WorldWideScience

Sample records for glyphosate-tolerant soybean glycine

  1. Glyphosate tolerance of soybean mutant gained after boarding on satellite

    International Nuclear Information System (INIS)

    Jiang Lingxue; Ren Honglei; Zhang Hongyan; Liu Zhangxiong; Jin Longguo; Guo Yong; Qiu Lijuan; Tao Bo

    2011-01-01

    Glyphosate-tolerant germplasm and genetic variation characteristics of SP 2 and SP 3 soybean varieties boarded on Shijian No.8 satellite were analyzed after treated by herbicide glyphosate in the field. Abundant variations of traits were produced, and the resistance within and among cultivars were different in their offspring of space mutagenesis. Plant height and maturity were used as index to screen glyphosate tolerant materials. Space mutation increased of soybean 661 SP 3 of Zhongpin, and one glyphosate-resistance variant was screened from Zhongpin 661 SP 3 . It showed that glyphosate tolerance was different among offspring of different space mutagenesis soybean materials. It is feasible to systemically screen elite traits soybean by applying space mutation breeding. (authors)

  2. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  3. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  4. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  5. Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods.

    Science.gov (United States)

    Imura, Osamu; Shi, Kun; Iimura, Keiji; Takamizo, Tadashi

    2010-01-01

    We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods. © ISBR, EDP Sciences, 2011.

  6. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    Science.gov (United States)

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  7. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan.

    Science.gov (United States)

    Yoshimura, Yasuyuki; Matsuo, Kazuhito; Yasuda, Koji

    2006-01-01

    Natural out-crossing rates were evaluated for conventional soybeans (Glycine max (L.) Merr.) cultivated adjacent to genetically modified (GM) glyphosate-tolerant soybeans under field conditions during a four-year period in Japan. A total of 107 846 progeny of 2772 plants harvested from conventional varieties were screened for glyphosate herbicide tolerance. The highest out-crossing rates, 0.19% in 2001 and 0.16% in 2002, were observed in adjacent rows 0.7 m from the pollen source. The highest rate in 2004 was 0.052%, which was observed at 2.1 m. No out-crossing was observed in the rows 10.5 m from the pollen source over the four-year period. The farthest distances between receptor and pollen source at which out-crossing was observed were 7 m in 2001, 2.8 m in 2002, and 3.5 m in 2004. The greatest airborne pollen density during the flowering period, determined by Durham pollen samplers located between the rows of each variety, was 0.368 grains.cm(-2).day(-1), with the average value at 0.18 grains.cm(-2).day(-1), indicating that the possibility of out-crossing by wind is minimal. Thrips species and predatory Hemiptera visited the soybean flowers more frequently during the four-year period than any other common pollinators, such as bees.

  8. 76 FR 27268 - Glyphosate; Pesticide Tolerance

    Science.gov (United States)

    2011-05-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2010-0938; FRL-8872-6] Glyphosate... regulation increases the established tolerance for residues of glyphosate in or on corn, field, forage... tolerance for residues of the herbicide glyphosate, N-(phosphonomethyl) glycine, in or on corn, field...

  9. Intellectual property rights related to the genetically modified glyphosate tolerant soybeans in Brazil.

    Science.gov (United States)

    Rodrigues, Roberta L; Lage, Celso L S; Vasconcellos, Alexandre G

    2011-06-01

    The present work analyzes the different modalities of protection of the intellectual creations in the biotechnology agricultural field. Regarding the Brazilian legislations related to the theme (the Industrial Property Law - no. 9. 279/96 and the Plant Variety Protection Law - no. 9. 456/97), and based in the international treaties signed by Brazil, the present work points to the inclusions of each of them, as well as to their interfaces using as reference the case study of glyphosate tolerant genetically modified soybean. For this case study, Monsanto's pipelines patents were searched and used to analyze the limits of patent protection in respect to others related to the Intellectual Property (IP) laws. Thus, it was possible to elucidate the complex scenario of the Intellectual Property of the glyphosate tolerant soybeans, since for the farmer it is hard to correlate the royalties payment with the IP enterprise's rights.

