WorldWideScience

Sample records for gol-3 device

  1. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon.

    Science.gov (United States)

    Filiz, Ertugrul; Ozyigit, Ibrahim Ilker; Vatansever, Recep

    2015-10-01

    GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. First results on the GOL-3-II facility

    International Nuclear Information System (INIS)

    Agafonov, M.A.; Arzhannikov, A.V.; Astrelin, V.T.

    1996-01-01

    The first experiments on injection of 8-s, 200-kJ GOL-3-II relativistic electron beam into a plasma are reported. The possibility of a macroscopically stable beam transport through a plasma column 12 m long under the conditions of the developed plasma microturbulence is demonstrated. As a result of collective beam-plasma interaction the effective heating of a dense plasma (∼ 1015 cm -3 ) is observed. According to the data from Thomson scattering the plasma electrons are heated up to the temperature of ∼ 1 keV, the beam energy loss reaching 25-30 %. Putting the facility into operation opens up prospects to carry out the experiments with a dense and hot plasma in a multimirror trap. (J.U.). 4 figs., 10 refs

  3. Modification of preheated tungsten surface after irradiation at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Arzhannikov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Huber, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Ivanov, I.A. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kuklin, K.N. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V.; Postupaev, V.V.; Sinitsky, S.L. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vasilyev, A.A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-12-15

    Highlights: • Preheated tungsten was irradiated at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. • The crack pattern and the quantity of bubbles depend on the initial temperatures of the target. • The orientation of major crack networks correlates with the direction of machining of the samples. • Dust impact craters were found. - Abstract: The study is devoted to tungsten surface modification after irradiation at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. In order to emulate heating with a steady plasma flux in the ITER divertor, some of the tungsten samples were preheated up to 500 °C. It was found out that the behavior of the surface modification (the crack pattern and the number of bubbles) depends on the initial temperature of the targets. While the orientation of major crack networks correlates with the direction of machining of the samples. Afterwards we have observed the process of craters’ formation caused by dust particle impacts.

  4. First results on dense plasma confinement at the multimirror open trap GOL-3-II

    International Nuclear Information System (INIS)

    Koidan, V.S.; Arzhannikov, A.V.; Astrelin, V.T.

    2001-01-01

    First results of experiments on plasma confinement in multimirror open trap GOL-3-II are presented. This facility is an open trap with total length of 17 m intended for confinement of a relatively dense (10 15 -10 17 cm -3 ) plasma in axially-symmetrical magnetic system. The plasma heating is provided by a high-power electron beam (1 MeV, 30 kA, 8 ms, 200 kJ). New phase of the experiments is aimed to confinement of high-β thermalized plasma. Two essential modifications of the facility have been done. First, plasma column was separated by vacuum sections from the beam accelerator and exit beam receiver. Second, the magnetic field on part of the solenoid was reconfigured into multimirror system with H max /H min ∼1.5 and 22 cm cell length. Results of the experiments at modified configuration of the device indicate that the confinement time of the plasma with n e ∼(0, 5/5)·10 15 cm -3 and T e ∼1 keV increases more than order of magnitude. (author)

  5. Incidência temporal dos gols na Copa Libertadores da Améric

    Directory of Open Access Journals (Sweden)

    Filipe Gomide Carelli

    2017-01-01

    Full Text Available Resumo Introdução: O Futebol é uma modalidade complexa e muitos fatores podem levar ao gol. Pesquisas acerca do gol mostram existir momentos críticos dentro da partida, onde os gols acontecem com maior frequência. Objetivo: Analisar a incidência temporal dos gols na Libertadores 2014. Materiais e Métodos: O estudo é descritivo. Analisou-se 126 jogos das 32 equipes participantes. A coleta dos dados foi realizada diretamente do site da CONMBOL. Cada gol foi classificado de acordo com sua incidência em um dos seis períodos: 0-15 minutos; 16-30 minutos; 31-45 minutos (incluindo os acréscimos; 46-60 minutos; 61-75 minutos e 76-90 (incluindo os acréscimos. Resultados: Foram marcados 324 gols em 126 jogos, obtendo uma média de 2,5 gols por jogo. Os gols foram realizados em sua maioria no segundo tempo das partidas com destaque para os últimos quinze minutos do jogo onde aconteceu 25,31% (n=82 dos gols. Discussão: Marques Junior (2015, em seu trabalho de revisão acerca das evidências sobre o gol no Futebol, encontrou que 55% dos gols acontecem no segundo tempo. Na Copa Libertadores da América de 2014, 25,31% dos gols aconteceram nos últimos 15 minutos. Essa evidência vai de encontro com os resultados da literatura. Fatores táticos, técnicos, físicos, nutricionais e psicológicos podem estar levando a estes resultados. Conclusão: A maioria dos gols ocorreram na segunda etapa da partida com enfâse nos ultimos quinze minutos do jogo. ABSTRACT Incidence of the goals in the Copa Libertadores of America Introduction: Football is a complex and many factors can lead to the goal. Research about the goal shows exist critical moments in the match, where the goals happen more frequently. Objective: to Analyze the temporal incidence of goals in Copa Libertadores 2014. Materials and Methods: The study is descriptive. Analyzed 126 sets of 32 participating teams. The data collection was carried out directly from the CONMBOL Web site. Each goal

  6. Microstructure and geochemical evidences for genesis of the Gol-Gohar iron deposit

    Directory of Open Access Journals (Sweden)

    Shahryar Mahmoudi

    2017-11-01

    Full Text Available Introduction The Gol-Gohar iron ore deposit located in 55 km South West of the city of Sirjan, in the Sanandaj-Sirjan structural zone. Sanandaj-Sirjan zone (SSZ is part of the Alpian-Hymalian orogenic belt and it is located in the west of the central Iran microplate. SSZ represented the metamorphic belt of the Zagros orogeny, that extends for 1500 km from Sirjan in the southeast to Sanandaj in the northwest of Iran (Mohajjel et al, 2003. The Gol-Gohar iron ore deposit is surrounded by a complex of igneous and metamorphic rocks mainly consisting of pelitic schists, basic schists, gneiss, amphibolite, marble, granodiorit, granite and mylonitic granite. In the early studies on the genesis of Gol-Gohr iron deposits, it was considered that sedimentary and tectonic processes were more effective in iron ore deposition. Later studies mainly confirmed a magmatic genesis for Gol-Gohar iron ore (Mucke and Golestaneh, 1982. Although some researchers argued that skarnisation process was the main cause of mineralisation (Hallaj and Jacobpor, 1991؛ Torabian, 2007, still some discussions on Gol-Gohr genesis are underway. Materials and methods – Gol-Gohar mine is divided into three blocks and several exploratory boreholes have been drilled down to 200 to 1400m depths in the third block. The representative samples were taken from exploration drill holes and outcrops around the mine. Microscopic observation (Zeiss Aksioscope in thin and polish sections show that the main ore mineral in the Gol-Gohar deposit is magnetite formed into two types with distinctive optical properties; the milky-gray magnetite (type1 named also “upper ore” and blue to brown magnetite (type2 named also “lower ore” (Mucke and Golestaneh, 1982. Mineralogy and microtectonic study were carried out on 100 thin and 30 polished sections using Zeiss research microscope. For geochemical analyses 20 samples were selected from 3 major exploration drill holes. After whole rock chemical

  7. Study of plasma-surface interaction at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S., E-mail: asarakcheev@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arzhannikov, A.V., E-mail: A.V.Arzhannikov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V., E-mail: a.v.burdakov@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Ivanov, I.A., E-mail: I.A.Ivanov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kasatov, A.A., E-mail: a.a.kasatov@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kuklin, K.N., E-mail: K.N.Kuklin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V., E-mail: S.V.Polosatkin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Postupaev, V.V., E-mail: V.V.Postupaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Sinitsky, S.L., E-mail: S.L.Sinitsky@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); and others

    2017-01-15

    The review presents experimental studies of plasma-surface interaction and materials behavior under plasma loads done in the multiple-mirror trap of the GOL-3 facility. In the experiments for the PSI, the energy density in the extracted plasma stream varies from 0.5 to 30 MJ/m{sup 2}. Parameters of near-surface plasma measured by a set of diagnostics are reviewed. Surface patterns of targets exposed to the plasma are analyzed. The erosion depth depends on the energy loads—it rises from 0 to 600 μm at 0.5 and 30 MJ/m{sup 2}, correspondingly. Cracking and evolution of graphite and tungsten surface morphology are discussed. The enthalpy of brittle destruction of graphite (10 kJ/g), which determines the threshold of bulk damage of targets irradiated with a charged-particle flux with large penetration depth, was determined. Comparison of different facilities for PSI studies are presented. Heat flux play a key role to the target surface erosion.

  8. Indicadores tácticos asociados a la creación de ocasiones de gol en fútbol profesional

    Directory of Open Access Journals (Sweden)

    Joaquín González-Ródenas

    2015-01-01

    Full Text Available El objetivo de este estudio fue describir cómo son creadas las ocasiones de gol en fútbol profesional, te- niendo en cuenta indicadores tácticos ofensivos y la posición del equipo rival. 335 posesiones finalizadas en ocasión de gol durante los 16 partidos de fase elimina- toria del Mundial de futbol 2010 fueron analizadas. De cada posesión, 15 dimensiones tácticas fueron evaluadas mediante metodología observacional usando el instru- mento REOFUT. El 61,2% de las ocasiones de gol fueron creadas por ataque organizado, el 18,8% a través de contraataque y el 20,0% mediante acción a balón para- do. El ataque organizado se caracterizó por iniciarse en zonas no invasivas del rival (63,4%, con acción inicial no penetrante (62,4% y usando 4 o más pases (62,0%. El contraataque se inició en zonas invasivas del rival (71,4% con acción inicial penetrante (76,2% y usando 3 o menos pases (67,8%. Las ocasiones de gol produ- cidas por contraataques tuvieron lugar en sub-espacios más invasivos (p = 0.023 que aquellas producidas por el ataque organizado aunque para ambos la Zona Retrasa- da Rival fue donde más ocasiones de gol se produjeron (42,9% vs 36,1%, respectivamente. En las acciones a ba- lón parado destacaron los saques de esquina (49,3% y el tiro libre (44,3%. Indicadores tácticos como el tipo de ataque, el nivel de invasión sobre el rival, la penetración inicial y el número de pases deberían tenerse en cuenta en el análisis y entrenamiento del desarrollo de las po- sesiones en fútbol. Además, la zona retrasada rival es clave para la culminación de ocasiones de gol en fútbol profesional.

  9. Spin-Spin Relaxation and Karyagin-Gol'danskii Effect in FeCl3·6H2O

    DEFF Research Database (Denmark)

    Thrane, N.; Trumpy, Georg

    1970-01-01

    . Qualitatively, the experimental results can be explained by a combination of a temperature-and magnetic-field-dependent spin-spin relaxation and the Karyagin-Gol'danskii effect. This implies that the zero-field splitting is about 20°K between the lowest-lying Kramers doublet, found to be the |±1 / 2...

  10. Experiments on two-step heating of a dense plasma in the GOL-3 facility

    International Nuclear Information System (INIS)

    Astrelin, V.T.; Burdakov, A.V.; Koidan, V.S.; Mekler, K.I.; Mel'nikov, P.I.; Postupaev, V.V.; Shcheglov, M.A.

    1998-01-01

    This paper presents the results of experiments on two-stage heating of a dense plasma by a relativistic electron beam in the GOL-3 facility. A dense plasma with a length of about a meter and a hydrogen density up to 10 17 cm -3 was created in the main plasma, whose density was 10 15 cm -3 . In the process of interacting with the plasma, the electron beam (1 MeV, 40 kA, 4 μs) imparts its energy to the electrons of the main plasma through collective effects. The heated electrons, as they disperse along the magnetic field lines, in turn reach the region of dense plasma and impart their energy to it by pairwise collisions. Estimates based on experimental data are given for the parameters of the flux of hot plasma electrons, the energy released in the dense plasma, and the energy balance of the beam-plasma system. The paper discusses the dynamics of the plasma, which is inhomogeneous in density and temperature, including the appearance of pressure waves

  11. Evidências científicas sobre o gol do futebol: Uma revisão sistemática / Scientific evidences about the goal of the football: a systematic review

    OpenAIRE

    Marques Junior, Nelson Kautzner; Mestre em Ciência da Motricidade Humana pela Universidade Castelo Branco, RJ, Brasil.

    2015-01-01

    O objetivo do estudo foi determinar as evidências científicas sobre o gol do futebol. A revisão sistemática utilizou metodologia proposta pelo PRISMA. Os estudos foram identificados em bases eletrônicas. Os resultados foram os seguintes: mais gols ocorreram durante 76 a 90 minutos do 2º tempo e as equipes que praticaram gols antes de 15 minutos geralmente venceram. A região do campo que os jogadores de futebol praticaram mais gols foi dentro da área. Em conclusão, estudo sobre os gols é impor...

  12. Business Model as an Inducer of Disruptive Innovations: The Case of Gol Airlines

    Directory of Open Access Journals (Sweden)

    Sirlei de Almeida Pereira

    2015-10-01

    Full Text Available This study was undertaken to investigate the premises that the success of disruptive innovation is related to the business model adopted by organizations. An analysis of five business models from the literature review - Bovet and Martha (2000, Applegate (2001, Chesbrough and Rosenbloom (2002, Osterwalder and Pigneur (2010, and Rodrigues, Maccari and Lenzi (2012 – was conducted based on the case of the Brazilian Gol Airlines who is recognized as a success business that promoted a disruptive innovation. The results suggest that the assertive choice of the business model can leverage innovation processes, and two of the models listed are adherence to the case studied. Keywords: Disruptive Innovation; Business Model; Innovation Elements; Strategy; Gol Airlines.

  13. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran.

    Science.gov (United States)

    Malvandi, Hassan

    2017-04-15

    The major objectives of the study were to test the hypothesis of the Zarrin-Gol River as a reference site for ecotoxicological studies and to assess the contamination degree of heavy metals and metalloids in the river using four contamination indices. For these purposes, eleven heavy metal and metalloid concentrations were analyzed. The average concentrations (mgkg -1 ) in the sediments were: 37.67 (chromium) 286.28 (manganese), 13,751.04 (iron), 8.79 (cobalt), 12.39 (nickel), 32.68 (zinc), 21.91 (arsenic), 40.59 (selenium), 2923.86 (aluminum), ND (silver) and 785.96 (magnesium). Contamination factor, enrichment factor, pollution load index, and geoaccumulation index were calculated to evaluate the contamination degree and influence of human activities on heavy metal levels. The contamination indices of the sediment samples showed that arsenic and selenium were the highest pollutants. The results indicated that the Zarrin-Gol River could not be used as a reference site at least for arsenic and selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Examining Individual Differences in Interpersonal Influence: On the Psychometric Properties of the Generalized Opinion Leadership Scale (GOLS).

    Science.gov (United States)

    Batinic, Bernad; Appel, Markus; Gnambs, Timo

    2016-01-01

    Opinion leadership describes an individual's tendency to informally influence others' attitudes and overt behaviors. In contrast to contemporary views of opinion leadership as a highly domain-specific trait, this paper introduces a multi-faceted personality trait, generalized opinion leadership (GOL) that characterizes exceptionally influential individuals independent of a specific subject area. Two studies report on the psychometric properties of a scale to assess GOL. Study 1 is based on three independent samples (N = 1,575, N = 1,275, and N = 231) and demonstrates the factorial structure of the instrument and its measurement invariance across sex, age, and educational levels. Study 2 (N = 310) analyzes multitrait-multiinformant data to highlight the scale's discriminant validity with regard to innovativeness and trendsetting.

  15. Business Model as an Inducer of Disruptive Innovations: The Case of Gol Airlines

    OpenAIRE

    Pereira, Sirlei de Almeida; Imbrizi, Fabricio Garcia; de Freitas, Alessandra Demite Goncalves; Alvarenga, Marcelo Aparecido

    2015-01-01

    This study was undertaken to investigate the premises that the success of disruptive innovation is related to the business model adopted by organizations. An analysis of five business models from the literature review - Bovet and Martha (2000), Applegate (2001), Chesbrough and Rosenbloom (2002), Osterwalder and Pigneur (2010), and Rodrigues, Maccari and Lenzi (2012) – was conducted based on the case of the Brazilian Gol Airlines who is recognized as a success business that promoted a disrupti...

  16. The Kara Bogaz Gol Bay, Lake Issyk Kul and Aral Sea sediments as archives of climate change in the Aral-Caspian catchment basin

    International Nuclear Information System (INIS)

    Ferronsky, V.I.; Brezgunov, V.S.; Vlasova, L.S.; Karpychev, Y.A.; Polyakov, V.A.; Bobkov, A.F.; Romanovsky, V.V.; Johnson, T.; Ricketts, D.; Rasmussen, K.

    2002-01-01

    A 5-m long core of bottom sediments from the Kara Bogaz Gol Bay of the Caspian Sea, 4- m and 2-m cores from the Issyk Kul Lake of the Thian Shan Mountains, and a 4-m core from the Aral Sea were examined for evidence of climatic and environmental changes in the catchment basin of the Central Asia Region. The distribution of 18 O and 13 C in the bulk carbonates, 2 H in the pore water, radiocarbon age, oxygen and hydrogen isotopes in the lake water, abundance of CaCO 3 , MgCO 3 , and the basic salt ions of Na + , K + , Cl - , SO 4 2- in the cores were measured. The isotope and hydrogeochemical data of the Kara Bogaz Gol Bay sediments prove a historical scenario for the basin which suggests that fresh water has been discharged to the Caspian Sea during the Bay's humid episode across the Central Asia Region (∼ 9 Ka BP). Isotope and geochemical evidence indicate that the sedimentation of the upper core segment has taken place during the last ∼2.2 Ka BP in the environment of sea water recharged from the Central Caspian Basin. The period of between 4.3 and 6 Ka BP, which relates to the core depth interval of between 170 cm and 260 cm, demonstrates the most dramatic change in the sedimentation rate in the Issyk Kul Lake. It means that active melting of the mountain glaciers and warming of climate has happened just in this period. The swamp plant peat layers at depths of 230 cm and 130 cm indicate that during 3.5-3.7 Ka BP and 1.6-1.8 Ka BP the Aral Sea dried and broke up into a number of lakes and swamps. Sediment cores taken from the bottom of the Kara Bogaz Gol Bay, Lake Issyk Kul and Aral Sea show periodic rise and fall in water levels during the last ∼10 000 years. Two peat layers within the sediment core of the Aral Sea and dated at 1.6-1.8 Ka BP and 3.5-3.7 Ka BP demonstrate that this reservoir also periodically dried. (author)

  17. Tectonic significance of the Xilin Gol Complex, Inner Mongolia, China: Petrological, geochemical and U–Pb zircon age constraints

    NARCIS (Netherlands)

    Li, Y.; Zhou, H; Brouwer, F.M.; Wijbrans, J.R.; Zhong, Z.; Liu, H.

    2011-01-01

    The Xilin Gol Complex, consisting of strongly deformed and metamorphosed rocks, is exposed as a large tectonic unit within the Central-Asian Orogenic Belt (CAOB). It is located on the Xilinhot-Sonidzuoqi north-dipping thrust belt and near the Solonker suture zone that is widely regarded to record

  18. Relationships between nutrients and chlorophyll a concentration in the international Alma Gol Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Saeed Balali

    2013-05-01

    Full Text Available This study investigated the relationships between nutrients and chlorophyll, a concentration in the International Alma Gol Wetland. Chlorophyll a is the major photosynthetic pigment in lots of phytoplanktons and has been used as a trophy index in aquatic ecosystems. Water samples were collected fortnightly from five stations in the wetland during summer and autumn. Chlorophyll-a ranged between 4.38 to 156.55 mg/m3, sulfate ranged between 138 to 190 mg/l, total alkalinity ranged between 80 to 280 mg/l, silica ranged between 3.80 to 35.00 mg/l, phosphate ranged between 0.02 to 3.70 mg/l, ammonia ranged between 0.10 to 11.90 mg/l, nitrate ranged between 0.01 to 2.75 mg/l and nitrite ranged between 0.01 to 0.39 mg/l. There was a significant correlation between chlorophyll a and nitrate, nitrite and ammonia but there was no significant correlation between chlorophyll a and silica, total alkalinity, sulfate and phosphorus.

  19. Mercury contamination in Khramulia (Capoeta capoeta) from the Cheshme Kile and Zarrin Gol Rivers in Iran and human health risk assessment.

    Science.gov (United States)

    Malvandi, Hassan; Sari, Abbas Esmaili; Aliabadian, Mansour

    2014-10-01

    Total mercury concentrations were determined in muscle tissue of Khramulia (Capoeta capoeta) captured in the Cheshme Kile and Zarrin Gol Rivers, Iran. In Cheshme Kile River, 49 fish samples were collected. The mean total mercury concentration in the muscles of C. capoeta from this area was 249 ng g(-1) dw. In Zarrin Gol River, where 62 fish samples were collected, the total mercury in muscles averaged 164 ng g(-1) dw. A significant difference was found between means of mercury in the rivers (p rivers had mean mercury concentrations below the maximum allowable limits for mercury set by the Food and Agriculture Organization, World Health Organization, Standardization Administration of China and Environmental Protection Agency. The results of this study indicate that the values of hazard target quotient and estimated weekly intake are low and represent a negligible risk for human health.

  20. ANÁLISIS DE LA ACCIÓN DE GOL EN EL PORTERO DE HOCKEY HIERBA

    Directory of Open Access Journals (Sweden)

    J. Sampedro

    2010-09-01

    Full Text Available

     

    RESUMEN

    El objetivo fundamental del estudio es analizar el rendimiento del portero de hockey hierba, desde la perspectiva del número de goles encajados en función de la zona de tiro y del lugar por donde entra el lanzamiento. Se analizó una muestra de 278 lanzamientos a portería que acabaron en gol, marcados a 30 porteros/as de nivel internacional de selecciones nacionales absolutas. La técnica de recogida de datos empleada fue la observación sistemática utilizando para ello la base de datos OBANGOHH (Piñeiro, 2006. Los resultados obtenidos determinan que la zona de la tabla, la zona izquierda de la portería, la zona GIT, y el poste largo, son “puntos débiles” del portero/a. Los porteros/as tienen mayores o menores probabilidades de encajar gol dependiendo de la zona del área desde la que tira el delantero y la zona de portería por la que entra el lanzamiento. Además existen diferencias significativas en relación al género del portero. El nivel de significación establecido fue del 95% (p<0,05.
    Palabras Clave: hockey hierba, rendimiento, portero, gol.

     

    ABSTRACT

    The main aim of the study is to analyze the performance of field hockey goalkeeper, from the perspective of the number of goals achieved depending on the zone of shot and of the place where the throwing was goal. 278 shots on goal scored to different goalkeepers of international level of senior national teams were analyzed. According to Piñeiro (2006, the technique of collection of the data used was the systematic observation; using for it the notational data base OBANGOFH. The obtained results determine that the side-boards and back-boards zone, the left zone of the goal, the zone

  1. What drives the gender gap in STEM? The SAGA Science, Technology and Innovation Gender Objectives List (STI GOL) as a new approach to linking indicators to STI policies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E.; Schaaper, M.; Bello, A.

    2016-07-01

    There is a large imbalance in the participation of women in Science, Technology, Engineering and Mathematics (STEM) fields across all of Latin American countries despite the fact that the region has one of the highest proportions of female researchers worldwide (44% according to UIS statistics). Female researchers face persisting institutional and cultural barriers, which limit the development of their careers and constrains their access to decision-making positions. In this framework, UNESCO has launched the STEM and Gender Advancement (SAGA) project, which has for objective to address the gender gap in STEM fields in all countries at all levels of education and research as well as to promote women’s participation in science. SAGA is a global UNESCO project with the support of the Swedish Government through the Swedish International Development Cooperation Agency (Sida). One of the outcomes of this project is the SAGA Science, Technology and Innovation Gender Objectives List (STI GOL), which is an innovative tool that aids in the identification of gaps in the policy mix. Additionally, the STI GOL configures the conceptual backbone of the SAGA project, by linking gender equality STI policy instruments with indicators. By using the STI GOL, and identifying the gender gaps, policy-makers will be able to implement evidence-based policies in STEM fields. The SAGA STI GOL is a new and innovative way of contributing to the development of effective gender sensitive policies in STI fields, both in education and in the workplace. Likewise, it enables the categorization of STI policies and instruments, with the objective of identifying gaps in the policy mix and aid in the creation and design of evidence-based public policies to promote gender equality. (Author)

  2. Juros sobre capital próprio: um estudo da economia tributária nas empresas Gol e Tam

    Directory of Open Access Journals (Sweden)

    Sérgio Murilo Petri

    2013-11-01

    Full Text Available Esta pesquisa tem como objetivo evidenciar a economia tributária obtida pelas empresas de transporte aéreo GOL e TAM por meio da utilização dos juros sobre capital próprio como remuneração ao acionista. Para isso, foi realizada uma pesquisa descritiva das empresas de transporte aéreo listadas na BM&FBOVESPA. Para a condução do estudo, foi realizada uma pesquisa documental de caráter quantitativo e qualitativo. Pelos resultados obtidos, pôde-se perceber que a remuneração aos acionistas por meio dos juros sobre capital próprio resultou em uma economia tributária de aproximadamente R$ 112,7 milhões nas duas empresas analisadas entre 2006 e 2010. Além disso, ficou evidenciado que as empresas de transporte aéreo analisadas têm adotado a prática de remuneração utilizando os juros sobre capital próprio, havendo a GOL, em 2009 e 2010, e a TAM, em 2010, optado por remunerar seus acionistas apenas por meio de dividendos obrigatórios, não ficando evidenciado em notas explicativas o motivo da decisão. Então, analisando o quadro societário e utilizando a distribuição dos JSCPs somente para as pessoas jurídicas, as empresas teriam economizado ainda R$ 56,906 milhões; distribuindo para as pessoas físicas sobre forma de dividendos por ser mais viável ao acionista, uma vez que não teriam o desconto de 15% do IR retido na fonte (pagando imposto de renda na pessoa física. Conclui-se, então, que o benefício fiscal dos JSCPs é relevante para as empresas, tendo em vista a economia tributária auferida com a utilização de tal benefício Fiscal do ente tributante. Entretanto, a empresa deve levar em consideração se o acionista é pessoa física (PF ou jurídica (PJ, pois para as PFs não é interessante a distribuição mediante os JSCPs uma vez que estes têm retenção de 15% de IR e com os dividendos não teriam de pagar imposto de renda na pessoa física.  

  3. Juros sobre capital próprio: um estudo da economia tributária nas empresas Gol e Tam

    Directory of Open Access Journals (Sweden)

    Sérgio Murilo Petri

    2013-07-01

    Full Text Available Esta pesquisa tem como objetivo evidenciar a economia tributária obtida pelas empresas de transporte aéreo GOL e TAM por meio da utilização dos juros sobre capital próprio como remuneração ao acionista. Para isso, foi realizada uma pesquisa descritiva das empresas de transporte aéreo listadas na BM&FBOVESPA. Para a condução do estudo, foi realizada uma pesquisa documental de caráter quantitativo e qualitativo. Pelos resultados obtidos, pôde-se perceber que a remuneração aos acionistas por meio dos juros sobre capital próprio resultou em uma economia tributária de aproximadamente R$ 112,7 milhões nas duas empresas analisadas entre 2006 e 2010. Além disso, ficou evidenciado que as empresas de transporte aéreo analisadas têm adotado a prática de remuneração utilizando os juros sobre capital próprio, havendo a GOL, em 2009 e 2010, e a TAM, em 2010, optado por remunerar seus acionistas apenas por meio de dividendos obrigatórios, não ficando evidenciado em notas explicativas o motivo da decisão. Então, analisando o quadro societário e utilizando a distribuição dos JSCPs somente para as pessoas jurídicas, as empresas teriam economizado ainda R$ 56,906 milhões; distribuindo para as pessoas físicas sobre forma de dividendos por ser mais viável ao acionista, uma vez que não teriam o desconto de 15% do IR retido na fonte (pagando imposto de renda na pessoa física. Conclui-se, então, que o benefício fiscal dos JSCPs é relevante para as empresas, tendo em vista a economia tributária auferida com a utilização de tal benefício Fiscal do ente tributante. Entretanto, a empresa deve levar em consideração se o acionista é pessoa física (PF ou jurídica (PJ, pois para as PFs não é interessante a distribuição mediante os JSCPs uma vez que estes têm retenção de 15% de IR e com os dividendos não teriam de pagar imposto de renda na pessoa física.

  4. AQUISIÇÕES NA AVIAÇÃO CIVIL BRASILEIRA: UMA ANÁLISE DA TRAJETÓRIA DA GOL E DA VARIG ATÉ A SUA AQUISIÇÃO

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Camargos

    2009-07-01

    Full Text Available A aquisição da Varig pela Gol enseja uma análise da importância das operações de aquisições na estratégia empresarial do setor da aviação civil brasileiro. Neste artigo foi contextualizada, descrita e analisada a trajetória de duas empresas brasileiras e uma aquisição que reconfigurou o mercado de aviação civil nacional, visando entender melhor os seus possíveis desdobramentos para os seus diversos stakeholders e para a economia brasileira. A leitura que pode ser feita da aquisição é a de que, por um lado, mitiga um problema político, econômico e social, que seria a falência total da Varig, e por outro, para a Gol, possibilitará um crescimento rápido no mercado internacional, além de permitir crescimento no mercado interno pelo uso de espaços em aeroportos e da marca Varig. Além disso, foi uma aquisição defensiva, que impediu o ingresso de novos concorrentes estrangeiros, que aumentou o poder de mercado e de competição de uma empresa brasileira no mercado internacional. Enfim, a aquisição proporcionar um maior desenvolvimento econômico e tecnológico para o país no segmento – além de fortalecer o setor turístico, cuja importância na geração de empregos e na atração de divisas é cada vez mais reconhecida.

  5. A internacionalização da GOL Transportes Aéreos: um desafio enfrentado com criatividade estratégica

    Directory of Open Access Journals (Sweden)

    Maurício Emboaba Moreira

    2008-01-01

    Full Text Available This article discusses the internationalization of GOL Transportes Aéreos S/A in South America, identifies viable alternatives at the time (2005, and explores the adaptation of the strategy used, in confrontation with its essential competencies, thus obtaining sustainable competitive advantages, which can explain the success reached in a short period of time. GOL’s international expansion made in the period included Argentina (Buenos Aires, Cordoba and Rosario, Bolivia (Santa Cruz de la Sierra, Paraguay (Asunción and Uruguay (Montevideo. Its success came from the predominance of end line flights, which allow costs calculations to be based only upon variable costs. In these conditions, the company could offer very competitive fares, driven to very price sensitive consumers. In its competitive positioning, its B-737 aircraft fleet has been an essential element, particularly adjusted to the high level of daily utilization. Fundamental elements in the strategic articulation were the company creativity, the broad knowledge of the existing legal instruments, as well as its flexibility, getting adapted to several dominant environmental conditions.

  6. Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco

    Directory of Open Access Journals (Sweden)

    Yonghai Fan

    2017-12-01

    Full Text Available Galactinol synthase (GolS is a key enzyme in raffinose family oligosaccharide (RFO biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus and tobacco (Nicotiana tabacum remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.

  7. A neutral polydisulfide containing Gd(III) DOTA monoamide as a redox-sensitive biodegradable macromolecular MRI contrast agent.

    Science.gov (United States)

    Ye, Zhen; Zhou, Zhuxian; Ayat, Nadia; Wu, Xueming; Jin, Erlei; Shi, Xiaoyue; Lu, Zheng-Rong

    2016-01-01

    This work aims to develop safe and effective gadolinium (III)-based biodegradable macromolecular MRI contrast agents for blood pool and cancer imaging. A neutral polydisulfide containing macrocyclic Gd-DOTA monoamide (GOLS) was synthesized and characterized. In addition to studying the in vitro degradation of GOLS, its kinetic stability was also investigated in an in vivo model. The efficacy of GOLS for contrast-enhanced MRI was examined with female BALB/c mice bearing 4T1 breast cancer xenografts. The pharmacokinetics, biodistribution, and metabolism of GOLS were also determined in mice. GOLS has an apparent molecular weight of 23.0 kDa with T1 relaxivities of 7.20 mM(-1) s(-1) per Gd at 1.5 T, and 6.62 mM(-1) s(-1) at 7.0 T. GOLS had high kinetic inertness against transmetallation with Zn(2+) ions, and its polymer backbone was readily cleaved by L-cysteine. The agent showed improved efficacy for blood pool and tumor MR imaging. The structural effect on biodistribution and in vivo chelation stability was assessed by comparing GOLS with Gd(HP-DO3A), a negatively charged polydisulfide containing Gd-DOTA monoamide GODC, and a polydisulfide containing Gd-DTPA-bisamide (GDCC). GOLS showed high in vivo chelation stability and minimal tissue deposition of gadolinium. The biodegradable macromolecular contrast agent GOLS is a promising polymeric contrast agent for clinical MR cardiovascular imaging and cancer imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  8. 28 CFR 3.5 - Forfeiture of gambling devices.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Forfeiture of gambling devices. 3.5 Section 3.5 Judicial Administration DEPARTMENT OF JUSTICE GAMBLING DEVICES § 3.5 Forfeiture of gambling devices. For purposes of seizure and forfeiture of gambling devices see section 8 of this chapter. [Order...

  9. Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy.

    Science.gov (United States)

    Falavigna, Vítor da Silveira; Porto, Diogo Denardi; Miotto, Yohanna Evelyn; Santos, Henrique Pessoa Dos; Oliveira, Paulo Ricardo Dias de; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís Fernando

    2018-01-24

    Galactinol synthase (GolS) is a key enzyme in the biosynthetic pathway of raffinose family oligosaccharides (RFOs), which play roles in carbon storage, signal transduction, and osmoprotection. The present work assessed the evolutionary history of GolS genes across the Rosaceae using several bioinformatic tools. Apple (Malus × domestica) GolS genes were transcriptionally characterized during bud dormancy, in parallel with galactinol and raffinose measurements. Additionally, MdGolS2, a candidate to regulate seasonal galactinol and RFO content during apple bud dormancy, was functionally characterized in Arabidopsis. Evolutionary analyses revealed that whole genome duplications have driven GolS gene evolution and diversification in Rosaceae speciation. The strong purifying selection identified in duplicated GolS genes suggests that differential gene expression might define gene function better than protein structure. Interestingly, MdGolS2 was differentially expressed during bud dormancy, concomitantly with the highest galactinol and raffinose levels. One of the intrinsic adaptive features of bud dormancy is limited availability of free water; therefore, we generated transgenic Arabidopsis plants expressing MdGolS2. They showed higher galactinol and raffinose contents and increased tolerance to water deficit. Our results suggest that MdGolS2 is the major GolS responsible for RFO accumulation during apple dormancy, and these carbohydrates help to protect dormant buds against limited water supply. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. 3D-printed Bioanalytical Devices

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  11. 3D Ceramic Microfluidic Device Manufacturing

    International Nuclear Information System (INIS)

    Natarajan, Govindarajan; Humenik, James N

    2006-01-01

    Today, semiconductor processing serves as the backbone for the bulk of micromachined devices. Precision lithography and etching technology used in the semiconductor industry are also leveraged by alternate techniques like electroforming and molding. The nature of such processing is complex, limited and expensive for any manufacturing foundry. This paper details the technology elements developed to manufacture cost effective and versatile microfluidic devices for applications ranging from medical diagnostics to characterization of bioassays. Two applications using multilayer ceramic technology to manufacture complex 3D microfluidic devices are discussed

  12. An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran

    Directory of Open Access Journals (Sweden)

    Mahdi Saadat

    2014-02-01

    Full Text Available Blast-induced ground vibration is one of the inevitable outcomes of blasting in mining projects and may cause substantial damage to rock mass as well as nearby structures and human beings. In this paper, an attempt has been made to present an application of artificial neural network (ANN to predict the blast-induced ground vibration of the Gol-E-Gohar (GEG iron mine, Iran. A four-layer feed-forward back propagation multi-layer perceptron (MLP was used and trained with Levenberg–Marquardt algorithm. To construct ANN models, the maximum charge per delay, distance from blasting face to monitoring point, stemming and hole depth were taken as inputs, whereas peak particle velocity (PPV was considered as an output parameter. A database consisting of 69 data sets recorded at strategic and vulnerable locations of GEG iron mine was used to train and test the generalization capability of ANN models. Coefficient of determination (R2 and mean square error (MSE were chosen as the indicators of the performance of the networks. A network with architecture 4-11-5-1 and R2 of 0.957 and MSE of 0.000722 was found to be optimum. To demonstrate the supremacy of ANN approach, the same 69 data sets were used for the prediction of PPV with four common empirical models as well as multiple linear regression (MLR analysis. The results revealed that the proposed ANN approach performs better than empirical and MLR models.

  13. Metrological characterization of 3D imaging devices

    Science.gov (United States)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  14. CICLO DE VIDA DO GOL VW: UMA ANÁLISE DAS UNIDADES VENDIDAS NO MERCADO BRASILEIRO ENTRE OS ANOS 1987 E 2010

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Braga

    2010-06-01

    Full Text Available Nos últimos anos, o segmento de veículos automotores no Brasil vem sofrendo significativas mudanças em função das transformações do cenário econômico, tanto nacional como internacional. A abertura comercial e financeira do país provocou uma reestruturação do setor, no sentido de globalização da cadeia produtiva e de relações comerciais. A análise do ciclo de vida pode auxiliar a identificar a maturidade do produto, concedendo assim um diferencial em relação às empresas concorrentes. O trabalho tem por objetivo identificar, por meio da observação do comportamento das unidades vendidas do veículo Gol VW (fabricado pela Volkswagen do Brasil no mercado brasileiro no período de 1987 até 2010, a aderência entre o ciclo de vida e as estratégias de renovação do produto por parte da fabricante. O comportamento dos dados sugere fases de ciclo de vida definidas para cada geração e que a empresa utiliza estratégias de prolongamento da permanência do veículo no mercado.

  15. 3D Printed Photoresponsive Devices Based on Shape Memory Composites.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Wang, Ting; Wang, Juan; Yu, Jiancan; He, Ke; Qi, Dianpeng; Wan, Changjin; Chen, Xiaodong

    2017-09-01

    Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 3D printing functional materials and devices (Conference Presentation)

    Science.gov (United States)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  17. Organic bistable memory devices based on MoO3 nanoparticle embedded Alq3 structures

    Science.gov (United States)

    Abhijith, T.; Kumar, T. V. Arun; Reddy, V. S.

    2017-03-01

    Organic bistable memory devices were fabricated by embedding a thin layer of molybdenum trioxide (MoO3) between two tris-(8-hydroxyquinoline)aluminum (Alq3) layers. The device exhibited excellent switching characteristics with an ON/OFF current ratio of 1.15 × 103 at a read voltage of 1 V. The device showed repeatable write-erase capability and good stability in both the conductance states. These conductance states are non-volatile in nature and can be obtained by applying appropriate voltage pulses. The effect of MoO3 layer thickness and its location in the Alq3 matrix on characteristics of the memory device was investigated. The field emission scanning electron microscopy (FE-SEM) images of the MoO3 layer revealed the presence of isolated nanoparticles. Based on the experimental results, a mechanism has been proposed for explaining the conductance switching of fabricated devices.

  18. Impacto da contabilização do leasing operacional no balanço patrimonial: o caso das Cias. aéreas brasileiras TAM e GOL = The impact of operating leasing recognition in the balance sheet: the case of brazilian airlines companies Tam and Gol

    Directory of Open Access Journals (Sweden)

    Ludmila de Melo Souza

    2011-08-01

    Full Text Available As operações de leasing são utilizadas pelas empresas como uma forma alternativa de capitalização. Atualmente, esse tipo de operação pode ser classificado em duas modalidades: financeiro e operacional, em que este funciona como um contrato de aluguel e aquele se assemelha a uma compra financiada. Em termos de contabilização, a grande diferença é que o leasing operacional não integra o balanço. O FASB, ciente dessa possível distorção que a não contabilização gera no usuário da informação contábil, reuniu-se com o IASB e discutiram a melhor forma para solucionar o problema. Os dois conselhos decidiram provisoriamente que as arrendatárias devem contabilizar as operações decorrentes de leasing operacional no ativo e no passivo. Portanto, o objetivo do trabalho é verificar o impacto da contabilização do leasing operacional de forma semelhante ao leasing financeiro na estrutura patrimonial das empresas presentes na amostra. Assim, o presente trabalho analisou os Balanços Patrimoniais da TAM e da GOL nos anos de 2007 a 2009, uma vez que as companhias aéreas são grandes usuárias das operações de leasing operacional na “aquisição” de aeronaves. Os balanços foram ajustados com os valores informados nas notas explicativas. Conclui-se que o registro das operações de leasing operacional representou para as empresas analisadas um significativo impacto na estrutura patrimonial e consequentemente nos indicadores financeiros e que a contabilização das operações de leasing operacional dará maior transparência às demonstrações contábeis.Leasing transactions are used by companies as a way to get capitalized. However, this type of transaction can be classified in two types: financial and operating, in which the operating leasing works as a rent and financial leasing resembles a financed purchase. The most important difference in the accounting model is that the operating lease is not included in the balance sheet

  19. Pb(Zn1/3Nb2/3O3–PbTiO3 single crystal and device development

    Directory of Open Access Journals (Sweden)

    L. C. Lim

    2014-01-01

    Full Text Available This paper describes recent device developments with relaxor ferroelectric Pb(Zn1/3Nb2/3O3–PbTiO3 (PZN–PT single crystals carried out at Microfine Materials Technologies Pte. Ltd, Singapore. Promising [011]-poled transverse cuts of PZN–PT single crystals and the results on the effect of electric field and axial compressive stress on the rhombohedral-to-orthorhombic (R–O phase transformation behavior of such cuts are presented and discussed. The single crystal devices described include a compact low-frequency broadband power-efficient underwater tonpilz projector, high sensitivity shear accelerometers and acoustic vector sensors (AVS. The unique characteristics offered by these PZN–PT single crystal devices are highlighted, which serve as examples of new-generation piezoelectric devices and systems for a wide range of demanding applications.

  20. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    International Nuclear Information System (INIS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  1. Optimization Techniques for 3D Graphics Deployment on Mobile Devices

    Science.gov (United States)

    Koskela, Timo; Vatjus-Anttila, Jarkko

    2015-03-01

    3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.

  2. Effects of CuBr addition to CH3NH3PbI3(Cl) perovskite photovoltaic devices

    Science.gov (United States)

    Oku, Takeo; Ohishi, Yuya; Tanaka, Hiroki

    2018-01-01

    Effects of CuBr addition to perovskite CH3NH3PbI3(Cl) precursor solutions on photovoltaic properties were investigated. The CH3NH3Pb(Cu)I3(Cl,Br)-based photovoltaic devices were fabricated by a spin-coating technique, and the microstructures of the devices were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Current density-voltage characteristics were improved by a small amount of CuBr addition, which resulted in improvement of the conversion efficiencies of the devices. The structure analysis showed decrease of unit cell volume and increase of Cu/Br composition by the CuBr addition, which would indicate the Cu/Br substitution at the Pb/I sites in the perovskite crystal, respectively.

  3. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics

    CERN Document Server

    Li, Simon

    2012-01-01

    Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD.  This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D.  It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations.  Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc. Provides a vivid, internal view of semiconductor devices, through 3D TCAD simulation; Includes comprehensive coverage of  TCAD simulations for both optic and electronic devices, from nano-scale to high-voltage high-power devices; Presents material in a hands-on, tutorial fashion so that industry practitioners will find maximum utility; Includes a comprehensive library of devices, re...

  4. Diamond Pixel Detectors and 3D Diamond Devices

    International Nuclear Information System (INIS)

    Venturi, N.

    2016-01-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  5. Progress In Research On Open - Ended Magnetic Traps

    International Nuclear Information System (INIS)

    Kruglyakov, E. P.; Burdakov, A. V.; Ivanov, A. A.

    2006-01-01

    At present, three modern types of mirror machines for plasma confinement and heating exist in Novosibirsk (Multi-mirror,-GOL-3, Gas Dynamic Trap,-GDT, and Tandem Mirror,- AMBAL-M). From the engineering point of view all these systems are very attractive because of simple axisymmetric geometry of magnetic configurations. In this paper, the status of GOL-3 and GDT machines is presented. The most crucial experiments for the mirror concept are described such as a demonstration of different principles of suppression of longitudinal electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of confinement of high β (more than 0.4) plasma in axisymmetric geometry of magnetic field, an effective heating of a dense plasma (of order of 10 21 m-3) by high current relativistic electron beam (GOL-3), etc. In the case of multi-mirror geometry (GOL-3) significant increase of confinement time of hot plasma (up to several tens times) was obtained in comparison with single mirror geometry. Besides, electron heating (up to 2 keV) in result of high current electron beam -- plasma interaction, the heating of ions (up to 2 keV) was discovered in the multi-mirror geometry (55 mirror cells with total length of the trap equal to 12 meters). There was no any effect of ion heating in the single mirror geometry. The reasons of appearance of the ion heating in multi-mirror geometry are discussed. It should be mentioned that on the basis of the GOL-3 and GDT one can obtain an important information for ITER and for future fusion program. In the case of GOL-3 the longitudinal energy density flux of plasma after heating by REB can be so high as 50 MJ/m2. A lot of experiments can be made on plasma-wall interaction (evaporation, erosion and ionization of wall material, propagation of the impurity ions along magnetic field lines at long distances, etc). Some of these experiments are described in this paper. Using principle of confinement of 'warm' collisional plasma placed in gas dynamic

  6. Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

    Science.gov (United States)

    Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P

    2017-06-01

    Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.

    Science.gov (United States)

    Ong, Louis Jun Ye; Islam, Anik; DasGupta, Ramanuj; Iyer, Narayanan Gopalakkrishna; Leo, Hwa Liang; Toh, Yi-Chin

    2017-09-11

    The advent of 3D printing technologies promises to make microfluidic organ-on-chip technologies more accessible for the biological research community. To date, hydrogel-encapsulated cells have been successfully incorporated into 3D printed microfluidic devices. However, there is currently no 3D printed microfluidic device that can support multicellular spheroid culture, which facilitates extensive cell-cell contacts important for recapitulating many multicellular functional biological structures. Here, we report a first instance of fabricating a 3D printed microfluidic cell culture device capable of directly immobilizing and maintaining the viability and functionality of 3D multicellular spheroids. We evaluated the feasibility of two common 3D printing technologies i.e. stereolithography (SLA) and PolyJet printing, and found that SLA could prototype a device comprising of cell immobilizing micro-structures that were housed within a microfluidic network with higher fidelity. We have also implemented a pump-free perfusion system, relying on gravity-driven flow to perform medium perfusion in order to reduce the complexity and footprint of the device setup, thereby improving its adaptability into a standard biological laboratory. Finally, we demonstrated the biological performance of the 3D printed device by performing pump-free perfusion cultures of patient-derived parental and metastatic oral squamous cell carcinoma tumor and liver cell (HepG2) spheroids with good cell viability and functionality. This paper presents a proof-of-concept in simplifying and integrating the prototyping and operation of a microfluidic spheroid culture device, which will facilitate its applications in various drug efficacy, metabolism and toxicity studies.

  8. Engineering Novel Lab Devices Using 3D Printing and Microcontrollers.

    Science.gov (United States)

    Courtemanche, Jean; King, Samson; Bouck, David

    2018-03-01

    The application of 3D printing and microcontrollers allows users to rapidly engineer novel hardware solutions useful in a laboratory environment. 3D printing is transformative as it enables the rapid fabrication of adapters, housings, jigs, and small structural elements. Microcontrollers allow for the creation of simple, inexpensive machines that receive input from one or more sensors to trigger a mechanical or electrical output. Bringing these technologies together, we have developed custom solutions that improve capabilities and reduce costs, errors, and human intervention. In this article, we describe three devices: JetLid, TipWaster, and Remote Monitoring Device (REMIND). JetLid employs a microcontroller and presence sensor to trigger a high-speed fan that reliably de-lids microtiter plates on a high-throughput screening system. TipWaster uses a presence sensor to activate an active tip waste chute when tips are ejected from a pipetting head. REMIND is a wireless, networked lab monitoring device. In its current implementation, it monitors the liquid level of waste collection vessels or bulk liquid reagent containers. The modularity of this device makes adaptation to other sensors (temperature, humidity, light/darkness, movement, etc.) relatively simple. These three devices illustrate how 3D printing and microcontrollers have enabled the process of rapidly turning ideas into useful devices.

  9. Review of 3D Printed Millimeter-Wave and Terahertz Passive Devices

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2017-01-01

    Full Text Available The 3D printing technology is catching attention nowadays. It has certain advantages over the traditional fabrication processes. We give a chronical review of the 3D printing technology from the time it was invented. This technology has also been used to fabricate millimeter-wave (mmWave and terahertz (THz passive devices. Though promising results have been demonstrated, the challenge lies in the fabrication tolerance improvement such as dimensional tolerance and surface roughness. We propose the design methodology of high order device to circumvent the dimensional tolerance and suggest specific modelling of the surface roughness of 3D printed devices. It is believed that, with the improvement of the 3D printing technology and related subjects in material science and mechanical engineering, the 3D printing technology will become mainstream for mmWave and THz passive device fabrication.

  10. Magnetic resonance imaging of implantable cardiac rhythm devices at 3.0 tesla.

    Science.gov (United States)

    Gimbel, J Rod

    2008-07-01

    A relaxation of the prohibition of scanning cardiac rhythm device patients is underway, largely because of the growing experience of safe scanning events at 1.5T. Magnetic resonance imaging (MRI) at 3T is becoming more common and may pose a different risk profile and outcome of MRI of cardiac device patients. No restrictions were placed on pacemaker dependency, region scanned, device type, or manufacturer. Sixteen scans at 3T were performed with an electrophysiologist present on 14 patients with a variety of devices from various manufacturers. An "MRI-S" strategy was used. Multimodal monitoring was required. Device interrogation was performed prior to, immediately after, and 1-3 months after the MRI. For nonpacemaker-dependent device patients, attempts were made to turn all device features off (with OOO programming the goal) conceptually rendering the device "invisible." In pacemaker-dependent patients, the device was programmed to asynchronous mode at highest output for the duration of the scan with the goal of rendering the device conceptually "invulnerable" to MRI effects. The specific absorption rate (SAR) was limited to 2W/kg. All patients were successfully scanned. No arrhythmias were noted. No significant change in the programmed parameters, pacing thresholds, sensing, impedance, or battery parameters was noted. The insertable loop recorder (ILR) recorded prolonged artifactual asystole during MRI. One patient noted chest burning during the scan. Device patients may undergo carefully tailored 3T MRI scans when pre-MRI reprogramming of the device occurs in conjunction with extensive monitoring, supervision, and follow-up.

  11. The Reliability of a Novel Mobile 3-dimensional Wound Measurement Device.

    Science.gov (United States)

    Anghel, Ersilia L; Kumar, Anagha; Bigham, Thomas E; Maselli, Kathryn M; Steinberg, John S; Evans, Karen K; Kim, Paul J; Attinger, Christopher E

    2016-11-01

    Objective assessment of wound dimensions is essential for tracking progression and determining treatment effectiveness. A reliability study was designed to establish intrarater and interrater reliability of a novel mobile 3-dimensional wound measurement (3DWM) device. Forty-five wounds were assessed by 2 raters using a 3DWM device to obtain length, width, area, depth, and volume measurements. Wounds were also measured manually, using a disposable ruler and digital planimetry. The intraclass correlation coefficient (ICC) was used to establish intrarater and interrater reliability. High levels of intrarater and interrater agreement were observed for area, length, and width; ICC = 0.998, 0.977, 0.955 and 0.999, 0.997, 0.995, respectively. Moderate levels of intrarater (ICC = 0.888) and interrater (ICC = 0.696) agreement were observed for volume. Lastly, depth yielded an intrarater ICC of 0.360 and an interrater ICC of 0.649. Measures from the 3DWM device were highly correlated with those obtained from scaled photography for length, width, and area (ρ = 0.997, 0.988, 0.997, P device yielded correlations of ρ = 0.990, 0.987, 0.996 with P device was found to be highly reliable for measuring wound areas for a range of wound sizes and types as compared to manual measurement and digital planimetry. The depth and therefore volume measurement using the 3DWM device was found to have a lower ICC, but volume ICC alone was moderate. Overall, this device offers a mobile option for objective wound measurement in the clinical setting.

  12. Exogenously applied D-pinitol and D-chiro-inositol modifies the accumulation of α-D-galactosides in developing tiny vetch (Vicia hirsuta [L.] S.F. Gray seeds

    Directory of Open Access Journals (Sweden)

    Lesław B. Lahuta

    2011-01-01

    Full Text Available In the present study we have investigated the effect of exogenous cyclitols on the accumulation of their galactosides and raffinose family oligosaccharides (RFOs, as well as on some enzymes important for their biosynthesis in seeds of tiny vetch (Vicia hirsuta [L.] S.F. Gray. Immature seeds during 6-day incubation with D-chiro-inositol (naturally does not appear in seeds of tiny vetch were accumulated cyclitol and its galactosides (fagopyritols: B1 and B2. Short 4-hour incubation with D-chiro-inositol, and subsequent slow desiccation process caused accumulation of free cyclitol only, without biosynthesis of its galactosides. Feeding D-chiro-inositol to pods of tiny vetch induced accumulation of high levels of its galactosides (fagopyritol B1, B2 and B3 in maturing seeds. Similarly, feeding D-pinitol increased accumulation of its mono-, di- and tri-galactosides: GPA, GPB, DGPA and TGPA in tiny vetch seed. Accumulation of both cyclitols and their galactosides drastically reduced accumulation of verbascose. Inhibition of RFOs biosynthesis by elevated levels of free cyclitols suggests some competition between formation of both types of galactosides and similarity of both biosynthetic routes in tiny vetch seeds. Galactinol synthase (GolS from tiny vetch seeds demonstrated ability to utilize D-chiro-inositol as galactosyl acceptor, instead of myo-inositol. Presence of both cyclitols, as substrates for GolS, caused synthesis of their galactosides: fagopyritol B1 and galactinol. However, formation of galactinol was more efficient than fagopyritol B1. D-chiro-Inositol and D-pinitol at concentrations several-fold higher than myo-inositol had inhibitory effect on GolS. Thus, we suggest that a level of free cyclitols can have an influence on the rate of galactinol biosynthesis and further accumulation of RFOs and galactosyl cyclitols in tiny vetch seeds.

  13. 3D direct writing fabrication of electrodes for electrochemical storage devices

    Science.gov (United States)

    Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang

    2017-06-01

    Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.

  14. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    International Nuclear Information System (INIS)

    Zhang Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-01-01

    We report an UV photochromic memory effect on a standard proton-based WO 3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices

  15. An UV photochromic memory effect in proton-based WO3 electrochromic devices

    Science.gov (United States)

    Zhang, Yong; Lee, S.-H.; Mascarenhas, A.; Deb, S. K.

    2008-11-01

    We report an UV photochromic memory effect on a standard proton-based WO3 electrochromic device. It exhibits two memory states, associated with the colored and bleached states of the device, respectively. Such an effect can be used to enhance device performance (increasing the dynamic range), re-energize commercial electrochromic devices, and develop memory devices.

  16. 3D Printing of Living Responsive Materials and Devices.

