Rajaee, Mozhgon; Evers, David C.; Buck, David G.; Petrlik, Jindrich; DiGangi, Joseph

    2015-01-01

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ 199 Hg values to Hg derived from ore deposits (mean urine Δ 199 Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ 199 Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ 199 Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed

  3. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  4. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  5. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  6. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  7. 9 CFR 381.199 - Inspection of poultry products offered for entry.

    Science.gov (United States)

    2010-01-01

    ... AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Imported Poultry... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Inspection of poultry products offered for entry. 381.199 Section 381.199 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE...

  8. 32 CFR 199.20 - Continued Health Care Benefit Program (CHCBP).

    Science.gov (United States)

    2010-07-01

    ... Privilege Card”; (iii) A front and back copy of a DD Form 1173, “Uniformed Services Identification and...). 199.20 Section 199.20 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS CIVILIAN HEALTH AND MEDICAL PROGRAM OF THE UNIFORMED SERVICES (CHAMPUS...

  9. 49 CFR 40.199 - What problems always cause a drug test to be cancelled?

    Science.gov (United States)

    2010-10-01

    ... cancelled? 40.199 Section 40.199 Transportation Office of the Secretary of Transportation PROCEDURES FOR... cause a drug test to be cancelled? (a) As the MRO, when the laboratory discovers a “fatal flaw” during... specimen has been “Rejected for Testing” (with the reason stated). You must always cancel such a test. (b...

  10. 32 CFR 199.5 - TRICARE Extended Care Health Option (ECHO).

    Science.gov (United States)

    2010-07-01

    ... medicines. Drugs and medicines that do not meet the requirements of § 199.4 or § 199.21 are excluded. (17..., as determined by the Director, TRICARE Management Activity or designee. (B) Alternative allocation... following the death of a beneficiary or as of the effective date of a beneficiary's loss of ECHO eligibility...

  11. 46 CFR 199.110 - Survival craft muster and embarkation arrangements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft muster and embarkation arrangements. 199... § 199.110 Survival craft muster and embarkation arrangements. (a) Each muster station must have... emergency source of electrical power. (e) Each davit-launched and free-fall survival craft muster station...

  12. Laser spectroscopy of laser-desorbed gold isotopes

    International Nuclear Information System (INIS)

    Savard, G.; Crawford, J.E.; Lee, J.K.P.; Thekkadath, G.

    1990-01-01

    Changes in mean-square charge radius δ 2 >, and magnetic dipole moments μ I have been measured for a series of neutron-deficient gold isotopes between A=186 and 196, and for neutron-rich 198,199 Au, using the PILIS system on-line with the ISOCELE mass separator. These measurements confirm the existence of the shape transition between A=186 and 187. The measured μ I values have been compared with calculations using Nilsson, and symmetric-rotor-plus-quasiparticle models. The results are consistent with the interpretation that 186 Au is prolate, and that the heavier isotopes have oblate, or possibly triaxial deformation. (orig.)

  13. Search for an Electric Dipole Moment (EDM) of 199Hg

    Science.gov (United States)

    Heckel, Blayne

    2017-04-01

    The observation of a non-zero EDM of an atom or elementary particle, at current levels of experimental sensitivity, would imply CP violation beyond the CKM matrix of the standard model of particle physics. Additional sources of CP violation have been proposed to help explain the excess of matter over anti-matter in our universe and the magnitude of ΘQCD, the strength of CP violation in the strong interaction, remains unknown. We have recently completed a set of measurements on the EDM of 199Hg, sensitive to both new sources of CP violation and ΘQCD. The experiment compares the phase accumulated by precessing Hg spins in vapor cells with electric fields parallel and anti-parallel to a common magnetic field. Our new result represents a factor of 5 improvement over previous results. A description of the EDM experiment, data, systematic error considerations will be presented. This work was supported by NSF Grant No. 1306743 and by the DOE Office of Nuclear Physics under Award No. DE-FG02-97ER41020.

  14. CA 19-9 as a marker in addition to CEA to monitor colorectal cancer.

    Science.gov (United States)

    Stiksma, Jolanda; Grootendorst, Diana C; van der Linden, Peter Willem G

    2014-12-01

    Carcinoembryonic antigen is the commonly used tumor marker in patients with colorectal cancer, and CA 19-9 might be an additional marker. The aim of this retrospective study was to investigate whether CA 19-9 levels can be used to monitor the disease process in patients with colorectal cancer who had no elevated CEA levels. The secondary aim was to determine if preoperative increased levels of CEA and CA 19-9 were associated with mortality. Two sets of data from patients with histologically confirmed colorectal cancer, were included in a single-center study. First, patients with a minimum of 3 serial measurements of CA 19-9 and CEA tumor markers were related to the clinical course of their disease. Second, patients with preoperative levels of CEA and CA 19-9 were related to survival. In patients with colorectal cancer and 3 serial measurements of tumor markers, 7.3% had only increased CA 19-9 levels without increased CEA levels, and 55.4% of the patients had an increase of CA 19-9 and CEA levels. In the patients with available preoperative markers, patients with only an increase of CA 19-9 had a significantly decreased 5-year survival compared with patients with an increase of only CEA (P = .013). CA 19-9 can be used as additional marker to follow the disease process in patients with colorectal cancer without an increase in CEA level. Patients with preoperative increased CA 19-9 level had a poorer 5-year survival than patients with preoperative increased CEA levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  16. Association between serum CA 19-9 and metabolic syndrome: A cross-sectional study.

    Science.gov (United States)

    Du, Rui; Cheng, Di; Lin, Lin; Sun, Jichao; Peng, Kui; Xu, Yu; Xu, Min; Chen, Yuhong; Bi, Yufang; Wang, Weiqing; Lu, Jieli; Ning, Guang

    2017-11-01

    Increasing evidence suggests that serum CA 19-9 is associated with abnormal glucose metabolism. However, data on the association between CA 19-9 and metabolic syndrome is limited. The aim of the present study was to investigate the association between serum CA 19-9 and metabolic syndrome. A cross-sectional study was conducted on 3641 participants aged ≥40 years from the Songnan Community, Baoshan District in Shanghai, China. Logistic regression analysis was used to evaluate the association between serum CA 19-9 and metabolic syndrome. Multivariate logistic regression analysis showed that compared with participants in the first tertile of serum CA 19-9, those in the second and third tertiles had increased odds ratios (OR) for prevalent metabolic syndrome (multivariate adjusted OR 1.46 [95% confidence interval {CI} 1.11-1.92] and 1.51 [95% CI 1.14-1.98]; P trend  = 0.005). In addition, participants with elevated serum CA 19-9 (≥37 U/mL) had an increased risk of prevalent metabolic syndrome compared with those with serum CA 19-9 metabolic syndrome. In order to confirm this association and identify potential mechanisms, prospective cohort and mechanic studies should be performed. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  17. CA19-9: A promising tumor marker for pancreatic carcinoma

    International Nuclear Information System (INIS)

    Sakahara, H.; Endo, K.; Nakajima, K.; Hidaka, A.; Nakashima, T.; Ohta, H.; Torizuka, K.; Naito, A.; Suzuki, T.

    1984-01-01

    In order to evaluate CA19-9 as a tumor marker for pancreatic carcinoma (PC), serum levels of CA19-9 were compared with those of CEA and elastase-1 in 56 patients, consisted of 43 cases with histologically proven adenocarcinomas and 13 cases with chronic pancreatitis. Serum levels were determined by using RIA kit obtained from CIS, France (CA19-9 and CEA) and Abbot (elastase-1). CA19-9 gave the highest accuracy among tumor markers the authors have studied and serum levels were markedly elevated over 100U/ml in 30 (70%) cases with PC, whereas none in chronic pancreatitis. CA19-9 values were closely related to the tumor size and the presence or absence of metastsis on CT findings. Small tumors of less than 3cm in diameter, although the site of tumor was limited to the head of the pancreas, showed positive results in 2 out of 5 cases. Furthermore, CA19-9 was at a level of less than 22U/ml in 98 normal controls and was found to be elevated in only 4 (3%) out of 124 patients with benign diseases, including liver diseases, gastric ulcer, cholelithiasis, and so on. These results indicate that CA19-9 is much better in diagnosis and management of PC than is CEA

  18. Myocardial scintigraphy with 199Tl chloride for the assessment of antianginal effect of cardil

    International Nuclear Information System (INIS)

    Chernov, V.I.; Mordovin, V.F.; Vesnina, Zh.V.; Triss, S.V.; Bazilevich, I.A.; Lishmanov, Yu.B.

    1995-01-01

    The aim of this research was examination of myocardial perfusion in cardil therapy of twenty-two coronary patients and analysis of potentialities of load 199 Tl scintigraphy in assessment of the antianginal effect in the course of therapy of coronary patients. The findings evidence that due to short 199 Tl half life and low radiation load of the body because of this radionuclide load 199 Tl scintigraphy of the myocardium carried out in the course of therapy of coronary patients may be used as an objective test to assess myocardial perfusion under the effect of treatment. 8 refs

  19. Radioimmunoassay of CA 19-9 tumor marker in the diagnosis of thyroid cancer

    International Nuclear Information System (INIS)

    Markov, V.V.; Slavnov, V.N.; Komissarenko, I.V.; Kovpak, N.A.; Kovalenko, A.E.; Guda, B.B.

    1999-01-01

    Applicability of determining carbohydrate antigen CA 19-9 content in blood serum, tissue extracts, and thyroid tumor aspiration biopsy samples to the differential diagnosis of benign and malignant tumors of thyroid is studied. Radioimmunoassay was used for measurements. It is shown that determination of marker CA 19-9 in blood serum is not informationally capable for the differential diagnosis of thyroid tumors. Considerable increase in CA 19-9 concentration was found in tumor aspiration biopsy samples from patients with malignant tumors this fact can be used for preoperative diagnosis of thyroid cancer [ru

  20. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency, Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This paper describes a preliminary study on possible primary deposit type as a source of the Langkowala (Bombana secondary placer gold. A field study indicates that the Langkowala (Bombana placer/paleoplacer gold is possibly related to gold-bearing quartz veins/veinlets hosted by metamorphic rocks particularly mica schist and metasediments in the area. These quartz veins/veinlets are currently recognized in metamorphic rocks at Wumbubangka Mountains, a northern flank of Rumbia Mountain Range. Sheared, segmented quartz veins/veinlets are of 2 cm to 2 m in width and contain gold in a grade varying between 2 and 61 g/t. At least, there are two generations of the quartz veins. The first generation of quartz vein is parallel to foliation of mica schist and metasediments with general orientation of N 300oE/60o; the second quartz vein generation crosscut the first quartz vein and the foliation of the wallrock. The first quartz veins are mostly sheared/deformed, brecciated, and occasionally sigmoidal, whereas the second quartz veins are relatively massive. The similar quartz veins/veinlets types are also probably present in Mendoke Mountain Range, in the northern side of Langkowala area. This primary gold deposit is called as ‘orogenic gold type’. The orogenic gold deposit could be a new target of gold exploration in Indonesia in the future.

  1. Medicinal gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.; Cottrill, S.M.

    1987-01-01

    A major use of gold compounds in the pharmaceutical industry is for anti-arthritic agents. The disease itself is not understood and little is known about the way in which the drugs act, but detailed pictures of the distribution of gold in the body are available, and some of the relevant biochemistry is beginning to emerge. The purpose of this article is to give a survey of the types of compounds presently employed in medicine, of the distribution of gold in the body which results from their use, and of some relevant chemistry. Emphasis is placed on results obtained in the last few years

  2. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    Science.gov (United States)

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  3. Atomic mass determinations for 183W and 199Hg and the mercury problem

    International Nuclear Information System (INIS)

    Barillari, D.K.; Vaz, J.V.; Barber, R.C.; Sharma, K.S.

    2003-01-01

    Recent modifications to the 'Manitoba II' high resolution mass spectrometer are described. Mass differences among the members of the triplet 199 Hg - 183 W 16 O- 12 C 2 35 Cl 5 have been measured. These self-consistent mass differences give masses for 183 W and 199 Hg, as well as the mass difference across the W to Hg region of the mass table. These masses and the mass difference provide important constraints for the least squares atomic mass evaluation

  4. Cancer nanotechnology: emerging role of gold nanoconjugates.

    Science.gov (United States)

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  5. The Gold Standard Programme

    DEFF Research Database (Denmark)

    Neumann, Tim; Rasmussen, Mette; Ghith, Nermin

    2013-01-01

    To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates.......To evaluate the real-life effect of an evidence-based Gold Standard Programme (GSP) for smoking cessation interventions in disadvantaged patients and to identify modifiable factors that consistently produce the highest abstinence rates....

  6. Facts and Fantasies about Gold

    OpenAIRE

    Klement, Joachim

    2015-01-01

    Due to the increasing popularity of gold as an investment the demand for effective risk management techniques for gold investments has increased as well. In this paper we analyze several drivers of the price of gold that have been proposed in the past. Our analysis indicates that short-term volatility of the price of gold remains rather unpredictable with many of the explanations like the fund flows in physical gold ETF either unreliable or unstable over time. Our analysis suggests that there...

  7. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  8. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  9. CA 19-9 is an index of the response to neoadjunctive chemoradiation therpay in pancreatic cancer

    International Nuclear Information System (INIS)

    Willett, Christopher G.; Daly, William J.; Warshaw, Andrew L.

    1996-01-01

    Purpose: This study examines the changes of serum levels of CA 19-9 in patients with pancreatic cancer following neoadjuvant irradiation and chemotherapy to define the potential role of this tumor marker in preoperative management of these patients. Materials and Methods: Serum CA 19-9 levels were measured in 42 patients before receiving external beam irradiation with concurrent 5-fluorouracil in preparation for laparotomy and Whipple procedure or intraoperative irradiation (IORT). The CA 19-9 levels were determined again after irradiation, and changes were correlated with findings of restaging CT scan and laparatomy. Results: Following preoperative irradiation, 10 patients (24%) experienced an increase in CA 19-9 levels whereas 29 patients (69%) showed a decrease in CA 19-9. There was no change in the CA 19-9 levels of three patients (7%) after treatment. Of the 10 patients with increased CA 19-9 levels after irradiation, 9 patients (90%) had developed distant metastases or local tumor progression as determined by restaging CT scan or at laparotomy. In contrast, only 6 of 29 patients (21%) with declining CA 19-9 levels after irradiation demonstrated metastases or local tumor progression on restaging CT scan or at laparotomy. The correlation of CA 19-9 increase or decrease with disease progression or control, respectively, was statistically significant (p=0.009). Conclusions: Serum CA 19-9 levels may rise or fall during neoadjuvant therapy. A rising CA 19-9 reliably indicates cancer progression while a falling CA 19-9 connotes disease control in the majority of patients. In developing strategies for application of neoadjuvant therapy for pancreatic cancer, monitoring of CA 19-9 appears most useful for the identification of patients who manifest progressive tumor growth and metastasis in spite of this treatment

  10. CA 19-9 as a Marker of Survival and a Predictor of Metastization in Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Rosa Coelho

    2017-02-01

    Full Text Available Background: Cholangiocarcinoma is the second most frequent primitive liver malignancy and is responsible for 3% of the malignant gastrointestinal neoplasms. The aims of this study were to determine the association of serum levels of CA 19-9 at diagnosis with other clinical data and serum liver function tests and to identify possible factors that influence the survival rates during follow-up. Methods: Retrospective observational study of 89 patients with a diagnosis of cholangiocarcinoma followed at the Department of Gastroenterology during 5 years. Statistical analyses were performed using SPSS version 20.0. Results: Patients were followed up for a median time of 127 days (IQR: 48-564, and the median age at diagnosis was 71.0 years (IQR: 62.0-77.5. The median survival rate was 14.0 months (IQR: 4.3-23.7, and the mortality rate was 79%. Patients with CA 19-9 levels ≥103 U/L had lower albumin levels and higher levels of alanine aminotransferase and γ-glutamyltransferase. CA 19-9 levels ≥103 U/L were associated with a higher probability of metastization (p = 0.001 and lower rates of treatment with curative intent (p = 0.024. In a multivariate analysis, CA 19-9 levels Conclusion: Predictive factors for overall survival were identified, namely presence of metastasis, surgery, and chemotherapy. CA 19-9 levels ≥103 U/L were predictive factors for survival and metastization.

  11. Metastatic prostate cancer with elevated serum levels of CEA and CA19-9

    Directory of Open Access Journals (Sweden)

    Guang-Dar Juang

    2014-03-01

    Full Text Available Prostate-specific antigen (PSA is well known as a specific tumor marker for prostate cancer, but carcinoembryonic antigen (CEA- and carbohydrate antigen 19-9 (CA19-9-elevating adenocarcinomas originating in the prostate gland are rare. We report a case of metastatic adenocarcinoma of the prostate gland with a high serum level of CEA and CA19-9 in a 78-year-old man in whom prostate cancer (T3N1M1 had been diagnosed 2 years ago and who was treated with androgen deprivation therapy. He visited the emergency department because of a loss of appetite and abdominal pain. The serum CEA and CA19-9 levels were increased to 218.9 ng/mL (normal, <5 ng/mL and 212 ng/mL (normal, <27 ng/mL, respectively. The serum PSA level was slightly elevated (4.41 ng/mL. Computed tomography demonstrated multiple liver metastases, para-aortic lymph node enlargement, and lung metastases. A liver biopsy was performed and the specimen showed high-grade adenocarcinoma with focal positive staining for PSA. Despite chemotherapy with docetaxel, the patient died 3 months after treatment. Based on this case and a review of the literature, an aggressive variant of prostatic carcinoma with a high serum level of CEA and CA19-9 and a low PSA level was shown to progress rapidly with a poor prognosis.

  12. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  13. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  14. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  15. Limit of detection for the determination of Pt in biological material by RNAA using electrolytic separation of gold

    International Nuclear Information System (INIS)

    Xilei, L.; Heydorn, K.; Rietz, B.

    1992-01-01

    Neutron activation analysis based on the 199 Au indicator for platinum requires the separation of gold at high radiochemical purity. The limit of detection is strongly affected by the presence of gold; with a gold content of 50 pg/g, irradiating for 5 days at 5*10 13 n/cm 2 is needed to achieve a limit of detection of approximately 30 pg/g. In this case the nuclear interference from gold will exceeded the level of platium by several orders of magnitude and has to be determined with exceedingly high precision. Preliminary results for SRM 1577 Bovine Liver with 95% yield gave consistent results for Au, but Pt could not be detected. (author) 23 refs.; 3 figs.; 4 tabs

  16. NA35: sulphur-gold collision

    CERN Multimedia

    1991-01-01

    In this image the real particles produced by the collision of a 6400 GeV sulphur ion with a gold target can be seen as they pass through a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. The NA35 experiment, which was in operation in the 1980s, was part of CERN's ongoing heavy ion project.

  17. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    Science.gov (United States)

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom.

  18. ['Gold standard', not 'golden standard'

    NARCIS (Netherlands)

    Claassen, J.A.H.R.

    2005-01-01

    In medical literature, both 'gold standard' and 'golden standard' are employed to describe a reference test used for comparison with a novel method. The term 'gold standard' in its current sense in medical research was coined by Rudd in 1979, in reference to the monetary gold standard. In the same

  19. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  20. Digging for Gold

    Science.gov (United States)

    Waters, John K.

    2012-01-01

    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  1. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  2. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  3. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Troutner, D.E.; Schlemper, E.O.

    1990-01-01

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report

  4. Gold in the hills: patterns of placer gold accumulation under dynamic tectonic and climatic conditions

    Science.gov (United States)

    Roy, Sam; Upton, Phaedra; Craw, Dave

    2018-01-01

    Formation of placer accumulations in fluvial environments requires 103-106 or even greater times concentration of heavy minerals. For this to occur, regular sediment supply from erosion of adjacent topography is required, the river should remain within a single course for an extended period of time and the material must be reworked such that a high proportion of the sediment is removed while a high proportion of the heavy minerals remains. We use numerical modeling, constrained by observations of circum-Pacific placer gold deposits, to explore processes occurring in evolving river systems in dynamic tectonic environments. A fluvial erosion/transport model is used to determine the mobility of placer gold under variable uplift rate, storm intensity, and rock mass strength conditions. Gold concentration is calculated from hydraulic and bedload grain size conditions. Model results suggest that optimal gold concentration occurs in river channels that frequently approach a threshold between detachment-limited and transport-limited hydraulic conditions. Such a condition enables the accumulation of gold particles within the framework of a residual gravel lag. An increase in transport capacity, which can be triggered by faster uplift rates, more resistant bedrock, or higher intensity storm events, will strip all bedload from the channel. Conversely, a reduction in transport capacity, triggered by a reduction in uplift rate, bedrock resistance, or storm intensity, will lead to a greater accumulation of a majority of sediments and a net decrease in gold concentration. For our model parameter range, the optimal conditions for placer gold concentration are met by 103 times difference in strength between bedrock and fault, uplift rates between 1 and 5 mm a-1, and moderate storm intensities. Fault damage networks are shown to be a critical factor for high Au concentrations and should be a target for exploration.

  5. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  6. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Laura S., E-mail: lsaylors@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 North University Avenue, Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 North University Avenue, Ann Arbor, MI 48109 (United States); Basu, Niladri [McGill University, Faculty of Agricultural and Environmental Sciences, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 (Canada); Rajaee, Mozhgon [University of Michigan, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Evers, David C.; Buck, David G. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Petrlik, Jindrich [Arnika Association, Chlumova 17, Prague 3 (Czech Republic); DiGangi, Joseph [IPEN, Box 7256, SE-402 35 Gothenburg (Sweden)

    2015-02-15

    Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hg as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.