  10. Interference of Selected Palmer Amaranth (Amaranthus palmeri Biotypes in Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2012-01-01

    Full Text Available Palmer amaranth (Amaranthus palmeri S. Wats. has become difficult to control in row crops due to selection for biotypes that are no longer controlled by acetolactate synthase inhibiting herbicides and/or glyphosate. Early season interference in soybean [Glycine max (L. Merr.] for 40 days after emergence by three glyphosate-resistant (GR and three glyphosate-susceptible (GS Palmer amaranth biotypes from Georgia and North Carolina was compared in the greenhouse. A field experiment over 2 years compared season-long interference of these biotypes in soybean. The six Palmer amaranth biotypes reduced soybean height similarly in the greenhouse but did not affect soybean height in the field. Reduction in soybean fresh weight and dry weight in the greenhouse; and soybean yield in the field varied by Palmer amaranth biotypes. Soybean yield was reduced 21% by Palmer amaranth at the established field density of 0.37 plant m−2. When Palmer amaranth biotypes were grouped by response to glyphosate, the GS group reduced fresh weight, dry weight, and yield of soybean more than the GR group. The results indicate a possible small competitive disadvantage associated with glyphosate resistance, but observed differences among biotypes might also be associated with characteristics within and among biotypes other than glyphosate resistance.

  11. Identification of geneticaly modified soybean seeds resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    Tillmann Maria Ângela André

    2004-01-01

    Full Text Available Advances in genetic engineering permit the modification of plants to be tolerant to certain herbicides that are usually not selective. For practical and commercial purposes, it is important to be able to detect the presence or absence of these traits in genotypes. The objective of this research was to develop a procedure for identifying genetically modified soybean (Glycine max L. Merr. with resistance to the herbicide glyphosate. Two studies were conducted based on germination test. In the first study, soybean seeds were pre-imbibed in paper towel with the herbicide solutions, then transferred to moist paper towel for the germination test. In the second study, seeds were placed directly in herbicide solutions in plastic cups and tested for germination using the paper towel method. Eight soybean genotypes were compared: four Roundup Ready, that contained the gene resistant to the herbicide (G99-G725, Prichard RR, G99-G6682, and H7242 RR and four non-transgenic parental cultivars (Boggs, Haskell, Benning, and Prichard. In the first study, the seeds were imbibed for 16 hours at 25°C in herbicide concentrations between 0.0 and 1.5% of the glyphosate active ingredient. In the second, seeds were subjected to concentrations between 0.0 and 0.48%, for one hour, at 30°C. The evaluation parameters were: germination, hypocotyl length, root length and total length of the seedlings. Both methods are efficient in identifying glyphosate-resistant soybean genotypes. It is possible to identify the genetically modified soybean genotypes after three days, by imbibing the seed in 0.12% herbicide solution, and after six days if the substrate is pre-imbibed in a 0.6% herbicide solution. The resistance trait was identified in all cultivars, independent of the initial physiological quality of the seed.

  12. Natural glyphosate tolerance in sweetvetch Hedysarum boreale

    Science.gov (United States)

    Sweetvetch (Hedysarum boreale Nutt.) a legume native to the western USA and Canada, is purported to have tolerance to glyphosate {N-(phosphonomethyl) glycine} herbide. Eight rates of glyphosate were tested for their effect on biomass yield (BMY) and survival of seedlings and mature plants. Treatme...

  13. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    Science.gov (United States)

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  14. Selection and characterization of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus)

    International Nuclear Information System (INIS)

    Boerboom, C.M.

