WorldWideScience

Sample records for gokin yosetsu tsugite

  1. Fatigue life estimation of welded joints of an aluminium alloy under superimposed random load waves (follow-up report). Effects of high frequency components; Jujo random kajuka ni okeru aluminium gokin yosetsu tsugite no hiro jumyo suitei (zokuho). Koshuha seibun no eikyo

    Takahashi, I.; Maenaka, H.; Takada, A. [Ship Research Inst., Tokyo (Japan)

    1996-12-31

    In order to examine fatigue behavior of boxing welded joints of anticorrosion aluminum A 5083 P-O alloy, the residual stress measurements, static loading tests, elastic finite element analyses, constant amplitude fatigue tests, and random fatigue tests were conducted. For a load wave in the random loading fatigue tests, a direct current component, a zero-mean narrow band random process, and a high frequency component were combined and superimposed, to examine the effect of the high frequency component and the effect of the stress cycle count method and the mean stress correction on the life estimation. For the fatigue analysis, a reference stress, such as that considering the structural stress concentration, was proved effective in reducing the amount of scattering in the fatigue test results and in improving the life estimation accuracy. Accordingly, for the actual scale measurements, it is insufficient only to measure the stress at points far from the crack initiation place. It is required to analyze the fatigue by measuring the reference stress same as the basic data acquisition tests in the laboratory. 4 refs., 21 figs., 4 tabs.

  2. Fatigue life estimation of welded joints of an aluminium alloy under superimposed random load waves (follow-up report). Effects of high frequency components; Jujo random kajuka ni okeru aluminium gokin yosetsu tsugite no hiro jumyo suitei (zokuho). Koshuha seibun no eikyo

    Takahashi, I; Maenaka, H; Takada, A [Ship Research Inst., Tokyo (Japan)

    1997-12-31

    In order to examine fatigue behavior of boxing welded joints of anticorrosion aluminum A 5083 P-O alloy, the residual stress measurements, static loading tests, elastic finite element analyses, constant amplitude fatigue tests, and random fatigue tests were conducted. For a load wave in the random loading fatigue tests, a direct current component, a zero-mean narrow band random process, and a high frequency component were combined and superimposed, to examine the effect of the high frequency component and the effect of the stress cycle count method and the mean stress correction on the life estimation. For the fatigue analysis, a reference stress, such as that considering the structural stress concentration, was proved effective in reducing the amount of scattering in the fatigue test results and in improving the life estimation accuracy. Accordingly, for the actual scale measurements, it is insufficient only to measure the stress at points far from the crack initiation place. It is required to analyze the fatigue by measuring the reference stress same as the basic data acquisition tests in the laboratory. 4 refs., 21 figs., 4 tabs.

  3. Fatigue strength of laser welded joint sheet; Laser yosetsu tsugite no hiro kyodo

    Fujii, A; Yoshimura, T; Tsuboi, M; Takasago, T; Nishio, T [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In this paper, fatigue strength of laser welded butt joint has been investigated. In order to obtain the influence of underfill and pitting, fatigue test was conducted with different sheet thickness and mechanical properties. Fatigue crack initiated at underfill and pitting in the weld metal. Stress concentration factor and hardness of the weld metal were considered to estimate fatigue limit. However, hardness of the weld metal has no significant effect on fatigue strength. As a result, fatigue strength was well estimated by hardness of base metal and stress concentration factor calculated from the shape of underflll and pitting. 7 refs., 9 figs., 5 tabs.

  4. Welding robot package; Arc yosetsu robot package

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  5. Hydrogen storage alloy for a battery; Denchiyo suiso kyuzo gokin

    Saito, N.; Takahashi, M.; Sasai, T. [Japan Metals and Chemicals Co. Ltd., Tsukuba (Japan)

    1997-11-18

    Cobalt contained in a hydrogen storage alloy has an effect to improve a cycle life, but it gives a problem of inferior discharge characteristics. Moreover, cobalt is a rather expensive constituent and therefore, it is desirable to suppress its use as far as possible. This invention aims to present a hydrogen storage alloy with a long service life and high discharge characteristics for a negative electrode of a hydrogen battery without containing a large amount of cobalt. The hydrogen storage alloy of this invention has a composition of a general formula: RNi(a)Co(b)Al(c)Mn(d)Fe(e), where R is a mixture of rare earth elements and La content in this alloy is 25 to 70wt%, 3.7{<=}a{<=}4.0, 0.1{<=}b{<=}0.4, 0.20{<=}c{<=}0.4, 0.30{<=}d{<=}0.45, 0.2{<=}e{<=}0.4, 0.5{<=}b+e{<=}0.7 and 5.0{<=}a+b+c+d+e{<=}5.1. 1 tab.

  6. Study on grout-filled coupling steel sleeve; Kokan sleeve wo mochiita grout jutenshiki tekkin tsugite ni kansuru kenkyu

    Hayashi, Y. [Osaka University, Osaka (Japan)

    1997-06-01

    Newly designed grout-filled coupling sleeve is discussed, which uses as the sleeve an electric resistance welded tube with protrusions formed in a checker pattern on its inner wall and is capable of using various premixed grouting materials available on the market. Specimens are subjected to uniaxial tensile loading and positive/negative cyclic loading, and the impact of various factors on the basic performance of the specimens and their stress/distortion characteristics at local spots in the reinforcing bar are disclosed. In the positive/negative cyclic loading in the plastic region, however, such findings are not obtained. In view of the stress/distortion characteristics at local spots in the reinforcing bar, a method is proposed for estimating the coupling strength and fracture type. A method for estimating the deformation behavior of the coupling, however, is not proposed. Investigations are conducted into the manufacture and installation of the grout holding framework, coupling fixing jigs, plugs, etc., and it is found that precasting should be studied in the future. 38 refs., 156 figs., 30 tabs.

  7. Welding mechanization in shipyard CIM; Zosen ni okeru yosetsu no jidoka robot ka CIM ka

    Miyazaki, T. [Hitachi Zosen Corp., Osaka (Japan)

    1997-12-01

    This paper explains development and examples of application of automated welding devices from a viewpoint of an element technology constituting computer integrated manufacturing (CIM), based on the history of modernization of shipyards that has been achieved to date. In the first step of promoting the modernization, elevating cutting accuracy in the uppermost stream process was thought a starting point of rationalization. What have been achieved therefrom are adoption of the most advanced NC plasma cutting machine, and improvement in the computer aided system for the cutting machines. In addition, a twenty-electrode line welder has been developed, which does not create angle deformation in welding longerons, and can be operated even by unskilled workers. The welder has successfully realized a construction method in which robots can be applied more easily. Further developments have been made on a robot to weld cells, advanced CAD/CAM operation techniques which are linked with data from design, an automatic one-side welding device which can achieve a speed 2.5 times greater than by conventional devices, and an automation device for three-dimensionally bent blocks, whose automation has been regarded difficult. 11 figs., 1 tab.

  8. Mechanized and robotized welding in shipbuilding; Zosen ni okeru yosetsu no jidoka robot ka

    Kanda, Y. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-12-01

    Large-scale ships such as VLCC are built at the Kure No.1 Works of IHI (Ishikawajima-Harima Heavy Industry). This paper introduces current status of mechanized and robotized welding at the works. For the sub-assembly with short weld length and horizontal fillet, simplified automatic welders are used in which mag-welding method using CO2 is adopted. The frequent wound welding of member ends can be automatically conducted using welders developed by IHI. In the large-scale assembly processes, remarkable rationalization and highly accurate assembly of flat plate welding have been promoted. Tankers, container ships, and bulk carriers can be treated at the same time. Teaching times of welding robots can be greatly reduced by a technique called parametric treatment. In the future, it is essential to enhance the accuracy of members by introducing the laser cutting during machining processes. Completely self-type mechanization is required as well as large-output laser welding and sensor technology. 3 refs., 12 figs., 2 tabs.

  9. Production method of hydrogen storage alloy electrode and hydrogen storage alloy for rechageable battery; Suiso kyuzo gokin denkyoku oyobi chikudenchiyo suiso kyuzo gokin no seizo hoho

    Mizutaki, F.; Ishimaru, M.

    1995-04-07

    This invention relates to the hydrogen storage alloy electrode in which the misch metal-nickel system hydrogen storage alloy is employed. The grain of the hydrogen storage alloy is controlled so as to reduce the dendrite cell size. Since the hydrogen storage alloy having such small dendrite cell size has no part where the metal structure is too brittle, the alloy has a sufficient mechanical strength. It can stand for the swell and shrink stress associated with the sorption and desorption of hydrogen. The disintegration, therefore, due to the cracking of the alloy is hardly to take place. In addition, the quenching of molten alloy at a cooling rate of 1000{degree}C/sec or faster suppresses the occurrence of segregation of any alloy element at the grain boundary, making it possible to produce the homogeneous and mechanically strong alloy. In other words, it can be achieved to produce a hydrogen storage alloy electrode having an excellent cycle property. 4 figs., 1 tab.

  10. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Miura, E [Tohoku University, Sendai (Japan); Yoshimi, K; Hanada, S [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  11. Fiscal 2000 achievement report on development of high-efficiency high-reliability welding technology through improvement on welding techniques; 2000 nendo yosetsu gijutsu no kodoka ni yoru kokoritsu koshinraisei yosetsu gijutsu no kaihatsu seika hokokusho

    NONE

    2001-04-01

    Efforts are made to develop a welding design support system capable of increasing reliability and enhancing welding efficiency. Activities are conducted in the six fields of (1) the development of welding process simulation models, (2) development of welded section structure simulation models, (3) development of simulation models for predicting welding caused deformation, (4) integration of the models, (5) analysis of the welding phenomenon, and (6) the elucidation of the defect generation mechanism. In field (1), efforts are made to develop an arc plasma model, a molten pool convective heat transportation model, and a welding process model. In the effort to develop an arc plasma model, studies are made about a stationary axisymmetric arc in its steady state and about a constitutive equation and computation algorithm for developing a model in which a tungsten electrode (cathode) and an arc plasma welding pool (anode) are integrated. Furthermore, the simulation outcomes are experimentally verified. Satisfactory models are obtained as far as qualitative properties are concerned. (NEDO)

  12. Application of laser cladding to the aeroengine component. Koku engine buhin eno laser nikumori yosetsu no tekiyo

    Morita, A [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1991-08-01

    Keeping the pace with recent development and application of laser cladding, hard-facing is used more frequently on turbine blades made of superalloys used in aeroengines. This paper explains the basic principles and features of laser hard-facing technique, welding parameters, and examples of practical use. Examples of practical use include application to turbine blades used in ALF502R-5 turbo fan engines for commuter aircraft and high-pressure turbine blades used in RB211 turbo fan engines for large passenger aircraft. In the former engine, improvement of abrasion resistance was intended at the shroud section where blades are in contact with each other, for which inconel was used as the base material and CO-group alloy as the welding material. The welding used a powder supply system with a laser generator oscillating CO{sub 2} at 5 kW and employing a beam collecting mirror plus scanner to attain a beam covering wider width. Faces with higher performance were obtained than by the conventional TIG welding, and the finishing time was decreased largely. 2 refs., 9 figs., 3 tabs.

  13. Treatment of hydrogen storage alloy for battery; Denchiyo suiso kyuzo gokin no shori hoho

    Nagata, T.; Negi, N.; Kaminaka, Takeshita, Y.

    1997-03-28

    At present, Ni-Cd battery is mainly used for the power source of portable AV devices and back-up power source of computer memory. From an environmental point of view, however, Ni-hydrogen battery in which hydrogen storage alloy is used instead of Cd as for the negative electrode has been developed. The productivity of Ni-hydrogen battery is not so high because it takes a very long time to activate the battery after it is assembled. This invention solves the problem. According to the invention, the hydrogen storage alloy containing Ni is immersed in a non-oxidizing acid aqueous solution containing dissolved oxygen by 1 mg/L or less. If a large amount of dissolved oxygen is contained in the acid solution, metal appearing on the surface of alloy by the acid treatment is directly combined with the dissolved oxygen, resulting in the re-formation of metal oxide. So that the effect of oxide removal by the acid treatment is reduced. Using the treated hydrogen storage alloy in the Ni-hydrogen battery makes it possible to produce the battery which has a high initial activity and a good storage property with less self-discharge. 2 tabs.