  7. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  8. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  9. Prognostic significance of preoperative serum CA125, CA19-9 and CEA in gastric carcinoma

    Science.gov (United States)

    Wang, Wei; Chen, Xiao-Long; Zhao, Shen-Yu; Xu, Yu-Hui; Zhang, Wei-Han; Liu, Kai; Chen, Xin-Zu; Yang, Kun; Zhang, Bo; Chen, Zhi-Xin; Chen, Jia-Ping; Zhou, Zong-Guang; Hu, Jian-Kun

    2016-01-01

    The prognostic significance of preoperative serum CA125, CA19-9 and CEA in gastric carcinoma (GC) has been widely reported and is still under debate. Here, we evaluated the prognostic significance of preoperative serum CA125, CA19-9 and CEA in patients with GC. 1692 patients with GC who underwent gastrectomy were divided into the training (from January 2005 to December 2011, n = 1024) and the validation (from January 2012 to December 2013, n = 668) cohorts. Positive groups of CA125 (> 13.72 U/ml), CA19-9 (> 23.36 U/ml) and CEA (> 4.28 ng/ml) were significantly associated with more advanced clinicopathological traits and worse outcomes than that of negative groups (all P tumor size (P tumor markers (NPTM) were more accurate in prognostic prediction than TNM stage alone. Our findings suggested that elevated preoperative serum CA125, CA19-9 and CEA were associated with more advanced clinicopathological traits and less favorable outcomes. In addition, CA125 as an independent prognostic factor should be further investigated. Nomogram based on NPTM could accurately predict the prognosis of GC patients. PMID:27097114

  10. Flexible and Versatile as a Chameleon—Sophisticated Functions of microRNA-199a

    Directory of Open Access Journals (Sweden)

    Shen Gu

    2012-07-01

    Full Text Available Although widely studied in the past decade, our knowledge of the functional role of microRNAs (miRNAs remains limited. Among the many miRNAs identified in humans, we focus on miR-199a due to its varied and important functions in diverse models and systems. Its expression is finely regulated by promoter methylation and direct binding of transcription factors such as TWIST1. During tumorigenesis, depending on the nature of the cancer, miR-199a, especially its -3p mature form, may act as either a potential tumor suppressor or an oncogene. Its 5p mature form has been shown to protect cardiomyocytes from hypoxic damage via its action on HIF1α. It also has a functional role in stem cell differentiation, embryo development, hepatitis, liver fibrosis, etc. Though it has varied biological activities, its regulation has not been reviewed. The varied and protean functions of miR-199a suggest that efforts to generalize the action of a miRNA are problematic. This review provides a comprehensive survey of the literature on miR-199a as an example of the complexity of miRNA biology and suggests future directions for miRNA research.

  11. 46 CFR 199.160 - Rescue boat embarkation, launching and recovery arrangements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Rescue boat embarkation, launching and recovery...) LIFESAVING APPLIANCES AND ARRANGEMENTS LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Requirements for All Vessels § 199.160 Rescue boat embarkation, launching and recovery arrangements. (a) Each rescue boat must...

  12. 46 CFR 199.220 - Survival craft and rescue boat embarkation arrangements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft and rescue boat embarkation arrangements... APPLIANCES AND ARRANGEMENTS LIFESAVING SYSTEMS FOR CERTAIN INSPECTED VESSELS Additional Requirements for Passenger Vessels § 199.220 Survival craft and rescue boat embarkation arrangements. (a) Survival craft...

  13. Comparison of Plasma Tu-M2-PK and CA19-9 in Pancreatic Cancer

    DEFF Research Database (Denmark)

    Joergensen, Maiken Thyregod; Heegaard, Niels H H; Schaffalitzky de Muckadell, Ove B

    2009-01-01

    because of suspicion of pancreatic cancer. Of these, 51 patients had their conditions diagnosed as PDAC, whereas this diagnosis was ruled out in 52 after 12 months of follow-up. The performance of Tu-M2-PK was compared with that of CA19-9 using cutoff values 15 and 37 U/mL, respectively. RESULTS...

  14. 46 CFR 199.175 - Survival craft and rescue boat equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft and rescue boat equipment. 199.175....175 Survival craft and rescue boat equipment. (a) All lifeboat and rescue boat equipment— (1) Must be... craft or rescue boat; or (iii) Overload the launching appliance. (b) Each lifeboat, rigid liferaft, and...

  15. 46 CFR 199.150 - Survival craft launching and recovery arrangements; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft launching and recovery arrangements... Vessels § 199.150 Survival craft launching and recovery arrangements; general. (a)(1) Each launching...) Unless expressly provided otherwise in this part, each survival craft must be provided with a launching...

  16. 46 CFR 199.100 - Manning of survival craft and supervision.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Manning of survival craft and supervision. 199.100....100 Manning of survival craft and supervision. (a) There must be a sufficient number of trained... craft and launching arrangements required for abandonment by the total number of persons on board. (c...

  17. 46 CFR 199.245 - Survival craft embarkation and launching arrangements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft embarkation and launching arrangements... Passenger Vessels § 199.245 Survival craft embarkation and launching arrangements. (a) Each davit-launched liferaft must be arranged to be rapidly boarded by its full complement of persons. (b) All survival craft...

  18. 46 CFR 199.280 - Survival craft embarkation and launching arrangements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft embarkation and launching arrangements... Cargo Vessels § 199.280 Survival craft embarkation and launching arrangements. (a) Each lifeboat must be.... (d) All survival craft required for abandonment by the total number of persons on board must be...

  19. 32 CFR 199.15 - Quality and utilization review peer review organization program.

    Science.gov (United States)

    2010-07-01

    ... section, are set forth in § 199.4(h). (3) Review of services covered by DRG-based payment system. Application of these objectives in the context of hospital services covered by the DRG-based payment system... hospital unit subject to the CHAMPUS DRG-based payment system to another hospital or hospital unit. (ii...

  20. Reversible high blood CEA and CA19-9 concentrations in a diabetic ...

    African Journals Online (AJOL)

    dilatation of the main pancreatic duct. Positron emi- ... one of the benign diseases related to CA19-9 elevation. ... The histology of pancreatic islets from type 2 diabetic patients ... This is an Open Access article distributed under the terms of the Creative Commons Attribution- ... Attenuation of endocrine-exocrine pancreatic.

  1. 46 CFR 199.620 - Alternatives for all vessels in a specified service.

    Science.gov (United States)

    2010-10-01

    ... that are readily accessible to each watch or work station, the requirement in § 199.70(b)(2)(iv) to have lifejackets at each watch or work station need not be met. (2) If the vessel carries lifejackets... may use lights for lifejackets and immersions suits approved under series 161.012. However, lifejacket...

  2. Reduced Limit on the Permanent Electric Dipole Moment of ^{199}Hg.

    Science.gov (United States)

    Graner, B; Chen, Y; Lindahl, E G; Heckel, B R

    2016-04-22

    This Letter describes the results of the most recent measurement of the permanent electric dipole moment (EDM) of neutral ^{199}Hg atoms. Fused silica vapor cells containing enriched ^{199}Hg are arranged in a stack in a common magnetic field. Optical pumping is used to spin polarize the atoms orthogonal to the applied magnetic field, and the Faraday rotation of near-resonant light is observed to determine an electric-field-induced perturbation to the Larmor precession frequency. Our results for this frequency shift are consistent with zero; we find the corresponding ^{199}Hg EDM d_{Hg}=(-2.20±2.75_{stat}±1.48_{syst})×10^{-30}e cm. We use this result to place a new upper limit on the ^{199}Hg EDM |d_{Hg}|<7.4×10^{-30}e cm (95% C.L.), improving our previous limit by a factor of 4. We also discuss the implications of this result for various CP-violating observables as they relate to theories of physics beyond the standard model.

  3. 32 CFR 199.16 - Supplemental Health Care Program for active duty members.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Supplemental Health Care Program for active duty... (CHAMPUS) § 199.16 Supplemental Health Care Program for active duty members. (a) Purpose and applicability... the supplemental health care program for active duty members of the uniformed services, the provision...

  4. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    Science.gov (United States)

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  5. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy

    2009-01-01

    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sit...... affluent than the others, suggesting that movement can be rewarding for those willing to 'try their luck' with the hard work and social networking demands of mining another site.......African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...

  6. Gold' 82 - technical sessions

    International Nuclear Information System (INIS)

    Viewing, K.

    1983-01-01

    Sulphur-isotope studies had been applied by Dr. I. Lambert to a number of deposits in Western Australia and also to certain samples from Vubachickwe and other deposits in Zimbabwe. A study of the sulphur isotopes at the Dickenson Mine, revealed a wide spread of values in the mineralised zones. Metamorphic processes were likely to be significant in the concentration of gold. The iron formations at the Old Jardine Mine had been unfolded by Dr. W.S. Hallager and the pattern of sedimentation was unraveled. A gold-rich zone was separated by a barren gap from the other part of the mineralised zone. Research was also done on the effects of the metamorphic processes, and the ages of mineralisation

  7. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  8. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    International Nuclear Information System (INIS)

    Das, Rupali; Navas, M. P.; Soni, R. K.

    2016-01-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  9. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Science.gov (United States)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  10. Predictive Value of Carcinoembryonic and Carbohydrate Antigen 19-9 Related to Some Clinical, Endoscopic and Histological Colorectal Cancer Characteristics

    Directory of Open Access Journals (Sweden)

    Tomašević Ratko

    2016-09-01

    Full Text Available Background: Colorectal cancer (CRC is an important oncological and public health problem worldwide, including Serbia. Unfortunately, half of the patients are recognized in an advanced stage of the disease, therefore, early detection through specific tumor biomarkers, such as carcinoembryonic (CEA and carbohydrate antigen 19-9 (CA 19-9, is the only way to cope with CRC expansion.

  11. Assessment of a serum tumour marker for carcinoma of the pancreas: the carbohydrate antigen C.A. 19-9

    International Nuclear Information System (INIS)

    Vincent, D.; Venot, J.; Catanzano, G.; Clement, M.N.; Piquet, M.F.; Veyriras, E.; Beck, C.

    1985-01-01

    A radio-immunological assay with monoclonal antibodies was used to measure the C 19-9 antigen in 51 patients to determine its diagnostic value in cancer of the pancreas. The results show that the C 19-9 antigen is a good marker for carcinoma of the pancreas and that it can be commonly used [fr

  12. Clinical experience with the new tumor-associated antigen CA 19-9 compared with CEA in different neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, R.; Dimitriadis, K.; Giesche, U.; Aulbert, E.; Hoffmann, B.; Schmidt, C.G.; Balzer, K.

    1984-10-01

    A new tumour-associated antigen was recently reported by Koprowski. It can be detected in human serum by a monoclonal antibody. This antigen CA 19-9 was determined in 498 patients, and simultaneous determinations of CEA were performed in 468 patients. The patients were divided into five groups: 77 non-malignant diseases of the gastrointestinal tract, 55 gastrointestinal cancer, 174 breast cancer, 101 lung cancer, and 61 other neoplasms. We found nearly the same frequency of positive CA 19-9 and CEA specimens. In the group of gastrointestinal cancer with clinically confirmed tumour 56.5% of the serum specimens were CEA positive and 54.3% were CA 19-9 positive. No patient with chronic pancreatitis (n = 11) was CA 19-9 positive, but three were CEA positive. In female breast cancer we found 48.7% CEA positive and 15.4% CA 19-9 positive, in lung cancer 40.6% CEA positive and only 11.5% CA 19-9 positive. CA 19-9 appears to be superior to CEA with respect to the discrimination of non-malignant and malignant diseases of the pancreas. The sensitivity is not sufficient for the early diagnosis of pancreatic carcinoma. In the other gastrointestinal malignomas discordant levels of both markers were detected in 10% of the patients. This means an improvement of cancer detection. The sensitivity of CA 19-9 is apparently not sufficient for breast and lung cancer.

  13. 15 CFR 19.9 - When will Commerce entities transfer a Commerce debt to the Treasury Department's Financial...

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false When will Commerce entities transfer a Commerce debt to the Treasury Department's Financial Management Service for collection? 19.9 Section 19.9 Commerce and Foreign Trade Office of the Secretary of Commerce COMMERCE DEBT COLLECTION Procedures To...

  14. Enhancement of radiation effect on cancer cells by gold-pHLIP

    Science.gov (United States)

    Antosh, Michael P.; Wijesinghe, Dayanjali D.; Shrestha, Samana; Lanou, Robert; Huang, Yun Hu; Hasselbacher, Thomas; Fox, David; Neretti, Nicola; Sun, Shouheng; Katenka, Natallia; Cooper, Leon N; Andreev, Oleg A.; Reshetnyak, Yana K.

    2015-01-01

    Previous research has shown that gold nanoparticles can increase the effectiveness of radiation on cancer cells. Improved radiation effectiveness would allow lower radiation doses given to patients, reducing adverse effects; alternatively, it would provide more cancer killing at current radiation doses. Damage from radiation and gold nanoparticles depends in part on the Auger effect, which is very localized; thus, it is important to place the gold nanoparticles on or in the cancer cells. In this work, we use the pH-sensitive, tumor-targeting agent, pH Low-Insertion Peptide (pHLIP), to tether 1.4-nm gold nanoparticles to cancer cells. We find that the conjugation of pHLIP to gold nanoparticles increases gold uptake in cells compared with gold nanoparticles without pHLIP, with the nanoparticles distributed mostly on the cellular membranes. We further find that gold nanoparticles conjugated to pHLIP produce a statistically significant decrease in cell survival with radiation compared with cells without gold nanoparticles and cells with gold alone. In the context of our previous findings demonstrating efficient pHLIP-mediated delivery of gold nanoparticles to tumors, the obtained results serve as a foundation for further preclinical evaluation of dose enhancement. PMID:25870296

  15. Comparison of circulating MMP-9, TIMP-1 and CA19-9 in the detection of pancreatic cancer

    DEFF Research Database (Denmark)

    Jørgensen, Maiken Thyregod; Brunner, Nils; Schaffalitzky de Muckadell, Ove B.

    2010-01-01

    , TIMP-1 and CA19-9 in detecting pancreatic ductal adenocarcinoma were 58.82%, 47.1% and 86%, respectively, with specificities of 34.6%, 69.2% and 73%. The AUCs of MMP-9, TIMP-1 and CA19-9 were 0.50, 0.64 and 0.84, respectively. Combining the three markers did not significantly improve detection......Background/Aim: The performance of the circulating tumor markers carbohydrate antigen 19-9 (CA19-9), matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) were evaluated separately and in combination for their potential value in detecting pancreatic ductal...... adenocarcinoma. PATIENTS AND METHODS: The patients had symptoms of pancreatic cancer. The discriminative strength of MMP-9 and TIMP-1 were compared to that of CA19-9 using receiver operating characteristics curves, area under the curves (AUC), specificity and sensitivity. RESULTS: The sensitivities of MMP-9...

  16. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola.

    Science.gov (United States)

    Triplett, Lindsay R; Cohen, Stephen P; Heffelfinger, Christopher; Schmidt, Clarice L; Huerta, Alejandra I; Tekete, Cheick; Verdier, Valerie; Bogdanove, Adam J; Leach, Jan E

    2016-09-01

    The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. The extractive metallurgy of gold

    Energy Technology Data Exchange (ETDEWEB)

    Kongolo, K.; Mwema, M.D. [University of Lubumbashi, Zaire, Gecamines Metallurgical Research Centre, Likasi, Zaire, c/o Gecamines Brussels (Belgium)

    1998-12-15

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied.

  18. The extractive metallurgy of gold

    Science.gov (United States)

    Kongolo, K.; Mwema, M. D.

    1998-12-01

    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  19. The extractive metallurgy of gold

    International Nuclear Information System (INIS)

    Kongolo, K.; Mwema, M.D.

    1998-01-01

    Moessbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Moessbauer spectroscopy could be applied

  20. Surface-stabilized gold nanocatalysts

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN

    2009-12-08

    A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.

  1. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  2. Determining gold content

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1981-01-01

    A method for determining the gold content of a material, comprises irradiating a body of the material with neutrons and determining the intensity of γ-rays having an energy of 279 keV arising from the reaction 179 Au(nn') 179 Au → 279 keV. The apparatus has means for conveying the materials past an assembly, which has a neutron source, which does not produce neutrons having sufficient energy to excite fast neutron reactions in non-auriferous constituents. (author)

  3. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  4. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    stabilization, and the total size of the label is therefore significantly smaller. Since the clusters considered in this chapter are generally less than 3 nm in diameter, this allows the preparation of probes that are much smaller than conventional immunocolloids, and cluster labeling can take advantage of the higher resolution and penetration available with smaller conjugates. Most importantly, while colloidal gold is adsorbed to its conjugate probe, clusters are conjugated by chemically specific covalent cross-linking. Therefore, the range of possible conjugate targeting agents includes any probe containing an appropriate reactive group. Clusters conjugates have been prepared with a wide variety of molecules that do not form colloidal gold conjugates, including lipids, oligonucleotides, peptides, and other small molecules. In addition to the development of gold cluster labeling technology, this chapter will also review new developments in the related metallographic, or metal deposition, methods. This includes gold enhancement, in which gold rather than silver is selectively deposited onto gold particles. We will also describe some results obtained using another novel metallographic procedure, enzyme metallography, in which metal is directly deposited from solution by an enzymatic reaction. Because the original, and most widespread, use of metal cluster labels is in electron microscopy, many of the light microscopy methods described were developed as extensions of, or complements to electron microscopy methods, and demonstrate their greatest advantages when used with electron microscopy; therefore reference will also be made to the electron microscope methods used in the same studies, and the unique information that may be obtained from the correlation of both methods.

  5. Study of X-ray spectrum of laser-produced gold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, M. (CEA Centre d' Etudes de Limeil, 94 - Villeneuve-Saint-Georges (France)); Pain, D.; Bauche, J.; Luc-Koenig, E. (Centre National de la Recherche Scientifique, 91 - Orsay (France). Lab. Aime Cotton)

    1985-02-01

    Aiming at the spectroscopic diagnostic of gold plasmas, we have studied the wavelengths and intensities of X-ray spectral lines emitted in the range 4.4 to 6.2 angstroms by a target made of gold alloyed to a few percent of aluminium irradiated by a laser pulse. Aluminium yields the wavelength calibration and a monitoring of the temperature and the density of the plasma. The main features of the gold spectrum in this spectral range are due to the 3d-4f, 3p-4s and 3d-4p transitions of gold in the Co I through Cu I isoelectronic sequences.

  6. Study of X-ray spectrum of laser-produced gold plasmas

    International Nuclear Information System (INIS)

    Busquet, M.; Pain, D.; Bauche, J.; Luc-Koenig, E.

    1985-01-01

    Aiming at the spectroscopic diagnostic of gold plasmas, we have studied the wavelengths and intensities of X-ray spectral lines emitted in the range 4.4 to 6.2 angstroms by a target made of gold alloyed to a few percent of aluminium irradiated by a laser pulse. Aluminium yields the wavelength calibration and a monitoring of the temperature and the density of the plasma. The main features of the gold spectrum in this spectral range are due to the 3d-4f, 3p-4s and 3d-4p transitions of gold in the Co I through Cu I isoelectronic sequences. (orig.)

  7. Determination of Gold from Gold Matrix of North Western Nigeria ...

    African Journals Online (AJOL)

    The research paper presents analytical results of Au, Mn and V concentrations of some Nigerian gold ores using two techniques: epithermal neutron activation analysis (ENAA) and proton induced X-ray emission (PIXE). Fourteen samples were collected from gold fields of North Western Nigeria, prepared separately to a ...

  8. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiaojing, E-mail: xiongxj@xmu.edu.cn [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Meng Xuejiao [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Zheng Tianling [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China)

    2010-03-15

    The capacity and mechanism with which nonviable Aspergillus niger removed the textile dye, C.I. Direct Blue 199, from aqueous solution was investigated using different parameters, such as initial dye concentration, pH and temperature. In batch experiments, the biosorption capacity increased with decrease in pH, and the maximum dye uptake capacity of the biosorbent was 29.96 mg g{sup -1} at 400 mg L{sup -1} dye concentration and 45 deg. C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of C.I. Direct Blue 199 onto the fungal biomass. Biosorption followed a pseudo-second order kinetic model with high correlation coefficients (r{sup 2} > 0.99). Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.

  9. CA 19-9 in the diagnosis and differential diagnosis of exocrine pancreatic carcinoma

    International Nuclear Information System (INIS)

    Klapdor, R.; Lehmann, U.; Bahlo, M.; Greten, H.; Ackeren, H. v.; Dallek, M.; Schreiber, W.H.

    1983-01-01

    CA 19-9 serum concentrations were determined in 56 controls and 66 patients with various pancreatic diseases using a commercially available radioimmunoassay. 56 controls showed mean serum concentrations of 7.3 +- 9.6 U/ml (anti x +- 2 SD) range 0-24, median 6), n = 21 patients suffering from chronic pancreatitis mean values of 16 +- 24 U/ml (anti x +- 2 SD) (range 4.9-42, median 13). The majority of the patients with exocrine pancreatic carcinoma demonstrated significantly elevated values: in 91% and 82% respectively, CA 19-9 levels were elevated above the upper limit of 95% of the controls (> 15 U/ml) and of the patients with chronic pancreatitis (> 37 U/ml) (P [de

  10. 199Hg Moessbauer measurements on mercury, alloys and Hg-fluorides

    International Nuclear Information System (INIS)

    Wurtinger, W.; Kankeleit, E.

    1979-01-01

    The Moessbauer effect on the 158 keV 5/2 - -1/2 - transition in 199 Hg, of the order of 10 ppm, has been studied using the current integration technique. The isomer shift between the Hg(I)- and Hg(II)-fluorides as well as the quadrupole splitting in Hg 2 Pt and Hg 2 F 2 are interpreted in terms of relativistic Hartree-Fock-Slater and Molecular Orbital calculations. The following nuclear parameters could be derived: Δ[r 2 ] = (3.2+-1.1) 10 -3 fm 2 and Q(5/2 - ) = (-0.8+-0.4)b. Evidence for an oblate triaxially deformed 199 Hg nucleus is derived from particle plus rotor calculations. (orig.)