    Science.gov (United States)

    Liu, Xinyue; Yuk, Hyunwoo; Lin, Shaoting; Parada, German Alberto; Tang, Tzu-Chieh; Tham, Eléonore; de la Fuente-Nunez, Cesar; Lu, Timothy K; Zhao, Xuanhe

    2018-01-01

    3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid-crystal elastomers, shape-memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D-printing hydrogel inks with programed bacterial cells as responsive components into large-scale (3 cm), high-resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D-printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A 3-DOF haptic master device for minimally invasive surgery

    Science.gov (United States)

    Nguyen, Phuong-Bac; Oh, Jong-Seok; Choi, Seung-Bok

    2012-04-01

    This paper introduces a novel 3-DOF haptic master device for minimally invasive surgery featuring magneto-rheological (MR) fluid. It consists of three rotational motions. These motions are constituted by two bi-directional MR (BMR) plus one conventional MR brakes. The BMR brake used in the system possesses a salient advantage that its range of braking torque varies from negative to positive values. Therefore, the device is expected to be able sense in a wide environment from very soft tissues to bones. In this paper, overall of the design of the device is presented from idea, modeling, optimal design, manufacturing to control of the device. Moreover, experimental investigation is undertaken to validate the effectiveness of the device.

  18. An architecture for integrating planar and 3D cQED devices

    Energy Technology Data Exchange (ETDEWEB)

    Axline, C.; Reagor, M.; Heeres, R.; Reinhold, P.; Wang, C.; Shain, K.; Pfaff, W.; Chu, Y.; Frunzio, L.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-07-25

    Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter, and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

  19. A stacked memory device on logic 3D technology for ultra-high-density data storage

    International Nuclear Information System (INIS)

    Kim, Jiyoung; Hong, Augustin J; Kim, Sung Min; Shin, Kyeong-Sik; Song, Emil B; Hwang, Yongha; Xiu, Faxian; Galatsis, Kosmas; Chui, Chi On; Candler, Rob N; Wang, Kang L; Choi, Siyoung; Moon, Joo-Tae

    2011-01-01

    We have demonstrated, for the first time, a novel three-dimensional (3D) memory chip architecture of stacked-memory-devices-on-logic (SMOL) achieving up to 95% of cell-area efficiency by directly building up memory devices on top of front-end CMOS devices. In order to realize the SMOL, a unique 3D Flash memory device and vertical integration structure have been successfully developed. The SMOL architecture has great potential to achieve tera-bit level memory density by stacking memory devices vertically and maximizing cell-area efficiency. Furthermore, various emerging devices could replace the 3D memory device to develop new 3D chip architectures.

  20. A stacked memory device on logic 3D technology for ultra-high-density data storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiyoung; Hong, Augustin J; Kim, Sung Min; Shin, Kyeong-Sik; Song, Emil B; Hwang, Yongha; Xiu, Faxian; Galatsis, Kosmas; Chui, Chi On; Candler, Rob N; Wang, Kang L [Device Research Laboratory, Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Choi, Siyoung; Moon, Joo-Tae, E-mail: hbt100@ee.ucla.edu [Advanced Technology Development Team and Process Development Team, Memory R and D Center, Samsung Electronics Co. Ltd (Korea, Republic of)

    2011-06-24

    We have demonstrated, for the first time, a novel three-dimensional (3D) memory chip architecture of stacked-memory-devices-on-logic (SMOL) achieving up to 95% of cell-area efficiency by directly building up memory devices on top of front-end CMOS devices. In order to realize the SMOL, a unique 3D Flash memory device and vertical integration structure have been successfully developed. The SMOL architecture has great potential to achieve tera-bit level memory density by stacking memory devices vertically and maximizing cell-area efficiency. Furthermore, various emerging devices could replace the 3D memory device to develop new 3D chip architectures.

  1. Electrochromic device based on electrospun WO{sub 3} nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Dulgerbaki, Cigdem; Maslakci, Neslihan Nohut; Komur, Ali Ihsan; Oksuz, Aysegul Uygun, E-mail: ayseguluygun@sdu.edu.tr

    2015-12-15

    Highlights: • WO{sub 3} electrochromic nanofibers were prepared by electrospinning technique. • WO{sub 3} nanofibers switched reversibly from transparent to blue color. • Electrochromic device was assembled using ionic liquid based gel electrolyte. • Significant optical modulation and excellent cycling stability were achieved for ECD. - Abstract: The tungsten oxide (WO{sub 3}) nanofibers were grown directly onto an ITO-coated glass via an electrospinning method for electrochromic applications. The electrochromic properties of WO{sub 3} nanofibers were investigated in the presence of different electrolytes including a series of ionic liquids and classic LiClO{sub 4}-PC system. A significant optical modulation of 20.82% at 760 nm, reversible coloration with efficiency of 64.58 cm{sup 2}/C and excellent cycling stability were achieved for the nanofiber electrochromic device (ECD) with ionic liquid based gel electrolyte.

  2. Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device.

    Science.gov (United States)

    Liu, Dongjue; Lin, Qiqi; Zang, Zhigang; Wang, Ming; Wangyang, Peihua; Tang, Xiaosheng; Zhou, Miao; Hu, Wei

    2017-02-22

    All-inorganic perovskite CsPbX 3 (X = Cl, Br, or I) is widely used in a variety of photoelectric devices such as solar cells, light-emitting diodes, lasers, and photodetectors. However, studies to understand the flexible CsPbX 3 electrical application are relatively scarce, mainly due to the limitations of the low-temperature fabricating process. In this study, all-inorganic perovskite CsPbBr 3 films were successfully fabricated at 75 °C through a two-step method. The highly crystallized films were first employed as a resistive switching layer in the Al/CsPbBr 3 /PEDOT:PSS/ITO/PET structure for flexible nonvolatile memory application. The resistive switching operations and endurance performance demonstrated the as-prepared flexible resistive random access memory devices possess reproducible and reliable memory characteristics. Electrical reliability and mechanical stability of the nonvolatile device were further tested by the robust current-voltage curves under different bending angles and consecutive flexing cycles. Moreover, a model of the formation and rupture of filaments through the CsPbBr 3 layer was proposed to explain the resistive switching effect. It is believed that this study will offer a new setting to understand and design all-inorganic perovskite materials for future stable flexible electronic devices.

  3. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    Science.gov (United States)

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.

    Science.gov (United States)

    Diaz, Francis L; Tweardy, Lisa; Shellock, Frank G

    2010-02-15

    Laboratory investigation, ex vivo. Currently, no studies have addressed the magnetic resonance imaging (MRI) issues for cervical external immobilization devices at 3-Tesla. Under certain conditions significant heating may occur, resulting in patient burns. Furthermore, artifacts can be substantial and prevent the diagnostic use of MRI. Therefore, the objective of this investigation was to evaluate MRI issues for 4 different cervical external immobilization devices at 3-Tesla. Excessive heating and substantial artifacts are 2 potential complications associated with performing MRI at 3-Tesla in patients with cervical external immobilization devices. Using ex vivo testing techniques, MRI-related heating and artifacts were evaluated for 4 different cervical devices during MRI at 3-Tesla. Four cervical external immobilization devices (Generation 80, Resolve Ring and Superstructure, Resolve Ring and Jerome Vest/Jerome Superstructure, and the V1 Halo System; Ossur Americas, Aliso Viejo, CA) underwent MRI testing at 3-Tesla. All devices were made from nonmetallic or nonmagnetic materials. Heating was determined using a gelled-saline-filled skull phantom with fluoroptic thermometry probes attached to the skull pins. MRI was performed at 3-Tesla, using a high level of RF energy. Artifacts were assessed at 3-Tesla, using standard cervical imaging techniques. The Generation 80 and V1 Halo devices exhibited substantial temperature rises (11.6 degrees C and 8.5 degrees C, respectively), with "sparking" evident for the Generation 80 during the MRI procedure. Artifacts were problematic for these devices, as well. By comparison, the 2 Resolve Ring-based cervical external immobilization devices showed little or no heating (Tesla.

  5. Efficient, air-stable quantum dots light-emitting devices with MoO3 modifying the anode

    International Nuclear Information System (INIS)

    Meng, Xiangdong; Ji, Wenyu; Hua, Jie; Yu, Zhaoliang; Zhang, Yan; Li, Haibo; Zhao, Jialong

    2013-01-01

    In this work, we fabricated quantum dots light-emitting devices with hole-injection layer, molybdenum oxide (MoO 3 ) substituting for poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) which is hygroscopic and acidic and, therefore, a source of interface instability. A significant enhancement in luminance and current efficiency in MoO 3 -containing devices was observed. In addition, MoO 3 -containing devices were more stable in the air than those with PEDOT:PSS as the hole injection layer. The hole injection and transport of the devices were studied by the J–V characteristics of the hole-only devices. The excellent performance of the devices was principally a result of MoO 3 possessing lower injection barrier for the hole and better stability than PEDOT:PSS. -- Highlights: • We fabricated QD-LEDs with MoO 3 substituting for PEDOT:PSS as hole-injection layer. • A enhancement in luminance and efficiency in MoO 3 -containing device was observed. • The enhancement was originated from the stability and easy hole injection of MoO 3

  6. Effects of GeI2 or ZnI2 addition to perovskite CH3NH3PbI3 photovoltaic devices

    Science.gov (United States)

    Tanaka, Hiroki; Ohishi, Yuya; Oku, Takeo

    2018-01-01

    CH3NH3PbI3 added with GeI2 or ZnI2 perovskite photovoltaic devices were fabricated characterized. The surface coverages of the perovskite layers were improved by the addition of GeI2 or ZnI2. Formation of PbI2 observed for the pristine CH3NH3PbI3 was suppressed by the GeI2 or ZnI2 addition, which resulted in the improvement of the conversion efficiencies of the perovskite photovoltaic devices.

  7. A New Design of a Single-Device 3D Hall Sensor: Cross-Shaped 3D Hall Sensor

    Directory of Open Access Journals (Sweden)

    Wei Tang

    2018-04-01

    Full Text Available In this paper, a new single-device three-dimensional (3D Hall sensor called a cross-shaped 3D Hall device is designed based on the five-contact vertical Hall device. Some of the device parameters are based on 0.18 μm BCDliteTM technology provided by GLOBALFOUNDRIES. Two-dimensional (2D and 3D finite element models implemented in COMSOL are applied to understand the device behavior under a constant magnetic field. Besides this, the influence of the sensing contacts, active region’s depth, and P-type layers are taken into account by analyzing the distribution of the voltage along the top edge and the current density inside the devices. Due to the short-circuiting effect, the sensing contacts lead to degradation in sensitivities. The P-type layers and a deeper active region in turn are responsible for the improvement of sensitivities. To distinguish the P-type layer from the active region which plays the dominant role in reducing the short-circuiting effect, the current-related sensitivity of the top edge (Stop is defined. It is found that the short-circuiting effect fades as the depth of the active region grows. Despite the P-type layers, the behavior changes a little. When the depth of the active region is 7 μm and the thickness of the P-type layers is 3 μm, the sensitivities in the x, y, and z directions can reach 91.70 V/AT, 92.36 V/AT, and 87.10 V/AT, respectively.

  8. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    Science.gov (United States)

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  9. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics

    Science.gov (United States)

    Fu, Haoran; Nan, Kewang; Bai, Wubin; Huang, Wen; Bai, Ke; Lu, Luyao; Zhou, Chaoqun; Liu, Yunpeng; Liu, Fei; Wang, Juntong; Han, Mengdi; Yan, Zheng; Luan, Haiwen; Zhang, Yijie; Zhang, Yutong; Zhao, Jianing; Cheng, Xu; Li, Moyang; Lee, Jung Woo; Liu, Yuan; Fang, Daining; Li, Xiuling; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2018-03-01

    Three-dimensional (3D) structures capable of reversible transformations in their geometrical layouts have important applications across a broad range of areas. Most morphable 3D systems rely on concepts inspired by origami/kirigami or techniques of 3D printing with responsive materials. The development of schemes that can simultaneously apply across a wide range of size scales and with classes of advanced materials found in state-of-the-art microsystem technologies remains challenging. Here, we introduce a set of concepts for morphable 3D mesostructures in diverse materials and fully formed planar devices spanning length scales from micrometres to millimetres. The approaches rely on elastomer platforms deformed in different time sequences to elastically alter the 3D geometries of supported mesostructures via nonlinear mechanical buckling. Over 20 examples have been experimentally and theoretically investigated, including mesostructures that can be reshaped between different geometries as well as those that can morph into three or more distinct states. An adaptive radiofrequency circuit and a concealable electromagnetic device provide examples of functionally reconfigurable microelectronic devices.

  10. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-07

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  11. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.

    Science.gov (United States)

    Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy

    2017-04-06

    Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH 3 NH 3 PbI 3 -based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

  12. Nonvolatile rewritable memory device based on solution-processable graphene/poly(3-hexylthiophene) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: lizhang9@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Li, Ye; Shi, Jun [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Shi, Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Cao, Shaokui, E-mail: Caoshaokui@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2013-11-01

    An electrically bistable device utilizing a nanocomposite of hexadecylamine-functionalized graphene oxide (HDAGO) with poly(3-hexylthiophene) (P3HT) is demonstrated. The device has an ITO/P3HT-HDAGO/Al sandwich structure, in which the composite film of P3HT-HDAGO was prepared by simple solution phase mixing of the exfoliated HDAGO monolayers with P3HT matrix and a spin-coating method. The memory device exhibits typical bistable electrical switching behavior and a nonvolatile rewritable memory effect, with a turn-on voltage of about 1.5 V and an ON/OFF-state current ratio of 10{sup 5}. Under ambient conditions, both the ON and OFF states are stable under a constant voltage stress or a continuous pulse voltage stress at a read voltage of 1 V. The conduction mechanism is deduced from the modeling of the nature of currents in both states, and the electrical switching behavior can be attributed to the electric-field-induced charge transfer between P3HT and HDAGO nanosheets. - Highlights: • Nonvolatile rewritable memory effect in P3HT–graphene composite is demonstrated. • The memory device was fabricated through a simple solution processing technique. • The device shows a remarkable electrical bistable behavior and excellent stability. • Memory mechanism is deduced from the modeling of the currents in both states.

  13. Nonvolatile rewritable memory device based on solution-processable graphene/poly(3-hexylthiophene) nanocomposite

    International Nuclear Information System (INIS)

    Zhang, Li; Li, Ye; Shi, Jun; Shi, Gaoquan; Cao, Shaokui

    2013-01-01

    An electrically bistable device utilizing a nanocomposite of hexadecylamine-functionalized graphene oxide (HDAGO) with poly(3-hexylthiophene) (P3HT) is demonstrated. The device has an ITO/P3HT-HDAGO/Al sandwich structure, in which the composite film of P3HT-HDAGO was prepared by simple solution phase mixing of the exfoliated HDAGO monolayers with P3HT matrix and a spin-coating method. The memory device exhibits typical bistable electrical switching behavior and a nonvolatile rewritable memory effect, with a turn-on voltage of about 1.5 V and an ON/OFF-state current ratio of 10 5 . Under ambient conditions, both the ON and OFF states are stable under a constant voltage stress or a continuous pulse voltage stress at a read voltage of 1 V. The conduction mechanism is deduced from the modeling of the nature of currents in both states, and the electrical switching behavior can be attributed to the electric-field-induced charge transfer between P3HT and HDAGO nanosheets. - Highlights: • Nonvolatile rewritable memory effect in P3HT–graphene composite is demonstrated. • The memory device was fabricated through a simple solution processing technique. • The device shows a remarkable electrical bistable behavior and excellent stability. • Memory mechanism is deduced from the modeling of the currents in both states

  14. Measurements of ODAK-3K plasma device using plastic track detectors

    International Nuclear Information System (INIS)

    2010-01-01

    In this study, some testing experiments on the fusion researches with a new-constructed plasma focus (PF) device, namely ODAK-3K are reported. The device has a maximal energy input of 3 kJ and is used for both plasma and D D reaction explorations. Experiments with deuterium have shown that peak current of I p eak=39 kA flows between the electrodes at P=11.5 mbar for the operation voltage of V=14 kV. Average total neutron yield is measured around 3.3x10 5 neutrons per shot using CR-39 plastic detectors located opposite the anode inside the PF chamber

  15. Use of offensive coefficient to analyse sport performance in indoor soccer UTILIZACIÓN DE COEFICIENTES OFENSIVOS PARA EL ANÁLISIS DEL RENDIMIENTO DEPORTIVO EN EL FÚTBOL SALA

    Directory of Open Access Journals (Sweden)

    R. De Bortoli

    2010-09-01

    Full Text Available The objective was the study of the game action of indoor soccer teams through the analysis of offensive coefficients, verifying its relationship with field performance estimated by the final result of games. Competitions by the Federación Gaúcha de Fútbol Sala (Brasil were followed for 9 years. Shots were divided into three different categories: 1 LAN: shots+finish line shots+goals; 2 MET: finish line shots+goals; and 3 GOL: goals. From those data the following indexes were obtained: 1 Offensive Outpout: (PO: ratio LAN of team 'A'/LAN of antagonist {PO = (LAN 'A'*100 / (LAN 'A'+LAN 'B'}; 2 Objectivity Index (IO: percentage of shots that reached the finish line {IO=(MET*100/LAN}; 3 Proficiency Index (IA: percentage of shots transformed into goals {IA=(GOL*100/LAN}; 4 Proficiency/Objectivity Rate (TA/O: percentage of shots reaching the finish line (MET transformed into goals {TA/O=(GOL*100/MET}; and 5 Game Volume (VJ: TA/O+PO+IO. Results obtained show that PO, IA and VJ were higher in winner than in loser teams. Ratio of PO corresponding to winners and losers was higher than those for IA or VJ. This study confirms the validity of the evaluation of performance through shot characterization and allows to conclude that IA is a better predictor of performance than PO; that is, the quality of shots is more important than its quantity.

     

    RESUMEN

    Nuestro objetivo fue el estudio de las acciones de juego de los equipos de fútbol sala a través de la obtención de una serie de coeficientes ofensivos, verificando se existe alguna relación entre éstos y el rendimiento en el campo estimado en función del resultado final de los partidos. Durante un período de nueve años se ha realizado un seguimiento de los lanzamientos en partidos oficiales disputados por equipos de la Federación Gaúcha de Fútbol Sala (Brasil. Los

  16. A novel method of TVTS in the TS-3 device and the proposal of its application to a large device

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Hayashi, N.; Ueda, Y.; Ono, Y.; Katsurai, M.

    1997-01-01

    A novel method of television Thomson scattering (TVTS) has been developed in the TS-3 device. In this system, a framing camera is located between a spectroscope and a close coupled device camera. This framing camera can take two successive frames from the exit of the spectroscope. The time interval is of 500 ns between those two frames. Because of the shortness of this time interval, the background light is negligible; moreover TVTS is applicable to the TS-3 device whose plasma lifetime is about 150 μs. This method indicates the possibility of not only high spatial resolution but also time repetition in a simple system. (orig.)

  17. Transparent Cu4O3/ZnO heterojunction photoelectric devices

    Science.gov (United States)

    Kim, Hong-Sik; Yadav, Pankaj; Patel, Malkeshkumar; Kim, Joondong; Pandey, Kavita; Lim, Donggun; Jeong, Chaehwan

    2017-12-01

    The present article reports the development of flexible, self-biased, broadband, high speed and transparent heterojunction photodiode, which is essentially important for the next generation electronic devices. We grow semitransparent p-type Cu4O3 using the reactive sputtering method at room temperature. The structural and optical properties of the Cu4O3 film were investigated by using the X-ray diffraction and UV-visible spectroscopy, respectively. The p-Cu4O3/n-ZnO heterojunction diode under dark condition yields rectification behavior with an extremely low saturation current value of 1.8 × 10-10 A and a zero bias photocurrent under illumination condition. The transparent p-Cu4O3/n-ZnO heterojunction photodetector can be operated without an external bias, due to the light-induced voltage production. The metal oxide heterojunction based on Cu4O3/ZnO would provide a route for the transparent and flexible photoelectric devices, including photodetectors and photovoltaics.

  18. Algorithmic Information Dynamics of Persistent Patterns and Colliding Particles in the Game of Life

    KAUST Repository

    Zenil, Hector; Kiani, Narsis A.; Tegner, Jesper

    2018-01-01

    , Conway's Game of Life (GoL) cellular automaton as a case study. We analyze the distribution of prevailing motifs that occur in GoL from the perspective of algorithmic probability. We demonstrate how the tools introduced are an alternative to computable

  19. High-performance flexible resistive memory devices based on Al2O3:GeOx composite

    Science.gov (United States)

    Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh

    2018-05-01

    In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.

  20. Time domain topology optimization of 3D nanophotonic devices

    DEFF Research Database (Denmark)

    Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard

    2014-01-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire...

  1. Room-temperature spintronic effects in Alq3-based hybrid devices

    NARCIS (Netherlands)

    Dediu, V.; Hueso, L.E.; Bergenti, I; Riminucci, A.; Borgatti, F.; Graziosi, P.; Newby, C.; Casoli, F.; de Jong, Machiel Pieter; Taliani, C.; Zhan, Y.

    2008-01-01

    We report on efficient spin polarized injection and transport in long 102 nm channels of Alq3 organic semiconductor. We employ vertical spin valve devices with a direct interface between the bottom manganite electrode and Alq3, while the top-electrode geometry consists of an insulating tunnel

  2. A simple device for the stereoscopic display of 3D CT images

    International Nuclear Information System (INIS)

    Haveri, M.; Suramo, I.; Laehde, S.; Karhula, V.; Junila, J.

    1997-01-01

    We describe a simple device for creating true 3D views of image pairs obtained at 3D CT reconstruction. The device presents the images in a slightly different angle of view for the left and the right eyes. This true 3D viewing technique was applied experimentally in the evaluation of complex acetabular fractures. Experiments were also made to determine the optimal angle between the images for each eye. The angle varied between 1 and 7 for different observers and also depended on the display field of view used. (orig.)

  3. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought

    Directory of Open Access Journals (Sweden)

    Tiago Benedito Dos Santos

    2015-06-01

    Full Text Available Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1 in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible, the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.

  4. A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry

    Directory of Open Access Journals (Sweden)

    Jankovich Dennis

    2015-01-01

    Full Text Available The thermodynamic analysis demonstrates the feasibility of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry. The main reason for replacement is to reduce the total amount of ammonia in spaces like deep-freezing chambers, daily chambers, working rooms and technical passageways. An ammonia-contaminated area is hazardous to human health and the safety of food products. Therefore the preferred reduced amount of ammonia is accumulated in the Central Refrigeration Engine Room, where the cascade NH3/CO2 device is installed as well. Furthermore, the analysis discusses and compares two left Carnot¢s refrigeration cycles, one for the standard ammonia device and the other for the cascade NH3/CO2 device. Both cycles are processes with two-stage compression and two-stage throttling. The thermodynamic analysis demonstrates that the selected refrigeration cycle is the most cost-effective process because it provides the best numerical values for the total refrigeration factor with respect to the observed refrigeration cycle. The chief analyzed influential parameters of the cascade device are: total refrigeration load, total reactive power, mean temperature of the heat exchanger, evaporating and condensing temperature of the low-temperature part.

  5. Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.

    Science.gov (United States)

    Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael

    2018-01-24

    Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.

  6. CO laser interferometer for REB-plasma experiments

    International Nuclear Information System (INIS)

    Burmasov, V.S.; Kruglyakov, E.P.

    1996-01-01

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF 2 prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at λ 5.34 μm coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser (λ = 3.39 μm) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs

  7. CO laser interferometer for REB-plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Burmasov, V S; Kruglyakov, E P [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

    1997-12-31

    The Michelson carbon oxide laser interferometer for measuring plasma density in studies on REB-plasma interaction is described. A detail description of the interferometer and CO laser is presented. For a selection of a single wavelength laser operation the CaF{sub 2} prism is applied. A Ge:Au photoconductor at 77 deg K is applied as the detector. The CO laser radiation at {lambda} 5.34 {mu}m coincides with the detector maximum sensitivity (of the order of 1000 V/W). This increases the interferometer sensitivity about ten times with respect to the He-Ne laser ({lambda} = 3.39 {mu}m) used as the source of light. The typical interferogram and time evolution of plasma density obtained at GOL-M device are presented. (author). 3 figs., 5 refs.

  8. A device that operates within a self-assembled 3D DNA crystal

    Science.gov (United States)

    Hao, Yudong; Kristiansen, Martin; Sha, Ruojie; Birktoft, Jens J.; Hernandez, Carina; Mao, Chengde; Seeman, Nadrian C.

    2017-08-01

    Structural DNA nanotechnology finds applications in numerous areas, but the construction of objects, 2D and 3D crystalline lattices and devices is prominent among them. Each of these components has been developed individually, and most of them have been combined in pairs. However, to date there are no reports of independent devices contained within 3D crystals. Here we report a three-state 3D device whereby we change the colour of the crystals by diffusing strands that contain dyes in or out of the crystals through the mother-liquor component of the system. Each colouring strand is designed to pair with an extended triangle strand by Watson-Crick base pairing. The arm that contains the dyes is quite flexible, but it is possible to establish the presence of the duplex proximal to the triangle by X-ray crystallography. We modelled the transition between the red and blue states through a simple kinetic model.

  9. 3D Printed Composites for Topology Transforming Multifunctional Devices

    Science.gov (United States)

    2017-01-26

    panels connected by hinges, which occupy infinitesimal space but control the angles between two panels. Figure 2.2.1-3 shows panels are connected by...observations that higher curing temperature yields to more compacted and better connected silver NPs. The Young’s moduli, however, are lower than that of...AFRL-AFOSR-VA-TR-2017-0021 3D Printed Composites for Topology -Transforming Multifunctional Devices Kurt Maute REGENTS OF THE UNIVERSITY OF COLORADO

  10. Rapid fabrication of Al{sub 2}O{sub 3} encapsulations for organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kamran; Ali, Junaid [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Mehdi, Syed Murtuza [Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270 (Pakistan); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); An, Young Jin [Jeonnam Science and Technology Promotion Center, Yeongam-gun, Jeollanam-do 526-897 (Korea, Republic of)

    2015-10-30

    Highlights: • Al{sub 2}O{sub 3} encapsulations are being developed through a unique R2R-AALD system. • The encapsulations have resulted in life time enhancement of PVP memristor devices. • The Al{sub 2}O{sub 3} encapsulated memristor performed with superior stability for four weeks. • Encapsulated devices performed efficiently even after bending test for 100 cycles. - Abstract: Organic electronics have earned great reputation in electronic industry yet they suffer technical challenges such as short lifetimes and low reliability because of their susceptibility to water vapor and oxygen which causes their fast degradation. This paper report on the rapid fabrication of Al{sub 2}O{sub 3} encapsulations through a unique roll-to-roll atmospheric atomic layer deposition technology (R2R-AALD) for the life time enhancement of organic poly (4-vinylphenol) (PVP) memristor devices. The devices were then categorized into two sets. One was processed with R2R-AALD Al{sub 2}O{sub 3} encapsulations at 50 °C and the other one was kept as un-encapsulated. The field-emission scanning electron microscopy (FESEM) results revealed that pin holes and other irregularities in PVP films with average arithmetic roughness (R{sub a}) of 9.66 nm have been effectively covered by Al{sub 2}O{sub 3} encapsulation having R{sub a} of 0.92 nm. The X-ray photoelectron spectroscopy XPS spectrum for PVP film showed peaks of C 1s and O 1s at the binding energies of 285 eV and 531 eV, respectively. The respective appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74 eV, 119 eV, and 531 eV, confirms the fabrication of Al{sub 2}O{sub 3} films. Electrical current–voltage (I–V) measurements confirmed that the Al{sub 2}O{sub 3} encapsulation has a huge influence on the performance, robustness and life time of memristor devices. The Al{sub 2}O{sub 3} encapsulated memristor performed with superior stability for four weeks whereas the un-encapsulated devices could only last for one

  11. Alq3 nanorods: promising building blocks for optical devices.

    Science.gov (United States)

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 3D Printed Paper-Based Microfluidic Analytical Devices

    Directory of Open Access Journals (Sweden)

    Yong He

    2016-06-01

    Full Text Available As a pump-free and lightweight analytical tool, paper-based microfluidic analytical devices (μPADs attract more and more interest. If the flow speed of μPAD can be programmed, the analytical sequences could be designed and they will be more popular. This reports presents a novel μPAD, driven by the capillary force of cellulose powder, printed by a desktop three-dimensional (3D printer, which has some promising features, such as easy fabrication and programmable flow speed. First, a suitable size-scale substrate with open microchannels on its surface is printed. Next, the surface of the substrate is covered with a thin layer of polydimethylsiloxane (PDMS to seal the micro gap caused by 3D printing. Then, the microchannels are filled with a mixture of cellulose powder and deionized water in an appropriate proportion. After drying in an oven at 60 °C for 30 min, it is ready for use. As the different channel depths can be easily printed, which can be used to achieve the programmable capillary flow speed of cellulose powder in the microchannels. A series of microfluidic analytical experiments, including quantitative analysis of nitrite ion and fabrication of T-sensor were used to demonstrate its capability. As the desktop 3D printer (D3DP is very cheap and accessible, this device can be rapidly printed at the test field with a low cost and has a promising potential in the point-of-care (POC system or as a lightweight platform for analytical chemistry.

  13. Understanding the conductive channel evolution in Na:WO3-x-based planar devices

    Science.gov (United States)

    Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias

    2015-03-01

    An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the

  14. Axisymmetric magnetic mirrors for plasma confinement. Recent development and perspectives

    International Nuclear Information System (INIS)

    Kruglyakov, E.P.; Dimov, G.I.; Ivanov, A.A.; Koidan, V.S.

    2003-01-01

    Mirrors are the only one class of fusion systems which completely differs topologically from the systems with closed magnetic configurations. At present, three modern types of different mirror machines for plasma confinement and heating exist in Novosibirsk (Gas Dynamic Trap,- GDT, Multi-mirror,- GOL-3, and Tandem Mirror,- AMBAL-M). All these systems are attractive from the engineering point of view because of very simple axisymmetric geometry of magnetic configurations. In the present paper, the status of different confinement systems is presented. The experiments most crucial for the mirror concept are described such as a demonstration of different principles of suppression of electron heat conductivity (GDT, GOL-3), finding of MHD stable regimes of plasma confinement in axisymmetric geometry of magnetic field (GDT, AMBAL-M), an effective heating of a dense plasma by relativistic electron beam (GOL-3), observation of radial diffusion of quiescent plasma with practically classical diffusion coefficient (AMBAL-M), etc. It should be mentioned that on the basis of the GDT it is possible to make a very important intermediate step. Using 'warm' plasma and oblique injection of fast atoms of D and T one can create a powerful 14 MeV neutron source with a moderate irradiation area (about 1 square meter) and, accordingly, with low tritium consumption. The main plasma parameters achieved are presented and the future perspectives of different mirror machines are outlined. (author)

  15. Improved electron injection into Alq{sub 3} based devices using a thin Erq{sub 3} injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, P; Desai, P; Gillin, W P [Department of Physics, Queen Mary, University of London, Mile End Road, London, E1 4NS (United Kingdom); Curry, R J [Advanced Technology Institute, School of Electronics and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2008-04-21

    The role of a thin erbium(III) tris(8-hydroxyquinoline) (Erq{sub 3}) interface layer on the electron injection into aluminium(III) tris(8-hydroxyquinoline) (Alq{sub 3}) based organic light emitting devices (OLEDs) has been investigated. It has been shown that the use of a 40 A interface layer can increase the efficiency of a simple Alq{sub 3} OLED with an Al cathode to a level comparable with other, well established, high-efficiency cathodes such as LiF/Al. We also show that, despite the bulk HOMO and LUMO positions for Erq{sub 3} being little different from those for Alq{sub 3}, the presence of an interfacial layer makes the devices turn-on voltage almost independent of the cathode metal. This is explained by there being a vacuum level shift for Erq{sub 3} which is dependent on the work function of the cathode metal.

  16. A newly developed removable dental device for fused 3-D MRI/Meg imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kuboki, Takuo [Okayama Univ. (Japan). Dental School; Clark, G T; Akhtari, M; Sutherling, W W

    1999-06-01

    Recently 3-D imaging techniques have been used to shed light on the role of abnormal brain functions in such conditions as nocturnal bruxism and orofacial pain. In order to achieve precise 3-D image fusion between magnetic resonance images (MRI) and magnetoencephalography (MEG) data, we developed a removable dental device which attaches rigidly to the teeth. Using this device, correlation of MEG and MRI data points was achieved by the co-registration of 3 or more fiducial points. Using a Polhemus 3-space digitizer the locations of the points were registered on MEG and then a small amount of high-water-content material was placed at each point for registering these same points on MRI. The mean reproducibility of interpoint distances, determined for 2 subjects, was between 0.59 and 0.82 mm. Using a Monte Carlo statistical analysis we determined that the accuracy of a posterior projection from the fiducial points to any point within the strata of the brain is {+-}3.3 mm. The value of this device is that it permits reasonably precise and repeatable co-registration of these points and yet it is easily removed and replaced by the patient. Obviously such a device could also be adapted for use in diagnosis and analysis of brain functions related with other various sensory and motor functions (e.g., taste, pain, clenching) in maxillofacial region using MRI and MEG. (author)

  17. A newly developed removable dental device for fused 3-D MRI/Meg imaging

    International Nuclear Information System (INIS)

    Kuboki, Takuo; Clark, G.T.; Akhtari, M.; Sutherling, W.W.

    1999-01-01

    Recently 3-D imaging techniques have been used to shed light on the role of abnormal brain functions in such conditions as nocturnal bruxism and orofacial pain. In order to achieve precise 3-D image fusion between magnetic resonance images (MRI) and magnetoencephalography (MEG) data, we developed a removable dental device which attaches rigidly to the teeth. Using this device, correlation of MEG and MRI data points was achieved by the co-registration of 3 or more fiducial points. Using a Polhemus 3-space digitizer the locations of the points were registered on MEG and then a small amount of high-water-content material was placed at each point for registering these same points on MRI. The mean reproducibility of interpoint distances, determined for 2 subjects, was between 0.59 and 0.82 mm. Using a Monte Carlo statistical analysis we determined that the accuracy of a posterior projection from the fiducial points to any point within the strata of the brain is ±3.3 mm. The value of this device is that it permits reasonably precise and repeatable co-registration of these points and yet it is easily removed and replaced by the patient. Obviously such a device could also be adapted for use in diagnosis and analysis of brain functions related with other various sensory and motor functions (e.g., taste, pain, clenching) in maxillofacial region using MRI and MEG. (author)

  18. Magnetic mirrors: history, results, and future prospects

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Ivanov, A.A.; Kruglyakov, E.P.; Burdakov, A.V.; Ivanov, A.A.; Beklemishev, A.D.; Ivanov, A.A.; Burdakov, A.V.

    2012-01-01

    The evolution of open traps brought them from simple solenoids to highly sophisticated and huge tandem mirrors with quadrupole magnetic stabilizers. They tried to compete with toroidal devices using ambipolar confinement and thermal barriers, but were too late and failed, and are almost extinct. A side branch of open traps went for simplicity and good fast-ion confinement inherent in axially symmetric mirrors. Since simplicity means lower cost of construction and servicing, and lower engineering and materials demands, such type of traps might still have an edge. Axially symmetric mirrors at the Budker Institute of Nuclear Physics in Novosibirsk currently represent the front line of mirror research. We discuss recent experimental results from the multiple-mirror trap, GOL-3, and the gas-dynamic trap, GDT. The next step in this line of research is the GDMT program that will combine the GDT-style fast-ion-dominated central mirror with multiple-mirror end plugs. This superconducting device will be modular and built in stages. The first stage, GDMT-T, will be based on 5m, 7T superconducting solenoid (multiple-mirror plug of the full device). Its 3-year scientific program is oriented primarily on PMI studies.

  19. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran.

    Science.gov (United States)

    Soltani, Naghmeh; Keshavarzi, Behnam; Moore, Farid; Sorooshian, Armin; Ahmadi, Mohamad Reza

    2017-08-01

    This study investigated the concentration of potentially toxic elements (PTEs) including Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, V, and Zn in 102 soils (in the Near and Far areas of the mine), 7 tailings, and 60 plant samples (shoots and roots of Artemisia sieberi and Zygophylum species) collected at the Gol-E-Gohar iron ore mine in Iran. The elemental concentrations in tailings and soil samples (in Near and Far areas) varied between 7.4 and 35.8 mg kg -1 for As (with a mean of 25.39 mg kg -1 for tailings), 7.9 and 261.5 mg kg -1 (mean 189.83 mg kg -1 for tailings) for Co, 17.7 and 885.03 mg kg -1 (mean 472.77 mg kg -1 for tailings) for Cu, 12,500 and 400,000 mg kg -1 (mean 120,642.86 mg kg -1 for tailings) for Fe, and 28.1 and 278.1 mg kg -1 (mean 150.29 mg kg -1 for tailings) for Ni. A number of physicochemical parameters and pollution index for soils were determined around the mine. Sequential extractions of tailings and soil samples indicated that Fe, Cr, and Co were the least mobile and that Mn, Zn, Cu, and As were potentially available for plants uptake. Similar to soil, the concentration of Al, As, Co, Cr, Cu, Fe, Mn, Mo, Ni, and Zn in plant samples decreased with the distance from the mining/processing areas. Data on plants showed that metal concentrations in shoots usually exceeded those in roots and varied significantly between the two investigated species (Artemisia sieberi > Zygophylum). All the reported results suggest that the soil and plants near the iron ore mine are contaminated with PTEs and that they can be potentially dispersed in the environment via aerosol transport and deposition.

  20. Overview of 3-year experience with large-scale electronic portal imaging device-based 3-dimensional transit dosimetry

    NARCIS (Netherlands)

    Mijnheer, Ben J.; González, Patrick; Olaciregui-Ruiz, Igor; Rozendaal, Roel A.; van Herk, Marcel; Mans, Anton

    2015-01-01

    To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results. In our institution, routine in vivo dose verification of all treatments is performed by means of 3D

  1. Comparisons of switching characteristics between Ti/Al2O3/Pt and TiN/Al2O3/Pt RRAM devices with various compliance currents

    Science.gov (United States)

    Qi, Yanfei; Zhao, Ce Zhou; Liu, Chenguang; Fang, Yuxiao; He, Jiahuan; Luo, Tian; Yang, Li; Zhao, Chun

    2018-04-01

    In this study, the influence of the Ti and TiN top electrodes on the switching behaviors of the Al2O3/Pt resistive random access memory devices with various compliance currents (CCs, 1-15 mA) has been compared. Based on the similar statistical results of the resistive switching (RS) parameters such as V set/V reset, R HRS/R LRS (measured at 0.10 V) and resistance ratio with various CCs for both devices, the Ti/Al2O3/Pt device differs from the TiN/Al2O3/Pt device mainly in the forming process rather than in the following switching cycles. Apart from the initial isolated state, the Ti/Al2O3/Pt device has the initial intermediate state as well. In addition, its forming voltage is relatively lower. The conduction mechanisms of the ON and OFF state for both devices are demonstrated as ohmic conduction and Frenkel-Poole emission, respectively. Therefore, with the combined modulations of the CCs and the stop voltages, the TiN/Al2O3/Pt device is more stable for nonvolatile memory applications to further improve the RS performance.

  2. 36 CFR 3.13 - What conditions apply to the use of Marine Sanitation Devices (MSD)?

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false What conditions apply to the use of Marine Sanitation Devices (MSD)? 3.13 Section 3.13 Parks, Forests, and Public Property NATIONAL... to the use of Marine Sanitation Devices (MSD)? (a) Discharging sewage from any vessel, whether...

  3. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  4. Understanding the conductive channel evolution in Na:WO(3-x)-based planar devices.

    Science.gov (United States)

    Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias

    2015-04-14

    An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO(3-x)) films on a soda-lime glass substrate, from which Na(+) diffuses into the WO(3-x) films during the deposition. The entire process of Na(+) migration driven by an alternating electric field is visualized in the Na-doped WO(3-x) films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na(+) mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.

  5. 3D-printed devices for continuous-flow organic chemistry.

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  6. All-Polymer Photovoltaic Devices of Poly(3-(4- n -octyl)-phenylthiophene) from Grignard Metathesis (GRIM) Polymerization

    KAUST Repository

    Holcombe, Thomas W.

    2009-10-14

    (Graph Presented) The synthesis of poly[3-(4-n-octyl)-phenylthiophene] (POPT) from Grignard Metathesis (GRIM) is reported. GRIM POPT is found to have favorable electronic, optical, and processing properties for organic photovoltaics (OPVs). Space-charge limited current and field effect transistor measurements for POPT yielded hole mobilities of 1 × 10-4 cm2/(V s) and 0.05 cm2/(V s), respectively. Spincasting GRIM POPT from chlorobenzene yields a thin film with a 1.8 eV band gap, and PC61BM:POPT bulk heterojection devices provide a peak performance of 3.1%. Additionally, an efficiency of 2.0% is achieved in an all-polymer, bilayer OPV using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-(1-cyanovinylene) phenylene] (CNPPV) as an acceptor. This state-of-the-art all-polymer device is analyzed in comparison to the analogous poly(3-hexylthiophene) (P3HT)/CNPPV device. Counter to expectations based on more favorable energy level alignment, greater active layer light absorption, and similar hole mobility, P3HT/CNPPV devices perform less well than POPT/CNPPV devices with a peak efficiency of 0.93%. © 2009 American Chemical Society.

  7. All-Polymer Photovoltaic Devices of Poly(3-(4- n -octyl)-phenylthiophene) from Grignard Metathesis (GRIM) Polymerization

    KAUST Repository

    Holcombe, Thomas W.; Woo, Claire H.; Kavulak, David F.J.; Thompson, Barry C.; Fréchet, Jean M. J.

    2009-01-01

    (Graph Presented) The synthesis of poly[3-(4-n-octyl)-phenylthiophene] (POPT) from Grignard Metathesis (GRIM) is reported. GRIM POPT is found to have favorable electronic, optical, and processing properties for organic photovoltaics (OPVs). Space-charge limited current and field effect transistor measurements for POPT yielded hole mobilities of 1 × 10-4 cm2/(V s) and 0.05 cm2/(V s), respectively. Spincasting GRIM POPT from chlorobenzene yields a thin film with a 1.8 eV band gap, and PC61BM:POPT bulk heterojection devices provide a peak performance of 3.1%. Additionally, an efficiency of 2.0% is achieved in an all-polymer, bilayer OPV using poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-(1-cyanovinylene) phenylene] (CNPPV) as an acceptor. This state-of-the-art all-polymer device is analyzed in comparison to the analogous poly(3-hexylthiophene) (P3HT)/CNPPV device. Counter to expectations based on more favorable energy level alignment, greater active layer light absorption, and similar hole mobility, P3HT/CNPPV devices perform less well than POPT/CNPPV devices with a peak efficiency of 0.93%. © 2009 American Chemical Society.

  8. 3D Printing device adaptable to Computer Numerical Control (CNC)

    OpenAIRE

    GARDAN , Julien; Danesi , F.; Roucoules , Lionel; Schneider , A.

    2014-01-01

    This article presents the development of a 3D printing device for the additive manufacturing adapted to a CNC machining. The application involves the integration of a specific printing head. Additive manufacturing technology is most commonly used for modeling, prototyping, tooling through an exclusive machine or 3D printer. A global review and analysis of technologies show the additive manufacturing presents little independent solutions [6][9]. The problem studied especially the additive manu...

  9. 78 FR 55294 - Certain Wireless Devices With 3G Capabilities and Components Thereof Commission Determination To...

    Science.gov (United States)

    2013-09-10

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof Commission Determination To Review the Final Initial Determination Finding... importation of certain wireless devices with 3G capabilities and components thereof by reason of infringement...

  10. 17 CFR 240.10b-3 - Employment of manipulative and deceptive devices by brokers or dealers.

    Science.gov (United States)

    2010-04-01

    ... deceptive devices by brokers or dealers. 240.10b-3 Section 240.10b-3 Commodity and Securities Exchanges... Contrivances § 240.10b-3 Employment of manipulative and deceptive devices by brokers or dealers. (a) It shall be unlawful for any broker or dealer, directly or indirectly, by the use of any means or...

  11. Testing a Novel 3D Printed Radiographic Imaging Device for Use in Forensic Odontology.

    Science.gov (United States)

    Newcomb, Tara L; Bruhn, Ann M; Giles, Bridget; Garcia, Hector M; Diawara, Norou

    2017-01-01

    There are specific challenges related to forensic dental radiology and difficulties in aligning X-ray equipment to teeth of interest. Researchers used 3D printing to create a new device, the combined holding and aiming device (CHAD), to address the positioning limitations of current dental X-ray devices. Participants (N = 24) used the CHAD, soft dental wax, and a modified external aiming device (MEAD) to determine device preference, radiographer's efficiency, and technique errors. Each participant exposed six X-rays per device for a total of 432 X-rays scored. A significant difference was found at the 0.05 level between the three devices (p = 0.0015), with the MEAD having the least amount of total errors and soft dental wax taking the least amount of time. Total errors were highest when participants used soft dental wax-both the MEAD and the CHAD performed best overall. Further research in forensic dental radiology and use of holding devices is needed. © 2016 American Academy of Forensic Sciences.

  12. 3-D ICs as a Platform for IoT Devices

    Science.gov (United States)

    2017-03-01

    are both naturally reduced in 3-D ICs. I. INTRODUCTION The Internet of Things (IoT) is a novel computing paradigm based on connecting physical devices...cost and high transparency [6]. PET is used as the substrate of p-i-n type solar cells and is compatible with the traditional deposition process of solar ...10 138 3.42 to 3.48 130 to 185 2.6 400 to 1,060memory Solar cells Polyethylene 1 · 1016 0.2 1.58 to 1.64 2 to 2.7 3.9 400 to 1,600Terephthalate (PET

  13. Surface acoustic wave devices on AlN/3C–SiC/Si multilayer structures

    International Nuclear Information System (INIS)

    Lin, Chih-Ming; Lien, Wei-Cheng; Riekkinen, Tommi; Senesky, Debbie G; Pisano, Albert P; Chen, Yung-Yu; Felmetsger, Valery V

    2013-01-01

    Surface acoustic wave (SAW) propagation characteristics in a multilayer structure including a piezoelectric aluminum nitride (AlN) thin film and an epitaxial cubic silicon carbide (3C–SiC) layer on a silicon (Si) substrate are investigated by theoretical calculation in this work. Alternating current (ac) reactive magnetron sputtering was used to deposit highly c-axis-oriented AlN thin films, showing the full width at half maximum (FWHM) of the rocking curve of 1.36° on epitaxial 3C–SiC layers on Si substrates. In addition, conventional two-port SAW devices were fabricated on the AlN/3C–SiC/Si multilayer structure and SAW propagation properties in the multilayer structure were experimentally investigated. The surface wave in the AlN/3C–SiC/Si multilayer structure exhibits a phase velocity of 5528 m s −1 and an electromechanical coupling coefficient of 0.42%. The results demonstrate the potential of AlN thin films grown on epitaxial 3C–SiC layers to create layered SAW devices with higher phase velocities and larger electromechanical coupling coefficients than SAW devices on an AlN/Si multilayer structure. Moreover, the FWHM values of rocking curves of the AlN thin film and 3C–SiC layer remained constant after annealing for 500 h at 540 °C in air atmosphere. Accordingly, the layered SAW devices based on AlN thin films and 3C–SiC layers are applicable to timing and sensing applications in harsh environments. (paper)

  14. Ionically conducting Er3+-doped DNA-based biomembranes for electrochromic devices

    International Nuclear Information System (INIS)

    Leones, R.; Fernandes, M.; Sentanin, F.; Cesarino, I.; Lima, J.F.; Zea Bermudez, V. de; Pawlicka, A.; Magon, C.J.; Donoso, J.P.; Silva, M.M.

    2014-01-01

    Biopolymer-based membranes have particular interest due to their biocompatibility, Biodegradability, easy extraction from natural resources and low cost. The incorporation of Er 3+ ions into natural macromolecule hosts with the purpose of producing highly efficient emitting phosphors is of widespread interest in materials science, due to their important roles in display devices. Thus, biomembranes may be viewed as innovative materials for the area of optics. This paper describes studies of luminescent material DNA-based membranes doped with erbium triflate and demonstrates that their potential technological applications may be expanded to electrochromic devices. The sample that exhibits the highest ionic conductivity is DNA 10 Er, (1.17 × 10 −5 and 7.76 × 10 −4 S.cm −1 at 30 and 100 °C, respectively). DSC, XRD and POM showed that the inclusion of the guest salt into DNA does not change significantly its amorphous nature. The overall redox stability was ca. 2.0 V indicating that these materials have an acceptable stability window for applications in solid state electrochemical devices. The EPR analysis suggested that the Er 3+ ions are distributed in various environments. A small ECD comprising a Er 3+ -doped DNA-based membrane was assembled and tested by cyclic voltammetry and chronoamperometry. These electrochemical analyses revealed a pale blue color to transparent color change and a decrease of the charge density from -4.0 to -1.2 mC.cm −2 during 4000 color/bleaching cycles

  15. [Performance dependence of organic light-emitting devices on the thickness of Alq3 emitting layer].

    Science.gov (United States)

    Lian, Jia-rong; Liao, Qiao-sheng; Yang, Rui-bo; Zheng, Wei; Zeng, Peng-ju

    2010-10-01

    The dependence of opto-electronical characteristics in organic light-emitting devices on the thickness of Alq3 emitter layer was studied, where MoO3, NPB, and Alq3 were used as hole injector, hole transporter, and emitter/electron transporter, respectively. By increasing the thickness of Alq3 layer from 20 to 100 nm, the device current decreased gradually, and the EL spectra of devices performed a little red shift with an obvious broadening in long wavelength range but a little decrease in intensity of short wavelength range. The authors simulated the EL spectra using the photoluminescence (PL) spectra of Alq3 as Alq3 intrinsic emission, which coincided with the experimental EL spectra well. The simulated results suggested that the effect of interference takes the major role in broadening the long wavelength range of EL spectra, and the distribution of emission zone largely affects the profile of EL spectra in short wavelength range.

  16. 3D printing of a wearable personalized oral delivery device: A first-in-human study

    Science.gov (United States)

    Brambilla, Davide

    2018-01-01

    Despite the burgeoning interest in three-dimensional (3D) printing for the manufacture of customizable oral dosage formulations, a U.S. Food and Drug Administration–approved tablet notwithstanding, the full potential of 3D printing in pharmaceutical sciences has not been realized. In particular, 3D-printed drug-eluting devices offer the possibility for personalization in terms of shape, size, and architecture, but their clinical applications have remained relatively unexplored. We used 3D printing to manufacture a tailored oral drug delivery device with customizable design and tunable release rates in the form of a mouthguard and, subsequently, evaluated the performance of this system in the native setting in a first-in-human study. Our proof-of-concept work demonstrates the immense potential of 3D printing as a platform for the development and translation of next-generation drug delivery devices for personalized therapy. PMID:29750201

  17. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Science.gov (United States)

    Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J; Yoshida, Mari; Cronin, Leroy

    2015-01-01

    Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  18. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    Science.gov (United States)

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  19. 3D-printed devices for continuous-flow organic chemistry

    Directory of Open Access Journals (Sweden)

    Vincenza Dragone

    2013-05-01

    Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  20. Development of a calibration system for airborne "1"3"1I monitoring devices

    International Nuclear Information System (INIS)

    Zhao, C.; Tang, F.; He, L.; Xu, Y.; Lu, X.

    2016-01-01

    A prototype calibration system for airborne "1"3"1I monitoring devices was developed at the Shanghai Institute of Measurement and Testing Technology (SIMT). This system consists of a gaseous "1"3"1I_2 generator, an airborne storage chamber, an airborne iodine sampler, and an HPGe spectrometer. With this system, "1"3"1I reference samples in the form of charcoal filters and charcoal cartridges, with activities ranging from 100 to 10,000 Bq, were produced with overall relative standard uncertainties of 2.8% (for filter samples) and 3.5% (for cartridge samples); the activities range could be extended according to need. - Highlights: • Original calibration system for airborne "1"3"1I monitoring devices was developed. • Two types of "1"3"1I reference samples was prepared. • The activity of the produced "1"3"1I reference sample could be easily controlled. • The influence of uneven distribution of "1"3"1I in cartridge samples was considered.

  1. Towards fabrication of 3D printed medical devices to prevent biofilm formation

    DEFF Research Database (Denmark)

    Sandler, Niklas; Salmela, Ida; Fallarero, Adyary

    2014-01-01

    The use of three-dimensional (3D) printing technologies is transforming the way that materials are turned into functional devices. We demonstrate in the current study the incorporation of anti-microbial nitrofurantoin in a polymer carrier material and subsequent 3D printing of a model structure...

  2. 3D printing for health & wealth: Fabrication of custom-made medical devices through additive manufacturing

    Science.gov (United States)

    Colpani, Alessandro; Fiorentino, Antonio; Ceretti, Elisabetta

    2018-05-01

    Additive Manufacturing (AM) differs from traditional manufacturing technologies by its ability to handle complex shapes with great design flexibility. These features make the technique suitable to fabricate customized components, particularly answering specific custom needs. Although AM mainly referred to prototyping, nowadays the interest in direct manufacturing of actual parts is growing. This article shows the application of AM within the project 3DP-4H&W (3D Printing for Health & Wealth) which involves engineers and physicians for developing pediatric custom-made medical devices to enhance the fulfilling of the patients specific needs. In the project, two types of devices made of a two-component biocompatible silicone are considered. The first application (dental field) consists in a device for cleft lip and palate. The second one (audiological field) consists in an acoustic prosthesis. The geometries of the devices are based on the anatomy of the patient that is obtained through a 3D body scan process. For both devices, two different approaches were planned, namely direct AM and indirect Rapid Tooling (RT). In particular, direct AM consists in the FDM processing of silicone, while RT consists in molds FDM fabrication followed by silicone casting. This paper presents the results of the RT method that is articulated in different phases: the acquisition of the geometry to be realized, the design of the molds taking into account the casting feasibility (as casting channel, vents, part extraction), the realization of molds produced through AM, molds surface chemical finishing, pouring and curing of the silicone. The fabricated devices were evaluated by the physicians team that confirmed the effectiveness of the proposed procedure in fabricating the desired devices. Moreover, the procedure can be used as a general method to extend the range of applications to any custom-made device for anatomic districts, especially where complex shapes are present (as tracheal or

  3. Fabrication, electrical characterization and device simulation of vertical P3HT field-effect transistors

    Directory of Open Access Journals (Sweden)

    Bojian Xu

    2017-12-01

    Full Text Available Vertical organic field-effect transistors (VOFETs provide an advantage over lateral ones with respect to the possibility to conveniently reduce the channel length. This is beneficial for increasing both the cut-off frequency and current density in organic field-effect transistor devices. We prepared P3HT (poly[3-hexylthiophene-2,5-diyl] VOFETs with a surrounding gate electrode and gate dielectric around the vertical P3HT pillar junction. Measured output and transfer characteristics do not show a distinct gate effect, in contrast to device simulations. By introducing in the simulations an edge layer with a strongly reduced charge mobility, the gate effect is significantly reduced. We therefore propose that a damaged layer at the P3HT/dielectric interface could be the reason for the strong suppression of the gate effect. We also simulated how the gate effect depends on the device parameters. A smaller pillar diameter and a larger gate electrode-dielectric overlap both lead to better gate control. Our findings thus provide important design parameters for future VOFETs.