  14. Treatment method of hydrogen storage alloy for battery; Denchiyo suiso kyuzo gokin no shori hoho

    Negi, Y.; Kaminaka, H.; Nagata, T.; Takeshita, Y.

    1997-04-04

    A nickel-hydrogen battery using a hydrogen storage alloy takes considerably long time for the initial activation treatment after the assembly of the battery. In this invention, a hydrogen storage alloy containing nickel is immersed in an aqueous acid solution or an aqueous alkaline solution and washed with a solution containing a complexing agent to form a nickel complex by a reaction with Ni(OH)2 in a concentration of 10{sup -6} to 10{sup -1} followed by washing with water. By using this method, hydroxides, particularly, Ni(OH)2 deposited on the alloy surface on the treatment of the hydrogen storage alloy with aqueous acid or alkaline solution can be removed efficiently to afford the hydrogen storage alloy with a high initial activity. The hydrogen storage alloy which is the object of this treatment method is AB5 type and AB2 type alloy used for a nickel-hydrogen battery and an alloy composed of nickel is particularly preferable. The complexing agent is selected from ammonia, ethylenediamine and cyanides. 2 figs., 6 tabs.

  15. Fiscal 2000 survey report. Basic research on dissimilar metal welding technology; 2000 nendo izai yosetsu gijutsu no kiso kenkyu chosa hokokusho

    NONE

    2001-03-01

    Basic data for the above subject were collected through technical research on the melt welding of dissimilar metals and through conducting experiments under microgravity concerning the phenomenon of melt welding. The technical research covered reports published in the past 25 years on the welding or bonding of dissimilar materials. For each of the combinations of dissimilar materials of steel, nonferrous metal, and ceramics for producing a transitional joint, investigations were conducted as to whether dissimilar metal welding or bonding was currently feasible under each of the welding or bonding methods, and problems were extracted and remedies were gathered. No melt welding technology was found, however, capable of directly welding dissimilar materials for a transitional joint in which intermetallic compounds were to be formed. In a melt welding experiment conducted under microgravity, investigations were conducted into the effect of surface tension and gravity on convection inside a molten pool and into the bonding of dissimilar materials for which Al/Cu and Al/Mg were involved. It was then shown that microgravity is effective in mitigating stirring and segregation in a molten pool. (NEDO)

  16. Welding in Singapore; Singapore no yosetsu jijo. Sekai no 40% no seizo kichi (2010 nen) (Tonan Asia no doko) donoyonishite ibunka no kabe wo koeruka

    Inoue, S. [Singapore Welding Society, (Singapore)

    1997-07-01

    From the position participating as a president of the Singapore Welding Society invited from Japan, the author of this paper introduces the welding situation in that country with emphasis placed on technical exchanges. South East Asia consists of a number of countries in which different kinds of races are present with different cultures. The region is now accomplishing a transfiguration into the manufacturing base of the world. Singapore exists as its core, and is carrying out lubricating functions for industrial growth of the region. It is an important matter how technical transfer will be made from industrialized nations such as Europe, America and Japan into Singapore to meet the above functions. Being different from Japan where a homogeneous society is viewed more importantly, welders, for example, change their place of employment from one to another despite the fact that welders are qualified for their skills by companies independently. Therefore, people concerned with welding in oil refineries, the government agencies and academic societies have developed extensive committee activities for unification of standards for welding skill examinations and for preparation of common implementation law bills. They have spent two years only for preparing the drafts. As a result, a network covering different kinds of business was successfully realized to exchange human resources and information and perform skill management. 4 figs.

  17. Fatigue behavior of boxing welded joint under biaxial cyclic loads; 2juku kurikaeshi kajuka ni okeru kakumawashi yosetsu keishu no hiro kyodo

    Takahashi, I.; Takada, A.; Akiyama, S.; Ushijima, M.; Maenaka, H. [Ministry of Transportation, Tokyo (Japan)

    1998-12-31

    Various forces such as gravity, wave induced force, inertial force etc. compositely act on a ship body from various directions. Therefore, while discussing strength or life of structural elements of ship body, it is necessary to understand the effects of the composite force condition. In this study, fatigue tests of boxing welded joint under rectangular biaxial cyclic loads are performed, the following results are obtained. Even under he biaxial cyclic loads, it is the same as the uniaxial test, the cracks occurred at the boxing weld toes propagate almost in the straight y-direction, but no oblique propagation of the cracks caused by the lad in the y-direction occurs. That the crack at initial stage of the crack progress is improved in y-direction can be illustrated by the facts that the residual stress in x-direction near the toes reaches to the yield stress, and the stress concentration in the welded toes is bigger in x-direction than that in y-direction. But as for prediction of the progress route, a further study including amplitude ratio of the biaxial loads, effects of width of test specimen is necessary. 4 refs., 12 figs., 4 tabs.

  18. Metal hydride electrode and nickel hydrogen storage battery; Suiso kyuzo gokin denkyoku oyobi nikkeru-suiso chikudenchi

    Kobayashi, Y.; Tamagawa, H. [Shin-Kobe Electric Machinery Co. Ltd., Tokyo (Japan); Ikawa, A.; Muranaka, R. [Hitachi Ltd., Ibaraki (Japan). Hitachi Research Lab.

    1996-04-16

    Water soluble polymers such as cellulose derivatives and polyvinylalcohol have been used conventionally as binders for metal hydride electrode used for nickel-hydrogen storage batteries. The shortcomings of those binders, however, are low flexibility, and poor binding property for hydrogen absorbing alloy powder and the conductive supporting substrate. This invention relates to the use of ethylene-vinyl copolymer with less than -10{degree}C Tg as the binder for hydrogen absorbing alloy powder. It is desirable that the ethylene-vinylacetate copolymer is selected out of ethylene-vinyl acetate-acryl copolymer and ethylene-vinyl acetate-long chain vinyl ester copolymer, and that the addition is larger than 0.1wt% and less than 1wt% against the weight of hydrogen absorbing alloy in the electrode. The use of this binder results in strong binding of hydrogen absorbing alloy powder to the conductive supporting substrate, providing flexibility as well. 4 figs., 5 tabs.

  19. Fabricating method of hydrogen absorbing alloy for alkali storage battery; Arukari chikudenchiyo suiso kyuzo gokin no seizo hoho

    Tadokoro, M.

    1996-03-08

    There are many grain boundaries in spherical hydrogen absorbing alloy particles prepared by rapid solidification methods such as centrifugal spraying method and gas atomizing method, and heterogeneous strains are produced at boundaries. When hydrogen absorbing alloy with large heterogeneous strain is used for preparing electrodes, many cracks are produced in hydrogen absorbing alloy to cause pulverization in the charge and discharge cycles. This invention relates to heat treatment of hydrogen absorbing alloys having spherical shape, cannon ball shape, and egg-like shape prepared by rapid solidification method in moving conditions. By this heat treatment, mutual sintering of hydrogen absorbing alloy particles can be prevented. The methods for moving hydrogen absorbing alloy are vibration or rotation of the heat treatment container in which hydrogen absorbing alloy is held and agitation of hydrogen absorbing alloy powder. Furthermore, mutual sintering of hydrogen absorbing alloy is restricted to reduce homogeneous strain by heat treatment in the range from 700{degree}C to 1,100{degree}C. 3 figs., 6 tabs.

  20. Manufacturing method of hydrogen storage alloy powder for battery; Denchiyo suiso kyuzo gokin funmatsu no seizo hoho

    Furukawa, J.

    1997-04-04

    To produce hydrogen storage alloy powder for battery, ingot of a hydrogen storage alloy is crushed to coarse grains of a suitable size with a crusher and then, finely pulverized to a certain particle size with a ball mill or some other tools. In this pulverization process, the surface of the pulverized alloy powder is oxidized and the surface activity is partially lost to cause a problem of a decrease of the characteristics of the produced hydrogen storage alloy electrode. In this invention, ingot of hydrogen storage alloy is crushed to coarse alloy grains in a non-oxidizing atmosphere followed by mechanical pulverization in a state contact with a solution of sulfites, hypophosphites, hydrogen phosphates or dihydrogen phosphates. This treatment method prevents surface oxidation of the alloy powder during the pulverization process. As a result, the initial activity of the battery is improved and an increase of the internal pressure of the battery on overcharge is suppressed. The use of an aqueous alkaline solution containing cobalt instead of the above-mentioned solution gives a similar effect. 2 tabs.

  1. Hydrogen storage alloy electrode for nickel-hydrogen storage battery use; Nikkeru-suiso chikudenchiyo suiso kyuzo gokin denkyoku

    Nagase, H.; Tadokoro, M.

    1995-06-16

    In the conventional hydrogen storage alloy electrode, water soluble polymer is employed as for the binder. Employing the water soluble polymer as for the binder may cause the film formation on the surface of the hydrogen storage alloy to hinder the hydrogen absorption at the alloy surface, resulting in the decrease in activity of electrode and in the discharge characteristic at a low temperature. This invention proposes the addition of Vinylon fiber in the binder of the hydrogen storage alloy electrode made by kneading the hydrogen storage alloy and the binder. The Vinylon fiber improves the strength of the electrode, as it forms a network in the electrode. Furthermore, the point contact between the alloy and the Vinylon fiber in the electrode prevents the film formation which hinders the oxygen absorption and chemical reaction on the surface of the alloy. As for the binder, carboxymethyl cellulose is used. The preferable size of Vinylon fiber is fiber diameter of 0.1 - 0.5 denier and fiber length of 0.5 - 5.0 mm. 4 figs., 4 tabs.

  2. Nickel-hydrogen battery and hydrogen storage alloy electrode; Nikkeru suiso denchi oyobi suiso kyuzo gokin denkyoku

    Ono, T. [Furukawa Electric Co. Ltd., Tokyo (Japan); Furukawa, J. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1996-03-22

    Hermetically sealed nickel-hydrogen battery has such problem that the inner pressure of the battery elevates when it is overcharged since the oxygen gas evolves from the positive electrode. This invention relates to the hermetically sealed nickel-hydrogen battery consisting of positive electrode composed mainly of nickel hydroxide and negative electrode composed mainly of hydrogen storage alloy. According to the invention, the negative electrode contains organic sulfur compound having carbon-sulfur bond. As a result, the elevation of battery inner pressure due to the hydrogen gas evolution, the decrease in discharge capacity due to the repetition of charge and discharge, and the lowering of voltage after charging can be suppressed. The adequate content of the organic sulfur compound is 0.05 - 1 part in weight to 100 part in weight of hydrogen storage alloy. As for the organic sulfur compound, n-butylthiol, ethylthioethane, phenyldithiobenzene, trimethylsulfonium bromide, thiobenzophenone, 2,4-dinitrobenzenesulfenyl chloride, and ethylene sulphidic acid are employed. 2 figs., 1 tab.

  3. Preservation of hydrogen absorbing alloy for alkaline storage battery; Arukari chikudenchiyo suiso kyuzo gokin no hozon hoho

    Mizutaki, F.

    1996-04-16

    A method of dipping preservation in organic solvent has been practiced conventionally for storing hydrogen absorbing alloy powder. This method is simple and useful in that alloy powder can be isolated simply from the outside environment. Organic solvent, however, generally involves danger of ignition and explosion and is liable to injure the health of workers, and has problems in the handling and workability. This invention relates to preserving hydrogen absorbing alloy by dipping in aqueous solution added with surfactant. The addition of surfactant to alloy preserving aqueous solution is desirable to be from 1 to 10{sup 4}ppm against the total weight of hydrogen absorbing alloy to be dipped. Any type of the anion system, cation system, non-ionic system, and amphoteric system can be used as the surfactant, but anion system surfactant is desirable because it has excellent surface active effect and can form favorable barriers. 2 figs., 1 tab.