  11. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger

    International Nuclear Information System (INIS)

    Xiong Xiaojing; Meng Xuejiao; Zheng Tianling

    2010-01-01

    The capacity and mechanism with which nonviable Aspergillus niger removed the textile dye, C.I. Direct Blue 199, from aqueous solution was investigated using different parameters, such as initial dye concentration, pH and temperature. In batch experiments, the biosorption capacity increased with decrease in pH, and the maximum dye uptake capacity of the biosorbent was 29.96 mg g -1 at 400 mg L -1 dye concentration and 45 deg. C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of C.I. Direct Blue 199 onto the fungal biomass. Biosorption followed a pseudo-second order kinetic model with high correlation coefficients (r 2 > 0.99). Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.

  12. Expression Profiling of WSSV ORF 199 and Shrimp Ubiquitin Conjugating Enzyme in WSSV Infected

    Directory of Open Access Journals (Sweden)

    K. Jeena

    2012-08-01

    Full Text Available White spot syndrome virus (WSSV is one of the major viral pathogens affecting shrimp aquaculture. Four proteins, WSSV199, WSSV 222, WSSV 249 and WSSV 403, from WSSV are predicted to encode a RING-H2 domain, which in presence of ubiquitin conjugating enzyme (E2 in shrimp can function as viral E3 ligase and modulate the host ubiquitin proteasome pathway. Modulation of host ubiquitin proteasome pathway by viral proteins is implicated in viral pathogenesis. In the present study, a time course expression profile analysis of WSSV Open Reading Frame (ORF 199 and Penaeus monodon ubiquitin conjugating enzyme (PmUbc was carried out at 0, 3, 6, 12, 24, 48 and 72 h post WSSV challenge by semi-quantitative RT-PCR as well as Real Time PCR. EF1α was used as reference control to normalize the expression levels. A significant increase in PmUbc expression at 24 h post infection (h.p.i was observed followed by a decline till 72 h.p.i. Expression of WSSV199 was observed at 24 h.p.i in WSSV infected P. monodon. Since the up-regulation of PmUbc was observed at 24 h.p.i where WSSV199 expression was detected, it can be speculated that these proteins might interact with host ubiquitination pathway for viral pathogenesis. However, further studies need to be carried out to unfold the molecular mechanism of interaction between host and virus to devise efficient control strategies for this chaos in the shrimp culture industry.

  13. Internal conversion of the (13/2+→5/2-) isomeric transition in 199Hg

    International Nuclear Information System (INIS)

    Radha Krishna, K.; Chandrasekhar Rao, M.V.S.; Sree Krishna Murty, G.; Venkateswara Rao, N.; Bhuloka Reddy, S.; Satyanarayana, G.; Sastry, D.L.; Iyer, M.R.; Sahasrabhude, S.G.

    1990-01-01

    The total conversion coefficient of the M4 transition (374 KeV) in the decay of the 13/2 + isomeric state to 5/2 - state in 199 Hg measured using the relative gamma intensity method α T is determined to be 6.34 ± 0.29 in agreement with the theory due to Rosel et al. (author). 1 tab., 3 figs., 11 refs

  14. Adjusting CA19-9 values to predict malignancy in obstructive jaundice: Influence of bilirubin and C-reactive protein

    Science.gov (United States)

    La Greca, Gaetano; Sofia, Maria; Lombardo, Rosario; Latteri, Saverio; Ricotta, Agostino; Puleo, Stefano; Russello, Domenico

    2012-01-01

    AIM: To find a possible relationship between inflammation and CA19-9 tumor marker by analyzing data from patients with benign jaundice (BJ) and malignant jaundice (MJ). METHODS: All patients admitted for obstructive jaundice, in the period 2005-2009, were prospectively enrolled in the study, obtaining a total of 102 patients. On admission, all patients underwent complete standard blood test examinations including C-reactive protein (CRP), bilirubin, CA19-9. Patients were considered eligible for the study when they presented obstructive jaundice confirmed by instrumental examinations and increased serum bilirubin levels (total bilirubin > 2.0 mg/dL). The standard cut-off level for CA19-9 was 32 U/mL, whereas for CRP this was 1.5 mg/L. The CA19-9 level was adjusted by dividing it by the value of serum bilirubin or by the CRP value. The patients were divided into 2 groups, MJ and BJ, and after the adjustment a comparison between the 2 groups of patients was performed. Sensitivity, specificity and positive predictive values were calculated before and after the adjustment. RESULTS: Of the 102 patients, 51 were affected by BJ and 51 by MJ. Pathologic CA19-9 levels were found in 71.7% of the patients. In the group of 51 BJ patients there were 29 (56.9%) males and 22 (43.1%) females with a median age of 66 years (range 24-96 years), whereas in the MJ group there were 24 (47%) males and 27 (53%) females, with a mean age of 70 years (range 30-92 years). Pathologic CA19-9 serum level was found in 82.3% of MJ. CRP levels were pathologic in 66.6% of the patients with BJ and in 49% with MJ. Bilirubin and CA19-9 average levels were significantly higher in MJ compared with BJ (P = 0.000 and P = 0.02), while the CRP level was significantly higher in BJ (P = 0.000). Considering a CA19-9 cut-off level of 32 U/mL, 82.3% in the MJ group and 54.9% in the BJ group were positive for CA19-9 (P = 0.002). A CA19-9 cut-off of 100 U/mL increases the difference between the two groups: 35.3% in

  15. Combination of Ibrutinib and ABT-199 in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma.

    Science.gov (United States)

    Kuo, Hsu-Ping; Ezell, Scott A; Schweighofer, Karl J; Cheung, Leo W K; Hsieh, Sidney; Apatira, Mutiah; Sirisawad, Mint; Eckert, Karl; Hsu, Ssucheng J; Chen, Chun-Te; Beaupre, Darrin M; Versele, Matthias; Chang, Betty Y

    2017-07-01

    Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma are the most prevalent B-lymphocyte neoplasms in which abnormal activation of the Bruton tyrosine kinase (BTK)-mediated B-cell receptor signaling pathway contributes to pathogenesis. Ibrutinib is an oral covalent BTK inhibitor that has shown some efficacy in both indications. To improve ibrutinib efficacy through combination therapy, we first investigated differential gene expression in parental and ibrutinib-resistant cell lines to better understand the mechanisms of resistance. Ibrutinib-resistant TMD8 cells had higher BCL2 gene expression and increased sensitivity to ABT-199, a BCL-2 inhibitor. Consistently, clinical samples from ABC-DLBCL patients who experienced poorer response to ibrutinib had higher BCL2 gene expression. We further demonstrated synergistic growth suppression by ibrutinib and ABT-199 in multiple ABC-DLBCL, GCB-DLBCL, and follicular lymphoma cell lines. The combination of both drugs also reduced colony formation, increased apoptosis, and inhibited tumor growth in a TMD8 xenograft model. A synergistic combination effect was also found in ibrutinib-resistant cells generated by either genetic mutation or drug treatment. Together, these findings suggest a potential clinical benefit from ibrutinib and ABT-199 combination therapy. Mol Cancer Ther; 16(7); 1246-56. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. The role of tumor markers (CEA, TPA, CA 19-9) in colon and rectum carcinomas

    International Nuclear Information System (INIS)

    Cangemi, V.; Volpino, P.; Fiori, E.; Giammarco, A.; Piat, G.

    1987-01-01

    We have evaluated the diagnostic efficacy (sensitivity, specificity, accuracy, predictive malignancy index) of CEA, TPA, CA 19-9 in colon and rectum tumors (56 cases), the difference in behaviour of these markers in relation to the stage and grading of the cancer, their reliability regarding postsurgical relapses and/or metastases. The sensitivity of CEA (>10 ng/ml), TPA (>130 U/L), CA 19-9 (>37 u/ml) for diagnostic purpose was rather limited (28.6% - 30% - 18.5%) with a malignancy prediction value of 100% - 81.8% - 62.5%. With regard to relapses and/or metastases, the diagnostic efficacy of the marker proved to be evident only for CEA, TPA, CA 19-9 value greater than 25 ng/ml, 250 U/L and 100 u/ml. The use of thethree markers together was certainly an advantage both for primitive tumors (sensitivity: 52.8%) and relapses and/or metastases after surgery (sensitivity: 66.7%)

  17. Diagnostic significance of tumor markers CEA, CA50 and CA19-9 for colorectal cancer

    International Nuclear Information System (INIS)

    Chen Yumei; Huang Gang

    2005-01-01

    Objective: To investigate the expression and diagnostic significance of three serum tumor markers (CEA, CA50, CA19-9) in patients with colorectal cancer, with special emphasis on their combined assay. Methods: Serum CEA, CA19-9 levels (with chemiluminescence immunoassay) and CA50 levels (with immunoradiometric assay) were determined in 94 patients with colorectal cancer, 20 patients with benign colorectal disorders and 37 controls. Results: The expressions of the serum tumor markers were significantly higher in patients with colorectal cancer than those in patients with benign colorectal disorders and controls (P<0.05). There was no significant difference between the levels in the latter two groups. CEA assay had the highest sensitivity (57.4%) and specificity (85.9%). Combined assay of the three could enhance both the sensitivity (62.7%) and specificity (96.5%). The serum levels of the markers were significantly higher in patients with colonic cancer than those in patients with rectal cancer (P<0.05). The levels were positively correlated with the size of the growth and stage of the disease. Serum tumor marker levels were also significantly higher in patients with metastasis (regional/distant) than those in patients without metastasis (P<0.05). Conclusion: Determination of serum CEA, CA50 and CA19-9 levels had definite value for the diagnosis and assessment of the pathology as well as biologic behavior colorectal cancer. Combined assay of the three could enhance the diagnostic sensitivity and specificity. (authors)

  18. Relationship between serum calcium and CA 19-9 levels in colorectal cancer

    Science.gov (United States)

    Fuszek, Peter; Lakatos, Peter; Tabak, Adam; Papp, Janos; Nagy, Zsolt; Takacs, Istvan; Horvath, Henrik Csaba; Lakatos, Peter Laszlo; Speer, Gabor

    2004-01-01

    AIM: To examine the calcium metabolism of colorectal cancer (CRC) in patients with colorectal cancer and control patients. METHODS: Seventy newly diagnosed CRC patients were included. The healthy control group was age and gender matched (n = 32). Particular attention was devoted to the relationship between serum calcium of patients, and levels of AFP, CEA, carbohydrate antigen 19-9 (CA 19-9) (that could be considered as prognostic factors). Furthermore, the Ca-sensing receptor (CaSR) gene A986S polymorphism was investigated in these patients, as well as the relationship between different CaSR genotypes and the data stated above. RESULTS: A lower level of ionized calcium (also corrected for albumin) was found in the serum of CRC patients with normal 25 (OH) vitamin D levels. The ionized calcium concentration was inversely correlated with the serum level of CA 19-9. There was no difference in the distribution of CaSR genotypes, between CRC patients and general population. The genotypes did not correlate with other data examined. CONCLUSION: Based on these results, lower levels of serum calcium might be a pathogenic and prognostic factor in colorectal cancer. PMID:15222030

  19. Emerging advances in nanomedicine with engineered gold nanostructures.

    Science.gov (United States)

    Webb, Joseph A; Bardhan, Rizia

    2014-03-07

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  20. Gold Nanocages for Biomedical Applications**

    Science.gov (United States)

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  1. Gold Nanocages for Biomedical Applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-10-17

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl(4). The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy.

  2. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Science.gov (United States)

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  3. Activation analysis in gold industry

    International Nuclear Information System (INIS)

    Kist, A. A.

    2003-01-01

    Nuclear techniques and methods were, are, and will be very important for many fields of science, agriculture, industry, etc. Among other examples one can remember role of the nuclear medicine (radiotherapy and radiodiagnostic methods) or semiconductors (communication, computing, information, etc.) which industrial production has been on initial stage based on activation analysis. One of very illustrative examples is application of nuclear methods in gold industry. This is given by favorable nuclear properties of gold. Uzbekistan is one of the main producers of gold. Open-cast mining and hydro metallurgic extraction (using leaching by cyanide and sorption by ion-exchange resin) is the mostly used technology. The typical gold ores are sulfide and contain elevated concentration of As and Sb. That needs special technology of gold extraction. Importance of gold for Uzbekistan economy is a reason why for many years there are carried out studies concerning to gold production. These studies include also nuclear methods and their results are successfully used in gold industry. The present paper gives a brief overview for period of 25 years. For many reasons most of these studies were not published before completely. Despite some results are obtained decades ago we decided to present the overview as an example how nuclear methods can cover requirements of the whole process. We are trying to sort these studies according to methods and applications

  4. Ultrasound molecular imaging of breast cancer in MCF-7 orthotopic mice using gold nanoshelled poly(lactic-co-glycolic acid) nanocapsules: a novel dual-targeted ultrasound contrast agent

    OpenAIRE

    Xu,Li; Du,Jing; Wan,Caifeng; Zhang,Yu; Xie,Shaowei; Li,Hongli; Yang,Hong; Li,Fenghua

    2018-01-01

    Li Xu,1,* Jing Du,1,* Caifeng Wan,1 Yu Zhang,1 Shaowei Xie,1 Hongli Li,1 Hong Yang,2 Fenghua Li1 1Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; 2Department of Chemistry, College of Life and Environmental Science, Shanghai Normal University, Shanghai, China *These authors contributed equally to this work Background: The development of nanoscale molecularly targeted ultrasound contrast agents (UCAs) with high affinity and specif...

  5. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  6. The roles of serum and urinary carbohydrate antigen 19-9 in the management of patients with antenatal hydronephrosis.

    Science.gov (United States)

    Atar, Arda; Oktar, Tayfun; Kucukgergin, Canan; Kalelioglu, Ibrahim; Seckin, Sule; Ander, Haluk; Ziylan, Orhan; Kadioglu, Teoman Cem

    2015-06-01

    Serum carbohydrate antigen (CA) 19-9 has been clinically applied as a valuable tumor marker for pancreatic and gastrointestinal carcinoma. CA 19-9 is expressed in normal excretory epithelium tissues. Increased CA 19-9 has also been observed in uroepithelial tumors as well as in nonmalignant conditions including hydronephrosis secondary to ureteral stones. The purpose of this article is to evaluate the role of urinary CA 19-9 as a non-invasive biomarker in the postnatal differentiation of obstructive and non-obstructive hydronephrosis in patients with unilateral antenatal hydronephrosis. Infants with isolated renal pelvic dilatation, defined as the presence of anteroposterior pelvic diameter (APPD) equal to or greater than 7 mm based on antenatal ultrasound after 28 weeks' gestation, underwent systematic investigation for uropathies and were prospectively followed up. The pyeloplasty group consisted of 17 patients with ureteropelvic junction (UPJ) obstruction who had undergone pyeloplasty. The non-obstructive dilatation (NOD) group consisted of 17 patients with non-obstructive hydronephrosis, and the control group consisted of 21 healthy children. Commercial enzyme-linked immunosorbent assay (ELISA) kits were used to measure the urinary and serum CA 19-9 levels. In both hydronephrosis groups (pyeloplasty and non-obstructive dilatation), the correlations between urinary and serum CA 19-9 levels with the anteroposterior pelvic diameter measured at the third trimester and the postnatal initial evaluation and differential renal function were investigated. The initial median urinary CA 19-9 levels were significantly greater in children who underwent pyeloplasty than in both the non-obstructive hydronephrosis (143 ± 38 vs. 68 ± 23, respectively; p = 0.007) and the healthy control groups (143 ± 38 vs. 13 ± 3, respectively; p = 0.001) (Figure). Three months after surgery, the urinary CA 19-9 levels had decreased significantly according to the preoperative levels in the

  7. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  8. Stealing the Gold

    International Nuclear Information System (INIS)

    Whittington, S G

    2005-01-01

    Stealing the Gold presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field, including several Nobel laureates, highlight the historical development as well as new and emerging areas. This book would be of interest to graduate students and researchers in condensed matter physics, statistical physics and theoretical physics. Over the course of nearly half a century, Sam Edwards has led the field of condensed matter physics in new directions, ranging from the electronic and statistical properties of disordered materials to the mechanical properties of granular materials. Along the way he has provided seminal contributions to fluid mechanics, polymer science, surface science and statistical mechanics. This volume celebrates the immense scope of his influence by presenting a collection of original articles by recognized leaders in theoretical physics, including two Nobel laureates and a Fields medalist, which describe the genesis, evolution and future prospects of the various sub-fields of condensed matter theory, along with reprints of a selection of Edwards' seminal papers that helped give birth to the subject. Stealing the Gold, Edwards' favourite caricature of the relationship between theoretical physicists and nature, will be of singular interest to graduate students looking for an overview of some of the most exciting areas of theoretical physics, as well as to researchers in condensed matter physics looking for a comprehensive, broad and uniquely incisive snapshot of their subject at the dawn of the 21st century. (book review)

  9. Metformin reduces serum CA199 levels in type 2 diabetes Chinese patients with time-effect and gender difference.

    Science.gov (United States)

    Zhang, Dandan; Hou, Wolin; Liu, Fang; Yin, Jun; Lu, Wei; Li, Ming; Zheng, Taishan; Lu, Fengdi; Bao, Yuqian; Jia, Weiping

    2015-02-01

    This study was designed to clarify the influence of metformin on serum carbohydrate antigen 199 (CA199) levels and its associated factors in Chinese type 2 diabetes mellitus (T2DM) patients. In total, 1,253 T2DM patients were enrolled, including a non-metformin group (n = 616), a short-term metformin group (at least 1 week to 2 years; n=325), and a long-term metformin group (≥ 2 years; n = 312). Their clinical and biochemical characteristics were collected and compared. After 1 year, the biochemical parameters were re-examined in 296 patients. Sex hormones were determined, and associations between CA199 and other variables were assessed. At baseline, the incidence of abnormal CA199 levels was 14.7%, 8.9%, and 4.7% in the non-metformin, short-term metformin, and long-term metformin groups, respectively. CA199 levels in females were significantly higher than in males (P non-metformin controls vs. 17.62 ± 10.87 U/mL in the short-term group vs. 10.54 ± 8.14 U/mL in the long-term group; P = 0.000). The correlation and multiple stepwise regression analysis revealed that glycosylated hemoglobin, metformin, gender, total cholesterol, and follicle-stimulating hormone were independent impact factors on CA199 concentrations (all P Binary logistic regression revealed that the risk of abnormal CA199 concentrations of the total population with short-term metformin or long-term metformin treatment decreased 11% (odds ratio = 0.89; P = 0.001) and 30% (odds ratio = 0.70; P = 0.000), respectively, at baseline. After a 1-year follow-up, the incidence of high CA199 level decreased in both the short-term and the long-term metformin group compared with that of controls (P < 0.05). The extent of CA199 decrease in the long-term metformin group was the greatest (-17% vs. -4.9% in the short-term group vs. 3% in controls, P = 0.000), and the group's risk of high blood CA199 level was reduced 67% (odds ratio = 0.33; P = 0.023). The reduction in women was more apparent than that in men

  10. MicroRNA-199a-5p Regulates the Proliferation of Pulmonary Microvascular Endothelial Cells in Hepatopulmonary Syndrome

    Directory of Open Access Journals (Sweden)

    Jing Zeng

    2015-10-01

    Full Text Available Background/Aims: Pulmonary microvascular endothelial cell (PMVEC proliferation and angiogenesis contribute to the development of hepatopulmonary syndrome (HPS. MicroRNA-199a-5p (miR-199a-5p has emerged as a potent regulator of angiogenesis, and its expression levels significantly decrease in the serum of patients with hepatopathy. However, it has not been reported about whether miR-199a-5p might control PMVEC proliferation. Here, we described the miR-199a-5p governing PMVEC proliferation in HPS. Methods: PMVECs were treated with rat serum from common bile duct ligation (CBDL or sham. MiR-199a-5p mimic or inhibitor was used to change the miR-199a-5p expression. Knockdown of caveolin-1 (Cav-1 was performed using siRNA. NSC-23766 was used to inhibit Rac1 activity. Gene and protein expressions were quantified by qRT-PCR and western blot. Cell proliferation was analyzed by 3H-TdR incorporation and CCK-8 assays. Stress fibers were detected by immunofluorescence. Results: CBDL rat serum induced the down-regulation of miR-199a-5p. Delivery of miR-199a-5p suppressed the CBDL rat serum-induced PMVEC proliferation whereas knockdown of miR-199a-5p promoted PMVEC proliferation. This was accompanied by a decrease and an increase in Cav-1 expression, respectively. Cav-1 siRNA abolished the enhancement of PMVEC proliferation induced by the miR-199a-5p inhibition. Although stress fibers were disrupted in Cav-1 deficient cells, NSC-23766 increased stress fibers and contributed to cell proliferation. Conclusions: CBDL rat serum induced down-regulation of miR-199a-5p in PMVECs, which led to an increase of Cav-1 gene expression. Increased Cav-1 expression, by inhibiting Rac1 activity, led to the formation of stress fibers, which contribute to PMVEC proliferation and thus the pathogenesis of HPS.

  11. CEA and CA 19-9 are still valuable markers for the prognosis of colorectal and gastric cancer patients.

    Science.gov (United States)

    Sisik, Abdullah; Kaya, Mustafa; Bas, Gurhan; Basak, Fatih; Alimoglu, Orhan

    2013-01-01

    The purpose of this study was to assess the predictive effect of preoperative CEA and CA 19-9 levels on the prognosis of colorectal and gastric cancer patients. CEA and CA 19-9 were evaluated preoperatively in patients undergoing surgery for colorectal cancer (n=116) and gastric cancer (n=49). Patients with CEA levels CEA Group 1, 5-30 ng/mL as CEA Group 2 and >30 ng/ mL were classified as CEA Group 3. Similarly the patients with a CA 19-9 level 100 U/mL as Group and 3. TNM stages and histologic grades were noted according to histopathological reports. Patients with a TNM grade 0 or 1 were classified as Group A, TNM grade 2 patients constituted Group B and TNM grade 3 and 4 patients constituted Group C. Demographic characteristics, tumor locations and blood types of the patients were all recorded and these data were compared with the preoperative CEA and CA19-9 values. A significant correlation between CA 19-9 levels (>100 U/mL) and TNM stage (in advanced stages) was determined. We also determined a significant correlation between TNM stages and positive vlaues for both CEA and CA 19-9 in colorectal and gastric cancer patients. In comparison between CEA and CA 19-9 levels and age, gender, tumor location, ABO blood group, and tumor histologic grade, no significant correlation was found. Positive levels of both CEA and CA 19-9 can be considered to indicate an advanced stage in colorectal and gastric cancer patients.