    1989-01-01

    If birdsfoot trefoil (Lotus corniculatus L.) was tolerant to glyphosate [N-(phosphonomethyl)glycine], Canada thistle [Cirsium arvense (L.) Scop.] and other dicot weeds could be selectively controlled in certified seed production fields. Glyphosate tolerance in birdsfoot trefoil was identified in plants from the cultivar Leo, plants regenerated from tolerant callus, and selfed progeny of plants regenerated from callus. Plants from the three sources were evaluated in field studies for tolerance to glyphosate at rates up to 1.6 kg ae/ha. Plants of Leo selected for tolerance exhibited a twofold range in the rate required to reduce shoot weight 50% (I 50 s from 0.6 to 1.2 kg/ha glyphosate). Plants regenerated from tolerant callus had tolerance up to 66% greater than plants regenerated from unselected callus. Transgressive segregation for glyphosate tolerance was observed in the selfed progeny of two regenerated plants that both had I 50 s of 0.7 kg/ha glyphosate. The selfed progeny ranged from highly tolerant (I 50 of 1.5 kg/ha) to susceptible (I 50 of 0.5 kg/ha). Spray retention, 14 C-glyphosate absorption and translocation did not account for the differential tolerance of nine plants that were evaluated from the three sources. The specific activity of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase ranged from 1.3 to 3.5 nmol/min sm-bullet mg among the nine plants and was positively correlated with glyphosate tolerance. Leo birdsfoot trefoil was found to have significant variation in glyphosate tolerance which made it possible to initiate a recurrent selection program to select for glyphosate tolerance in birdsfoot trefoil. Two cycles of selection for glyphosate tolerance were practiced in three birdsfoot trefoil populations, Leo, Norcen, and MU-81

  15. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  16. Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans.

    Science.gov (United States)

    Bøhn, T; Cuhra, M; Traavik, T; Sanden, M; Fagan, J; Primicerio, R

    2014-06-15

    This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional "chemical" cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating "substantial non-equivalence" in compositional characteristics for 'ready-to-market' soybeans. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  18. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

    Directory of Open Access Journals (Sweden)

    Tao Zhan

    Full Text Available Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO, we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg(51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

  19. Biodegradation of glyphosate in rhizospheric soil cultivated with Glycine max, Canavalia ensiformis e Stizolobium aterrimum Biodegradação de glyphosate em solo rizosférico de Glycine max, Canavalia ensiformis e Stizolobium aterrimum

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2009-01-01

    Full Text Available Biodegradation of glyphosate was evaluated in rhizospheric soil cultivated with Glycine max (soybean, var. BRS245-RR, Canavalia ensiformis and Stizolobium aterrimum. After these species were cultivated for 60 days, soil samples were collected, placed in flasks and treated with 14C-glyphosate. After 30 days of incubation, the total release rate of C-CO2 was determined along with microbial biomass (MBC, metabolic quotient (qCO2, and degradation percentage of the radio-labeled glyphosate released as 14C-CO2. A higher mass of rhizosphere-associated microorganisms was verified in the soil samples from pots cultivated with soybean, regardless of glyphosate addition. However, in the presence of the herbicide, this characteristic was the most negatively affected. Microorganisms from the C. ensiformis rhizosphere released a lower amount of 14C-CO2, while for those originated from S. aterrimum, the amount released reached 1.3% more than the total carbon derived from the respiratory activity. The rhizospheric soil from S. aterrimum also presented higher glyphosate degradation efficiency per microbial biomass unit. However, considering qCO2, the microbiota of the rhizospheric soil cultivated with soybean was more efficient in herbicide degradation.Avaliou-se neste trabalho a degradação de glyphosate em solo rizosférico proveniente do cultivo de Glycine max (soja var. BRS245-RR, Canavalia ensiformis e Stizolobium aterrimum. Para isso, após o cultivo, em vasos, das citadas espécies por 60 dias, coletaram-se amostras de solo, as quais foram acondicionadas em frascos e tratadas com 14C-glyphosate. Após 32 dias de incubação, foram determinados a taxa de desprendimento total de C-CO2, a biomassa microbiana (MBC, o quociente metabólico (qCO2 e a porcentagem de degradação do glyphosate radiomarcado liberado na forma de 14C-CO2. Verificou-se a maior massa de microrganismos associados à rizosfera em amostras de solo proveniente de vasos cultivados com a

  20. Intellectual property rights related to the genetically modified glyphosate tolerant soybeans in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta L Rodrigues