  4. Hydrogen storage alloy and alkaline battery employing it; Suiso kyuzo gokin denkyoku to sorewo mochiita arukari niji denchi

    Ono, T. [Furukawa Electric Co. Ltd., Tokyo (Japan); Furukawa, J. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-01-28

    The invented hydrogen storage alloy electrode is produced in the following way: The hydrogen storage alloy powder is mixed with conductive material and rubber-like elastomer. A certain amount of viscosity modifier aqueous solution such as aqueous solution of carboxymethylcellulose is added to the said mixture to prepare a mixed paste. The said paste is dried and rolled after being filled in the current collector to be held by the current collector. The rubber-like elastomer has a strong bonding force, though it is soft. Both hydrophobic and hydrophilic groups are contained in its molecule. Example of such material is a partly fluorinated or chlorinated acrylonitrile-butadiene rubber. The addition of fluorine or chlorine atom is done to its double bond. The addition of the rubber-like elastomer is controlled to 0.05 - 10 wt% of hydrogen storage alloy powder to suppress the elevation of inner-battery pressure at the time of overcharge. 2 tabs.

  5. Survey research report by the hydrogen occluding alloy utilization development committee; Suiso kyuzo gokin riyo kaihatsu iinkai chosa kenkyu hokokusho

    NONE

    1985-03-01

    This report summarizes the FY 1984 survey research results, issued by the hydrogen occluding alloy utilization development committee. The basic property subcommittee is responsible for collecting published data related to the basic properties of metal halides as much as possible, and pigeonholing them to have the data which can contribute to development of the new alloys for basic researches and engineering applications of hydrogen occluding alloys. The subcommittee members have collected these data. The common theme subcommittee has planned to collect the P-C-T diagrams of the hydrogen occluding alloys and new alloys as much as possible, for the designs, development, production and system designs of the hydrogen occluding alloys. The P-C-T diagrams have been collected for a total of 340 types of alloys, which fall into the broad categories of Mg-based, TiFe-based, TiMn-based, other Ti-based, rare-earth-based, Zr-based, Ca-based and others. The analytical methods have been also investigated while collecting P-C-T diagrams. (NEDO)

  6. Characterization of surface layers of aluminum alloys for automobile body panels; Jidoshayo aluminium gokin no hyomen kaiseki

    Mizuno, K; Takagi, Y [Nippon Steel Corp., Tokyo (Japan)

    1996-03-29

    This paper reports analytical examples, on an oxidized film on the surface of aluminum alloys for automobiles, using the conventional method for a surface analysis or a new method entirely different from it. For example, (1) a new method was proposed which evaluated the thickness of MgO layers on the surface of Al-Mg alloy by means of a colorimeter. In the case where the thickness of the oxidized film was several tens of nanometers or less, the chromatic value of L, b, etc., and the thickness of the films were in one-to-one correspondence to each other; therefore, the MgO film was easily estimated non-destructively by measuring the chromatic values of the surface. (2) An analysis was made on the state of adhesion of the organic matters in the oxidized film on Al-Mg-Si alloy by means of an angle-resolved XPS (X-ray photoelectron spectroscopy) depth analysis. Consequently, it was elucidated that a fatty film adhered with hydrophilic groups faced to the oxidized surface and with hydrophobic groups faced to the outside, and that this adhered fatty acid also formed a metallic soap by a heat treatment, deteriorating the fattiness. Further, the paper also reports on the analysis of crystal structures on the surface layer with the use of GIXD (grazing incidence-angle X-ray diffraction). 22 refs., 15 figs.

  7. Equivalent CTOD concept based on the local approach and its application to fracture performance evaluation of welded joints; Local approach ni motozuku toka CTOD gainen no teian to tsugite hakai seino hyoka eno oyo

    Ohata, M.; Minami, F.; Toyoda, M. [Osaka University, Osaka (Japan). Faculty of Engineering; Tanaka, T.; Arimochi, K. [Sumitomo Metal Industries, Ltd., Osaka (Japan); Glover, A. [Nova Gas Transmission Ltd., Calgary (Canada); North, T. [University of Toronto (Canada)

    1996-12-31

    A proposal was given on an equivalent crack tip opening displacement (CTOD) concept which relates quantitatively fracture performance of a structural member with the result of a three-point bending CTOD test via the Weibull stress based on a local approach. The equivalent CTOD is defined as a CTOD in which a three-point CTOD test piece and a structural member provide the same Weibull stress. Experimental and analytical discussions were performed on X80 steel welded joints. Effectiveness of the equivalent CTOD concept was verified from the fact that the fracture performance in welded joints with a large width estimated from the result of the three-point bending CTOD test using the equivalent CTOD concept showed good correspondence with the fracture performance obtained in the experiments. On the other hand, the result of estimation using the conventional CTOD concept is considerably smaller than measurements. As an application of the equivalent CTOD concept, a new determination procedure was introduced on required fracture tenacity to ensure deformation performance required on structural elements. The required CTOD value shows a trend that the smaller the ratio of yield stress of the welded metals to that in the base material, the greater the required CTOD grows. 16 refs., 19 figs., 3 tabs.

  8. Equivalent CTOD concept based on the local approach and its application to fracture performance evaluation of welded joints; Local approach ni motozuku toka CTOD gainen no teian to tsugite hakai seino hyoka eno oyo

    Ohata, M; Minami, F; Toyoda, M [Osaka University, Osaka (Japan). Faculty of Engineering; Tanaka, T; Arimochi, K [Sumitomo Metal Industries, Ltd., Osaka (Japan); Glover, A [Nova Gas Transmission Ltd., Calgary (Canada); North, T [University of Toronto (Canada)

    1997-12-31

    A proposal was given on an equivalent crack tip opening displacement (CTOD) concept which relates quantitatively fracture performance of a structural member with the result of a three-point bending CTOD test via the Weibull stress based on a local approach. The equivalent CTOD is defined as a CTOD in which a three-point CTOD test piece and a structural member provide the same Weibull stress. Experimental and analytical discussions were performed on X80 steel welded joints. Effectiveness of the equivalent CTOD concept was verified from the fact that the fracture performance in welded joints with a large width estimated from the result of the three-point bending CTOD test using the equivalent CTOD concept showed good correspondence with the fracture performance obtained in the experiments. On the other hand, the result of estimation using the conventional CTOD concept is considerably smaller than measurements. As an application of the equivalent CTOD concept, a new determination procedure was introduced on required fracture tenacity to ensure deformation performance required on structural elements. The required CTOD value shows a trend that the smaller the ratio of yield stress of the welded metals to that in the base material, the greater the required CTOD grows. 16 refs., 19 figs., 3 tabs.

  9. Study on unified fatigue strength assessment method for welded structure. Hot spot stress evaluating method for various combinations of plate thickness and weld leg length; Yosetsu kozo no toitsutekina hiro kyodo hyokaho ni kansuru kenkyu. Itaatsu to yosetsu ashinaga no kumiawase ni taisuru hot spot oryoku sanshutsu ni tsuite

    Nihei, K.; Inamura, F.; Koe, S. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1996-12-31

    There has been tried to apply unified assessment method using hot spot stress, which is effective to evaluate fatigue strength of fillet welded structures for ships and marine structures. This method can be applied to complicated structures and is independent of welding processes. In this study, first, stress analysis has been conducted for two-dimensional fillet welded joint models with various combinations of plate thickness and weld leg length of general fillet structures by means of boundary element method. Then, critical position, which is not affected by local stress concentration due to bead, was determined from the detailed stress distribution in the vicinity of weld toe. As a result, a general equation has been proposed to estimate the hot spot stress by one-point representative method. Second, the fatigue tests of typical fillet welded joints have been conducted by applying this method. Consequently, it was demonstrated that the unified fatigue strength can be evaluated by the S-N data based on hot spot stress range determined from the proposed equation, independent of structural stress concentration. 22 refs., 14 figs.

  10. Study on unified fatigue strength assessment method for welded structure. Hot spot stress evaluating method for various combinations of plate thickness and weld leg length; Yosetsu kozo no toitsutekina hiro kyodo hyokaho ni kansuru kenkyu. Itaatsu to yosetsu ashinaga no kumiawase ni taisuru hot spot oryoku sanshutsu ni tsuite

    Nihei, K; Inamura, F; Koe, S [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-12-31

    There has been tried to apply unified assessment method using hot spot stress, which is effective to evaluate fatigue strength of fillet welded structures for ships and marine structures. This method can be applied to complicated structures and is independent of welding processes. In this study, first, stress analysis has been conducted for two-dimensional fillet welded joint models with various combinations of plate thickness and weld leg length of general fillet structures by means of boundary element method. Then, critical position, which is not affected by local stress concentration due to bead, was determined from the detailed stress distribution in the vicinity of weld toe. As a result, a general equation has been proposed to estimate the hot spot stress by one-point representative method. Second, the fatigue tests of typical fillet welded joints have been conducted by applying this method. Consequently, it was demonstrated that the unified fatigue strength can be evaluated by the S-N data based on hot spot stress range determined from the proposed equation, independent of structural stress concentration. 22 refs., 14 figs.

  11. Corrosion characteristics of thermal sprayed coating of stainless alloys in chloride solution; Taishoku gokin yosha himaku no enkabutsu yoekichu ni okeru fushoku tokusei

    Suzuki, T. [Ajinomoto Co. Inc., Tokyo (Japan); Ishikawa, K. [Tokyo Metallikon Co. Ltd., Tokyo (Japan); Kitamura, Y. [Kitamura Technical Consultant Office, Kanagawa (Japan)

    1994-12-15

    With an objective to develop a thermal sprayed coating of environment interruption type that can be sprayed at sites, electrochemical discussions, SEM observation, and EPMA surface analysis were performed on corrosion characteristics in chloride solution of coatings of SUS 304, 316 and Hastelloy C thermally sprayed onto test pieces made of structural steel SS400, as well as the effect of improvement in corrosion resistance by means of a coating reforming treatment. The following conclusions were obtained: the degradation in corrosion resistance of the coatings is attributable to increase in anodic solubility due to appearance of innumerable crevices as a result of deposited particles forming porous structure and due to drop of Cr content in the matrix caused by generation of oxides on the surface of the crevices, by which the corrosion progresses in the form of crevice corrosion; and denseness of the passive coating is lost on the surface of the deposited particles, accelerating the cathodic reaction. A suitable means that could be used practically in chloride solution would be a method to use a material with less crevice susceptibility such as Hastelloy C as a base material, and seal the crevice structure with epoxy resin, etc. 7 refs., 10 figs., 3 tabs.