  12. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis.

    Science.gov (United States)

    Zhang, Yimin; Yang, Jun; Li, Hongjuan; Wu, Yihua; Zhang, Honghe; Chen, Wenhu

    2015-01-01

    Pancreatic cancer has the worst prognosis and early detection is crucial for improving patient prognosis. Therefore, we performed a meta-analysis to evaluate and compare the sensitivity and specificity of single test of CA19-9, CA242, and CEA, as well as combination test in pancreatic cancer detection. We searched PubMed, Embase, Medline, and Wanfang databases for studies that evaluated the diagnostic validity of CA19-9, CA242, and CEA between January 1990 and September 2014. Data were analyzed by Meta-Disc and STATA software. A total of 21 studies including 3497 participants, which fulfilled the inclusion criteria were considered for analysis. The pooled sensitivities for CA19-9, CA242, and CEA were 75.4 (95% CI: 73.4-77.4), 67.8 (95% CI: 65.5-70), and 39.5 (95% CI: 37.3-41.7), respectively. The pooled specificities of CA19-9, CA242, and CEA were 77.6 (95% CI: 75.4-79.7), 83 (95% CI: 81-85), and 81.3 (95% CI: 79.3-83.2), respectively. Parallel combination of CA19-9+CA242 has a higher sensitivity (89, 95% CI: 80-95) without impairing the specificity (75, 95% CI: 67-82). Our meta-analysis showed that CA242 and CA19-9 have better performance in the diagnosis of pancreatic cancer than CEA. Furthermore, parallel combination test of CA19-9+CA242 could be of better diagnostic value than individual CA242 or CA19-9 test.

  13. Evaluating the efficacy of tumor markers CA 19-9 and CEA to predict operability and survival in pancreatic malignancies.

    Science.gov (United States)

    Mehta, Jay; Prabhu, Ramkrishna; Eshpuniyani, Priya; Kantharia, Chetan; Supe, Avinash

    2010-01-01

    Using CA 19-9 and CEA (elevated > 2 times of normal) as predictors in determining operability and survival in pancreatic tumors. Levels of CA 19-9 and CEA were measured (pre and post operatively) in 49 patients of pancreatic malignancy. CECT was performed for diagnosis and staging. An experienced surgeon determined the operability. The levels of tumor markers were correlated with the operability and the survival based on CECT and intra-operative findings. 16/24 (67%) patients with CA 19-9 levels (CEA levels (CEA levels (p = 0.003) were found to be non-resectable. Of the 27 patients, found resectable on CECT, 5 were non-resectable intra-operatively. All of these had elevated levels of CA 19-9 and 4/5 (80%) had elevated levels of CEA. Only 5/21 (23%) non-resectable patients, with elevated levels of CA 19-9 reported at 1 year follow up. None of the non-resectable patients with CA 19-9 levels > 1000 U/ml reported at 6 month follow-up. None of the resectable patients pre-operatively showed evidence of recurrence. All achieved normal values post surgery. Elevated levels of CA 19-9 and CEA (> 2 times) predict increased chances of inoperability and poor survival in pancreatic tumors. Levels > 3 times had increased risk of inoperability even in patients deemed resectable on CT-Scan. Diagnostic laparoscopy would be beneficial in these patients. Levels of CA 19-9 (> 1000 U/ml) indicate a dismal survival in non-resectable group of patients.

  14. Differential expression of carbohydrate antigen 19-9 in human colorectal cancer: A comparison with colon and rectal cancers

    Science.gov (United States)

    ZHANG, SHUAI; CHEN, YIJUN; ZHU, ZHANMENG; DING, YUNLONG; REN, SHUANGYI; ZUO, YUNFEI

    2013-01-01

    Colorectal cancer is one of the leading causes of cancer-related mortality, being the third most commonly diagnosed cancer among men and the second among women. Accumulating evidence regarding carbohydrate antigen (CA) demonstrated that tumor-associated antigens are clinically useful for the diagnosis, staging and monitoring of human gastrointestinal cancers, particularly colorectal cancer. There has been an extensive investigation for sensitive and specific markers of this disease. Currently, the gastrointestinal cancer-associated carbohydrate antigen 19-9 (CA19-9) is the most widely applied tumor marker in cancer diagnosis. Despite a similar etiology and cancer incidence rates, there are anatomical and clinical differences between colon and rectal cancer, as well as differences regarding tumor progression and adjuvant treatments. To investigate whether CA19-9 is differentially expressed between colon and rectal cancer, we conducted a differential analysis of serum CA19-9 levels among 227 cases of colorectal cancer, analyzing gender, age, Dukes’ stage and distant metastasis for human colon and rectal cancer as a single entity, separately and as matched pairs. We demonstrated that the serum CA19-9 levels in colorectal cancer were upregulated in advanced stages with distant metastasis. By contrast, the serum CA19-9 levels in colon cancer displayed a differential and upregulated behavior in advanced stages with distant metastasis. By analyzing as matched pairs, the upregulated serum CA19-9 levels in rectal cancer during the early stages without distant metastasis further supported our hypothesis that the expression of CA19-9 displays a site-specific differential behavior. The integrative analysis suggested a significant difference between human colon and rectal cancer, justifying individualized therapy for these two types of cancer. PMID:24649295

  15. Functionalization of Gold-plasmonic Devices for Protein Capture

    KAUST Repository

    Battista, E.

    2017-07-13

    Here we propose a straightforward method to functionalize gold nanostructures by using an appropriate peptide sequence already selected toward gold surfaces and derivatized with another sequence for the capture of a molecular target. Large scale 3D-plasmonic devices with different nanostructures were fabricated by means of direct nanoimprint technique. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques.

  16. Functionalization of Gold-plasmonic Devices for Protein Capture

    KAUST Repository

    Battista, E.; Scognamiglio, P.L.; Das, Gobind; Manzo, G.; Causa, F.; Di Fabrizio, Enzo M.; Netti, P.A.

    2017-01-01

    Here we propose a straightforward method to functionalize gold nanostructures by using an appropriate peptide sequence already selected toward gold surfaces and derivatized with another sequence for the capture of a molecular target. Large scale 3D-plasmonic devices with different nanostructures were fabricated by means of direct nanoimprint technique. The present work is aimed to address different innovative aspects related to the fabrication of large-area 3D plasmonic arrays, their direct and easy functionalization with capture elements, and their spectroscopic verifications through enhanced Raman and enhanced fluorescence techniques.

  17. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  18. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J

    2012-09-01

    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  19. Low-Impact Exploration for Gold in the Scottish Caledonides.

    Science.gov (United States)

    Rice, Samuel; Cuthbert, Simon; Hursthouse, Andrew; Broetto, Gabriele

    2017-04-01

    The Caledonian orogenic belt of the northern British Isles hosts some significant gold deposits. However, gold mineralization in the region is underexplored. Some of the most prospective areas identified by rich alluvial gold anomalies are environmentally and culturally sensitive. Traditional mineral exploration methods can have a range of negative environmental, social and economic impacts. The regional tourism economy is dependent on outdoor activities, landscape quality, wildlife and industrial heritage and has the potential to be disrupted by mineral resource developments. Low-cost, low-impact exploration strategies are therefore, key to sustainably developing the mineral resource potential. Research currently in progress in part of the Scottish Caledonides aims to develop protocols for more sustainable exploration. We are using a range of geoscience techniques to characterize the mineral system, improve exploration targeting and reduce negative impacts. To do this we targeted an area with a large preexisting dataset (e.g. stream sediment geochemistry, geomorphology, structural geology, petrology, geophysics, mine data) that can be synthesized and analyzed in a GIS. Part of the work aims to develop and test a model for gold dispersion in the surface environment that accounts for climatic and anthropogenic influences in order to locate bedrock sources. This multidisciplinary approach aims to reduce the target areas for subsequent exploration activities such as soil sampling, excavation and drilling.

  20. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  1. In harmony with gold and uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A profile is given on Mr Clive Knobbs as managing director of Harmony gold mine. From March 1 1983 he succeeded as deputy chairman of the group's gold and uranium division, and became the Rand Mines representative on the Gold Producers Committee and the Executive Committee of the Chamber of Mines. The article also takes a look at gold and uranium mining in general

  2. 41 CFR 101-45.002 - Gold.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Gold. 101-45.002 Section... PERSONAL PROPERTY § 101-45.002 Gold. (a) Gold will be sold in accordance with this section and part 102-38 of the Federal Management Regulation. (b) Sales of gold shall be processed to— (1) Use the sealed bid...

  3. Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm

    International Nuclear Information System (INIS)

    Urata, Yoshiharu; Shinozaki, Tatsuya; Wada, Yoshio; Kaneda, Yushi; Wada, Satoshi; Imai, Shinichi

    2009-01-01

    A high-pulse-repetition-frequency (PRF) pulsed light source in the deep ultraviolet region has been realized by a multiple wavelength conversion technique using a hybrid fiber/bulk amplifier system. Output of 199 nm with a power of 50 mW was achieved at 2.4 MHz PRF. The 1 μm amplifier consisted of a Yb-doped fiber amplifier and a Nd-doped YVO4 amplifier. A 1.5 μm fiber master-oscillator power amplifier was employed as the other fundamental source. The amplifiers exhibited good amplification properties in pulse energy, polarization extinction ratio, and spectrum for nonlinear wavelength conversion

  4. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  5. Development of a gold-nanostructured surface for amperometric genosensors

    Energy Technology Data Exchange (ETDEWEB)

    Zanardi, Chiara, E-mail: chiara.zanardi@unimore.it [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy); Baldoli, Clara, E-mail: clara.baldoli@istm.cnr.it [Istituto di Scienze e Tecnologie Molecolari del CNR (Italy); Licandro, Emanuela [Universita degli Studi di Milano, Dipartimento di Chimica Organica ed Industriale (Italy); Terzi, Fabio; Seeber, Renato [Universita di Modena e Reggio Emilia, Dipartimento di Chimica (Italy)

    2012-10-15

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1-5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  6. Development of a gold-nanostructured surface for amperometric genosensors

    International Nuclear Information System (INIS)

    Zanardi, Chiara; Baldoli, Clara; Licandro, Emanuela; Terzi, Fabio; Seeber, Renato

    2012-01-01

    A gold-nanostructured surface has been obtained by stable deposition of chemically synthesized gold nanoparticles (2.1–5.5 nm size range) on a gold substrate through a dithiol linker. The method proposed for the obtainment of the nanostructure is suitable for the further stable anchoring of a peptide nucleic acid oligomer through four amine groups of lysine terminal residues, leading to fairly reproducible systems. The geometric area of the nanostructured surface is compared with those of a smooth and of an electrochemically generated nanostructured surface by depositing a probe bearing an electrochemically active ferrocene residue. Despite the area of the two nanostructures being quite similar, the response toward a 2 nM target oligonucleotide sequence is particularly high when using the surface built up by nanoparticle deposition. This aspect indicates that morphologic details of the nanostructure play a key role in conditioning the performances of the genosensors.

  7. Gold--a controversial sensitizer

    DEFF Research Database (Denmark)

    Bruze, M; Andersen, Klaus Ejner

    1999-01-01

    allergy to gold sodium thiosulfate were published at the beginning of the 1990s, the allergic nature of the reported positive patch test reactions to gold was questioned. The major argument for such questioning was the lack of demonstrable clinical relevance in most positive reactors. A major reason......Until recently, gold allergy was considered to be extremely rare. Gold has been used and worshipped for thousands of years without any obvious complaints of skin problems, either in those participating in mining and other ways of prospecting, or in those wearing jewellery. When studies on contact...... for the questioning may have been confusion in differentiating between contact allergy and allergic contact dermatitis. To arrive at a diagnosis of allergic contact dermatitis, 3 steps have, in principle, to be fulfilled: (i) establishment of contact allergy; (ii) demonstration of present exposure; (iii) assessment...

  8. Gold, currencies and market efficiency

    Science.gov (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2016-05-01

    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  9. Optical trapping of gold aerosols

    DEFF Research Database (Denmark)

    Schmitt, Regina K.; Pedersen, Liselotte Jauffred; Taheri, S. M.

    2015-01-01

    Aerosol trapping has proven challenging and was only recently demonstrated.1 This was accomplished by utilizing an air chamber designed to have a minimum of turbulence and a laser beam with a minimum of aberration. Individual gold nano-particles with diameters between 80 nm and 200 nm were trapped...... in air using a 1064 nm laser. The positions visited by the trapped gold nano-particle were quantified using a quadrant photo diode placed in the back focal plane. The time traces were analyzed and the trapping stiffness characterizing gold aerosol trapping determined and compared to aerosol trapping...... of nanometer sized silica and polystyrene particles. Based on our analysis, we concluded that gold nano-particles trap more strongly in air than similarly sized polystyrene and silica particles. We found that, in a certain power range, the trapping strength of polystyrene particles is linearly decreasing...

  10. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  11. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    Science.gov (United States)

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  12. Synthesis and characterization of pHLIP® coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Jennifer L. Daniels

    2017-07-01

    Full Text Available Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG and pH Low Insertion Peptide (pHLIP® were introduced. The presence of a tumor-targeting pHLIP® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  13. Biosensors based on gold nanostructures

    OpenAIRE

    Vidotti,Marcio; Carvalhal,Rafaela F.; Mendes,Renata K.; Ferreira,Danielle C. M.; Kubota,Lauro T.

    2011-01-01

    The present review discusses the latest advances in biosensor technology achieved by the assembly of biomolecules associated with gold nanoparticles in analytical devices. This review is divided in sections according to the biomolecule employed in the biosensor development: (i) immunocompounds; (ii) DNA/RNA and functional DNA/RNA; and (iii) enzymes and Heme proteins. In order to facilitate the comprehension each section was subdivided according to the transduction mode. Gold nanoparticles bas...

  14. Characterisation of gold from Fiji

    OpenAIRE

    Naden, Jon; Henney, P.J.

    1995-01-01

    This is a study of the variation in chemistry and inclusion mineralogy of bedrock and placer gold from Fiji. It forms part of a large project, undertaking gold characterisation from a wide range of geological environments in Ecuador, Zimbabwe, Malaysia and Fiji. The work was carried out under the Overseas Development AdministratiodBritish Geological Survey Technology Development and Research programme (Project R5549) as part of the British Government’s provision of technical...

  15. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  16. Light-activated microbubbles around gold nanorods for photoacoustic microsurgery

    Science.gov (United States)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2018-02-01

    The increasing interest around imaging and microsurgery techniques based on the photoacoustic effect has boosted active research into the development of exogenous contrast agents that may enhance the potential of this innovative approach. In this context, plasmonic particles as gold nanorods are achieving resounding interest, owing to their efficiency of photothermal conversion, intense optical absorbance in the near infrared region, inertness in the body and convenience for conjugation with ligands of molecular targets. On the other hand, the photoinstability of plasmonic particles remains a remarkable obstacle. In particular, gold nanorods easily reshape into nanospheres and so lose their optical absorbance in the near infrared region, under exposure to few-ns-long laser pulses. This issue is attracting much attention and stimulating ad-hoc solutions, such as the addition of rigid shells and the optimization of multiple parameters. In this contribution, we focus on the influence of the shape of gold nanorods on their photothermal behavior and photostability. We describe the photothermal process in the gold nanorods by modeling their optical absorption and consequent temperature dynamics as a function of their aspect ratio (length / diameter). Our results suggest that increasing the aspect ratio does probably not limit the photostability of gold nanorods, while shifting the plasmonic peak towards wavelengths around 1100 nm, which hold more technological interest.

  17. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    Science.gov (United States)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  18. Extremely Elevated CA 125 and CA 19-9 in Endometrioma; A Case Series

    Directory of Open Access Journals (Sweden)

    Vugar Bayramov

    2010-03-01

    Full Text Available Although endometriosis is a benign condition, increased levels of the tumor markers CA 125 and CA 19-9 may be seen. However, these tumor markers reach to very high levels, rarely. In this report, 4 patients between 20 and 43 year-old with extremely elevated CA 125, CA 19-9 and CA 15-3 levels are discussed. In endometriosis extremely increased tumor markers are determined in the case of ruptured endometrioma cyst. There are two mechanisms to clarify extremely elevated levels of CA 125 in endometriosis. First, the peritoneal irritation of CA 125 molecule after the rupture of endometioma cyst and CA 125 secretion from the periton. And the second is penetration of the CA 125 moecule easily to the circulation through the peritoneal endothelial surface after the cyst rupture. In conclusion, the diagnosis of ruptured endometrioma cyst should be kept in mind especially in young patients with extremely elevated serum CA 125 levels with regard to the history and ultrasonographical signs and invasive procedures should be avoided.

  19. Comparison of leaf proteomes of cassava (Manihot esculenta Crantz cultivar NZ199 diploid and autotetraploid genotypes.

    Directory of Open Access Journals (Sweden)

    Feifei An

    Full Text Available Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies.

  20. Recent progress in theranostic applications of hybrid gold nanoparticles.

    Science.gov (United States)

    Gharatape, Alireza; Salehi, Roya

    2017-09-29

    A significant area of research is theranostic applications of nanoparticles, which involves efforts to improve delivery and reduce side effects. Accordingly, the introduction of a safe, effective, and, most importantly, renewable strategy to target, deliver and image disease cells is important. This state-of-the-art review focuses on studies done from 2013 to 2016 regarding the development of hybrid gold nanoparticles as theranostic agents in the diagnosis and treatment of cancer and infectious disease. Several syntheses (chemical and green) methods of gold nanoparticles and their applications in imaging, targeting, and delivery are reviewed; their photothermal efficiency is discussed as is the toxicity of gold nanoparticles. Owing to the unique characterizations of hybrid gold nanoparticles and their potential to be developed as multifunctional, we predict they will present an undeniable role in clinical studies and provide treatment platforms for various diseases. Thus, their clearance and interactions with extra- and intra-cellular molecules need to be considered in future projects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Can preoperative CEA and CA19-9 serum concentrations suggest metastatic disease in colorectal cancer patients?

    Science.gov (United States)

    Stojkovic Lalosevic, Milica; Stankovic, Sanja; Stojkovic, Mirjana; Markovic, Velimir; Dimitrijevic, Ivan; Lalosevic, Jovan; Petrovic, Jelena; Brankovic, Marija; Pavlovic Markovic, Aleksandra; Krivokapic, Zoran

    2017-01-01

    This study was designed to investigate the efficiency of preoperative serum carcinoembryonic antigen (CEA) and carbohydrate cancer antigen (CA19-9) levels for diagnosing synchronous liver metastases and lymph node in colorectal carcinoma (CRC) patients. A total of 300 patients with histologically diagnosed CRC were included in this study between May 2014 and March 2015. The data were obtained prospectively from patient's medical records: medical history, demographics, tumor location, differentiation (grade), depth of the tumor (T), lymph node metastases (N), distant metastases (M), lymphatics, venous and perineural invasion, and disease stage. Tumor markers were measured with an electrochemiluminescent assay and the reference value was 5ng/ml for CEA and for Ca19-9, 37u/ml. There was A high statistically significant difference in the levels of serum CEA and CA19-9 between different disease stages of CRC (PCEA (stage I 3.76±8.73; II 5.68±17.27, III 7.56±14.81, and IV 70.90±253.23) and CA 19-9 levels (stage I 9.65±11.03, II 9.83±11.09; III 19.58±36.91, and IV 228.9±985.38, respectively). The mean CEA and CA19-9 serum levels were significantly higher in patients with regional lymph nodes involvement (CEA 37.21±177.85 vs 4.79±9.90, CA19-9 119.51±687.71 VS 12.24±17.69, respectively, PCEA 86.56±277.65 vs. 5.98±12.98, and CA19-9 273.27±1073.46 vs. 4.98±3142, respectively, with PCEA and CA 19-9, 3.5 ng/mL and 7.5 U/mL, respectively. While, a cut-off value for the presence of synchronous liver metastases of these two markers was 3.5ng/mL AND 5.5 U/mL. Our study showed that tumor makers, CEA and CA19-9, can be used as diagnostic factors regarding the severity of CRC specifically to suggest metastatic disease in CRC.

  2. Structure and bonding in gold compounds

    International Nuclear Information System (INIS)

    Parish, R.V.

    1988-01-01

    Recent developments in chemical applications of 197 Au Moessbauer spectroscopy are reviewed. For gold(I) and gold(III), systematic variations in isomer shift and quadrupole splitting are seen as the ligands are changed; the effects of change in coordination number of the gold atoms are also systematic. Data for gold(II) systems involving gold-gold bonds lie between those for corresponding gold(I) and gold(III) materials, showing a small increase in isomer shift and a larger increase in quadrupole splitting as the oxidation state decreases; these trends are explained in terms of the structures. Data for mixed-metal cluster compounds are much more sensitive to structural effects than in homonuclear clusters. Both sets of data show systematic changes with increase in the number of metal atoms to which the gold atom is bound. The connectivity also influences the recoil-free fraction. (orig.)