  4. Design and fabrication of directional diffractive device on glass substrate for multiview holographic 3D display

    Science.gov (United States)

    Su, Yanfeng; Cai, Zhijian; Liu, Quan; Zou, Wenlong; Guo, Peiliang; Wu, Jianhong

    2018-01-01

    Multiview holographic 3D display based on the nano-grating patterned directional diffractive device can provide 3D images with high resolution and wide viewing angle, which has attracted considerable attention. However, the current directional diffractive device fabricated on the photoresist is vulnerable to damage, which will lead to the short service life of the device. In this paper, we propose a directional diffractive device on glass substrate to increase its service life. In the design process, the period and the orientation of the nano-grating at each pixel are carefully calculated accordingly by the predefined position of the viewing zone, and the groove parameters are designed by analyzing the diffraction efficiency of the nano-grating pixel on glass substrate. In the experiment, a 4-view photoresist directional diffractive device with a full coverage of pixelated nano-grating arrays is efficiently fabricated by using an ultraviolet continuously variable spatial frequency lithography system, and then the nano-grating patterns on the photoresist are transferred to the glass substrate by combining the ion beam etching and the reactive ion beam etching for controlling the groove parameters precisely. The properties of the etched glass device are measured under the illumination of a collimated laser beam with a wavelength of 532nm. The experimental results demonstrate that the light utilization efficiency is improved and optimized in comparison with the photoresist device. Furthermore, the fabricated device on glass substrate is easier to be replicated and of better durability and practicability, which shows great potential in the commercial applications of 3D display terminal.

  5. 3D printing and milling a real-time PCR device for infectious disease diagnostics.

    Science.gov (United States)

    Mulberry, Geoffrey; White, Kevin A; Vaidya, Manjusha; Sugaya, Kiminobu; Kim, Brian N

    2017-01-01

    Diagnosing infectious diseases using quantitative polymerase chain reaction (qPCR) offers a conclusive result in determining the infection, the strain or type of pathogen, and the level of infection. However, due to the high-cost instrumentation involved and the complexity in maintenance, it is rarely used in the field to make a quick turnaround diagnosis. In order to provide a higher level of accessibility than current qPCR devices, a set of 3D manufacturing methods is explored as a possible option to fabricate a low-cost and portable qPCR device. The key advantage of this approach is the ability to upload the digital format of the design files on the internet for wide distribution so that people at any location can simply download and feed into their 3D printers for quick manufacturing. The material and design are carefully selected to minimize the number of custom parts that depend on advanced manufacturing processes which lower accessibility. The presented 3D manufactured qPCR device is tested with 20-μL samples that contain various concentrations of lentivirus, the same type as HIV. A reverse-transcription step is a part of the device's operation, which takes place prior to the qPCR step to reverse transcribe the target RNA from the lentivirus into complementary DNA (cDNA). This is immediately followed by qPCR which quantifies the target sequence molecules in the sample during the PCR amplification process. The entire process of thermal control and time-coordinated fluorescence reading is automated by closed-loop feedback and a microcontroller. The resulting device is portable and battery-operated, with a size of 12 × 7 × 6 cm3 and mass of only 214 g. By uploading and sharing the design files online, the presented low-cost qPCR device may provide easier access to a robust diagnosis protocol for various infectious diseases, such as HIV and malaria.

  6. S-35: Aynı Yaş Kategorisinde Farklı Başarı Seviyesindeki Erkek Futbolcuların Lig Performanslarının Karşılaştırılması

    Directory of Open Access Journals (Sweden)

    Raziye Dut

    2017-03-01

    Full Text Available GİRİŞ: Futbola erken yaşta başlamak, yeteneğin ortaya çıkarılması ve doğru geliştirilmesi zor ve uzun bir süreçtir. Bu süreçte hem yetenekli hem de iyi yönlendirilmiş olan futbolcular milli takım kamplarına davet edilmekte ve milli futbolcu olmanın ilk adımlarını da atmış olmaktadır.AMAÇ: U-14 yaş kategorisinde milli takım seçilme kampına davet edilmiş erkek futbolcuların diğer ülke genelinde akademi liglerinde futbol oynayan aynı kronolojik yaştaki davet edilmeyen akranlarından lig performans farklılıklarını göstermektir.GEREÇ-YÖNTEM: 2016-2017 sezonunda akademi liglerinde futbol oynayan U-14 2050 erkek futbolcudan milli takıma seçilme kampına davet edilen 213 futbolcunun ligin ilk yarı döneminde davet edilmeyen akranlarından futbola spesifik lig performans farklarını inceledik. Veriler n ve % veya ortanca ve Inter Quartile Rate (IQR olarak özetlendi. Gruplar arası farklılıkların saptanmasında Mann-Whitney U testi kullanıldı.. P<0,05 istatistiksel anlamlı kabul edildi.BULGULAR: Yaş çeyrekleri sırasıyla 122 (%57,3, 49 (523, 30 (%14,1 ve 12(%5,6 idi. 2016-2017 sezonunda şubat ayına kadar oynadıkları maç sayıları 12 (IQR: 5-12, dakika 681 (245-1183,2, sarı kart sayısı 0 (0-1, gol sayıları 0 (0-2 olduğu görüldü. Milli takıma seçilme kampına davet edilen futbolcuların edilmeyenlere göre daha fazla maç ve oyun dakikası oynadığı (p<0,001, daha fazla gol attığı (p<0,001 ve daha az sarı kart aldığı (p<0,001 saptandı. Lig maçlarında milli takıma seçilme kampına davet edilen futbolcuların 5 kişiden biri 1 gol atarken davet edilmeyenlerden 10 kişiden biri 1 gol attığı, davet edilenlerin oynadıkları maçlarda 2,77 maçta bir gol atılırken, davet edilmeyenlerin oynadıkları her 8,78 maçtan birinde bir gol atıldığı görüldü. Kampa davet edilmeyen sporcular oynadıkları her 581,28 dakikada bir gol atılırken, davet edilenlerde 218

  7. 78 FR 8191 - Certain Wireless Devices With 3G and/or 4G Capabilities and Components Thereof; Institution of...

    Science.gov (United States)

    2013-02-05

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-868] Certain Wireless Devices With 3G and... importation, and the sale within the United States after importation of certain wireless devices with 3G and... devices with 3G and/or 4G capabilities and components thereof by reason of infringement of one or more of...

  8. 3D analysis of semiconductor devices: A combination of 3D imaging and 3D elemental analysis

    Science.gov (United States)

    Fu, Bianzhu; Gribelyuk, Michael A.

    2018-04-01

    3D analysis of semiconductor devices using a combination of scanning transmission electron microscopy (STEM) Z-contrast tomography and energy dispersive spectroscopy (EDS) elemental tomography is presented. 3D STEM Z-contrast tomography is useful in revealing the depth information of the sample. However, it suffers from contrast problems between materials with similar atomic numbers. Examples of EDS elemental tomography are presented using an automated EDS tomography system with batch data processing, which greatly reduces the data collection and processing time. 3D EDS elemental tomography reveals more in-depth information about the defect origin in semiconductor failure analysis. The influence of detector shadowing and X-rays absorption on the EDS tomography's result is also discussed.

  9. Using computed tomography and 3D printing to construct custom prosthetics attachments and devices.

    Science.gov (United States)

    Liacouras, Peter C; Sahajwalla, Divya; Beachler, Mark D; Sleeman, Todd; Ho, Vincent B; Lichtenberger, John P

    2017-01-01

    The prosthetic devices the military uses to restore function and mobility to our wounded warriors are highly advanced, and in many instances not publically available. There is considerable research aimed at this population of young patients who are extremely active and desire to take part in numerous complex activities. While prosthetists design and manufacture numerous devices with standard materials and limb assemblies, patients often require individualized prosthetic design and/or modifications to enable them to participate fully in complex activities. Prosthetists and engineers perform research and implement digitally designs in collaboration to generate equipment for their patient's rehabilitation needs. 3D printing allows for these devices to be manufactured from an array of materials ranging from plastic to titanium alloy. Many designs require form fitting to a prosthetic socket or a complex surface geometry. Specialty items can be scanned using computed tomography and digitally reconstructed to produce a virtual 3D model the engineer can use to design the necessary features of the desired prosthetic, device, or attachment. Completed devices are tested for fit and function. Numerous custom prostheses and attachments have been successfully translated from the research domain to clinical reality, in particular, those that feature the use of computed tomography (CT) reconstructions. The purpose of this project is to describe the research pathways to implementation for the following clinical designs: sets of bilateral hockey skates; custom weightlifting prosthetic hands; and a wine glass holder. This article will demonstrate how to incorporate CT imaging and 3D printing in the design and manufacturing process of custom attachments and assistive technology devices. Even though some of these prosthesis attachments may be relatively simple in design to an engineer, they have an enormous impact on the lives of our wounded warriors.

  10. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique

    Science.gov (United States)

    Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2018-02-01

    Corundum-structured oxides have been attracting much attention as next-generation power device materials. A corundum-structured α-Ga2O3 successfully demonstrated power device operations of Schottky barrier diodes (SBDs) with the lowest on-resistance of 0.1 mΩ cm2. The SBDs as a mounting device of TO220 also showed low switching-loss properties with a capacitance of 130 pF. Moreover, the thermal resistance was 13.9 °C/W, which is comparable to that of the SiC TO220 device (12.5 °C/W). On the other hand, corundum-structured α-(Rh,Ga)2O3 showed p-type conductivity, which was confirmed by Hall effect measurements. The Hall coefficient, carrier density, and mobility were 8.22 cm3/C, 7.6 × 1017/cm3, and 1.0 cm2 V-1 s-1, respectively. These values were acceptable for the p-type layer of pn diodes based on α-Ga2O3.

  11. An inorganic electroluminescent device using calcium phosphate doped with Eu{sup 3+} as the luminescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Koide, Takuhiro [Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510 (Japan); Ito, Michimasa [Tokai Rika Co. Ltd., 3-260 Toyota, Oguchi-cho, Niwa-gun, Aichi 480-0195 (Japan); Kawai, Takahiro [Department of Biochemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510 (Japan); Matsushima, Yuta, E-mail: ymatsush@yz.yamagata-u.ac.jp [Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510 (Japan)

    2013-03-20

    Highlights: ► A thin film electroluminescent device was fabricated with a calcium phosphate as the light emitting layer. ► The light emitting layer was formed on the BaTiO{sub 3} disk by a spray pyrolysis method. ► Among the examined calcium phosphates, β-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 3+} showed the best photo- and electroluminescent properties. -- Abstract: In this work, the availability of calcium phosphates for the light emitting layer of a thin-film electroluminescent (TFEL) device was investigated. The goal of this work was to develop an electronic device with ordinary materials such as a calcium phosphate, the principal ingredient of the skeleton of the vertebrate. Compositions of 2CaO·P{sub 2}O{sub 5} (Ca{sub 2}P{sub 2}O{sub 7}), 3CaO·P{sub 2}O{sub 5} (Ca{sub 3}(PO{sub 4}){sub 2}) and 4CaO·P{sub 2}O{sub 5} (Ca{sub 4}O(PO{sub 4}){sub 2}) were examined as the candidates for the light emitting layer. Before composing the TFEL device, the photoluminescence (PL) properties of the three compositions were investigated in the powder form to evaluate the performance as the light emitting layer. Among the examined calcium phosphates, Eu-doped β-Ca{sub 3}(PO{sub 4}){sub 2} showed the best PL properties. It showed typical red-emission from Eu{sup 3+}. The PL intensity was enhanced with the heat-treatment temperature and the optimal temperature was 1250 °C. Then, a TFEL device was prepared by a spray pyrolysis method with the β-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 3+} phosphor layer on a BaTiO{sub 3} disk. The TFEL device exhibited the red emission originating in Eu{sup 3+} at 610 nm under applying alternating voltage. Different from the power sample, the intensity of EL decreased with the heat-treatment temperature from 1000 to 1250 °C. The deterioration of EL at the higher temperatures was attributed to chemical interaction between the phosphor layer and the BaTiO{sub 3} disk.

  12. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Directory of Open Access Journals (Sweden)

    Soichiro Tsuda

    Full Text Available Three dimensional (3D printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  13. Preparation and characterization of electroluminescent devices based on complexes of β-diketonates of Tb3+, Eu3+, Gd3+ ions with macrocyclic ligands and UO22+ films

    International Nuclear Information System (INIS)

    Gibelli, Edison Bessa

    2010-01-01

    Complexes containing Rare Earth ions are of great interest in the manufacture of electro luminescent devices as organic light emitting devices (OLED). These devices, using rare earth trivalent ions (TR 3+ ) as emitting centers, show high luminescence with extremely fine spectral bands due to the structure of their energy levels, long life time and high quantum efficiency. This work reports the preparation of Rare Earth β-diketonate complexes (Tb 3+ , Eu 3+ and Gd 3+ ) and (tta - thenoyltrifluoroacetonate and acac - acetylacetonate) containing a ligand macrocyclic crown ether (DB18C6 - dibenzo18coroa6) and polymer films of UO 2 2+ . The materials were characterized by complexometric titration with EDTA, CH elemental analysis, near infrared absorption spectroscopy, thermal analysis, X-ray diffraction (powder method) and luminescence spectroscopy. For manufacturing the OLED it was used the technique of deposition of thin films by physical vapor (PVD, Physical Vapor Deposition). (author)

  14. 76 FR 81527 - Certain Wireless Devices with 3G Capabilities and Components Thereof; Determination Not to Review...

    Science.gov (United States)

    2011-12-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices with 3G Capabilities and Components Thereof; Determination Not to Review Initial Determination Granting Motion for... importation, and the sale within the United States after importation of certain wireless devices with 3G...

  15. 78 FR 42107 - Certain Wireless Devices With 3G Capabilities and Components Thereof; Notice of Request for...

    Science.gov (United States)

    2013-07-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S..., specifically a limited exclusion order against certain wireless devices with 3G capabilities and components...

  16. 77 FR 26788 - Certain Wireless Devices With 3G Capabilities and Components Thereof Determination Not To Review...

    Science.gov (United States)

    2012-05-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-800] Certain Wireless Devices With 3G Capabilities and Components Thereof Determination Not To Review Initial Determination To Amend the Notice of... importation of certain wireless devices with 3G capabilities and components thereof by reason of infringement...

  17. 3D integration of planar crossbar memristive devices with CMOS substrate

    International Nuclear Information System (INIS)

    Lin, Peng; Pi, Shuang; Xia, Qiangfei

    2014-01-01

    Planar memristive devices with bottom electrodes embedded into the substrates were integrated on top of CMOS substrates using nanoimprint lithography to implement hybrid circuits with a CMOL-like architecture. The planar geometry eliminated the mechanically and electrically weak parts, such as kinks in the top electrodes in a traditional crossbar structure, and allowed the use of thicker and thus less resistive metal wires as the bottom electrodes. Planar memristive devices integrated with CMOS have demonstrated much lower programing voltages and excellent switching uniformity. With the inclusion of the Moiré pattern, the integration process has sub-20 nm alignment accuracy, opening opportunities for 3D hybrid circuits in applications in the next generation of memory and unconventional computing. (paper)

  18. A 3-DOF SOI MEMS ultrasonic energy harvester for implanted devices

    International Nuclear Information System (INIS)

    Fowler, A G; Moheimani, S O R; Behrens, S

    2013-01-01

    This paper reports the design and testing of a microelectromechanical systems (MEMS) energy harvester that is designed to harvest electrical energy from an external source of ultrasonic waves. This mechanism is potentially suited to applications including the powering of implanted devices for biomedical applications. The harvester employs a novel 3-degree of freedom design, with electrical energy being generated from displacements of a proof mass via electrostatic transducers. A silicon-on-insulator MEMS process was used to fabricate the device, with experimental characterization showing that the harvester can generate 24.7 nW, 19.8 nW, and 14.5 nW of electrical power respectively through its x-, y-, and z-axis vibrational modes

  19. Characterization of Porous WO3 Electrochromic Device by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien Chon Chen

    2013-01-01

    Full Text Available This paper concerns the microstructure of the anodic tungsten oxide (WO3 and its use in an electrochromic (EC glass device. When voltages between 100 V and 160 V were applied to tungsten film for 1 h under 0.4 wt. % NaF electrolyte, porous WO3 film was formed. The film, which had a large surface area, was used as electrochromic film for EC glass. The average transmittance in a visible region of the spectrum for a 144 cm2 EC device was above 75% in the bleached state and below 40% in the colored state, respectively. Repeatability using of the colored/bleached cycles was tested good by a cyclic voltammograms method. The internal impedance values under colored and bleached states were detected and simulated using an electrical impedance spectra (EIS technique. The EC glass impedance characteristics were simulated using resistors, capacitors, and Warburg impedance. The ITO/WO3, WO3/electrolyte, electrolyte/NiO, and NiO/ITO interfaces can be simulated using a resistance capacitance (RC parallel circuits, and bulk materials such as the indium tin oxide (ITO and conducting wire can be simulated by using a series of resisters.

  20. Novel Concepts for Device to Device Communication using Network Coding

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Hundebøll, Martin; Pedersen, Morten Videbæk

    2014-01-01

    Device-to-device communication is currently a hot research topic within 3GPP. Even though D2D communication has been part of previous ad hoc, meshed and sensor networks proposals, the main contribution by 3GPP is that the direct communication among two devices is carried out over a dynamically as...

  1. A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation.

    Science.gov (United States)

    Ji, Qinglei; Zhang, Jia Ming; Liu, Ying; Li, Xiying; Lv, Pengyu; Jin, Dongping; Duan, Huiling

    2018-03-19

    3D-printing (3DP) technology has been developing rapidly. However, limited studies on the contribution of 3DP technology, especially multimaterial 3DP technology, to droplet-microfluidics have been reported. In this paper, multimaterial 3D-printed devices for the pneumatic control of emulsion generation have been reported. A 3D coaxial flexible channel with other rigid structures has been designed and printed monolithically. Numerical and experimental studies have demonstrated that this flexible channel can be excited by the air pressure and then deform in a controllable way, which can provide the active control of droplet generation. Furthermore, a novel modular microfluidic device for double emulsion generation has been designed and fabricated, which consists of three modules: function module, T-junction module, and co-flow module. The function module can be replaced by (1) Single-inlet module, (2) Pneumatic Control Unit (PCU) module and (3) Dual-inlet module. Different modules can be easily assembled for different double emulsion production. By using the PCU module, double emulsions with different number of inner droplets have been successfully produced without complicated operation of flow rates of different phases. By using single and dual inlet module, various double emulsions with different number of encapsulated droplets or encapsulated droplets with different compositions have been successfully produced, respectively.

  2. Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions

    Science.gov (United States)

    Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen

    2018-05-01

    Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.

  3. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    Science.gov (United States)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  4. Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Pt.2

    International Nuclear Information System (INIS)

    Junji Suhara; Ryoichiro Matsumoto; Shinsuke Oguri; Yasuo Okada; Kazuhiko Inoue; Kenji Takahashi

    2005-01-01

    A three dimensional seismic base isolation device was developed for heavy structures and buildings such as nuclear power reactor buildings. The device realizes 3-D isolation by combining a LRB (laminated rubber bearing) for horizontal isolation with an air spring for vertical isolation in series. In this study, scale models of the 3-D base isolation device were made and were tested to examine the dynamic properties and ultimate strengths of the device. The performance of the device under earthquake excitation was examined through shaking table tests of 1/7 scale models. As the results, it was confirmed that the device worked smoothly under the horizontal and vertical excitations, and that the theoretical formulae of the orifice damping could explain the test results. The high-pressure air springs of trial production were forced to burst to find out which factor influenced ultimate strength. It was confirmed from results of the burst test that the strength of the air spring depended upon the diameter of rolling part of the bellows and the number of layers of the reinforcing fibers. Judging from the results of the shaking table test and the burst test, the developed 3-D base isolation device was applicable to a nuclear power plant building. (authors)

  5. 3D-printed components for quantum devices.

    Science.gov (United States)

    Saint, R; Evans, W; Zhou, Y; Barrett, T; Fromhold, T M; Saleh, E; Maskery, I; Tuck, C; Wildman, R; Oručević, F; Krüger, P

    2018-05-30

    Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices.

  6. A low-cost microwell device for high-resolution imaging of neurite outgrowth in 3D

    Science.gov (United States)

    Ren, Yuan; Mlodzianoski, Michael J.; Cheun Lee, Aih; Huang, Fang; Suter, Daniel M.

    2018-06-01

    Objective. Current neuronal cell culture is mostly performed on two-dimensional (2D) surfaces, which lack many of the important features of the native environment of neurons, including topographical cues, deformable extracellular matrix, and spatial isotropy or anisotropy in three dimensions. Although three-dimensional (3D) cell culture systems provide a more physiologically relevant environment than 2D systems, their popularity is greatly hampered by the lack of easy-to-make-and-use devices. We aim to develop a widely applicable 3D culture procedure to facilitate the transition of neuronal cultures from 2D to 3D. Approach. We made a simple microwell device for 3D neuronal cell culture that is inexpensive, easy to assemble, and fully compatible with commonly used imaging techniques, including super-resolution microscopy. Main results. We developed a novel gel mixture to support 3D neurite regeneration of Aplysia bag cell neurons, a system that has been extensively used for quantitative analysis of growth cone dynamics in 2D. We found that the morphology and growth pattern of bag cell growth cones in 3D culture closely resemble the ones of growth cones observed in vivo. We demonstrated the capability of our device for high-resolution imaging of cytoskeletal and signaling proteins as well as organelles. Significance. Neuronal cell culture has been a valuable tool for neuroscientists to study the behavior of neurons in a controlled environment. Compared to 2D, neurons cultured in 3D retain the majority of their native characteristics, while offering higher accessibility, control, and repeatability. We expect that our microwell device will facilitate a wider adoption of 3D neuronal cultures to study the mechanisms of neurite regeneration.

  7. Josephson effect in Al/Bi{sub 2}Se{sub 3}/Al coplanar hybrid devices

    Energy Technology Data Exchange (ETDEWEB)

    Galletti, L., E-mail: luca.galletti@unina.it [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); CNR-SPIN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli (Italy); Charpentier, S. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden); Lucignano, P.; Massarotti, D. [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); CNR-SPIN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli (Italy); Arpaia, R. [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden); Tafuri, F. [CNR-SPIN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, I-81031 Aversa (CE) (Italy); Bauch, T. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden); Suzuki, Y. [University of Tsukuba, Institute of Materials Science, Tsukuba 305, Ibaraki (Japan); Tagliacozzo, A. [Dipartimento di Scienze Fisiche, Università degli Studi di Napoli Federico II, I-80126 Napoli (Italy); Kadowaki, K. [University of Tsukuba, Institute of Materials Science, Tsukuba 305, Ibaraki (Japan); Lombardi, F. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg (Sweden)

    2014-08-15

    Highlights: • Superconducting proximity effect induced in Al/Bi{sub 2}Se{sub 3}/Al coplanar hybrid devices. • Comparative study of Al/Bi{sub 2}Se{sub 3} interfaces with various buffer layers. • Towards a Josephson super-current through the edge states of topological insulators. - Abstract: The edge states of Topological Insulators (TI) are protected against backscattering, thanks to the topological properties arising from their band structure. Coupling a TI to a superconductor (S) can induce unconventional effects, including the creation of Majorana bound states (MBS). The fabrication of coplanar hybrid devices is a fundamental step to pave the way to the understanding of proximity effects in topologically non-trivial systems, and to a large variety of experiments aimed at the possible detection of MBS. We discuss the feasibility and some relevant properties of Al–Bi{sub 2}Se{sub 3}–Al coplanar proximity devices. Special attention is devoted to the design of the junction, aimed at enhancing the coupling between the electrodes and the TI.

  8. Facial expression identification using 3D geometric features from Microsoft Kinect device

    Science.gov (United States)

    Han, Dongxu; Al Jawad, Naseer; Du, Hongbo

    2016-05-01

    Facial expression identification is an important part of face recognition and closely related to emotion detection from face images. Various solutions have been proposed in the past using different types of cameras and features. Microsoft Kinect device has been widely used for multimedia interactions. More recently, the device has been increasingly deployed for supporting scientific investigations. This paper explores the effectiveness of using the device in identifying emotional facial expressions such as surprise, smile, sad, etc. and evaluates the usefulness of 3D data points on a face mesh structure obtained from the Kinect device. We present a distance-based geometric feature component that is derived from the distances between points on the face mesh and selected reference points in a single frame. The feature components extracted across a sequence of frames starting and ending by neutral emotion represent a whole expression. The feature vector eliminates the need for complex face orientation correction, simplifying the feature extraction process and making it more efficient. We applied the kNN classifier that exploits a feature component based similarity measure following the principle of dynamic time warping to determine the closest neighbors. Preliminary tests on a small scale database of different facial expressions show promises of the newly developed features and the usefulness of the Kinect device in facial expression identification.

  9. Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling

    Science.gov (United States)

    Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.

    2016-04-01

    Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured

  10. DeviceNet-based device-level control in SSRF

    CERN Document Server

    Leng Yong Bin; Lu Cheng Meng; Miao Hai Feng; Liu Song Qiang; Shen Guo Bao

    2002-01-01

    The control system of Shanghai Synchrotron Radiation Facility is an EPICS-based distributed system. One of the key techniques to construct the system is the device-level control. The author describes the design and implementation of the DeviceNet-based device controller. A prototype of the device controller was tested in the experiments of magnet power supply and the result showed a precision of 3 x 10 sup - sup 5

  11. Optical and electrical properties of P3HT:graphene composite based devices

    Science.gov (United States)

    Yadav, Anjali; Verma, Ajay Singh; Gupta, Saral Kumar; Negi, Chandra Mohan Singh

    2018-04-01

    The polymer-carbon derivate composites are well known for their uses and performances in the photovoltaic and optoelectronic industries. In this paper, we synthesis P3HT:graphene composites and discuss their optical and electrical properties. The composites have been prepared by using spin-coating technique onto the glass substrates. It has been found that the incorporation of graphene reduces absorption intensity. However, absorption peak remain unchanged with addition of graphene. The surface morphology studies display homogeneous distribution of graphene with P3HT. Raman studies suggest that chemical structure was not affected by graphene doping. Devices having the structure of glass/ITO/P3HT/ Al and glass ITO/P3HT:graphene/Al were then fabricated. I-V behavior of the fabricated devices was found to be similar to the Schottky diode. ITO/P3HT:graphene/Al structure shows tremendous increase in current values as compared to the ITO/P3HT/Al. Furthermore, charge transport mechanism were studied by analyzing the double logarithmic J-V characteristics curve, which indicates that the current at low voltage follows Ohmic behavior, trap-charge limited conduction (TCLC) mechanism at an intermediate voltage and space charge limited conduction (SCLC) mechanism at sufficiently high voltages.

  12. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device.

    Science.gov (United States)

    Wang, Shanshan; Li, Encheng; Gao, Yanghui; Wang, Yan; Guo, Zhe; He, Jiarui; Zhang, Jianing; Gao, Zhancheng; Wang, Qi

    2013-01-01

    Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents.

  13. Maxillomandibular giant osteosclerotic lesions

    Directory of Open Access Journals (Sweden)

    Constantino LEDESMA-MONTES

    2018-06-01

    Full Text Available Abstract Giant Osteosclerotic Lesions (GOLs are a group of rarely reported intraosseous lesions. Their precise diagnosis is important since they can be confused with malignant neoplasms. Objective This retrospective study aimed to record and analyze the clinical and radiographic Giant Osteosclerotic Lesions (GOLs detected in the maxillomandibular area of patients attending to our institution. Materials and Methods: Informed consent from the patients was obtained and those cases of 2.5 cm or larger lesions with radiopaque or mixed (radiolucid-radiopaque appearance located in the maxillofacial bones were selected. Assessed parameters were: age, gender, radiographic aspect, shape, borders, size, location and relations to roots. Lesions were classified as radicular, apical, interradicular, interradicular-apical, radicular-apical or located in a previous teeth extraction area. Additionally, several osseous and dental developmental alterations (DDAs were assessed. Results Seventeen radiopacities in 14 patients were found and were located almost exclusively in mandible and were two types: idiopathic osteosclerosis and condensing osteitis. GOLs were more frequent in females, and in the anterior and premolar zones. 94.2% of GOLs were qualified as idiopathic osteosclerosis and one case was condensing osteitis. All studied cases showed different osseous and dental developmental alterations (DDAs. The most common were: Microdontia, hypodontia, pulp stones, macrodontia and variations in the mental foramina. Conclusions GOLs must be differentiated from other radiopaque benign and malignant tumors. Condensing osteitis, was considered an anomalous osseous response induced by a chronic low-grade inflammatory stimulus. For development of idiopathic osteosclerosis, two possible mechanisms could be related. The first is modification of the normal turnover with excessive osseous deposition. The second mechanism will prevent the normal bone resorption, arresting the

  14. Electroluminescence dependence on the organic thickness in ZnO nano rods/Alq3 heterostructure devices.

    Science.gov (United States)

    Kan, Pengzhi; Wang, Yongsheng; Zhao, Suling; Xu, Zheng; Wang, Dawei

    2011-04-01

    ZnO nanorods are synthesised by a hydrothermal method on ITO glass. Their crystallization and morphology are detected by XRD and SEM, respectively. The results show that the ZnO nanorod array has grown primarily along a direction aligned perpendicular to the ITO substrate. The average height and diameter of the nanorods is about 130 nm and 30 nm, respectively. Then ZnO nano rods/Alq3 heterostructure LEDs are prepared by thermal evaporation of Alq3 molecules. The thicknesses of the Alq3 layers are 130 nm, 150 nm, 170 nm and 190 nm, respectively. The electroluminescence of the devices is detected under different DC bias voltages. The exciton emission of Alq3 is detected in all devices. When the thickness of Alq3 is 130 nm, the UV electroluminescence of ZnO is around 382 nm, and defect emissions around 670 nm and 740 nm are detected. Defect emissions of ZnO nanorods are prominent. When the thickness of Alq3 increases to over 170 nm, it is difficult to observe defect emissions from the ZnO nano rods. In such devices, the exciton emission of Alq3 is more prominent than other emissions under different bias voltage.

  15. The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices

    DEFF Research Database (Denmark)

    Tanenbaum, David M.; Hermenau, Martin; Voroshazi, Eszter

    2012-01-01

    Seven distinct sets (n ¢ 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to RISØ DTU and characterized simultaneously...... in the study. We present here design and fabrication details for the seven device sets, benefits and challenges associated with the unprecedented size of the collaboration, characterization protocols, and results both on individual device stability and uniformity of device sets, in the three illumination...

  16. Computer Simulation of Robotic Device Components in 3D Printer Manufacturing

    Directory of Open Access Journals (Sweden)

    M. A. Kiselev

    2016-01-01

    Full Text Available The paper considers a relevant problem "Computer simulation of robotic device components in manufacturing on a 3D printer" and highlights the problem of computer simulation based on the cognitive programming technology of robotic device components. The paper subject is urgent because computer simulation of force-torque and accuracy characteristics of robot components in terms of their manufacturing properties and conditions from polymeric and metallic materials is of paramount importance for programming and manufacturing on the 3D printers. Two types of additive manufacturing technologies were used:1. FDM (Fused deposition modeling - layered growth of products from molten plastic strands;2. SLM (Selective laser melting - selective laser sintering of metal powders, which, in turn, create:• conditions for reducing the use of expensive equipment;• reducing weight and increasing strength through optimization of  the lattice structures when using a bionic design;• a capability to implement mathematical modeling of individual components of robotic and other devices in terms of appropriate characteristics;• a 3D printing capability to create unique items, which cannot be made by other known methods.The paper aim was to confirm the possibility of ensuring the strength and accuracy characteristics of cases when printing from polymeric and metallic materials on a 3D printer. The investigation emphasis is on mathematical modeling based on the cognitive programming technology using the additive technologies in their studies since it is, generally, impossible to make the obtained optimized structures on the modern CNC machines.The latter allows us to create a program code to be clear to other developers without cost, additional time for development, adaptation and implementation.Year by year Russian companies increasingly use a 3D-print system in mechanical engineering, aerospace industry, and for scientific purposes. Machines for the additive

  17. 3D printing and milling a real-time PCR device for infectious disease diagnostics

    Science.gov (United States)

    Mulberry, Geoffrey; White, Kevin A.; Vaidya, Manjusha; Sugaya, Kiminobu

    2017-01-01

    Diagnosing infectious diseases using quantitative polymerase chain reaction (qPCR) offers a conclusive result in determining the infection, the strain or type of pathogen, and the level of infection. However, due to the high-cost instrumentation involved and the complexity in maintenance, it is rarely used in the field to make a quick turnaround diagnosis. In order to provide a higher level of accessibility than current qPCR devices, a set of 3D manufacturing methods is explored as a possible option to fabricate a low-cost and portable qPCR device. The key advantage of this approach is the ability to upload the digital format of the design files on the internet for wide distribution so that people at any location can simply download and feed into their 3D printers for quick manufacturing. The material and design are carefully selected to minimize the number of custom parts that depend on advanced manufacturing processes which lower accessibility. The presented 3D manufactured qPCR device is tested with 20-μL samples that contain various concentrations of lentivirus, the same type as HIV. A reverse-transcription step is a part of the device’s operation, which takes place prior to the qPCR step to reverse transcribe the target RNA from the lentivirus into complementary DNA (cDNA). This is immediately followed by qPCR which quantifies the target sequence molecules in the sample during the PCR amplification process. The entire process of thermal control and time-coordinated fluorescence reading is automated by closed-loop feedback and a microcontroller. The resulting device is portable and battery-operated, with a size of 12 × 7 × 6 cm3 and mass of only 214 g. By uploading and sharing the design files online, the presented low-cost qPCR device may provide easier access to a robust diagnosis protocol for various infectious diseases, such as HIV and malaria. PMID:28586401

  18. New experimental results on beam-plasma interaction in solenoids

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Burdakov, A.V.; Kapitonov, V.A.

    1988-01-01

    New results are presented on studying the beam-plasma interaction and plasma heating dynamics at the INAR device. The specific features of the generation of ''hot'' (E greater than or ∼ 1 keV) plasma electrons containing the main part of the plasma energy are studied. In the case of a beam with a small initial angular spread, the ''hot'' electrons are shown to be mainly generated near the point where the beam is injected into the plasma. Also reported are the results of the experiments in which the magnetic field in the beam-plasma interaction region was increased up to 70 kOe. In this case, at the plasma length of 75 cm, the total beam energy losses exceed 40%. The growth of the plasma energy content at higher magnetic field is observed. The first stage of the GOL-3 experiment is described which is aimed at the study of the plasma heating is solonoid by a 100 kJ microsecond electron beam. This new experimental device is now ready for operation (author)

  19. 3D printed metal molds for hot embossing plastic microfluidic devices.

    Science.gov (United States)

    Lin, Tung-Yi; Do, Truong; Kwon, Patrick; Lillehoj, Peter B

    2017-01-17

    Plastics are one of the most commonly used materials for fabricating microfluidic devices. While various methods exist for fabricating plastic microdevices, hot embossing offers several unique advantages including high throughput, excellent compatibility with most thermoplastics and low start-up costs. However, hot embossing requires metal or silicon molds that are fabricated using CNC milling or microfabrication techniques which are time consuming, expensive and required skilled technicians. Here, we demonstrate for the first time the fabrication of plastic microchannels using 3D printed metal molds. Through optimization of the powder composition and processing parameters, we were able to generate stainless steel molds with superior material properties (density and surface finish) than previously reported 3D printed metal parts. Molds were used to fabricate poly(methyl methacrylate) (PMMA) replicas which exhibited good feature integrity and replication quality. Microchannels fabricated using these replicas exhibited leak-free operation and comparable flow performance as those fabricated from CNC milled molds. The speed and simplicity of this approach can greatly facilitate the development (i.e. prototyping) and manufacture of plastic microfluidic devices for research and commercial applications.

  20. Simultaneous 3D-vibration measurement using a single laser beam device

    Science.gov (United States)

    Brecher, Christian; Guralnik, Alexander; Baümler, Stephan

    2012-06-01

    Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.

  1. Coexistence of nonvolatility and volatility in Pt/Nb-doped SrTiO3/In memristive devices

    International Nuclear Information System (INIS)

    Yang, M; Bao, D H; Li, S W

    2013-01-01

    Memristive devices are triggering innovations in the fields of nonvolatile memory, digital logic, analogue circuits, neuromorphic engineering, and so on. Creating new memristive devices with unique characteristics would be significant for these emergent applications. Here we report the coexistence of nonvolatility and volatility in Pt/Nb-doped SrTiO 3 (NSTO)/In memristive devices. The Pt/NSTO interface contributes a nonvolatile resistive switching behaviour, whereas the NSTO/In interface displays a volatile hysteresis loop. Combining the two interfaces in the Pt/NSTO/In devices leads to the unique coexistence of nonvolatility and volatility. The results imply more opportunities to invent new memristive devices by engineering both interfaces in metal/insulator/metal structures. (paper)

  2. 3G, 4G and beyond bringing networks, devices and the web together

    CERN Document Server

    Sauter, Martin

    2012-01-01

    Extensively updated evaluation of current and future network technologies, applications and devices  This book follows on from its successful predecessor with an introduction to next generation network technologies, mobile devices, voice and multimedia services and the mobile web 2.0.  Giving a sound technical introduction to 3GPP wireless systems, this book explains the decisions taken during standardization of the most popular wireless network standards today, LTE, LTE-Advanced and HSPA+.  It discusses how these elements strongly influence each other and how network ca

  3. Direct Vapor Growth of Perovskite CsPbBr3 Nanoplate Electroluminescence Devices.

    Science.gov (United States)

    Hu, Xuelu; Zhou, Hong; Jiang, Zhenyu; Wang, Xiao; Yuan, Shuangping; Lan, Jianyue; Fu, Yongping; Zhang, Xuehong; Zheng, Weihao; Wang, Xiaoxia; Zhu, Xiaoli; Liao, Lei; Xu, Gengzhao; Jin, Song; Pan, Anlian

    2017-10-24

    Metal halide perovskite nanostructures hold great promises as nanoscale light sources for integrated photonics due to their excellent optoelectronic properties. However, it remains a great challenge to fabricate halide perovskite nanodevices using traditional lithographic methods because the halide perovskites can be dissolved in polar solvents that are required in the traditional device fabrication process. Herein, we report single CsPbBr 3 nanoplate electroluminescence (EL) devices fabricated by directly growing CsPbBr 3 nanoplates on prepatterned indium tin oxide (ITO) electrodes via a vapor-phase deposition. Bright EL occurs in the region near the negatively biased contact, with a turn-on voltage of ∼3 V, a narrow full width at half-maximum of 22 nm, and an external quantum efficiency of ∼0.2%. Moreover, through scanning photocurrent microscopy and surface electrostatic potential measurements, we found that the formation of ITO/p-type CsPbBr 3 Schottky barriers with highly efficient carrier injection is essential in realizing the EL. The formation of the ITO/p-type CsPbBr 3 Schottky diode is also confirmed by the corresponding transistor characteristics. The achievement of EL nanodevices enabled by directly grown perovskite nanostructures could find applications in on-chip integrated photonics circuits and systems.

  4. Adapting multiuser 3D virtual environments to heterogeneous devices

    OpenAIRE

    Araujo, Regina Borges de; Silva, Alessandro Rodrigues e; Todesco, Glauco

    2006-01-01

    With the growing dissemination and reliability of wireless networks and the emergence of devices with increasing processing and communication power, applications that up to now were restricted to the PCs are being envisaged to run on devices as heterogeneous as wrist clocks, refrigerators with access to the internet, mobile phones, PDAs, set-top-boxes, game consoles etc. Application development for this myriad of devices and networks with different capabilities requires special attention from...

  5. Observation of red electroluminescence from an Eu2O3/ p +-Si device and improved performance by introducing a Tb2O3 layer

    International Nuclear Information System (INIS)

    Yin, Xue; Wang, Shenwei; Mu, Guangyao; Wan, Guangmiao; Huang, Miaoling; Yi, Lixin

    2017-01-01

    We report red electroluminescence (EL) from an Eu 2 O 3 / p + -Si device with Eu 2 O 3 film annealed in oxygen ambient at 700 °C. The red EL is ascribed to the characteristic emissions of Eu 3+ ions in Eu 2 O 3 film and the luminescence mechanism is discussed in detail. In order to optimize the device performance, Eu 2 O 3 /Tb 2 O 3 multiple films were deposited on Si wafer, and the result showed EL intensity of the device was obviously enhanced and the turn-on voltage was reduced to about 10 V. Moreover, intensity ratio I ( 5 D 0 – 7 F 2 )/ I ( 5 D 0 – 7 F 1 ) was also significantly increased with the hypersensitive transition 5 D 0 – 7 F 2 as the most prominent group at about 611 nm. The improved performance was attributed to the added Tb 2 O 3 film that it can be served as the hole-injection layer to afford extra holes injected into the Eu 2 O 3 layer. (paper)

  6. Monoscopic photogrammetry to obtain 3D models by a mobile device: a method for making facial prostheses.

    Science.gov (United States)

    Salazar-Gamarra, Rodrigo; Seelaus, Rosemary; da Silva, Jorge Vicente Lopes; da Silva, Airton Moreira; Dib, Luciano Lauria

    2016-05-25

    The aim of this study is to present the development of a new technique to obtain 3D models using photogrammetry by a mobile device and free software, as a method for making digital facial impressions of patients with maxillofacial defects for the final purpose of 3D printing of facial prostheses. With the use of a mobile device, free software and a photo capture protocol, 2D captures of the anatomy of a patient with a facial defect were transformed into a 3D model. The resultant digital models were evaluated for visual and technical integrity. The technical process and resultant models were described and analyzed for technical and clinical usability. Generating 3D models to make digital face impressions was possible by the use of photogrammetry with photos taken by a mobile device. The facial anatomy of the patient was reproduced by a *.3dp and a *.stl file with no major irregularities. 3D printing was possible. An alternative method for capturing facial anatomy is possible using a mobile device for the purpose of obtaining and designing 3D models for facial rehabilitation. Further studies must be realized to compare 3D modeling among different techniques and systems. Free software and low cost equipment could be a feasible solution to obtain 3D models for making digital face impressions for maxillofacial prostheses, improving access for clinical centers that do not have high cost technology considered as a prior acquisition.

  7. CAS-3 H - a device for tritium monitoring

    International Nuclear Information System (INIS)

    Corbu, N.; Popescu, I. V.; Bucur, C.

    2001-01-01

    The equipment for tritium monitoring is designed to continuous sampling of tritium from working places in nuclear power plants (NPP) or from plants' surroundings. Its construction allows continuous function in free atmosphere during 8 hours, it is protected against environment factors by support beg, while its components are made from stainless steel or corrosion resistant materials. Inside and surroundings of NPP tritium can exist in different form. The most important tritium quantity (over 90%) are in form of tritiated water, and in form of free hydrogen (less than 10% in closed rooms inside NPP), as well as, in a very small quantity in form of chemical organic tritiated combinations (less than 1%). Tritium sampling from indoor following a mixing phase is considered a simply and fast method. Even this method isn't too precise it requires short time for determination. This is a big advantage because inside NPP the momentary evolution of tritium concentration must be known to be able to take adequate measures. Constructive data for this device are: - dimensions, length x width x height, 470 x 410 x 130 mm; - supply, 2,5 V c.c.; - maxim power consumed, 5 W/h - weight, max. 6 kg. Device main components are: - dry mini-pump with double membrane that ensures a nominal debit upper then necessary, of 12 l/h air at a depression of least 20 mm Hg; - electrical engine with supply tension of 2.5 V c.c., and revolution of 500 rev/min, that acts the pump. Engine power is about 5 W; - filter used as device's shield against particles from air; - revmeter type ROTROM-I.D-PTFE, for air debit measurement by mixing vessels, with measure scale between 4 and 27 Nl/h air; - two mixing vessels made of glass with active capacity of 100 ml; - 28 photoelectric cells placed over support beg, that ensures accumulator charging, thus allowing an increased autonomy in time for device function; - two accumulators type R20 with tension of 1.25 V and minimum intensity of 4 A; - support beg

  8. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  9. Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor.

    Science.gov (United States)

    Ruan, Jiufeng; Yang, Zhengwen; Huang, Anjun; Zhang, Hailu; Qiu, Jianbei; Song, Zhiguo

    2018-05-02

    Reversible luminescence modulation of upconversion phosphors has the potential applications as photoswitches and optical memory and data storage devices. Previously, the photochromic reaction was extensively used for the realization of reversible luminescence modulation. It is very necessary to develop other approaches such as thermomchromic reaction to obtain the reversible upconversion luminescence modulation. In this work, the WO 3 :Yb 3+ ,Er 3+ phosphors with various colors were prepared at various temperatures, exhibiting tunable upconversion luminescence attributed to the formation of oxygen vacancies in the host. Upon heat treatment in the reducing atmosphere or air, the WO 3 :Yb 3+ ,Er 3+ phosphors show a reversible thermomchromic property. The reversible upconversion luminescence modulation of WO 3 :Yb 3+ ,Er 3+ phosphors was observed based on thermomchromic reaction. Additionally, the upconversion luminescence modulation is maintained after several cycles, indicating its excellent stability. The WO 3 :Yb 3+ ,Er 3+ phosphors with reversible upconversion luminescence and excellent reproducibility have potential applications as the photoswitches and optical memory and data storage devices.

  10. Fabrication and Characterization of Bi2Te3-Based Chip-Scale Thermoelectric Energy Harvesting Devices

    Science.gov (United States)

    Cornett, Jane; Chen, Baoxing; Haidar, Samer; Berney, Helen; McGuinness, Pat; Lane, Bill; Gao, Yuan; He, Yifan; Sun, Nian; Dunham, Marc; Asheghi, Mehdi; Goodson, Ken; Yuan, Yi; Najafi, Khalil

    2017-05-01

    Thermoelectric energy harvesters convert otherwise wasted heat into electrical energy. As a result, they have the potential to play a critical role in the autonomous wireless sensor network signal chain. In this paper, we present work carried out on the development of Bi2Te3-based thermoelectric chip-scale energy harvesting devices. Process flow, device demonstration and characterization are highlighted.

  11. Assessment of RELAP5 MOD3.3 and CATHARE 2 V1.5A against a full scale test of PERSEO device

    International Nuclear Information System (INIS)

    Bianchi, F.; Meloni, P.; Ferri, R.; Achilli, A.

    2004-01-01

    PERSEO device was developed in the framework of a domestic research program on innovative safety systems, with the purpose to increase the reliability of passive Decay Heat Removal Systems implementing in-pool heat exchangers. The device was tested at SIET Thermal-hydraulic Research Centre by modifying the existing PANTHERS IC-PCC facility. Two types of tests were performed: integral tests and stability tests. The experimental data acquired in the test campaign allowed a validation of a RELAP5/mod 3.3 beta release and CATHARE2 V1.5a/Mod8.1 full scale model of the PERSEO device. The paper deals with the comparison between the two codes against an integral test considered representative from the point of view of the PERSEO functioning and it highlights capabilities and limits of the codes in simulating such kind of test. (authors)

  12. Study of 3D printing method for GRIN micro-optics devices

    Science.gov (United States)

    Wang, P. J.; Yeh, J. A.; Hsu, W. Y.; Cheng, Y. C.; Lee, W.; Wu, N. H.; Wu, C. Y.

    2016-03-01

    Conventional optical elements are based on either refractive or reflective optics theory to fulfill the design specifications via optics performance data. In refractive optical lenses, the refractive index of materials and radius of curvature of element surfaces determine the optical power and wavefront aberrations so that optical performance can be further optimized iteratively. Although gradient index (GRIN) phenomenon in optical materials is well studied for more than a half century, the optics theory in lens design via GRIN materials is still yet to be comprehensively investigated before realistic GRIN lenses are manufactured. In this paper, 3D printing method for manufacture of micro-optics devices with special features has been studied based on methods reported in the literatures. Due to the additive nature of the method, GRIN lenses in micro-optics devices seem to be readily achievable if a design methodology is available. First, derivation of ray-tracing formulae is introduced for all possible structures in GRIN lenses. Optics simulation program is employed for characterization of GRIN lenses with performance data given by aberration coefficients in Zernike polynomial. Finally, a proposed structure of 3D printing machine is described with conceptual illustration.

  13. Safety analysis of an irradiation device for 99Mo production in RA-3 reactor

    International Nuclear Information System (INIS)

    Lerner, Ana Maria; Madariaga, Marcelo; Waldman, Ricardo

    2000-01-01

    The Argentine RA-3 research reactor (5 MW) has been converted to LEU fuel more than nine years ago. Since then, it has been operating with LEU fuel, which has been designed and fabricated at the National Atomic Energy Commission (CNEA). The Nuclear Regulatory Authority (ARN) is the institution in charge of the installation safety control. It is under this framework that the ARN has elaborated a neutronic calculation model for the RA-3 core, paying special attention to the device presently used for the irradiation of (HEU) 235 U targets required to obtain 9 '9Mo as a fission product. A regulatory analysis of results is carried out in the framework of ARN standards for fixed experiments. For such purpose, calculated reactivity values associated with such device are compared with recently measured values at the installation. Finally, and according to guidelines established in the first part of this work, a calculation model for a new device proposed by CNEA for the irradiation of metallic (LEU) uranium targets and still at its design stage, is here analysed. (author)

  14. BiFeO3 epitaxial thin films and devices: past, present and future

    Science.gov (United States)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  15. Effects of cryoprotectants on the structure and thermostability of the human carbonic anhydrase II–acetazolamide complex

    International Nuclear Information System (INIS)

    Aggarwal, Mayank; Boone, Christopher D.; Kondeti, Bhargav; Tu, Chingkuang; Silverman, David N.; McKenna, Robert

    2013-01-01

    Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Protein X-ray crystallography has seen a progressive shift from data collection at cool/room temperature (277–298 K) to data collection at cryotemperature (100 K) because of its ease of crystal preparation and the lessening of the detrimental effects of radiation-induced crystal damage, with 20–25%(v/v) glycerol (GOL) being the preferred choice of cryoprotectant. Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Comparative studies of crystal structure, kinetics, inhibition and thermostability were performed on CA II and its complex with AZM in the presence of either GOL or sucrose. These results suggest that even though the cryoprotectant GOL was previously shown to be directly bound in the active site and to interact with AZM, it affects neither the thermostability of CA II nor the binding of AZM in the crystal structure or in solution. However, addition of GOL does affect the kinetics of CA II, presumably as it displaces the water proton-transfer network in the active site

  16. Effects of cryoprotectants on the structure and thermostability of the human carbonic anhydrase II–acetazolamide complex

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mayank; Boone, Christopher D.; Kondeti, Bhargav; Tu, Chingkuang; Silverman, David N.; McKenna, Robert, E-mail: rmckenna@ufl.edu [University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, FL 32610 (United States)

    2013-05-01

    Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Protein X-ray crystallography has seen a progressive shift from data collection at cool/room temperature (277–298 K) to data collection at cryotemperature (100 K) because of its ease of crystal preparation and the lessening of the detrimental effects of radiation-induced crystal damage, with 20–25%(v/v) glycerol (GOL) being the preferred choice of cryoprotectant. Here, a case study of the effects of cryoprotectants on the kinetics of carbonic anhydrase II (CA II) and its inhibition by the clinically used inhibitor acetazolamide (AZM) is presented. Comparative studies of crystal structure, kinetics, inhibition and thermostability were performed on CA II and its complex with AZM in the presence of either GOL or sucrose. These results suggest that even though the cryoprotectant GOL was previously shown to be directly bound in the active site and to interact with AZM, it affects neither the thermostability of CA II nor the binding of AZM in the crystal structure or in solution. However, addition of GOL does affect the kinetics of CA II, presumably as it displaces the water proton-transfer network in the active site.

  17. Device characteristics of organic light-emitting diodes based on electronic structure of the Ba-doped Alq3 layer.

    Science.gov (United States)

    Lim, Jong Tae; Kim, Kyung Nam; Yeom, Geun Young

    2009-12-01

    Organic light-emitting diodes (OLEDs) with a Ba-doped tris(8-quinolinolato)aluminum(III) (Alq3) layer were fabricated to reduce the barrier height for electron injection and to improve the electron conductivity. In the OLED consisting of glass/ITO/4,4',4"-tris[2-naphthylphenyl-1-phenylamino]triphenylamine (2-TNATA, 30 nm)/4,4'-bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (NPB, 18 nm)/Alq3 (42 nm)/Ba-doped Alq3 (20 nm, x%: x = 0, 10, 25, and 50)/Al (100 nm), the device with the Alq3 layer doped with 10% Ba showed the highest light out-coupling characteristic. However, as the Ba dopant concentration was increased from 25% to 50%, this device characteristic was largely reduced. The characteristics of these devices were interpreted on the basis of the chemical reaction between Ba and Alq3 and the electron injection property by analyzing the electronic structure of the Ba-doped Alq3 layer. At a low Ba doping of 10%, mainly the Alq3 radical anion species was formed. In addition, the barrier height for electron injection in this layer was decreased to 0.6 eV, when compared to the pristine Alq3 layer. At a high Ba doping of 50%, the Alq3 molecules were severely decomposed. When the Ba dopant concentration was changed, the light-emitting characteristics of the devices were well coincided with the formation mechanism of Alq3 radical anion and Alq3 decomposition species.

  18. Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH3NH3PbI3 Perovskite Devices in Ambient Atmosphere.

    Science.gov (United States)

    Yang, Fu; Kapil, Gaurav; Zhang, Putao; Hu, Zhaosheng; Kamarudin, Muhammad Akmal; Ma, Tingli; Hayase, Shuzi

    2018-05-16

    High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH 3 NH 3 PbI 3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.

  19. Evaluation of 3D laser device for characterizing shape and surface properties of aggregates used in pavements

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2010-08-01

    Full Text Available program for the 3D laser device using fifteen different spherical and twelve cubic shaped objects. The laser device was evaluated for accuracy and repeatability to compute aggregate surface area and volume properties. The results showed that the laser...