  12. Report on the FY 1999 research survey on the development of high ductile chromium alloys; 1999 nendo koensei kuromu gokin no kaihatsu ni kansuru kenkyu chosa hokokusho

    NONE

    2000-03-01

    The R and D of chromium alloys had been conducted till about the 1970s, which brought the unfavorable results. That's why chromium alloys are brittle at normal temperature and difficult in processing. However, the technology development in recent years review them. The development is earnestly desired also of the materials exceeding the Ni base super alloys which are heat resistant materials for power generation. Cr is rich as resource and light-weighted, and the oxidation film is stable and self-restorational at high temperature. The alloys are excellent in processability at normal temperature and excellent also in toughness. The nitrogen content is strongly concerned with brittleness and intergranular fracture at normal temperature. Therefore, Cr alloys were trially manufactured by the HIP sintering/hot forging method using electrolytic Cr powder with high-purity (99.99%) and low-nitrogen (10ppm) to study a possibility of improving brittleness at normal temperature, mechanical properties at high temperature, oxidation resistance, high-temperature corrosion resistance, etc. A variety of excellent characteristics of Cr alloys were made clear. However, also made clear were the problems: strength is low at normal temperature/high temperature; screw process is impossible because of high notch sensibility; those are not almighty high-temperature corrosion resistant materials. Further efforts should be exerted for the commercialization. (NEDO)

  13. Corrosion prevention of the rail by thermal spray coating of Zn-Al alloy; Zn-Al gokin yosha hifuku ni yoru reru no boshoku

    Mizoguchi, S. [Nippon Steel Corp., Kitakyushu (Japan)] Urashima, C. [Kyushu Techno Research Corp., Fukuoka (Japan); Itai, K. [Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works; Ichiriki, T.; Nishiki, M. [Kyushu Rail way comdany, Fukuoka (Japan)

    1997-03-30

    Replacement of the rail in under-sea tunnel such as the Kammon Tunnel is carried out very five years because of the severe corrosion caused by the humid state due to the leakage of sea water or the mist of sea water swept up by the passing trains. In this study, salt water spraying or sea water spraying test is carried out using Zn-Al alloy with the corrosion resistance and thermal spray efficiency even higher than those of Zn or Al. A rail coated by thermal spray of Zn-15mass%Al alloy has been laid by trial in the practical rail road of Kammon Tunnel for 5 years and 3 months, the deterioration degree of the coating, pitting depth, actual fatigue strength, etc. are evaluated. Further, these factors of a rail re-coated by Zincrich Primer+Tar Epoxy and a bare rail laid at the same time are evaluated for comparison. It is presumed by the results of the examination about the service life of a rail coated by the thermal spray of Zn-Al alloy based on the pitting depth in the rail base that the service life of such coated rail is more than twice as that of the bare rails used currently. 5 refs., 14 figs., 3 tabs.

  14. Hydrogen storage alloy electrode for a metal-hydride alkaline battery; Kinzoku-suisokabutsu arukari chikudenchiyo no suiso kyuzo gokin denkyoku

    Matsuura, Y.; Kuroda, Y.; Higashiyama, N.; Kimoto, M.; Nogami, M.; Nishio, K.; Saito, T.

    1996-07-16

    This invention aims to present a hydrogen storage alloy electrode which gives a metal-hydride alkaline battery with a high discharge characteristics at an initial stage of the charge and discharge cycle and excellent charge and discharge cycle characteristics. Thin belt-like misch metal(Mm)-nickel hydrogen storage alloy lumps with a CaCu5 type crystal structure and with dissolved boron or carbon as replaced atoms of nickel in a supersaturated state are obtained by quenching and solidification of molten Mm-Ni hydrogen storage alloy with addition of boron or carbon in 0.005 to 0.150 molar ratio to 1 mole of Mm by a single or dual role method, and annealed in an inert gas or in vacuum at a temperature of 620 to 1000{degree}C for a prescribed time to separate out a boron compound as a second phase, followed by pulverization to produce the alloy powder which is used as a hydrogen storage alloy material. The presence of the second phase promotes cracking of the alloy at an early stage of the charge and discharge cycle and suppresses generation of fine powder in the following charge and discharge cycles. 2 figs., 5 tabs.

  15. Hydrogen storage alloy electrode for metal-hydride alkaline storage battery its production method; Kinzoku-suisokabutsu aruakri chikudenchiyo no suiso kyuzo gokin denkyoku oyobi sono seizo hoho

    Matsuura, Y.; Nogami, K.; Kimoto, M.; Higashiyama, N.; Kuroda, Y.; Yonezu, I.; Nishio, K.

    1997-03-28

    Recently, it is proposed to employ the hydrogen storage alloy produced by means of rapidly solidifying single roll method, i.e., a method of projecting the molten alloy onto the surface of roll rotating in high speed as for the negative electrode material of the metal hydride alkaline battery. However, the hydrogen storage alloy produced by the single roll method has a heterogeneous grain size. So that the utilization of the hydrogen storage alloy is limited. This invention solves the problem. The rare earth-nickel system hydrogen storage alloy ribbon with average thickness of 0.08 - 0.35 mm is produced by means of single roll method. The grain size of the alloy is over 0.2 micrometer on roll surface side and below 20 micrometers on open surface side. The above said alloy is ground to average particle size of 25 - 70 micrometers to be used for the hydrogen absorbent. In this way, the metal hydride alkaline battery with excellent high rate discharge characteristic at the initial stage of charge-discharge cycle, excellent charge-discharge cycle characteristic, and excellent inner pressure characteristic can be produced. 2 figs., 5 tabs.

  16. Surface modification method of rare earth-nickel hydrogen storage alloy for a battery; Denchiyo kidorui-nikkeru kei suiso kyuzo gokin no hyomen kaishitsu shoriho

    Higashiyama, N.; Kimoto, M.; Matsuura, Y.; Kuroda, Y.; Nogami, M.; Nishio, K.; Saito, T.

    1996-07-16

    The characteristics of an alkaline battery with hydrogen storage alloy depend significantly on the activity of the used rare earth-nickel hydrogen storage alloy and require an activation process in its manufacturing. However, the previous manufacturing method was found to have a defect that surface modification cannot be uniformly conducted due to a rapid increase of pH of the processing solution during the processing. This invention aims to present a surface modification method to enable to produce uniform surface of the alloy particles with a high activity. In this invention, the rare earth-nickel hydrogen storage alloy is immersed in a buffer solution of pH 1 to 3.6 for a fixed period followed by washing with water or an alkaline solution. The rapid change of pH can be avoided by the use of the buffer solution and the surface of the alloy particles is modified uniformly. The use of the obtained alloy suppresses the increase of the internal pressure in the battery during charging and affords an alkaline battery with a long cycle life and a high performance. 1 fig., 3 tabs.

  17. Hydrogen storage alloy electrode and the nickel-hydrogen secondary battery using the electrode; Suiso kyuzo gokin denkyoku to sorewo mochiita nikkeru/suiso niji denchi

    Ono, T. [Furukawa Electric Co. Ltd., Tokyo (Japan); Furukawa, J. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-02-14

    With respect to the conventional nickel-hydrogen secondary battery, pulverization of the hydrogen storage alloy due to repetition of charging-discharging cycles can be prevented by using a fluorocarbon resin as a binder in manufacture of the hydrogen storage alloy electrode; however, the inner pressure increase of the battery in case of overcharging can not be fully controlled. The invention relates to control of the inner pressure increase of the nickel-hydrogen secondary battery in case of overcharging. As to the hydrogen storage alloy electrode, the compound comprising the hydrogen storage alloy powder as a main ingredient is supported by a current collector; further, the compound particularly comprises a fluororubber as a binder. The nickel-hydrogen secondary battery equipped with the hydrogen storage alloy electrode can control the inner pressure increase of the battery in case of overcharging, and lessen decrease of the battery capacity due to repetition of charging-discharging cycles over long time. The effects are dependent on the use of the fluororubber as a binder which has good flexibility, and strong binding capacity as well as water repellency. 1 tab.

  18. Hydrogen storage alloy for battery, manufacturing method and nickel-hydorogen secondary battery; Denchiyo suiso kyuzo gokin, sono seizo hoho oyobi nikkerusuiso niji denchi

    Inaba, T.; Sawa, T.; Inada, S.; Kawashima, F.; Sato, N.; Sakamoto, T.; Okamura, M.; Arai, T.; Hasimoto, K.

    1997-04-08

    The invention relates to a hydrogen storage alloy for a battery which has a high electrode capacity, and particularly can realize a long battery life. The hydrogen storage alloy of the LaNi5 type with the general formula: ABx is used in the invention. Here, A comprises La, Ce, Pr and Nd, and La and Nd in A account for 70 to 90 wt % and less than 5 wt %, respectively; B is at least one of the elements selected from Ni, Co, Fe, Cr, Mn, Cu, Al, Ga, Si, Ge, Bi, Sn, In, P, V, Nb, Ta, Mo and W; x shows the atomic ratio in the range, 4.5{<=}x{<=}5.6. Since rare earth elements constituting the alloy, and types and compositions of the elements substituting Ni are properly determined, the hydrogen storage alloy for a battery with excellent hydrogen storage characteristics and corrosion resistance is obtained. When the alloy is used as an anode material, the battery capacity is expanded, the alloy pulverization and deterioration are prevented. 3 figs., 1 tab.

  19. Hydrogen storage alloy electrode of metal hydride alkaline storage battery and its production method; Kinzoku-suisokabutsu arukari chikudenchiyo no suiso kyuzo gokin denkyoku oyobi sono seizo hoho

    Matsuura, Y.; Nogami, K.; Kimoto, M.; Higashiyama, N.; Kuroda, Y.; Yonezu, I.; Nishio, K.

    1997-03-28

    Recently, a proposal was made of employing the hydrogen storage alloy produced by means f rapidly solidifying single roll method, i.e., a method of projecting the molten alloy onto the surface of roll rotating in high speed as for the negative electrode material of the metal hydride alkaline battery. However, the hydrogen storage alloy produced by the single roll method has a heterogeneous grain size. This invention solves the problem. The Mm{center_dot}Ni{center_dot}Co{center_dot}Al{center_dot}Mn alloy ribbon with average thickness of 0.08 - 0.35 mm is produced by means of single roll method. The grain size of the alloy is over 0.2 micrometer on roll surface side and below 18 micrometers on open surface side. The alloy is ground to be used for the hydrogen absorbent. The general formula of this alloy is MmR(x) (Mm = mischmetal, R = Ni, Co, Al, Mn). In this way, the metal hydride alkaline battery with excellent high rate discharge characteristic at the initial stage of charge-discharge cycle, excellent charge-discharge cycle characteristic, and excellent inner pressure characteristic can be produced. 2 figs., 5 tabs.

  20. Consolidation of mechanically milled powder mixture of aluminum and quasicrystalline particle; Mechanical milling shita junkessho ryushi / aluminium gokin funmatsu no koka seikeisei

    Yuasa, E.; Kawamura, C.; Sugiyama, T. [Musashi Institute of Technology, Tokyo (Japan)

    1998-10-15

    A quasi-crystalline Al65Cu20Fe15 powder prepared from alloy cast rapidly solidified by metal-mold casting, and then it was mixed to aluminum powder with various volume fractions by mechanical milling. The powder milled for above 50ks made homogeneous dispersion of quasi-crystalline phase with particle size less than 1{mu}m. The powder was hot-pressed under various conditions and then its features of consolidation were examined by the observation of microstructure and fracture strength in 3-point-bending of the compacts. When the milled powder was hot-pressed at higher compacting temperature than 673K for 3.6ks under pressure of 600MPa, the compact became to dense. Hardness of the obtained compact increases and its fracture strength decreases with increasing volume fraction of quasi-crystalline particles. Intermetallic compound Al7Cu2Fe forms in the interface of aluminum matrix and quasi-crystalline particle. 11 refs., 10 figs.

  1. Oxidation characteristics of Ti-14Al-21Nb alloy at high temperature in purified oxygen; Ti-14Al?-21Nb gokin no sansochu ni okeru koon sanka tokusei

    Akai, M; Taniguchi, S; Shibata, T [Osaka University, Osaka (Japan). Faculty of Engineering

    1994-10-20

    The Ti-14Al-21Nb alloy called Super {alpha}{sub 2} is an alloy which has been improved of plastic transformation ability by adding Nb into Ti3Al with high specific strength, and is used for member materials in aircraft engines. In order to identify its oxidation characteristics, this paper discusses the oxidation characteristics under purified oxygen and atmospheric pressure in temperatures ranging from 1000 K to 1300 K. The experiment made a button-formed ingot with a diameter of 50 mm and a thickness of about 10 mm by melting and thermal refining, and used a thermobalance. Main conclusion thus obtained may be summarized as follows: the amount of increase due to oxidation after 100 ks oxidation at 1000 K is very small; oxidation between 1100 K and 1200 K follows nearly the parabolic rate laws; the scale consisted mainly of rutile, but a thin alumina concentration layer is formed; Nb is concentrated in the rutile-alumina mixed layer, and local fracture and regeneration are repeated at temperatures higher than 1300 K. 21 refs., 8 figs., 2 tabs.