  3. Effect of Gold Marker Seeds on Magnetic Resonance Spectroscopy of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Murshed, E-mail: Murshed.Hossain@fccc.edu [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States); Schirmer, Timo [Global MR Applied Science Laboratory, GE Healthcare, Munich (Germany); Richardson, Theresa; Chen, Lili; Buyyounouski, Mark K.; Ma Changming [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

    2012-05-01

    Purpose: Magnetic resonance stereoscopic imaging (MRSI) of the prostate is an emerging technique that may enhance targeting and assessment in radiotherapy. Current practices in radiotherapy invariably involve image guidance. Gold seed fiducial markers are often used to perform daily prostate localization. If MRSI is to be used in targeting prostate cancer and therapy assessment, the impact of gold seeds on MRSI must be investigated. The purpose of this study was to quantify the effects of gold seeds on the quality of MRSI data acquired in phantom experiments. Methods and Materials: A cylindrical plastic phantom with a spherical cavity 10 centimeters in diameter wss filled with water solution containing choline, creatine, and citrate. A gold seed fiducial marker was put near the center of the phantom mounted on a plastic stem. Spectra were acquired at 1.5 Tesla by use of a clinical MRSI sequence. The ratios of choline + creatine to citrate (CC/Ci) were compared in the presence and absence of gold seeds. Spectra in the vicinity of the gold seed were analyzed. Results: The maximum coefficient of variation of CC/Ci induced by the gold seed was found to be 10% in phantom experiments at 1.5 T. Conclusion: MRSI can be used in prostate radiotherapy in the presence of gold seed markers. Gold seeds cause small effects (in the order of the standard deviation) on the ratio of the metabolite's CC/Ci in the phantom study done on a 1.5-T scanner. It is expected that gold seed markers will have similar negligible effect on spectra from prostate patients. The maximum of 10% of variation in CC/Ci found in the phantom study also sets a limit on the threshold accuracy of CC/Ci values for deciding whether the tissue characterized by a local spectrum is considered malignant and whether it is a candidate for local boost in radiotherapy dose.

  4. Effect of Gold Marker Seeds on Magnetic Resonance Spectroscopy of the Prostate

    International Nuclear Information System (INIS)

    Hossain, Murshed; Schirmer, Timo; Richardson, Theresa; Chen, Lili; Buyyounouski, Mark K.; Ma Changming

    2012-01-01

    Purpose: Magnetic resonance stereoscopic imaging (MRSI) of the prostate is an emerging technique that may enhance targeting and assessment in radiotherapy. Current practices in radiotherapy invariably involve image guidance. Gold seed fiducial markers are often used to perform daily prostate localization. If MRSI is to be used in targeting prostate cancer and therapy assessment, the impact of gold seeds on MRSI must be investigated. The purpose of this study was to quantify the effects of gold seeds on the quality of MRSI data acquired in phantom experiments. Methods and Materials: A cylindrical plastic phantom with a spherical cavity 10 centimeters in diameter wss filled with water solution containing choline, creatine, and citrate. A gold seed fiducial marker was put near the center of the phantom mounted on a plastic stem. Spectra were acquired at 1.5 Tesla by use of a clinical MRSI sequence. The ratios of choline + creatine to citrate (CC/Ci) were compared in the presence and absence of gold seeds. Spectra in the vicinity of the gold seed were analyzed. Results: The maximum coefficient of variation of CC/Ci induced by the gold seed was found to be 10% in phantom experiments at 1.5 T. Conclusion: MRSI can be used in prostate radiotherapy in the presence of gold seed markers. Gold seeds cause small effects (in the order of the standard deviation) on the ratio of the metabolite's CC/Ci in the phantom study done on a 1.5-T scanner. It is expected that gold seed markers will have similar negligible effect on spectra from prostate patients. The maximum of 10% of variation in CC/Ci found in the phantom study also sets a limit on the threshold accuracy of CC/Ci values for deciding whether the tissue characterized by a local spectrum is considered malignant and whether it is a candidate for local boost in radiotherapy dose.

  5. Annealing relaxation of ultrasmall gold nanostructures

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Except serving as an excellent gift on proper occasions, gold finds applications in life sciences, particularly in diagnostics and therapeutics. These applications were made possible by gold nanoparticles, which differ drastically from macroscopic gold. Versatile surface chemistry of gold nanoparticles allows coating with small molecules, polymers, biological recognition molecules. Theoretical investigation of nanoscale gold is not trivial, because of numerous metastable states in these systems. Unlike elsewhere, this work obtains equilibrium structures using annealing simulations within the recently introduced PM7-MD method. Geometries of the ultrasmall gold nanostructures with chalcogen coverage are described at finite temperature, for the first time.

  6. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  7. A simple hepatic cyst with elevated serum and cyst fluid CA19-9 levels: a case report

    Directory of Open Access Journals (Sweden)

    Yanai Hidekatsu

    2008-10-01

    Full Text Available Abstract Introduction Simple hepatic cysts rarely cause symptoms, however, occasionally they become symptomatic due to mass effect, rupture, hemorrhage, and infection. We report a patient with a large hepatic cyst with elevated serum and cyst fluid CA19-9 levels. We studied serum and cyst fluid CA19-9 levels in this patient, before and after the intracystic instillation of minocycline hydrochloride. Case presentation A 76-year-old Japanese woman was diagnosed as having an infected hepatic cyst, by physical examination and enhanced abdominal computed tomography. Serum (170 U/ml; reference: Conclusion Our study is the first report to reveal the influence of intracystic instillation of minocycline hydrochloride on serum and cyst fluid CA19-9 levels in a patient with a simple hepatic cyst.

  8. Gold nanoparticles stabilized by chitosan

    International Nuclear Information System (INIS)

    Geraldes, Adriana N.; Oliveira, Maria Jose A.; Silva, Andressa A. da; Leal, Jessica; Batista, Jorge G.S.; Lugao, Ademar B.

    2015-01-01

    In our laboratory has been growing the interest in studying gold nanoparticles and for this reason, the aim of this work is report the first results of the effect of chitosan as stabilizer in gold nanoparticle formulation. AuNPs were synthesized by reducing hydrogen tetrachloroaurate (HAuCl 4 ) using NaBH 4 or gamma irradiation (25kGy) as reduction agent. The chitosan (3 mol L -1 ) was added at 0.5; 1.0 and 1.5 mL. The gold nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Their physical stability was determined using a UV-Vis spectrophotometer over one week during storage at room temperature. Absorption measurements indicated that the plasmon resonance wavelength appears at a wavelength around 530 nm. Has been observed that Chitosan in such quantities were not effective in stabilizing the AuNPs. (author)

  9. Can preoperative and postoperative CA19-9 levels predict survival and early recurrence in patients with resectable hilar cholangiocarcinoma?

    Science.gov (United States)

    Wang, Jun-Ke; Hu, Hai-Jie; Shrestha, Anuj; Ma, Wen-Jie; Yang, Qin; Liu, Fei; Cheng, Nan-Sheng; Li, Fu-Yu

    2017-07-11

    To investigate the predictive values of preoperative and postoperative serum CA19-9 levels on survival and other prognostic factors including early recurrence in patients with resectable hilar cholangiocarcinoma. In univariate analysis, increased preoperative and postoperative CA19-9 levels in the light of different cut-off points (37, 100, 150, 200, 400, 1000 U/ml) were significantly associated with poor survival outcomes, of which the cut-off point of 150 U/ml showed the strongest predictive value (both P 150 U/ml was significantly associated with lymph node metastasis (OR = 3.471, 95% CI 1.216-9.905; P = 0.020) and early recurrence (OR = 8.280, 95% CI 2.391-28.674; P = 0.001). Meanwhile, postoperative CA19-9 level > 150 U/ml was also correlated with early recurrence (OR = 4.006, 95% CI 1.107-14.459; P = 0.034). Ninety-eight patients who had undergone curative surgery for hilar cholangiocarcinoma between 1995 and 2014 in our institution were selected for the study. The correlations of preoperative and postoperative serum CA19-9 levels on the basis of different cut-off points with survival and various tumor factors were retrospectively analyzed with univariate and multivariate methods. In patients with resectable hilar cholangiocarcinoma, serum CA19-9 predict survival and early recurrence. Patients with increased preoperative and postoperative CA19-9 levels have poor survival outcomes and higher tendency of early recurrence.

  10. Clinical value of preoperative serum CA 19-9 and CA 125 levels in predicting the resectability of hilar cholangiocarcinoma.

    Science.gov (United States)

    Hu, Hai-Jie; Mao, Hui; Tan, Yong-Qiong; Shrestha, Anuj; Ma, Wen-Jie; Yang, Qin; Wang, Jun-Ke; Cheng, Nan-Sheng; Li, Fu-Yu

    2016-01-01

    To examine the predictive value of tumor markers for evaluating tumor resectability in patients with hilar cholangiocarcinoma and to explore the prognostic effect of various preoperative factors on resectability in patients with potentially resectable tumors. Patients with potentially resectable tumors judged by radiologic examination were included. The receiver operating characteristic (ROC) analysis was conducted to evaluate serum carbohydrate antigenic determinant 19-9 (CA 19-9), carbohydrate antigen 125 (CA 125) and carcino embryonie antigen levels on tumor resectability. Univariate and multivariate logistic regression models were also conducted to analysis the correlation of preoperative factors with resectability. In patients with normal bilirubin levels, ROC curve analysis calculated the ideal CA 19-9 cut-off value of 203.96 U/ml in prediction of resectability, with a sensitivity of 83.7 %, specificity of 80 %, positive predictive value of 91.1 % and negative predictive value of 66.7 %. Meanwhile, the optimal cut-off value for CA 125 to predict resectability was 25.905 U/ml (sensitivity, 78.6 %; specificity, 67.5 %). In a multivariate logistic regression model, tumor size ≤3 cm (OR 4.149, 95 % CI 1.326-12.981, P = 0.015), preoperative CA 19-9 level ≤200 U/ml (OR 20.324, 95 % CI 6.509-63.467, P hilar cholangiocarcinoma. Preoperative CA 19-9 and CA 125 levels predict resectability in patients with radiological resectable hilar cholangiocarcinoma. Increased preoperative CA 19-9 levels and CA 125 levels are associated with poor resectability rate.

  11. Definitive Characterization of CA 19-9 in Resectable Pancreatic Cancer Using a Reference Set of Serum and Plasma Specimens.

    Science.gov (United States)

    Haab, Brian B; Huang, Ying; Balasenthil, Seetharaman; Partyka, Katie; Tang, Huiyuan; Anderson, Michelle; Allen, Peter; Sasson, Aaron; Zeh, Herbert; Kaul, Karen; Kletter, Doron; Ge, Shaokui; Bern, Marshall; Kwon, Richard; Blasutig, Ivan; Srivastava, Sudhir; Frazier, Marsha L; Sen, Subrata; Hollingsworth, Michael A; Rinaudo, Jo Ann; Killary, Ann M; Brand, Randall E

    2015-01-01

    The validation of candidate biomarkers often is hampered by the lack of a reliable means of assessing and comparing performance. We present here a reference set of serum and plasma samples to facilitate the validation of biomarkers for resectable pancreatic cancer. The reference set includes a large cohort of stage I-II pancreatic cancer patients, recruited from 5 different institutions, and relevant control groups. We characterized the performance of the current best serological biomarker for pancreatic cancer, CA 19-9, using plasma samples from the reference set to provide a benchmark for future biomarker studies and to further our knowledge of CA 19-9 in early-stage pancreatic cancer and the control groups. CA 19-9 distinguished pancreatic cancers from the healthy and chronic pancreatitis groups with an average sensitivity and specificity of 70-74%, similar to previous studies using all stages of pancreatic cancer. Chronic pancreatitis patients did not show CA 19-9 elevations, but patients with benign biliary obstruction had elevations nearly as high as the cancer patients. We gained additional information about the biomarker by comparing two distinct assays. The two CA 9-9 assays agreed well in overall performance but diverged in measurements of individual samples, potentially due to subtle differences in antibody specificity as revealed by glycan array analysis. Thus, the reference set promises be a valuable resource for biomarker validation and comparison, and the CA 19-9 data presented here will be useful for benchmarking and for exploring relationships to CA 19-9.

  12. Definitive Characterization of CA 19-9 in Resectable Pancreatic Cancer Using a Reference Set of Serum and Plasma Specimens.

    Directory of Open Access Journals (Sweden)

    Brian B Haab

    Full Text Available The validation of candidate biomarkers often is hampered by the lack of a reliable means of assessing and comparing performance. We present here a reference set of serum and plasma samples to facilitate the validation of biomarkers for resectable pancreatic cancer. The reference set includes a large cohort of stage I-II pancreatic cancer patients, recruited from 5 different institutions, and relevant control groups. We characterized the performance of the current best serological biomarker for pancreatic cancer, CA 19-9, using plasma samples from the reference set to provide a benchmark for future biomarker studies and to further our knowledge of CA 19-9 in early-stage pancreatic cancer and the control groups. CA 19-9 distinguished pancreatic cancers from the healthy and chronic pancreatitis groups with an average sensitivity and specificity of 70-74%, similar to previous studies using all stages of pancreatic cancer. Chronic pancreatitis patients did not show CA 19-9 elevations, but patients with benign biliary obstruction had elevations nearly as high as the cancer patients. We gained additional information about the biomarker by comparing two distinct assays. The two CA 9-9 assays agreed well in overall performance but diverged in measurements of individual samples, potentially due to subtle differences in antibody specificity as revealed by glycan array analysis. Thus, the reference set promises be a valuable resource for biomarker validation and comparison, and the CA 19-9 data presented here will be useful for benchmarking and for exploring relationships to CA 19-9.

  13. Immunohistochemical study of tumor markers (CEA, TPA, CA19-9, POA and Ferritin) and pancreatic exocrine enzymes(Amylase and Elastase 1) in pancreatic tumors

    OpenAIRE

    脇谷, 勇夫

    1987-01-01

    The distribution of carcinoembryonic antigen (CEA), tissue polypeptide antigen (TPA), carbohydrate antigen 19-9 (CA19-9), pancreatic oncofetal antigen (POA), Ferritin, Amylase and Elastase 1 was studied immunohistochemically using an immunoperoxidase method in 26 conventional histopathologic sections of pancreatic tumor. CEA and CA19-9 were regarded as markers secreted into the glandular lumina from cancer cells, but TPA and POA were not. The expression of these markers was different from one...

  14. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma.

    Science.gov (United States)

    Soliman, Bangly; Salem, Ahmed; Ghazy, Mohamed; Abu-Shahba, Nourhan; El Hefnawi, Mahmoud

    2018-05-01

    Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.

  15. Plasmonic Horizon in Gold Nanosponges.

    Science.gov (United States)

    Vidal, Cynthia; Sivun, Dmitry; Ziegler, Johannes; Wang, Dong; Schaaf, Peter; Hrelescu, Calin; Klar, Thomas A

    2018-02-14

    An electromagnetic wave impinging on a gold nanosponge coherently excites many electromagnetic hot-spots inside the nanosponge, yielding a polarization-dependent scattering spectrum. In contrast, a hole, recombining with an electron, can locally excite plasmonic hot-spots only within a horizon given by the lifetime of localized plasmons and the speed carrying the information that a plasmon has been created. This horizon is about 57 nm, decreasing with increasing size of the nanosponge. Consequently, photoluminescence from large gold nanosponges appears unpolarized.

  16. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  17. Gold nanorod vaccine for respiratory syncytial virus

    International Nuclear Information System (INIS)

    Stone, John W; Thornburg, Natalie J; Blum, David L; Kuhn, Sam J; Crowe Jr, James E; Wright, David W

    2013-01-01

    Respiratory syncytial virus (RSV) is a major cause of pneumonia and wheezing in infants and the elderly, but to date there is no licensed vaccine. We developed a gold nanorod construct that displayed the major protective antigen of the virus, the fusion protein (F). Nanorods conjugated to RSV F were formulated as a candidate vaccine preparation by covalent attachment of viral protein using a layer-by-layer approach. In vitro studies using ELISA, electron microscopy and circular dichroism revealed that conformation-dependent epitopes were maintained during conjugation, and transmission electron microscopy studies showed that a dispersed population of particles could be achieved. Human dendritic cells treated with the vaccine induced immune responses in primary human T cells. These results suggest that this vaccine approach may be a potent method for immunizing against viruses such as RSV with surface glycoproteins that are targets for the human immune response. (paper)

  18. Gold multifragmentation: Analysis of an exclusive experiment

    International Nuclear Information System (INIS)

    Aichelin, J.; Campi, X.

    1986-01-01

    We analyze completely exclusive 1 GeV/nucleon gold-emulsion reaction data with special emphasis on quantities which may help to settle the unsolved problem of which reaction mechanism produces the multifragmentation of heavy nuclei. We present results on correlations between target fragments and projectile fragments and among projectile fragments. In particular, we present for the first time the evolution of the mass yield distribution with the violence of the collisions which is characterized by the number of Z = 1 particles. We find that events producing Z = 2 particles have a different signature than those producing medium mass fragments. This shows that the agreement of the data with theories describing the inclusive mass yield by a single process: like a liquid gas phase transition: is accidental

  19. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    Science.gov (United States)

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.

  20. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  1. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    OpenAIRE

    Marija Matulionyte; Dominyka Dapkute; Laima Budenaite; Greta Jarockyte; Ricardas Rotomskis

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. The...

  2. Synthesis and Anticancer Activity of Gold(I)-Chloroquine Complexes

    OpenAIRE

    Navarro, Maribel; Castro, William; González, Sorenlis; Abad, María Jesús; Taylor, Peter

    2013-01-01

    Two new gold(I) -chloroquine complexes, Au(CQ)(Cl) (1) and Au(CQ)(tgta) (2), were prepared and their most probable structure were established through a combination of different spectroscopic and analytical techniques. Their interaction with two important targets of action, DNA and thioredoxin reductase (TrxR), were investigated. These studies showed that complexes 1 and 2 displayed two types of interaction with DNA, covalent binding through the metal center, and additionally a non-covalent in...

  3. Thomson parabola spectrometry for gold laser generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Cutroneo, M.; Andó, L.; Ullschmied, Jiří

    2013-01-01

    Roč. 20, č. 2 (2013), 023106-023106 ISSN 1070-664X R&D Projects: GA MŠk LM2010014 Institutional research plan: CEZ:AV0Z20430508 Keywords : acceleration * ions * Thomson parabola spectrometry * PALS laser * laser targets * gold ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.249, year: 2013 http://pop.aip.org/resource/1/phpaen/v20/i2/p023106_s1

  4. Photothermal reshaping of gold nanorods prevents further cell death

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Takuro; Nariai, Ayuko; Niidome, Yasuro; Yamada, Sunao

    2006-01-01

    The combined use of phosphatidylcholine passivated gold nanorods (PC-NRs) and pulsed near-infrared (near-IR) irradiation resulted in cell death. Pulsed near-IR laser irradiation also induced reshaping of PC-NRs into spherical nanoparticles. Since reshaped particles showed no absorption in the near-IR region, successive laser irradiation did not affect cells. Photo-reshaping of PC-NRs is expected to be advantageous in preventing unwanted cell damage following destruction of target cells

  5. Clinical significance of combined determination of serum CA199 and tumor specific growth factor (TSGF) contents in patients with primary hepatic carcinoma

    International Nuclear Information System (INIS)

    Shen Jiancheng

    2005-01-01

    Objective: To investigate the clinical significance of the changes of serum TSGF and CA199 contents in patients with primary hepatic carcinoma. Methods: Serum CA199 (with IRMA) and TSGF (with biochemistry method) contents were determined in 33 patients with primary hepatic carcinoma and 35 controls. Results: Serum CA199 and TSGF contents were significantly higher in patients with primary hepatic carcinoma than those in controls (P<0.01) and their levels were significantly positively correlated with those of serum AFP. Conclusion: Determination of serum TSGF and CA199 contents was of clinical diagnostic value in patients with primary hepatic carcinoma. (authors)

  6. Ligations of Gold Atoms with Iron Porphyrin

    DEFF Research Database (Denmark)

    Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens

    Gold is an exotic material with d-electrons deciding electronic mappings andconfigurations of adsorbed molecules. The specific interaction of Au atoms and S-, Ncappedmolecules make gold nanoparticles widely applied in the medicine transport andimmunoassay. Density functional theory demonstrates t...

  7. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille

    2013-01-01

    . In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....... by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study...... investigates the anti-inflammatory properties of metallic gold/HA on the gene expression of tumor necrosis factor (Tnf-α), Interleukin (Il)-1β, Il-6, Il-10, Colony-stimulating factor (Csf)-v2, Metallothionein (Mt)-1/2, Bcl-2 associated X protein (Bax) and B cell lymphoma (Bcl)-2 in cultured J774 macrophages...

  8. 'Thermal' multifragmentation induced in gold target by relativistic protons

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1996-01-01

    Multifragmentation in p+Au collisions at 2.16, 3.6 and 8.1 GeV has been studied with the FASA set-up. The mean IMF-multiplicities (2.0, 2.6 and 3.0) are comparable with those obtained with heavy ions. The modified Glauber approximation, followed by the statistical multifragmentation model, is used to describe the data on the fragment multiplicities and energy spectra. 25 refs., 4 figs., 1 tab

  9. The geology of the gold deposits of Prestea gold belt of Ghana ...

    African Journals Online (AJOL)

    This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are ...

  10. Gold Nanoparticle Mediated Phototherapy for Cancer

    International Nuclear Information System (INIS)

    Yao, C.; Zhang, L.; Wang, J.; He, Y.; Xin, J.; Wang, S.; Xu, H.; Zhang, Z.

    2016-01-01

    Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations

  11. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  13. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  14. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  15. Cancer caused by radioactive gold rings

    International Nuclear Information System (INIS)

    Callary, E.M.

    1989-01-01

    Two recent cases of skin cancer caused by radioactive gold rings are described. The gold was contaminated with radon daughters from hollow goldseeds used to hold radon, back in the 1930s or possibly later. Other radioactive gold rings are probably being worn. The Canadian AECB offers free testing

  16. Laser spectroscopy of neutron deficient gold and platinum isotopes

    International Nuclear Information System (INIS)

    Savard, G.