  20. Properties study of LiNbO3 lateral field excited device working on thickness extension mode

    International Nuclear Information System (INIS)

    Zhi-Tian, Zhang; Ting-Feng, Ma; Chao, Zhang; Wen-Yan, Wang; Yan, Liu; Guan-Ping, Feng

    2010-01-01

    This paper investigates the properties of thickness extension mode excited by lateral electric field on LiNbO 3 by using the extended Christoffel–Bechmann method. It finds that the lateral field excitation coupling factor for a-mode (quasi-extensional mode) reaches its maximum value of 28% on X-cut LiNbO 3 . The characteristics of a lateral field excitation device made of X-cut LiNbO 3 have been investigated and the lateral field excitation device is used for the design of a high frequency ultrasonic transducer. The time and frequency domain pulse/echo response of the LiNbO 3 lateral field excitation ultrasonic transducer is analysed with the modified Krimholtz–Leedom–Matthae model and tested using traditional pulse/echo method. A LiNbO 3 lateral field excitation ultrasonic transducer with the centre frequency of 33.44 MHz and the −6 dB bandwidth of 33.8% is acquired, which is in good agreement with the results of the Krimholtz–Leedom–Matthae model. Further analysis suggests that the LiNbO 3 lateral field excitation device has great potential in the design of broadband high frequency ultrasonic transducers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Novel hybrid light-emitting devices based on MAPbBr3 nanoplatelets:PVK nanocomposites and zinc oxide nanorod arrays

    Science.gov (United States)

    Wang, Szu-Ping; Chang, Chun-Kai; Yang, Sheng-Hsiung; Chang, Che-Yu; Chao, Yu-Chiang

    2018-01-01

    In this research, we demonstrate inverted perovskite light-emitting devices (PeLEDs) based on zinc oxide nanorod arrays (ZnO NAs) as the electron transport layer and methylammonium lead bromide nanoplatelets (MAPbBr3 NPLs) as the emissive material for the first time. The polyethyleneimine ethoxylated (PEIE) was inserted between the ZnO NAs and the MAPbBr3 NPLs layer to reduce the energy barrier and improve the electron injection efficiency. Besides, different weight ratios of poly(N-vinylcarbazole) (PVK) were blended with MAPbBr3 NPLs to make evenly dispersed nanocomposite films, thereby enhancing the performance of devices. Meanwhile, the photoluminescence of MAPbBr3 NPLs:PVK nanocomposite film was increased due to reduced self-quenching and prolonged carrier lifetime. Inverted PeLEDs with the configuration of ITO/PEIE-modified ZnO NAs/MAPbBr3 NPLs:PVK/TFB/Au were fabricated and evaluated, using TFB as the hole transport layer. The current density of the devices containing PVK matrix was significantly suppressed compared to those without PVK. Herein, the best device revealed a max brightness of 495 cd m-2 and a low turn-on voltage of 3.1 V that shows potential use in light-emitting applications.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We report the presence of a 3-5 cm thick loose fragmental layer in the Siliceous Earth at Matti ka Gol in the Barmer basin of Rajasthan. Petrographic, chemical and mineralogical study reveals the presence of abundant volcanic debris such as glass shards, agglutinates, hollow spheroids, kinked biotites, feldspars showing ...

  3. Image Quality of the 3 Dimensional Phase-Contrast Technique in an Intracranial Magnetic Resonance Angiography with Artifacts Caused by Orthodontic Devices: A Comparison with 3 Dimensional Time-of-Flight Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong Jin; Kim, Young Soo; Hong, Hyun Sook [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Kim, Dong Hun [Dept. of Radiology, Chosun University School of Medicine, Kwangju (Korea, Republic of)

    2011-07-15

    To evaluate the degree of image distortion caused by orthodontic devices during a intracranial magnetic resonance angiography (MRA), and to determine the effectiveness of the 3 dimensional phase-contrast (3D PC). Subjects were divided into group A (n = 20) wearing a home-made orthodontic device, and group B (n = 10) with an actual orthodontic device. A 3.0T MR scanner was used, applying 3D time-of-flight (TOF) and 3D PC. Two board-certified radiologists evaluated images independently based on a four point scale classifying segments of the circle of Willis. Magnetic susceptibility variations and contrast-to-noise ratio (CNR) on maximum intensity projection images were measured. In group A, scores of the 3D TOF and 3D PC were 2.84 {+-} 0.1 vs. 2.88 {+-} 0.1 (before) and 1.8 {+-} 0.4 vs 2.83 {+-} 0.1 (after wearing device), respectively. In group B, the scores of 3D TOF and 3D PC were 1.86 {+-} 0.43 and 2.81 {+-} 0.15 (p = 0.005), respectively. Magnetic susceptibility variations showed meaningful results after wearing the device (p = 0.0001). CNRs of the 3D PC before and after wearing device were 142.9 {+-} 6.6 vs. 140.8 {+-} 7.2 (p = 0.7507), respectively. In the 3D TOF, CNRs were 324.8 {+-} 25.4 vs. 466.3 {+-} 41.7 (p = 0.0001). The 3D PC may be a solution method for distorted images by magnetic susceptibility in the intracranial MRA compared with 3D TOF.

  4. The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices

    OpenAIRE

    Terán-Escobar, Gerardo; Lira-Cantú, Mónica; Krebs, Frederik C.

    2012-01-01

    Seven distinct sets (n >= 12) of state of the art organic photovoltaic devices were prepared by leading research laboratories in a collaboration planned at the Third International Summit on Organic Photovoltaic Stability (ISOS-3). All devices were shipped to RISO DTU and characterized simultaneously up to 1830 h in accordance with established ISOS-3 protocols under three distinct illumination conditions: accelerated full sun simulation; low level indoor fluorescent lighting; and dark storage ...

  5. Software architecture as a freedom for 3D content providers and users along with independency on purposes and used devices

    Science.gov (United States)

    Sultana, Razia; Christ, Andreas; Meyrueis, Patrick

    2014-05-01

    The improvements in the hardware and software of communication devices have allowed running Virtual Reality (VR) and Augmented Reality (AR) applications on those. Nowadays, it is possible to overlay synthetic information on real images, or even to play 3D on-line games on smart phones or some other mobile devices. Hence the use of 3D data for business and specially for education purposes is ubiquitous. Due to always available at hand and always ready to use properties of mobile phones, those are considered as most potential communication devices. The total numbers of mobile phone users are increasing all over the world every day and that makes mobile phones the most suitable device to reach a huge number of end clients either for education or for business purposes. There are different standards, protocols and specifications to establish the communication among different communication devices but there is no initiative taken so far to make it sure that the send data through this communication process will be understood and used by the destination device. Since all the devices are not able to deal with all kind of 3D data formats and it is also not realistic to have different version of the same data to make it compatible with the destination device, it is necessary to have a prevalent solution. The proposed architecture in this paper describes a device and purpose independent 3D data visibility any time anywhere to the right person in suitable format. There is no solution without limitation. The architecture is implemented in a prototype to make an experimental validation of the architecture which also shows the difference between theory and practice.

  6. Macroscopic Spatial Complexity of the Game of Life Cellular Automaton: A Simple Data Analysis

    Science.gov (United States)

    Hernández-Montoya, A. R.; Coronel-Brizio, H. F.; Rodríguez-Achach, M. E.

    In this chapter we present a simple data analysis of an ensemble of 20 time series, generated by averaging the spatial positions of the living cells for each state of the Game of Life Cellular Automaton (GoL). We show that at the macroscopic level described by these time series, complexity properties of GoL are also presented and the following emergent properties, typical of data extracted complex systems such as financial or economical come out: variations of the generated time series following an asymptotic power law distribution, large fluctuations tending to be followed by large fluctuations, and small fluctuations tending to be followed by small ones, and fast decay of linear correlations, however, the correlations associated to their absolute variations exhibit a long range memory. Finally, a Detrended Fluctuation Analysis (DFA) of the generated time series, indicates that the GoL spatial macro states described by the time series are not either completely ordered or random, in a measurable and very interesting way.

  7. Half metallic ferromagnet Pr_0_._9_5Mn_0_._9_3_9O_3 for spin based devices

    International Nuclear Information System (INIS)

    Santhosh Kumar, B.; Praveen Shankar, N.; Venkateswaran, C.; Manimuthu, P.

    2016-01-01

    Half Metallic Ferromagnets (HMF) are excellent candidates for spintronics devices due to their unusual 3d and 4s bands. Band theory and first principles calculations strongly predict that Pr based compounds are promising HMF candidates due to their spin hybridisation. Among all Pr based HMF, Pr_0_._9_5Mn_0_._9_3_9O_3 is special because of its pervoskite structure. The different oxidation states of Mn and Pr will enhance the hybridisation of 3d and 4f bands. The present study is experimental effort on the preparation of Pr based compounds

  8. NIMROD Simulations of the HIT-SI and HIT-SI3 Devices

    Science.gov (United States)

    Morgan, Kyle; Jarboe, Tom; Hossack, Aaron; Chandra, Rian; Everson, Chris

    2017-10-01

    The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) experiment uses a set of inductively driven helicity injectors to apply non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. Significant improvements have been made to extended MHD modeling of HIT-SI, with both the resolution of disagreement at high injector frequencies in HIT-SI in addition to successes with the new upgraded HIT-SI3 device. Previous numerical studies of HIT-SI, using a zero-beta eMHD model, focused on operations with a drive frequency of 14.5 kHz, and found reduced agreement with both the magnetic profile and current amplification at higher frequencies (30-70 kHz). HIT-SI3 has three helicity injectors which are able to operate with different mode structures of perturbations through the different relative temporal phasing of the injectors. Simulations that allow for pressure gradients have been performed in the parameter regimes of both devices using the NIMROD code and show improved agreement with experimental results, most notably capturing the observed Shafranov-shift due to increased beta observed at higher finj in HIT-SI and the variety of toroidal perturbation spectra available in HIT-SI3. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 96ER54361.

  9. Device Performance of the Mott InsulatorDevice Performance of the Mott Insulator LaVO3 as a Photovoltaic Material

    KAUST Repository

    Wang, Lingfei

    2015-06-22

    Searching for solar-absorbing materials containing earth-abundant elements with chemical stability is of critical importance for advancing photovoltaic technologies. Mott insulators have been theoretically proposed as potential photovoltaic materials. In this paper, we evaluate their performance in solar cells by exploring the photovoltaic properties of Mott insulator LaVO3 (LVO). LVO films show an indirect band gap of 1.08 eV as well as strong light absorption over a wide wavelength range in the solar spectrum. First-principles calculations on the band structure of LVO further reveal that the d−d transitions within the upper and lower Mott-Hubbard bands and p−d transitions between the O 2p and V 3d band contribute to the absorption in visible and ultraviolet ranges, respectively. Transport measurements indicate strong carrier trapping and the formation of polarons in LVO. To utilize the strong light absorption of LVO and to overcome its poor carrier transport, we incorporate it as a light absorber in solar cells in conjunction with carrier transporters and evaluate its device performance. Our complementary experimental and theoretical results on such prototypical solar cells made of Mott-Hubbard transition-metal oxides pave the road for developing light-absorbing materials and photovoltaic devices based on strongly correlated electrons.

  10. A new 3-dimensional head fixation device for brain imaging

    International Nuclear Information System (INIS)

    Goto, Ryoi; Kawashima, Ryuta; Yoshioka, Seiro; Ono, Shuichi; Ito, Hiroshi; Sato, Kazunori; Akaizawa, Takashi; Koyama, Masamichi; Fukuda, Hiroshi

    1995-01-01

    We have developed a new head fixation device for studies of brain function. This device was designed to immobilize subject's heads during image scanning and to precisely reproduce the head position for two different imaging modalities such as MRI and PET. The device consists of a plastic frame, a pillow filled with beads of styrene foam, and a face mask of thermoplastic resin which was originally intended for application in radiotherapy. A bridge for biting was incorporated into the mask for stable fixation. The device enables immobilization of subject's heads with good reproducibility of position at the practical level. Our results indicate that this head fixation system is useful for fixation of head during activation studies using PET. (author)

  11. 9 CFR 312.3 - Official marks and devices to identify inspected and passed equine products.

    Science.gov (United States)

    2010-01-01

    ... inspected and passed equine products. 312.3 Section 312.3 Animals and Animal Products FOOD SAFETY AND... § 312.3 Official marks and devices to identify inspected and passed equine products. (a) The official... § 317.2 of this subchapter to identify inspected and passed mule and other (nonhorse) equine carcasses...

  12. Image Quality of the 3 Dimensional Phase-Contrast Technique in an Intracranial Magnetic Resonance Angiography with Artifacts Caused by Orthodontic Devices: A Comparison with 3 Dimensional Time-of-Flight Technique

    International Nuclear Information System (INIS)

    Kang, Seong Jin; Kim, Young Soo; Hong, Hyun Sook; Kim, Dong Hun

    2011-01-01

    To evaluate the degree of image distortion caused by orthodontic devices during a intracranial magnetic resonance angiography (MRA), and to determine the effectiveness of the 3 dimensional phase-contrast (3D PC). Subjects were divided into group A (n = 20) wearing a home-made orthodontic device, and group B (n = 10) with an actual orthodontic device. A 3.0T MR scanner was used, applying 3D time-of-flight (TOF) and 3D PC. Two board-certified radiologists evaluated images independently based on a four point scale classifying segments of the circle of Willis. Magnetic susceptibility variations and contrast-to-noise ratio (CNR) on maximum intensity projection images were measured. In group A, scores of the 3D TOF and 3D PC were 2.84 ± 0.1 vs. 2.88 ± 0.1 (before) and 1.8 ± 0.4 vs 2.83 ± 0.1 (after wearing device), respectively. In group B, the scores of 3D TOF and 3D PC were 1.86 ± 0.43 and 2.81 ± 0.15 (p = 0.005), respectively. Magnetic susceptibility variations showed meaningful results after wearing the device (p = 0.0001). CNRs of the 3D PC before and after wearing device were 142.9 ± 6.6 vs. 140.8 ± 7.2 (p = 0.7507), respectively. In the 3D TOF, CNRs were 324.8 ± 25.4 vs. 466.3 ± 41.7 (p = 0.0001). The 3D PC may be a solution method for distorted images by magnetic susceptibility in the intracranial MRA compared with 3D TOF.

  13. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    Science.gov (United States)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  14. Mineralogy and trace element chemistry of the Siliceous Earth of ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    We report the presence of a 3–5 cm thick loose fragmental layer in the Siliceous Earth at Matti ka. Gol in the Barmer basin of Rajasthan. Petrographic, chemical and mineralogical study reveals the presence of abundant volcanic debris such as glass shards, agglutinates, hollow spheroids, kinked biotites, feldspars showing ...

  15. 78 FR 958 - Certain Wireless Devices With 3G and/or 4G Capabilities and Components Thereof Notice of Receipt...

    Science.gov (United States)

    2013-01-07

    ... INTERNATIONAL TRADE COMMISSION [DN 2929] Certain Wireless Devices With 3G and/or 4G Capabilities... with 3G and/or 4G Capabilities and Components Thereof, DN 2929; the Commission is soliciting comments... importation of certain wireless devices with 3g and/or 4g capabilities and components thereof. The complaint...

  16. Are Portable Stereophotogrammetric Devices Reliable in Facial Imaging? A Validation Study of VECTRA H1 Device.

    Science.gov (United States)

    Gibelli, Daniele; Pucciarelli, Valentina; Cappella, Annalisa; Dolci, Claudia; Sforza, Chiarella

    2018-01-31

    Modern 3-dimensional (3D) image acquisition systems represent a crucial technologic development in facial anatomy because of their accuracy and precision. The recently introduced portable devices can improve facial databases by increasing the number of applications. In the present study, the VECTRA H1 portable stereophotogrammetric device was validated to verify its applicability to 3D facial analysis. Fifty volunteers underwent 4 facial scans using portable VECTRA H1 and static VECTRA M3 devices (2 for each instrument). Repeatability of linear, angular, surface area, and volume measurements was verified within the device and between devices using the Bland-Altman test and the calculation of absolute and relative technical errors of measurement (TEM and rTEM, respectively). In addition, the 2 scans obtained by the same device and the 2 scans obtained by different devices were registered and superimposed to calculate the root mean square (RMS; point-to-point) distance between the 2 surfaces. Most linear, angular, and surface area measurements had high repeatability in M3 versus M3, H1 versus H1, and M3 versus H1 comparisons (range, 82.2 to 98.7%; TEM range, 0.3 to 2.0 mm, 0.4° to 1.8°; rTEM range, 0.2 to 3.1%). In contrast, volumes and RMS distances showed evident differences in M3 versus M3 and H1 versus H1 comparisons and reached the maximum when scans from the 2 different devices were compared. The portable VECTRA H1 device proved reliable for assessing linear measurements, angles, and surface areas; conversely, the influence of involuntary facial movements on volumes and RMS distances was more important compared with the static device. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Large room-temperature tunneling anisotropic magnetoresistance and electroresistance in single ferromagnet/Nb:SrTiO3 Schottky devices.

    Science.gov (United States)

    Kamerbeek, Alexander M; Ruiter, Roald; Banerjee, Tamalika

    2018-01-22

    There is a large effort in research and development to realize electronic devices capable of storing information in new ways - for instance devices which simultaneously exhibit electro and magnetoresistance. However it remains a challenge to create devices in which both effects coexist. In this work we show that the well-known electroresistance in noble metal-Nb:SrTiO 3 Schottky junctions can be augmented by a magnetoresistance effect in the same junction. This is realized by replacing the noble metal electrode with ferromagnetic Co. This magnetoresistance manifests as a room temperature tunneling anisotropic magnetoresistance (TAMR). The maximum room temperature TAMR (1.6%) is significantly larger and robuster with bias than observed earlier, not using Nb:SrTiO 3 . In a different set of devices, a thin amorphous AlO x interlayer inserted between Co and Nb:SrTiO 3 , reduces the TAMR by more than 2 orders of magnitude. This points to the importance of intimate contact between the Co and Nb:SrTiO 3 for the TAMR effect. This is explained by electric field enhanced spin-orbit coupling of the interfacial Co layer in contact with Nb:SrTiO 3 . We propose that the large TAMR likely has its origin in the 3d orbital derived conduction band and large relative permittivity of Nb:SrTiO 3 and discuss ways to further enhance the TAMR.

  18. A lógica financeira e o espaço do transporte aéreo comercial Brasileiro Financial logics and the Brazilian aviation market

    Directory of Open Access Journals (Sweden)

    Martin Mundo Neto

    2011-01-01

    Full Text Available Este estudo focou a dinâmica das forças em um espaço particular: o espaço do transporte aéreo comercial brasileiro. Utilizando-se dos conceitos propostos pela análise institucional das organizações e pela sociologia econômica, foram analisadas as estratégias das empresas que dominam este mercado - a TAM Linhas Aéreas e a GOL Linhas Aéreas - e algumas implicações para a estruturação atual. A partir das informações institucionais das empresas que dominam o mercado do transporte aéreo comercial brasileiro, de órgãos governamentais responsáveis pelo controle das atividades e daquelas veiculadas na imprensa de negócios, o estudo procurou indicar os atores responsáveis pela estruturação das empresas dominantes. As duas empresas operam tanto no espaço industrial original, transporte aéreo, como em mercado de capitais. O modelo de negócio da empresa GOL, notadamente a adesão aos investimentos de private equities, seria um dos fatores determinantes para a nova configuração deste espaço industrial. A TAM, no âmbito financeiro, adota estratégia semelhante à GOL. A recente crise aérea e a crise financeira impactaram fortemente as duas empresas, sobretudo no valor de suas ações.This study focuses on the power dynamic of a particular space: Brazilian Airlines Companies. Applying the concepts of Organizational Theory and Economic Sociology, it was possible to analyze the strategies of TAM and GOL airlines, which are companies that dominate the aviation market. Gathering institutional information from those companies, from government entities which control those companies' activities, and also from the business media, this study focused on indicating the social actors responsible for structuring these dominant companies. Both companies operate in the aviation market , but they also operate in the stock market. GOL business model, particularly the use of private equities tools, can be considered a determinant factor for the

  19. Impact of continuing scaling on the device performance of 3D cylindrical junction-less charge trapping memory

    International Nuclear Information System (INIS)

    Li Xinkai; Huo Zongliang; Jin Lei; Jiang Dandan; Hong Peizhen; Xu Qiang; Tang Zhaoyun; Li Chunlong; Ye Tianchun

    2015-01-01

    This work presents a comprehensive analysis of 3D cylindrical junction-less charge trapping memory device performance regarding continuous scaling of the structure dimensions. The key device performance, such as program/erase speed, vertical charge loss, and lateral charge migration under high temperature are intensively studied using the Sentaurus 3D device simulator. Although scaling of channel radius is beneficial for operation speed improvement, it leads to a retention challenge due to vertical leakage, especially enhanced charge loss through TPO. Scaling of gate length not only decreases the program/erase speed but also leads to worse lateral charge migration. Scaling of spacer length is critical for the interference of adjacent cells and should be carefully optimized according to specific cell operation conditions. The gate stack shape is also found to be an important factor affecting the lateral charge migration. Our results provide guidance for high density and high reliability 3D CTM integration. (paper)

  20. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    Science.gov (United States)

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  1. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    International Nuclear Information System (INIS)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae

    2003-01-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin

  2. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae [Korea Power Engineering Company, Daejon (Korea, Republic of)

    2003-07-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin.

  3. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    Energy Technology Data Exchange (ETDEWEB)

    Zarghami, Niloufar, E-mail: nzargham@uwo.ca; Jensen, Michael D. [Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Talluri, Srikanth; Dick, Frederick A. [Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada); Foster, Paula J. [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Chambers, Ann F. [Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada); Wong, Eugene [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada); London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9 (Canada)

    2015-11-15

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.

  4. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device

    International Nuclear Information System (INIS)

    Zarghami, Niloufar; Jensen, Michael D.; Talluri, Srikanth; Dick, Frederick A.; Foster, Paula J.; Chambers, Ann F.; Wong, Eugene

    2015-01-01

    Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs

  5. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    Directory of Open Access Journals (Sweden)

    Carlos E. Clement

    2017-01-01

    Full Text Available We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D electrowetting-on-dielectric (EWOD devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2 than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has

  6. Improved electron injection in spin coated Alq3 incorporated ZnO thin film in the device for solution processed OLEDs

    Science.gov (United States)

    Dasi, Gnyaneshwar; Ramarajan, R.; Thangaraju, Kuppusamy

    2018-04-01

    We deposit tris-(8-hydroxyquinoline)aluminum (Alq3) incorporated zinc oxide (ZnO) thin films by spin coating method under the normal ambient. It showed the higher transmittance (90% at 550 nm) when compared to that (80% at 550 nm) of spin coated pure ZnO film. SEM studies show that the Alq3 incorporation in ZnO film also enhances the formation of small sized particles arranged in the network of wrinkles on the surface. XRD reveals the improved crystalline properties upon Alq3 inclusion. We fabricate the electron-only devices (EODs) with the structure of ITO/spin coated ZnO:Alq3 as ETL/Alq3 interlayer/LiF/Al. The device showed the higher electron current density of 2.75 mA/cm2 at 12V when compared to that (0.82 mA/cm2 at 12V) of the device using pure ZnO ETL. The device results show that it will be useful to fabricate the low-cost solution processed OLEDs for future lighting and display applications.

  7. Magnetohydrodynamically stable plasma with supercritical current density at the axis

    Energy Technology Data Exchange (ETDEWEB)

    Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Sudnikov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2014-05-15

    In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a) ≈ 4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n = 1, m = 1 mode for both stable and disruptive regimes.

  8. 3D printed Lego®-like modular microfluidic devices based on capillary driving.

    Science.gov (United States)

    Nie, Jing; Gao, Qing; Qiu, Jing-Jiang; Sun, Miao; Liu, An; Shao, Lei; Fu, Jian-Zhong; Zhao, Peng; He, Yong

    2018-03-12

    The field of how to rapidly assemble microfluidics with modular components continuously attracts researchers' attention, however, extra efforts must be devoted to solving the problems of leaking and aligning between individual modules. This paper presents a novel type of modular microfluidic device, driven by capillary force. There is no necessity for a strict seal or special alignment, and its open structures make it easy to integrate various stents and reactants. The key rationale for this method is to print different functional modules with a low-cost three-dimensional (3D) printer, then fill the channels with capillary materials and assemble them with plugs like Lego ® bricks. This rapidly reconstructed modular microfluidic device consists of a variety of common functional modules and other personalized modules, each module having a unified standard interface for easy assembly. As it can be printed by a desktop 3D printer, the manufacturing process is simple and efficient, with controllable regulation of the flow channel scale. Through diverse combinations of different modules, a variety of different functions can be achieved, without duplicating the manufacturing process. A single module can also be taken out for testing and analysis. What's more, combined with basic circuit components, it can serve as a low-cost Lego ® -like modular microfluidic circuits. As a proof of concept, the modular microfluidic device has been successfully demonstrated and used for stent degradation and cell cultures, revealing the potential use of this method in both chemical and biological research.

  9. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  10. CT based 3D printing is superior to transesophageal echocardiography for pre-procedure planning in left atrial appendage device closure.

    Science.gov (United States)

    Obasare, Edinrin; Mainigi, Sumeet K; Morris, D Lynn; Slipczuk, Leandro; Goykhman, Igor; Friend, Evan; Ziccardi, Mary Rodriguez; Pressman, Gregg S

    2018-05-01

    Accurate assessment of the left atrial appendage (LAA) is important for pre-procedure planning when utilizing device closure for stroke reduction. Sizing is traditionally done with transesophageal echocardiography (TEE) but this is not always precise. Three-dimensional (3D) printing of the LAA may be more accurate. 24 patients underwent Watchman device (WD) implantation (71 ± 11 years, 42% female). All had complete 2-dimensional TEE. Fourteen also had cardiac computed tomography (CCT) with 3D printing to produce a latex model of the LAA for pre-procedure planning. Device implantation was unsuccessful in 2 cases (one with and one without a 3D model). The model correlated perfectly with implanted device size (R 2  = 1; p < 0.001), while TEE-predicted size showed inferior correlation (R 2  = 0.34; 95% CI 0.23-0.98, p = 0.03). Fisher's exact test showed the model better predicted final WD size than TEE (100 vs. 60%, p = 0.02). Use of the model was associated with reduced procedure time (70 ± 20 vs. 107 ± 53 min, p = 0.03), anesthesia time (134 ± 31 vs. 182 ± 61 min, p = 0.03), and fluoroscopy time (11 ± 4 vs. 20 ± 13 min, p = 0.02). Absence of peri-device leak was also more likely when the model was used (92 vs. 56%, p = 0.04). There were trends towards reduced trans-septal puncture to catheter removal time (50 ± 20 vs. 73 ± 36 min, p = 0.07), number of device deployments (1.3 ± 0.5 vs. 2.0 ± 1.2, p = 0.08), and number of devices used (1.3 ± 0.5 vs. 1.9 ± 0.9, p = 0.07). Patient specific models of the LAA improve precision in closure device sizing. Use of the printed model allowed rapid and intuitive location of the best landing zone for the device.

  11. Characterisation and application of WO3 films for electrochromic devices

    Science.gov (United States)

    Stapinski, Thomas; Marszalek, Konstanty; Swatowska, Barbara; Stanco, Agnieszka

    2013-07-01

    Electrochromic system is the one of the most popular devices using color memory effect under the influence of an applied voltage. The electrochromic system was produced based on the thin WO3 electrochromic films. Films were prepared by RF magnetron sputtering from tungsten targets in a reactive Ar+O2 gas atmosphere of various Ar/O2 ratios. The technological gas mixture pressure was 3 Pa and process temperature 30°C. Structural and optical properties of WO3 films were investigated for as-deposited and heat treated samples at temperature range from 350°C to 450°C in air. The material revealed the dependence of properties on preparation conditions and on post-deposition heat treatment. Main parameters of thin WO3 films: thickness d, refractive index n, extinction coefficient k and energy gap Eg were determined and optimized for application in electrochromic system. The main components of the system were glass plate with transparent conducting oxides, electrolyte, and glass plate with transparent conducting oxides and WO3 layer. The optical properties of the system were investigated when a voltage was applied across it. The electrochromic cell revealed the controllable transmittance depended on the operation voltage.

  12. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues

    Science.gov (United States)

    Borovjagin, Anton V.; Ogle, Brenda; Berry, Joel; Zhang, Jianyi

    2016-01-01

    Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional two-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and pre-clinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents. PMID:28057791

  13. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Performance improvement induced by asymmetric Y2O3-coated device structure to carbon-nanotube-film based photodetectors

    Science.gov (United States)

    Wang, Fanglin; Xu, Haitao; Huang, Huixin; Ma, Ze; Wang, Sheng; Peng, Lian-Mao

    2017-11-01

    Film-based semiconducting carbon nanotube (CNT) photodetectors are promising candidates for industrial applications. However, unintentional doping from the environment such as water/oxygen (H2O/O2) redox, polymers, etc. changes the doping level of the CNT film. Here, we evaluate the performance of film-based barrier-free bipolar diodes (BFBDs), which are basically semiconducting CNT films asymmetrically contacted by perfect n-type ohmic contact (scandium, Sc) and p-type ohmic contact (palladium, Pd) at the two ends of the diode. We show that normal BFBD devices have large variances of forward current, reverse current, and photocurrent for different doping levels of the channel. We propose an asymmetric Y2O3-coated BFBD device in which the channel is covered by a layer of an Y2O3 film and an overlap between the Sc electrode and the Y2O3 film is designed. The Y2O3 film provides p-type doping to the channel. The overlap section increases the length of the base of the pn junction, and the diffusion current of holes is suppressed. In this way, the rectifier factors (current ratio when voltages are at +0.5 V and -0.5 V) of the asymmetric Y2O3-coated BFBD devices are around two orders of magnitude larger and the photocurrent generation is more stable compared to that of normal devices. Our results provide a way to conquer the influence of unintentional doping from the environment and suppress reverse current in pn diodes. This is beneficial to applications of CNT-based photodetectors and of importance for inspiring methods to improve the performances of devices based on other low dimensional materials.

  15. Micro-structured electrochromic device based on poly(3,4-ethylenedioxythiophene)

    International Nuclear Information System (INIS)

    Deutschmann, T; Oesterschulze, E

    2013-01-01

    Recent developments in consumer electronics, e.g. smartphones, tablet PCs or compact cameras, demand the development of very compact, active, optical microsystems. Because of their low power consumption, low operation voltage and cheap fabrication, voltage-controlled electrochromic devices (ECDs) based on polymer materials are promising candidates. However, the broad application of ECDs is still hindered by crucial technological obstacles. In this paper, we address two main issues: the structuring of the electrochromic material (ECM) and its underlying transparent conductive electrode on a microscale and additionally, the assembly of the ECD as an electrochemical cell with the challenges of airtight sealing, appropriate chemical stability, electrical insulation and the necessity of defining a compartment to hold the liquid electrolyte inside the cell. We first introduce a technological sequence consisting of batch processes (UV lithography and dry and wet etching) to render the microscale structuring of the ECM possible. Furthermore, we exploit the outstanding properties of the thick film dry photoresist Ordyl SY 300 to complete the assembly of ECDs with single-layer technology. As a proof of principle, we present the first results of an ECD device based on a poly(3,4-ethylenedioxythiophene) (PEDOT) material that works as an aperture stop with three coaxial segments, each individually controlled by an external voltage. (paper)

  16. A solid device based on doped hybrid composites for controlling the dosage of the biocide N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine in industrial formulations.

    Science.gov (United States)

    Argente-García, A; Muñoz-Ortuño, M; Molins-Legua, C; Moliner-Martínez, Y; Campíns-Falcó, P

    2016-01-15

    A colorimetric composite device is proposed to determine the widely used biocide N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (ADP).This sensing device is based on a film of 1,2-Naphthoquinone-4-sulfonate (NQS) embedded into polydimethylsiloxane-tetraethylortosilicate-SiO2 nanoparticles composite (PDMS-TEOS-SiO2NPs). Semiquantitative analysis can be performed by visual inspection. Digitalized image or diffuse reflectance (DR) measurements can be carried out for quantitative analysis. Satisfactory detection limit (0.018%, w/v) and relative standard deviations <12% were achieved. The proposed device has been applied for the determination of ADP in detergent industrial formulations with recovery values between 80% and 112%. The method has been successfully validated, showing its high potential to control and monitor this compound because the device is easy to prepare and use, robust, portable, stable over time and cost effective. This device allows a green, simple and rapid approach for the analysis of samples without pretreatment and does not require highly trained personnel. These advantages give the proposed kit good prospects for implementation in several industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Renormalized molecular levels in a Sc3N@C-80 molecular electronic device

    DEFF Research Database (Denmark)

    Larade, Brian; Taylor, Jeremy Philip; Zheng, Q. R.

    2001-01-01

    We address several general questions about quantum transport through molecular systems by an ab initio analysis of a scandium-nitrogen doped C-80 metallofullerene device. Charge transfer from the Sc3N is found to drastically change the current-voltage characteristics: the current through the Sc3N...... levels and main transmission features shift in energy corresponding to half the applied bias voltage. This is also consistent with our finding that the voltage drops by V-b/2 at each molecule/electrode contact....

  18. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices

    Science.gov (United States)

    Khusayfan, Najla M.; Qasrawi, A. F.; Khanfar, Hazem K.

    2018-02-01

    In the current work, a tunneling barrier device made of 20 nm thick Sb2Te3 layer deposited onto 500 nm thick CdS is designed and characterized. The design included a Yb metallic substrate and Ag point contact of area of 10-3 cm2. The heterojunction properties are investigated by means of x-ray diffraction and impedance spectroscopy techniques. It is observed that the coating of the Sb2Te3 onto the surface of CdS causes a further deformation to the already strained structure of hexagonal CdS. The designed energy band diagram for the CdS/Sb2Te3 suggests a straddling type of heterojunction with an estimated conduction and valence band offsets of 0.35 and 1.74 eV, respectively. In addition, the analysis of the capacitance-voltage characteristic curve revealed a depletion region width of 14 nm. On the other hand, the capacitance and conductivity spectra which are analyzed in the frequency domain of 0.001-1.80 GHz indicated that the conduction in the device is dominated by the quantum mechanical tunneling in the region below 0.26 GHz and by the correlated barrier hopping in the remaining region. While the modeling of the conductivity spectra allowed investigation of the density of states near Fermi levels and an average scattering time of 1.0 ns, the capacitance spectra exhibited resonance at 0.26 GHz followed by negative differential capacitance effect in the frequency domain of 0.26-1.8 GHz. Furthermore, the evaluation of the impedance and reflection coefficient spectra indicated the usability of these devices as wide range low pass filters with ideal values of voltage standing wave ratios.

  19. A reworked Lake Zone margin: Chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia)

    Science.gov (United States)

    Soejono, Igor; Buriánek, David; Janoušek, Vojtěch; Svojtka, Martin; Čáp, Pavel; Erban, Vojtěch; Ganpurev, Nyamtsetseg

    2017-12-01

    The primary relationships and character of the boundaries between principal lithotectonic domains in the Mongolian tract of the Central Asian Orogenic Belt (CAOB) are still poorly constrained. This brings much uncertainty in understanding of the orogeny configuration and the complete accretionary history. The plutonic Khuurai Tsenkher Gol Complex and the mainly metasedimentary Bij Group represent associated medium- to high-grade basement complexes exposed in the Hovd Zone close to its boundary with the Lake Zone in western Mongolia. The Khuurai Tsenkher Gol Complex is composed of variously deformed acid to basic magmatic rocks intimately associated with the metamorphosed sedimentary and volcanic rocks of the Bij Group. Results of our field work, new U-Pb zircon ages and whole-rock geochemical data suggest an existence of two separate magmatic events within the evolution of the Khuurai Tsenkher Gol Complex. Early to Mid-Ordovician (476 ± 5 Ma and 467 ± 4 Ma protoliths) normal- to high-K calc-alkaline orthogneisses, metadiorites and metagabbros predominate over Mid-Silurian (430 ± 3 Ma) tholeiitic-mildly alkaline quartz monzodiorites. Whereas the geochemical signature of the former suite unequivocally demonstrates its magmatic-arc origin, that of the latter quartz monzodiorite suggests an intra-plate setting. As shown by Sr-Nd isotopic data, the older arc-related magmas were derived from depleted mantle and/or were generated by partial melting of juvenile metabasic crust. Detrital zircon age populations of the metasedimentary rocks together with geochemical signatures of the associated amphibolites imply that the Bij Group was a volcano-sedimentary sequence, formed probably in the associated fore-arc wedge basin. Moreover, our data argue for an identical provenance of the Altai and Hovd domains, overall westward sediment transport during the Early Palaeozoic and the east-dipping subduction polarity. The obvious similarities of the Khuurai Tsenkher Gol Complex

  20. Normally-off Al2O3/GaN MOSFET: Role of border traps on the device transport characteristics

    Science.gov (United States)

    Wang, Hongyue; Wang, Jinyan; Liu, Jingqian; He, Yandong; Wang, Maojun; Yu, Min; Wu, Wengang

    2018-03-01

    Based on the self-terminating gate recess technique, two different processes featuring gate-recess-first (GF) and ohmic-contact-first (OF) were proposed for E-mode Al2O3/GaN MOSFETs. Increased maximum drain current (Idmax) ∼30% (420 vs 325 mA/mm), field-effect mobility (μFEmax) ∼67% (150 vs 90 cm2/Vs) and reduced on-state resistance (Ron) ∼42% (9.7 vs 16.8 Ω·mm) were observed in the devices fabricated by GF process. Such significant performance difference of GF- and OF-devices resulted from the presence of border traps at Al2O3/GaN interface with a time constant ∼7 × 10-6 s. Experimental results indicated that: (1) the near interface border traps in Al2O3 dielectric significantly affect device channel mobility; (2) a high temperature post-deposition annealing process could effective suppress generation of border traps.

  1. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators.

    Science.gov (United States)

    Hassani, Faezeh Arab; Peh, Wendy Yen Xian; Gammad, Gil Gerald Lasam; Mogan, Roshini Priya; Ng, Tze Kiat; Kuo, Tricia Li Chuen; Ng, Lay Guat; Luu, Percy; Yen, Shih-Cheng; Lee, Chengkuo

    2017-11-01

    Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA-based device without any surgical intervention or drug injection to relax the external sphincter.

  2. Solid-State Electrochromic Device Consisting of Amorphous WO3 and Various Thin Oxide Layers

    Science.gov (United States)

    Shizukuishi, Makoto; Shimizu, Isamu; Inoue, Eiichi

    1980-11-01

    A mixed oxide containing Cr2O3 was introduced into an amorphous WO3 solid-state electrochromic device (ECD) in order to improve its colour memory effect. The electrochromic characteristics were greatly affected by the chemical constituents of a dielectric layer on the a-WO3 layer. Particularly, long memory effect and low power dissipation were attained in a solid-state ECD consisting of a-WO3 and Cr2O3\\cdotV2O5(50 wt.%). Some electrochromic characteristics of the a-WO3/Cr2O3\\cdotV2O5 ECD and the role of V2O5 were investigated.

  3. Tulip deformity with Cera atrial septal defect devices: a report of 3 cases.

    Science.gov (United States)

    Kohli, Vikas

    2015-02-01

    Device closure of secundum atrial septal defect (ASD) is the treatment of choice when anatomy is favourable. Amplatzer device has remained the gold standard for closure of ASD. Cobra deformity is a well-reported problem with devices. Recently, Tulip deformity has been reported in a single case. We report a series of cases where we noted Tulip deformity along with inability to retract the device in the sheath in Cera Lifetech devices. This resulted in prolongation of procedure, excessive fluoroscopic exposure and additional interventional procedures not usually anticipated in ASD device closure. We believe that the problem is due to the stiffness of the device resulting in its inability to be retracted into the sheath. We also report a unique way of retrieving the device.

  4. Hot gas handling device and motorized vehicle comprising the device

    NARCIS (Netherlands)

    Klein Geltink, J.; Beukers, A.; Van Tooren, M.J.L.; Koussios, S.

    2012-01-01

    The invention relates to a device for handling hot exhaust gasses discharged from an internal combustion engine. The device comprises a housing (2), enclosing a space (3) for transporting the exhaust gasses. The housing (2) is provided with an entrance - opening (4) for the exhaust gasses discharged

  5. 3-5 modulation and switching devices for optical systems applications

    Science.gov (United States)

    Singh, Jasprit; Bhattacharya, Pallab

    1995-04-01

    The thrust for this three year program has been to develop novel devices and systems applications for multiple quantum well based devices. We have investigated architectures based upon the quantum confined Stark effect (QCSE), a means by which excitonic resonances in a quantum well are electric field tuned to shift the peaked absorption spectrum of the material. The devices based upon this concept have been used, in the past, to realize switching structures employing the characteristic negative differential resistance available in PIN-MQW diodes under illumination. We have focuses, primarily on three schemes based upon the QCSE, to extend the utility of quantum well based devices. Firstly, we have developed, tested and optimized a novel tunable optical filter for wavelength selective applications. Secondly, we have demonstrated an MQW based scheme for optical pattern recognition which we have applied towards header recognition in a packet switching network environment. Thirdly, we have extended previous MQW based switching schemes to implement an optical read only memory (ROM) which can store two bits of information on a single sight, read by two different probe wavelengths of light.

  6. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    Science.gov (United States)

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  7. 3D Design Tools for Vacuum Electron Devices

    International Nuclear Information System (INIS)

    Levush, Baruch

    2003-01-01

    A reduction of development costs will have a significant impact on the total cost of the vacuum electron devices. Experimental testing cycles can be reduced or eliminated through the use of simulation-based design methodology, thereby reducing the time and cost of development. Moreover, by use of modern optimization tools for automating the process of seeking specific solution parameters and for studying dependencies of performance on parameters, new performance capabilities can be achieved, without resorting to expensive cycles of hardware fabrication and testing. Simulation-based-design will also provide the basis for sensitivity studies for determining the manufacturing tolerances associated with a particular design. Since material properties can have a critical effect on the performance of the vacuum electron devices, the design tools require precise knowledge of material characteristics, such as dielectric properties of the support rods, loss profile etc. Sensitivity studies must therefore include the effects of materials properties variation on device performance. This will provide insight for choosing the proper technological processes in order to achieve these tolerances, which is of great importance for achieving cost reduction. A successful design methodology depends on the development of accurate and efficient design tools with predictive capabilities. These design tools must be based on realistic models capable of high fidelity representation of geometry and materials, they must have optimization capabilities, and they must be easy to use

  8. SIGNIFICANCE OF GALACTINOL AND RAFFINOSE FAMILY OLIGOSACCHARIDE SYNTHESIS IN PLANTS

    Directory of Open Access Journals (Sweden)

    Sonali eSengupta

    2015-08-01

    Full Text Available Abiotic stress induces differential expression of genes responsible for the synthesis of Raffinose series of Oligosaccharides (RFOs in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of Galactinol synthase (GolS; EC 2.4.1.123, a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose and Ajugose are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g. RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrate in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debateand their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

  9. Analysis of Uncertainty in a Middle-Cost Device for 3D Measurements in BIM Perspective

    Directory of Open Access Journals (Sweden)

    Alonso Sánchez

    2016-09-01

    Full Text Available Medium-cost devices equipped with sensors are being developed to get 3D measurements. Some allow for generating geometric models and point clouds. Nevertheless, the accuracy of these measurements should be evaluated, taking into account the requirements of the Building Information Model (BIM. This paper analyzes the uncertainty in outdoor/indoor three-dimensional coordinate measures and point clouds (using Spherical Accuracy Standard (SAS methods for Eyes Map, a medium-cost tablet manufactured by e-Capture Research & Development Company, Mérida, Spain. To achieve it, in outdoor tests, by means of this device, the coordinates of targets were measured from 1 to 6 m and cloud points were obtained. Subsequently, these were compared to the coordinates of the same targets measured by a Total Station. The Euclidean average distance error was 0.005–0.027 m for measurements by Photogrammetry and 0.013–0.021 m for the point clouds. All of them satisfy the tolerance for point cloud acquisition (0.051 m according to the BIM Guide for 3D Imaging (General Services Administration; similar results are obtained in the indoor tests, with values of 0.022 m. In this paper, we establish the optimal distances for the observations in both, Photogrammetry and 3D Photomodeling modes (outdoor and point out some working conditions to avoid in indoor environments. Finally, the authors discuss some recommendations for improving the performance and working methods of the device.

  10. Study on 3D printer production of auxiliary device for upper limb for medical imaging test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Gyun [Dept. of Radiological Science, Far East University, Eumsung (Korea, Republic of); Yoon, Jae Ho [Jukwang Precision Co., Ltd., Gumi (Korea, Republic of); Choi, Seong Dae [Dept. of Mechanical system engineering, Kumoh Institute of Technology, Gumi (Korea, Republic of)

    2015-12-15

    There is a progressive development in the medical imaging technology, especially of descriptive capability for anatomical structure of human body thanks to advancement of information technology and medical devices. But however maintenance of correct posture is essential for the medical imaging checkup on the shoulder joint requiring rotation of the upper limb due to the complexity of human body. In the cases of MRI examination, long duration and fixed posture are critical, as failure to comply with them leads to minimal possibility of reproducibility only with the efforts of the examiner and will of the patient. Thus, this study aimed to develop an auxiliary device that enables rotation of the upper limb as well as fixing it at quantitative angles for medical imaging examination capable of providing diagnostic values. An auxiliary device has been developed based on the results of precedent studies, by designing a 3D model with the CATIA software, an engineering application, and producing it with the 3D printer. The printer is Objet350 Connex from Stratasys, and acrylonitrile- butadiene-styrene(ABS) is used as the material of the device. Dimensions are 120 X 150 X 190 mm, with the inner diameter of the handle being 125.9 mm. The auxiliary device has 4 components including the body (outside), handle (inside), fixture terminal and the connection part. The body and handle have the gap of 2.1 mm for smooth rotation, while the 360 degree of scales have been etched on the handle so that the angle required for observation may be recorded per patient for traceability and dual examination.

  11. Study on 3D printer production of auxiliary device for upper limb for medical imaging test

    International Nuclear Information System (INIS)

    Kim, Hyeong Gyun; Yoon, Jae Ho; Choi, Seong Dae

    2015-01-01

    There is a progressive development in the medical imaging technology, especially of descriptive capability for anatomical structure of human body thanks to advancement of information technology and medical devices. But however maintenance of correct posture is essential for the medical imaging checkup on the shoulder joint requiring rotation of the upper limb due to the complexity of human body. In the cases of MRI examination, long duration and fixed posture are critical, as failure to comply with them leads to minimal possibility of reproducibility only with the efforts of the examiner and will of the patient. Thus, this study aimed to develop an auxiliary device that enables rotation of the upper limb as well as fixing it at quantitative angles for medical imaging examination capable of providing diagnostic values. An auxiliary device has been developed based on the results of precedent studies, by designing a 3D model with the CATIA software, an engineering application, and producing it with the 3D printer. The printer is Objet350 Connex from Stratasys, and acrylonitrile- butadiene-styrene(ABS) is used as the material of the device. Dimensions are 120 X 150 X 190 mm, with the inner diameter of the handle being 125.9 mm. The auxiliary device has 4 components including the body (outside), handle (inside), fixture terminal and the connection part. The body and handle have the gap of 2.1 mm for smooth rotation, while the 360 degree of scales have been etched on the handle so that the angle required for observation may be recorded per patient for traceability and dual examination

  12. ALD-Developed Plasmonic Two-Dimensional Au-WO3-TiO2 Heterojunction Architectonics for Design of Photovoltaic Devices.

    Science.gov (United States)

    Karbalaei Akbari, Mohammad; Hai, Zhenyin; Wei, Zihan; Detavernier, Christophe; Solano, Eduardo; Verpoort, Francis; Zhuiykov, Serge

    2018-03-28

    Electrically responsive plasmonic devices, which benefit from the privilege of surface plasmon excited hot carries, have supported fascinating applications in the visible-light-assisted technologies. The properties of plasmonic devices can be tuned by controlling charge transfer. It can be attained by intentional architecturing of the metal-semiconductor (MS) interfaces. In this study, the wafer-scaled fabrication of two-dimensional (2D) TiO 2 semiconductors on the granular Au metal substrate is achieved using the atomic layer deposition (ALD) technique. The ALD-developed 2D MS heterojunctions exhibited substantial enhancement of the photoresponsivity and demonstrated the improvement of response time for 2D Au-TiO 2 -based plasmonic devices under visible light illumination. To circumvent the undesired dark current in the plasmonic devices, a 2D WO 3 nanofilm (∼0.7 nm) was employed as the intermediate layer on the MS interface to develop the metal-insulator-semiconductor (MIS) 2D heterostructure. As a result, 13.4% improvement of the external quantum efficiency was obtained for fabricated 2D Au-WO 3 -TiO 2 heterojunctions. The impedancometry measurements confirmed the modulation of charge transfer at the 2D MS interface using MIS architectonics. Broadband photoresponsivity from the UV to the visible light region was observed for Au-TiO 2 and Au-WO 3 -TiO 2 heterostructures, whereas near-infrared responsivity was not observed. Consequently, considering the versatile nature of the ALD technique, this approach can facilitate the architecturing and design of novel 2D MS and MIS heterojunctions for efficient plasmonic devices.

  13. Highly functional tunnelling devices integrated in 3D

    DEFF Research Database (Denmark)

    Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter

    2003-01-01

    a new type of tunnelling transistor, namely a resonant-tunnelling permeable base transistor. A simple model based on a piece-wise linear approximation is used in Cadence to describe the current-voltage characteristics of the transistor. This model is further introduced into a small signal equivalent...... simultaneously on both tunnelling structures and the obtained characteristics are the result of the interplay between the two tunnelling structures and the gate. An equivalent circuit model is developed and we show how this interaction influences the current-voltage characteristics. The gate may be used......We present a new technology for integrating tunnelling devices in three dimensions. These devices are fabricated by the combination of the growth of semiconductor heterostructures with the controlled introduction of metallic elements into an epitaxial layer by an overgrowth technique. First, we use...

  14. Predicting Peri-Device Leakage of Left Atrial Appendage Device Closure Using Novel Three-Dimensional Geometric CT Analysis.

    Science.gov (United States)

    Chung, Hyemoon; Jeon, Byunghwan; Chang, Hyuk-Jae; Han, Dongjin; Shim, Hackjoon; Cho, In Jeong; Shim, Chi Young; Hong, Geu-Ru; Kim, Jung-Sun; Jang, Yangsoo; Chung, Namsik

    2015-12-01

    After left atrial appendage (LAA) device closure, peri-device leakage into the LAA persists due to incomplete occlusion. We hypothesized that pre-procedural three-dimensional (3D) geometric analysis of the interatrial septum (IAS) and LAA orifice can predict this leakage. We investigated the predictive parameters of LAA device closure obtained from baseline cardiac computerized tomography (CT) using a novel 3D analysis system. We conducted a retrospective study of 22 patients who underwent LAA device closure. We defined peri-device leakage as the presence of a Doppler signal inside the LAA after device deployment (group 2, n = 5) compared with patients without peri-device leakage (group 1, n = 17). Conventional parameters were measured by cardiac CT. Angles θ and φ were defined between the IAS plane and the line, linking the LAA orifice center and foramen ovale. Group 2 exhibited significantly better left atrial (LA) function than group 1 (p = 0.031). Pre-procedural θ was also larger in this group (41.9° vs. 52.3°, p = 0.019). The LAA cauliflower-type morphology was more common in group 2. Overall, the patients' LA reserve significantly decreased after the procedure (21.7 mm(3) vs. 17.8 mm(3), p = 0.035). However, we observed no significant interval changes in pre- and post-procedural values of θ and φ in either group (all p > 0.05). Angles between the IAS and LAA orifice might be a novel anatomical parameter for predicting peri-device leakage after LAA device closure. In addition, 3D CT analysis of the LA and LAA orifice could be used to identify clinically favorable candidates for LAA device closure.

  15. Preparation and characterization of Sb2Se3 devices for memory applications

    Science.gov (United States)

    Shylashree, N.; Uma B., V.; Dhanush, S.; Abachi, Sagar; Nisarga, A.; Aashith, K.; Sangeetha B., G.

    2018-05-01

    In this paper, A phase change material of Sb2Se3 was proposed for non volatile memory application. The thin film device preparation and characterization were carried out. The deposition method used was vapor evaporation technique and a thickness of 180nm was deposited. The switching between the SET and RESET state is shown by the I-V characterization. The change of phase was studied using R-V characterization. Different fundamental modes were also identified using Raman spectroscopy.

  16. Temperature stable LiNbO3 surface acoustic wave device with diode sputtered amorphous TeO2 over-layer

    International Nuclear Information System (INIS)

    Dewan, Namrata; Tomar, Monika; Gupta, Vinay; Sreenivas, K.

    2005-01-01

    Amorphous TeO 2 thin film, sputtered in the O 2 +Ar(25%+75%) gas environment using a metallic tellurium target, has been identified as an attractive negative temperature coefficient of delay (TCD) material that can yield a temperature stable device when combined with a surface acoustic wave (SAW) device based on positive TCD material such as LiNbO 3 . The influence of amorphous TeO 2 over-layer on the SAW propagation characteristics (velocity and temperature coefficient of delay) of the SAW filters (36 and 70 MHz) based on 128 deg. rotated Y-cut X-propagating lithium niobate (128 deg. Y-X LiNbO 3 ) single crystal has been studied. It is found that 0.042 λ thick TeO 2 over-layer on a prefabricated SAW device operating at 36 MHz centre frequency, reduces the TCD of the device from 76 ppm deg. C -1 to almost zero (∼1.4 ppm deg. C -1 ) without deteriorating its efficiency and could be considered as a suitable alternative for temperature stable devices in comparison to conventional SiO 2 over-layer

  17. Efficiency comparison of 3 kinds of arterial puncture closing devices

    International Nuclear Information System (INIS)

    Feng Xiaodi; Jin Xian; Chen Yueguang; Xiao Hongbing; Yu Qiang; Chen Chengjun; Zhang Dadong

    2007-01-01

    Objective: To evaluate the efficiencies of arterial puncture closing devices (APCDs) including Angioseal, Perclose and Boomerang in patients undergone coronary angiography or percutaneous vascular interventions. Methods: 1497 patients underwent cardiac catheterization procedures were divided into manual compression group(639 cases) and APCDs closure group (576 cases with Angioseal, 151 cases Perclose and 11.3 cases of Boomerang). The times of maneuver, hemorrhage complication and other rare complications were assessed, recorded and compared. Results: The times for maneuver of standard manual compression group, Angioseal group, Perclose group and Boomerang group were (21.4±2.7) h, (3.5±2.3) h, (3.7± 2.6) h and (3.9±2.8) h respectively. The APCDs could obviously reduce bed rest time in comparing to that of manual compression. The rates of failure of the operations were 2.7%, 1.4%, 8.6% and 3.5% (P =0.006, P<0.001); and the rates of hemorrhage were 9.2%, 5.8%, 12.6% and 8.0% respectively for each of the four mentioned groups (P=0.005). Except the failure operations, the incidence of hemorrhage complications among the groups showed no significant differences. Conclusion: Application of APCDs to close the puncture site can significantly reduce the bed rest time, but not the incidence of hemorrhage complications. (authors)

  18. Rooting an Android Device

    Science.gov (United States)

    2015-09-01

    1. Overview The purpose of this document is to demonstrate how to gain administrative privileges on an Android device. The term “rooting” is...is applicable for the Samsung Galaxy S3 as well as many other Android devices, but there are several steps involved in rooting an Android device (as...root access has been granted. 4. Conclusion This document serves as a tutorial on how to grant user administrative privilege to an Android device by

  19. Combined optical/digital security devices

    Science.gov (United States)

    Girnyk, Vladimir I.; Tverdokhleb, Igor V.; Ivanovsky, Andrey A.

    2000-04-01

    Modern holographic security devices used as emblems against counterfeiting are being more difficult as they should oppress criminal world. 2D, 3D, 3D rainbow holograms or simple diffraction structures protecting documents can not be acceptable against illegal copying of important documents, banknotes or valuable products. Recent developments in technology of Optical variable devices permit world leaders to create more advanced security elements: Kinegrams, Exelgrams, Pixelgrams, Kineforms. These products are used for protecting the most confidential documents and banknotes, but now even their security level can not be enough and besides their automatic identification is vulnerable to factors of instability. We elaborate new visual security devices based on the usage of expensive and advanced technology of combined optical/digital security devices. The technology unites digital and analogue methods of synthesis and recording of visual security devices. The analogue methods include techniques of optical holography - different combinations of 2D/3D, 3D, 2D/3D + 3D structures. Basing on them the design with elements of 3D graphics including security elements and hidden machine- readable images are implemented. The digital methods provide synthesis of optical variable devices including special security elements, computer generated holograms and Kineforms. Using them we create determined and quasi-random machine-readable images. Recordings are carried out using the combined optical and electronic submicrometer technology elaborated by Optronics, Ltd. The results obtained show effectiveness of the combined technology permitting to increase the security level essentially that should increase tamper and counterfeit resistance during many years.