  2. Fundamental experiment for flash removal of aluminum alloy by CO2 laser beam cutting; CO2 laser beam setsudan ni yoru aluminium gokin no ibaritori no kiso jikken

    Kataoka, Y.; Tokunaga, T. [University of Industrial Technology, Kanagawa (Japan); Miyazaki, T. [Chiba Institute of Technology, Chiba (Japan)

    1995-08-25

    CO2 laser beam has been applied to cut of the aluminum alloy. Average cut width, roughness of cut surface and average thickness of heat affected zone are investigated as functions of laser power, cutting speed and assist gas pressure. The average cut width increases with laser power, but it does not depend on the cutting speed. The narrowest average cut width obtained is 0.22mm under the conditions of laser power of 900W and cutting speeds from 600 to 1000mm/min. The roughness of cut surface decreases with decreasing cutting speed. The best smoothness of cut surface obtained is 17 {mu}m (Rmax) , when the conditions are 1100W and 600mm/min. The average thickness of heat affected zone decreases with increasing assist gas pressure. CO2 laser beam cutting is applicable to flash removal from aluminum alloy casting. This process is expected to reduce the need of physical labor and to improve the working conditions in the foundry industry. 32 refs., 10 figs., 2 tabs.

  3. Report on investigations and studies on development of materials for hydrogen absorbing alloys; Suiso kyuzo gokin no zairyo no kaihatsu ni kansuru chosa kenkyu hokokokusho

    NONE

    1984-03-01

    This paper describes investigations and studies on hydrogen absorbing alloy materials and the technologies to utilize them. In the investigations and studies, literatures were collected and put into order, questionnaire surveys were performed and analyzed, lecture meetings and panel discussions were held, and the discussion results were summarized. In the present status of developing hydrogen absorbing alloys, the current status of and problems in developing such hydrogen absorbing alloys as Ti-based, Mg-based, and rare earth-based alloys were put into order. Discussions were given on prospects of possibilities of developing new alloys, making them amorphous, and putting them into mass production. In the current status of developing the utilizing technologies, such technologies as hydrogen storage systems and heat pumps were put into order and discussed. With regard to problems in hydrogen absorbing alloys, discussions were given on alloy weight, pulverization, activation, heat conductivity, and alloy costs. In discussing the safety, discussions were given on the safety and compliance with related laws and regulations relative to hydrogen transportation using a great amount of hydrogen absorbing alloys, their storage, and heat storage systems. In addition, questionnaire surveys were carried out with an objective to identify the status of developing hydrogen absorbing alloys and needs from the industries. (NEDO)

  4. Survey report on energy transportation systems which use hydrogen-occluding alloys; Suiso kyuzo gokin wo riyoshita energy yuso system chosa hokokusho

    NONE

    1992-03-18

    Surveyed are systems which use hydrogen-occluding alloys for, e.g., storing and transporting hydrogen. This project is aimed at development of, and extraction of technical problems involved in, the concept of hydrogen energy transportation cycles for producing hydrogen in overseas countries by electrolysis using clean energy of hydraulic energy which are relatively cheap there; transporting hydrogen stored in a hydrogen-occluding alloy by sea to Japan; and converting it into electrical power to be delivered and used there. The surveyed items include current state of development/utilization of hydraulic power resources in overseas countries; pigeonholing the technical issues involved in the hydrogen transportation cycles, detailed studies thereon, and selection of the transportation cycles; current state of research, development and application of hydrogen-occluding alloys for various purposes; extraction of the elementary techniques for the techniques and systems for the hydrogen transportation systems which use hydrogen-occluding alloys; research themes of the future hydrogen-occluding alloys and the application techniques therefor, and research and development thereof; and legislative measures and safety. (NEDO)

  5. Proceedings of the Spring Meeting of the Society of Naval Architects of Japan (1996). Part 2. Structure, materials, welding, construction, and design; Nihon zosen gakkai (1996 nen) shunki koen ronbun maezuri. 2. Kozo, zairyo, yosetsu, kosaku, sekkei

    NONE

    1996-12-31

    This is a proceedings of the Spring Meeting of the Society of Naval Architects of Japan made public on May 15 and 16, 1996. In the basic research, the following are included: Basic studies on computer aided concurrent engineering for hull structure design and piping design; Fundamental study on the new method to estimate vibration level on a ship; Flat plate approximation in the three-dimensional slamming; Development of new finite element by source method, etc. As to fracture and cracks, Equivalent CTOD concept based on the local approach and its application to fracture performance evaluation of welded joints; Fracture mechanical modeling of brittle crack propagation and arrest of steel; An evaluation method for ductile crack propagation in pre-strained plates; Multiple fatigue cracks propagating in a stiffened panel, etc. Relating to fatigue strength, Fatigue life estimation of welded joints of an aluminum alloy under superimposed random load waves; Study on unified fatigue strength assessment method for welded structure, etc.

  6. Proceedings of the Spring Meeting of the Society of Naval Architects of Japan (1996). Part 2. Structure, materials, welding, construction, and design; Nihon zosen gakkai (1996 nen) shunki koen ronbun maezuri. 2. Kozo, zairyo, yosetsu, kosaku, sekkei

    NONE

    1997-12-31

    This is a proceedings of the Spring Meeting of the Society of Naval Architects of Japan made public on May 15 and 16, 1996. In the basic research, the following are included: Basic studies on computer aided concurrent engineering for hull structure design and piping design; Fundamental study on the new method to estimate vibration level on a ship; Flat plate approximation in the three-dimensional slamming; Development of new finite element by source method, etc. As to fracture and cracks, Equivalent CTOD concept based on the local approach and its application to fracture performance evaluation of welded joints; Fracture mechanical modeling of brittle crack propagation and arrest of steel; An evaluation method for ductile crack propagation in pre-strained plates; Multiple fatigue cracks propagating in a stiffened panel, etc. Relating to fatigue strength, Fatigue life estimation of welded joints of an aluminum alloy under superimposed random load waves; Study on unified fatigue strength assessment method for welded structure, etc.

  7. Fatigue strength of field welded joints in I-section girders of thick flange plates with cope hole details; Sukarappu wo yusuru atsuita I gata danmen keta genba yosetsu tsugitebu no hiro kyodo

    Minami, K.; Miki, C.; Tateishi, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-15

    Field welding an I-section girder forms details having scallop at the web, whereas the presence of the scallop causes shear deformation and localized stress concentration. Therefore the details in joints with low fatigue strength are ranked as class G in the fatigue design guideline published by JSSC. With special notice on the effect of shear, the present study has varied the phase by using multiple number of jacks; so loaded that the direction of the shear force will change; assumed field welding of a bridge constructed with a few number of main girders; and verified fatigue strength at thick flange plates. In addition, in order to improve the fatigue strength, elucidation was given on the effect of grinder finish at boxing welds. From these results, items to be considered were made clear when structural details are designed and fabricated, in which I-section girders having scallop are welded in fields. Furthermore, it was considered that stress in web plate jointing welding bead becomes relatively higher than local stress in boxing, which was indicated as a point requiring precaution. 8 refs., 20 figs., 2 tabs.

  8. Hydrogen absorbing alloy electrode for metal-hydride alkali storage battery and hydrogen absorbing particles for metal-hydride alkali storage battery; Kinzoku-suisokabutsu arukari chikudenchiyo no suiso kyuzo gokin denkyoku oyobi kinzoku-suisokabutsu arukari chikudenchiyo no suiso kyuzo gokin ryushi

    Niiyama, K.; Konno, Y.; Maeda, R.; Nogami, K.; Nishio, K.; Saito, T.

    1996-02-02

    For preventing degradation due to oxidation of hydrogen absorbing alloy to elongate the life of batteries, a proposal has been made to coat the surface of hydrogen absorbing alloy with electroless nickel plated film. When the surfaces of hydrogen absorbing alloy particles are coated with such electroless nickel plated films having low phosphoric acid content, however, absorption of the oxygen gas produced by overcharge delays to increase the pressure inside the battery because the plated film is unporous dense coat with high crystallinity. This invention relates to phosphoric acid containment in the ratios from 11 to 14wt% in the electroless nickel plated layer of the hydrogen absorbing alloy electrode for the metal-hydride alkali storage battery. Long time is required for the initial activation when the phosphoric acid content is less than 11wt% because the crystallinity of the plated film is too high and forms a dense unporous film. On the other hand, the plated film becomes brittle and tends to peel off from the hydrogen absorbing alloy if phosphoric acid content exceeds 14wt%. 3 figs., 2 tabs.

  9. Fundamental study on hydrogen storage with hydrogen absorbing alloys. Operating characteristics of storage tank; Suiso kyuzo gokin wo mochiita suiso chozo ni kansuru kiso kenkyu. Chozo yoki no dosa tokusei

    Sekiguchi, S.; Sekiguchi, N.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1997-11-25

    Hydrogen absorption by a hydrogen storage (MH storage) is investigated for static characteristics, with a constant current applied to the hydrogen generator, and dynamic characteristics, with a fluctuating current applied to the same simulating actual insolation. In the experiment, alloy temperature (MH temperature) in the storage and a current for the generator are preset, and then automatic measurement is allowed to proceed at 10-second intervals of the differential pressure, hydrogen temperature in the piping, absolute pressure, MH temperature, room temperature, and water tank temperature. It is found as the result of the experiment that absorption performance is improved when the MH storage is cooled; that the mean absorption rate which is 1 without cooling increases to 1.62 at 7degC; that the mean absorption rate changes in proportion to the applied current (introduced hydrogen flow rate); that the rate which is 1 at 32A decreases to 0.53 that at 16A; that the absorption rate is dependent more on the current applied to the storage than the temperature of the heat exchanging medium; and that, even in the presence of fluctuation halfway in the applied current, the total absorption will be equal to a case of constant current application if the total amount of applied current is equal. 2 refs., 7 figs., 5 tabs.

  10. Surface treatment method for hydrogen adsorbing alloy powder and alkali secondary battery fabricated by applying the method; Suiso kyuzo gokin funmatsu no hyomen shori hoho to sorewo tekiyoshite eraeta arukari niji denchi

    Nishimura, K. [Furukawa Electric Co. Ltd., Tokyo (Japan); Sawa, H. [The Furukawa Battery Co. Ltd., Yokohama (Japan)

    1997-03-07

    Corrosion of alloy proceeds in the conventional hydrogen absorbing alloy because the composing hydrogen absorbing alloy powder contacts with high concentration alkali electrolyte in the battery. Immersion into alkali aqueous solution and pulverization by metal fluoride compound of the electrode have been practiced to solve the problem, but internal resistance of the battery increases and the charge and discharge properties of the battery are deteriorated. This invention relates to a method in which hydrogen absorbing alloy electrode powder or the hydrogen alloy electrode whose main content is the said powder is contacted with alkali aqueous solution to increase the specific surface area of the hydrogen absorbing alloy powder, followed by its contact with pH3-6 acidic aqueous solution containing fluorine ions. As a result, corrosion resistance of the surface of hydrogen absorbing alloy powder after the treatment against high concentration alkali electrolyte is improved to elongate the cycle life. Salts of LiF, NaF, KF, RbF, and CsF or their hydrogen salts can be used as the supply source of fluorine ions. 3 tabs.