    1988-03-01

    A new method for on-line laser spectroscopy of radioactive atoms based on the resonant ionization spectroscopy of laser-desorbed radioactive samples has been devised. An experimental setup has been installed on-line at the ISOCELE mass separator in Orsay (France) and experiments have been performed on the region of transitional nuclei around Z=79. Isotopic shift measurements on four new isotopes 194 Au, 196 Au, 198 Au, 199 Au have been performed on gold and results on the neutron deficient isotopes down to 186 Au have been obtained confirming the nuclear ground-state shape transition from oblate to prolate between 187 Au and 186 Au. The first isotopic shift measurements on radioactive platinum isotopes have been obtained on 186 Pt, 188 Pt, 189 Pt. Indications of a shape transition have been observed between 186 Pt and 188 Pt. The extracted experimental changes in mean square charge radii δ 2 > A,A' along isotopic chains are compared to self-consistent Hartree-Fock plus BCS calculations

  17. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  18. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  19. Serum CA 125, carcinoembryonic antigen, and CA 19-9 as tumor markers in borderline ovarian tumors

    NARCIS (Netherlands)

    Engelen, MJA; de Bruijn, HWA; Hollema, H; ten Koor, KA; Willemse, PHB; Aalders, JG; van der Zee, AGJ

    Objectives. The goals of this study were to analyze preoperative serum levels of CA 125, carcinoembryonic antigen (CEA), and CA 19-9 in patients with borderline ovarian tumors and to investigate if routine assessment of these markers in follow-up may lead to earlier detection of recurrence. Methods.

  20. Clinical usefulness of CEA, CA19-9, and CYFRA 21-1 as tumor markers for urothelial bladder carcinoma.

    Science.gov (United States)

    Washino, Satoshi; Hirai, Masaru; Matsuzaki, Atsushi; Kobayashi, Yutaka

    2011-01-01

    To evaluate the usefulness of measuring serum CEA, CA19-9, and CYFRA 21-1 levels for the diagnosis and monitoring of bladder cancer. Serum levels of CEA, CA19-9, and CYFRA 21-1 were measured in 85 patients with bladder cancer. The absolute level of each marker and the positive rate were compared with the clinical stage and histological grade of the tumor. Changes of the markers were assessed in patients with or without disease progression, and the correlations between survival and positivity/negativity of these markers were also evaluated. A higher serum level of CYFRA 21-1 was significantly correlated with higher tumor stage (p CEA and CA19-9 levels did not differ significantly among each stage and grade. The CYFRA 21-1 level increased significantly along with disease progression (from 7.33 ± 13.3 to 55.9 ± 127 ng/ml, p marker of advanced- and high-grade urothelial carcinoma of the bladder. It is useful for monitoring this disease and for predicting the prognosis. In contrast, the clinical usefulness of CEA and CA19-9 as tumor markers was not demonstrated. Copyright © 2011 S. Karger AG, Basel.

  1. Ca 125 and Ca 19-9: two cancer-associated sialylsaccharide antigens on a mucus glycoprotein from human milk.

    Science.gov (United States)

    Hanisch, F G; Uhlenbruck, G; Dienst, C; Stottrop, M; Hippauf, E

    1985-06-03

    The cancer-associated antigens Ca 125 and Ca 19-9 were demonstrated by radioimmunoassay to form structural units of a mucus glycoprotein in human milk taken from healthy women four days after parturition. The glycoprotein precipitated with the casein fraction at pH 4.6 and was completely absent in the whey as judged from Ca 19-9 assay. It could be effectively enriched by phenol-saline extraction from soluble milk proteins and further purified by gel filtration on Sephacryl S300 and Sephacryl S400. The active component with a bouyant density of 1.41 g/ml in isopycnic density gradient centrifugation (CsCl) shared common physico-chemical and chemical characteristics of mucus glycoproteins. Carbohydrates representing about 68% by weight were conjugated to protein by alkali-labile linkages, exclusively and were essentially free of D-mannose. Activities of Ca 125 and Ca 19-9 were both destroyed by treatment with periodate, mild alkali or neuraminidase suggesting the antigens are sialylated saccharides bound to protein by alkali-labile linkages. The fraction of monosialylated saccharide alditols isolated after reductive beta-elimination from the mucus glycoprotein was shown to inhibit monoclonal antibodies anti-(Ca 125) and anti-(Ca 19-9) in radioimmunoassay.

  2. Diagnostic accuracy of serum miR-122 and miR-199a in women with endometriosis.

    Science.gov (United States)

    Maged, Ahmed M; Deeb, Wesam S; El Amir, Azza; Zaki, Sherif S; El Sawah, Heba; Al Mohamady, Maged; Metwally, Ahmed A; Katta, Maha A

    2018-04-01

    To evaluate the value of serum microRNA-122 (miR-122) and miR-199a as reliable noninvasive biomarkers in the diagnosis of endometriosis. During 2015-2016, at a teaching hospital in Egypt, a prospective cohort study was conducted on 45 women with pelvic endometriosis and 35 women who underwent laparoscopy for pelvic pain but were not diagnosed with endometriosis. Blood and peritoneal fluid (PF) samples were collected; interleukin-6 (IL-6) was detected by enzyme-linked immunosorbent assay and miR-122 and miR-199a expression was measured by quantitative real-time polymerase chain reaction. The serum and PF levels of IL-6, miR-122, and miR-199a were significantly higher in women with endometriosis than in controls (Pendometriosis. Serum miR-122 and miR-199a were significantly increased in endometriosis, indicating that these microRNAs might serve as biomarkers for the diagnosis of endometriosis. © 2017 International Federation of Gynecology and Obstetrics.

  3. Heavy residue properties in intermediate energy nuclear collisions with gold

    International Nuclear Information System (INIS)

    Aleklett, K.; Sihver, L.; Liljenzin, J.O.; Seaborg, G.T.

    1990-10-01

    We have measured the target fragment production cross sections and angular distributions for the interaction of 32, 44 and 93 MeV/nucleon argon, 35 and 43 MeV/nucleon krypton with gold. The fragment isobaric yield distributions, moving frame angular distributions and velocities have been deduced from these data. This fission cross section decreases with increasing projectile energy and the heavy residue cross section increases. The ratio v parallel /v cn increases approximately linearly with mass removed from the target. 21 refs., 8 figs

  4. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada

    Science.gov (United States)

    Yang, Xue-Ming; Lentz, David R.; Sylvester, Paul J.

    2006-07-01

    manner is concentrated in a suitable geological environment (e.g., shear zones or fracture systems), intrusion-related gold deposits may also be generated. Exploration for intrusion-related gold systems should focus on the areas around evolved phases of granitoid suites that remained sulfur-undersaturated. For sulfur-saturated granitoid suites, the less differentiated phase and associated structures are the most prospective targets.

  5. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  6. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  7. Conductivity of Pedot-Pss with Gold and Silver Nanocomposites Modified Gold Electrodes for Ganoderma Boninense DNA Detection

    Directory of Open Access Journals (Sweden)

    Sabo Wada Dutse

    2015-08-01

    Full Text Available The conductivity of a designed electrochemical DNA biosensor was improved using gold and or silver nanoparticles. A gold electrode modified with a conductive nanocomposite of poly(3,4-ethylene dioxythiophen–poly (styrenesulfonate (Pedot-Pss and gold or silver nano particles enhanced the conductivity of the electrode surface area. Bare and modified gold electrode surfaces were characterized using cyclic voltammetry (CV technique in ethylenediaminetetraacetic acid (TE supporting electrolyte. Immobilization of a 20-mer DNA probe was achieved by covalent attachment of the amine group of the capture probe to a carboxylic group of an activated 3,3’-dithiodipropionic acid layer using EDC/NHSS for Hybridization. The effect of hybridization temperature and time was optimized and the sensor demonstrated specific detection for the target concentration ranged between 1.0´10-15 M to 1.0´10-9 M with a detection limit of 9.70´10-19 M. Control experiments verified the specificity of the biosensor in the presence of mismatched DNA sequence. The DNA hybridization was monitored using a new ruthenium complex [Ru(dppz2(qtpyCl2; dppz = dipyrido [3,2–a:2’,3’-c] phenazine; qtpy=2,2’,-4,4”.4’4”’-quarterpyridyl redox indicator.

  8. Gold and not so real gold in Medieval treatises

    Directory of Open Access Journals (Sweden)

    Srebrenka Bogovic-Zeskoski

    2015-01-01

    Full Text Available The aim of this study is to evidence diverse materials and processes used by artisans (and alchemists required to synthesize a visually viable replacement for gold. The emphasis of the research is upon the production of mosaic gold or porporina, a pigment that has survived into modern times, which was used as ink and as paint. Base metals, mostly tin, but also alloys were used both into foils coated with glazes and varnishes and as pigment. The research focuses upon recipes documented in treatises dating from Antiquity to the late Medieval period (ca. 1500 and an attempt is made to answer two questions. In the first place, why was there a need for a surrogate? Secondly, why are there so few tangible examples detected on surviving artifacts? In conclusion, an argument is offered pointing out that, although much can be learned by scientific examination of artifacts, textual analysis is equally important and necessary to unravel mysteries of ancient technologies

  9. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  10. Assessment of diagnostic value of various tumors markers (CEA, CA199, CA50) for colorectal neoplasm with logistic regression and ROC curve

    International Nuclear Information System (INIS)

    Gu Ping; Huang Gang; Han Yuan

    2007-01-01

    Objective: To assess the diagnostic value of CEA, CA199 and CA50 for colorectal neoplasm by logistic regression and ROC curve. Methods: Serum CEA (with CLIA), CA199 (with ECLIA) and CA50 (with IRMA) levels were measured in 75 patients with colorectal cancer, 35 patients with benign colorectal disorders and 49 controls. The area under the ROC curve (AUC)s of CEA, CA199, CA50 from logistic regression results were compared. Results: In the cancer-benign disorder group, the AUC of CA50 was larger than the AUC of CA199. AUC of combined CEA, CA50 was largest: not only larger than any AUC of CEA, CA50, CA199 alone but also larger than the AUC of the combined three markers (0.875 vs 0.604). In cancer-control group, the AUC of combination of CEA, CA199 and CA50 was larger than any AUC of CEA, CA199 or CA50 alone. Both in the cancer-benign disorder group or cancer-control group, the AUC of CEA was larger than the AUC of CA199 or CA50. Conclusion: CEA is of definite value in the diagnosis of colorectal cancer. For differential diagnosis, the combination of CEA and CA50 can give more information, while the combination of three tumor markers is less helpful. As an advanced statistical method, logistic regression can improve the diagnostic sensitivity and specificity. (authors)

  11. Diagnostic value of combined determination of serum CA19-9 and TGF-β contents in patients with pancreatic cancer

    International Nuclear Information System (INIS)

    Gong Zheng

    2008-01-01

    Objective: To study the clinical diagnostic value of combined determination of serum contents of CA19-9 and TGF-β in patients with pancreatic cancer. Methods: Serum CA19-9 (with RIA) and TGF-β (with ELISA) contents were deter- mined in 30 patients with pancreatic cancer and 35 controls. Results: The serum CA19-9 and TGF-β contents in patients with pancreatic cancer were significantly higher than those in controls (P<0.01). The diagnostic sensitivity of CA19-9 for pancreatic cancer was 70.8%, lower than that of TGF-β (80.2%, P<0.05). The diagnostic specificity of CA19-9 and TGF-β was 90.2% and 93.4% respectively. Conclusion: Both determinations of serum CA19-9 and TGF-β contents would yield high specificity for diagnosis of pancreatic cancer. Sensitity of TGF-β determination was higher than that of CA19-9 determination. Combined determination of CA19-9 and TGF-β would improve the diagnostic accuracy in patients with pancreatic cancer. (authors)

  12. Backscattered electron emission after proton impact on carbon and gold films: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hespeels, F.; Heuskin, A.C. [University of Namur, PMR, 61 rue de Bruxelles, B-5000 Namur (Belgium); Scifoni, E. [TIFPA-INFN, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, I-38123 Trento (Italy); GSI-Helmholtzzentrum für Schwerionenforschung, Biophysik, Max Planck-Strasse 1, D-64291 Darmstadt (Germany); Kraemer, M. [GSI-Helmholtzzentrum für Schwerionenforschung, Biophysik, Max Planck-Strasse 1, D-64291 Darmstadt (Germany); Lucas, S., E-mail: stephane.lucas@unamur.be [University of Namur, PMR, 61 rue de Bruxelles, B-5000 Namur (Belgium)

    2017-06-15

    This work aims at measuring the proton induced secondary electron energy spectra from nanometer thin films. Backscattered electron energy spectra were measured within an energy range from 0 to 600 eV using a Retarding Field Analyser (RFA). This paper presents energy spectra obtained for proton (0.5 MeV; 1 MeV; 1.5 MeV; 2 MeV) irradiation of thin carbon films (50 and 100 nm thick) and thin gold film (200 nm). These experimental spectra were compared with Monte Carlo simulations based on TRAX code and Geant4 simulation toolkit. Good agreement between experimental, TRAX and Geant4 results were observed for the carbon target. For the gold target, we report major differences between both Monte Carlo environments. Limitation of Geant4 models for low energy electron emission was highlighted. On the contrary, TRAX simulations present encouraging results for the modeling of low-energy electron emission from gold target.

  13. Geophysical survey for proposed borehole 199-K-107A, 100-K Area

    International Nuclear Information System (INIS)

    Mitchell, T.H.

    1994-01-01

    The objective of the survey was to locate subsurface obstructions that may affect the drilling of proposed borehole, 199-K-107A, located about 100 ft northwest of the 105 KW Building, 100-K Area. Based upon the results of the survey, possible drill sites within the zone, with the least likelihood of encountering identified obstructions, were identified. The ground-penetrating radar (GPR) system used for this work utilized a 300-megahertz antenna to transmit the electromagnetic (EM) energy into the ground. The transmitted energy is reflected back to a receiving antenna where variations in the return signal are recorded. Common reflectors include natural geologic conditions such as bedding, cementation, moisture, and clay, or man-made objects such as pipes, barrels, foundations, and buried wires. Several isolated anomalies, at various depths, are observed in the data. Additionally, two areas that appear disturbed, with perplexing character, are plotted. Because of the uncertain nature of these two areas, they were avoided when recommending a borehole location. Initially, the proposed borehole was staked at N130/E122. The new proposed borehole location is N139/E176. This location appears free of anomalies and is over 10 ft from interpreted linear anomalies/pipe-like features

  14. $^{111m}$Cd- and $^{199m}$Hg-derivatives of blue oxidases

    CERN Multimedia

    2002-01-01

    The rack-induced bonding concept (H.B.Gray & B.G.~Malmstroem, Comments Inorg. Chem, 2, 203, 1983) postulates that the bound metal ion in metalloproteins is forced to adopt a coordination geometry determined by the rigid peptide conformation of the protein. Alternatively, the metal ion could create its own favoured coordination geometry in a soft peptide conformation. In order to decide who is slave or master the changes of coordination and rigidity of metal sites in blue copper proteins due to metal and ligand exchange were studied by $^{111m}$Cd and $^{199m}$Hg $\\gamma$-$\\gamma$-perturbed angular correlation (PAC). To get a better understanding of the so called " Type 1 Copper Site " of the blue oxidases laccase (LAC) and ascorbate oxidase (AO) we concentrated our investigations on the small blue copper proteins azurin and plastocyanin. \\\\ \\\\In azurin~(Az), the metal ligand methionine 121~(M121) was replaced by several amino acids, e.g. asparagine~(N), glutamic acid~(E), via site directed mutagenesis. Di...

  15. Clinical significance of determination of changes of plasma ET and serum TNF-α, CA19-9 levels after treatment in patients with endometriosis

    International Nuclear Information System (INIS)

    Gu Ying; Wang Hongliu; Feng Yuhua; Qian Junnan; Xia Xinghuan; Li Qiong; He Haoming

    2009-01-01

    Objective: To explore the clinical significance of changes of plasma ET and serum TNF-α, CA19-9 levels after treatment in patients with endometriosis. Methods: Plasma ET and Serum TNF-α, CA19-9 levels were detected with RIA in 38 patients with endometriosis both before and after treatment and 35 controls. Results: Before treatment, the plasma ET and serum TNF-α, CA19-9 levels were significantly higher in the patients than those in controls (P 0.05). There were significantly positive correlation between the levels of plasma ET and serum TNF-α, CA19-9 levels (r=0.6118, 0.6014, P<0.01). Conclusion: Determination of plasma ET and serum TNF-α, CA19-9 levels in clinically useful in the management of patients with endometriosis. (authors)

  16. Clinical significance of determination of changes of serum CEA, NSE, CA19-9 and VEGF levels in patients with lung cancer

    International Nuclear Information System (INIS)

    Gu Yan; Wang Yuyi

    2009-01-01

    Objective: To explore the clinical significance of changes of serum CEA, NSE, CA19-9 and VEGF levels in patients with lung cancer. Methods: Serum CEA, NES, CA19-9 (with RIA) and VEGF (with ELISA) levels were detected in 31 patients with lung cancer and 35 controls. Results: The levels of serum CEA, NSE, CA19-9 and VEGF were significantly higher in the patients than those in controls (P<0.01). Serum CEA, NSE, CA19-9 levels were positively correlated with the VEGF levels (r=0.6218, 0.6101, 0.6317, P<0.01). Conclusion: Serum CEA, NSE, CA19-9 and VEGF levels were closely related to the diseases process of lung cancer and were of prognostic values. (authors)

  17. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Linfang; Wang, Dan; Ye, Yuqian; Qian, Jun; He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Zuo, Lijian; Chen, Hongzheng [Department of Polymer Science and Engineering, State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China)

    2011-03-15

    We use gold nanospheres (Au NSs) to improve the performance of polymer organic solar cells. Au NSs with a diameter of about 5 nm or 15 nm were doped into the buffer layer of organic solar cells. We attribute the efficiency improvement to the size-dependent localized surface plasmon resonance (LSPR) effect of Au NSs, which can enhance the light harvest ability of active layer around the Au NSs, and increase the probability of the exciton generation and dissociation. Our results show that solar cells doped with 15 nm-diameter Au NSs exhibit significant improvement of the efficiency (from 1.99% to 2.36%), while solar cells doped with only 5 nm-diameter Au NSs did not give obvious improvement of the performance. (author)

  18. Polypyrrole–gold nanoparticle composites for highly sensitive DNA detection

    International Nuclear Information System (INIS)

    Spain, Elaine; Keyes, Tia E.; Forster, Robert J.

    2013-01-01

    DNA capture surfaces represent a powerful approach to developing highly sensitive sensors for identifying the cause of infection. Electrochemically deposited polypyrrole, PPy, films have been functionalized with electrodeposited gold nanoparticles to give a nanocomposite material, PPy–AuNP. Thiolated capture strand DNA, that is complementary to the sequence from the pathogen Staphylococcus aureus that causes mammary gland inflammation, was then immobilized onto the gold nanoparticles and any of the underlying gold electrode that is exposed. A probe strand, labelled with horse radish peroxidase, HRP, was then hybridized to the target. The concentration of the target was determined by measuring the current generated by reducing benzoquinone produced by the HRP label. Semi-log plots of the pathogen DNA concentration vs. faradaic current are linear from 150 pM to 1 μM and pM concentrations can be detected without the need for molecular, e.g., PCR or NASBA, amplification. The nanocomposite also exhibits excellent selectivity and single base mismatches in a 30 mer sequence can be detected

  19. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  20. Byzantine gold coins and jewellery

    International Nuclear Information System (INIS)

    Oddy, A.; La Niece, S.

    1986-01-01

    The article deals with the dating of Byzantine gold coinage. The results of such a study are of fundamental importance for the study of the economic history of the later Byzantine Empire and they are also of importance for the historian of technology when studying the composition of the contemporary Byzantine jewellery. Although Carbon-14 dating cannot be used as a method af dating, historians can still benefit from the analysis of the alloy of which the antiquity is made, as this is sometimes characteristic of the period in which it was used. A number of pieces of Byzantine jewellery has been analysed by x-ray fluorescence analysis, after first gently abrading a small area of the surface of the gold with the carborundum paper in an inconspicious position on the back or side of the object. A table is given on the results of this analysis

  1. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  2. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  3. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...... images and then to reappear by changing the scanning force. By combining contact mode AFM imaging and local force measurements, the interaction between the nanobubbles and the probe can be analyzed and give information about the characteristics of nanobubbles. A model of the forces between the AFM probe...

  4. Gold, currencies and market efficiency

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2016-01-01

    Roč. 449, č. 1 (2016), s. 27-34 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Efficient market hypothesis, * Gold * Currencies, * Fractal dimension * Entropy * Long-Term memory Subject RIV: AH - Economics Impact factor: 2.243, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0455876.pdf

  5. Ground Optical Lightning Detector (GOLD)

    Science.gov (United States)

    Jackson, John, Jr.; Simmons, David

    A photometer developed to characterize lightning from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of lightning and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.

  6. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  7. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  8. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  9. Jabiluka gold-uranium project

    International Nuclear Information System (INIS)

    1988-01-01

    The Jabiluka gold-uranium deposit, 230km east of Darwin in the Alligator Rivers Region of the Northern Territory, was discovered by Pancontinental Mining Limited in 1971. Jabiluka, with reserves in excess of 200,000 tonnes of contained U 3 O 8 in two deposits 500 metres apart, is the world's largest high grade uranium deposit and also contains nearly 12 tonnes of gold. It is proposed that only the larger deposit, Jabiluka II will be mined - by underground extraction methods, and that 275,000 tonnes of ore per year will be mined and processed to produce 1,500 tonnes of U 3 O 8 and up to 30,000 oz of gold. The revenue from the uranium sales is estimated to be of the order of A$100 million per year at A$30/lb. By the end of 1982 all necessary mining and environmental approvals had been obtained and significant marketing progress made. With the Australian Labor Party winning Commonwealth Government in the 1983 election, Pancontinental's permission to seek sales contracts was withdrawn and development of the Jabiluka deposit ceased. Jabiluka remains undeveloped - awaiting a change in Australian Government policy on uranium. figs., maps

  10. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  11. Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications

    DEFF Research Database (Denmark)

    Rey, Antje; Billardon, Guillaume; Loertscher, Emanuel

    2013-01-01

    target substrate, thus establishing a platform for a variety of nanoscale electronic and optical applications ranging from molecular electronics to optical and plasmonic devices. As a first example, electrical measurements are performed on contacted gold nanorod chains before and after their immersion......We demonstrate a method to assemble gold nanorods highly deterministically into a chain formation by means of directed capillary assembly. This way we achieved straight chains consisting of end-to-end aligned gold nanorods assembled in one specific direction with well-controlled gaps of similar...... to 6 nm between the individual constituents. We determined the conditions for optimum quality and yield of nanorod chain assembly by investigating the influence of template dimensions and assembly temperature. In addition, we transferred the gold nanorod chains from the assembly template onto a Si/SiO2...