    2011-06-01

    Full Text Available The present work analyzes the different modalities of protection of the intellectual creations in the biotechnology agricultural field. Regarding the Brazilian legislations related to the theme (the Industrial Property Law - no. 9. 279/96 and the Plant Variety Protection Law - no. 9. 456/97, and based in the international treaties signed by Brazil, the present work points to the inclusions of each of them, as well as to their interfaces using as reference the case study of glyphosate tolerant genetically modified soybean. For this case study, Monsanto's pipelines patents were searched and used to analyze the limits of patent protection in respect to others related to the Intellectual Property (IP laws. Thus, it was possible to elucidate the complex scenario of the Intellectual Property of the glyphosate tolerant soybeans, since for the farmer it is hard to correlate the royalties payment with the IP enterprise's rightsO presente trabalho analisa as diferentes modalidades de proteção das criações intelectuais no campo da biotecnologia agrícola. A partir das leis Brasileiras relacionadas ao tema (Lei da Propriedade Industrial - nº 9.279/96 e Lei da Proteção de Cultivares - nº 9.456/97, e com base nos tratados internacionais assinados pelo Brasil, o presente trabalho aponta as inclusões de cada uma, assim como, suas interfaces usando como referência o estudo de caso da soja geneticamente modificada para tolerância ao glifosato. Para este caso, patentes pipelines da Monsanto foram buscadas e usadas para analisar os limites de proteção das patentes frente às outras leis de Propriedade Intelectual (PI relacionadas. Assim, foi possível elucidar o cenário complexo da Propriedade Intelectual das sojas tolerantes ao glifosato, já que para o agricultor não é fácil correlacionar o pagamento dos royalties com os direitos de PI da empresa

  1. Implication of Legal References on Technological Dissemination: A Study on Transgenic Soybeans Resistant to Glyphosate Herbicide in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta Rodrigues

    2013-04-01

    Full Text Available The following paper aims at establishing a connection between the evolution of legal landmarks related to soybeans tolerant to glyphosate-based herbicide in Brazil and the planting growth of this transgenic soybean in Brazil, in order to determine the role that such soybeans play in today's domestic agricultural scenario. To do so, a study of Brazilian laws that protect intellectual creations was carried out (Industrial Property Law - Law number 9.279/96 and the Plant Protection Law – Law number 9.456/97, the Law on Biosafety – Law number 11105 / 05 – and the Law on Brazilian Seeds and Seedlings - Law number 10.711/03, in order to delimit the matter protected by each of those laws while establishing its interfaces. Regarding planting, the Biosafety Law of 2005 corresponds to the fourth law which deals with soybeans tolerant to glyphosate-based herbicide and ensures that those previously registered may be marketed without limitation per crop. In order to estimate the space that soybean seeds tolerant to glyphosate-based herbicide began to occupy in the Brazilian market, in the 2008/2009 harvest, compared to the other not genetically modified soybeans, a search in the Ministry of Agriculture´s database was done (http://www.agricultura.gov.br through the available records of certified, non-certified and basic seeds.

  2. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  3. Agricultural impacts of glyphosate-resistant soybean cultivation in South America.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B

    2011-06-08

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of the soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soybean. GRS resulted in a significant shift toward no-tillage practices in Brazil and Argentina, but weed resistance may reduce this trend. Probably the highest agricultural risk in adopting GRS in Brazil and South America is related to weed resistance due to use of glyphosate. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. Five weed species, in order of importance, Conyza bonariensis (L.) Cronquist, Conyza canadensis (L.) Cronquist, Lolium multiflorum Lam., Digitaria insularis (L.) Mez ex Ekman, and Euphorbia heterophylla L., have evolved resistance to glyphosate in GRS in Brazil. Conyza spp. are the most difficult to control. A glyphosate-resistant biotype of Sorghum halepense L. has evolved in GRS in Argentina and one of D. insularis in Paraguay. The following actions are proposed to minimize weed resistance problem: (a) rotation of GRS with conventional soybeans in order to rotate herbicide modes of action; (b) avoidance of lower than recommended glyphosate rates; (c) keeping soil covered with a crop or legume at intercrop intervals; (d) keeping machinery free of weed seeds; and (d) use of a preplant nonselective herbicide plus residuals to eliminate early weed interference with the crop and to minimize escapes from later applications of glyphosate due to natural resistance of older weeds and/or incomplete glyphosate coverage.