  11. Research and development of basic technologies for next generation industries, 'high-performance crystalline controlled alloy'. Evaluation on final research and development (final report); Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Koseino kessho seigyo gokin (saishu kenkyu kaihatsu hyoka 2)

    NONE

    1989-05-01

    A proposal was given on a new processing process to use Ni-group super alloy, and elucidation was given on super plasticity phenomenon by using non-destructive tests. The Ni-group super heat-resistant alloy Mod. IN-100 subjected to different preforms by means of extrusion was given a super plasticity test at 1,050 degrees C to derive total elongation and 'm' value. As a result, it was disclosed that a material annealed for one hour at 1,070 degrees C after extrusion of 70% at 1,100 degrees C possesses the maximum 'm' value in the vicinity of 2.0 times 10{sup -2}s{sup -1}. The largest key to the new processing method is to improve the nature of the material, in which the plasticity manifestation velocity is accelerated by ten times to the order of 10{sup -2}s{sup -1} as described above. In addition, forging of IN-100 was made possible by using the ordinary forging equipment with the use of two-fold measures. The measures consist of maintaining temperature of IN-100 during casting by heating the die material to about 600 degrees C, rather than keeping it at a constant temperature, and then packing IN-100 in S35C steel material to accommodate the temperature decrease during casting inside the S35C pack. Thus, a processing method was made practical, eliminating need of the forging process to compress and solidify powder itself, that is the extrusion process. (NEDO)

  12. Stacking faults of {gamma}{prime}{prime} phase precipitated in a Ni-15Cr-8Fe-6Nb alloy; Ni-15Cr-8Fe-6Nb gokin ni sekishutsusuru {gamma}{prime}{prime} sonai no sekiso kekkan

    Kusabiraki, K; Ikeuchi, S [Toyama University, Toyama (Japan). Faculty of Engineering

    1995-09-01

    The stacking faults of a metastable {gamma}{prime}{prime} phase precipitated in a nickel-base superalloy, a modified NCF 3 type alloy (X-750M) were investigated by transmission electron microscopy and X-ray diffraction method. The {gamma}{prime}{prime} precipitates are circular shaped plates at the early stage of aging and they become elliptic or irregular shaped plates at the latter stage of aging up to 1033K. Contrast which suggests the existence of stacking faults on {l_brace}112{r_brace}{sub {gamma}{prime}{prime}} planes can be seen in many of large {gamma}{prime}{prime} precipitates extracted from the specimens aged at 1033K. It is clear that the values of {gamma}{prime}{prime}/{gamma} lattice mismatch increase with increasing the aging time from the measurement of lattice constants of the {gamma} and the {gamma}{prime}{prime} phase. The formation of stacking faults on {l_brace}112{r_brace}{sub {gamma}{prime}{prime}} in the large {gamma}{prime}{prime} precipitates is due to the movement of an a/6 [111] partial dislocation introduced by {gamma}{prime}{prime} /{gamma} coherency strain. Since a part of stacking sequence has a similar crystal structure to that of a stable {delta} phase precipitates in {gamma} phase, the formation of stacking faults in the {gamma}{prime}{prime} precipitates is considered to be favorable for the stabilization of them. 14 refs., 10 figs., 1 tab.

  13. Improvements of room temperature tensile properties in cast TiAl-Fe-V-B alloy by microstructural control; Fe, V, B tenka TiAl gokin no soshiki seigyo ni yoru joon hippari tokusei no kaizen

    Nishikiori, S.; Matsuda, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-05-01

    Conditions of homogenization to follow the HIP (hot isostatic press) treatment of the TiAl alloy are tested and discussed for the optimization of the relationship between mechanical properties and the structure resulting from heat treatment. Fe, V, and B are added for improved castability to a TiAl alloy newly developed in this report, and this allows {beta} precipitation to take place which does not occur in the two-element alloy. Attention is paid to this {beta} phase, and the effect of homogenizing conditions and the amount of oxygen is investigated from the metallographic point of view. Some findings obtained are mentioned below. The {beta} phase size 30-50{mu}m emerges in the vicinity of {gamma} grains, containing more Fe and V in the solid solution state than the other structural phases. The {beta} phase rich in Fe and V concentration is high in Vickers hardness, and is supposedly brittle at room temperature. The added oxygen reduces the amount of {beta} phase precipitation for the stabilization of the {alpha} phase. The TiAl alloy containing Fe, V, and B exhibits a duplex structure after HIP treatment and the homogenization process to follow. It has a tensile strength of 550MPa, proof stress of 390MPa, and elongation of 1.80%, on the average at room temperature. 14 refs., 10 figs., 1 tab.

  14. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment; Yoyu Zn-Al-Mg kei gokin mekki koban no sokushin fushoku kankyoka ni okeru taishokusei toi boshoku kiko

    Komatsu, A.; Izutani, H.; Tsujimura, T.; Ando, A.; Kittaka, T. [NKK Corp., Tokyo (Japan)

    2000-08-01

    Corrosion behavior of hot-dip Zn-6%Al 0-3%Mg alloy coated steel sheets in cyclic corrosion test (CCT) has been investigated. The corrosion resistance was improved with increasing Mg content in the coating layer, and the highest corrosion resistance was observed at 3% Mg. In Zn-6%Al-3%Mg alloy coated steel sheet, the formations of zinc carbonate hydroxide and zinc oxide were suppressed for longer duration compared with Zn-0.2%Al and Zn-4.5%Al-0.l%Mg alloy coated steel sheets. As a result, zinc chloride hydroxide existed stable on the surface of the coating layer. From the polarization behaviors in 5% NaCl aqueous solution after CCT, it was found that the corrosion current density of Zn-6%At-3%Mg alloy coated steel sheet was much smaller than those of Zn-0.2%Al and Zn-4.5%Al-0.1%Mg alloy coated steel sheets. As zinc carbonate hydroxide and zinc oxide had poor adhesion to the coating layer and had porous structures, these corrosion products were considered to have little protective action for the coating layer. Therefore, it was concluded that Mg suppressed the formation of such nonprotective corrosion products. resulting in the remarkable improvement of corrosion resistance. (author)

  15. Research and development of basic technologies for next generation industries, 'high-performance crystalline controlled alloys'. Evaluation on final research and development (first report); Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Koseino kessho seigyo gokin (saishu kenkyu kaihatsu hyoka 1)

    NONE

    1989-05-01

    The present research work has been performing research and development of the following alloys: (1) 'single crystalline alloy' , the entire alloy being composed of one crystal eliminating crystalline boundaries as an ultra heat resistant alloy with emphasis placed on improvement in particularly the creep properties, and 'particle dispersion strengthened alloy', in which ultrafine particles of oxides are dispersed uniformly; and (2) 'ultra heat resistant and tough alloy' targeted at high-temperature toughness by using Ni-group allowing ultra plasticity forging processing by micronizing crystal particles, as an ultra plastic and highly tough alloy having better processibility than conventional alloys, and 'light-weight highly tough alloy' aimed at achieving light weight and high toughness by using Ti-group. Achievements derived from the present research and development may be summarized as follows: in alloy development, alloys having performance of the world's highest level or equivalent have been developed; a manufacturing technology to make products with complex shapes has been established by using the alloy material manufacturing technology and the alloy materials developed therefrom, where prototype components of such shapes as turbine blades and turbine disks for jet engines were fabricated successfully; and the big fruit obtained was that a large number of technological experiences were acquired from this research and development. (NEDO)

  16. Achievement report for fiscal 1988 on fundamental technologies for next generation industries. Research and development on high-performance crystallinity controlled alloy; 1988 nendo koseino kessho seigyo gokin no kenkyu kaihatsu seika hokokusho

    NONE

    1989-03-01

    With an objective to develop an alloy having excellent heat resistance, light weight, and high toughness, research has been performed on a high-performance crystallinity controlled alloy. This paper summarizes the achievements in fiscal 1988. In the research of a mono-crystal alloy manufacturing technology, casting tests were carried out on mono-crystal blades having cores of complex shape to evaluate the control technologies and the blade characteristics. In addition, mono-crystals were cast from the melting stock of the developed alloy to investigate their creep rupture characteristics. In the research of an ultra-plastic alloy manufacturing technology, alloy powder with average diameter of 80 {mu}m has become producible. The HIP-heat extruded material has achieved elongation of about 200% even in coarse powder. In the ultra-plastic processing method utilizing the ultra-alloy powder, the dual property disk was developed successfully, and the manufacturing technology was established. In the technology to cast a particle dispersed and reinforced alloy, a technology was developed to form an integrated half-cut blade with thin wall and long length. In the heat treatment technology, the band annealing conditions were elucidated on components having complex shapes, and trial production was executed on parts whose crystals are treated unidirectionally. (NEDO)

  17. Pitting attack occurrences of score on aluminum alloy 5182 can-container in a carbonated soft-drink solution; Tansan inryosuichu ni okeru kan`yo aruminiumu gokin 5182 sukoa bu no koshoku hassei

    Seri, O. [Muroran Inst. of Technology, Hokkaido (Japan); Kanazawa, T. [Muroran Inst. of Technology, Hokkaido (Japan). Graduate School

    1997-03-15

    The blowout accident of a carbonated soft-drink can stored in a warehouse during summer was reported. It was a cause due to the stress corrosion cracking of aluminium alloy 5182. Though this case occurred in America, it is necessary to grasp the cause and measures supposing the various corrosion occurring conditions, including the case of America, in Japan where it is required high quality control moreover hot and humid climate. When the refreshing drinking can, EOE, on the market immersed in a carbonated soft-drink solution, corrosion occurred from the score. Corrosion form was a pitting corrosion and 20 cans among the 30 cans blew out due to pitting within a week. In this study, in order to clarify the cause of blowouts of score on aluminium alloy 5182 EOE in a carbonated soft-drink solution at 38{plus_minus}2{degree}C, polarization measurements and metallurgical observation were carried out. As a result, it was found that the blowouts are caused by pitting of groove of the score. 3 refs., 12 figs., 1 tab.

  18. Development of hydriding alloys with multi-functionally-graded properties and their applications to energy conversion devices; Keishagata fukugo kino wo hyomen ni motsu suiso kyuzo gokin no kaihatsu to energy henkan gijutsu eno oyo

    Suda, S; Kadoma, H; Nagamoto, H; Okura, T [Kogakuin University, Tokyo (Japan)

    1997-02-01

    This paper describes the formation of fluoride layer on the surface of hydriding alloys. The fluoride formation reaction consists of a reduction removal process of surface oxide and a fluorination process. Specific surface area of alloy grains can be increased by the hydrogenation reaction in the surface layer accompanied with the removal of surface oxide, which results in easier permeation of molecular hydrogen into fluoride layer. During the fluorination process, a large amount of Ni in the alloy components is eluted, which results in the reduction of Ni distribution immediately under the fluoride layer in the alloy. Consequently, collector sites near the surface are reduced, and conductivity among alloy grains is degraded. To enhance the hydrogen collector sites, specific surface area of alloy grains can be increased by controlling the pH value of fluorination treatment solution in a given range. Moreover, performance of fluoride layer can be advanced by electrochemically dispersing metal Ni in the fluoride layer using Ni complex ion mixed in the treatment solution. 2 refs., 3 figs.

  19. Detection of strain behavior during phase-transformation in welds by the laser speckle method. Report 3. Application of the laser speckle method to strain masurement in the welding process; Reza supekkuru ho ni yoru yosetsubu no sohentai tojo no hizumi kenshutsu. 3. Reza supekkuru ni yoru hizumi sokuteiho no yosetsu eno tekiyo

    Muramatsu, Y.; Kuroda, S. [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan); Gross, H-G. [Rostock Univ., Rostock (Germany)

    1996-11-05

    It corresponds to an information relating to defect formation due to residual stress and its accompanying defect formation to find out the period of phase-transformation and expansion volume on the transformation forming at welding. In order to estimate texture of the heat affected zone, there is an SH-CCT diagram, which is important on weld metallurgy. However, this is formed by giving a thermal recycling to a small size specimen under stress-free, which has some problems to estimate the transformation starting period in actual welding. And, the expansion volume containing the transformation cannot be found out directly by this. In this study, as the first step adaptable to this problem with laser speckle method measurable with non-contact and high precision, a linear heating with TIG to a SUS304 stainless steel thin plate without transformation was executed at first, the strain behavior accompanied with it was confirmed. Secondly, using a thin plate of 9% Ni steel showing any transformation at comparatively low temperature, probability of a phase transformation detection was investigated on a way of cooling by executing resemble linear heating. As a result, the laser speckle method was confirmed to be adaptable to this problem. 14 refs., 17 figs., 1 tab.