  12. LANSCE target system performance

    International Nuclear Information System (INIS)

    Russell, G.J.; Gilmore, J.S.; Robinson, H.; Legate, G.L.; Bridge, A.; Sanchez, R.J.; Brewton, R.J.; Woods, R.; Hughes, H.G. III

    1989-01-01

    We measured neutron beam fluxes at LANSCE using gold foil activation techniques. We did an extensive computer simulation of the as-built LANSCE Target/Moderator/Reflector/Shield geometry. We used this mockup in a Monte Carlo calculation to predict LANSCE neutronic performance for comparison with measured results. For neutron beam fluxes at 1 eV, the ratio of measured data to calculated varies from ∼0.6-0.9. The computed 1 eV neutron leakage at the moderator surface is 3.9 x 10 10 n/eV-sr-s-μA for LANSCE high-intensity water moderators. The corresponding values for the LANSCE high-resolution water moderator and the liquid hydrogen moderator are 3.3 and 2.9 x 10 10 , respectively. LANSCE predicted moderator intensities (per proton) for a tungsten target are essentially the same as ISIS predicted moderator intensities for a depleted uranium target. The calculated LANSCE steady state unperturbed thermal (E 13 n/cm 2 -s. The unique LANSCE split-target/flux-trap-moderator system is performing exceedingly well. The system has operated without a target or moderator change for over three years at nominal proton currents of ∼25 μA of 800-MeV protons. (author)

  13. Multifunctional Gold Nanostars for Molecular Imaging and Cancer Therapy

    Science.gov (United States)

    Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew; Register, Janna; Vo-Dinh, Tuan

    2015-08-01

    Plasmonics-active gold nanoparticles offer excellent potential in molecular imaging and cancer therapy. Among them, gold nanostars (AuNS) exhibit cross-platform flexibility as multimodal contrast agents for macroscopic X-ray computer tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), as well as nanoprobes for photoacoustic tomography (PAT), two-photon photoluminescence (TPL) and surface-enhanced Raman spectroscopy (SERS). Their surfactant-free surface enables versatile functionalization to enhance cancer targeting, and allow triggered drug release. AuNS can also be used as an efficient platform for drug carrying, photothermal therapy, and photodynamic therapy. This review paper presents the latest progress regarding AuNS as a promising nanoplatform for cancer nanotheranostics. Future research directions with AuNS for biomedical applications will also be discussed.

  14. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    International Nuclear Information System (INIS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Chen, Chien-Fu; Cheng, Chao-Min

    2013-01-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h. (paper)

  15. Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?

    Directory of Open Access Journals (Sweden)

    Pedro Pedrosa

    2015-11-01

    Full Text Available Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial—nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.

  16. Deregulation of miR-100, miR-99a and miR-199b in tissues and plasma coexists with increased expression of mTOR kinase in endometrioid endometrial carcinoma

    International Nuclear Information System (INIS)

    Torres, Anna; Torres, Kamil; Pesci, Anna; Ceccaroni, Marcello; Paszkowski, Tomasz; Cassandrini, Paola; Zamboni, Giuseppe; Maciejewski, Ryszard

    2012-01-01

    Alterations of mTOR gene expression have been implicated in the pathogenesis of endometrioid endometrial cancer however only few studies explored the cause of increased mTOR activation in this malignancy. miRNAs are small, noncoding RNAs, which were proven to regulated gene expression at the posttranscriptional level. The study aimed to explore deregulation of miRNAs targeting mTOR kinase (miR-99a, miR-100 and miR-199b) as a possible cause of its altered expression in EEC tissues. In addition expression of the three miRNAs was investigated in plasma of EEC patients and was assessed in terms of diagnostic and prognostic utility. We investigated expression of mTOR kinase transcripts in 46 fresh tissue samples. Expression of miR-99a, miR-100 and miR-199b was investigated in the same group of fresh samples, and in additional 58 FFPE sections as well as in 48 plasma samples using qPCR. Relative quantification was performed using experimentally validated endogenous controls. mTOR kinase expression was increased in EEC tissues and was accompanied by decreased expression of all three miRNAs. Down-regulation of the investigated miRNAs was discovered in plasma of EEC patients and miRNA signatures classified EEC tissues (miR-99a/miR-100/miR-199b) and plasma (miR-99a/miR-199b) samples with higher accuracy in comparison to single miRNAs. We also revealed that miR-100 was an independent prognostic marker of overall survival. We conclude that increased expression of mTOR kinase coexists with down-regulation of its targeting miRNAs, which could suggest a new mechanism of mTOR pathway alterations in EEC. In addition, our findings implicate that miRNA signatures can be considered promising biomarkers for early detection and prognosis of endometrioid endometrial carcinoma

  17. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    Science.gov (United States)

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  18. A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks

    Science.gov (United States)

    Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.

    2011-01-01

    A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.

  19. Venetoclax (ABT-199 Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    Directory of Open Access Journals (Sweden)

    Johanna Weiss

    2016-02-01

    Full Text Available Venetoclax (ABT-199 represents a specific B-cell lymphoma 2 (Bcl-2 inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1, breast cancer resistance protein (BCRP, and organic anion transporting polypeptides (OATPs was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions.

  20. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    Science.gov (United States)

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-01-01

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160

  1. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions.

    Science.gov (United States)

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-02-24

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions.

  2. Methadone conversion in infants and children: Retrospective cohort study of 199 pediatric inpatients.

    Science.gov (United States)

    Fife, Alexandra; Postier, Andrea; Flood, Andrew; Friedrichsdorf, Stefan J

    2016-01-01

    Methadone administration has increased in pediatric clinical settings. This review is an attempt to ascertain an equianalgesic dose ratio for methadone in the pediatric population using standard adult dose conversion guidelines. US tertiary children's hospital. Hospitalized pediatric patients, 0-18 years of age. A retrospective chart review was conducted for patients who were converted from their initial opioid therapy regimen (morphine, hydromorphone, and/or fentanyl) to methadone. The primary endpoint was whether or not a dose correction was needed for methadone in the 6 days following conversion using standard dose conversion charts for adults. Documented clinical signs of withdrawal, unrelieved pain, or oversedation were examined. The majority (53.7 percent) of the 199 children were converted to methadone on intensive care units prior extubation or postextubation. The mean conversion ratio was 23.7 mg of oral morphine to 1 mg of oral methadone (median, 18.8 mg:1 mg, SD=25.7). Most patients experienced an adequate conversion (n=115, 57.8 percent), while 83 (41.7 percent) appeared undermedicated, and one child was oversedated. There were no associations found with conversion ratios for initial morphine dose, days to conversion, or effect of withdrawal of concomitant agents with potential for withdrawal. Opioid conversion to methadone is commonly practiced at our institution; however, dosing was significantly lower compared to adult conversion ratios, and more than 40 percent of children were undermedicated. The majority of children in this study received opioids for sedation while intubated and ventilated; therefore, safe and efficacious pediatric methadone conversion rates remain unclear. Prospective studies are needed.

  3. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  4. Physiological investigation of gold nanorods toward watermelon.

    Science.gov (United States)

    Wan, Yujie; Li, Junli; Ren, Hongxuan; Huang, Jin; Yuan, Hong

    2014-08-01

    The objective of the present study was to evaluate the phytotoxicity and oxidant stress of the gold nanorods toward watermelon, and hence give a quantitative risk assessment of both seeds and plants phase. The seed germination, the activity of antioxidant enzymes, and the contents of soluble protein and malondialdehyde (MDA) have been measured while the plant roots were observed by transmission electron microscopy (TEM). It was found that the gold nanorods significantly promoted the root elongation. Furthermore, the results on the enzymes activities of plant indicated that oxidative stress happened in the plant treated with gold nanorods. However, the gold nanorods resulted in the phytotoxicity toward plant especially at high concentration. The TEM images of the plant roots with and without the treatment of gold nanorods showed the significant different size of starch granules. In conclusion, significant physiological changes of plant occurred after treatment with the gold nanorods.

  5. Sudden change of quadrupole moment between the first 5/2- states of 197Hg and 199Hg

    International Nuclear Information System (INIS)

    Herzog, P.; Krien, K.; Freitag, M.; Reuschenbach, M.; Walitzki, H.

    1980-01-01

    Low-temperature time differential perturbed angular correlation experiments with the 164 KeV-134 keV cascade of sup(197m)Hg in a zinc matrix give evidence that the hitherto accepted value of the quadrupole moment of the first 5/2 - state of 197 Hg is erroneous. A new value is derived from a time differential perturbed angular correlation experiment with the 374 keV-158 keV cascade of sup(199m)Hg implanted into a Be single crystal and comparison with an analogous experiment for sup(197m)Hg. Taking Q(5/2 - , 199 Hg) = +0.95(7) b we derive Q(5/2 - , 197 Hg) = 0.081(6) b. This change of quadrupole moment is discussed in the framework of the shell model. (orig.)

  6. Hg-coordination studies of oligopeptides containing cysteine, histidine and tyrosine by $^{199m}$Hg-TDPAC

    CERN Document Server

    Ctortecka, B; Mallion, S; Butz, T; Hoffmann, R

    1999-01-01

    In order to study the interaction of histidine- and tyrosine- containing peptide chains with Hg(II), the nuclear quadrupole interaction (NQI) of /sup 199m/Hg in the Hg complexes of the oligopeptides alanyl-alanyl-histidyl-alanyl-alanine-amid (AAHAA-NH /sub 2/) and alanyl-alanyl-tyrosyl-alanyl-alanine-amid (AAYAA-NH/sub 2/) was determined by time differential perturbed angular correlation and is compared with previous data on alanyl-alanyl-cysteyl-alanyl- alanyl (AACAA-OH). The /sup 199m/Hg-NQIs depend on the oligopeptide to Hg(II) stoichiometry and indicate that two-fold and four-fold coordinations occur for the bound Hg(II). (12 refs).

  7. Pharmacological and protein profiling suggest venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia

    Science.gov (United States)

    Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A.; Wierda, William G.; Keating, Michael J.; Balakrishnan, Kumudha; Gandhi, Varsha

    2015-01-01

    Purpose Bruton’s tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Experimental design Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199) and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. Results The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted highly cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family anti-apoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Conclusions Our biological and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. PMID:25829398

  8. Pharmacological and Protein Profiling Suggests Venetoclax (ABT-199) as Optimal Partner with Ibrutinib in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A; Wierda, William G; Keating, Michael J; Balakrishnan, Kumudha; Gandhi, Varsha

    2015-08-15

    Bruton's tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199), and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted in high cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family antiapoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Our biologic and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. ©2015 American Association for Cancer Research.

  9. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  10. Geochemical indicators of gold ore fields

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.G.

    1995-01-01

    The principles of selection of indicators for genetic reconstructions and prognostic valuations of gold mineralization of diverse morphological and geochemical types have been substantiated. The neutron-activation analysis with radiochemical separation and detection limit of 1-10 -8 %, instrumental neutron-activation analysis and atomic-absorption analysis are the main methods of determination of gold low contents in the rocks, as well as diverse elements, including transition, rare earth elements and tellurium, in gold. 50 refs.; 1 fig.; 3 tabs

  11. Glyco-gold nanoparticles: synthesis and applications

    OpenAIRE

    Compostella, Federica; Pitirollo, Olimpia; Silvestri, Alessandro; Polito, Laura

    2017-01-01

    Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco ...

  12. Glyco-gold nanoparticles: synthesis and applications

    Directory of Open Access Journals (Sweden)

    Federica Compostella

    2017-05-01

    Full Text Available Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.

  13. Study on the diagnostic value of combined determination of serum CA125, CA199 and SIL-2R levels in patients with endometriosis

    International Nuclear Information System (INIS)

    Yang Jingxiu; Shi Shaohong; Wang Yuping; Xie Xueqin; Qin Jibao

    2005-01-01

    Objective: To investigate the diagnostic values of combined determination of serum CA125, CA199 and SIL-2R levels in patients with endometriosis. Methods: Serum CA125, CA199 were measured with RIA and SIL-2R levels with ELISA in 54 patients with endometriosis and 35 controls. Results: The serum levels of CA125, CA199 and SIL-2R in patients with endometriosis were significantly higher than those in controls (P<0.01). The sensitivity and speciality of CA125 for endometriosis was 70.2% and 80.4% respectively, the sensitivity and speciality of CA199 for endometriosis was 62.4% and 71.8% respectively, the sensitivity and speciality of SIL-2R was 89.5% and 60.2% respectively. The sensitivity of the combined determination of CA125, CA199 and SIL-2R for endometriosis was 86.8% being significantly higher than that of CA125 and CA199 respectively. Conclusion: Combined determination of the serum CA125, CA199 and SIL-2R levels in serum can increase the diagnostic sensitivity for endometriosis. (authors)

  14. Prognostic value of CEA and CA 19-9 tumor markers combined with cytology from peritoneal fluid in colorectal cancer.

    Science.gov (United States)

    Lee, In Kyu; Kim, Do Hyoung; Gorden, D Lee; Lee, Yoon Suk; Sung, Na Young; Park, Gyeoung-Sin; Kim, Hyung Jin; Kang, Won Kyung; Park, Jong Kyung; Ahn, Chang Hyeok; Kim, Jun-Gi; Jeon, Hae Myung; Oh, Seong Taek

    2009-04-01

    Early diagnosis and management of peritoneal metastases from colorectal cancer patients are difficult clinical challenges. The aims of this study were to evaluate the clinical significance of tumor markers and cytology in peritoneal effusions (PE) and peritoneal irrigation fluid (PI) and to determine their value as prognostic indicators in this disease. Two hundred thirty-four consecutive patients who underwent abdominal surgery for colorectal cancer from January 2006 to December 2007 were included, and tumor markers and cytology in PE and PI were analyzed prospectively. The incidence of free cancer cells retrieved from peritoneal samples was 7.9%. Cytology was positive in 40.0% by Papanicolaou and Giemsa staining, 73.3% by hematoxylin and eosin staining of cell blocks, and 66.7% by carcinoembryonic antigen (CEA) and calretinin immunohistochemistry. Multivariate analysis revealed that peritoneal CEA and cancer antigen (CA) 19-9 in PI were correlated with peritoneal metastasis and cytology. Level of peritoneal fluid CEA was statistically significantly correlated with recurrence and peritoneal metastatic recurrence in patients with negative peritoneal cytology. Cytology, peritoneal CEA, and peritoneal CA 19-9 showed correlations with cancer-free survival and overall survival. These correlations demonstrate the importance of continuous follow-up of peritoneal metastasis if there is positive cytology or an increase in CEA and CA 19-9 in peritoneal fluid.

  15. CA 19-9 and CA 125 as potential predictors of disease recurrence in resectable lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Sofi Isaksson

    Full Text Available Among patients who underwent primary surgery for non-small cell lung cancer (NSCLC, recurrent disease is frequent and cannot be accurately predicted solely from TNM stage and histopathological features. The aim of this study was to examine the association of tumor markers in pre-operative serum with recurrent disease.Blood samples were collected prior to lung cancer surgery from 107 patients with stage I-III lung adenocarcinoma surgically treated at Lund University hospital, Lund, Sweden, between 2005 and 2011. The serum tumor markers Carcinoembryonic antigen (CEA, Neuron-specific enolase (NSE, Cancer antigen 125 (CA 125, Human epididymis protein 4 (HE4 and Carbohydrate antigen (CA 19-9 were analyzed retrospectively and clinical follow-up data were collected from patient charts. Forty (37% patients were diagnosed with recurrent disease.Sixty-eight (64% patients had at least one elevated tumor marker prior to surgery. In analysis of disease-free survival (DFS, CA 125 and/or CA 19-9 were significantly associated with recurrent disease adjusted to stage and adjuvant treatment (hazard ratio 2.8, 95% confidence interval 1.4-5.7, p = 0.006.High pre-operative serum CA 19-9 and/or CA 125 might indicate an increased incidence of recurrent disease in resectable lung adenocarcinomas.

  16. Coal gold agglomeration: an innovative approach to the recovery of gold in environmentally sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Wall, N.C.; Hughes-Narborough, C.; Willey, G. [Davy (Stockton) Ltd., Stockton-on-Tees (United Kingdom)

    1994-11-01

    Coal Gold Agglomeration (CGA) was developed by BP Minerals and involves the selective recovery of oleophilic gold particles from an aqueous slurry into coal-oil agglomerates. These agglomerates are allowed to build up to a high gold loading and are then separated from the slurry. The loaded agglomerates are burned and the gold is finally recovered from the ash residue by dissolution and precipitation or by direct smelting. 6 figs.

  17. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  18. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  19. Gold Rushes and mineral property rights allocation

    DEFF Research Database (Denmark)

    Sinding, Knud

    , is to handle the other projects that are generated by the "gold rush" informational externalities created by the initial discovery. At the core of the problems of dealing with a gold rush situation is both the informational externality and an institutional framework which is not designed to deal with large...... influxes of prospectors competing for a very limited area. This paper charts significant gold rush events in the mineral industry in recent decades and uses preliminary data on the areas impacted by these gold rushes to argue that many mineral tenure systems should be modified in order to be better able...

  20. Residues R199H200 of prototype foamy virus transactivator Bel1 contribute to its binding with LTR and IP promoters but not its nuclear localization

    International Nuclear Information System (INIS)

    Ma, Qinglin; Tan, Juan; Cui, Xiaoxu; Luo, Di; Yu, Miao; Liang, Chen; Qiao, Wentao

    2014-01-01

    Prototype foamy virus encodes a transactivator called Bel1 that enhances viral gene transcription and is essential for PFV replication. Nuclear localization of Bel1 has been reported to rely on two proximal basic motifs R 199 H 200 and R 221 R 222 R 223 that likely function together as a bipartite nuclear localization signal. In this study, we report that mutating R 221 R 222 R 223 , but not R 199 H 200 , relocates Bel1 from the nucleus to the cytoplasm, suggesting an essential role for R 221 R 222 R 223 in the nuclear localization of Bel1. Although not affecting the nuclear localization of Bel1, mutating R 199 H 200 disables Bel1 from transactivating PFV promoters. Results of EMSA reveal that the R 199 H 200 residues are vital for the binding of Bel1 to viral promoter DNA. Moreover, mutating R 199 H 200 in Bel1 impairs PFV replication to a much greater extent than mutating R 221 R 222 R 223 . Collectively, our findings suggest that R 199 H 200 directly participate in Bel1 binding to viral promoter DNA and are indispensible for Bel1 transactivation activity. - Highlights: • The R 221 R 222 R 223 residues are essential for the nuclear localization of Bel1. • Although not affecting the nuclear localization of Bel1, mutating R 199 H 200 disables Bel1 from transactivating PFV promoters. • The R 199 H 200 residues directly participate in Bel1 binding to viral promoter DNA. • Mutating R 199 H 200 in Bel1 impairs PFV replication to a much greater extent than mutating R 221 R 222 R 223

  1. Clinical Significance and Prognostic Value of CA72-4 Compared with CEA and CA19-9 in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    M. Ychou

    2000-01-01

    Full Text Available Carcinoembryonic antigen (CEA and CA 19-9 are both widely used in the follow up of patients with gastrointestinal cancer. More recently another tumor marker, named CA 72-4 has been identified and characterized using two different monoclonal antibodies B72.3 and CC49. Several reports evaluated CA 72-4 as a serum tumor marker for gastric cancer and compared its clinical utility with that of CEA or CA 19-9; few reports concerned its prognostic value. In the present study, CA 72-4 is evaluated and compared with CEA and CA 19-9 in various populations of patients with gastric cancer and benign disease; for 52 patients with gastric adenocarcinoma and 57 patients without neoplastic disease CEA, CA 19-9 and CA 72-4 were evaluated before treatment. Sensitivity of the tumor markers CA 72-4, CA 19-9 and CEA at the recommended cut-off level in all 52 patients were 58%, 50% the sensitivity increased to 75%. of these markers, for non metastatic patients, multivariate analyses indicated that none of the markers were significant, when adjusted for gender and age (which were indicators of poor prognosis; patients with abnormal values of CA72-4 tended to have shorter survival than patients with normal values (p < 0.07. In the metastatic population, only high values of CA19-9 (p < 0.02 and gender (women (p < 0.03 were indicators of poor prognosis in univariate analysis; multivariate analysis revealed that both CA72-4 (p = 0.034 and CA19-9 p = 0.009, adjusted for gender were independent prognostic factors. However, CA72-4 lost significance (p = 0.41 when adjusted for CA19-9 and gender, indicating that CA19-9 provides more prognostic information than CA72-4.

  2. Nuclear excitation in muonic gold

    CERN Document Server

    Robert Tissot, B; Debrunner, P; Engfer, R; Link, R; Schellenberg, L; Schneuwly, H; Walter, H K

    1973-01-01

    Energies and intensities of muonic X-rays in gold were measured at the CERN muon channel with an experimental set-up as described by Backe et al. (1972). The 2p-1s and 3d-2p transitions could only be analysed taking into account beside the static quadrupole interaction a dynamical hyperfine interaction of the 2p states, which leads to an excitation of the first four nuclear levels. The dynamical hyperfine interaction was calculated using the core excitation model (de Shalit, (1961)). (0 refs).

  3. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  4. CERN: Fixed target targets

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-03-15

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become visible for the first

  5. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199.