  4. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    Science.gov (United States)

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Response of Pennsylvania native plant species, corn and soybean to tank mixes of dicamba and glyphosate

    Science.gov (United States)

    Crops such as soybean are being genetically modified to be tolerant to multiple herbicides, such as dicamba and glyphosate, in order to allow treatment with several herbicides to control the development of herbicide resistance in weeds. However, with increased use of multiple-he...

  6. Lack of glyphosate resistance gene transfer from Roundup Ready soybean to Bradyrhizobium japonicum under field and laboratory conditions.

    Science.gov (United States)

    Isaza, Laura Arango; Opelt, Katja; Wagner, Tobias; Mattes, Elke; Bieber, Evi; Hatley, Elwood O; Roth, Greg; Sanjuán, Juan; Fischer, Hans-Martin; Sandermann, Heinrich; Hartmann, Anton; Ernst, Dieter

    2011-01-01

    A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.

  7. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

  8. WEED CONTROL IN GENETICALLY MODIFIED GLYPHOSATE-TOLERANT SOYBEAN MANEJO DE PLANTAS DANINHAS EM SOJA GENETICAMENTE MODIFICADA TOLERANTE AO GLYPHOSATE

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Durigan

    2011-04-01

    Full Text Available The transgenic production systems, as well as conventional systems, require, in addition to chemical control, the adoption of other weed management strategies. This study was developed to evaluate the weed chemical control in glyphosate tolerant soybean, associated to cover crops cultivated in the autumn/winter. The experiment was carried out under field conditions at the FCAV/Unesp, Jaboticabal, São Paulo State, Brazil. A randomized split-plot block design was used, with four replications. St. Lucia Grass (Brachiaria brizantha ‘Marandu’, forage millet (Pennisetum americanum ‘BN2’, and a treatment with spontaneous growth vegetation were evaluated for plots, and, for subplots, the herbicides glyphosate, chlorimuron - ethyl plus lactofen, and fluazifop-p-butyl, in a sequential spraying, and two controls without any application. Grass cover contributed to the chemical control, suppressing weeds, and the single application of 720 g a.e. ha-1 of glyphosate, independently of the cover crop cultivated in the autumn/winter, was sufficient for adequately controlling Acanthospermum hispidum, Alternanthera tenella, Amaranthus sp., Bidens pilosa, Xanthium strumarium, Cenchrus echinatus, Digitaria sp., and Eleusine indica, with results similar to the treatment (chlorimuron-ethyl + lactofen + fluazifop-p-buthyl. When compared to the weeded control, the herbicides did not affect plants height, dry matter of the aerial parts, mass of 100 grains, and grain yield. Soybean plants grown over St. Lucia Grass and forage millet presented a higher height, however, no other feature was influenced by the cover crop.

    KEY-WORDS: Brachiaria brizantha; Pennisetum americanum; no-tillage; Roundup Ready; spontaneous vegetation.

    Os sistemas de produção transgênicos, assim como os

  9. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    Science.gov (United States)

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  10. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean

    International Nuclear Information System (INIS)

    Santos, J.B.; Ferreira, E.A.; Silva, A.A.; Oliveira, J.A.; Fialho, C.M.T.

    2007-01-01

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  11. Response of Pennsylvania native plant species to dicamba and/or glyphosate

    Science.gov (United States)

    Weeds may become resistant to intensive and extensive use of specific herbicides associated with the growth of herbicide tolerant crops, e.g., the use of glyphosate for weed control with glyphosate tolerant soybeans. To counter this resistance, crops modified to contain genes for...

  12. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  13. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    International Nuclear Information System (INIS)

    Mamy, Laure; Gabrielle, Benoit; Barriuso, Enrique

    2010-01-01

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  14. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    Energy Technology Data Exchange (ETDEWEB)

    Mamy, Laure, E-mail: laure.mamy@versailles.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Gabrielle, Benoit, E-mail: benoit.gabrielle@agroparistech.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Barriuso, Enrique, E-mail: barriuso@grignon.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)

    2010-10-15

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  15. Avaliação do uso de glyphosate em soja geneticamente modificada e sua relação com o ácido chiquímico Evaluation of glyphosate application on transgenic soybean and its relationship with shikimic acid

    Directory of Open Access Journals (Sweden)