  20. Improvement of sensitizatiuon in weld metals of austenitic stainless steels by laser surface melting treatment. Report 3. Study on low temperature sensitization in weldments of austenitic stainless steels ans its improvement by laser surface melting treatment; Reza hyomen yoyu shori ni yoru sutenresu ko yosetsu kinzoku no enbinka kaizen. 3. Osutenaito kei sutenresu ko yosetsubu no teion enbinka to reza hyomen yoyu shori ni yoru sono kaizen

    Nishimoto, K. [Osaka Univ., Osaka (Japan). Faculty of Engineering; Mori, H. [Osaka Univ., Osaka (Japan). Graduate School; Yamamura, T. [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)

    1997-05-05

    Laser surface melting treatment used for the improvement of intergranular corrosion resistance of sensitized austenitic stainless steel weld metal was studied. As a result, it was revealed that as compared to untreated material, sensitization was improved widely and intergranular corrosion resistance was improved to a level of base metal when laser surface melting treatment of sensitized weld metal was carried out. Further, sensitization effect at a condition of laser traveling velocity of 0.00167m/s was slightly insufficient compared to that of laser traveling velocity above 0.00833m/s. This phenomena was caused due to the existence of {delta} ferrite that accelerates the precipitation of Cr carbides inside the laser treatment portion and together with this, the Cr carbides are precipitated in {delta}/{gamma} grain boundary due to the effect of laser heat cycle with insufficient cooling velocity and this has caused desensitization. 16 refs., 13 figs., 3 tabs.

  1. Fiscal 2000 achievement report. Venture business assisting type regional consortium - Minor business creation base type (Development of aluminum alloy casting system using aluminum titanate ceramic member); 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Chitansan aluminium ceramics buzai wo shiyoshita aluminium gokin chuzo system no kaihatsu

    NONE

    2001-03-01

    An automatic liquid metal charging system driven by a linear induction type electromagnetic pump is developed, with its members to be in contact with liquid aluminum alloy being constituted of aluminum titanate ceramics not to be wetted by liquid aluminum alloy and highly resistant to thermal impact. Technologies for casting aluminum titanate ceramic members in plaster molds, CIP (cold isostatic pressing) molding, and burning were established. The mechanism of wettability of liquid aluminum alloy on aluminum titanate ceramic members was elucidated, and an aluminum titanate ceramic member with a dense spinel layer formed thereon in situ was developed for improvement on non-wettability. The developed member remained non-wettable more than six times longer than conventional members. A special electronic counter mechanism was developed by installing in a conduit an aluminum titanate ceramic made impeller whose revolution was converted into electric signals for the measurement of the amount of charged liquid. A non-asbestos polycrystalline alumina-silica fiber was selected as the insulator for the melting/holding furnace, which enabled 30% energy conservation as compared with the conventional type. (NEDO)

  2. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium research and development of energy in its 1st year (Research and development of technologies for development and manufacture of magnesium alloys for cast and forged automotive parts); 1999 nendo jidosha muke chutanko buhin magnesium gokin no kaihatsu oyobi sono kako gijutsu no kenkyu kaihatsu seika hokokusho. 1

    NONE

    2000-03-01

    The research and development efforts aim to use more magnesium alloys of high performance aboard passenger cars. In the research and development of magnesium alloys for die-casting, studies are conducted about 14 kinds of alloys with their heat treatment properties improved, all based on an Mg-9%Zn-4.5%Al-0.6%Ca alloy which is expected to be excellent in resistance to heat and corrosion. In the development of forging-oriented high-strength magnesium alloys to be excellent in withstanding a hot working process, tractive characteristics superior to those of a forged 6061 aluminum material are obtained from an annealed ZK31 alloy. In the development of a high-performance heat-resistant magnesium alloy die-casting technology, it is found that an injection speed higher than that used for the existing alloys is necessary to achieve a product quality which is sound. This is true for all heat-resistant alloys except the ZAC series. Furthermore, technologies are developed which involve the forging of high-performance magnesium alloys, high-precision high-speed wet cutting, surface reforming of the environmentally friendly type, laser beam welding, etc. (NEDO)

  3. Influence of ([alpha]+[beta]) STA and surface finishing on mechanical properties of Ti-6Al-4V alloy. Ti-6Al-4V gokin no kikaiteki seishitsu ni oyobosu taikichu ([alpha]+[beta])STA shori oyobi hyomen shiage no eikyo

    Asami, K [Musashi Inst. of Tech., Tokyo (Japan); Hironaga, M [Musashi Inst. of Technology, Tokyo (Japan). Graduate Student

    1992-10-15

    Ti-6Al-4V allow was solution treated and aged (STA) in air, and the effect of degraded layer on static tensile properties and fatigue behavior was studied. Also, influence of surface finishing on fatigue strength was studied. Degraded layer formed with 0.75mm thick hardened layer has been formed below extremely thin TiO2 scale. Static tensile properties and fatigue behavior are not influenced by the hardened layer. The hardened layer formed below embrittle layer has smaller hadenening scale, and has shown no structural change with the core. Even for an embrittle layer of about 10[mu]m thickness, the ductility and fatigue strength have reduced significantly. The static strength has been improved about 20% with the complete removal of embrittle layer. The fatigue strength of the receiving material has been greater in the case of mechanical polished finishing using NO.1500 emery paper and diamond taste of 1[mu]m compared to electrical polishing. However, the fatigue strength has been lower in the case of mechanical polished STA material compared to electropolished material. 8 refs., 18 figs., 2 tabs.

  4. FY 1995 development of fluorinated hydriding alloys with multi functional and functionally-graded surface and their application to energy conversion devices; 1995 nendo keishagata fukugo kino wo hyomen ni motsu suiso kyuzo gokin no kaihatsu to energy henkan gijutsu eno oyo

    NONE

    1997-03-01

    The project is the extended researches of a fluorination technique invented by the project leader (Suda) for improving the surface properties and characteristics of conventional hydriding alloys from the following viewpoints; (1) To investigate the roles of fluorinated surface during hydrogen uptake both in the gas-solid and the electrochemical reactions. (2) To elucidate the factors which increase the protective nature of the surface. (3) To develop a material design procedure for synthesizing thin layer of functionally graded surface which is composed of metallic Ni and the fluoride compound. (1) An advanced fluorination technique was developed to incorporate metallic Ni in the surface fluoride layer. (2) Metallic Ni was successfully distributed in a functionally graded manner in the Surface fluoride layer. (3) Through the technique developed, the following properties and characteristics were successfully donated in the fluorinated hydriding alloys such as AB{sub 5}, AB{sub 2}, and AB; (3-1)Surface oxides which act as the resistant layer to the hydrogen up take was completely eliminated to result in the enhancement of the initial activation characteristics. (3-2) Hydrogen selectivity and permeability was greatly improved. (3-3) Surface protective nature against the impurity gases and contaminants was significantly improved. (3-4) Initial activation characteristics both in the gas-solid and the electrochemical reactions were distinguishably improved. (3-5) Fluorinated surface was found to function as the catalyst for a methanation reaction between the CO{sub 2} gas adsorbed over the fluorinated surface and the monatomic hydrogen absorbed in the metal lattice of the crystalline structure of the hydriding alloys. (4) A technique was developed for increasing the specific surface area and decreasing the specific surface diameter of the fluorinated hydriding alloy articles. (NEDO)

  5. Mercury free zinc alloy powder for alkaline manganese battery. 2. Effect of additive species to zinc particle on suppressing hydrogen gas evolution; Arukari mangan denchiyo mukoka aen gokin funmatsu. 2. Suiso gas hassei ni oyobosu aen ryushi eno tenka genso no yokusei koka

    Yano, M.; Fujitani, S.; Nishio, K. [Sanyo electric Co. Ltd., Osaka (Japan); Akai, Y.; Kurimura, M. [Sanyo Excell Co. Ltd., Tottori (Japan)

    1997-08-05

    In order to make alkaline manganese batteries mercury-free and suppress hydrogen gas generation, investigations were given on the effect of additive species on modification of zinc particles present on negative electrode surface. Mercury with high hydrogen overvoltage has been added conventionally, but the mercury can cause an environmental problem. Surface modification by using indium exhibited hydrogen gas generation suppressing effect. With the surface modification amount of 0.10% by weight or more, the suppressing effect is saturated, reducing the effect to 50% of that of mercury. Surface-modifying the bismuth added zinc particles with indium showed greater suppressing effect than the case where each element is used independently. Zinc-indium (0.10% by weight) - bismuth (0.025% by weight) based alloy powder showed the same hydrogen generation suppressing effect as zinc-mercury (0.15% by weight) alloy powder. A sealed test battery using this alloy powder in negative active material exhibited a discharge capacity of 1700 mAh similarly to the initial stage even after having been stored for 20 days at 60 degC. Self-discharge characteristics equivalent to that of zinc-mercury (0.15% by weight) based alloy powder were obtained. An environment compatible dry cell battery containing no mercury whatsoever was developed successfully. 18 refs., 6 figs., 1 tab.

  6. Properties of P/M forged Al-Si alloys made by premixed powders. 1. Influences of dispersion and sizes of proeutectic Si on wear resistance; Kongoho ni yotte sakuseishita Al-Si kei shoketsu tanzo gokin no tokusei. 1. Taimamosei ni oyobosu shosho Si no bunsan jotai to ryukei no eikyo

    Ishijima, Z.; Ichikawa, J.; Sasaki, s.; Shikata, H. [Hitachi Powdered Metals Co. Ltd., Tokyo (Japan)

    1995-10-15

    Influences of dispersion and sizes of proeutectic Si on wear resistance of P/M Al-Si alloys using the prealloying method and premixing method have been investigated. As a result, discretely dispersed proeutectic Si showed excellent wear resistance in compassion with uniformly dispersed one. The cause is considered to be the unclosed Si soft phase which has been preferentially worn away, consequently acting on forming oil grooves and burying worn particles. Further more the existence of the optimum size of proeutectic Si on wear resistance was confirmed. In the case of finer particles, only Al-Si alloy (pin) was warned away substantially. On the other handgun the case of larger particles, both the Al-Si alloy (pin) and the mating malarial (steel disc) were excessively warned away. It is assumed therefore that the finer proeutectic Si particles are not effective as hard particles, on the contrary, larger proeutectic Si particles increase the abrasive wear against the mating material, and those buried into the mating material initiate wear of Al-Si alloy at the same time. 2 refs., 10 figs., 1 tab.