  20. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea).

    Science.gov (United States)

    Dumas, C; Aubert, D; Durrieu de Madron, X; Ludwig, W; Heussner, S; Delsaut, N; Menniti, C; Sotin, C; Buscail, R

    2014-10-01

    In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77%), they do not reflect severe enrichment (EFs rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deep-sea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.

  1. MEMS variable capacitance devices utilizing the substrate: I. Novel devices with a customizable tuning range

    International Nuclear Information System (INIS)

    Elshurafa, Amro M; El-Masry, Ezz I

    2010-01-01

    This paper, the first in a series of two, presents a paradigm shift in the design of MEMS parallel plate PolyMUMPS variable capacitance devices by proposing two structures that utilize the substrate and are able to provide predetermined, customizable, tuning ranges and/or ratios. The proposed structures can provide theoretical tuning ranges anywhere from 4.9 to 35 and from 3.4 to 26 respectively with a simple, yet effective, layout modification as opposed to the previously reported devices where the tuning range is fixed and cannot be varied. Theoretical analysis is carried out and verified with measurements of fabricated devices. The first proposed device possessed initially a tuning range of 4.4. Two variations of the structure having tuning ranges of 3 and 3.4, all at 1 GHz, were also successfully developed and tested. The second proposed variable capacitance device behaved as a switch.

  2. [3D printed medical devices and anatomical models: What kind of distribution and which uses in French hospitals?

    Science.gov (United States)

    Pierreville, J; Serrano, C; van den Brink, H; Prognon, P; Pineau, J; Martelli, N

    2018-03-01

    3D printing plays an increasingly important role in the medical sector and particularly in surgery. Nowadays, numerous manufacturers benefit from this technology to produce their medical devices and some hospitals have also purchased 3D printers. In this context, the aim of the present study was to study the distribution and the use of 3D printing in French hospitals in order to its main features in surgery. By conducting a national survey, we targeted hospitals equipped with 3D printers and those using external providers to benefit from this technology. Forty-seven hospitals were identified as using 3D printing including eight equipped with in-house 3D printers. This work gives us a first picture of 3D printing for hospital use in France and it raises questions about hospital pharmacists' involvement in 3D printed medical device production. Copyright © 2017 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  3. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb3Sn conductors

    International Nuclear Information System (INIS)

    Tachikawa, Kyoji; Yamamoto, Junya

    1996-03-01

    Nb 3 Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb 3 Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb 3 Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb 3 Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb 3 Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb 3 Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb 3 Sn conductors. Comprehensive grasp on the present status of Nb 3 Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs

  4. Improvement of High-Temperature Stability of Al2O3/Pt/ZnO/Al2O3 Film Electrode for SAW Devices by Using Al2O3 Barrier Layer

    Directory of Open Access Journals (Sweden)

    Xingpeng Liu

    2017-12-01

    Full Text Available In order to develop film electrodes for the surface acoustic wave (SAW devices operating in harsh high-temperature environments, novel Al2O3/Pt/ZnO/Al2O3 multilayered film electrodes were prepared by laser molecular beam epitaxy (LMBE at 150 °C. The first Al2O3 layer was used as a barrier layer to prevent the diffusion of Ga, La, and Si atoms from the La3Ga5SiO14 (LGS substrate to the film electrode and thus improved the crystalline quality of ZnO and Pt films. It was found that the resistance of the Al2O3/Pt/ZnO/Al2O3 electrode did not vary up to a temperature of 1150 °C, suggesting a high reliability of electrode under harsh high-temperature environments. The mechanism of the stable resistance of the Al2O3/Pt/ZnO/Al2O3 film electrodes at high temperature was investigated by analyzing its microstructure. The proposed Al2O3/Pt/ZnO/Al2O3 film electrode has great potential for application in high-temperature SAW devices.

  5. Nanoscale patterning of electronic devices at the amorphous LaAlO3/SrTiO3 oxide interface using an electron sensitive polymer mask

    DEFF Research Database (Denmark)

    Bjorlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci

    2018-01-01

    A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demo...

  6. High-performance electrochromic device based on nanocellulose/polyaniline and nanocellulose/poly(3,4-ethylenedioxythiophene) composite thin films

    Science.gov (United States)

    Zhang, Sihang; Fu, Runfang; Du, Zoufei; Jiang, Mengjin; Zhou, Mi; Gu, Yingchun; Chen, Sheng

    2017-07-01

    With the development of nanotechnology, nanocomposite materials based on renewable resources are the focus of this research. Nanocellulose was prepared using sulfuric acid to swell cotton pulp, following with extensive ultrasonication. Nanocellulose/polyaniline (NC/PANI) and nanocellulose/poly(3,4-ethylenedioxythiophene) (NC/PEDOT) nanocomposites with core/shell structure were manufactured by in situ polymerization. The film-forming properties and electrochromic properties of PANI and PEDOT were significantly improved using the nanocellulose as matrix. NC/PANI and NC/PEDOT composite films were studied in single and dual electrochromic devices (ECDs). A viscous gel electrolyte (GE) was used in ECDs. The architectural design of single and dual device was ITO/NC-PANI/GE/ITO or ITO/NC-PEDOT/GE/ITO and ITO/NC-PANI/GE/NC-PEDOT/ITO, respectively. The dual ECD based on NC/PANI and NC/PEDOT composite films exhibited a higher color contrast (30.3%), shortest response time (1.5 s for bleaching and 1.9 s for coloring), largest coloration efficiency (241.6 C/cm2), and best cycling stability (over 150 cycles) compared with the single devices.

  7. MEMS variable capacitance devices utilizing the substrate: I. Novel devices with a customizable tuning range

    KAUST Repository

    Elshurafa, Amro M.

    2010-03-22

    This paper, the first in a series of two, presents a paradigm shift in the design of MEMS parallel plate PolyMUMPS variable capacitance devices by proposing two structures that utilize the substrate and are able to provide predetermined, customizable, tuning ranges and/or ratios. The proposed structures can provide theoretical tuning ranges anywhere from 4.9 to 35 and from 3.4 to 26 respectively with a simple, yet effective, layout modification as opposed to the previously reported devices where the tuning range is fixed and cannot be varied. Theoretical analysis is carried out and verified with measurements of fabricated devices. The first proposed device possessed initially a tuning range of 4.4. Two variations of the structure having tuning ranges of 3 and 3.4, all at 1 GHz, were also successfully developed and tested. The second proposed variable capacitance device behaved as a switch. © 2010 IOP Publishing Ltd.

  8. Enhancement of photovoltaic characteristics of nanocrystalline 2,3-naphthalocyanine thin film-based organic devices

    International Nuclear Information System (INIS)

    Farag, A.A.M.; Osiris, W.G.; Ammar, A.H.

    2012-01-01

    Graphical abstract: Scanning electron microscopy (SEM) image of NPC films: (a) cross section view, (b) surface morphology of the film at 300 K, (c) surface morphology of the annealed film at 350 K, (d) surface morphology of the annealed film at 400 K, (e) surface morphology of the annealed film at 450 K, and (f) surface morphology of the annealed film at 500 K. Highlights: ► The absorption edge shifts to the lower energy for the annealed NPC film. ► The device of Au/NPC/ITO exhibit rectifying characteristics. ► The devices show improvement in photovoltaic parameters. ► The power conversion efficiency of the devices show enhancement under annealing. - Abstract: In this work, nanocrystalline thin films of 2,3-naphthalocyanine (NPC) were successfully deposited by a thermal evaporation technique at room temperature under high vacuum (∼10 −4 Pa). The crystal structure and surface morphology were measured using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. A preferred orientation along the (0 0 1) direction was observed in all the studied films and the average crystallite size was calculated. Scanning electron miscroscopy (SEM) images of NPC films at different thermal treatment indicated significant changes on surface level patterns and gave clear evidence of agglomeration of nanocrystalline structures. The molecular structural properties of the thin films were characterized using Fourier transform infrared spectroscopy (FTIR), which revealed the stability of the chemical bonds of the compound under thermal treatment. The dark electrical conductivity of the films at various heat treatment stages showed that NPC films have a better conductivity than that of its earlier reported naphthalocyanine films and the activation energy was found to decrease with annealing temperature. The absorption edge shifted to the lower energy as a consequence of the thermal annealing of the film and the fundamental absorption edges correspond to a

  9. Firewood preparation devices in 1994

    International Nuclear Information System (INIS)

    Mutikainen, A.

    1994-01-01

    A review of the market situation regarding firewood preparation devices is presented. The information was collected from the answers to a mail questionnaire. The review is assumed to include all the leading manufacturers and importers. Firewood production devices were available from 26 manufacturers. The range of models amounted to over 70. These may be divided into three categories: 1. cutting devices: the most common solution being a cross-cutting circular saw. There were only a few of these on sale as it is quite easy to include a splitting device on the same frame. 2. Splitting devices: e.g. screw splitter and hydraulically powered splitter. About 20 models are available on the markets. Cross cutting and splitting devices: these are the most popular devices. A cross-cutting circular saw with screw or hydraulic splitter is the most common type. There are about 50 models available on the markets. Cross-cutting and splitting devices are often equipped with conveyor for transferring the split wood e.g. into a trailer. Chopping devices are delivered as tractor powered devices, as electric motor powered devices or as combustion engine powered devices. Some of them are equipped with a time saving feeding device enabling the next stem to be lifted into position while the previous one is being chopped. The Finnish Work Efficiency Institute's studies show that when cross-cutting and splitting of stems into pieces of 35-50 cm in length, productivity for one operator varies in between 0.8 - 3.2 m 3 /h, depending on the device and work method used. (6 refs., 1 fig., 2 tabs.)

  10. Femtosecond Laser Direct Write Integration of Multi-Protein Patterns and 3D Microstructures into 3D Glass Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Daniela Serien

    2018-01-01

    Full Text Available Microfluidic devices and biochips offer miniaturized laboratories for the separation, reaction, and analysis of biochemical materials with high sensitivity and low reagent consumption. The integration of functional or biomimetic elements further functionalizes microfluidic devices for more complex biological studies. The recently proposed ship-in-a-bottle integration based on laser direct writing allows the construction of microcomponents made of photosensitive polymer inside closed microfluidic structures. Here, we expand this technology to integrate proteinaceous two-dimensional (2D and three-dimensional (3D microstructures with the aid of photo-induced cross-linking into glass microchannels. The concept is demonstrated with bovine serum albumin and enhanced green fluorescent protein, each mixed with photoinitiator (Sodium 4-[2-(4-Morpholino benzoyl-2-dimethylamino] butylbenzenesulfonate. Unlike the polymer integration, fabrication over the entire channel cross-section is challenging. Two proteins are integrated into the same channel to demonstrate multi-protein patterning. Using 50% w/w glycerol solvent instead of 100% water achieves almost the same fabrication resolution for in-channel fabrication as on-surface fabrication due to the improved refractive index matching, enabling the fabrication of 3D microstructures. A glycerol-water solvent also reduces the risk of drying samples. We believe this technology can integrate diverse proteins to contribute to the versatility of microfluidics.

  11. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

    Science.gov (United States)

    Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek

    2018-04-01

    The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.

  12. A study of Love wave devices in ZnO/Quartz and ZnO/LiTaO3 structures

    International Nuclear Information System (INIS)

    Chang, R.-C.; Chu, S.-Y.; Hong, C.-S.; Chuang, Y.-T.

    2006-01-01

    Love wave devices are very promising for sensing applications because of high sensitivity. In this paper, ZnO thin films doped with lithium (Li) and magnesium (Mg) were deposited on the 42 o 45' ST-cut quartz and 36 o YX-LiTaO 3 substrates by RF magnetron sputtering technique. XRD, SEM, and AFM measurements investigated characteristics of the films. Under different conditions such as doping content, layer thickness, and substrate temperature, the phase velocity, temperature coefficient of frequency, electromechanical coupling coefficient and sensitivity of Love wave devices in ZnO/Quartz and ZnO/LiTaO 3 structures are presented. The maximum sensitivities of ZnO/Quartz and ZnO/LiTaO 3 are much higher than the SiO 2 /Quartz and SiO 2 /LiTaO 3 structures reported

  13. Highly scalable 3-D NAND-NOR hybrid-type dual bit per cell flash memory devices with an additional cut-off gate

    International Nuclear Information System (INIS)

    Cho, Seongjae; Shim, Wonbo; Park, Ilhan; Kim, Yoon; Park, Byunggook

    2010-01-01

    In this work, a nonvolatile memory (NVM) device of novel structure in 3 dimensions is introduced, and its operation physics is validated. It is based on a pillar structure in which two identical storage nodes are located for dual-bit operation. The two storage nodes on neighboring pillars are controlled by using one common control gate so that the space between silicon pillars can be further reduced. For compatibility with conventional memory operations, an additional cut-off gate is constructed under the common control gate. This is considered as the ultimate form for a 3-D nonvolatile memory device based on a double-gate structure. The underlying physics is explained, and the operational schemes are validated in various aspects by using a numerical device simulation. Also, critical issues in device design for higher reliability are discussed.

  14. Algorithmic Information Dynamics of Persistent Patterns and Colliding Particles in the Game of Life

    KAUST Repository

    Zenil, Hector

    2018-02-18

    We demonstrate the way to apply and exploit the concept of \\\\textit{algorithmic information dynamics} in the characterization and classification of dynamic and persistent patterns, motifs and colliding particles in, without loss of generalization, Conway\\'s Game of Life (GoL) cellular automaton as a case study. We analyze the distribution of prevailing motifs that occur in GoL from the perspective of algorithmic probability. We demonstrate how the tools introduced are an alternative to computable measures such as entropy and compression algorithms which are often nonsensitive to small changes and features of non-statistical nature in the study of evolving complex systems and their emergent structures.

  15. Application of Nd/sup 3+/-doped silica fibers to radiation sensing devices

    International Nuclear Information System (INIS)

    Imamura, K.; Suzuki, T.; Gozen, T.; Tanaka, H.; Okamoto, S.

    1987-01-01

    Applications of rare-earth-ion-doped optical fibers to radiation sensing devices have been studied. It was revealed that rare-earth-ion-doped optical fibers are highly sensitive to radioactive rays such as gamma ray and thermal neutron flux and that they have little dependence on ambient temperature and optical power. An experimental distributed radiation sensing system incorporating Nd/sup 3+/-doped optical fibers, radiation resistant optical fibers and an OTDR was made and tested. The results proved that the distributed sensing system is practically adaptable to the measurement of the radioactive rays

  16. Band alignment in organic devices: Photoemission studies of model oligomers on In2O3

    International Nuclear Information System (INIS)

    Blyth, R. I. R.; Duschek, R.; Koller, G.; Netzer, F. P.; Ramsey, M. G.

    2001-01-01

    The interfaces of In 2 O 3 , a model for indium - tin - oxide (ITO), with benzene, thiophene, and benzaldehyde, models for technologically important organic molecules, are studied using angle resolved ultraviolet photoemission and work function measurements. Band alignment diagrams for hypothetical Al/organic/ITO devices have been drawn, using values determined from this work and previously published studies of these molecules on Al(111). The similarity between the bonding of benzene and thiophene on Al(111) and In 2 O 3 , i.e., largely electrostatic, leads to near identical alignment at both metal and oxide interfaces. This indicates that clean Al and ITO will make a very poor electron/hole injecting pair. We suggest that the apparent efficiency of Al as an electron injecting contact in real devices is due to the presence of oxygen at the Al/organic interface. For benzaldehyde the interaction with In 2 O 3 is largely electrostatic, in contrast to the covalent bonds formed on Al(111). This leads to very different alignment at the Al and oxide interfaces, showing the importance of the particular organic - inorganic interaction in determining band alignment. [copyright] 2001 American Institute of Physics

  17. Three fundamental devices in one: a reconfigurable multifunctional device in two-dimensional WSe2

    Science.gov (United States)

    Dhakras, Prathamesh; Agnihotri, Pratik; Lee, Ji Ung

    2017-06-01

    The three pillars of semiconductor device technologies are (1) the p-n diode, (2) the metal-oxide-semiconductor field-effect transistor and (3) the bipolar junction transistor. They have enabled the unprecedented growth in the field of information technology that we see today. Until recently, the technological revolution for better, faster and more efficient devices has been governed by scaling down the device dimensions following Moore’s Law. With the slowing of Moore’s law, there is a need for alternative materials and computing technologies that can continue the advancement in functionality. Here, we describe a single, dynamically reconfigurable device that implements these three fundamental device functions. The device uses buried gates to achieve n- and p-channels and fits into a larger effort to develop devices with enhanced functionalities, including logic functions, over device scaling. As they are all surface conducting devices, we use one material parameter, the interface trap density of states, to describe the key figure-of-merit of each device.

  18. Organic-inorganic semiconductor devices and 3, 4, 9, 10 perylenetetracarboxylic dianhydride: an early history of organic electronics

    International Nuclear Information System (INIS)

    Forrest, S R

    2003-01-01

    The demonstration, over 20 years ago, of an organic-inorganic heterojunction (OI HJ) device along with investigations of the growth and physical properties of the archetypal crystalline molecular organic semiconductor 3, 4, 9, 10 perylenetetracarboxylic dianhydride are discussed. Possible applications of OI HJ devices are introduced and the dramatic change in conductive properties of these materials when exposed to high-energy ion beams is described. The past and future prospects for hybrid organic-on-inorganic semiconductor structures for use in electronic and photonic applications are also presented

  19. A 3D-printed device for polymer nanoimprint lithography

    Science.gov (United States)

    Caño-García, Manuel; Geday, Morten A.; Gil-Valverde, Manuel; Megías Zarco, Antonio; Otón, José M.; Quintana, Xabier

    2018-02-01

    Nanoimprint lithography (NIL) is an imprinting technique which has experienced an increasing popularity due to its versatility in fabrication processes. Commercial NIL machines are readily available achieving high quality results; however, these machines involve a relatively high investment. Hence, small laboratories often choose to perform NIL copies in a more rudimentary and cheaper way. A new simple system is presented in this document. It is based on two devices which can be made in-house in plastic by using a 3D printer or in aluminum. Thus, the overall manufacturing complexity is vastly reduced. The presented system includes pressure control and potentially temperature control. Replicas have been made using a sawtooth grating master with a pitch around half micrometre. High quality patterns with low density of imperfections have been achieved in 2.25 cm2 surfaces. The material chosen for the negative intermediary mould is PDMS. Tests of the imprint have been performed using the commercial hybrid polymer Ormostamp®.

  20. [A novel yellow organic light-emitting device].

    Science.gov (United States)

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules.

  1. 76 FR 54252 - In the Matter of Certain Wireless Devices With 3G Capabilities and Components Thereof; Notice of...

    Science.gov (United States)

    2011-08-31

    ... With 3G Capabilities and Components Thereof; Notice of Institution of Investigation Institution of... States after importation of certain wireless devices with 3G capabilities and components thereof by... after [[Page 54253

  2. Homogeneous Synthesis and Electroluminescence Device of Highly Luminescent CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Wei, Song; Yang, Yanchun; Kang, Xiaojiao; Wang, Lan; Huang, Lijian; Pan, Daocheng

    2017-03-06

    Highly luminescent CsPbBr 3 perovskite nanocrystals (PNCs) are homogeneously synthesized by mixing toluene solutions of PbBr 2 and cesium oleate at room temperature in open air. We found that PbBr 2 can be easily dissolved in nonpolar toluene in the presence of tetraoctylammonium bromide, which allows us to homogeneously prepare CsPbBr 3 perovskite quantum dots and prevents the use of harmful polar organic solvents, such as N,N-dimethylformamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone. Additionally, this method can be extended to synthesize highly luminescent CH 3 NH 3 PbBr 3 perovskite quantum dots. An electroluminescence device with a maximal luminance of 110 cd/m 2 has been fabricated by using high-quality CsPbBr 3 PNCs as the emitting layer.

  3. Towards Rapid Generation and Visualisation of Large 3D Urban Landscapes for Mobile Device Navigation

    OpenAIRE

    Brujic-Okretic, V.; Gatzidis, C.; Liarokapis, F.; Baker, S.

    2008-01-01

    In this paper a procedural 3D modelling solution for mobile devices is presented based on scripting algorithms allowing for both the automatic and also semi-automatic creation of photorealistic quality virtual urban content. The combination of aerial images, GIS data, 2D ground maps and terrestrial photographs as input data coupled with a user-friendly customized interface permits the automatic and interactive generation of large-scale, accurate, georeferenced and fully-textured 3D virtual ci...

  4. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); Chugh, B; Keller, B [Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada); Sahgal, A; Song, W [Sunnybrook Research Institute, Toronto, ON (Canada); Sunnybrook Health Sciences Centre, Toronto, ON (Canada); University of Toronto, Toronto, ON (Canada)

    2016-06-15

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm{sup 2} and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should

  5. SU-F-I-15: Evaluation of a New MR-Compatible Respiratory Motion Device at 3T

    International Nuclear Information System (INIS)

    Soliman, A; Chugh, B; Keller, B; Sahgal, A; Song, W

    2016-01-01

    Purpose: Recent advances in MRI-guided radiotherapy has inspired the development of MRI-compatible motion devices that simulate patient periodic motion in the scanner, particularly respiratory motion. Most commercial devices rely on non MR-safe ferromagnetic stepper motors which are not practical for regular QA testing. This work evaluates the motion performance of a new fully MRI compatible respiratory motion device at 3T. Methods: The QUASAR™ MRI-compatible respiratory motion phantom has been recently developed by Modus QA Inc., London, ON, Canada. The prototype is constructed from diamagnetic materials with linear motion generated using MRI-compatible piezoelectric motors that can be safely inserted in the scanner bore. The tumor was represented by a fillable sphere and is attached to the linear motion generator. The spherical tumor-representative and its surroundings were filled with different concentrations of MnCl2 to produce realistic relaxation times. The motion was generated along the longitudinal (H/F) axis of the bore using sinusoidal reference waveform (amplitude = 15 mm, frequency 0.25 Hz). Imaging was then performed on 3T Philips Achieva using a 32-channel cardiac coil. Fast 2D spoiled gradient-echo was used with a spatial resolution of 1.8 × 1.8 mm 2 and slice thickness of 4 mm. The motion waveform was then measured on the resultant image series by tracking the centroid of the sphere through the time series. This image-derived measured motion was compared to the software-generated reference waveform. Results: No visible distortions from the device were observed on the images. Excellent agreement between the measured and the reference waveforms were obtained. Negligible motion was observed in the lateral (R/L) direction. Conclusion: Our investigation demonstrates that this piezo-electric motor design is effective at simulating periodic motion and is a potential candidate for MRI-radiotherapy respiratory motion simulation. Future work should focus

  6. Interfacial molecular order of conjugated polymer in P3HT:ZnO bilayer photovoltaics and its impact on device performance

    KAUST Repository

    Wood, Sebastian

    2013-01-01

    Hybrid (organic-oxide) photovoltaic device performance is highly dependent on the nature and quality of the organic-oxide interface. This work investigates the details of interfacial morphology in terms of the molecular order of poly(3-hexylthiophene) (P3HT) at the planar interface with zinc oxide (ZnO) formed by pulsed laser deposition. Resonant Raman spectroscopy is employed as a powerful morphological probe for conjugated polymers to reveal that the interfacial P3HT is disrupted during the deposition process whereas the bulk polymer shows an increase in molecular order. External quantum efficiency measurements of P3HT:ZnO bilayer devices show that this disordered P3HT region is active in photocurrent generation. © 2013 AIP Publishing LLC.

  7. High-frequency Lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap.

    Science.gov (United States)

    Kadota, Michio; Ogami, Takashi; Yamamoto, Kansho; Tochishita, Hikari; Negoro, Yasuhiro

    2010-11-01

    High-frequency devices operating at 3 GHz or higher are required, for instance, for future 4th generation mobile phone systems in Japan. Using a substrate with a high acoustic velocity is one method to realize a high-frequency acoustic or elastic device. A Lamb wave has a high velocity when the substrate thickness is thin. To realize a high-frequency device operating at 3 GHz or higher using a Lamb wave, a very thin (less than 0.5 μm thick) single-crystal plate must be used. It is difficult to fabricate such a very thin single crystal plate. The authors have attempted to use a c-axis orientated epitaxial LiNbO(3) thin film deposited by a chemical vapor deposition system (CVD) instead of using a thin LiNbO(3) single crystal plate. Lamb wave resonators composed of a interdigital transducer (IDT)/the LiNbO(3) film/air gap/base substrate structure like micro-electromechanical system (MEMS) transducers were fabricated. These resonators have shown a high frequency of 4.5 and 6.3 GHz, which correspond to very high acoustic velocities of 14,000 and 12,500 m/s, respectively, have excellent characteristics such as a ratio of resonant and antiresonant impedance of 52 and 38 dB and a wide band of 7.2% and 3.7%, respectively, and do not have spurious responses caused by the 0th modes of shear horizontal (SH(0)) and symmetric (S(0)) modes.

  8. Ventricular Assist Device implant (AB 5000 prototype cannula: In vitro assessment of MRI issues at 3-Tesla

    Directory of Open Access Journals (Sweden)

    Valencerina Samuel

    2008-05-01

    Full Text Available Abstract Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD. Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C. Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula. Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room from the 3-Tesla MR system to ensure proper function of the VAD.

  9. SIERRA - A 3-D device simulator for reliability modeling

    Science.gov (United States)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  10. Virtual Reality Interaction Using Mobile Devices

    KAUST Repository

    Aseeri, Sahar A.

    2013-07-01

    With the use of an immersive display system such as CAVE system, the user is able to realize a 3D immersive virtual environment realistically. However, interacting with virtual worlds in CAVE systems using traditional input devices to perform easy operations such as manipulation, object selection, and navigation is often difficult. This difficulty could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. Our research aims to implement and evaluate alternative approaches of interaction with immersive virtual environments on mobile devices for manipulation and object selection tasks. As many researchers have noted, using a mobile device as an interaction device has a number of advantages, including built-in display, built-in control, and touch screen facility. These advantages facilitate simple tasks within immersive virtual environments. This research proposes new methods using mobile devices like Smart-phones to perform di↵erent kinds of interactions both as an input device, (e.g. performing selection and manipulation of objects) and as an output device (e.g. utilizing the screen as an extra view for a virtual camera or information display). Moreover, we developed a prototype system to demonstrate and informally evaluate these methods. The research conclusion suggests using mobile devices as a 3D-controller. This will be a more intuitive approach to interact within the virtual environment.

  11. Comparison and evaluation between 3D-bolus and step-bolus, the assistive radiotherapy devices for the patients who had undergone modified radical mastectomy surgery

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Seok; Park, Kwang Woo; Shin, Dong Bong; Kim, Jong Dae; Kim, Sei Joon; Ha, Jin Sook; Jeon, Mi Jin; Cho, Yoojin; Jung, Inho [Dept. of Radiation Oncology, Gangnam Severance Hospital, Seoul, (Korea, Republic of)

    2016-06-15

    This study aimed to compare and evaluate between the efficiency of two respective devices, 3D-bolus and step-bolus when the devices were used for the treatment of patients whose chest walls were required to undergo the electron beam therapy after the surgical procedure of modified radical mastectomy, MRM. The treatment plan of reverse hockey stick method, using the photon beam and electron beam, had been set for six breast cancer patients and these 6 breast cancer patients were selected to be the subjects for this study. The prescribed dose of electron beam for anterior chest wall was set to be 180 cGy per treatment and both the 3D-bolus, produced using 3D printer(CubeX, 3D systems, USA) and the self-made conventional step-bolus were used respectively. The surface dose under 3D-bolus and step-bolus was measured at 5 measurement spots of iso-center, lateral, medial, superior and inferior point, using GAFCHROMIC EBT3 film (International specialty products, USA) and the measured value of dose at 5 spots was compared and analyzed. Also the respective treatment plan was devised, considering the adoption of 3D-bolus and stepbolus and the separate treatment results were compared to each other. The average surface dose was 179.17 cGy when the device of 3D-bolus was adopted and 172.02 cGy when step-bolus was adopted. The average error rate against the prescribed dose of 180 cGy was -(minus) 0.47% when the device of 3D-bolus was adopted and it was -(minus) 4.43% when step-bolus was adopted. It was turned out that the maximum error rate at the point of iso-center was 2.69%, in case of 3D-bolus adoption and it was 5,54% in case of step-bolus adoption. The maximum discrepancy in terms of treatment accuracy was revealed to be about 6% when step-bolus was adopted and to be about 3% when 3D-bolus was adopted. The difference in average target dose on chest wall between 3D-bolus treatment plan and step-bolus treatment plan was shown to be insignificant as the difference was only 0.3

  12. Comparison and evaluation between 3D-bolus and step-bolus, the assistive radiotherapy devices for the patients who had undergone modified radical mastectomy surgery

    International Nuclear Information System (INIS)

    Jang, Won Seok; Park, Kwang Woo; Shin, Dong Bong; Kim, Jong Dae; Kim, Sei Joon; Ha, Jin Sook; Jeon, Mi Jin; Cho, Yoojin; Jung, Inho

    2016-01-01

    This study aimed to compare and evaluate between the efficiency of two respective devices, 3D-bolus and step-bolus when the devices were used for the treatment of patients whose chest walls were required to undergo the electron beam therapy after the surgical procedure of modified radical mastectomy, MRM. The treatment plan of reverse hockey stick method, using the photon beam and electron beam, had been set for six breast cancer patients and these 6 breast cancer patients were selected to be the subjects for this study. The prescribed dose of electron beam for anterior chest wall was set to be 180 cGy per treatment and both the 3D-bolus, produced using 3D printer(CubeX, 3D systems, USA) and the self-made conventional step-bolus were used respectively. The surface dose under 3D-bolus and step-bolus was measured at 5 measurement spots of iso-center, lateral, medial, superior and inferior point, using GAFCHROMIC EBT3 film (International specialty products, USA) and the measured value of dose at 5 spots was compared and analyzed. Also the respective treatment plan was devised, considering the adoption of 3D-bolus and stepbolus and the separate treatment results were compared to each other. The average surface dose was 179.17 cGy when the device of 3D-bolus was adopted and 172.02 cGy when step-bolus was adopted. The average error rate against the prescribed dose of 180 cGy was -(minus) 0.47% when the device of 3D-bolus was adopted and it was -(minus) 4.43% when step-bolus was adopted. It was turned out that the maximum error rate at the point of iso-center was 2.69%, in case of 3D-bolus adoption and it was 5,54% in case of step-bolus adoption. The maximum discrepancy in terms of treatment accuracy was revealed to be about 6% when step-bolus was adopted and to be about 3% when 3D-bolus was adopted. The difference in average target dose on chest wall between 3D-bolus treatment plan and step-bolus treatment plan was shown to be insignificant as the difference was only 0.3

  13. 3D-FBK Pixel sensors: recent beam tests results with irradiated devices

    CERN Document Server

    Micelli, A; Sandaker, H; Stugu, B; Barbero, M; Hugging, F; Karagounis, M; Kostyukhin, V; Kruger, H; Tsung, J W; Wermes, N; Capua, M; Fazio, S; Mastroberardino, A; Susinno, G; Gallrapp, C; Di Girolamo, B; Dobos, D; La Rosa, A; Pernegger, H; Roe, S; Slavicek, T; Pospisil, S; Jakobs, K; Kohler, M; Parzefall, U; Darbo, G; Gariano, G; Gemme, C; Rovani, A; Ruscino, E; Butter, C; Bates, R; Oshea, V; Parker, S; Cavalli-Sforza, M; Grinstein, S; Korokolov, I; Pradilla, C; Einsweiler, K; Garcia-Sciveres, M; Borri, M; Da Via, C; Freestone, J; Kolya, S; Lai, C H; Nellist, C; Pater, J; Thompson, R; Watts, S J; Hoeferkamp, M; Seidel, S; Bolle, E; Gjersdal, H; Sjobaek, K N; Stapnes, S; Rohne, O; Su, D; Young, C; Hansson, P; Grenier, P; Hasi, J; Kenney, C; Kocian, M; Jackson, P; Silverstein, D; Davetak, H; DeWilde, B; Tsybychev, D; Dalla Betta, G F; Gabos, P; Povoli, M; Cobal, M; Giordani, M P; Selmi, L; Cristofoli, A; Esseni, D; Palestri, P; Fleta, C; Lozano, M; Pellegrini, G; Boscardin, M; Bagolini, A; Piemonte, C; Ronchin, S; Zorzi, N; Hansen, T E; Hansen, T; Kok, A; Lietaer, N; Kalliopuska, J; Oja, A

    2011-01-01

    The Pixel detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider (LHC), and plays a key role in the reconstruction of the primary and secondary vertices of short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration (VLSI) and Micro-Electro-Mechanical-Systems (MEMS) where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradi...

  14. Transparent EuTiO3 films: a possible two-dimensional magneto-optical device

    Science.gov (United States)

    Bussmann-Holder, Annette; Roleder, Krystian; Stuhlhofer, Benjamin; Logvenov, Gennady; Lazar, Iwona; Soszyński, Andrzej; Koperski, Janusz; Simon, Arndt; Köhler, Jürgen

    2017-01-01

    The magneto-optical activity of high quality transparent thin films of insulating EuTiO3 (ETO) deposited on a thin SrTiO3 (STO) substrate, both being non-magnetic materials, are demonstrated to be a versatile tool for light modulation. The operating temperature is close to room temperature and allows for multiple device engineering. By using small magnetic fields birefringence of the samples can be switched off and on. Similarly, rotation of the sample in the field can modify its birefringence Δn. In addition, Δn can be increased by a factor of 4 in very modest fields with simultaneously enhancing the operating temperature by almost 100 K.

  15. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    Science.gov (United States)

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  16. On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses--the ISOS-3 inter-laboratory collaboration.

    Science.gov (United States)

    Teran-Escobar, Gerardo; Tanenbaum, David M; Voroshazi, Eszter; Hermenau, Martin; Norrman, Kion; Lloyd, Matthew T; Galagan, Yulia; Zimmermann, Birger; Hösel, Markus; Dam, Henrik F; Jørgensen, Mikkel; Gevorgyan, Suren; Kudret, Suleyman; Maes, Wouter; Lutsen, Laurence; Vanderzande, Dirk; Würfel, Uli; Andriessen, Ronn; Rösch, Roland; Hoppe, Harald; Rivaton, Agnès; Uzunoğlu, Gülşah Y; Germack, David; Andreasen, Birgitta; Madsen, Morten V; Bundgaard, Eva; Krebs, Frederik C; Lira-Cantu, Monica

    2012-09-07

    This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N(2)) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO(3)), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.

  17. Protection device for a thermonuclear device

    International Nuclear Information System (INIS)

    Kawashima, Shuichi.

    1986-01-01

    Purpose: To exactly detect the void coefficients of coolants even under high magnetic fields thereby detect the overheat of a thermonuclear device at an early stage. Constitution: The protecting device of this invention comprises a laser beam generation device, a laser beam detection device and an accident detection device. The laser generation device always generates laser beams, which are permeated through coolants and detected by the laser beam detection device, the optical amount of which is transmitted to the accident detection device. The accident detection device judges the excess or insufficiency of the detected optical amount with respect to the optical amount of the laser beams under the stationary state as a reference and issues an accident signal. Since only the optical cables that do not undergo the effect of the magnetic fields are exposed to high magnetic fields in the protection device of this invention, a high reliability can be maintained. (Kamimura, M.)

  18. Flaw detection device

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    1998-01-01

    The present invention provides a device for detecting welded portions of a reactor pressure vessel. Namely, the device of the present invention comprises (1) a casing to be disposed on the surface to be detected, (2) a probe driving means loaded to the casing, (3) a probe driven along the surface to be detected and (4) a pressure reduction means for keeping the hollow portion in the casing to an evacuated atmosphere. The casing comprises a flexible suction edge to be tightly in contact with the surface to be tested for maintaining the air tight state, (6) a guide wheel for moving the casing along the surface to be tested and (7) a handle for performing transferring operation. The flaw detection device thus constituted has following features. The working efficiency upon conducting detection is improved. The influence of the weight of the device on the detection is small. The device can be applied on the surface of a nonmagnetic material. The efficiency for the flaw detection can be improved. (I.S.)

  19. 210Po and 210Pb trophic transfer within the phytoplankton-zooplankton-anchovy/sardine food web: a case study from the Gulf of Lion (NW Mediterranean Sea).

    Science.gov (United States)

    Strady, Emilie; Harmelin-Vivien, Mireille; Chiffoleau, Jean François; Veron, Alain; Tronczynski, Jacek; Radakovitch, Olivier

    2015-05-01

    The transfer of (210)Po and (210)Pb in the food web of small pelagic fishes (from phytoplankton and zooplankton to anchovy Engraulis encrasicolus and sardine Sardina pilchardus) is investigated in the Gulf of Lion (GoL). We present original data of (210)Po and (210)Pb activity concentrations, C and N stable isotope ratios, measured (i) from different size classes of phytoplankton and zooplankton during spring and winter in different environments of the GoL, and (ii) in two fish species. Significant spatial patterns based on (210)Po, (210)Pb activity concentrations and (210)Po/(210)Pb ratios in the different plankton size classes are evidenced by hierarchical clustering, both in spring and winter. This variability, also observed for C and N stable isotopes ratios, is connected to local specific pelagic habitats and hydrodynamics. The sampling strategy suggests that (210)Po bioaccumulation in the GoL remains at a constant level from the first (dominated by phytoplankton) to the second trophic level (zooplankton), while (210)Pb bioaccumulation shows an increase in winter. Based on stable N isotope ratios and (210)Po activity concentrations measured in anchovies and sardines, we evidence (210)Po bio-magnification along the trophic food web of these two planktivorous pelagic fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Reproducible preparation of nanospray tips for capillary electrophoresis coupled to mass spectrometry using 3D printed grinding device.

    Science.gov (United States)

    Tycova, Anna; Prikryl, Jan; Foret, Frantisek

    2016-04-01

    The use of high quality fused silica capillary nanospray tips is critical for obtaining reliable and reproducible electrospray/MS data; however, reproducible laboratory preparation of such tips is a challenging task. In this work, we report on the design and construction of low-cost grinding device assembled from 3D printed and commercially easily available components. Detailed description and characterization of the grinding device is complemented by freely accessible files in stl and skp format allowing easy laboratory replication of the device. The process of sharpening is aimed at achieving maximal symmetricity, surface smoothness and repeatability of the conus shape. Moreover, the presented grinding device brings possibility to fabricate the nanospray tips of desired dimensions regardless of the commercial availability. On several samples of biological nature (reserpine, rabbit plasma, and the mixture of three aminoacids), performance of fabricated tips is shown on CE coupled to MS analysis. The special interest is paid to the effect of tip sharpness. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photolithographically patterened thin-film multilayer devices of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Kingston, J.J.; Wellstood, F.C.; Quan, D.; Clarke, J.

    1990-09-01

    We have fabricated thin-film YBa 2 Cu 3 O 7-x -SrTiO 3 -YBa 2 Cu 3 O 7-x multilayer interconnect structures in which each in situ laser-deposited film is independently patterned by photolithography. In particular, we have constructed the two key components necessary for a superconducting multilayer interconnect technology, crossovers and window contacts. As a further demonstration of the technology, we have fabricated a thin-film flux transformer, suitable for use with a Superconducting QUantum Interference Device (SQUID), that includes a ten-turn input coil with 6μm linewidth. Transport measurements showed that the critical temperature was 87K and the critical current was 135 μA at 82K. 7 refs., 6 figs

  2. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K. M., E-mail: mrkongara@boisestate.edu; Punnoose, Alex; Hanna, Charles [Department of Physics, Boise State University, Boise, Idaho 83725 (United States); Padture, Nitin P. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  3. 3D FaceCam: a fast and accurate 3D facial imaging device for biometrics applications

    Science.gov (United States)

    Geng, Jason; Zhuang, Ping; May, Patrick; Yi, Steven; Tunnell, David

    2004-08-01

    Human faces are fundamentally three-dimensional (3D) objects, and each face has its unique 3D geometric profile. The 3D geometric features of a human face can be used, together with its 2D texture, for rapid and accurate face recognition purposes. Due to the lack of low-cost and robust 3D sensors and effective 3D facial recognition (FR) algorithms, almost all existing FR systems use 2D face images. Genex has developed 3D solutions that overcome the inherent problems in 2D while also addressing limitations in other 3D alternatives. One important aspect of our solution is a unique 3D camera (the 3D FaceCam) that combines multiple imaging sensors within a single compact device to provide instantaneous, ear-to-ear coverage of a human face. This 3D camera uses three high-resolution CCD sensors and a color encoded pattern projection system. The RGB color information from each pixel is used to compute the range data and generate an accurate 3D surface map. The imaging system uses no moving parts and combines multiple 3D views to provide detailed and complete 3D coverage of the entire face. Images are captured within a fraction of a second and full-frame 3D data is produced within a few seconds. This described method provides much better data coverage and accuracy in feature areas with sharp features or details (such as the nose and eyes). Using this 3D data, we have been able to demonstrate that a 3D approach can significantly improve the performance of facial recognition. We have conducted tests in which we have varied the lighting conditions and angle of image acquisition in the "field." These tests have shown that the matching results are significantly improved when enrolling a 3D image rather than a single 2D image. With its 3D solutions, Genex is working toward unlocking the promise of powerful 3D FR and transferring FR from a lab technology into a real-world biometric solution.

  4. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  5. Top-gated field-effect LaAlO{sub 3}/SrTiO{sub 3} devices made by ion-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hurand, S.; Jouan, A.; Feuillet-Palma, C.; Singh, G.; Malnou, M.; Lesueur, J.; Bergeal, N. [Laboratoire de Physique et d' Etude des Matériaux-CNRS-ESPCI ParisTech-UPMC, PSL Research University, 10 Rue Vauquelin - 75005 Paris (France); Lesne, E.; Reyren, N.; Barthélémy, A.; Bibes, M.; Villegas, J. E. [Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767 Palaiseau (France); Ulysse, C. [Laboratoire de Photonique et de Nanostructures LPN-CNRS, Route de Nozay, 91460 Marcoussis and Universit Paris Sud, 91405 Orsay (France); Pannetier-Lecoeur, M. [DSM/IRAMIS/SPEC - CNRS UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2016-02-01

    We present a method to fabricate top-gated field-effect devices in a LaAlO{sub 3}/SrTiO{sub 3} two-dimensional electron gas (2-DEG). Prior to the gate deposition, the realisation of micron size conducting channels in the 2-DEG is achieved by an ion-irradiation with high-energy oxygen ions. After identifying the ion fluence as the key parameter that determines the electrical transport properties of the channels, we demonstrate the field-effect operation. At low temperature, the normal state resistance and the superconducting T{sub c} can be tuned over a wide range by a top-gate voltage without any leakage. A superconductor-to-insulator quantum phase transition is observed for a strong depletion of the 2-DEG.

  6. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  7. Surface modification with MK-2 organic dye in a ZnO/P3HT hybrid solar cell: Impact on device performance

    Directory of Open Access Journals (Sweden)

    Yu Jin Kim

    2014-07-01

    Full Text Available The photovoltaic performance of a hybrid ZnO/P3HT heterojunction was improved by modifying the device surface with the MK-2 dye. This organic dye enhanced the compatibility between the polymer and the metal oxide, increased the exciton separation efficiency, and improved the molecular ordering in the charge transport network. The resulting device displayed a substantial enhancement in the photocurrent, open circuit voltage, and fill factor, leading to a 12-fold increase in the power conversion efficiency relative to the unmodified device, from 0.13% to 1.53%.

  8. Recent progress in printed 2/3D electronic devices

    Science.gov (United States)

    Klug, Andreas; Patter, Paul; Popovic, Karl; Blümel, Alexander; Sax, Stefan; Lenz, Martin; Glushko, Oleksandr; Cordill, Megan J.; List-Kratochvil, Emil J. W.

    2015-09-01

    New, energy-saving, efficient and cost-effective processing technologies such as 2D and 3D inkjet printing (IJP) for the production and integration of intelligent components will be opening up very interesting possibilities for industrial applications of molecular materials in the near future. Beyond the use of home and office based printers, "inkjet printing technology" allows for the additive structured deposition of photonic and electronic materials on a wide variety of substrates such as textiles, plastics, wood, stone, tiles or cardboard. Great interest also exists in applying IJP in industrial manufacturing such as the manufacturing of PCBs, of solar cells, printed organic electronics and medical products. In all these cases inkjet printing is a flexible (digital), additive, selective and cost-efficient material deposition method. Due to these advantages, there is the prospect that currently used standard patterning processes can be replaced through this innovative material deposition technique. A main issue in this research area is the formulation of novel functional inks or the adaptation of commercially available inks for specific industrial applications and/or processes. In this contribution we report on the design, realization and characterization of novel active and passive inkjet printed electronic devices including circuitry and sensors based on metal nanoparticle ink formulations and the heterogeneous integration into 2/3D printed demonstrators. The main emphasis of this paper will be on how to convert scientific inkjet knowledge into industrially relevant processes and applications.

  9. An architecture for device independent interfacing

    International Nuclear Information System (INIS)

    Pace, D.M.

    1990-01-01

    Achieving device independence for software applications is required for all but a small number of critical real time applications. Device independence is achieved by establishing protocols and building protocol interpreters for the specific devices. Data structures containing pointers to functions provide a flexible architecture for implementing protocol translation. 3 refs., 5 figs

  10. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery.

    Science.gov (United States)

    Maroni, A; Melocchi, A; Parietti, F; Foppoli, A; Zema, L; Gazzaniga, A

    2017-12-28

    In the drug delivery area, versatile therapeutic systems intended to yield customized combinations of drugs, drug doses and release kinetics have drawn increasing attention, especially because of the advantages that personalized pharmaceutical treatments would offer. In this respect, a previously proposed capsular device able to control the release performance based on its design and composition, which could extemporaneously be filled, was improved to include multiple separate compartments so that differing active ingredients or formulations may be conveyed. The compartments, which may differ in thickness and composition, resulted from assembly of two hollow halves through a joint also acting as a partition. The systems were manufactured by fused deposition modeling (FDM) 3D printing, which holds special potential for product personalization, and injection molding (IM) that would enable production on a larger scale. Through combination of compartments having wall thickness of 600 or 1200μm, composed of promptly soluble, swellable/erodible or enteric soluble polymers, devices showing two-pulse release patterns, consistent with the nature of the starting materials, were obtained. Systems fabricated using the two techniques exhibited comparable performance, thus proving the prototyping ability of FDM versus IM. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. La dona esportista als mitjans de comunicació

    OpenAIRE

    López Ulric, Ingrid

    2015-01-01

    El present treball analitza l'emissió de contingut esportiu femení i la imatge que les televisions mostren de la dona esportista. Per realitzar l'anàlisi s'ha visualitzat el contingut esportiu de tres cadenes especialitzades, Teledeporte, TV3 i GolTV, i també la dels informatius de les sis cadenes més vistes a Catalunya TVE, TV3, Telecinco, Antena3, Cuatro i la Sexta. Per concloure destaquem la estereotipació dels esports i la invisibilitat de la dona. El presente trabajo analiza la emisió...

  12. Lesotho - Rural Water Supply and Sanitation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Challenge Corporation (MCC), through its Compact with the government of Lesotho (GoL), awarded $164-million over five years for investment in improved...

  13. Device-Centric Monitoring for Mobile Device Management

    Directory of Open Access Journals (Sweden)

    Luke Chircop

    2016-03-01

    Full Text Available The ubiquity of computing devices has led to an increased need to ensure not only that the applications deployed on them are correct with respect to their specifications, but also that the devices are used in an appropriate manner, especially in situations where the device is provided by a party other than the actual user. Much work which has been done on runtime verification for mobile devices and operating systems is mostly application-centric, resulting in global, device-centric properties (e.g. the user may not send more than 100 messages per day across all applications being difficult or impossible to verify. In this paper we present a device-centric approach to runtime verify the device behaviour against a device policy with the different applications acting as independent components contributing to the overall behaviour of the device. We also present an implementation for Android devices, and evaluate it on a number of device-centric policies, reporting the empirical results obtained.

  14. Accurate diagnoses, evidence based drugs, and new devices (3 Ds in heart failure

    Directory of Open Access Journals (Sweden)

    Bambang B. Siswanto

    2012-02-01

    Full Text Available Heart failure becomes main problem in cardiology because of increasing of heart failure patients, rehospitalization rate, morbidity, and mortality rate. The main causes of increasing heart failure problems are: (1 Successful treatment of acute myocardial infarction can be life saving, but its sequelae can cause heart failure. (2 Increasing life expectancy rate grows along with incidences of ageing related heart failure. (3 High prevalence of infection in Indonesia can cause rheumatic heart disease post Streptococcal beta hemolyticus infection, viral myocarditis, infective endocartitis, and tuberculoid pericarditis. (4 Many risk factors for coronary heart disease are often found in heart failure patients, for examples smoking, diabetes, hypercholesterolemia, hypertension, and obesity. Indonesia joined international multicentered registry in 2006. Acute Decompensated HEart failure REgistry is a web based international registry to record patient with acute decompensated heart failure treated in emergency room. It was found that heart failure patients in 5 big hospitals in Java and Bali island that joined this registry are younger, sicker and late to seek treatment. The median hospital length of stay was 7 days and in hospital mortality rate was 6.7%. The aim of this article is to give summary about essential things in diagnosing and treating heart failure patients. 3D (accurate diagnoses, evidence based drugs, and new devices are the most important but what to do and what not to do in dealing with heart failure is also useful for your daily practice. (Med J Indones 2012;21:52-8Keywords: Devices, diagnostic, drugs, heart failure

  15. Hybrid Optical Devices: The Case of the Unification of the Electrochromic Device and the Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2016-06-01

    Full Text Available The development of Hybrid Optical Devices, using some flexible optically transparent substrate material and organic semiconductor materials, has been widely utilized by the organic electronic industry, when manufacturing new technological products. The Hybrid Optical Device is constituted by the union of the electrochromic device and the organic solar cell. The flexible organic photovoltaic solar cells, in this hybrid optical device, have been the Poly base (3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, all being deposited in Indium Tin Oxide, ITO. In addition, the thin film, obtained by the deposition of PANI, and prepared in perchloric acid solution, has been identified through PANI-X1. In the flexible electrochromic device, the Poly base (3,4-ethylenedioxythiophene, PEDOT, has been prepared in Propylene Carbonate, PC, being deposited in Indium Tin Oxide, ITO. Also, both devices have been united by an electrolyte solution prepared with Vanadium Pentoxide, V2O5, Lithium Perchlorate, LiClO4, and Polymethylmethacrylate, PMMA. This device has been characterized through Electrical Measurements, such as UV-Vis Spectroscopy and Scanning Electron Microscopy (SEM. Thus, the result obtained through electrical measurements has demonstrated that the flexible organic photovoltaic solar cell presented the characteristic curve of standard solar cell after spin-coating and electrodeposition. Accordingly, the results obtained with optical and electrical characterization have revealed that the electrochromic device demonstrated some change in optical absorption, when subjected to some voltage difference. Moreover, the inclusion of the V2O5/PANI-X1 layer reduced the effects of degradation that this hybrid organic device caused, that is, solar irradiation. Studies on Scanning Electron Microscopy (SEM have found out that the surface of V2O5/PANI-X1 layers can be strongly conditioned by the surface morphology of the

  16. Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4-Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes.

    Science.gov (United States)

    Lang, Augustus W; Li, Yuanyuan; De Keersmaecker, Michel; Shen, D Eric; Österholm, Anna M; Berglund, Lars; Reynolds, John R

    2018-03-09

    Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m -2 at 2 W m -2 to switch due to a high coloration efficiency (590 cm 2  C -1 ) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  18. Comparison of GaP and PH3 as dopant sources for STM-based device fabrication

    International Nuclear Information System (INIS)

    Goh, Kuan Eng Johnson; Oberbeck, L; Butcher, M J; Curson, N J; Ruess, F J; Simmons, M Y

    2007-01-01

    We present a comparative study of the use of a GaP solid source as an alternative to gaseous PH 3 for controlled phosphorus δ-doping of lithographic patterns on H:Si(001) fabricated by scanning tunnelling microscopy (STM). Whilst our electrical studies show that P δ-doping of Si with the GaP solid source and gaseous PH 3 result in essentially the same electrical characteristics, our STM studies reveal that P 2 molecules from the GaP source exhibit a lower selectivity between bare Si(001) and H:Si(001) compared to PH 3 molecules. We discuss the significance of our findings in the context of fabricating nanoscale P dopant devices in Si using STM-based lithography

  19. Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications

    Science.gov (United States)

    Sharma, Ritu; Rao, A. S.; Deopa, Nisha; Venkateswarlu, M.; Jayasimhadri, M.; Haranath, D.; Prakash, G. Vijaya

    2018-04-01

    Zinc Lead Tungsten Tellurite (ZnPbWTe) glasses doped with different Pr3+ ion concentrations having the composition 5ZnO + 15PbO + 20WO3 + (60-x)TeO2 + xPr6O11 (where x = 0.5, 1, 1.5, 2.0 and 2.5 mol%) were prepared by using sudden quenching technique and characterized to understand their visible emission characteristic features using spectroscopic techniques such as absorption, excitation and emission. The Judd-Ofelt (J-O) theory has been applied to the absorption spectral features with an aim to evaluate various radiative properties for the prominent fluorescent levels of Pr3+ions in the as-prepared glasses. The emission spectra recorded for the as-prepared glasses under 468 nm excitation show three prominent emission transitions 3P0→3H6, 3P0→3F2 and 3P1→3F4, of which 3P0→3F2 observed in visible red region (648 nm), is relatively more intense. The intensity of 3P0→3F2 emission transition in the titled glasses increases up to 1mol% of Pr3+ ions and beyond concentration quenching is observed. Branching ratios (βR) and emission cross-sections (σse) were estimated for 3P0→3F2 transition to understand the luminescence efficiency in visible red region (648 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible red luminescence devices. From the emission cross-sections, quantum efficiency and CIE coordinates, it was concluded that 1mol% of Pr3+ ions in ZnPbWTe glasses are quite suitable for preparing visible reddish orange luminescent devices.

  20. Zn/sub 3/P/sub 2/ as an improved semiconductor for photovoltaic devices. Final report, July 17, 1976-September 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, A.; Dalal, V.; Devaney, W.E.; Fagen, E.A.; Hall, R.B.; Masi, J.V.; Warfield, G.; Wyeth, N.C.

    1978-01-01

    The goal of this work was to evaluate the suitability of Zn/sub 3/P/sub 2/ as a potentially low cost, high conversion efficiency material for photovoltaic devices. The important results of the research are presented and discussed. The major accomplishments of this work are: (1) the development of a vapor transport method for the growth of large single crystals; (2) the development of two methods of thin film growth: vacuum evaporation and close space transport; (3) the determination of the optical constants of Zn/sub 3/P/sub 2/ including the indices of refraction, the optical absorption coefficient, and the ultra-violet to visible reflectivity spectra; (4) a determination of the factors which influence the electrical conductivity and how these relate to the defect chemistry of Zn/sub 3/P/sub 2/; (5) measurement of the barrier height of metal-Zn/sub 3/P/sub 2/ contacts and the development of a model which relates the barrier height to the properties of the metal-semiconductor interface; (6) measurement of the minority carrier diffusion length in Zn/sub 3/P/sub 2/; (7) the development of several single and double layer anti-reflection coatings; and (8) the development of Schottky barrier photovoltaic devices employing a grid device and transparent metal film design, with conversion efficiencies as high as 6.08% (total area) or 7.6% (active area).