    D.A.S. Franco

    2012-09-01

    plantas de soja transgênica no campo quando tratadas de forma isolada com glyphosate. Os resultados também mostraram exsudação radicular do glyphosate por soja transgênica, com posterior absorção por soja convencional. Foram detectados resíduos de glyphosate e ácido aminometilfosfônico na solução nutritiva.Glyphosate [N-(phosphonomethyl glycine]-resistant crops (GRC are the transgenic crops most extensively grown worldwide, with soybean being the major GRC. It is important to evaluate the impact of glyphosate on transgenic soybean and its relationship with shikimic acid. A field experiment was conducted at Engenheiro Coelho-SP, Brazil, during the agricultural year 2007/2008 to evaluate the effect of glyphosate on the growth, development, and seed quality of GRC soybean variety BRS Valiosa RR. A randomized block design was used with four replications. Glyphosate was applied at 720 and 960 g a.e. ha-1 (acid equivalent and in sequence at the doses 720/720, 960/720, and 960/720/720 g a.e. ha-1 (acid equivalent. To evaluate transfer from GRC soybean to non GRC soybean cultivated in nutrient solution, a pot experiment was conducted at Instituto Biológico, SP, Brazil. Glyphosate was applied on the GRC soybean (M8045RR at 2,400 g a.e. ha-1. Both GRC soybean and non GRC soybean were sown in the same box with nutrient solution. At 0, 1, 3, 7, and 10 days after application, shikimic acid was measured by HPLC and the glyphosate and aminomethylphosphonic acid (AMPA levels in nutrient solution were determined by GC-MS. The results showed that yield, plant height, seed oil, and protein contents were not affected by glyphosate application. GRC soybean accumulated shikimic acid in the field. Glyphosate and AMPA were released through the roots of GRC soybean, and subsequently taken up by non-GRC soybean, exerting inhibitory effects on their shikimic pathway.

  16. 78 FR 60707 - Glyphosate; Pesticide Tolerances

    Science.gov (United States)

    2013-10-02

    ... chromatography/mass spectrometry/mass spectrometry Method 15444) is available to enforce the tolerance expression...) 566-1744, and the telephone number for the OPP Docket is (703) 305- 5805. Please review the visitor...-acetyl-glyphosate (expressed as glyphosate equivalents). VI. Statutory and Executive Order Reviews This...

  17. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean; Efeito de formulacoes na absorcao e translocacao do glyphosate em soja transgenica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.B. [UNIVALE, Governador Valadares, MG (Brazil). FAAG. Agronomia]. E-mail: jbarbosa@univale.br; Ferreira, E.A.; Silva, A.A. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia]. E-mail: evanderalves@yahoo.com.br; aasilva@ufv.br; Oliveira, J.A. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Geral]. E-mail: jalves@ufv.br; Fialho, C.M.T. [Universidade Federal de Vicosa (UFV), MG (Brazil). Agronomia]. E-mail: cintiamtfialho@yahoo.com.br

    2007-07-01

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  18. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate

    OpenAIRE

    Gris,Cristiane Fortes; Pinho,Edila Vilela de Resende Von; Carvalho,Maria Laene de Moreira; Diniz,Rafael Parreira; Andrade,Thaís de

    2013-01-01

    Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the muni...

  19. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  20. Non Target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    Directory of Open Access Journals (Sweden)

    Pablo Tomas Fernandez-Moreno

    2016-08-01

    Full Text Available Sterile wild oat (Avena sterilis L. is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage before the beginning of summer period (due to the possibility of intense drought stress. In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha-1 for exposed (E and un-exposed (UE glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE, while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica and Lolium rigidum.