  7. Research and development of the industrial basic technologies of the next generation, 'composite materials (highly functional, crystal-controlled alloys)'. Evaluation of the first phase research and development; Jisedai sangyo kiban gijutsu kenkyu kaihatsu 'koseino kessho seigyo gokin'. Zenki kenkyu kaihatsu hyoka

    NONE

    1985-03-30

    The results of the first phase research and development project for developing highly functional, crystal-controlled alloys as the basic technologies of the next generation are evaluated. The R and D themes are selected to develop alloys superhighly resistant to heat, heat-resistant/high-rigidity and light/high-rigidity by controlling their crystals. Development of the basic techniques for these materials is of high significance, and highly rated. The efforts in the first-phase R and D project are aimed at designs of a total of 12 types of single-crystal alloys by the computer-aided alloy designing techniques, production of these alloys on a trial basis, and evaluation of their characteristics, for the alloys superhighly resistant to heat. Two of them are confirmed to be superior to the others, and selected as the alloys to be developed. This project has also established the single-crystal casting techniques, which allow crystal orientation almost completely. Various types of heat-resistant/high-rigidity and light/high-rigidity alloys are designed, produced on a trial basis, and evaluated for their characteristics. As a result, one alloy type is selected for each category. The other techniques developed by this project include those for adjusting powders for light/high-rigidity alloys whose average grain sizes are controlled and impurity contents are reduced. Bright prospects have been obtained for the techniques for superplastically forging the disk shapes. These efforts have almost achieved the development objectives of the first-phase R and D project. (NEDO)

  8. Research and development in second term of hydrogen utilizing international clean energy system technology (WE-NET) in fiscal 1999. Task 2. Hydrogen absorbing alloys for discrete hydrogen transportation and storage; 1999 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dainiki kenkyu kaihatsu. Task 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    NONE

    2000-03-01

    Developmental researches have been performed on hydrogen absorbing alloys intended to be applied to stationary and moving objects. This paper summarizes the achievements in fiscal 1999. As a method for evaluating effective hydrogen absorption amount, proposals were made on definition and measuring method for effective hydrogen absorption amount assuming hydrogen absorption at 20 degrees C, and 10 and 30 atmospheric pressures, and hydrogen discharge at 100 degrees C and one atmospheric pressure. In the research of an Mg-Ni based alloy, the Mg based alloy having the Laves composition, treated by mechanical grinding was found to discharge hydrogen of 0.2 to 0.35% by mass at 423K. This discharge temperature is the lowest among the Mg based alloys having been developed to date. In the research of the V based hydrogen absorbing alloy, the V-Ti-Cr-Mn alloy was developed successfully that discharges hydrogen of 2.64% by mass when hydrogen absorbed at 273 K and 3.3 MPa is discharged at 373 K and 0.01 MPa. Furthermore, development has been made on the V-Ti-Cr-Mn-Ni alloy that shows high effective hydrogen absorption amount without being treated by heat. This alloy has as high effective hydrogen absorption amount as 2.47% by mass under the above described conditions. (NEDO)

  9. Fiscal 2000 report on the Phase II R and D of the international hydrogen utilization clean energy network system technology (WE-NET). Task 11. Distributed transportation of hydrogen/hydrogen absorbing alloy for hydrogen storage; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu seika hokokusho. 11. Suiso bunsan yuso chozoyo suiso kyuzo gokin

    NONE

    2001-03-01

    Studies were conducted to find out hydrogen absorbing alloys with an effective hydrogen absorption rate of 3 mass % or more, hydrogen discharge temperature of 100 degrees C or lower, hydrogen absorbing capacity after 5,000 cycles not less than 90% of the initial capacity, applicable to stationary and mobile systems. The V-based alloy that achieved an effective hydrogen absorption rate of 2.6 mass % in the preceding fiscal year was subjected to studies relating to safety and durability. Since V is costly, efforts were exerted to develop TiCrMo alloys to replace the V-based alloy. In the search for novel high-performance alloys, endeavors centered on novel ternary alloys, novel alloys based on Mg and Ti, and novel intermetallic compounds of the Mg-4 family. In the study of guidelines for developing next-generation high-performance alloys, methods for creating hydrides with an H/M (hydrogen/metal) ratio far higher than 2 were discussed. Mentioned as techniques to produce such hydrides were the utilization of the hole regulated lattice, novel alloys based on the ultrahigh pressure hydride phase, new substances making use of the cooperative phenomenon in the coexistent multiple-phase structure, and the like. (NEDO)

  10. Research and development of basic technologies for next generation industries, 'high-performance crystalline controlled alloys'. Evaluation on final research and development (first report); Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Koseino kessho seigyo gokin (saishu kenkyu kaihatsu hyoka 1)

    NONE

    1989-05-01

    The present research work has been performing research and development of the following alloys: (1) 'single crystalline alloy' , the entire alloy being composed of one crystal eliminating crystalline boundaries as an ultra heat resistant alloy with emphasis placed on improvement in particularly the creep properties, and 'particle dispersion strengthened alloy', in which ultrafine particles of oxides are dispersed uniformly; and (2) 'ultra heat resistant and tough alloy' targeted at high-temperature toughness by using Ni-group allowing ultra plasticity forging processing by micronizing crystal particles, as an ultra plastic and highly tough alloy having better processibility than conventional alloys, and 'light-weight highly tough alloy' aimed at achieving light weight and high toughness by using Ti-group. Achievements derived from the present research and development may be summarized as follows: in alloy development, alloys having performance of the world's highest level or equivalent have been developed; a manufacturing technology to make products with complex shapes has been established by using the alloy material manufacturing technology and the alloy materials developed therefrom, where prototype components of such shapes as turbine blades and turbine disks for jet engines were fabricated successfully; and the big fruit obtained was that a large number of technological experiences were acquired from this research and development. (NEDO)

  11. Research and development of the industrial basic technologies of the next generation, 'composite materials (highly functional, crystal-controlled alloys)'. Evaluation of the first phase research and development; Jisedai sangyo kiban gijutsu kenkyu kaihatsu 'koseino kessho seigyo gokin'. Zenki kenkyu kaihatsu hyoka

    NONE

    1985-03-30

    The results of the first phase research and development project for developing highly functional, crystal-controlled alloys as the basic technologies of the next generation are evaluated. The R and D themes are selected to develop alloys superhighly resistant to heat, heat-resistant/high-rigidity and light/high-rigidity by controlling their crystals. Development of the basic techniques for these materials is of high significance, and highly rated. The efforts in the first-phase R and D project are aimed at designs of a total of 12 types of single-crystal alloys by the computer-aided alloy designing techniques, production of these alloys on a trial basis, and evaluation of their characteristics, for the alloys superhighly resistant to heat. Two of them are confirmed to be superior to the others, and selected as the alloys to be developed. This project has also established the single-crystal casting techniques, which allow crystal orientation almost completely. Various types of heat-resistant/high-rigidity and light/high-rigidity alloys are designed, produced on a trial basis, and evaluated for their characteristics. As a result, one alloy type is selected for each category. The other techniques developed by this project include those for adjusting powders for light/high-rigidity alloys whose average grain sizes are controlled and impurity contents are reduced. Bright prospects have been obtained for the techniques for superplastically forging the disk shapes. These efforts have almost achieved the development objectives of the first-phase R and D project. (NEDO)

  12. Research and development of basic technologies for next generation industries, 'high-performance crystalline controlled alloy'. Evaluation on final research and development (final report); Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Koseino kessho seigyo gokin (saishu kenkyu kaihatsu hyoka 2)

    NONE

    1989-05-01

    A proposal was given on a new processing process to use Ni-group super alloy, and elucidation was given on super plasticity phenomenon by using non-destructive tests. The Ni-group super heat-resistant alloy Mod. IN-100 subjected to different preforms by means of extrusion was given a super plasticity test at 1,050 degrees C to derive total elongation and 'm' value. As a result, it was disclosed that a material annealed for one hour at 1,070 degrees C after extrusion of 70% at 1,100 degrees C possesses the maximum 'm' value in the vicinity of 2.0 times 10{sup -2}s{sup -1}. The largest key to the new processing method is to improve the nature of the material, in which the plasticity manifestation velocity is accelerated by ten times to the order of 10{sup -2}s{sup -1} as described above. In addition, forging of IN-100 was made possible by using the ordinary forging equipment with the use of two-fold measures. The measures consist of maintaining temperature of IN-100 during casting by heating the die material to about 600 degrees C, rather than keeping it at a constant temperature, and then packing IN-100 in S35C steel material to accommodate the temperature decrease during casting inside the S35C pack. Thus, a processing method was made practical, eliminating need of the forging process to compress and solidify powder itself, that is the extrusion process. (NEDO)

  13. Achievement report for fiscal 1993. International clean energy system technology to utilize hydrogen (WE-NET) (Sub-task 5. Development of hydrogen transportation and storage technology) (Edition 5. Development of hydrogen absorbing alloys for discrete transportation and storage); 1993 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) . Sub tusk 5. Suiso yuso chozo gijutsu no kaihatsu - Dai 5 hen. Bunsan yuso chozo you suiso kyuzo gokin no kaihatsu

    NONE

    1994-03-01

    Surveys and researches have been performed with an objective to accumulate knowledge required for R and D of a hydrogen transportation and storage technology. With respect to the hydrogen absorbing alloys for hydrogen transportation and storage, surveys have been carried out on the rare earth-nickel based alloy, magnesium based alloy, titanium/zirconium based alloy, vanadium based alloy, and other alloys. Regarding the hydrogen transportation and storage technology using hydrogen absorbing alloys, surveys have been made on R and D cases for hydrogen transporting containers, stationary hydrogen storing equipment, and hydrogen fuel tank for mobile equipment such as automobiles. For the R and D situation in overseas countries, site surveys have been executed on research organizations in Germany and Switzerland, the leader nations in R and D of hydrogen absorbing alloys. As a result of the surveys, the hydrogen absorbing alloys were found to have such R and D assignments as increase of effective hydrogen absorbing quantity, compliance with operating conditions, life extension, development of alloys easy in initial activation and fast in hydrogen discharge speed, and cost reduction. Items of the transportation and storage equipment have such assignments as making them compact, acceleration of heat conduction in alloy filling layers, handling of volume variation and internal stress, and long-term durability. (NEDO)

  14. Fiscal 1998 achievement report on regional consortium research and development project. Research and development for developing basic technologies of composite laser-aided metal machining into highly advanced system (Technology of machining process systematization for furnishing titanium and titanium alloys with advanced functions - 2nd year); 1998 nendo fukugo laser nado ni yoru kinzoku kako kiban gijutsu no kodo system ka no kenkyu kaihatsu seika hokokusho. 2. Chitan oyobi chitan gokin eno kokino fuyo kako system ka gijutsu

    NONE

    2000-03-01

    For the creation of new industries and for their expansion to the consumer market, efforts are made to develop laser-aided technology of bonding titanium with other metals and CAD/CAM (computer-aided design/computer-aided manufacture)-aided technology of high-precision multidimensional laser machining for titanium. In the development of technology for bonding titanium and other metals, combinations of titanium and stainless steel and titanium and copper are examined, and a dissimilar metal joint is successfully manufactured, free of cracks at a tension shear strength level of approximately 4200N/40mm and shear stress of 200MPa or higher. In the study of the mechanism of bonding, it is found that a sound weld metal is created with the formation of intermetallic compounds well inhibited by allowing titanium to be on the upper surface. In the study of laser-aided titanium cutting, a dross-free cutting process is realized by optimizing cutting conditions such as those involving laser excitation and assist gas application. Three-dimensional laser-aided cutting is carried out in compliance with a 3-dimensional laser cutting program incorporating metal pattern data, and the process is found to reduce the number of necessary dies to 1/4 to shorten and simplify the process. (NEDO)

  15. Report on the results of the FY 1998 hydrogen utilization international clean energy system technology (WE-NET). Subtask 5. Survey on the R and D of technologies for hydrogen transport and storage by hydrogen absorbing alloys (V. Development of the distributed transport/storage use hydrogen absorbing alloys); 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 5. Suiso yuso chozo gijutsu no kaihatsu (V. bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    NONE

    1999-03-01

    The paper described the FY 1998 results of the development of hydrogen distributed transport/storage use absorbing alloys in the WE-NET project. Study was made of improvement of hydrogen desorption characteristics by substituting Ca for part of Mg of Mg-Ni alloys and substituting Cr for part of Ni. It is necessary to shift the state of atomic bond by H atom and metal atom in alloys from the ionic bond to the metallic bond, and to change from the amorphous state to the BCC type crystal structure. It was found out that it was possible to do it by improving the composition and heat treatment. The addition of Cu to LaMg{sub 2} alloys shifts the bond with hydrogen to the bond with metal. Easy hydrogen desorption and large absorbing capacity can be expected. It was found out that LaMg{sub 2}Cu{sub 2} synthesized by the reaction sintering method has reversible hydrogen absorbing desorption characteristics. The absorbing amount is 2.4 wt%, the desorption amount 1.2 wt%, and the desorption temperature 190 degrees C. Those are still far from WE-NET targeted values, but a clue to the search was obtained. It was found out that by applying doping technology by Ti, etc. to NaAlH{sub 4}, characteristics can be expected of the desorption amount, 4.5 wt%, of the hydrogen desorption starting temperature from 100 degrees C to 200 degrees C. (NEDO)