  1. A review of Ga2O3 materials, processing, and devices

    Science.gov (United States)

    Pearton, S. J.; Yang, Jiancheng; Cary, Patrick H.; Ren, F.; Kim, Jihyun; Tadjer, Marko J.; Mastro, Michael A.

    2018-03-01

    Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (ɛ) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

  2. Power source device for thermonuclear device

    International Nuclear Information System (INIS)

    Ozaki, Akira.

    1992-01-01

    The present invention provides a small sized and economical power source device for a thermonuclear device. That is, the device comprises a conversion device having a rated power determined by a power required during a plasma current excitation period and a conversion device having a rated power determined by a power required during a plasma current maintaining period, connected in series to each other. Then, for the former conversion device, power is supplied from an electric power generator and, for the latter, power is supplied from a power system. With such a constitution, during the plasma electric current maintaining period for substantially continuous operation, it is possible to conduct bypassing paired operation for the former conversion device while the electric power generator is put under no load. Further, since a short period rated power may be suffice for the former conversion device and the electric power generator having the great rated power required for the plasma electric current excitation period, they can be reduced in the size and made economical. On the other hand, since the power required for the plasma current maintaining period is relatively small, the capacity of the continuous rated conversion device may be small, and the power can be received from the power system. (I.S.)

  3. Nanoscopic Electrofocusing for Bio-Nanoelectronic Devices

    Science.gov (United States)

    Lakshmanan, Shanmugamurthy

    2015-01-01

    The ability to arrange precisely designed patterns of nanoparticles into a desired spatial configuration is the key to creating novel nanoscale devices that take advantage of the unique properties of nanomaterials. While two-dimensional arrays of nanoparticles have been demonstrated successfully by various techniques, a controlled way of building ordered arrays of three-dimensional (3D) nanoparticle structures remains challenging. This book describes a new technique called the 'nanoscopic lens' which is able to produce a variety of 3D nano-structures in a controlled manner. This ebook describes the nanoscopic lens technique and how it can serve as the foundation for device development that is not limited to a variety of optical, magnetic and electronic devices, but can also create a wide range of bio-nanoelectronic devices.

  4. Detection device

    Science.gov (United States)

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  5. Counterbalancing of morphology and conductivity of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based flexible devices.

    Science.gov (United States)

    Jang, Woongsik; Ahn, Sunyong; Park, Soyun; Park, Jong Hyeok; Wang, Dong Hwan

    2016-12-01

    The importance of conductive polymer electrodes with a balance between the morphology and electrical conductivity for flexible organic photovoltaic properties has been demonstrated. Highly transparent PEDOT:PSS anodes with controlled conductivity and surface properties were realized by insertion of dimethyl sulfoxide (DMSO) and a fluorosurfactant (Zonyl) as efficient additives and used for flexible organic photovoltaic cells (OPVs) which are based on a bulk-heterojunction of polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7):[6,6]phenyl-C 71 -butyric acid methyl ester (PC 71 BM). We investigated the correlation between the electrical properties of PEDOT:PSS electrodes and their influences on the surface morphology of the active materials (PTB7:PC 71 BM). When the device was prepared from the PEDOT:PSS layer functioning as an anode of OPV through an optimized ratio of 5 vol% of DMSO and 0.1 wt% of fluorosurfactant, the devices exhibited improved fill factor (FF) due to the enhanced coverage of PEDOT:PSS films. These results correlate with reduced photoluminescence and increased charge extraction as seen through Raman spectroscopy and electrical analysis, respectively. The conductive polymer electrode with the balance between the morphology and electrical conductivity can be a useful replacement for brittle electrodes such as those made of indium tin oxide (ITO) as they are more resistant to cracking and bending conditions, which will contribute to the long-term operation of flexible devices.

  6. Organic Field-Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer-Sized Devices

    KAUST Repository

    Li, Haoyuan; Li, Yuan; Li, Hong; Bredas, Jean-Luc

    2017-01-01

    The electrical properties of organic field-effect transistors (OFETs) are usually characterized by applying models initially developed for inorganic-based devices, which often implies the use of approximations that might be inappropriate for organic semiconductors. These approximations have brought limitations to the understanding of the device physics associated with organic materials. A strategy to overcome this issue is to establish straightforward connections between the macroscopic current characteristics and microscopic charge transport in OFETs. Here, a 3D kinetic Monte Carlo model is developed that goes beyond both the conventional assumption of zero channel thickness and the gradual channel approximation to simulate carrier transport and current. Using parallel computing and a new algorithm that significantly improves the evaluation of electric potential within the device, this methodology allows the simulation of micrometer-sized OFETs. The current characteristics of representative OFET devices are well reproduced, which provides insight into the validity of the gradual channel approximation in the case of OFETs, the impact of the channel thickness, and the nature of microscopic charge transport.

  7. Organic Field-Effect Transistors: A 3D Kinetic Monte Carlo Simulation of the Current Characteristics in Micrometer-Sized Devices

    KAUST Repository

    Li, Haoyuan

    2017-01-16

    The electrical properties of organic field-effect transistors (OFETs) are usually characterized by applying models initially developed for inorganic-based devices, which often implies the use of approximations that might be inappropriate for organic semiconductors. These approximations have brought limitations to the understanding of the device physics associated with organic materials. A strategy to overcome this issue is to establish straightforward connections between the macroscopic current characteristics and microscopic charge transport in OFETs. Here, a 3D kinetic Monte Carlo model is developed that goes beyond both the conventional assumption of zero channel thickness and the gradual channel approximation to simulate carrier transport and current. Using parallel computing and a new algorithm that significantly improves the evaluation of electric potential within the device, this methodology allows the simulation of micrometer-sized OFETs. The current characteristics of representative OFET devices are well reproduced, which provides insight into the validity of the gradual channel approximation in the case of OFETs, the impact of the channel thickness, and the nature of microscopic charge transport.

  8. The Role of Parents and Parental Mediation on 0-3-Year Olds' Digital Play with Smart Devices: Estonian Parents' Attitudes and Practices

    Science.gov (United States)

    Nevski, Elyna; Siibak, Andra

    2016-01-01

    In this manuscript, we analyse the attitudes and practices of Estonian parents (N = 198) who allowed their 0-3-year olds to use smart devices. We aimed to discover if there was an interaction between parental use of smart technologies, parents' attitudes and the child's age that would predict young children's usage of smart devices. We also wanted…

  9. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices.

    Science.gov (United States)

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Kühmstedt, Peter; Notni, Gunther

    2015-12-23

    In this work we show the principle of optical 3D surface measurements based on the fringe projection technique for underwater applications. The challenges of underwater use of this technique are shown and discussed in comparison with the classical application. We describe an extended camera model which takes refraction effects into account as well as a proposal of an effective, low-effort calibration procedure for underwater optical stereo scanners. This calibration technique combines a classical air calibration based on the pinhole model with ray-based modeling and requires only a few underwater recordings of an object of known length and a planar surface. We demonstrate a new underwater 3D scanning device based on the fringe projection technique. It has a weight of about 10 kg and the maximal water depth for application of the scanner is 40 m. It covers an underwater measurement volume of 250 mm × 200 mm × 120 mm. The surface of the measurement objects is captured with a lateral resolution of 150 μm in a third of a second. Calibration evaluation results are presented and examples of first underwater measurements are given.

  10. Electrochromic Devices Based on Porous Tungsten Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Y. Djaoued

    2012-01-01

    Full Text Available Recent developments in the synthesis of transition metal oxides in the form of porous thin films have opened up opportunities in the construction of electrochromic devices with enhanced properties. In this paper, synthesis, characterization and electrochromic applications of porous WO3 thin films with different nanocrystalline phases, such as hexagonal, monoclinic, and orthorhombic, are presented. Asymmetric electrochromic devices have been constructed based on these porous WO3 thin films. XRD measurements of the intercalation/deintercalation of Li+ into/from the WO3 layer of the device as a function of applied coloration/bleaching voltages show systematic changes in the lattice parameters associated with structural phase transitions in LixWO3. Micro-Raman studies show systematic crystalline phase changes in the spectra of WO3 layers during Li+ ion intercalation and deintercalation, which agree with the XRD data. These devices exhibit interesting optical modulation (up to ~70% due to intercalation/deintercalation of Li ions into/from the WO3 layer of the devices as a function of applied coloration/bleaching voltages. The obtained optical modulation of the electrochromic devices indicates that, they are suitable for applications in electrochromic smart windows.

  11. State-of-the-art technologies of gallium oxide power devices

    Science.gov (United States)

    Higashiwaki, Masataka; Kuramata, Akito; Murakami, Hisashi; Kumagai, Yoshinao

    2017-08-01

    Gallium oxide (Ga2 O3 ) has gained increased attention for power devices due to its superior material properties and the availability of economical device-quality native substrates. This review illustrates recent advances in Ga2 O3 device technologies, beginning with an overview of the social circumstances that motivate the development of new-generation switching devices. Following an introduction to the material properties of Ga2 O3 from the viewpoint of power electronics, growth technologies of Ga2 O3 bulk single crystals and epitaxial thin films are discussed. The fabrication and performance of state-of-the-art Ga2 O3 transistors and diodes are then described. We conclude by identifying the directions and challenges of Ga2 O3 power device development in the near future.

  12. Enhanced spin accumulation in Fe3O4 based spin injection devices below the Verwey transition

    Science.gov (United States)

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2016-12-01

    Spin injection into GaAs and Si (both n and p-type) semiconductors using Fe3O4 is achieved with and without a tunnel barrier (MgO) via three-terminal electrical Hanle measurement. Interestingly, the magnitude of spin accumulation voltage (ΔV) in semiconductor is found to be associated with a drastic increment in ΔV in Fe3O4 based devices for temperature metal-to-insulator transition of Fe3O4 at T V. Observations from our elaborate investigations show that spin polarization of Fe3O4 has an explicit influence on the enhanced spin injection. It is argued that the theoretical prediction of half-metallicity of Fe3O4 above and below T V has to be reinvestigated.

  13. Intra-uterine contraceptive devices.

    Science.gov (United States)

    Elias, J

    1985-05-01

    Among the advantages of IUDs are the device's high continuation rate, the lack of systemic side effects, and the absence of a need for continual motivation to practice contraception. The effectiveness of plastic IUDs is directly proportional to their surface area, but the degree of excessive bleeding experienced is inversely related to device size. Thus, devices represent a compromise between large size for effectiveness and small size for acceptability. The optimum time to fit an IUD is during the 1st hald of the menstrual cycle. Absolute contraindications to IUD use include the presence of active pelvic inflammatory disease, undiagnosed irregular bleeding, a history of ectopic pregnancy or tubal surgery, and a distorted uteine cavity. Failure rates associated with IUD use range from 2-3% in the 1st year and then decrease. Since the main mechanism of action appears to be production of a sterile inflammatory reaction in the uterine cavity, the IUD prevents intrauterine pregnancy more effectively than ectopic pregnancy. Nonetheless, there is little evidence to suggest that IUD use actually increases the incidence of ectopic pregnancy. Resumption of fertility after IUD removal is not delayed. There is not need to change inert plastic IUDs in women who remain symptom free. The copper devices should be changed every 3-4 years. A search is under way for antifertility agents that can be incorporated into the device to reduce side effects. In general, the IUD is most suitable for older, parous women.

  14. A feasibility study of a 3-day basal-bolus insulin delivery device in individuals with type 2 diabetes.

    Science.gov (United States)

    Mader, Julia K; Lilly, Leslie C; Aberer, Felix; Korsatko, Stefan; Strock, Ellie; Mazze, Roger S; Damsbo, Peter; Pieber, Thomas R

    2014-05-01

    This study tested the feasibility of transition from multiple daily injections (MDI) to a 3-day, basal-bolus insulin delivery device (PaQ) for type 2 diabetes (T2D). Twenty MDI-treated individuals with T2D with HbA(1c) ≤9% (75 mmol/mol) were enrolled in a single-center, single-arm pilot study, lasting three 2-week periods: baseline (MDI), transition to PaQ, and PaQ therapy. Feasibility of use, glycemic control, safety, and patient satisfaction were assessed. Nineteen participants transitioned to PaQ treatment and demonstrated competency in assembling, placing, and using the device. Self-monitored blood glucose and blinded continuous glucose-monitoring data showed glycemic control similar to MDI. Study participants reported high satisfaction and device acceptance. PaQ treatment is both feasible and acceptable in individuals with T2D. Transition from MDI is easy and safe. PaQ treatment might lead to better therapy adherence and improvements in glycemic control and clinical outcomes.

  15. Detection of Traffic Initiated by Mobile Malware Targeting Android Devices in 3GPP Networks

    OpenAIRE

    Kühnel, Marián

    2017-01-01

    Android devices have become the most popular of mobile devices; omnipresent in both business and private use. They are virtually always on and offer functionalities exceeding those of desktop computers. These properties, as well as sensitive information stored on Android devices, render them an attractive target for mobile malware authors. As the volume of mobile malware increases, analysis is becoming challenging and, sometimes, infeasible. Additionally, current network-based intrusion detec...

  16. CMOS compatible thin-film ALD tungsten nanoelectromechanical devices

    Science.gov (United States)

    Davidson, Bradley Darren

    WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.

  17. Magnetic-bubble devices

    International Nuclear Information System (INIS)

    Fairholme, R.J.

    1978-01-01

    Magnetic bubbles were first described only ten years ago when research workers were discussing orthoferrites containing μm diameter bubbles. However, problems of material fabrication limit crystals to a few mm across which severely curtailed device development. Since then materials have changed and rare-earth-iron garnet films can be grown up 3 inches in diameter with bubble diameters down to sizes below 1 μm. The first commercial products have device capacities in the range 64 000 to 100 000 bits with bubble diameters between 4 and 6 μm. Chip capacities of 1 Mbit are presently under development in the laboratory, as are new techniques to use submicrometre bubbles. The operation and fabrication of a bubble device is described using the serial loop devices currently being manufactured at Plessey as models. Chip organization is one important variable which directly affects the access time. A range of access times and capacities is available which offers a wide range of market opportunities, ranging from consumer products to fixed head disc replacements. some of the application areas are described. (author)

  18. Neutron measuring device

    International Nuclear Information System (INIS)

    Hatayama, Akiyoshi; Seki, Eiji; Kita, Yoshio; Nishitani, Takeo.

    1993-01-01

    The device of the present invention concerns measurement for neutrons in a tokamak type thermonuclear device and it can measure total amount of generated neutrons accurately throughout the operation period even if an error is caused in counted values by plasma disruption. That is, the device comprises (1) a means for detecting presence or absence of occurrence of plasma disruption and the time for the initiation of the occurrence, (2) a first data processing means for processing detection signals, (3) a means for detecting neutrons generated in plasmas and (4) a second data processing means for calculating integrated values for the number of neutrons generated from the start to the completion of electric discharge when no disruption occurs and calculating integrated values for the number of generated neutrons from the start of electric discharge to the time at the initiation of occurrence of the disruption when disruption is present. In the thus constituted device, even if an error is caused by frequent occurrence of plasma disruption, total time integrated amount of neutrons generated in the plasmas can be measured accurately. (I.S.)

  19. Criticality alarm device

    International Nuclear Information System (INIS)

    Kasai, Kenji.

    1994-01-01

    The device of the present invention is utilized, for example, to a reprocessing facility for storing and processing nuclear fuels and measures and controls the nuclear fuel assembly system so as not to exceed criticality. That is, a conventional criticality alarm device applies a predetermined processing to neutron fluxes generated from a nuclear fuel assembly system containing nuclear fuels and outputs an alarm. The device of the present invention comprises (1) a neutron flux supply source for increasing and decreasing neutron fluxes periodically and supplying them to nuclear fuel assemblies, (2) a detector for detecting neutron fluxes in the nuclear fuel assemblies, (3) a critical state judging section for judging the critical state of the nuclear fuel assemblies based on the periodically changing signals obtained from the detector (2) and (4) an alarm section for outputting criticality alarms depending on the result of the judgement. The device of the present invention can accurately recognize the critical state of the nuclear fuel assembly system and can forecast reaching of the nuclear fuel assembly to criticality or prompt neutron critical state. (I.S.)

  20. Design and Experimental Verification of Chang'E-3 Moon-night Survival Device for APXS

    Science.gov (United States)

    Deng-yi, Chen; Jian, Wu; Yi-ming, Hu; Jin, Chang; Yi-zhong, Gong; Ming-sheng, Cai; Huan-yu, Wang; Jia-yu, Zhang; Xing-zhu, Cui; Jin-zhou, Wang

    2016-07-01

    The Active Particle X-ray Spectrometer (APXS) is one of the 4 scientific payloads of Chang'E-3 (CE-3) Lunar Rover, of which the scientific object is to identify the elements of lunar soil and rock samples by a carried radioactive source to trigger and detect the characteristic X-ray from them. According to the extreme temperature environment of the APXS and under the restriction of limited resources, this paper presents the design and analysis of the moon-night survival device RHU (radioisotope heating unit) for the APXS, and describes the corresponding environmental tests on its structure dynamics and moon-night survival. Finally, its reinstallation on the launch tower and the preliminary result of its on-orbit operation are introduced.

  1. Prototype solid-state electrochromic window devices

    International Nuclear Information System (INIS)

    Dao, L.H.; Nguyen, M.T.

    1989-01-01

    This paper discusses electrochromic smart windows which are prospective devices for the control of light transmission in response to the variation of brightness of the environment. The fabrication of electrochromic windows based on cathodically coloring transition metal oxides and anodically coloring conducting polymers are described. The device consists of gel or glassy polymer electrolytes sandwiches by a pair of transparent conducting glass coated respectively with a thin film of WO 3 or MoO 3 prepared by electrodeposition, and with a thin film of ploy(aniline) derivatives obtained by electropolymerization or solution casting. The electrochromic properties of the five-layer smart window devices are presented

  2. Surface morphology and interdiffusion of LiF in Alq3-based organic light-emitting devices.

    Science.gov (United States)

    Lee, Young Joo; Li, Xiaolong; Kang, Da-Yeon; Park, Seong-Sik; Kim, Jinwoo; Choi, Jeong-Woo; Kim, Hyunjung

    2008-09-01

    Highly efficient organic light-emitting devices (OLEDs) have been realized by insertion of a thin insulating lithium fluoride (LiF) layer between aluminum (Al) cathode and an electron transport layer, tris-(8-hydroxyquinoline) aluminum (Alq(3)). In this paper, we study the surface morphology of LiF on Alq(3) by synchrotron X-ray scattering and atomic force microscopy (AFM) as a function of thickness of LiF. We also study the interdiffusion of LiF into Al cathode as well as into Alq(3) layer as a function of temperature. Initially, LiF molecules are distributed randomly as clusters on the Alq(3) layer and then gradually form a layer as increasing LiF thickness. The interdiffusion of LiF into Al occurs more actively than into Alq(3) in annealing process. LiF on Alq(3) induces the ordering of Al to (111) direction strongly with increasing LiF thickness.

  3. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  4. Geometrical (Degree 0 Modelling of a FP3+3×RTR+MP3 Type Parallel Topology Robotic Guiding Device, Using the „Pair of Frames” (PF Concept

    Directory of Open Access Journals (Sweden)

    Calin Miclosina

    2005-01-01

    Full Text Available The geometrical (degree 0 model of a parallel topology robotic guiding device represents the position-orientation matrix of the mobile platform (MP versus the fixed one (FP; this model refers to generalized displacements. The kinematical scheme of a FP3+3×RTR+MP3 type mechanism is presented, as well as the manner of choice of the attached pair of frames (PF to the links. In the case of direct geometrical modelling, for certain displacements of the actuated translational joints, the position-orientation matrix of the mobile platform versus the fixed one is determined. For inverse geometrical modelling, the position-orientation matrix of MP versus FP is known and the displacements of the actuated translational joints are determined.

  5. Generation of emulsion droplets and micro-bubbles in microfluidic devices

    KAUST Repository

    Zhang, Jiaming

    2016-04-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology to manipulate small amounts of liquid samples. In addition to microdroplets, microbubbles are also needed for various pro- cesses in the food, healthcare and cosmetic industries. Polydimethylsiloxane (PDMS) soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. In ad- dition, current methods have the limited capabilities for fabrication of microfluidic devices within three dimensional (3D) structures. Novel methods for fabrication of droplet-based microfluidic devices for the generation microdroplets and microbubbles are therefore of great interest in current research. In this thesis, we have developed several simple, rapid and low-cost methods for fabrication of microfluidic devices, especially for generation of microdroplets and mi- crobubbles. We first report an inexpensive full-glass microfluidic devices with as- sembly of glass capillaries, for generating monodisperse multiple emulsions. Different types of devices have been designed and tested and the experimental results demon- strated the robust capability of preparing monodisperse single, double, triple and multi-component emulsions. Second, we propose a similar full-glass device for generation of microbubbles, but with assembly of a much smaller nozzle of a glass capillary. Highly monodisperse microbubbles with diameter range from 3.5 to 60 microns have been successfully produced, at rates up to 40 kHz. A simple scaling law based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. Recently, the emergent 3D printing technology provides an attractive fabrication technique, due to its simplicity and low cost. A handful of studies have already demonstrated droplet production through 3D-printed microfluidic devices. However, two

  6. Device-Centric Monitoring for Mobile Device Management

    OpenAIRE

    Chircop, Luke; Colombo, Christian; Pace, Gordon J.

    2016-01-01

    The ubiquity of computing devices has led to an increased need to ensure not only that the applications deployed on them are correct with respect to their specifications, but also that the devices are used in an appropriate manner, especially in situations where the device is provided by a party other than the actual user. Much work which has been done on runtime verification for mobile devices and operating systems is mostly application-centric, resulting in global, device-centri...

  7. P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Shang-Chou Chang

    2013-01-01

    Full Text Available Silicon nanoparticles doped poly(3-hexylthiophene and [6,6]-phenyl C61-butyric acid methyl ester blends (P3HT:PCBM: Si NP have been produced as the photoactive layer of organic photovoltaic devices (OPVs. The silicon nanoparticles’ size is between 80 and 100 nm checked by transmission electron microscope (TEM. The 0.35 wt% Si NP doping OPVs exhibit higher power conversion efficiency (PCE than other OPVs. The PCE of the OPVs increases from 3.01% to 3.38% mainly due to increasing short-circuit current density from 8.38 to 9.48 mA/cm2, while the open-circuit voltage remains the same. The Si NP can provide extra exciton separation and electron pathways in hybrid solar cells.

  8. Development of a new rapid isolation device for circulating tumor cells (CTCs using 3D palladium filter and its application for genetic analysis.

    Directory of Open Access Journals (Sweden)

    Akiko Yusa

    Full Text Available Circulating tumor cells (CTCs in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D palladium (Pd filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.

  9. The evaluation of effectiveness of 3DCA using vacuum bag(Vac-Lock) for patient immobilization device

    International Nuclear Information System (INIS)

    Lee, Young Chul; Lee, Chul Bin; Kang, No Hyun; Kim, Dong Euk; Lee, Jung Yong; Jeong, In Pyo

    2004-01-01

    Patient immobilization is crucial factor for radiation therapy. Generally, we have been used vacuum bag immobilization device(Vac-Lock) for whole body immobilization. In order to easily set up of vacuum bag(Vac-Lock), we made a 3DCA(3-Dimensional Conformal Accessory). The purpose of this study is evaluation of effectiveness of 3DCA using Vack-Lock for patient immobilization. We made 3DCA(3-Dimensional Conformal Accessory) tool of wooden boards. The reasons to choice of wooden boards are its easily handling nature and cheap expenses. (1) We reduced man power from 5-6 persons to 1 person to make immobilizations, (2) Shortened work time from 1 hour to within 10 minutes. (3) Avoid a collision to treatment gantry head. (4) Its shapes are smart and clean. We have made and used 3DCA(3-Dimensional Conformal Accessory) tool was very effective and convenience for the patients and users.

  10. Fabrication and characterization of perovskite-based CH{sub 3}NH{sub 3}Pb{sub 1-x}Ge{sub x}I{sub 3}, CH{sub 3}NH{sub 3}Pb{sub 1-x}Tl{sub x}I{sub 3} and CH{sub 3}NH{sub 3}Pb{sub 1-x}In{sub x}I{sub 3} photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuya; Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Perovskite-type CH{sub 3}NH{sub 3}PbI{sub 3}-based photovoltaic devices were fabricated and characterized. Doping effects of thallium (Tl), indium (In), or germanium (Ge) element on the photovoltaic properties and surface structures of the perovskite phase were investigated. The open circuit voltage increased by Ge addition, and fill factors were improved by adding a small amount of Ge, Tl or In. In addition, the wavelength range of incident photon conversion efficiencies was expanded by the Tl addition.

  11. Workgroup S3T. Report 2: stigmatic coma free devices

    International Nuclear Information System (INIS)

    Pouey, M.

    1983-04-01

    The first paper deals with the design of stimatic normal and grazing incidence devices fitted with spherical holographic grating. In the second one, generalized conditions for full stigmatism are given for spherical holographic grating used in normal incidence. The third one deals with grazing incidence

  12. Incomplete Ionization of a 110 meV Unintentional Donor in β-Ga2O3 and its Effect on Power Devices.

    Science.gov (United States)

    Neal, Adam T; Mou, Shin; Lopez, Roberto; Li, Jian V; Thomson, Darren B; Chabak, Kelson D; Jessen, Gregg H

    2017-10-16

    Understanding the origin of unintentional doping in Ga 2 O 3 is key to increasing breakdown voltages of Ga 2 O 3 based power devices. Therefore, transport and capacitance spectroscopy studies have been performed to better understand the origin of unintentional doping in Ga 2 O 3 . Previously unobserved unintentional donors in commercially available [Formula: see text] Ga 2 O 3 substrates have been electrically characterized via temperature dependent Hall effect measurements up to 1000 K and found to have a donor energy of 110 meV. The existence of the unintentional donor is confirmed by temperature dependent admittance spectroscopy, with an activation energy of 131 meV determined via that technique, in agreement with Hall effect measurements. With the concentration of this donor determined to be in the mid to high 10 16  cm -3 range, elimination of this donor from the drift layer of Ga 2 O 3 power electronics devices will be key to pushing the limits of device performance. Indeed, analytical assessment of the specific on-resistance (R onsp ) and breakdown voltage of Schottky diodes containing the 110 meV donor indicates that incomplete ionization increases R onsp and decreases breakdown voltage as compared to Ga 2 O 3 Schottky diodes containing only the shallow donor. The reduced performance due to incomplete ionization occurs in addition to the usual tradeoff between R onsp and breakdown voltage.

  13. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  14. The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication

    Science.gov (United States)

    Liang, Hengmao; Liu, Mifeng; Liu, Song; Xu, Dehui; Xiong, Bin

    2018-01-01

    KOH etching and Au/Si eutectic bonding are cost-efficient technologies for 3D device fabrication. Aimed at investigating the process compatibility of KOH etching and Au/Si bonding, KOH etching tests have been carried out for Au/bulk Si and Au/amorphous Si (a-Si) bonding wafers in this paper. For the Au/bulk Si bonding wafer, a serious underetch phenomenon occurring on the damage layer in KOH etching definitely results in packaging failure. In the microstructure analysis, it is found that the formation of the damage layer between the bonded layer and bulk Si is attributed to the destruction of crystal Si lattices in Au/bulk Si eutectic reaction. Considering the occurrence of underetch for Au/Si bonding must meet two requirements: the superfluous Si and the defective layer near the bonded layer, the Au/a-Si bonding by regulating the a-Si/Au thickness ratio is presented in this study. Only when the a-Si/Au thickness ratio is relatively low are there not underetch phenomena, of which the reason is the full reaction of the a-Si layer avoiding the formation of the damage layer for easy underetch. Obviously, the Au/a-Si bonding via choosing a moderate a-Si/Au thickness ratio (⩽1.5:1 is suggested) could be reliably compatible with KOH etching, which provides an available and low-cost approach for 3D device fabrication. More importantly, the theory of the damage layer proposed in this study can be naturally applied to relevant analyses on the eutectic reaction of other metals and single crystal materials.

  15. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    Science.gov (United States)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    2018-05-01

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  16. Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices

    Science.gov (United States)

    Pron, G; Ieraci, L; Kaulback, K

    2012-01-01

    , mortality, quality of life or patient satisfaction; randomized controlled trials (RCTs), systematic reviews and meta-analyses, cohort and controlled clinical studies. Exclusion Criteria non-systematic reviews, letters, comments and editorials; reports not involving standardized outcome events; clinical reports not involving Internet-based device assisted RM systems for CIEDs in clinical settings; reports involving studies testing or validating algorithms without RM; studies with small samples (Functioning In total, 15 reports on 13 cohort studies involving investigations with 4 different RMSs for CIEDs in cardiology implant clinic groups were identified in the review. The 4 RMSs were: Care Link Network® (Medtronic Inc,, Minneapolis, MN, USA); Home Monitoring® (Biotronic, Berlin, Germany); House Call 11® (St Jude Medical Inc., St Pauls, MN, USA); and a manufacturer-independent RMS. Eight of these reports were with the Home Monitoring® RMS (12,949 patients), 3 were with the Care Link® RMS (167 patients), 1 was with the House Call 11® RMS (124 patients), and 1 was with a manufacturer-independent RMS (44 patients). All of the studies, except for 2 in the United States, (1 with Home Monitoring® and 1 with House Call 11®), were performed in European countries. The RMSs in the studies were evaluated with different cardiac implant device populations: ICDs only (6 studies), ICD and CRT devices (3 studies), PM and ICD and CRT devices (4 studies), and PMs only (2 studies). The patient populations were predominately male (range, 52%–87%) in all studies, with mean ages ranging from 58 to 76 years. One study population was unique in that RMSs were evaluated for ICDs implanted solely for primary prevention in young patients (mean age, 44 years) with Brugada syndrome, which carries an inherited increased genetic risk for sudden heart attack in young adults. Most of the cohort studies reported on the feasibility of RMSs in clinical settings with limited follow-up. In the short

  17. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Cha, Dong Kyu; Almadhoun, Mahmoud N.; Li, Ruipeng; Chen, Long; Amassian, Aram; Odeh, Ihab N.; Alshareef, Husam N.

    2013-01-01

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  18. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  19. The design of cathode for organic photovoltaic devices

    Science.gov (United States)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  20. The influence of interfacial barrier engineering on the resistance switching of In2O3:SnO2/TiO2/In2O3:SnO2 device

    International Nuclear Information System (INIS)

    Liu Zi-Yu; Zhang Pei-Jian; Meng Yang; Li Dong; Meng Qing-Yu; Li Jian-Qi; Zhao Hong-Wu

    2012-01-01

    The I—V characteristics of In 2 O 3 :SnO 2 /TiO 2 /In 2 O 3 :SnO 2 junctions with different interfacial barriers are investigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interfacial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interfacial barrier engineering, could be exploited for novel applications in nonvolatile memory devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. ALS insertion devices

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Halbach, K.; Hassenzahl, W.V.; Humphries, D.; Kincaid, B.; Lancaster, H.; Plate, D.

    1990-11-01

    The Advanced Light Source (ALS), the first US third generation synchrotron radiation source, is currently under construction at the Lawrence Berkeley Laboratory. The low-emittance, 1.5 GeV electron storage ring and the insertion devices are specifically designed to produce high brightness beams in the UV to soft X-Ray range. The planned initial complement of insertion devices includes four 4.6 m long undulators, with period lengths of 3.9 cm, 5.0 cm (2) and 8.0 cm, and a 2.9 m long wiggler of 16 cm period length. Undulator design is well advanced and fabrication has begun on the 5.0 cm and 8.0 cm period length undulators. This paper discusses ALS insertion device requirements; general design philosophy; and design of the magnetic structure, support structure/drive systems, control system and vacuum system. 18 refs., 9 figs., 5 tabs

  2. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher; Miller, Nichole C.; McGehee, Michael D.; Dauskardt, Reinhold H.

    2013-01-01

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher

    2013-01-17

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Exabyte helical scan devices at Fermilab

    International Nuclear Information System (INIS)

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs

  5. 3D Room Visualization on Android Based Mobile Device (with Philips™’ Surround Sound Music Player

    Directory of Open Access Journals (Sweden)

    Durio Etgar

    2012-12-01

    Full Text Available This project’s specifically purposed as a demo application, so anyone can get the experience of a surround audio room without having to physically involved to it, with a main idea of generating a 3D surround sound room scenery coupled with surround sound in a handier package, namely, a “Virtual Listen Room”. Virtual Listen Room set a foundation of an innovative visualization that later will be developed and released as one of way of portable advertisement. This application was built inside of Android environment. Android device had been chosen as the implementation target, since it leaves massive development spaces and mostly contains essential components needed on this project, including graphic processor unit (GPU.  Graphic manipulation can be done using an embedded programming interface called OpenGL ES, which is planted in all Android devices generally. Further, Android has a Accelerometer Sensor that is needed to be coupled with scene to produce a dynamic movement of the camera. Surround sound effect can be reached with a decoder from Phillips called MPEG Surround Sound Decoder. To sum the whole project, we got an application with sensor-dynamic 3D room visualization coupled with Philips’ Surround Sound Music Player. We can manipulate several room’s properties; Subwoofer location, Room light, and how many speakers inside it, the application itself works well despite facing several performance problems before, later to be solved. [Keywords : Android,Visualization,Open GL; ES; 3D; Surround Sensor

  6. Non-destructive failure analysis and measurement for molded devices and complex assemblies with X-ray CT and 3D image processing techniques

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Liew, Seaw Jia; Jiang, Ting Ying; Xu, Jian; Kakarala, Ramakrishna

    2013-01-01

    In both automotive and healthcare sectors, reliable failure analysis and accurate measurement of molded devices and complex assemblies are important. Current methods of failure analysis and measurement require these molded parts to be cross-sectioned so that internal features or dimensions can be accessible. As a result, the parts are deemed unusable and additional failure introduced by sectioning may cause misinterpretation of the results. X-ray CT and 3D image processing techniques provide a new nondestructive solution for failure analysis and measurement of molded devices and complex assemblies. These techniques simplify failure analysis and measurement of molded devices and assemblies, and improve the productivity of molding manufacturing significantly.

  7. Loose part monitoring device

    International Nuclear Information System (INIS)

    Nomura, Hiroshi.

    1992-01-01

    The device of the present invention estimates a place where loose parts occur and structural components as the loose parts in a fluid flow channel of a reactor device, to provide information thereof to a plant operator. That is, the device of the present invention comprises (1) a plurality of detectors disposed to each of equipments constituting fluid channels, (2) an abnormal sound sensing device for sensing signals from the detectors, (3) an estimation section for estimating the place where the loose parts occur and the structural components thereof based on the signals sensed by the abnormal sound sensing section, (4) a memory section for storing data of the plant structure necessary for the estimation, and (5) a display section for displaying the result of the estimation. In such a device, the position where the loose parts collide against the plant structural component and the energy thereof are estimated. The dropping path of the loose parts is estimated from the estimation position. Parts to be loose parts in the path are listed up. The parts on the list is selected based on the estimated energy thereby enabling to determine the loose parts. (I.S.)

  8. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  9. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    Science.gov (United States)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  10. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Montag, Benjamin W., E-mail: bmontag@ksu.edu; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-11

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled {sup 3}He and {sup 10}BF{sub 3} detectors. The {sup 6}Li(n,t){sup 4}He reaction yields a total Q-value of 4.78 MeV, larger than {sup 10}B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% {sup 6}Li) or enriched {sup 6}Li (usually 95% {sup 6}Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10{sup −6} Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I–V curve measurements, ranging from 10{sup 6}–10{sup 11} Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed. - Highlights: • Devices were fabricated from in-house synthesized and purified LiZnAs and LiZnP. • Devices ranged in bulk resistivity from 10{sup 6}–10{sup 11} Ω cm. • Devices showed sensitivity to 5.48 MeV alpha particles. • Devices were characterized with a 337 nm laser light. • Devices were evaluated

  11. The New 3D Printed Left Atrial Appendage Closure with a Novel Holdfast Device: A Pre-Clinical Feasibility Animal Study.

    Directory of Open Access Journals (Sweden)

    M Brzeziński

    Full Text Available Many patients undergoing cardiac surgery have risk factors for both atrial fibrillation (AF and stroke. The left atrial appendage (LAA is the primary site for thrombi formation. The most severe complication of emboli derived from LAA is stroke, which is associated with a 12-month mortality rate of 38% and a 12-month recurrence rate of 17%. The most common form of treatment for atrial fibrillation and stroke prevention is the pharmacological therapy with anticoagulants. Nonetheless this form of therapy is associated with high risk of major bleeding. Therefore LAA occlusion devices should be tested for their ability to reduce future cerebral ischemic events in patients with high-risk of haemorrhage.The aim of this study was to evaluate the safety and feasibility of a novel left atrial appendage exclusion device with a minimally invasive introducer in a swine model.A completely novel LAA device, which is composed of two tubes connected together using a specially created bail, was designed using finite element modelling (FEM to obtain an optimal support force of 36 N at the closure line. The monolithic form of the occluder was obtained by using additive manufacturing of granular PA2200 powder with the technology of selective laser sintering (SLS. Fifteen swine were included in the feasibility tests, with 10 animals undergoing fourteen days of follow-up and 5 animals undergoing long-term observation of 3 months. For one animal, the follow-up was further prolonged to 6 months. The device was placed via minithoracotomy. After the observation period, all of the animals were euthanized, and their hearts were tested for LAA closure and local inflammatory and tissue response.After the defined observation period, all fifteen hearts were explanted. In all cases the full closure of the LAA was achieved. The macroscopic and microscopic evaluation of the explanted hearts showed that all devices were securely integrated in the surrounding tissues. No

  12. Quantitative comparison of 3 enamel-stripping devices in vitro: how precisely can we strip teeth?

    Science.gov (United States)

    Johner, Alexander Marc; Pandis, Nikolaos; Dudic, Alexander; Kiliaridis, Stavros

    2013-04-01

    In this in-vitro study, we aimed to investigate the predictability of the expected amount of stripping using 3 common stripping devices on premolars. One hundred eighty extracted premolars were mounted and aligned in silicone. Tooth mobility was tested with Periotest (Medizintechnik Gulden, Modautal, Germany) (8.3 ± 2.8 units). The selected methods for interproximal enamel reduction were hand-pulled strips (Horico, Hapf Ringleb & Company, Berlin, Germany), oscillating segmental disks (O-drive-OD 30; KaVo Dental, Biberach, Germany), and motor-driven abrasive strips (Orthofile; SDC Switzerland, Lugano-Grancia, Switzerland). With each device, the operator intended to strip 0.1, 0.2, 0.3, or 0.4 mm on the mesial side of 15 teeth. The teeth were scanned before and after stripping with a 3-dimensional laser scanner. Superposition and measurement of stripped enamel on the most mesial point of the tooth were conducted with Viewbox software (dHal Software, Kifissia, Greece). The Wilcoxon signed rank test and the Kruskal-Wallis test were applied; statistical significance was set at alpha ≤ 0.05. Large variations between the intended and the actual amounts of stripped enamel, and between stripping procedures, were observed. Significant differences were found at 0.1 mm of intended stripping (P ≤ 0.05) for the hand-pulled method and at 0.4 mm of intended stripping (P ≤ 0.001 to P = 0.05) for all methods. For all scenarios of enamel reduction, the actual amount of stripping was less than the predetermined and expected amount of stripping. The Kruskal-Wallis analysis showed no significant differences between the 3 methods. There were variations in the stripped amounts of enamel, and the stripping technique did not appear to be a significant predictor of the actual amount of enamel reduction. In most cases, actual stripping was less than the intended amount of enamel reduction. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights

  13. Preparation and characterization of electroluminescent devices based on complexes of {beta}-diketonates of Tb{sup 3+}, Eu{sup 3+}, Gd{sup 3+} ions with macrocyclic ligands and UO{sub 2}{sup 2+} films; Preparacao e caracterizacao de dispositivos eletroluminescentes de complexos de {beta}-dicetonados de ions Tb{sup 3+}, Eu{sup 3+}, Gd{sup 3+} com ligantes macrociclicos e filmes de UO{sub 2}{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Gibelli, Edison Bessa

    2010-07-01

    Complexes containing Rare Earth ions are of great interest in the manufacture of electro luminescent devices as organic light emitting devices (OLED). These devices, using rare earth trivalent ions (TR{sup 3+}) as emitting centers, show high luminescence with extremely fine spectral bands due to the structure of their energy levels, long life time and high quantum efficiency. This work reports the preparation of Rare Earth {beta}-diketonate complexes (Tb{sup 3+}, Eu{sup 3+} and Gd{sup 3+}) and (tta - thenoyltrifluoroacetonate and acac - acetylacetonate) containing a ligand macrocyclic crown ether (DB18C6 - dibenzo18coroa6) and polymer films of UO{sub 2}{sup 2+}. The materials were characterized by complexometric titration with EDTA, CH elemental analysis, near infrared absorption spectroscopy, thermal analysis, X-ray diffraction (powder method) and luminescence spectroscopy. For manufacturing the OLED it was used the technique of deposition of thin films by physical vapor (PVD, Physical Vapor Deposition). (author)

  14. Colorimetric Characterization of Mobile Devices for Vision Applications.

    Science.gov (United States)

    de Fez, Dolores; Luque, Maria José; García-Domene, Maria Carmen; Camps, Vicente; Piñero, David

    2016-01-01

    Available applications for vision testing in mobile devices usually do not include detailed setup instructions, sacrificing rigor to obtain portability and ease of use. In particular, colorimetric characterization processes are generally obviated. We show that different mobile devices differ also in colorimetric profile and that those differences limit the range of applications for which they are most adequate. The color reproduction characteristics of four mobile devices, two smartphones (Samsung Galaxy S4, iPhone 4s) and two tablets (Samsung Galaxy Tab 3, iPad 4), have been evaluated using two procedures: 3D LUT (Look Up Table) and a linear model assuming primary constancy and independence of the channels. The color reproduction errors have been computed with the CIEDE2000 color difference formula. There is good constancy of primaries but large deviations of additivity. The 3D LUT characterization yields smaller reproduction errors and dispersions for the Tab 3 and iPhone 4 devices, but for the iPad 4 and S4, both models are equally good. The smallest reproduction errors occur with both Apple devices, although the iPad 4 has the highest number of outliers of all devices with both colorimetric characterizations. Even though there is good constancy of primaries, the large deviations of additivity exhibited by the devices and the larger reproduction errors make any characterization based on channel independence not recommendable. The smartphone screens show, in average, the best color reproduction performance, particularly the iPhone 4, and therefore, they are more adequate for applications requiring precise color reproduction.

  15. A graphene integrated highly transparent resistive switching memory device

    Science.gov (United States)

    Dugu, Sita; Pavunny, Shojan P.; Limbu, Tej B.; Weiner, Brad R.; Morell, Gerardo; Katiyar, Ram S.

    2018-05-01

    We demonstrate the hybrid fabrication process of a graphene integrated highly transparent resistive random-access memory (TRRAM) device. The indium tin oxide (ITO)/Al2O3/graphene nonvolatile memory device possesses a high transmittance of >82% in the visible region (370-700 nm) and exhibits stable and non-symmetrical bipolar switching characteristics with considerably low set and reset voltages (ITO/Al2O3/Pt device and studied its switching characteristics for comparison and a better understanding of the ITO/Al2O3/graphene device characteristics. The conduction mechanisms in high and low resistance states were analyzed, and the observed polarity dependent resistive switching is explained based on electro-migration of oxygen ions.

  16. Ultrasound assessment of the Essure contraceptive devices: is three-dimensional ultrasound really needed?

    Science.gov (United States)

    Paladini, Dario; Di Spiezio Sardo, Attilio; Coppola, Carmela; Zizolfi, Brunella; Pastore, Gaetano; Nappi, Carmine

    2015-01-01

    To evaluate the feasibility of 3-dimensional ultrasound (3DUS) for sonographic localization of Essure microinserts, comparing it with 2-dimensional ultrasound (2DUS) insofar as time to visualize the inserts and accuracy in determining their localization. Prospective study (Canadian Task Force classification II-2). University clinic. Twenty-seven consecutive women undergoing hysteroscopic Essure device placement. Essure microinserts were inserted in the outpatient hysteroscopy clinic following the manufacturer's recommendations, leaving from 3 to 8 loops of the inserts in the uterine cavity. In all patients, 2DUS and 3DUS were performed 3 months after the procedure. 2DUS was performed first; the device(s) were located, and their position was recorded. Then 3DUS scans were acquired, trying when possible to have both devices at least at a 45-degree angle with the insonation beam for optimal rendering on 3DUS. The OmniView method with volume contrast imaging was used to show the relationships of the microinserts within the uterine cavity when possible. To define the position of the Essure device in relation to the uterus and the salpinges, we used the classification developed by Legendre and colleagues. After sonographic evaluation all women underwent hysterosalpingography to assess the success of sterilization. Hysteroscopic insertion was successful in all patients, with 2 Essure devices placed in 25 patients and 1 device in 2 patients (due to previous salpingectomy performed because of ectopic pregnancy), for a total of 52 devices. One spontaneous late (within 3 months) expulsion of the device occurred; the device had migrated almost completely into the uterine cavity. At 3-month follow-up, all 51 correctly placed devices were easily observed at 2DUS (mean [SD] duration of the procedure, 2.25 [0.8] minutes). At 3DUS in 51 cases, the device was in perfect position (1+2+3) in 21 (41.2%), in position 2+3 in 14 (27.4%), and in position +3 in 16 (31.4%). Both microinserts

  17. Fast Switching ITO Free Electrochromic Devices

    DEFF Research Database (Denmark)

    Jensen, Jacob; Hösel, Markus; Kim, Inyoung

    2014-01-01

    devices with a response time of 2 s for an optical contrast of 27%. The other design utilizes an embedded silver grid electrode whereupon response times of 0.5 s for a 30% optical contrast are realized when oxidizing the device. A commercially available conductive poly(3,4-ethylenedioxythiophene):poly(4...

  18. Feasibility and Characterization of Common and Exotic Filaments for Use in 3D Printed Terahertz Devices

    Science.gov (United States)

    Squires, A. D.; Lewis, R. A.

    2018-06-01

    Recent years have seen an influx of applications utilizing 3D printed devices in the terahertz regime. The simplest, and perhaps most versatile, modality allowing this is Fused Deposition Modelling. In this work, a holistic analysis of the terahertz optical, mechanical and printing properties of 17 common and exotic 3D printer filaments used in Fused Deposition Modelling is performed. High impact polystyrene is found to be the best filament, with a useable frequency range of 0.1-1.3 THz, while remaining easily printed. Nylon, polylactic acid and polyvinyl alcohol give the least desirable terahertz response, satisfactory only below 0.5 THz. Interestingly, most modified filaments aimed at increasing mechanical properties and ease of printing do so without compromising the useable terahertz optical window.

  19. Comparison of GaP and PH{sub 3} as dopant sources for STM-based device fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Kuan Eng Johnson [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia); Oberbeck, L [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia); Butcher, M J [School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Curson, N J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia); Ruess, F J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia); Simmons, M Y [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2007-02-14

    We present a comparative study of the use of a GaP solid source as an alternative to gaseous PH{sub 3} for controlled phosphorus {delta}-doping of lithographic patterns on H:Si(001) fabricated by scanning tunnelling microscopy (STM). Whilst our electrical studies show that P {delta}-doping of Si with the GaP solid source and gaseous PH{sub 3} result in essentially the same electrical characteristics, our STM studies reveal that P{sub 2} molecules from the GaP source exhibit a lower selectivity between bare Si(001) and H:Si(001) compared to PH{sub 3} molecules. We discuss the significance of our findings in the context of fabricating nanoscale P dopant devices in Si using STM-based lithography.

  20. Additional collection devices used in conjunction with the SurePath Liquid-Based Pap Test broom device do not enhance diagnostic utility

    Directory of Open Access Journals (Sweden)

    O'Connor Jason C

    2004-09-01

    Full Text Available Abstract Background We have previously shown that use of an EC brush device in combination with the Rovers Cervex-Brush (SurePath broom offered no significant improvement in EC recovery. Here we determine if use of additional collection devices enhance the diagnostic utility of the SurePath Pap for gynecologic cytology. Methods After informed consent, 37 women ages 18–56 receiving their routine cervical examinations were randomized into four experimental groups. Each group was first sampled with the SurePath broom then immediately re-sampled with an additional collection device or devices. Group 1: Rover endocervix brush (n = 8. Group 2: Medscand CytoBrush Plus GT (n = 7. Group 3: Rover spatula + endocervix brush (n = 11. Group 4: Medscand spatula + CytoBrush Plus GT (n = 11. Results Examination of SurePath broom-collected cytology yielded the following abnormal diagnoses: atypia (n = 2, LSIL (n = 5 and HSIL (n = 3. Comparison of these diagnoses to those obtained from paired samples using the additional collection devices showed that use of a second and or third device yielded no additional abnormal diagnoses. Importantly, use of additional devices did not improve upon the abnormal cell recovery of the SurePath broom and in 4/10 cases under-predicted or did not detect the SurePath broom-collected lesion as confirmed by cervical biopsy. Finally, in 36/37 cases, the SurePath broom successfully recovered ECs. Use of additional devices, in Group 3, augmented EC recovery to 37/37. Conclusions Use of additional collection devices in conjunction with the SurePath broom did not enhance diagnostic utility of the SurePath Pap. A potential but not significant improvement in EC recovery might be seen with the use of three devices.

  1. Photoelectric transfer device

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Takuji; Murao, Fumihide

    1987-12-07

    Concerning the conventional photoelectric transfer device, a short-circuit current of photodiodes is switched over with MOS transistors. However, since the backgate voltage of the MOS transistor which is to be used as the switching element, is provided by the source voltage, the leakage current between the backgate and the source/drain/ channel is great and due to this leakage current, errors occur in the photoelectric transfer power output. Especially, when the leakage current of the photodiodes is small, the error becomes large. In order to solve the above problem, this invention aims at offering a photoelectric transfer device which can provide the high precision photoelectric transfer even the short-circuit current generated in the photodiodes is small and proposes a photoelectric transfer device in which the backgate voltage of the MOS transistor switching over the short-circuit current of the photodiodes is made equal to the electric potential of the mutually connected anodes (or cathodes) of the photodiodes. (3 figs)

  2. Fast 3-T MR-guided transrectal prostate biopsy using an in-room tablet device for needle guide alignment: a feasibility study.

    Science.gov (United States)

    Overduin, Christiaan G; Heidkamp, Jan; Rothgang, Eva; Barentsz, Jelle O; de Lange, Frank; Fütterer, Jurgen J

    2018-05-22

    To assess the feasibility of adding a tablet device inside the scanner room to assist needle-guide alignment during magnetic resonance (MR)-guided transrectal prostate biopsy. Twenty patients with one cancer-suspicious region (CSR) with PI-RADS score ≥ 4 on diagnostic multiparametric MRI were prospectively enrolled. Two orthogonal scan planes of an MR fluoroscopy sequence (~3 images/s) were aligned to the CSR and needle-guide pivoting point. Targeting was achieved by manipulating the needle-guide under MR fluoroscopy feedback on the in-room tablet device. Technical feasibility and targeting success were assessed. Complications and biopsy procedure times were also recorded. Needle-guide alignment with the in-room tablet device was technically successful in all patients and allowed sampling after a single alignment step in 19/20 (95%) CSRs (median size 14 mm, range: 4-45). Biopsy cores contained cancer in 18/20 patients. There were no per-procedural or post-biopsy complications. Using the tablet device, the mean time to first biopsy was 5.8 ± 1.0 min and the mean total procedure time was 23.7 ± 4.1 min. Use of an in-room tablet device to assist needle-guide alignment was feasible and safe during MR-guided transrectal prostate biopsy. Initial experience indicates potential for procedure time reduction. • Performing MR-guided prostate biopsy using an in-room tablet device is feasible. • CSRs could be sampled after a single alignment step in 19/20 patients. • The mean procedure time for biopsy with the tablet device was 23.7 min.

  3. Ontology-Based Device Descriptions and Device Repository for Building Automation Devices

    Directory of Open Access Journals (Sweden)

    Dibowski Henrik

    2011-01-01

    Full Text Available Device descriptions play an important role in the design and commissioning of modern building automation systems and help reducing the design time and costs. However, all established device descriptions are specialized for certain purposes and suffer from several weaknesses. This hinders a further design automation, which is strongly needed for the more and more complex building automation systems. To overcome these problems, this paper presents novel Ontology-based Device Descriptions (ODDs along with a layered ontology architecture, a specific ontology view approach with virtual properties, a generic access interface, a triple store-based database backend, and a generic search mask GUI with underlying query generation algorithm. It enables a formal, unified, and extensible specification of building automation devices, ensures their comparability, and facilitates a computer-enabled retrieval, selection, and interoperability evaluation, which is essential for an automated design. The scalability of the approach to several ten thousand devices is demonstrated.

  4. Electronic device and method of manufacturing an electronic device

    NARCIS (Netherlands)

    2009-01-01

    An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units

  5. Integration Head Mounted Display Device and Hand Motion Gesture Device for Virtual Reality Laboratory

    Science.gov (United States)

    Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.

    2018-01-01

    Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.

  6. Multi-Device to Multi-Device (MD2MD Content-Centric Networking Based on Multi-RAT Device

    Directory of Open Access Journals (Sweden)

    Cheolhoon Kim

    2017-11-01

    Full Text Available This paper proposes a method whereby a device can transmit and receive information using a beacon, and also describes application scenarios for the proposed method. In a multi-device to multi-device (MD2MD content-centric networking (CCN environment, the main issue involves searching for and connecting to nearby devices. However, if a device can’t find another device that satisfies its requirements, the connection is delayed due to the repetition of processes. It is possible to rapidly connect to a device without repetition through the selection of the optimal device using the proposed method. Consequently, the proposed method and scenarios are advantageous in that they enable efficient content identification and delivery in a content-centric Internet of Things (IoT environment, in which multiple mobile devices coexist.

  7. Mobile Learning Devices. Essentials for Principals

    Science.gov (United States)

    Rogers, Kipp D.

    2011-01-01

    In "Mobile Learning Devices," the author helps educators confront and overcome their fears and doubts about using mobile learning devices (MLDs) such as cell phones, personal digital assistants, MP3 players, handheld games, digital audio players, and laptops in classrooms. School policies that ban such tools are outdated, the author suggests;…

  8. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized by quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.