    Directory of Open Access Journals (Sweden)

    Carolina Paola García

    Full Text Available Human embryonic stem cells (hESCs are hypersensitive to genotoxic stress and display lower survival ability relative to their differentiated progeny. Herein, we attempted to investigate the source of this difference by comparing the DNA damage responses triggered by the topoisomerase I inhibitor camptothecin, in hESCs, human induced pluripotent stem cells (hiPSCs and hESCs-derived neuroprogenitors (NP. We observed that upon camptothecin exposure pluripotent stem cells underwent apoptosis more swiftly and at a higher rate than differentiated cells. However, the cellular response encompassing ataxia-telangiectasia mutated kinase activation and p53 phosphorylation both on serine 15 as well as on serine 46 resulted very similar among the aforementioned cell types. Importantly, we observed that hESCs and hiPSCs express lower levels of the anti-apoptotic protein Bcl-2 than NP. To assess whether Bcl-2 abundance could account for this differential response we treated cells with ABT-263, WEHI-539 and ABT-199, small molecules that preferentially target the BH3-binding pocket of Bcl-xL and/or Bcl-2 and reduce their ability to sequester pro-apoptotic factors. We found that in the absence of stress stimuli, NP exhibited a higher sensitivity to ABT- 263 and WEHI-539 than hESCs and hiPSCs. Conversely, all tested cell types appeared to be highly resistant to the Bcl-2 specific inhibitor, ABT-199. However, in all cases we determined that ABT-263 or WEHI-539 treatment exacerbated camptothecin-induced apoptosis. Importantly, similar responses were observed after siRNA-mediated down-regulation of Bcl-xL or Bcl-2. Taken together, our results suggest that Bcl-xL contrary to Bcl-2 contributes to ensure cell survival and also functions as a primary suppressor of DNA double-strand brake induced apoptosis both in pluripotent and derived NP cells. The emerging knowledge of the relative dependence of pluripotent and progenitor cells on Bcl-2 and Bcl-xL activities may help

  6. Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bonanni, A.; Esplandiu, M.J. [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona (Spain); Valle, M. del [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona (Spain)], E-mail: manel.delvalle@uab.es

    2008-04-20

    Streptavidin-coated gold nanoparticles (strept-AuNPs) were used in this work to amplify the impedimetric signal generated in a biosensor detecting the DNA hybridization event. Probe oligomer was adsorbed onto a graphite epoxy composite (GEC) electrode surface and the impedance measurement was performed in a solution containing the redox marker ferrocyanide/ferricyanide. The biotinylated complementary oligomer was used as target. The change of interfacial charge transfer resistance (R{sub ct}), experimented by the redox marker, was recorded to confirm the hybrid formation. The addition of strept-AuNPs, binding to the target due to the strong streptavidin-biotin interaction, led to a further increment of R{sub ct} thus obtaining significant signal amplification. Strept-AuNPs on the electrode surface were observed by scanning electron microscopy (SEM) after silver enhancement treatment. A competitive binding assay was also performed using unlabelled DNA target to demonstrate its applicability to real sample analysis.

  7. Geochemical methodology for gold prospect ion in Uruguay

    International Nuclear Information System (INIS)

    Spangenber, J.

    1987-01-01

    This work is about the history of gold prospection in Uruguay. In this study there are considered the geochemical aspects, the gold performance, the applicability to mining prospection and the gold prospection aluvionar

  8. GOLD's coating and testing facilities for ISSIS-WSO

    Science.gov (United States)

    Larruquert, Juan I.; Méndez, José Antonio; Aznárez, José Antonio; Vidal-Dasilva, Manuela; García-Cortés, Sergio; Rodríguez-de Marcos, Luis; Fernández-Perea, Mónica

    2011-09-01

    ISSIS imager has been thought as an open purpose instrument within the World Space Observatory (WSO) international space mission. The highest priorities of ISSIS, an instrument to be developed by Spain, are to guarantee high spatial resolution and high sensitivity down to the far ultraviolet (FUV). The paper displays the capacities of GOLD for multilayer deposition and FUV reflectometry, among other metrologies, for ISSIS optical elements. Deposition of coatings for ISSIS-WSO will be carried out in a new UHV system with a 75-cm diameter deposition chamber. The purpose of the new laboratory is the deposition of coatings satisfying the constraints for FUV space optics. The first target coating to be developed in this new laboratory is Al protected with MgF2, with optimum reflectance down to ˜120 nm. GOLD's existing reflectometer is able to characterize flat pieces both by transmittance and reflectance, and the latter from near-normal to grazing incidence, in the range from 12 to 200 nm. Other metrologies that will be available at GOLD for ISSIS's coatings and filters include optical thickness of filters to assure parfocality, filter wedge, and coating and filter scattering.

  9. Gold emissivities for hydrocode applications

    Science.gov (United States)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-10-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.

  10. Gold emissivities for hydrocode applications

    International Nuclear Information System (INIS)

    Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.

    2004-01-01

    The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroes superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroes emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations

  11. Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water

    Science.gov (United States)

    Lau, Marcus; Haxhiaj, Ina; Wagener, Philipp; Intartaglia, Romuald; Brandi, Fernando; Nakamura, Junji; Barcikowski, Stephan

    2014-08-01

    Over three decades after the first synthesis of stabilized Au55-clusters many scientific questions about gold cluster properties are still unsolved and ligand-free colloidal clusters are difficult to fabricate. Here we present a novel route to produce ultra-small gold particles by using a green technique, the laser ablation and fragmentation in water, without using reductive or stabilizing agents at any step of the synthesis. For fabrication only a pulsed laser, a gold-target, pure water, sodium hydroxide and hydrogen peroxide are deployed. The particles are exemplarily hybridized to graphene supports showing that these carbon-free colloidal clusters might serve as versatile building blocks.

  12. Paper Money but a Gold Debt. Italy in the Gold Standard

    OpenAIRE

    Giuseppe Tattara; or consequences)

    2002-01-01

    During the 52 years between the Unification of the Kingdom of Italy and World War 1, the lira was legally convertible into metal for a limited period of time. Although not formally committed to gold, the lira exchange towards the gold standard countries proved remarkably stable, \\223shadowing\\224 gold. It is widely claimed that being one of the successful members of the gold standard circle entailed a number of advantages. If the lira was closely linked to gold, suggesting that there was only...

  13. CERN: Fixed target targets

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: While the immediate priority of CERN's research programme is to exploit to the full the world's largest accelerator, the LEP electron-positron collider and its concomitant LEP200 energy upgrade (January, page 1), CERN is also mindful of its long tradition of diversified research. Away from LEP and preparations for the LHC proton-proton collider to be built above LEP in the same 27-kilometre tunnel, CERN is also preparing for a new generation of heavy ion experiments using a new source, providing heavier ions (April 1992, page 8), with first physics expected next year. CERN's smallest accelerator, the LEAR Low Energy Antiproton Ring continues to cover a wide range of research topics, and saw a record number of hours of operation in 1992. The new ISOLDE on-line isotope separator was inaugurated last year (July, page 5) and physics is already underway. The remaining effort concentrates around fixed target experiments at the SPS synchrotron, which formed the main thrust of CERN's research during the late 1970s. With the SPS and LEAR now approaching middle age, their research future was extensively studied last year. Broadly, a vigorous SPS programme looks assured until at least the end of 1995. Decisions for the longer term future of the West Experimental Area of the SPS will have to take into account the heavy demand for test beams from work towards experiments at big colliders, both at CERN and elsewhere. The North Experimental Area is the scene of larger experiments with longer lead times. Several more years of LEAR exploitation are already in the pipeline, but for the longer term, the ambitious Superlear project for a superconducting ring (January 1992, page 7) did not catch on. Neutrino physics has a long tradition at CERN, and this continues with the preparations for two major projects, the Chorus and Nomad experiments (November 1991, page 7), to start next year in the West Area. Delicate neutrino oscillation effects could become

  14. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  15. Gold deposits of the southern Piedmont

    Science.gov (United States)

    Pardee, J.T.; Park, C.F.

    1948-01-01

    This report deals chiefly with the gold mines in the Southern Appalachian gold belt whose workings were accessible at the time of examination, but it also · summarizes available information concerning many mines that were not accessible. Most of the mines lie within a belt, 10 to 100 miles wide, that extends

  16. Nonlinear optical studies of single gold nanoparticles

    NARCIS (Netherlands)

    Dijk, Meindert Alexander van

    2007-01-01

    Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new

  17. Ionization model for nickel-like gold

    International Nuclear Information System (INIS)

    Busquet, M.; Bruneau, J.

    1986-04-01

    Before we build an extensive population model for gold ionized 49 to 52 times, we have studied with a more simple model the effect of accounting for cascades (or dielectronic recombination) and Δn = 0 transitions. These transitions allow some understanding of typical feature of experimental gold spectra

  18. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  19. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.

    1956-01-01

    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods

  20. Numerical simulations of nanostructured gold films

    DEFF Research Database (Denmark)

    Repän, Taavi; Frydendahl, Christian; Novikov, Sergey M.

    2017-01-01

    We present an approach to analyse near-field effects on nanostructured gold films by finite element simulations. The studied samples are formed by fabricating gold films near the percolation threshold and then applying laser damage. Resulting samples have complicated structures, which...

  1. Absorption of aluminium X-ray lines in a laser created gold plasma

    International Nuclear Information System (INIS)

    Combis, P.; Busquet, M.; Louis-Jacquet, M.

    1986-04-01

    We have studied the absorption of aluminium X-ray lines through a gold plasma by focusing a high intensity laser-beam onto a specific target. Absorption in the wavelength range of 5 to 7 A has been evidenced and measured for Aluminium resonance lines

  2. Gold-based optical biosensor for single-mismatched DNA detection using salt-induced hybridization

    DEFF Research Database (Denmark)

    Zhan, Zongrui; Ma, Xingyi; Cao, Cuong

    2011-01-01

    In this study, a gold nanoparticle (Au-NP)-based detection method for sensitive and specific DNA-based diagnostic applications is described. A sandwich format consisting of Au-NPs/DNA/PMP (Streptavidin-coated MagnetSphere Para-Magnetic Particles) was fabricated. PMPs captured and separated target...

  3. Changes in the expression of serum markers CA242, CA199, CA125, CEA, TNF-α and TSGF after cryosurgery in pancreatic cancer patients.

    Science.gov (United States)

    Zhou, Gang; Niu, Lizhi; Chiu, David; He, Lihua; Xu, Kecheng

    2012-07-01

    The presence of serum tumor markers, carbohydrate antigen 242 (CA242), carbohydrate antigen 199 (CA199), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), tumor-supplied group of factors (TSGF) and tumor necrosis factor-α (TNF-α), is closely associated with invasion and metastasis of many malignancies. The expression of these markers were measured in serum taken from 37 pancreatic cancer patients prior to treatment. Levels of CA242, CA199, CA125, CEA and TNF-α expression correlated with tumor size, clinical stage, tumor differentiation, lymph node and liver metastasis (P markers were significantly reduced compared with levels prior to cryosurgery (P 0.05). Thus, cryosurgery is more effective than chemotherapy for decreasing CA242, CA199, CA125, CEA, TSGF and TNF-α serum levels in these patients.

  4. Delayed radiation-induced inflammation accompanying a marked carbohydrate antigen 19-9 elevation in a patient with resected pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Malcolm D.; Cardinal, Jon S.; Jacobson, Geraldine M. [West Virginia University School of Medicine, Morgantown (United States)

    2016-06-15

    Although carbohydrate antigen (CA) 19-9 is a useful tumor marker for pancreatic cancer, it can also become elevated from a variety of benign and malignant conditions. Herein we describe an unusual presentation of elevated CA 19-9 in an asymptomatic patient who had previously undergone adjuvant chemotherapy and radiation therapy for resected early stage pancreatic cancer. The rise in CA 19-9 might be due to delayed radiation-induced inflammation related to previous intra-abdominal radiation therapy with or without radiation recall induced by gemcitabine. After treatment with corticosteroids the CA 19-9 level decreased to normal, and the patient has not developed any evidence of recurrent cancer to date.

  5. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  6. Feasibility of MR imaging in evaluating breast cancer lymphangiogenesis using Polyethylene glycol-GoldMag nanoparticles

    International Nuclear Information System (INIS)

    Yang, H.; Zou, L.G.; Zhang, S.; Gong, M.F.; Zhang, D.; Qi, Y.Y.; Zhou, S.W.; Diao, X.W.

    2013-01-01

    Aim: To investigate the feasibility of evaluating tumour lymphangiogenesis using magnetic resonance imaging (MRI) in vivo. Materials and methods: Water-soluble polyethylene glycol (PEG)-GoldMag nanoparticles were obtained by combining GoldMag with PEG. The PEG-GoldMag nanoparticles were bound to anti-podoplanin antibody (PodAb) to construct PEG-GoldMag-pod molecular probes targeting lymphatic endothelial cells (LECs). The characteristics of the PEG-GoldMag-pod nanoparticles were tested. Using these nanoparticles, tumour lymphangiogenesis was evaluated using MRI in vitro and in vivo. Results: The average size of PEG-GoldMag nanoparticles was about 66.8 nm, and the nanoparticles were stably dispersed in the liquid phase for at least 15 days. After incubation for 24 h at different iron concentrations ranging from 5–45 μg/ml, the LECs were labelled with PEG-GoldMag-pod nanoparticles, in particular the breast cancer LECs. Dose-dependence was observed in the labelling efficiencies and MRI images of the labelled cells. In vitro, the labelling efficiencies and MRI images showed that the nanoparticles could detect podoplanin expression in LECs. In induced rat models of breast cancer, PEG-GoldMag-pod nanoparticles combined with lymphatic vessels were significantly detectable at MRI 60 min after nanoparticle administration, the signal intensity was negatively correlated with the lymphatic vessel density of breast cancer (r = −0.864, P = 0.000). Conclusions: The present study proves the feasibility of evaluating tumour lymphangiogenesis with MRI in vivo

  7. Copper-gold nanoparticles: Fabrication, characteristic and application as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Woźniak-Budych, Marta J., E-mail: marta.budych@amu.edu.pl; Langer, Krzysztof; Peplińska, Barbara; Przysiecka, Łucja; Jarek, Marcin; Jarzębski, Maciej; Jurga, Stefan

    2016-08-15

    In this investigation, the fabrication of porous core/shell nanostructures consisting of copper (core) and copper-gold nanoalloy (shell) for medical applications is presented. As a core triangular-shaped copper nanoparticles were used. The porous bimetallic nanoshell was prepared via galvanic reaction in the presence of oil-in water emulsion. It was proved that porous nanoalloy layer can be prepared at pH 7 and in the presence 0.1% and 0.5% oil-in water emulsion. The porous structure fabrication was mainly determined by volume fraction of hexadecane to acetone in the oil-in water emulsion and Zeta-potential of emulsion droplets (pH of emulsion). The influence of emulsion droplets size before galvanic reaction on porous structure preparation was negligible. It was found that doxorubicin could be easily introduced and released from porous core/shell nanostructures, due to spontaneous adsorption on the copper-gold nanoporous surface. The in vitro test showed that cytotoxic effect was more prominent once the doxorubicin was adsorbed on the porous copper-gold nanocarriers. It was demonstrated, that doxorubicin-loaded copper-gold nanostructures caused inhibition cell proliferation and viability of cancer cells, in a concentration-dependent manner. The results indicates that presented coper-gold nanocarrier have potential to be used in targeted cancer therapy, due to its porous structure and cytotoxic effect in cancer cells. - Highlights: • Porous copper-gold nanostructure as a cytostatic drug carrier was prepared. • Kinetics and thermodynamics of drug adsorption were studied. • DOX-loaded copper-gold nanoparticles showed a pH-controlled release rate. • DOX-loaded copper-gold NPs caused inhibition cell proliferation of cancer cells. • The Cu-Au NPs could serve as a theranostic platform for biomedical applications.

  8. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: towards the high detection limit and Raman quantitative measurements.

    Science.gov (United States)

    Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O

    2017-08-07

    A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.

  9. Gold analysis by the gamma absorption technique

    International Nuclear Information System (INIS)

    Kurtoglu, Arzu; Tugrul, A.B.

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement

  10. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  11. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.

    Science.gov (United States)

    Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P

    2015-01-01

    We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.

  12. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  13. Proposed cut-off value of CA19-9 for detecting pancreatic cancer in patients with diabetes: a case-control study.

    Science.gov (United States)

    Murakami, Mariko; Nagai, Yoshio; Tenjin, Ayumi; Tanaka, Yasushi

    2018-04-11

    Pancreatic cancer is a highly lethal malignancy. CA19-9 is a well-known marker for diagnosis of pancreatic cancer, but the serum CA19-9 level is reported to be elevated in patients with poorly controlled diabetes. This study evaluated the sensitivity, specificity, and cut-off value of serum CA19-9 for detection of pancreatic cancer in patients with diabetes. A case-control study of 236 patients was performed. The case group was selected from diabetic patients with pancreatic cancer, while one control was selected for each case from among diabetic patients without pancreatic cancer during the same period. The case group (n = 118) and the control group (n = 118) were matched for age, sex, and pancreatic cancer risk factors. Receiver operating characteristic (ROC) curves were plotted to determine the serum CA19-9 level that predicted pancreatic cancer. Then the sensitivity and specificity of CA19-9 were calculated for the threshold value. There were no significant differences of age, sex, BMI, smoking, alcohol intake, and HbA1c between the case and control groups. According to ROC analysis, a serum CA19-9 level of 75 U/mL had the maximum sensitivity and specificity for separating diabetic patients with or without pancreatic cancer. Using this cut-off value, the sensitivity and specificity of CA19-9 for pancreatic cancer was 69.5% and 98.2%, respectively, while the area under the ROC curve was 0.875 [95%CI: 0.826-0.924]. We propose that a serum CA19-9 level of 75 U/mL should be used as the cut-off value when screening patients with diabetes for pancreatic cancer.

  14. Assessment of the diagnostic value of combined determination of serum CA199 CA125 and CEA in patients with cancer of pancreas

    International Nuclear Information System (INIS)

    Wu Congshan; Liu Xugui

    2005-01-01

    Objective: To assess the diagnostic value of combined determination of serum CA199, CA125 and CEA for cancer of pancreas. Methods: Serum CA199, CA125 and CEA levels were detected with CLIA in 32 patients with cancer of pancreas and 36 controls. Results: Positive detection rate of CA199 in patients with cancer of pancreas was 90.6% (29/32). Positive rate for CA125 and CEA was 65.6% (21/32) and 46.9% (15/32) respectively. With combined determination of these 3 tumor markers, the positive rate was 96.9% (31/32). The mean content of serum CA199 after successful operation (32.5±8.4U/ml) was significantly lower than that before operation (840.2 ± 102.5U/ml) (P<0.01). Conclusion: Combined determination of CA199, CA125 and CEA would improve the detection rate of cancer of pancreas and post-operative changes of CA199 could be of prognostic value. (authors)

  15. Clinical value of multi-tumor markers detection with (CEA, CA19-9, CA72-4) for diagnosis of gastric malignancy

    International Nuclear Information System (INIS)

    Liu Yun; Li Jiangang

    2007-01-01

    Objective: To assess the clinical value of multi-tumor markers detection with (CEA, CA19-9, CA72-4) for diagnosis of gastric malignancy. Methods: Serum CEA, CA19-9, CA72-4 contents were measured with IRMA in 228 patients with gastric malignancies, 152 patients with benign gastric disorders and 200 controls. Results: The positive rates of single marker detection were all above 70% and that of CA72-4 was the highest (84.21%), next was CA19-9 (75.43%). Three tumor markers were all negative in only 4 cases (false negative rate was 1.75% ). So combined detection of 3 tumor markers could improve the positive rate to 98.25%. With combined determination of two markers, double positive rate for different sets of combinations was: 61.84% for CA72-4 + CA19-9, 51.31% for CA72-4 + CEA and 48.24% for CEA + CA19-9. Conclusion: It was suggested that for screening, CA72-4 was the first choice in single marker detections, and CA72-4 + CA19-9 was the first choice for combined detections of two markers. For follow-up, a combination of 2 markers with highest positive rate for the specific histopathologic type (i. e. carcinoma, leiomyosarcoma or lymphosarcoma) should be used throughout the study. (authors)

  16. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  17. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  18. Ice targets

    International Nuclear Information System (INIS)

    Pacheco, C.; Stark, C.; Tanaka, N.; Hodgkins, D.; Barnhart, J.; Kosty, J.

    1979-12-01

    This report presents a description of ice targets that were constructed for research work at the High Resolution Spectrometer (HRS) and at the Energetic Pion Channel and Spectrometer (EPICS). Reasons for using these ice targets and the instructions for their construction are given. Results of research using ice targets will be published at a later date

  19. Worth their weight in gold

    International Nuclear Information System (INIS)

    Van Ryssen, E.

    1986-01-01

    A radiotherapeutic method of treating tumours in, on and around the eye, developed and improved over more than a decade of research at the University of Cape Town's Medical School and at the city's Groote Schuur Hospital, has won worldwide recognition. A problem when irradiating eye tumours is that the rays can damage surrounding tissues. Professor Sealy's team overcome this problem by using tailor-made gold or stainless steel shields moulded indiridually to fit the curve of the eyeball of each patient. Depending on the location of the tumour, small radioactive seeds of iodine 125 are placed on the inner or outer curve of the shield in such a way that their rays are confined to the desired location. The number and position of the seeds is worked out to give the desired dose of radiation

  20. Gold nanoparticles: generation and characterization

    International Nuclear Information System (INIS)

    Dey, G.R.

    2013-07-01

    In this presentation we report the reduction of Au 3+ through chemical and free radical (e solv - ) reactions both in non-aqueous and aqueous media. In chemical reduction, the spectral nature in ascorbic acid (AA) and citric acid (CA) systems was different. The band intensity of gold nanoparticles was lower in AA system. While in free radical reaction, the yield of nanoparticles was pure i.e. free from excess reactants. Under the study 60-200 nm size nanoparticles were generated, which are inert to oxygen. Using pulse radiolysis technique, the initial rate for e solv - reaction with Au 3+ was determined to be 7.6 x 10 9 M -1 s -1 . (author)