  9. Device Performance of the Mott InsulatorDevice Performance of the Mott Insulator LaVO3 as a Photovoltaic Material

    KAUST Repository

    Wang, Lingfei; Li, Yongfeng; Bera, Ashok; Ma, Chun; Jin, Feng; Yuan, Kaidi; Yin, Wanjian; David, Adrian; Chen, Wei; Wu, Wenbin; Prellier, Wilfrid; Wei, Suhuai; Wu, Tao

    2015-01-01

    in solar cells in conjunction with carrier transporters and evaluate its device performance. Our complementary experimental and theoretical results on such prototypical solar cells made of Mott-Hubbard transition-metal oxides pave the road for developing

  10. Coupling of the PISCES device modeler to a 3-D Maxwell FDTD solver

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, V.A.; Jones, M.E.; Mason, R.J. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The authors show how PISCES-like semiconductor models can be joined non-invasively to finite difference time domain models for the calculation of coupled external electromagnetics. The method involves tricking the standard current boundary condition for the device model into accepting an effective parallel external capacitance. For nearly steady state device conditions the authors show the results for a transmission line-coupled PISCES diode to agree well with those for an ideal diode.

  11. Graphene device and method of using graphene device

    Science.gov (United States)

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  12. Summary report from 1. research coordination meeting on nuclear data libraries for advance systems - fusion devices (FENDL - 3)

    International Nuclear Information System (INIS)

    Trkov, A.; Forrest, R.; Mengoni, A.

    2009-03-01

    The first Research Co-ordination Meeting of the Nuclear Data Libraries for Advance Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 2 to 5 December 2008. A summary of the meeting is given in this report along with discussions which took place. An important outcome of the meeting was the agreement to create a new FENDL-3.0 Starter Library. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  13. Humanitarian Use Devices/Humanitarian Device Exemptions in cardiovascular medicine.

    Science.gov (United States)

    Kaplan, Aaron V; Harvey, Elisa D; Kuntz, Richard E; Shiran, Hadas; Robb, John F; Fitzgerald, Peter

    2005-11-01

    The Second Dartmouth Device Development Symposium held in October 2004 brought together leaders from the medical device community, including clinical investigators, senior representatives from the US Food and Drug Administration, large and small device manufacturers, and representatives from the financial community to examine difficult issues confronting device development. The role of the Humanitarian Use Device/Humanitarian Device Exemption (HUD/HDE) pathway in the development of new cardiovascular devices was discussed in this forum. The HUD/HDE pathway was created by Congress to facilitate the availability of medical devices for "orphan" indications, ie, those affecting HDEs have been granted (23 devices, 6 diagnostic tests). As the costs to gain regulatory approval for commonly used devices increase, companies often seek alternative ways to gain market access, including the HUD/HDE pathway. For a given device, there may be multiple legitimate and distinct indications, including indications that meet the HUD criteria. Companies must choose how and when to pursue each of these indications. The consensus of symposium participants was for the HUD/HDE pathway to be reserved for true orphan indications and not be viewed strategically as part of the clinical development plan to access a large market.

  14. "Real life" longevity of implantable cardioverter-defibrillator devices.

    Science.gov (United States)

    Manolis, Antonis S; Maounis, Themistoklis; Koulouris, Spyridon; Vassilikos, Vassilios

    2017-09-01

    Manufacturers of implantable cardioverter-defibrillators (ICDs) promise a 5- to 9-year projected longevity; however, real-life data indicate otherwise. The aim of the present study was to assess ICD longevity among 685 consecutive patients over the last 20 years. Real-life longevity of ICDs may differ from that stated by the manufacturers. The study included 601 men and 84 women (mean age, 63.1 ± 13.3 years). The underlying disease was coronary (n = 396) or valvular (n = 15) disease, cardiomyopathy (n = 220), or electrical disease (n = 54). The mean ejection fraction was 35%. Devices were implanted for secondary (n = 562) or primary (n = 123) prevention. Single- (n = 292) or dual-chamber (n = 269) or cardiac resynchronization therapy (CRT) devices (n = 124) were implanted in the abdomen (n = 17) or chest (n = 668). Over 20 years, ICD pulse generator replacements were performed in 238 patients (209 men; age 63.7 ± 13.9 years; ejection fraction, 37.7% ± 14.0%) who had an ICD for secondary (n = 210) or primary (n = 28) prevention. The mean ICD longevity was 58.3 ± 18.7 months. In 20 (8.4%) patients, devices exhibited premature battery depletion within 36 months. Most (94%) patients had none, minor, or modest use of ICD therapy. Longevity was longest for single-chamber devices and shortest for CRT devices. Latest-generation devices replaced over the second decade lasted longer compared with devices replaced during the first decade. When analyzed by manufacturer, Medtronic devices appeared to have longer longevity by 13 to 18 months. ICDs continue to have limited longevity of 4.9 ± 1.6 years, and 8% demonstrate premature battery depletion by 3 years. CRT devices have the shortest longevity (mean, 3.8 years) by 13 to 17 months, compared with other ICD devices. These findings have important implications, particularly in view of the high expense involved with this type of electrical

  15. Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices.

    Science.gov (United States)

    Uguz, Ilke; Ganji, Mehran; Hama, Adel; Tanaka, Atsunori; Inal, Sahika; Youssef, Ahmed; Owens, Roisin M; Quilichini, Pascale P; Ghestem, Antoine; Bernard, Christophe; Dayeh, Shadi A; Malliaras, George G

    2016-12-01

    Autoclaving, the most widely available sterilization method, is applied to poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) electrophysiology devices. The process does not harm morphology or electrical properties, while it effectively kills E. coli intentionally cultured on the devices. This finding paves the way to widespread introduction of PEDOT:PSS electrophysiology devices to the clinic. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. SU-C-213-07: Fabrication and Testing of a 3D-Printed Small Animal Rectal Cooling Device to Evaluate Local Hypothermia as a Radioprotector During Prostate SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Hrycushko, B; Chopra, R; Futch, C; Bing, C; Wodzak, M; Stojadinovic, S; Jiang, S; Medin, P [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: The protective effects of induced or even accidental hypothermia on the human body are widespread with several medical uses currently under active research. In vitro experiments using human cell lines have shown hypothermia provides a radioprotective effect that becomes more pronounced at large, single-fraction doses common to SBRT treatments. Relevant to prostate SBRT, this work details the fabrication and testing of a 3D-printed cooling device to facilitate the investigation of the radioprotective effect of local hypothermia on the rat rectum. Methods: A 3cm long, two-channel rectal cooling device was designed in SOLIDWORKS CAD for 3D printing. The water intake nozzle is connected to a 1mm diameter brass pipe from which water flows and circulates back around to the exit nozzle. Both nozzles are connected by plastic tubing to a water chiller pump. Following leak-proof testing, fiber optic temperature probes were used to evaluate the temperature over time when placed adjacent to the cooling device within a rat rectum. MRI thermometry characterized the relative temperature distribution in concentric ROIs surrounding the probe. CBCT images from a small-animal irradiator were evaluated for imaging artifacts which could affect Monte Carlo dose calculations during treatment planning. Results: The rectal temperature adjacent to the cooling device decreased from body temperature (37°C) to 15°C in 10–20 minutes from device insertion. Rectal temperature was maintained at 15±3°C during active cooling. MRI thermometry tests revealed a steep temperature gradient with increasing distance from the cooling device, with the desired temperature range maintained within the surrounding few millimeters. Conclusion: A 3D printed rectal cooling device was fabricated for the purpose of inducing local hypothermia in rat rectums. Rectal cooling capabilities were characterized in-vivo to facilitate an investigation of the radioprotective effect of hypothermia for late rectal

  17. SU-C-213-07: Fabrication and Testing of a 3D-Printed Small Animal Rectal Cooling Device to Evaluate Local Hypothermia as a Radioprotector During Prostate SBRT

    International Nuclear Information System (INIS)

    Hrycushko, B; Chopra, R; Futch, C; Bing, C; Wodzak, M; Stojadinovic, S; Jiang, S; Medin, P

    2015-01-01

    Purpose: The protective effects of induced or even accidental hypothermia on the human body are widespread with several medical uses currently under active research. In vitro experiments using human cell lines have shown hypothermia provides a radioprotective effect that becomes more pronounced at large, single-fraction doses common to SBRT treatments. Relevant to prostate SBRT, this work details the fabrication and testing of a 3D-printed cooling device to facilitate the investigation of the radioprotective effect of local hypothermia on the rat rectum. Methods: A 3cm long, two-channel rectal cooling device was designed in SOLIDWORKS CAD for 3D printing. The water intake nozzle is connected to a 1mm diameter brass pipe from which water flows and circulates back around to the exit nozzle. Both nozzles are connected by plastic tubing to a water chiller pump. Following leak-proof testing, fiber optic temperature probes were used to evaluate the temperature over time when placed adjacent to the cooling device within a rat rectum. MRI thermometry characterized the relative temperature distribution in concentric ROIs surrounding the probe. CBCT images from a small-animal irradiator were evaluated for imaging artifacts which could affect Monte Carlo dose calculations during treatment planning. Results: The rectal temperature adjacent to the cooling device decreased from body temperature (37°C) to 15°C in 10–20 minutes from device insertion. Rectal temperature was maintained at 15±3°C during active cooling. MRI thermometry tests revealed a steep temperature gradient with increasing distance from the cooling device, with the desired temperature range maintained within the surrounding few millimeters. Conclusion: A 3D printed rectal cooling device was fabricated for the purpose of inducing local hypothermia in rat rectums. Rectal cooling capabilities were characterized in-vivo to facilitate an investigation of the radioprotective effect of hypothermia for late rectal

  18. Efficient red organic electroluminescent devices based on trivalent europium complex obtained by designing the device structure with stepwise energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang; Jiang, Yunlong; Cui, Rongzhen; Li, Yanan; Zhao, Xuesen; Deng, Ruiping; Zhang, Hongjie, E-mail: hongjie@ciac.ac.cn

    2016-02-15

    In this study, we aim to further enhance the electroluminescence (EL) performances of trivalent europium complex Eu(TTA){sub 3}phen (TTA=thenoyltrifluoroacetone and phen=1,10-phenanthroline) by designing the device structure with stepwise energy levels. The widely used bipolar material 2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy) was chosen as host material, while the doping concentration of Eu(TTA){sub 3}phen was optimized to be 4%. To facilitate the injection and transport of holes, MoO{sub 3} anode modification layer and 4,4′,4′′-Tris(carbazole-9-yl)triphenylamine (TcTa) hole transport layer were inserted in sequence. Efficient pure red emission with suppressed efficiency roll-off was obtained attributed to the reduction of accumulation holes, the broadening of recombination zone, and the improved balance of holes and electrons on Eu(TTA){sub 3}phen molecules. Finally, the device with 3 nm MoO{sub 3} and 5 nm TcTa obtained the highest brightness of 3278 cd/m{sup 2}, current efficiency of 12.45 cd/A, power efficiency of 11.50 lm/W, and external quantum efficiency of 6.60%. Such a device design strategy helps to improve the EL performances of emitters with low-lying energy levels and provides a chance to simplify device fabrication processes. - Highlights: • Electroluminescent performances of europium complex were further improved. • Device structure with stepwise energy levels was designed. • Better carriers' balance was realized by improving the injection and transport of holes. • The selection of bipolar host caused the broadening of recombination zone.

  19. A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells.

    Science.gov (United States)

    You, Shuai; Wang, Hui; Bi, Shiqing; Zhou, Jiyu; Qin, Liang; Qiu, Xiaohui; Zhao, Zhiqiang; Xu, Yun; Zhang, Yuan; Shi, Xinghua; Zhou, Huiqiong; Tang, Zhiyong

    2018-04-18

    Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI 3 ) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley-Read-Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO 2 cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI 3 and TiO 2 surfaces by HS occurs through the interactions of the functional groups (COO - , SO 3 - , or Na + ) in HS with undersaturated Pb and I ions in MAPbI 3 and Ti 4+ in TiO 2 . This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high-performance and stable perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development and characterization of 3D, nano-confined multicellular constructs for advanced biohybrid devices.

    Energy Technology Data Exchange (ETDEWEB)

    Kaehr, Bryan James

    2011-09-01

    This is the final report for the President Harry S. Truman Fellowship in National Security Science and Engineering (LDRD project 130813) awarded to Dr. Bryan Kaehr from 2008-2011. Biological chemistries, cells, and integrated systems (e.g., organisms, ecologies, etc.) offer important lessons for the design of synthetic strategies and materials. The desire to both understand and ultimately improve upon biological processes has been a driving force for considerable scientific efforts worldwide. However, to impart the useful properties of biological systems into modern devices and materials requires new ideas and technologies. The research herein addresses aspects of these issues through the development of (1) a rapid-prototyping methodology to build 3D bio-interfaces and catalytic architectures, (2) a quantitative method to measure cell/material mechanical interactions in situ and at the microscale, and (3) a breakthrough approach to generate functional biocomposites from bacteria and cultured cells.

  1. 3D workflow for HDR image capture of projection systems and objects for CAVE virtual environments authoring with wireless touch-sensitive devices

    Science.gov (United States)

    Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin

    2006-02-01

    A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.

  2. Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL-3). Summary report from the Second Research Coordination Meeting

    International Nuclear Information System (INIS)

    Sawan, Mohamed E.

    2010-06-01

    The second Research Co-ordination Meeting of the Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 23 to 26 March 2010. A summary of the meeting is given in this report along with the discussions which took place. An important outcome of the meeting was the decision to provide ENDF data libraries (FENDL-3/T) by April 2011. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  3. Doped Halloysite Nanotubes for Use in the 3D Printing of Medical Devices

    Directory of Open Access Journals (Sweden)

    Jeffery A. Weisman

    2017-12-01

    Full Text Available Previous studies have established halloysite nanotubes (HNTs as viable nanocontainers capable of sustained release of a variety of antibiotics, corrosion agents, chemotherapeutics and growth factors either from their lumen or in outer surface coatings. Accordingly, halloysite nanotubes (HNTs hold great promise as drug delivery carriers in the fields of pharmaceutical science and regenerative medicine. This study explored the potential of 3D printing drug doped HNT constructs. We used a model drug, gentamicin (GS and polylactic acid (PLA to fabricate GS releasing disks, beads, and pellets. Gentamicin was released from 3D printed constructs in a sustained manner and had a superior anti-bacterial growth inhibition effect that was dependent on GS doping concentration. While this study focused on a model drug, gentamicin, combination therapy is possible through the fabrication of medical devices containing HNTs doped with a suite of antibiotics or antifungals. Furthermore, tailored dosage levels, suites of antimicrobials, delivered locally would reduce the toxicity of individual agents, prevent the emergence of resistant strains, and enable the treatment of mixed infections.

  4. ELOPTA: a novel microcontroller-based operant device.

    Science.gov (United States)

    Hoffman, Adam M; Song, Jianjian; Tuttle, Elaina M

    2007-11-01

    Operant devices have been used for many years in animal behavior research, yet such devices a regenerally highly specialized and quite expensive. Although commercial models are somewhat adaptable and resilient, they are also extremely expensive and are controlled by difficult to learn proprietary software. As an alternative to commercial devices, we have designed and produced a fully functional, programmable operant device, using a PICmicro microcontroller (Microchip Technology, Inc.). The electronic operant testing apparatus (ELOPTA) is designed to deliver food when a study animal, in this case a bird, successfully depresses the correct sequence of illuminated keys. The device logs each keypress and can detect and log whenever a test animal i spositioned at the device. Data can be easily transferred to a computer and imported into any statistical analysis software. At about 3% the cost of a commercial device, ELOPTA will advance behavioral sciences, including behavioral ecology, animal learning and cognition, and ethology.

  5. Poster: Virtual reality interaction using mobile devices

    KAUST Repository

    Aseeri, Sahar A.

    2013-03-01

    In this work we aim to implement and evaluate alternative approaches for interacting with virtual environments on mobile devices for navigation, object selection and manipulation. Interaction with objects in virtual worlds using traditional input such as current state-of-the-art devices is often difficult and could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. We have developed new methods to perform different kinds of interactions using a mobile device (e.g. a smartphone) both as input device, performing selection and manipulation of objects, and as output device, utilizing the screen as an extra view (virtual camera or information display). Our hypothesis is that interaction via mobile devices facilitates simple tasks like the ones described within immersive virtual reality systems. We present here our initial implementation and result. © 2013 IEEE.

  6. Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices.

    Science.gov (United States)

    Nadgorny, Milena; Ameli, Amir

    2018-05-16

    Three-dimensional printing (3DP) has attracted a considerable amount of attention during the past years, being globally recognized as one of the most promising and revolutionary manufacturing technologies. Although the field is rapidly evolving with significant technological advancements, materials research remains a spotlight of interest, essential for the future developments of 3DP. Smart polymers and nanocomposites, which respond to external stimuli by changing their properties and structure, represent an important group of materials that hold a great promise for the fabrication of sensors, actuators, robots, electronics, and medical devices. The interest in exploring functional materials and their 3DP is constantly growing in an attempt to meet the ever-increasing manufacturing demand of complex functional platforms in an efficient manner. In this review, we aim to outline the recent advances in the science and engineering of functional polymers and nanocomposites for 3DP technologies. The report covers temperature-responsive polymers, polymers and nanocomposites with electromagnetic, piezoresistive and piezoelectric behaviors, self-healing polymers, light- and pH-responsive materials, and mechanochromic polymers. The main objective is to link the performance and functionalities to the fundamental properties, chemistry, and physics of the materials, and to the process-driven characteristics, in an attempt to provide a multidisciplinary image and a deeper understanding of the topic. The challenges and opportunities for future research are also discussed.

  7. Innovating transformative medical devices and growing the local medical device manufacturing sector

    CSIR Research Space (South Africa)

    Bunn, Tony

    2017-01-01

    Full Text Available . The 4IR is marked by emerging technology breakthroughs in a number of fields, including robotics, genomics, biosensors and wearables, AI, the internet of things, quantum computing, big data predictive analytics, 3D printing/additive manufacturing... of personalized prosthetics and products • Personalized devices and technologies for precision medicine Secure Airway Clamp for safer Anaesthesia MANDIBULAR IMPLANTS PATIENT 2 PATIENT 1 PATIENT 3 PATIENT CT SCAN 3D PRINTED TITANIUM IMPLANT PROPOSED...

  8. Self-folding miniature elastic electric devices

    International Nuclear Information System (INIS)

    Miyashita, Shuhei; Meeker, Laura; Rus, Daniela; Tolley, Michael T; Wood, Robert J

    2014-01-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor. (paper)

  9. Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes

    International Nuclear Information System (INIS)

    Li Zhefeng; Zhang Hongjie; Yu Jiangbo

    2012-01-01

    We investigated near-infrared electroluminescence properties of two lanthanide complexes Yb(PMBP) 3 Bath [PMBP = tris(1-phenyl-3-methyl-4-(4-tert-butylbenzacyl)-5-pyrazolone); Bath = bathophenanthroline] and Yb(PMIP) 3 TP 2 [PMIP = tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone); TP = triphenyl phosphine oxide] by fabricated the double-emission-layers devices. From the device characteristics, it is known that holes are easier to transport in Yb(PMIP) 3 TP 2 layer and electrons are easier to transport in Yb(PMBP) 3 Bath layer, at the same time, both of the two complexes can be acted as emission layers in the device. The recombination region of carriers has been confined in the interface of Yb(PMIP) 3 TP 2 /Yb(PMBP) 3 Bath, and pure Yb 3+ ion characteristic emission centered at 980 nm has been obtained. The device shows the maximum near-infrared irradiance as 14.7 mW/m 2 at the applied voltage of 17.8 V. - Highlights: ► Near-infrared electroluminescent devices with Yb(III) complexes as emission layers. ► Double-emission layer device structure introduced to balance carriers. ► Improved performance of double-emission layer device.

  10. [In vitro study of the flow duration of antibiotics solutions prepared in elastomeric infusion devices: effect of cold storage for 3 to 7days].

    Science.gov (United States)

    Grangeon-Chapon, C; Robein-Dobremez, M-J; Pin, I; Trouiller, P; Allenet, B; Foroni, L

    2015-09-01

    Within the cystic fibrosis patients' home care, EMERAA network ("Together against Cystic fibrosis in Rhone-Alpes and Auvergne") organizes parenteral antibiotics cures at home prepared in elastomeric infusion devices by hospital pharmacies. However, patients and nurses found that the durations of infusion with these devices were often longer than the nominal duration of infusion indicated by their manufacturer. This study aimed to identify the potential different causes in relation to these discordances. Three hundred and ninety devices of two different manufacturers are tested in different experimental conditions: three antibiotics each at two different doses, duration of cold storage (three days or seven days) or immediate tests without cold storage, preparation and storage of the solution in the device (protocol Device) or transfer in the device just before measurement (protocol Pocket). All tests highlighted a longer flow duration for devices prepared according to the protocol Device versus the protocol Pocket (P=0.004). Flow duration is increased in the case of high doses of antibiotics with high viscosity such as piperacilline/tazobactam. The results of this in vitro study showed the impact of: (1) the time between the filling of the device and the flow of the solution; (2) cold storage of elastomeric infusion devices; (3) concentration of antibiotics and therefore the viscosity of the solution to infuse. It is therefore essential that health care teams are aware of factors, which may lead to longer infusion durations with these infusion devices. When the additional time for infusion remain acceptable, it should be necessary to inform the patient and to relativize these lengthening compared to many benefits that these devices provide for home care. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Evaluation of reliability and validity of three dental color-matching devices.

    Science.gov (United States)

    Tsiliagkou, Aikaterini; Diamantopoulou, Sofia; Papazoglou, Efstratios; Kakaboura, Afrodite

    2016-01-01

    To assess the repeatability and accuracy of three dental color-matching devices under standardized and freehand measurement conditions. Two shade guides (Vita Classical A1-D4, Vita; and Vita Toothguide 3D-Master, Vita), and three color-matching devices (Easyshade, Vita; SpectroShade, MHT Optic Research; and ShadeVision, X-Rite) were used. Five shade tabs were selected from the Vita Classical A1-D4 (A2, A3.5, B1, C4, D3), and five from the Vita Toothguide 3D-Master (1M1, 2R1.5, 3M2, 4L2.5, 5M3) shade guides. Each shade tab was recorded 15 continuous, repeated times with each device under two different measurement conditions (standardized, and freehand). Both qualitative (color shade) and quantitative (L, a, and b) color characteristics were recorded. The color difference (ΔE) of each recorded value with the known values of the shade tab was calculated. The repeatability of each device was evaluated by the coefficient of variance. The accuracy of each device was determined by comparing the recorded values with the known values of the reference shade tab (one sample t test; α = 0.05). The agreement between the recorded shade and the reference shade tab was calculated. The influence of the parameters (devices and conditions) on the parameter ΔE was investigated (two-way ANOVA). Comparison of the devices was performed with Bonferroni pairwise post-hoc analysis. Under standardized conditions, repeatability of all three devices was very good, except for ShadeVision with Vita Classical A1-D4. Accuracy ranged from good to fair, depending on the device and the shade guide. Under freehand conditions, repeatability and accuracy for Easyshade and ShadeVision were negatively influenced, but not for SpectroShade, regardless of the shade guide. Based on the total of the color parameters assessed per device, SpectroShade was the most reliable of the three color-matching devices studied.

  12. Three-dimensional illusion thermal device for location camouflage.

    Science.gov (United States)

    Wang, Jing; Bi, Yanqiang; Hou, Quanwen

    2017-08-08

    Thermal metamaterials, proposed in recent years, provide a new method to manipulate the energy flux in heat transfer, and result in many novel thermal devices. In this paper, an illusion thermal device for location camouflage in 3-dimensional heat conduction regime is proposed based on the transformation thermodynamics. The heat source covered by the device produces a fake signal outside the device, which makes the source look like appearing at another position away from its real position. The parameters required by the device are deduced and the method is validated by simulations. The possible scheme to obtain the thermal conductivities required in the device by composing natural materials is supplied, and the influence of some problems in practical fabrication process of the device on the effect of the camouflage is also discussed.

  13. Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes

    International Nuclear Information System (INIS)

    Wei, Youxiu; Chen, Mu; Liu, Weiming; Li, Lei; Yan, Yue

    2017-01-01

    Highlights: •ECDs based on NiO and WO 3 films using different electrolytes were fabricated. •Effect of different electrolytes on films and ECDs was investigated. •Applied voltage distribution on NiO and WO 3 electrodes in an ECD was studied. •Voltage distribution on films was unbalanced and associated with electrolyte. •Films have different impedance behavior in different states and electrolytes. -- Abstract: Electrochromic devices (ECDs) with different liquid electrolytes were fabricated using NiO film as counter electrode, WO 3 film as working electrode. The effect of liquid electrolytes containing different lithium salts (LiClO 4 , LiPF 6 , LiTFSI) on films and ECDs was investigated, such as transmittance change, charge density, memory effect and cyclic stability. Films or ECDs using LiPF 6 electrolyte have excellent electrochromic properties but low cyclic stability, compared with LiClO 4 and LiTFSI electrolytes. In order to deeply understand the effect of electrolyte on films and devices, the voltage distribution of films based on an analog cell and electrochemical impedance spectroscopy (EIS) were measured and analyzed in different lithium salts electrolytes. Results show that voltage distribution and EIS characteristics of films have obvious difference in liquid LiClO 4 , LiPF 6 and LiTFSI electrolytes. Voltage distribution on NiO and WO 3 films is unbalanced and the impedance of films in bleached and colored states is different in the same electrolyte.

  14. Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO{sub 3} (B = Ti, Hf, Zr, Si, Ge, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Camilo, A. [Department of Physics, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@uepg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-11-15

    First-principles calculations were performed in the framework of Density Functional Theory (DFT) within hybrid functional (B3LYP) to study the electronic structure and magnetic properties of new ilmenite FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) materials. In particular, the magnetic exchange interaction between Fe{sup 2+} layers is dependent on the interlayer distance and it can be controlled by ionic radius of B-site cation. Thus, Fe(Ti, Si, Ge)O{sub 3} are antiferromagnetic materials, while Fe(Zr, Hf, Sn)O{sub 3} are ferromagnetic. We also argue that antiferromagnetic materials and FeZrO{sub 3} are convectional semiconductors, whereas FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior, making them promising candidates for spintronic devices. - Highlights: • We study electronic structure and magnetism of new FeBO{sub 3} (B=Ti, Hf, Zr, Si, Ge, Sn) ilmenite materials. • We found that magnetic ordering of Fe-based ilmenite materials can be controlled by size of B-site cation. • Fe(Ti, Zr, Si, Ge)O{sub 3} are convectional semiconductors. • FeHfO{sub 3} and FeSnO{sub 3} exhibit intrinsic half-metallic behavior with potential application for spintronic devices.

  15. Elimination device for metal impurities

    International Nuclear Information System (INIS)

    Yanagisawa, Ko.

    1982-01-01

    Purpose: To enable reuse of adsorbing materials by eliminating Fe 3 O 4 films reduced with adsorbing performance by way of electrolytic polishing and then forming fresh membranes using high temperature steams. Constitution: An elimination device is provided to a coolant clean-up system of a reactor for eliminating impurities such as cobalt. The elimination device comprises adsorbing materials made of stainless steel tips or the likes having Fe 3 O 4 films. The adsorbing materials are regenerated by applying an electric current between grid-like cathode plates and anode plates to leach out the Fe 3 O 4 films, washing out the electrolytic solution by cleaning water and then applying steams at high temperature onto the adsorbing materials to thereby form fresh Fe 3 O 4 films again thereon. The regeneration of the adsorbing materials enables to eliminate Co 60 and the like in the primary coolant efficiently. (Moriyama, K.)

  16. Poster: Virtual reality interaction using mobile devices

    KAUST Repository

    Aseeri, Sahar A.; Acevedo-Feliz, Daniel; Schulze, Jü rgen P.

    2013-01-01

    such as current state-of-the-art devices is often difficult and could diminish the immersion and sense of presence when it comes to 3D virtual environment tasks. We have developed new methods to perform different kinds of interactions using a mobile device (e.g. a

  17. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  18. Thermo-optical properties of 1H[3,4-b] quinoline films used in electroluminescent devices

    Science.gov (United States)

    Jaglarz, Janusz; Kępińska, Mirosława; Sanetra, Jerzy

    2014-06-01

    Electroluminescence cells with H[3,4-b] quinoline layers are promising devices for a blue light emitting EL diode. This work measured the optical reflectance as a function of temperature in copolymers PAQ layers deposited on Si crystalline substrate. Using the extended Cauchy dispersion model of the film refractive index we determined the thermo-optical coefficients for quinoline layers in the temperature range of 76-333 K from combined ellipsometric and spectrofotometric studies. The obtained values of thermo-optical coefficients of thin PAQ film, were negative and ranged in 5-10 × 10-4 [1/K].

  19. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  20. Intra- and interfractional patient motion for a variety of immobilization devices

    International Nuclear Information System (INIS)

    Engelsman, Martijn; Rosenthal, Stanley J.; Michaud, Susan L.; Adams, Judith A.; Schneider, Robert J.; Bradley, Stephen G.; Flanz, Jacob B.; Kooy, Hanne M.

    2005-01-01

    The magnitude of inter- and intrafractional patient motion has been assessed for a broad set of immobilization devices. Data was analyzed for the three ordinal directions - left-right (x), sup-inf (y), and ant-post (z) - and the combined spatial displacement. We have defined 'rigid' and 'nonrigid' immobilization devices depending on whether they could be rigidly and reproducibly connected to the treatment couch or not. The mean spatial displacement for intrafractional motion for rigid devices is 1.3 mm compared to 1.9 mm for nonrigid devices. The modified Gill-Thomas-Cosman frame performed best at controlling intrafractional patient motion, with a 95% probability of observing a three-dimensional (3D) vector length of motion (v 95 ) of less than 1.8 mm, but could not be evaluated for interfractional motion. All other rigid and nonrigid immobilization devices had a v 95 of more than 3 mm for intrafractional patient motion. Interfractional patient motion was only evaluated for the rigid devices. The mean total interfractional displacement was at least 3.0 mm for these devices while v 95 was at least 6.0 mm

  1. Design Engineering in Surgery. How to Design, Test and Market Surgical Devices Made With 3D Printing?

    Science.gov (United States)

    Rodríguez García, José Ignacio; Sierra Velasco, José Manuel; Villazón Suárez, Marta; Cabrera Pereira, Ana; Sosa, Valentina; Cortizo Rodríguez, José Luis

    2018-04-01

    Industry 4.0 offers new development opportunities for surgeons. Computer-aided design and 3D printing allow for the creation of prototypes and functional end products. Until now, it was difficult for new devices to get to the manufacturing phase. Nowadays, the main limitations are our creativity, available spaces to test our creations and obtaining financing. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Firewood processing devices in Finland 2002

    International Nuclear Information System (INIS)

    Mutikainen, A.; Kaerhae, K.

    2002-01-01

    , there were a plentiful 3,200 units sold in 2001, of which three-quarters were cross-cutting-splitting devices. The value of the sales was 6.6 million euros A sub-project of the TTS Institute research project 'Management and development of the firewood production process', is the 'Productivity, costs and development targets of new firewood processing devices'. The subproject researches different manufacturers' firewood processing devices. (orig.)

  3. A new barbed device for repair of flexor tendons.

    LENUS (Irish Health Repository)

    Hirpara, K M

    2012-02-01

    We split 100 porcine flexor tendons into five groups of 20 tendons for repair. Three groups were repaired using the Pennington modified Kessler technique, the cruciate or the Savage technique, one using one new device per tendon and the other with two new devices per tendon. Half of the tendons received supplemental circumferential Silfverskiold type B cross-stitch. The repairs were loaded to failure and a record made of their bulk, the force required to produce a 3 mm gap, the maximum force applied before failure and the stiffness. When only one device was used repairs were equivalent to the Pennington modified Kessler for all parameters except the force to produce a 3 mm gap when supplemented with a circumferential repair, which was equivalent to the cruciate. When two devices were used the repair strength was equivalent to the cruciate repair, and when the two-device repair was supplemented with a circumferential suture the force to produce a 3 mm gap was equivalent to that of the Savage six-strand technique.

  4. 3D Room Visualization on Android Based Mobile Device (with Philips™’ Surround Sound Music Player

    Directory of Open Access Journals (Sweden)

    Durio Etgar

    2013-01-01

    Full Text Available This project’s specifically purposed as a demo application, so anyone can get the experience of a surround audio room without having to physically involved to it, with a main idea of generating a 3D surround sound room scenery coupled with surround sound in a handier package, namely, a “Virtual Listen Room”. Virtual Listen Room set a foundation of an innovative visualization that later will be developed and released as one of way of portable advertisement. This application was built inside of Android environment. Android device had been chosen as the implementation target, since it leaves massive development spaces and mostly contains essential components needed on this project, including graphic processor unit (GPU. Graphic manipulation can be done using an embedded programming interface called OpenGL ES, which is planted in all Android devices generally. Further, Android has a Accelerometer Sensor that is needed to be coupled with scene to produce a dynamic movement of the camera. Surround sound effect can be reached with a decoder from Phillips called MPEG Surround Sound Decoder. To sum the whole project, we got an application with sensor-dynamic 3D room visualization coupled with Philips’ Surround Sound Music Player. We can manipulate several room’s properties; Subwoofer location, Room light, and how many speakers inside it, the application itself works well despite facing several performance problems before, later to be solved.

  5. Effective modelling of acoustofluidic devices

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld

    , and 3) acoustic streaming patterns in the devices considered in model 2). 1) We derive an effective model for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced......, and of the momentum transfer between the particles and the suspension. 2) We derive a full 3D numerical model for the coupled acoustic fields in mm-sized water-filled glass capillaries, calculating pressure field in the liquid coupled to the displacement field of the glass channel, taking into account mixed standing...... for the acoustic field in glass capillary devices derived in 2), we make an effective model for calculating the acoustic streaming velocity in 3D. To do this, we use recent analytical results that allows calculation of the acoustic streaming field resulting from channel-wall oscillations in any direction...

  6. On the stability of a variety of organic photovoltaic devices by IPCE and in situ IPCE analyses - the ISOS-3 inter-laboratory collaboration

    OpenAIRE

    Terán-Escobar, Gerardo; Krebs, Frederik C.; Lira-Cantú, Mónica

    2012-01-01

    This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISempty set-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determin...

  7. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    International Nuclear Information System (INIS)

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123 I brain SPECT obtained by the hybrid SPECT/CT device. We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123 I solution (20.1 kBq/mL) in the gray matter region and with K 2 HPO 4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity

  8. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-04-12

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). How baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (> 69 %, PET = 90 %), and good stability when subjected to cyclic loading (> 1000 cycles, better than indium tin oxide film) during processing. Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5×5 sensing pixels).

  9. QoE-Aware Device-to-Device Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Liang ZHOU

    2015-08-01

    Full Text Available Multimedia services over mobile device-to-device (D2D networks has recently received considerable attention. In this scenario, each device is equipped with a cellular communication interface, as well as a D2D interface over a shared medium. In this work, we study the performance properties of the mobile D2D communications in the framework of user satisfaction, and develop a fully distributed QoE-aware multimedia communication scheme (QAMCS. Specifically, we translate the opportunistic multimedia communications issue into a stochastic optimization problem, which opens up a new degree of performance to exploit. Moreover, QAMCS is designed for a heterogeneous and dynamic environment, in which user demand, device mobility, and transmission fashion may vary across different devices and applications. Importantly, QAMCS is able to maximize the user satisfaction and only needs each device to implement its own scheme individually in the absence of a central controller.

  10. Virtual MIMO Beamforming and Device Pairing Enabled by Device-to-Device Communications for Multidevice Networks

    Directory of Open Access Journals (Sweden)

    Yeonjin Jeong

    2017-01-01

    Full Text Available We consider a multidevice network with asymmetric antenna configurations which supports not only communications between an access point and devices but also device-to-device (D2D communications for the Internet of things. For the network, we propose the transmit and receive beamforming with the channel state information (CSI for virtual multiple-input multiple-output (MIMO enabled by D2D receive cooperation. We analyze the sum rate achieved by a device pair in the proposed method and identify the strategies to improve the sum rate of the device pair. We next present a distributed algorithm and its equivalent algorithm for device pairing to maximize the throughput of the multidevice network. Simulation results confirm the advantages of the transmit CSI and D2D cooperation as well as the validity of the distributive algorithm.

  11. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Science.gov (United States)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  12. Improved charge trapping flash device with Al2O3/HfSiO stack as blocking layer

    International Nuclear Information System (INIS)

    Zheng Zhi-Wei; Huo Zong-Liang; Zhu Chen-Xin; Xu Zhong-Guang; Liu Jing; Liu Ming

    2011-01-01

    In this paper, we investigate an Al 2 O 3 /HfSiO stack as the blocking layer of a metal—oxide—nitride—oxide—silicon-type (MONOS) memory capacitor. Compared with a memory capacitor with a single HfSiO layer as the blocking layer or an Al 2 O 3 /HfO 2 stack as the blocking layer, the sample with the Al 2 O 3 /HfSiO stack as the blocking layer shows high program/erase (P/E) speed and good data retention characteristics. These improved performances can be explained by energy band engineering. The experimental results demonstrate that the memory device with an Al 2 O 3 /HfSiO stack as the blocking layer has great potential for further high-performance nonvolatile memory applications. (interdisciplinary physics and related areas of science and technology)

  13. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    Science.gov (United States)

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  14. Bruxas, demônios, monstros, fantasmas e loucura: quatro narrativas russas

    Directory of Open Access Journals (Sweden)

    Rodrigo Bittencourt

    2017-06-01

    Full Text Available Este artigo analisa quatro novelas de Gógol. Duas novelas são sobre o funcionalismo russo de baixo escalão e suas péssimas condições de vida. Elas se passam em São Petersburgo e contém desdobramentos fantásticos. Os outros dois textos têm características de narrativa folclórica e descrevem a ação de seres sobrenaturais e acontecimentos extraordinários. A vida nas pequenas aldeias ucranianas descrita por Gógol pauta-se na independência típica dos cossacos e no gozo dos prazeres. Além disso, há a integração social das mais diversas personagens, mesmo das bruxas. Trata-se de outra realidade, bem distante daquela formada pelo capitalismo moderno e pela herança de culpabilidade deixada pela moral cristã.

  15. Attacks on the Network Synchronization Systems Counteraction Method Implemented in the Software and Hardware Device «MARSH! 3.0»

    Directory of Open Access Journals (Sweden)

    Dmitry Anatolevich Melnikov

    2013-12-01

    Full Text Available This paper proposes attacks on the network synchronization systems counteraction technique, method, algorithm and realizable aspects. The network synchronization systems are included in information technology systems or networks. This method is implemented in software and hardware device (means «MARSH! 3.0» providing trusted session.

  16. Release strategies for making transferable semiconductor structures, devices and device components

    Science.gov (United States)

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  17. Electric discharge machining device for laboratories and workshops

    International Nuclear Information System (INIS)

    Lanxner, M.; Berko, A.; Ron, N.

    1976-11-01

    A simple low power electric discharge machining (EDM) device for special uses in laboratories and workshops is presented. The device includes an RC generator, an electromechanical servo 3-axis work-tool alignment system and a closed dielectric fluid circulation loop

  18. Neutronic analysis of fusion tokamak devices by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Takiyoshi, Kouji; Amano, Toshio; Kawasaki, Hiromitsu; Okuno, Koichi

    2011-01-01

    A complete 3D neutronic analysis by PHITS (Particle and Heavy Ion Transport code System) has been performed for fusion tokamak devices such as JT-60U device and JT-60 Superconducting tokamak device (JT-60 Super Advanced). The mono-energetic neutrons (E n =2.45 MeV) of the DD fusion devices are used for the neutron source in the analysis. The visual neutron flux distribution for the estimation of the port streaming and the dose rate around the fusion tokamak devices has been calculated by the PHITS. The PHITS analysis makes it clear that the effect of the port streaming of superconducting fusion tokamak device with the cryostat is crucial and the calculated neutron spectrum results by PHITS agree with the MCNP-4C2 results. (author)

  19. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  20. Class 1 devices case studies in medical devices design

    CERN Document Server

    Ogrodnik, Peter J

    2014-01-01

    The Case Studies in Medical Devices Design series consists of practical, applied case studies relating to medical device design in industry. These titles complement Ogrodnik's Medical Device Design and will assist engineers with applying the theory in practice. The case studies presented directly relate to Class I, Class IIa, Class IIb and Class III medical devices. Designers and companies who wish to extend their knowledge in a specific discipline related to their respective class of operation will find any or all of these titles a great addition to their library. Class 1 Devices is a companion text to Medical Devices Design: Innovation from Concept to Market. The intention of this book, and its sister books in the series, is to support the concepts presented in Medical Devices Design through case studies. In the context of this book the case studies consider Class I (EU) and 510(k) exempt (FDA) . This book covers classifications, the conceptual and embodiment phase, plus design from idea to PDS. These title...

  1. Heterogeneous MEMS device assembly and integration

    Science.gov (United States)

    Topart, Patrice; Picard, Francis; Ilias, Samir; Alain, Christine; Chevalier, Claude; Fisette, Bruno; Paultre, Jacques E.; Généreux, Francis; Legros, Mathieu; Lepage, Jean-François; Laverdière, Christian; Ngo Phong, Linh; Caron, Jean-Sol; Desroches, Yan

    2014-03-01

    In recent years, smart phone applications have both raised the pressure for cost and time to market reduction, and the need for high performance MEMS devices. This trend has led the MEMS community to develop multi-die packaging of different functionalities or multi-technology (i.e. wafer) approaches to fabricate and assemble devices respectively. This paper reports on the fabrication, assembly and packaging at INO of various MEMS devices using heterogeneous assembly at chip and package-level. First, the performance of a giant (e.g. about 3 mm in diameter), electrostatically actuated beam steering mirror is presented. It can be rotated about two perpendicular axes to steer an optical beam within an angular cone of up to 60° in vector scan mode with an angular resolution of 1 mrad and a response time of 300 ms. To achieve such angular performance relative to mirror size, the microassembly was performed from sub-components fabricated from 4 different wafers. To combine infrared detection with inertial sensing, an electroplated proof mass was flip-chipped onto a 256×1 pixel uncooled bolometric FPA and released using laser ablation. In addition to the microassembly technology, performance results of packaged devices are presented. Finally, to simulate a 3072×3 pixel uncooled detector for cloud and fire imaging in mid and long-wave IR, the staggered assembly of six 512×3 pixel FPAs with a less than 50 micron pixel co-registration is reported.

  2. Developing and validating a sham cupping device.

    Science.gov (United States)

    Lee, Myeong Soo; Kim, Jong-In; Kong, Jae Cheol; Lee, Dong-Hyo; Shin, Byung-Cheul

    2010-12-01

    The aims of this study were to develop a sham cupping device and to validate its use as a placebo control for healthy volunteers. A sham cupping device was developed by establishing a small hole to reduce the negative pressure after suction such that inner pressure could not be maintained in the cup. We enrolled 34 healthy participants to evaluate the validity of the sham cupping device as a placebo control. The participants were informed that they would receive either real or sham cupping and were asked which treatment they thought they had received. Other sensations and adverse events related to cupping therapy were investigated. 17 patients received real cupping therapy and 17 received sham cupping. The two groups felt similar sensations. There was a tendency for subjects to feel that real cupping created a stronger sensation than sham cupping (48.9±21.4 vs 33.3±20.3 on a 100mm visual analogue scale). There were only mild to moderate adverse events observed in both groups. We developed a new sham cupping device that seems to provide a credible control for real cupping therapy by producing little or no negative pressure. This conclusion was supported by a pilot study, but more rigorous research is warranted regarding the use of this device.

  3. EARLIEST TRIASSIC CONODONTS FROM CHITRAL, NORTHERNMOST PAKISTAN

    Directory of Open Access Journals (Sweden)

    MARIA CRISTINA PERRI

    2004-07-01

    Full Text Available Extensive tracts of very shallow water carbonates in the valleys of the Yarkhun and Mastuj rivers of Chitral (northernmost Pakistan previously though to be Permian (or Cretaceous are shown by conodonts from two horizons in sequences 110 km apart—near Torman Gol (Mastuj valley and near Sakirmul (upper Yarkhun valley—to include earliest Triassic (Scythian—Induan horizons. Both faunas have Isarcicella staeschei Dai & Zhang, Is. lobata Perri, Is. turgida (Kozur et al. and Hindeodus parvus (Kozur & Pjatakova, whereas Is. Isarcica (Huckriede has been recognised only in the Torman Gol occurrence. The presence, respectively, of Is. staeschei in the Sakirmul and Is. isarcica in the Torman Gol occurrences, allows discrimination of the staeschei and isarcica zones respectively the third and the fourth conodont biozones of the Early Triassic conodont biozonation of Perri (in Perri & Farabegoli 2003. Such faunas, consisting mainly of isarcicellids and hindeodids but lacking gondolellids, are characteristic of restricted sea environments across the Permian–Triassic boundary and in the earliest Triassic in other Tethyan areas. The conodont faunas from these two occurrences are remarkably similar, nearly contemporaneous, and indicate shallow water biofacies. They are inferred to equate with the Ailak Dolomite, a sequence of Late Permian–?Late Triassic dolostones discriminated farther up the Yarkhun valley and extending eastwards into the upper Hunza region of northernmost Pakistan. The Zait Limestone and Sakirmul carbonate sequence are consistent with extension of the previously inferred Triassic carbonate platform at least 110 km farther to the SW than previously supposed.

  4. 210Po and 210Pb trophic transfer within the phytoplankton–zooplankton–anchovy/sardine food web: a case study from the Gulf of Lion (NW Mediterranean Sea)

    International Nuclear Information System (INIS)

    Strady, Emilie; Harmelin-Vivien, Mireille; Chiffoleau, Jean François; Veron, Alain; Tronczynski, Jacek; Radakovitch, Olivier

    2015-01-01

    The transfer of 210 Po and 210 Pb in the food web of small pelagic fishes (from phytoplankton and zooplankton to anchovy Engraulis encrasicolus and sardine Sardina pilchardus) is investigated in the Gulf of Lion (GoL). We present original data of 210 Po and 210 Pb activity concentrations, C and N stable isotope ratios, measured (i) from different size classes of phytoplankton and zooplankton during spring and winter in different environments of the GoL, and (ii) in two fish species. Significant spatial patterns based on 210 Po, 210 Pb activity concentrations and 210 Po/ 210 Pb ratios in the different plankton size classes are evidenced by hierarchical clustering, both in spring and winter. This variability, also observed for C and N stable isotopes ratios, is connected to local specific pelagic habitats and hydrodynamics. The sampling strategy suggests that 210 Po bioaccumulation in the GoL remains at a constant level from the first (dominated by phytoplankton) to the second trophic level (zooplankton), while 210 Pb bioaccumulation shows an increase in winter. Based on stable N isotope ratios and 210 Po activity concentrations measured in anchovies and sardines, we evidence 210 Po bio-magnification along the trophic food web of these two planktivorous pelagic fishes. - Highlights: • 210 Po and 210 Pb activity concentrations in plankton vary up to a factor of two in the Gulf of Lion (East vs West). • 210 Po and 210 Pb variability is connected to local specific pelagic habitats. • Bio-magnification of 210 Po is evidenced in anchovy/sardine foodwebs

  5. Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Khuansiri Narajeenron

    2017-04-01

    Full Text Available Audience: The audience for this classic team-based learning (cTBL session is emergency medicine residents, faculty, and students; although this topic is applicable to internal medicine and family medicine residents. Introduction: A left ventricular assist device (LVAD is a mechanical circulatory support device that can be placed in critically-ill patients who have poor left ventricular function. After LVAD implantation, patients have improved quality of life.1 The number of LVAD patients worldwide continues to rise. Left-ventricular assist device patients may present to the emergency department (ED with severe, life-threatening conditions. It is essential that emergency physicians have a good understanding of LVADs and their complications. Objectives: Upon completion of this cTBL module, the learner will be able to: 1 Properly assess LVAD patients’ circulatory status; 2 appropriately resuscitate LVAD patients; 3 identify common LVAD complications; 4 evaluate and appropriately manage patients with LVAD malfunctions. Method: The method for this didactic session is cTBL.

  6. Chemically sensitive interfaces on SAW devices

    Energy Technology Data Exchange (ETDEWEB)

    Ricco, A.J.; Martin, S.J. [Sandia National Labs., Albuquerque, NM (United States); Crooks, R.M.; Xu, Chuanjing [Texas A and M Univ., College Station, TX (United States); Allred, R.E. [Adherent Technologies, Inc., Albuquerque, NM (United States)

    1993-11-01

    Using surface acoustic wave (SAW) devices, three approaches to the effective use of chemically sensitive interfaces that are not highly chemically selective have been examined: (1) molecular identification from time-resolved permeation transients; (2) using multifrequency SAW devices to determine the frequency dependence of analyte/film interactions; (3) use of an array of SAW devices bearing diverse chemically sensitive interfaces to produce a distinct response pattern for each analyte. In addition to their well-known sensitivity to mass changes (0.0035 monolayer of N{sub 2} can be measured), SAW devices respond to the mechanical and electronic properties of thin films, enhancing response information content but making a thorough understanding of the perturbation critical. Simultaneous measurement of changes in frequency and attenuation, which can provide the information necessary to determine the type of perturbation, are used as part of the above discrimination schemes.

  7. Reliability assessment platform for the power semiconductor devices - Study case on 3-phase grid-connected inverter application

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2017-01-01

    provide valuable reliability information based on given mission profiles and system specification is first developed and its main concept is presented. In order to facilitate the test and access to the loading and lifetime information of the power devices, a novel mission profile based stress emulator...... experimental setup is proposed and designed. The link between the stress emulator setup and the reliability tool software is highlighted. Finally, the reliability assessment platform is demonstrated on a 3-phase grid-connected inverter application study case....

  8. Accuracy of mechanical torque-limiting devices for dental implants.

    Science.gov (United States)

    L'Homme-Langlois, Emilie; Yilmaz, Burak; Chien, Hua-Hong; McGlumphy, Edwin

    2015-10-01

    A common complication in implant dentistry is unintentional implant screw loosening. The critical factor in the prevention of screw loosening is the delivery of the appropriate target torque value. Mechanical torque-limiting devices (MTLDs) are the most frequently recommended devices by the implant manufacturers to deliver the target torque value to the screw. Two types of MTLDs are available: friction-style and spring-style. Limited information is available regarding the influence of device type on the accuracy of MTLDs. The purpose of this study was to determine and compare the accuracy of spring-style and friction-style MTLDs. Five MTLDs from 6 different dental implant manufacturers (Astra Tech/Dentsply, Zimmer Dental, Biohorizons, Biomet 3i, Straumann [ITI], and Nobel Biocare) (n=5 per manufacturer) were selected to determine their accuracy in delivering target torque values preset by their manufacturers. All torque-limiting devices were new and there were 3 manufacturers for the friction-style and 3 manufacturers for the spring-style. The procedure of target torque measurement was performed 10 times for each device and a digital torque gauge (Chatillon Model DFS2-R-ND; Ametek) was used to record the measurements. Statistical analysis used nonparametric tests to determine the accuracy of the MTLDs in delivering target torque values and Bonferroni post hoc tests were used to assess pairwise comparisons. Median absolute difference between delivered torque values and target torque values of friction-style and spring-style MTLDs were not significantly different (P>.05). Accuracy of Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly different than Biohorizons torque-limiting devices (Ptorque value. Astra Tech and Zimmer Dental friction-style torque-limiting devices were significantly more accurate than Biohorizons (C) torque-limiting devices (Ptorque-limiting devices fell within ±10% of the target torque value preset by the

  9. Validation of the Samsung SBM-100A and Microlife BP 3BU1-5 wrist blood pressure measuring devices in adults according to the International Protocol.

    Science.gov (United States)

    Altunkan, Sekip; Ilman, Nevzat; Altunkan, Erkan

    2007-04-01

    A variety of automatic blood measurement devices with diverse features have been introduced to the medical markets recently. Among these devices, models that measure at the wrist have become increasingly popular in self measurements. The objective of this study was to evaluate the accuracy of the Samsung SBM-100A and Microlife BP 3BU1-5 wrist blood pressure devices against the mercury sphygmomanometer in adults according to the International Protocol criteria. Fifty-four patients over 30 years of age were studied and classified based on the International Protocol range. Blood pressure measurements at the wrist with the Samsung SBM-100A and Microlife BP 3BU1-5 were compared with the results obtained by two trained observers using a mercury sphygmomanometer. Nine sequential blood pressure measurements were taken. A total of 33 participants with randomly distributed arm circumferences were selected for both of the validation studies. During each validation study, 99 measurements were obtained for comparison from 33 participants. The first phase was performed on 15 participants and if the device passed this phase, 18 more participants were selected. Mean discrepancies and standard deviations of the device-sphygmomanometer were 0.9+/-9.2 and -2.7+/-9.3 mmHg for systolic blood pressure and -1.4+/-8.0 mmHg and 1.4+/-5.7 for diastolic blood pressure in the Samsung and Microlife study groups, respectively. The Samsung SBM-100A passed Phase 1 in 15 participants. Despite the fact that Microlife BP 3BU1-5 passed Phase 1 for diastolic pressure, it failed according to the systolic pressure criteria. Eighteen patients were added and Phase 2 was continued, in which Samsung SBM-100A failed to meet the criteria of Phases 2.1 and 2.2 for adults in systolic and diastolic blood pressure. It was found that the Microlife BP 3BU1-5 does not meet the criteria of either of Phases 2.1 and 2.2 for systolic blood pressure and Phase 2.2 for diastolic blood pressure. In this study, Samsung SBM

  10. Microsporidiosis

    Science.gov (United States)

    2011-06-01

    unicellular protists of the phylum Microsporidia.1 They are considered most closely related to the fungi,2 but customarily are dis- cussed among the...histochemically identifiable Gol- gi organelles indicate that they may be parasitically evolved degenerate protists ,73,74 microtubule gene data75,76

  11. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  12. Infliximab, adalimumab and golimumab for treating moderately to severely active ulcerative colitis after the failure of conventional therapy (including a review of TA140 and TA262): clinical effectiveness systematic review and economic model.

    Science.gov (United States)

    Archer, Rachel; Tappenden, Paul; Ren, Shijie; Martyn-St James, Marrissa; Harvey, Rebecca; Basarir, Hasan; Stevens, John; Carroll, Christopher; Cantrell, Anna; Lobo, Alan; Hoque, Sami

    2016-05-01

    Ulcerative colitis (UC) is the most common form of inflammatory bowel disease in the UK. UC can have a considerable impact on patients' quality of life. The burden for the NHS is substantial. To evaluate the clinical effectiveness and safety of interventions, to evaluate the incremental cost-effectiveness of all interventions and comparators (including medical and surgical options), to estimate the expected net budget impact of each intervention, and to identify key research priorities. Peer-reviewed publications, European Public Assessment Reports and manufacturers' submissions. The following databases were searched from inception to December 2013 for clinical effectiveness searches and from inception to January 2014 for cost-effectiveness searches for published and unpublished research evidence: MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, The Cochrane Library including the Cochrane Systematic Reviews Database, Cochrane Controlled Trials Register, Database of Abstracts of Reviews of Effects, the Health Technology Assessment database and NHS Economic Evaluation Database; ISI Web of Science, including Science Citation Index, and the Conference Proceedings Citation Index-Science and Bioscience Information Service Previews. The US Food and Drug Administration website and the European Medicines Agency website were also searched, as were research registers, conference proceedings and key journals. A systematic review [including network meta-analysis (NMA)] was conducted to evaluate the clinical effectiveness and safety of named interventions. The health economic analysis included a review of published economic evaluations and the development of a de novo model. Ten randomised controlled trials were included in the systematic review. The trials suggest that adult patients receiving infliximab (IFX) [Remicade(®), Merck Sharp & Dohme Ltd (MSD)], adalimumab (ADA) (Humira(®), AbbVie) or golimumab (GOL) (Simponi(®), MSD) were more likely to

  13. Automatic analyzing device for chlorine ion

    International Nuclear Information System (INIS)

    Sugibayashi, Shinji; Morikawa, Yoshitake; Fukase, Kazuo; Kashima, Hiromasa.

    1997-01-01

    The present invention provides a device of automatically analyzing a trance amount of chlorine ions contained in feedwater, condensate and reactor water of a BWR type power plant. Namely, zero-adjustment or span calibration in this device is conducted as follows. (1) A standard chlorine ion liquid is supplied from a tank to a mixer by a constant volume pump, and the liquid is diluted and mixed with purified water to form a standard liquid. (2) The pH of the standard liquid is adjusted by a pH adjuster. (3) The standard liquid is supplied to an electrode cell to conduct zero adjustment or span calibration. Chlorine ions in a specimen are measured by the device of the present invention as follows. (1) The specimen is supplied to a head tank through a line filter. (2) The pH of the specimen is adjusted by a pH adjuster. (3) The specimen is supplied to an electrode cell to electrically measure the concentration of the chlorine ions in the specimen. The device of the present invention can automatically analyze trance amount of chlorine ions at a high accuracy, thereby capable of improving the sensitivity, reducing an operator's burden and radiation exposure. (I.S.)

  14. Improving Device Efficiencies in Organic Photovoltaics through the Manipulation of Device Architectures and the Development of Low-Bandgap Materials

    Science.gov (United States)

    Rice, Andrew Hideo

    Over the past two decades, vast amounts of research have been conducted in the pursuit of suitable organic semiconductors to replace inorganic materials in electronic applications due to their advantages of being lightweight, flexible, and solution-processible. However, before organic photovoltaics (OPVs) can be truly competitive and commercially viable, their efficiencies must be improved significantly. In this examination, we pursue higher efficiency OPVs in two different ways. Our attempts focus on 1) altering the microstructure of devices to improve charge dissociation, charge transport, and our understanding of how these devices function, and 2) tailoring materials to achieve optimal band gaps and energy levels for use in organic electronics. First, we demonstrate how the vertical morphology of bulk heterojunction (BHJ) solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and (6,6)-phenyl C61-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the cathode. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time. X-ray photoelectron spectroscopy (XPS) and conductive and photoconductive atomic force microscopy (cAFM and pcAFM) provide detailed information about how the surface of the active layer can be influenced; this is done by tracking the concentration and alignment of P3HT and PCBM domains. Using this new procedure, devices are made with power conversion efficiencies surpassing 2%. Additionally, we show that nanowires grown in the presence of the fullerene perform differently than those that are grown and

  15. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  16. Timing resolution performance comparison of different SiPM devices

    Energy Technology Data Exchange (ETDEWEB)

    Dolinsky, Sergei, E-mail: dolinsky@ge.com; Fu, Geng; Ivan, Adrian

    2015-11-21

    Silicon photomultiplier (SiPM) devices with improved parameters were recently introduced by several vendors. In addition to published manufacturer performance specifications, different research groups have reported on measurements of the available SiPMs in different operating conditions and using different test setups. In this work we performed a consistent set of test procedures for SiPM devices from various vendors, with focus on Time-of-Flight (TOF) PET detectors applications. SiPMs from Hamamatsu (HPK), SensL, Ketek, and Excelitas were tested. The same experimental setup and procedures were used for comparison of timing resolution for small (3×3 mm{sup 2}) and large (6×6 mm{sup 2} or 4×6 mm{sup 2}) devices coupled to short (3×3×10 mm{sup 3}) and long (4×4×25 mm{sup 3}) LYSO crystals. The potential opportunities for TOF PET detectors are also evaluated.

  17. European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (5th)

    Science.gov (United States)

    1994-10-07

    Associazione Elettrotecnica e Elettronica Italia Circuiti Componente Tecnologia Elettroniche CECC CENELEC Electronic Components Committee EC The Commission...compared to the results of 2D transient device simulations in cylinder coordinates as well as to 3D transient device simulations (Table 1, 2). M3 In...non- Sabs. abs. drift charge 3.3 3.7 6.3 6.1 M Qdrft / feCM 3D diffusion 6.3 13.6 3.0 12.8 device charge simu- Qdiffl fC V M (E Wl ation "R’ L L

  18. Ferromagnetic Swimmers - Devices and Applications

    Science.gov (United States)

    Hamilton, Joshua; Petrov, Peter; Winlove, C. Peter; Gilbert, Andrew; Bryan, Matthew; Ogrin, Feodor

    2017-11-01

    Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. We propose a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. Experimentally, these devices (3.6 mm) are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters and demonstrate stable propulsion over a wide range of Reynolds numbers. Manipulation of the external magnetic field resulted in robust control over the speed and direction of propulsion. We also demonstrate our ferromagnetic swimmer working as a macroscopic prototype of a microfluidic pump. By physically tethering the swimmer, instead of swimming, the swimmer generates a directional flow of liquid around itself.

  19. Consumer sleep tracking devices: a critical review.

    Science.gov (United States)

    Lee, Jeon; Finkelstein, Joseph

    2015-01-01

    Consumer sleep tracking devices are widely advertised as effective means to monitor and manage sleep quality and to provide positive effects on overall heath. However objective evidence supporting these claims is not always readily available. The goal of this study was to perform a comprehensive review of available information on six representative sleep tracking devices: BodyMedia FIT, Fitbit Flex, Jawbone UP, Basis Band, Innovative Sleep Solutions SleepTracker, and Zeo Sleep Manager Pro. The review was conducted along the following dimensions: output metrics, theoretical frameworks, systematic evaluation, and FDA clearance. The review identified a critical lack of basic information about the devices: five out of six devices provided no supporting information on their sensor accuracy and four out of six devices provided no information on their output metrics accuracy. Only three devices were found to have related peer-reviewed articles. However in these articles wake detection accuracy was revealed to be quite low and to vary widely (BodyMedia, 49.9±3.6%; Fitbit, 19.8%; Zeo, 78.9% to 83.5%). No supporting evidence on how well tracking devices can help mitigate sleep loss and manage sleep disturbances in practical life was provided.

  20. Movable MEMS Devices on Flexible Silicon

    KAUST Repository

    Ahmed, Sally

    2013-05-05

    Flexible electronics have gained great attention recently. Applications such as flexible displays, artificial skin and health monitoring devices are a few examples of this technology. Looking closely at the components of these devices, although MEMS actuators and sensors can play critical role to extend the application areas of flexible electronics, fabricating movable MEMS devices on flexible substrates is highly challenging. Therefore, this thesis reports a process for fabricating free standing and movable MEMS devices on flexible silicon substrates; MEMS flexure thermal actuators have been fabricated to illustrate the viability of the process. Flexure thermal actuators consist of two arms: a thin hot arm and a wide cold arm separated by a small air gap; the arms are anchored to the substrate from one end and connected to each other from the other end. The actuator design has been modified by adding etch holes in the anchors to suit the process of releasing a thin layer of silicon from the bulk silicon substrate. Selecting materials that are compatible with the release process was challenging. Moreover, difficulties were faced in the fabrication process development; for example, the structural layer of the devices was partially etched during silicon release although it was protected by aluminum oxide which is not attacked by the releasing gas . Furthermore, the thin arm of the thermal actuator was thinned during the fabrication process but optimizing the patterning and etching steps of the structural layer successfully solved this problem. Simulation was carried out to compare the performance of the original and the modified designs for the thermal actuators and to study stress and temperature distribution across a device. A fabricated thermal actuator with a 250 μm long hot arm and a 225 μm long cold arm separated by a 3 μm gap produced a deflection of 3 μm before silicon release, however, the fabrication process must be optimized to obtain fully functioning

  1. Assessment of Laparoscopic Skills Performance: 2D Versus 3D Vision and Classic Instrument Versus New Hand-Held Robotic Device for Laparoscopy.

    Science.gov (United States)

    Leite, Mariana; Carvalho, Ana F; Costa, Patrício; Pereira, Ricardo; Moreira, Antonio; Rodrigues, Nuno; Laureano, Sara; Correia-Pinto, Jorge; Vilaça, João L; Leão, Pedro

    2016-02-01

    Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons' performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naïve and expert. Each participant performed 3 laparoscopic tasks-Peg transfer, Wire chaser, Knot-in 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Eleven experts and 15 naïve participants were included. Three-dimensional video helps the naïve group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naïve group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures. © The Author(s) 2015.

  2. A 3D character animation engine for multimodal interaction on mobile devices

    Science.gov (United States)

    Sandali, Enrico; Lavagetto, Fabio; Pisano, Paolo

    2005-03-01

    Talking virtual characters are graphical simulations of real or imaginary persons that enable natural and pleasant multimodal interaction with the user, by means of voice, eye gaze, facial expression and gestures. This paper presents an implementation of a 3D virtual character animation and rendering engine, compliant with the MPEG-4 standard, running on Symbian-based SmartPhones. Real-time animation of virtual characters on mobile devices represents a challenging task, since many limitations must be taken into account with respect to processing power, graphics capabilities, disk space and execution memory size. The proposed optimization techniques allow to overcome these issues, guaranteeing a smooth and synchronous animation of facial expressions and lip movements on mobile phones such as Sony-Ericsson's P800 and Nokia's 6600. The animation engine is specifically targeted to the development of new "Over The Air" services, based on embodied conversational agents, with applications in entertainment (interactive story tellers), navigation aid (virtual guides to web sites and mobile services), news casting (virtual newscasters) and education (interactive virtual teachers).

  3. An Interference Mitigation Scheme of Device-to-Device Communications for Sensor Networks Underlying LTE-A.

    Science.gov (United States)

    Kim, Jeehyeong; Karim, Nzabanita Abdoul; Cho, Sunghyun

    2017-05-10

    Device-to-Device (D2D) communication technology has become a key factor in wireless sensor networks to form autonomous communication links among sensor nodes. Many research results for D2D have been presented to resolve different technical issues of D2D. Nevertheless, the previous works have not resolved the shortage of data rate and limited coverage of wireless sensor networks. Due to bandwidth shortages and limited communication coverage, 3rd Generation Partnership Project (3GPP) has introduced a new Device-to-Device (D2D) communication technique underlying cellular networks, which can improve spectral efficiencies by enabling the direct communication of devices in proximity without passing through enhanced-NodeB (eNB). However, to enable D2D communication in a cellular network presents a challenge with regard to radio resource management since D2D links reuse the uplink radio resources of cellular users and it can cause interference to the receiving channels of D2D user equipment (DUE). In this paper, a hybrid mechanism is proposed that uses Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to handle inter-cell interference caused by cellular user equipments (CUEs) to D2D receivers (DUE-Rxs), reusing the same resources at the cell edge area. In our case, DUE-Rxs are considered as victim nodes and CUEs as aggressor nodes, since our primary target is to minimize inter-cell interference in order to increase the signal to interference and noise ratio (SINR) of the target DUE-Rx at the cell edge area. The numerical results show that the interference level of the target D2D receiver (DUE-Rx) decreases significantly compared to the conventional FFR at the cell edge. In addition, the system throughput of the proposed scheme can be increased up to 60% compared to the conventional FFR.

  4. Additive manufacturing of lab-on-a-chip devices: promises and challenges

    Science.gov (United States)

    Zhu, Feng; Macdonald, Niall P.; Cooper, Jonathan M.; Wlodkowic, Donald

    2013-12-01

    This work describes a preliminary investigation of commercially available 3D printing technologies for rapid prototyping and low volume fabrication of Lab-on-a-Chip devices. The main motivation of the work was to use off-the-shelf 3D printing methods in order to rapidly and inexpensively build microfluidic devices with complex geometric features and reduce the need to use clear room environment and conventional microfabrication techniques. Both multi-jet modelling (MJM) and stereolithography (SLA) processes were explored. MJM printed devices were fabricated using a HD3500+ (3D Systems) high-definition printer using a thermo-polymer VisiJet Crystal (3D Systems) substratum that allows for a z-axis resolution of 16 μm and 25 μm x-y accuracy. SLA printed devices were produced using a Viper Pro (3D Systems) stereolithography system using Watershed 11122XC (DSM Somos) and Dreve Fototec 7150 Clear (Dreve Otoplastik GmbH) resins which allow for a z-axis resolution of 50 μm and 25 μm x-y accuracy. Fabrication results compared favourably with other forms of rapid prototyping such as laser cut PMMA devices and PDMS moulded microfluidic devices of the same design. Both processes allowed for fabrication of monolithic, optically transparent devices with features in the 100 μm range requiring minimal post-processing. Optical polymer qualities following different post-processing methods were also tested in both brightfield and fluorescence imaging of transgenic zebrafish embryos. Finally, we show that only ethanol-treated Dreve Fototec 7150 Clear resign proved to be non-toxic to human cell lines and fish embryos in fish toxicity assays (FET) requiring further investigation of 3D printing materials.

  5. PLASMA DEVICE

    Science.gov (United States)

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  6. Topological Material-Based Spin Devices

    Science.gov (United States)

    Zhang, Minhao; Wang, Xuefeng

    Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.

  7. A Novel MOS Nanowire Gas Sensor Device (S3 and GC-MS-Based Approach for the Characterization of Grated Parmigiano Reggiano Cheese

    Directory of Open Access Journals (Sweden)

    Veronica Sberveglieri

    2016-12-01

    Full Text Available To determine the originality of a typical Italian Parmigiano Reggiano cheese, it is crucial to define and characterize its quality, ripening period, and geographical origin. Different analytical techniques have been applied aimed at studying the organoleptic and characteristic volatile organic compounds (VOCs profile of this cheese. However, most of the classical methods are time consuming and costly. The aim of this work was to illustrate a new simple, portable, fast, reliable, non-destructive, and economic sensor device S3 based on an array of six metal oxide semiconductor nanowire gas sensors to assess and discriminate the quality ranking of grated Parmigiano Reggiano cheese samples and to identify the VOC biomarkers using a headspace SPME-GC-MS. The device could clearly differentiate cheese samples varying in quality and ripening time when the results were analyzed by multivariate statistical analysis involving principal component analysis (PCA. Similarly, the volatile constituents of Parmigiano Reggiano identified were consistent with the compounds intimated in the literature. The obtained results show the applicability of an S3 device combined with SPME-GC-MS and sensory evaluation for a fast and high-sensitivity analysis of VOCs in Parmigiano Reggiano cheese and for the quality control of this class of cheese.

  8. Cu(In,Ga)Se{sub 2} absorber thinning and the homo-interface model: Influence of Mo back contact and 3-stage process on device characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, E.; Arzel, L.; Tomassini, M.; Barreau, N., E-mail: nicolas.barreau@univ-nantes.fr [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Zabierowski, P. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL 00-662 Warsaw (Poland); Fuertes Marrón, D. [Instituto de Energía Solar–ETSIT, Technical University of Madrid, Ciudad Universitaria s.n., 28040 Madrid (Spain)

    2014-08-21

    Thinning the absorber layer is one of the possibilities envisaged to further decrease the production costs of Cu(In,Ga)Se{sub 2} (CIGSe) thin films solar cell technology. In the present study, the electronic transport in submicron CIGSe-based devices has been investigated and compared to that of standard devices. It is observed that when the absorber is around 0.5 μm-thick, tunnelling enhanced interface recombination dominates, which harms cells energy conversion efficiency. It is also shown that by varying either the properties of the Mo back contact or the characteristics of 3-stage growth processing, one can shift the dominating recombination mechanism from interface to space charge region and thereby improve the cells efficiency. Discussions on these experimental facts led to the conclusions that 3-stage process implies the formation of a CIGSe/CIGSe homo-interface, whose location as well as properties rule the device operation; its influence is enhanced in submicron CIGSe based solar cells.

  9. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging

    Directory of Open Access Journals (Sweden)

    Bernhard Ströbel

    2018-05-01

    Full Text Available Digitization of natural history collections is a major challenge in archiving biodiversity. In recent years, several approaches have emerged, allowing either automated digitization, extended depth of field (EDOF or multi-view imaging of insects. Here, we present DISC3D: a new digitization device for pinned insects and other small objects that combines all these aspects. A PC and a microcontroller board control the device. It features a sample holder on a motorized two-axis gimbal, allowing the specimens to be imaged from virtually any view. Ambient, mostly reflection-free illumination is ascertained by two LED-stripes circularly installed in two hemispherical white-coated domes (front-light and back-light. The device is equipped with an industrial camera and a compact macro lens, mounted on a motorized macro rail. EDOF images are calculated from an image stack using a novel calibrated scaling algorithm that meets the requirements of the pinhole camera model (a unique central perspective. The images can be used to generate a calibrated and real color texturized 3Dmodel by ‘structure from motion’ with a visibility consistent mesh generation. Such models are ideal for obtaining morphometric measurement data in 1D, 2D and 3D, thereby opening new opportunities for trait-based research in taxonomy, phylogeny, eco-physiology, and functional ecology.

  10. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  11. Directly coupled direct current superconducting quantum interference device magnetometers based on ramp-edge Ag:YBa2Cu3O7-x/PrBa2Cu3O7-x/Ag:YBa2Cu3O7-x junctions

    International Nuclear Information System (INIS)

    Jia, Q.X.; Yan, F.; Mombourquette, C.; Reagor, D.

    1998-01-01

    Directly coupled dc superconducting quantum interference device (SQUID) magnetometers on LaAlO 3 substrates were fabricated using ramp-edge superconductor/normal-metal/superconductor junctions, where Ag-doped YBa 2 Cu 3 O 7-x was used for the electrode and PrBa 2 Cu 3 O 7-x for the normal-metal barrier. A flux noise of 8x10 -6 Φ 0 Hz -1/2 at 10 kHz measured with a dc bias current was achieved at 75 K, which corresponded to a field sensitivity of 400fTHz -1/2 for a magnetometer with a pick-up loop area of 8.5mmx7.5mm. Most significantly, the noise floor increased at lower frequencies with a frequency dependence slightly less than 1/f. The field noise of the SQUID magnetometers increased by only 25% after cycling the devices from zero field to 500 mG. In a static earth close-quote s magnetic field background, the field noise of the SQUID magnetometers increased by less than a factor of 2. copyright 1998 American Institute of Physics

  12. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices

    DEFF Research Database (Denmark)

    Genina, Natalja; Hollander, Jenny; Jukarainen, Harri

    2016-01-01

    The main purpose of this work was to investigate the printability of different grades of ethylene vinyl acetate (EVA) copolymers as new feedstock material for fused-deposition modeling (FDM™)-based 3D printing technology in fabrication of custom-made T-shaped intrauterine systems (IUS......) and subcutaneous rods (SR). The goal was to select an EVA grade with optimal properties, namely vinyl acetate content, melting index, flexural modulus, for 3D printing of implantable prototypes with the drug incorporated within the entire matrix of the medical devices. Indomethacin was used as a model drug...... affected the drug release profiles from the filaments and printed prototype products: faster release from the prototypes over 30 days in the in vitro tests. To conclude, this study indicates that certain grades of EVA were applicable feedstock material for 3D printing to produce drug-loaded implantable...

  13. Incore inspection device

    International Nuclear Information System (INIS)

    Ogisu, Tatsuki; Taguchi, Kosei.

    1995-01-01

    The device of the present invention can inspect surfaces of equipments in reactor water in a nuclear reactor in a state of atmospheric air. Namely, an inspection device is movable forwardly and backwardly in a water-proof vessel. An annular sucker with pleats is disposed to the outer side of a lid of the water-proof vessel. A television camera for an under water monitoring is disposed to the inner side of the lid of the water-proof vessel by way of a partitioning wall with lid. Transferring screws are disposed at the back and on the side of the water-proof vessel. In the device having such a constitution, (1) the inside of the water-proof vessel is at first made water-tight by closing the partitioning wall with lid, (2) the back and the side screws are operated by the guide of the underwater monitoring television camera, to transfer the water-proof vessel to the surface of the reactor core to be inspected, (3) the annular sucker with pleats is urged on the surface to be inspected by the back screw, to fix the water-proof vessel, (4) reactor water in a space of the annular sucker with pleats is discharged and replaced with air, and (5) the lid of the partition wall with lid is opened and the inspection device is disposed at a position of the underwater monitoring television camera, to inspect the surface to be inspected in a state of atmospheric air. (I.S.)

  14. Power generating device

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Toshihiro

    1989-05-02

    The existing power generating device consisting of static components only lacks effective measures to utilize solar energy and maintain power generation, hence it is inevitable to make the device much larger and more complicated in order to utilize it as the primary power source for artificial satellites. In view of the above, in order to offer a power generating device useful for the primary power source for satellites which is simple and can keep power generation by solar energy, this invention proposes a power generating device composed of the following elements: (1) a rectangular parallelopiped No. II superconductor plate; (2) a measure to apply a magnetic field to one face of the above superconductor plate; (3) a measure to provide a temperature difference within the range between the starting temperature and the critical temperature of superconductivity to a pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure; (4) a measure to provide an electrode on each of the other pair of faces meeting at right angles with the face to which the magnetic field was applied by the above measure and form a closed circuit by connecting the each electrode above to each of a pair of electrodes of the load respectively; and (5) a switching measure which is installed in the closed circuit prepared by the above measure and shuts off the closed circuit when the direction of the electric current running the above closed circuit is reversed. 6 figs.

  15. Validation of Omron RS8, RS6, and RS3 home blood pressure monitoring devices, in accordance with the European Society of Hypertension International Protocol revision 2010.

    Science.gov (United States)

    Takahashi, Hakuo; Yoshika, Masamichi; Yokoi, Toyohiko

    2013-01-01

    Allowing patients to measure their blood pressure at home is recognized as being of clinical value. However, it is not known how often these measurements are taken correctly. Blood pressure monitors for home use fall into two types based on the position of the cuff, ie, at the upper arm or the wrist. The latter is particularly convenient, as measurements can be taken fully clothed. This study aimed to evaluate the performance of the wrist-type blood pressure monitors Omron RS8 (HEM-6310F-E), Omron RS6 (HEM-6221-E), and Omron RS3 (HEM-6130-E). A team of three trained doctors validated the performance of these devices by comparing the measurements obtained from these devices with those taken using a standard mercury sphygmomanometer. All the devices met the validation requirements of the European Society of Hypertension International Protocol revision 2010. The difference in blood pressure readings between the tested device and the standard mercury sphygmomanometer was within 3 mmHg, which is acceptable according to the European Society of Hypertension guidelines. All the home devices tested were found to be suitable for measuring blood pressure at home because their performance fulfilled the requirement of the guidelines.

  16. Prospects of radiation sterilization of medical devices

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari

    1992-01-01

    Since radiation sterilization was first introduced in the United States in 1956 in the field of disposable medical devices, it has become an indispensable technique for sterilization because of the following reasons: (1) introduction into dialyzers, (2) introduction in medical device makers, (3) development of disposable medical devices associated with developing both high molecular chemistry and cool sterilization, (4) rationality of sterilization process, and (5) problems of sterilization with ethylene oxide gas. To promote the further development of radiation sterilization, the following items are considered necessary: (1) an increase in the number of facilities for radiation sterilization, (2) recommendation of the international standardization of sterilization method, (3) decrease in radiation doses associated with sterilization, (4) development of electron accelerators and bremsstrahlung equipments for radiation sources, and (5) simplification of sterilization process management. Factors precluding the development of radiation sterilization are: (1) development of other methods than radiation sterilization, (2) development of technique for sterile products, (3) high facility cost, (4) high irradiation cost, (5) benefits and limits of sterilization markets, and (6) influences of materials. (N.K.)

  17. Medical Devices; General Hospital and Personal Use Devices; Classification of the Ultraviolet Radiation Chamber Disinfection Device. Final order.

    Science.gov (United States)

    2015-11-20

    The Food and Drug Administration (FDA or the Agency) is classifying the ultraviolet (UV) radiation chamber disinfection device into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the UV radiation chamber disinfection device classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  18. Journal of Science and Technology (Zambia) - Vol 1, No 2 (1997)

    African Journals Online (AJOL)

    Plasma and Erythrocyte Magnesium responses to oral glucose loading in healthy African subjects · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. SC Melodu, FAA Adeniyi, GOL Taylor, 50-55. http://dx.doi.org/10.4314/jost.v1i2.17539 ...

  19. An afterloading brachytherapy device utilizing thermoplastic material

    International Nuclear Information System (INIS)

    Kim, T.H.; Gerbi, J.B.; Deibel, F.C.; Khan, F.M.; Priest, J.R.

    1989-01-01

    An afterloading brachytherapy device for treatment of residual cancer in an enucleated orbit with two cesium-137 sources was designed using a thermoplastic material, Aquaplast. The device consists of a face-mask support held in place with elastic bands around the head and an acrylic afterloading applicator. The device is very easy to make, holds the sources firmly in place, allows full mobility of the patient, and gives excellent dose distribution to the target area. It was easily tolerated by a 7-year-old child during the 50 h of treatment. (author). 3 refs.; 4 figs

  20. Realization of synaptic learning and memory functions in Y2O3 based memristive device fabricated by dual ion beam sputtering

    Science.gov (United States)

    Das, Mangal; Kumar, Amitesh; Singh, Rohit; Than Htay, Myo; Mukherjee, Shaibal

    2018-02-01

    Single synaptic device with inherent learning and memory functions is demonstrated based on a forming-free amorphous Y2O3 (yttria) memristor fabricated by dual ion beam sputtering system. Synaptic functions such as nonlinear transmission characteristics, long-term plasticity, short-term plasticity and ‘learning behavior (LB)’ are achieved using a single synaptic device based on cost-effective metal-insulator-semiconductor (MIS) structure. An ‘LB’ function is demonstrated, for the first time in the literature, for a yttria based memristor, which bears a resemblance to certain memory functions of biological systems. The realization of key synaptic functions in a cost-effective MIS structure would promote much cheaper synapse for artificial neural network.

  1. A New Kind of Blue Hybrid Electroluminescent Device.

    Science.gov (United States)

    Wang, Junling; Li, Zhuan; Liu, Chunmei

    2016-04-01

    Bright blue Electroluminescence come from a ITO/BBOT doped silica (6 x 10(-3) M) made by a sol-gel method/Al driven by AC with 500 Hz at different voltages and Gaussian analysis under 55 V showed that blue emission coincidenced with typical triple emission from BBOT. This kind of device take advantage of organics (BBOT) and inorganics (silica). Electroluminescence from a single-layered sandwiched device consisting of blue fluorescent dye 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene (BBOT) doped silica made by sol-gel method was investigated. A number of concentrations of hybrid devices were prepared and the maxium concentration was 6 x 10(-3) M. Blue electroluminescent (EL) always occurred above a threshold field 8.57 x 10(5) V/cm (30 V) at alternating voltage at 500 HZ. The luminance of the devices increased with the concentration of doped BBOT, but electroluminescence characteristics were different from a single molecule's photoluminescence properties of triple peaks. When analyzing in detail direct-current electroluminescence devices of pure BBOT, a single peak centered at 2.82 eV appeared with the driven voltage increase, which is similar to the hybrid devices. Comparing Gaussian decomposition date between two kinds of devices, the triple peak characteristic of BBOT was consistent. It is inferred that BBOT contributed EL of the hybrid devices mainly and silica may account for a very small part. Meanwhile the thermal stability of matrix silica was measured by Thermal Gravity-Mass Spectroscopy (TG-MS). There is 12 percent weight loss from room temperature to 1000 °C and silica has about 95% transmittance. So the matric silica played an important role in thermal stability and optical stability for BBOT. In addition, this kind of blue electroluminescence device can take advantages of organic materials BBOT and inorganic materials silica. This is a promising way to enrich EL devices, especially enriching inorganic EL color at a low cost.

  2. Tire deflation device

    Science.gov (United States)

    Barker, Stacey G [Idaho Falls, ID

    2010-01-05

    A tire deflation device includes (1) a component having a plurality of bores, (2) a plurality of spikes removably insertable into the plurality of bores and (3) a keeper within each among the plurality of bores, the keeper being configured to contact a sidewall surface of a spike among the plurality of spikes and to exert force upon the sidewall surface. In an embodiment, the tire deflation device includes (a) a component including a bore in a material, the bore including a receiving region, a sidewall surface and a base surface, (b) a channel extending from the sidewall surface into the material, (c) a keeper having a first section housed within the channel and a second section which extends past the sidewall surface into the receiving region, and (d) a spike removably insertable into the bore.

  3. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  4. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  5. Vibration-type particle separation device with piezoceramic vibrator

    Science.gov (United States)

    Ooe, Katsutoshi; Doi, Akihiro

    2008-12-01

    During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.

  6. High voltage semiconductor devices and methods of making the devices

    Energy Technology Data Exchange (ETDEWEB)

    Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit

    2018-01-23

    A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.

  7. Device for flattening statistically distributed pulses

    International Nuclear Information System (INIS)

    Il'kanaev, G.I.; Iskenderov, V.G.; Rudnev, O.V.; Teller, V.S.

    1976-01-01

    The description is given of a device that converts the series of statistically distributed pulses into a pseudo-uniform one. The inlet pulses switch over the first counter, and the second one is switched over by the clock pulses each time the uniformity of the counters' states is violated. This violation is recorded by the logic circuit which passes to the output the clock pulses in the amount equal to that of the pulses that reached the device inlet. Losses at the correlation between the light velocity and the sampling rate up to 0.3 do not exceed 0.7 per cent for the memory of pulse counters 3, and 0.035 per cent for memory 7

  8. Optical integrated circuit of a 40-channel electrooptical LiNbO/sub 3/ modulator for data-processing devices

    Energy Technology Data Exchange (ETDEWEB)

    Bukreev, I.N.; Venediktov, V.V.; Gorbatovskii, M.V.; Demina, T.P.; Kashintsev, M.A.

    1988-06-01

    An optical integrated circuit for a 40-channel electrooptical phase modulator has been developed. The channel waveguides are prepared through Ti thermal diffusion into a Y-cut LiNbO/sub 3/ substrate. The half-wave voltage for each channel is 1.6 V at a modulating frequency bandwidth of 0-290 MHz. Results are presented from an experiment concerning the use of the modulator as an input device for the optical processing of radio signals.

  9. Absorption Related to Hand-Held Devices in Data Mode

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    The human body has an influence on the radiation from handheld devices like smartphones, tablets and laptops, part of the energy is absorbed and the spatial distribution of the radiated part is modified. Previous studies of whole body absorp- tion have mainly been numerical or related to talk mode....... In the present paper an experimental study involving four volunteers and three different devices is performed from 0.5 to 3 GHz. The devices are a laptop, a tablet, and a smartphone all held in the lap. The 3D distribution of radiation is measured. Comparing the integrated power in the case of a person present...

  10. Process control device

    International Nuclear Information System (INIS)

    Hayashi, Toshifumi; Kobayashi, Hiroshi.

    1994-01-01

    A process control device comprises a memory device for memorizing a plant operation target, a plant state or a state of equipments related with each other as control data, a read-only memory device for storing programs, a plant instrumentation control device or other process control devices, an input/output device for performing input/output with an operator, and a processing device which conducts processing in accordance with the program and sends a control demand or a display demand to the input/output device. The program reads out control data relative to a predetermined operation target, compares and verify them with actual values to read out control data to be a practice premise condition which is further to be a practice premise condition if necessary, thereby automatically controlling the plant or requiring or displaying input. Practice presuming conditions for the operation target can be examined succesively in accordance with the program without constituting complicated logical figures and AND/OR graphs. (N.H.)

  11. 3D Virtual CH Interactive Information Systems for a smart web browsing experience for desktop PCs and mobile devices

    Directory of Open Access Journals (Sweden)

    A. Scianna

    2018-05-01

    Full Text Available Recently, the diffusion of knowledge on Cultural Heritage (CH has become an element of primary importance for its valorization. At the same time, the diffusion of surveys based on UAV Unmanned Aerial Vehicles (UAV technologies and new methods of photogrammetric reconstruction have opened new possibilities for 3D CH representation. Furthermore the recent development of faster and more stable internet connections leads people to increase the use of mobile devices. In the light of all this, the importance of the development of Virtual Reality (VR environments applied to CH is strategic for the diffusion of knowledge in a smart solution. In particular, the present work shows how, starting from a basic survey and the further photogrammetric reconstruction of a cultural good, is possible to built a 3D CH interactive information system useful for desktop and mobile devices. For this experimentation the Arab-Norman church of the Trinity of Delia (in Castelvetrano-Sicily-Italy has been adopted as case study. The survey operations have been carried out considering different rapid methods of acquisition (UAV camera, SLR camera and smartphone camera. The web platform to publish the 3D information has been built using HTML5 markup language and WebGL JavaScript libraries (Three.js libraries. This work presents the construction of a 3D navigation system for a web-browsing of a virtual CH environment, with the integration of first person controls and 3D popup links. This contribution adds a further step to enrich the possibilities of open-source technologies applied to the world of CH valorization on web.

  12. An open source device for operant licking in rats.

    Science.gov (United States)

    Longley, Matthew; Willis, Ethan L; Tay, Cindy X; Chen, Hao

    2017-01-01

    We created an easy-to-use device for operant licking experiments and another device that records environmental variables. Both devices use the Raspberry Pi computer to obtain data from multiple input devices (e.g., radio frequency identification tag readers, touch and motion sensors, environmental sensors) and activate output devices (e.g., LED lights, syringe pumps) as needed. Data gathered from these devices are stored locally on the computer but can be automatically transferred to a remote server via a wireless network. We tested the operant device by training rats to obtain either sucrose or water under the control of a fixed ratio, a variable ratio, or a progressive ratio reinforcement schedule. The lick data demonstrated that the device has sufficient precision and time resolution to record the fast licking behavior of rats. Data from the environment monitoring device also showed reliable measurements. By providing the source code and 3D design under an open source license, we believe these examples will stimulate innovation in behavioral studies. The source code can be found at http://github.com/chen42/openbehavior.

  13. Conceptual radiation shielding design of superconducting tokamak fusion device by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Kawasaki, Hiromitsu; Okuno, Koichi

    2010-01-01

    A complete 3D neutron and photon transport analysis by Monte Carlo transport code system PHITS (Particle and Heavy Ion Transport code System) have been performed for superconducting tokamak fusion device such as JT-60 Super Advanced (JT-60SA). It is possible to make use of PHITS in the port streaming analysis around the devices for the tokamak fusion device, the duct streaming analysis in the building where the device is installed, and the sky shine analysis for the site boundary. The neutron transport analysis by PHITS makes it clear that the shielding performance of the superconducting tokamak fusion device with the cryostat is improved by the graphical results. From the standpoint of the port streaming and the duct streaming, it is necessary to calculate by 3D Monte Carlo code such as PHITS for the neutronics analysis of superconducting tokamak fusion device. (author)

  14. Hip supporting device

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a device for limiting movements in one or more anatomical joints, such as a device for limiting movement in the human hip joint after hip replacement surgery. This is provided by a device for limiting movement in the human hip joint, said device comprising: at least...

  15. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  16. Electronic adherence monitoring device performance and patient acceptability: a randomized control trial.

    Science.gov (United States)

    Chan, Amy Hai Yan; Stewart, Alistair William; Harrison, Jeff; Black, Peter Nigel; Mitchell, Edwin Arthur; Foster, Juliet Michelle

    2017-05-01

    To investigate the performance and patient acceptability of an inhaler electronic monitoring device in a real-world childhood asthma population. Children 6 to 15 years presenting with asthma to the hospital emergency department and prescribed inhaled corticosteroids were included. Participants were randomized to receive a device with reminder features enabled or disabled for use with their preventer. Device quality control tests were conducted. Questionnaires on device acceptability, utility and ergonomics were completed at six months. A total of 1306 quality control tests were conducted; 84% passed pre-issue and 87% return testing. The most common failure reason was actuation under-recording. Acceptability scores were high, with higher scores in the reminder than non-reminder group (median, 5 th -95 th percentile: 4.1, 3.1-5.0 versus 3.7, 2.3-4.8; p 90%) rated the device easy to use. Feedback was positive across five themes: device acceptability, ringtone acceptability, suggestions for improvement, effect on medication use, and effect on asthma control. This study investigates electronic monitoring device performance and acceptability in children using quantitative and qualitative measures. Results indicate satisfactory reliability, although failure rates of 13-16% indicate the importance of quality control. Favorable acceptability ratings support the use of these devices in children.

  17. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  18. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  19. Migrated Essure permanent birth control device: sonographic findings.

    Science.gov (United States)

    Khati, Nadia Juliet; Gorodenker, Joseph; Brindle, Kathleen Ann

    2014-05-01

    We report a case of a migrated Essure permanent birth control device. The correct diagnosis was made on conventional two-dimensional and three-dimensional pelvic sonography 7 years after placement of the device when the patient presented with persistent right-sided pain. The 3-month post placement hysterosalpingogram had shown an appropriately occluded right fallopian tube but had overlooked the abnormal position of the right Essure device, which was too proximal and extending slightly in the uterine cavity. Copyright © 2013 Wiley Periodicals, Inc.

  20. 78 FR 68714 - Medical Devices; Ophthalmic Devices; Classification of the Scleral Plug

    Science.gov (United States)

    2013-11-15

    ... amendments), as ``preamendments devices.'' FDA classifies these devices after the Agency takes the following.... FDA-2012-N-1238] Medical Devices; Ophthalmic Devices; Classification of the Scleral Plug AGENCY: Food... scleral plugs in order to provide a reasonable assurance of safety and effectiveness of the device. The...

  1. Next-Generation Multifunctional Electrochromic Devices.

    Science.gov (United States)

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy

  2. Silicon nano crystal-based non-volatile memory devices

    International Nuclear Information System (INIS)

    Ng, C.Y.; Chen, T.P.; Sreeduth, D.; Chen, Q.; Ding, L.; Du, A.

    2006-01-01

    In this work, we have investigated the performance and reliability of a Flash memory based on silicon nanocrystal synthesized with very-low energy ion beams. The devices are fabricated with a conventional CMOS process and the size of the nanocrystal is ∼ 4 nm as determined from TEM measurement. Electrical properties of the devices with a tunnel oxide of either 3 nm or 7 nm are evaluated. The devices exhibit good endurance up to 10 5 W/E cycles even at the high operation temperature of 85 deg. C for both the tunnel oxide thicknesses. For the thicker tunnel oxide (i.e., the 7-nm tunnel oxide), a good retention performance with an extrapolated 10-year memory window of ∼ 0.3 V (or ∼ 20% of charge lose after 10 years) is achieved. However, ∼ 70% of charge loss after 10 years is expected for the thinner tunnel oxide (i.e., the 3-nm tunnel oxide)

  3. Cerebrovascular accidents in patients with a ventricular assist device.

    Science.gov (United States)

    Tsukui, Hiroyuki; Abla, Adib; Teuteberg, Jeffrey J; McNamara, Dennis M; Mathier, Michael A; Cadaret, Linda M; Kormos, Robert L

    2007-07-01

    A cerebrovascular accident is a devastating adverse event in a patient with a ventricular assist device. The goal was to clarify the risk factors for cerebrovascular accident. Prospectively collected data, including medical history, ventricular assist device type, white blood cell count, thrombelastogram, and infection, were reviewed retrospectively in 124 patients. Thirty-one patients (25%) had 48 cerebrovascular accidents. The mean ventricular assist device support period was 228 and 89 days in patients with and without cerebrovascular accidents, respectively (P cerebrovascular accidents occurred within 4 months after implantation. Actuarial freedom from cerebrovascular accident at 6 months was 75%, 64%, 63%, and 33% with the HeartMate device (Thoratec Corp, Pleasanton, Calif), Thoratec biventricular ventricular assist device (Thoratec Corp), Thoratec left ventricular assist device (Thoratec), and Novacor device (WorldHeart, Oakland, Calif), respectively. Twenty cerebrovascular accidents (42%) occurred in patients with infections. The mean white blood cell count at the cerebrovascular accident was greater than the normal range in patients with infection (12,900/mm3) and without infection (9500/mm3). The mean maximum amplitude of the thrombelastogram in the presence of infection (63.6 mm) was higher than that in the absence of infection (60.7 mm) (P = .0309). The risk of cerebrovascular accident increases with a longer ventricular assist device support period. Infection may activate platelet function and predispose the patient to a cerebrovascular accident. An elevation of the white blood cell count may also exacerbate the risk of cerebrovascular accident even in patients without infection. Selection of device type, prevention of infection, and meticulous control of anticoagulation are key to preventing cerebrovascular accident.

  4. Device for making firewood; Laite polttopuun tekoon

    Energy Technology Data Exchange (ETDEWEB)

    Jaatinen, E [Haemeen Teraesrakenne Oy, Haemeenlinna (Finland)

    1997-12-31

    By present equipment it is impossible to make firewood with single-stage processing of the trees. Pulpwood and logs are collected from the forests, but energy wood has to be collected separately and processed in a different place. The aim of the project was to develop a device, by which it is possible to make firewood on the felling site using single-stage processing, and packing the firewood directly to large packages ready for delivery or utilization. It is possible to make e.g. either 3 m long pulpwood or small-logs by the device. A farming tractor is used as traction and power supply unit of the device. The method is especially useful in first thinnings. A study and costs analysis were made for the basis of the research in Evo unit of the Haeme Polytechnic Institute of Technology. Logic control of the device was developed in the Haemeenlinna unit of the Haeme Polytechnic. Two prototype devices have been made. The test results have shown that firewood production speed will be multiplied in comparison to the previous devices, and the out-look of firewood is remarkable better. The method has been patented

  5. Device for making firewood; Laite polttopuun tekoon

    Energy Technology Data Exchange (ETDEWEB)

    Jaatinen, E. [Haemeen Teraesrakenne Oy, Haemeenlinna (Finland)

    1996-12-31

    By present equipment it is impossible to make firewood with single-stage processing of the trees. Pulpwood and logs are collected from the forests, but energy wood has to be collected separately and processed in a different place. The aim of the project was to develop a device, by which it is possible to make firewood on the felling site using single-stage processing, and packing the firewood directly to large packages ready for delivery or utilization. It is possible to make e.g. either 3 m long pulpwood or small-logs by the device. A farming tractor is used as traction and power supply unit of the device. The method is especially useful in first thinnings. A study and costs analysis were made for the basis of the research in Evo unit of the Haeme Polytechnic Institute of Technology. Logic control of the device was developed in the Haemeenlinna unit of the Haeme Polytechnic. Two prototype devices have been made. The test results have shown that firewood production speed will be multiplied in comparison to the previous devices, and the out-look of firewood is remarkable better. The method has been patented

  6. Air-deployable oil spill sampling devices review phase 2 testing. Volume 1

    International Nuclear Information System (INIS)

    Hawke, L.; Dumouchel, A.; Fingas, M.; Brown, C.E.

    2007-01-01

    SAIC Canada tested air deployable oil sampling devices for the Emergencies Science and Technology Division of Environment Canada in order to determine the applicability and status of these devices. The 3 devices tested were: Canada's SABER (sampling autonomous buoy for evidence recovery), the United States' POPEIE (probe for oil pollution evidence in the environment); and, Sweden's SAR Floatation 2000. They were tested for buoyancy properties, drift behaviour and sampler sorbent pickup ratios. The SAR and SABER both had lesser draft and greater freeboard, while the POPEIE had much greater draft than freeboard. All 3 devices could be used for oil sample collection in that their drift characteristics would allow for the SABER and SAR devices to be placed upwind of the slick while the POPEIE device could be placed downwind of an oil spill. The sorbent testing revealed that Sefar sorbent and Spectra sorbent used in the 3 devices had negative pickup ratios for diesel but performance improved as oil viscosity increased. Both sorbents are inert and capable of collecting oil in sufficient volumes for consistent fingerprinting analysis. 10 refs., 8 tabs., 8 figs

  7. 21 CFR 864.9195 - Blood mixing devices and blood weighing devices.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood mixing devices and blood weighing devices. 864.9195 Section 864.9195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That...

  8. Thermal design of an irradiation device with cobalt

    International Nuclear Information System (INIS)

    Parkansky, David; Halpert, Silvia G.; Vazquez, Luis A.

    1999-01-01

    The thermal behavior of a device to transport 60 Co rods has been calculated. The device has been designed to be also used to radio sterilize medical supplies and hospital wastes. The calculations show that, in normal conditions, the maximum temperature of the external surface of the device is 55 C and that of the shielding lead is 110 C. In fire conditions, without taking into account the radiation of heath to or from the combustion gases, the lead does not reach the melting point. If the gases are taken into account, only 6.3 % of the lead is melted down. The transport-irradiation device complies with the IAEA recommendations on the safe transport of radioactive material

  9. Rush for cash crops and forest protection

    DEFF Research Database (Denmark)

    Vongvisouk, Thoumthone; Broegaard, Rikke Brandt; Mertz, Ole

    2016-01-01

    In many countries with large tracts of tropical forests, there is a dual focus on enhancing forest protection and increasing commercial agriculture for economic development. Laos is a case in point for this development as the Government of Laos (GoL) has a strong commitment to economic growth, wh...

  10. Effect of atomic layer deposited Al2O3:ZnO alloys on thin-film silicon photovoltaic devices

    Science.gov (United States)

    Abdul Hadi, Sabina; Dushaq, Ghada; Nayfeh, Ammar

    2017-12-01

    In this work, we present the effects of the Al2O3:ZnO ratio on the optical and electrical properties of aluminum doped ZnO (AZO) layers deposited by atomic layer deposition, along with AZO application as the anti-reflective coating (ARC) layer and in heterojunction configurations. Here, we report complex refractive indices for AZO layers with different numbers of aluminum atomic cycles (ZnO:Al2O3 = 1:0, 39:1, 19:1, and 9:1) and we confirm their validity by fitting models to experimental data. Furthermore, the most conductive layer (ZnO:Al2O3 = 19:1, conductivity ˜4.6 mΩ cm) is used to fabricate AZO/n+/p-Si thin film solar cells and AZO/p-Si heterojunction devices. The impact of the AZO layer on the photovoltaic properties of these devices is studied by different characterization techniques, resulting in the extraction of recombination and energy band parameters related to the AZO layer. Our results confirm that AZO 19:1 can be used as a low cost and effective conductive ARC layer for solar cells. However, AZO/p-Si heterojunctions suffer from an insufficient depletion region width (˜100 nm) and recombination at the interface states, with an estimated potential barrier of ˜0.6-0.62 eV. The work function of AZO (ZnO:Al2O3 = 19:1) is estimated to be in the range between 4.36 and 4.57 eV. These material properties limit the use of AZO as an emitter in Si solar cells. However, the results imply that AZO based heterojunctions could have applications as low-cost photodetectors or photodiodes, operating under relatively low reverse bias.

  11. Sealing device

    Science.gov (United States)

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  12. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  13. Reliability and accuracy of four dental shade-matching devices.

    Science.gov (United States)

    Kim-Pusateri, Seungyee; Brewer, Jane D; Davis, Elaine L; Wee, Alvin G

    2009-03-01

    There are several electronic shade-matching instruments available for clinical use, but the reliability and accuracy of these instruments have not been thoroughly investigated. The purpose of this in vitro study was to evaluate the reliability and accuracy of 4 dental shade-matching instruments in a standardized environment. Four shade-matching devices were tested: SpectroShade, ShadeVision, VITA Easyshade, and ShadeScan. Color measurements were made of 3 commercial shade guides (Vitapan Classical, Vitapan 3D-Master, and Chromascop). Shade tabs were placed in the middle of a gingival matrix (Shofu GUMY) with shade tabs of the same nominal shade from additional shade guides placed on both sides. Measurements were made of the central region of the shade tab positioned inside a black box. For the reliability assessment, each shade tab from each of the 3 shade guide types was measured 10 times. For the accuracy assessment, each shade tab from 10 guides of each of the 3 types evaluated was measured once. Differences in reliability and accuracy were evaluated using the Standard Normal z test (2 sided) (alpha=.05) with Bonferroni correction. Reliability of devices was as follows: ShadeVision, 99.0%; SpectroShade, 96.9%; VITA Easyshade, 96.4%; and ShadeScan, 87.4%. A significant difference in reliability was found between ShadeVision and ShadeScan (P=.008). All other comparisons showed similar reliability. Accuracy of devices was as follows: VITA Easyshade, 92.6%; ShadeVision, 84.8%; SpectroShade, 80.2%; and ShadeScan, 66.8%. Significant differences in accuracy were found between all device pairs (Preliability (over 96%), indicating predictable shade values from repeated measurements. However, there was more variability in accuracy among devices (67-93%), and differences in accuracy were seen with most device comparisons.

  14. Development of new damping devices for piping

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe

    1991-01-01

    An increase of the damping ratio is known to be very effective for the seismic design of a piping system. Increasing the damping ratio and reducing the seismic response of the piping system, the following three types of damping devices for piping systems are introduced: (1) visco-elastic damper, (2) elasto-plastic damper and (3) compact dynamic damper. The dynamic characteristics of these damping devices were investigated by the component test and the applicability of them to the piping system was confirmed by the vibration test using a three dimensional piping model. These damping devices are more effective than mechanical snubbers to reduce the vibration of the piping system. (author)

  15. TPA device for demonstration

    International Nuclear Information System (INIS)

    1980-02-01

    The TPA (torus plasma for amature) is a small race-trac type device made by the technical service division to demonstrate basic properties of plasma such as electron temperature, conductivity, effect of helical field for toroidal drift, and shape of plasma in mirror and cusp magnetic field in linear section. The plasmas are produced by RF discharge (-500W) and/or DC discharge (-30 mA) within glass discharge tube. Where major radius is 50 cm, length of linear section is 50 cm, toroidal magnetic field is 200 gauss. The device has been designed to be compact with only 100 V power source (-3.2 KW for the case without helical field) and to be full automatic sequence of operation. (author)

  16. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT.

    Science.gov (United States)

    Ludlow, J B; Davies-Ludlow, L E; Brooks, S L; Howerton, W B

    2006-07-01

    Cone beam computed tomography (CBCT), which provides a lower dose, lower cost alternative to conventional CT, is being used with increasing frequency in the practice of oral and maxillofacial radiology. This study provides comparative measurements of effective dose for three commercially available, large (12'') field-of-view (FOV), CBCT units: CB Mercuray, NewTom 3G and i-CAT. Thermoluminescent dosemeters (TLDs) were placed at 24 sites throughout the layers of the head and neck of a tissue-equivalent human skull RANDO phantom. Depending on availability, the 12'' FOV and smaller FOV scanning modes were used with similar phantom positioning geometry for each CBCT unit. Radiation weighted doses to individual organs were summed using 1990 (E(1990)) and proposed 2005 (E(2005 draft)) ICRP tissue weighting factors to calculate two measures of whole-body effective dose. Dose as a multiple of a representative panoramic radiography dose was also calculated. For repeated runs dosimetry was generally reproducible within 2.5%. Calculated doses in microSv [corrected] (E(1990), E(2005 draft)) were NewTom3G (45, 59), i-CAT (135, 193) and CB Mercuray (477, 558). These are 4 to 42 times greater than comparable panoramic examination doses (6.3 microSv [corrected] 13.3 mSv). Reductions in dose were seen with reduction in field size and mA and kV technique factors. CBCT dose varies substantially depending on the device, FOV and selected technique factors. Effective dose detriment is several to many times higher than conventional panoramic imaging and an order of magnitude or more less than reported doses for conventional CT.

  17. Percutaneous Transcatheter PDA Device Closure in Infancy

    International Nuclear Information System (INIS)

    Ullah, M.; Sultan, M.; Akhtar, K.; Sadiq, N.; Akbar, H.

    2014-01-01

    Objective: To evaluate the results and complications associated with transcatheter closure of patent ductus arteriosus (PDA) in infants. Study Design: Quasi-experimental study. Place and Duration of Study: Paediatric Cardiology Department of Armed Forces Institute of Cardiology / National Institute of Heart Diseases (AFIC/NIHD), Rawalpindi, from December 2010 to June 2012. Methodology: Infants undergoing transcatheter device closure of PDA were included. All patients were evaluated by experienced Paediatric Cardiologists with 2-D echocardiography and Doppler before the procedure. Success of closure and complications were recorded. Results: The age of patients varied from 05 - 12 months and 31 (56.4%) were females. Out of the 55 infants, 3 (5.4%) were not offered device closure after aortogram (two large tubular type ducts and one tiny duct, considered unsuitable for device closure); while in 50 (96.1%) patients out of remaining 52, the duct was successfully closed with transcatheter PDA device or coil. In one infant, device deployment resulted in acquired coarctation, necessitating device retrieval by Snare followed by surgical duct interruption and another patient had non-fatal cardiac arrest during device deployment leading to abandonment of procedure and subsequent successful surgical interruption. Local vascular complications occurred in 12 (21.8%) of cases and all were satisfactorily treated. Conclusion: Transcatheter device closure of PDA in infants was an effective procedure in the majority of cases; however, here were considerable number of local access site vascular complications. (author)

  18. Safety syringes and anti-needlestick devices in orthopaedic surgery.

    Science.gov (United States)

    Sibbitt, Wilmer L; Band, Philip A; Kettwich, Lawrence G; Sibbitt, Cristina R; Sibbitt, Lori J; Bankhurst, Arthur D

    2011-09-07

    The American Academy of Orthopaedic Surgery (AAOS), The Joint Commission, the Occupational Safety and Health Administration (OSHA), and the Needlestick Safety and Prevention Act encourage the integration of safety-engineered devices to prevent needlestick injuries to health-care workers and patients. We hypothesized that safety syringes and needles could be used in outpatient orthopaedic injection and aspiration procedures. The study investigated the orthopaedic uses and procedural idiosyncrasies of safety-engineered devices, including (1) four safety needles (Eclipse, SafetyGlide, SurGuard, and Magellan), (2) a mechanical safety syringe (RPD), (3) two automatic retractable syringes (Integra, VanishPoint), (4) three manual retractable syringes (Procedur-SF, Baksnap, Invirosnap), and (5) three shielded syringes (Safety-Lok, Monoject, and Digitally Activated Shielded [DAS] Syringe). The devices were first tested ex vivo, and then 1300 devices were used for 425 subjects undergoing outpatient arthrocentesis, intra-articular injections, local anesthesia, aspiration biopsy, and ultrasound-guided procedures. During the clinical observation, there were no accidental needlesticks (0 needlesticks per 1300 devices). Safety needles could be successfully used on a Luer syringe but were limited to ≤1.5 in (≤3.81 cm) in length and the shield could interfere with sonography. The mechanical safety syringes functioned well in all orthopaedic procedures. Automatic retractable syringes were too small for arthrocentesis of the knee, and the plunger blew out and prematurely collapsed with high-pressure injections. The manual retractable syringes and shielded syringes could be used with conventional needles for most orthopaedic procedures. The most effective and reliable safety devices for orthopaedic syringe procedures are shielded safety needles, mechanical syringes, manual retractable syringes, and shielded syringes, but not automatic retractable syringes. Even when adopting

  19. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    Science.gov (United States)

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  20. Second generation wave energy device - the clam concept

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, N.W.

    1981-01-01

    A device concept is presented which has arisen from a system approach adopted by a research group with considerable experience in the discipline of wave energy. The Clam, which can be classified as a spine-based pneumatic terminator, is deemed to be a second generation wave energy device in that it tries to utilize system components already identified as attractive, while at the same time avoiding known problem areas. A working model of this wave power device at an engineering scale is discussed for trials in real waves. 3 refs.