  1. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    Science.gov (United States)

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  2. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  3. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  4. Glyphosate Mineralization: Effect of Temperature and Soybean and Corn Crop Residues Mineralización de Glifosato: Efecto de la Temperatura y los Residuos Vegetales de Soya y Maíz

    Directory of Open Access Journals (Sweden)

    Ariel Rampoldi

    2008-03-01

    Full Text Available Mineralization is the main mechanism of dissipation of glyphosate herbicide (N-[phosphonomethyl] glycine in soil. However, there is scarce information about the mineralization process in strata formed by stubbles in no-tillage systems. The kinetics and rate of mineralization of herbicide in stubbles of soybean (Glycine max L. Merr. and corn (Zea mays L. were investigated. To evaluate the effect of age of crop residues, samples of soybean stubbles were collected immediately after harvest (Soja 1 and four months after harvest (Soja 2. Corn crop residues were collected three months after harvest. Glyphosate evolution and total microbial activity (TMA were monitored by release of 14C-CO2 and C-CO2 under laboratory conditions with two temperatures, 15 and 28 ºC. Crop residues size was evaluated using grinding (1 mm and cut (1 to 2 cm stubbles. Results showed that glyphosate mineralization was affected by the incubation temperature and the origin and age of crop residues. Size of crop residues did not modify glyphosate mineralization. Average glyphosate mineralization after 56 days of incubation at 15 and 28 ºC was of 3.9 and 9.9%, respectively, of the 14C-glyphosate initially applied. In maize crop residues the percentages were 2.0 and 3.0%, respectively, at 15 and 28 ºC. A similar evolution was detected for TMA. The co-metabolic nature of glyphosate mineralization was corroborated. An inverse relation between C/N ratio and glyphosate mineralization was detected. Higher glyphosate mineralization was detected in fresh soybean stubbles, suggesting that applications on aged crop residues could increase the persistence of glyphosate in no-tillage systemsLa mineralización es el principal mecanismo de disipación del herbicida glifosato (N-[fosfonometil] glicina en el suelo. Existe escasa información sobre el proceso de mineralización de glifosato en el estrato formado por rastrojos en suelos cultivados en sistema de siembra directa. Las muestras de

  5. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  6. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  7. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q

    2013-07-01

    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  8. Glyphosate e adubação foliar com manganês na cultura da soja transgênica Glyphosate and foliar fertilization using manganese in transgenic soybean crop

    Directory of Open Access Journals (Sweden)

    N.M. Correia

    2009-01-01

    Full Text Available Com base na hipótese de que a soja transgênica tolerante ao glyphosate necessitaria da adição complementar de manganês devido a alterações na absorção e no metabolismo do elemento pelas plantas, objetivou-se estudar a interação da soja transgênica pulverizada com glyphosate e a adubação foliar com manganês. Foi desenvolvido experimento em campo, no ano agrícola 2007/2008, na Fazenda de Ensino, Pesquisa e Produção da UNESP, campus de Jaboticabal, SP. O delineamento experimental foi o de blocos ao acaso, no esquema fatorial 4 x 4, com quatro repetições. Foram avaliados quatro manejos de plantas daninhas [glyphosate (p.c. Roundup Ready a 0,72 e 1,20 kg ha-1 de equivalente ácido, fluazifop-p-butyl + fomesafen (p.c. Fusiflex a 0,25 + 0,25 kg ha-1 e testemunha capinada, sem herbicida] e quatro doses (0, 42, 84 e 126 g ha-1 de manganês em aplicação foliar na soja. Os tratamentos estudados não alteraram significativamente a produtividade de grãos, os teores de manganês no solo, a altura e a matéria seca das plantas de soja. Apenas a mistura fluazifop-p-butyl mais fomesafen ocasionou injúrias visuais nas plantas, porém os sintomas ficaram restritos às folhas que interceptaram o jato de pulverização. Para massa de 100 grãos, os herbicidas estudados não diferiram da testemunha; no entanto, as plantas tratadas com 0,72 kg ha-1 de glyphosate apresentaram menor massa de grãos. A aplicação de manganês não influenciou os teores do elemento nas plantas tratadas com glyphosate e naquelas sem herbicida. Portanto, o glyphosate não prejudicou a absorção ou o metabolismo do manganês pela planta, e o crescimento e desenvolvimento das plantas tratadas foram estatisticamente similares aos das não tratadas com herbicidas.Based on the hypothesis that glyphosate-tolerant transgenic soybean would need a manganese complementation due to alterations in the absorption and metabolism of this element by the plants, this work aimed to

  9. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  10. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings

    Science.gov (United States)

    Weed species are becoming resistant to intensive and extensive use of specific herbicides associated with the production of herbicide resistant crops, e.g., the use of glyphosate for weed management with glyphosate resistant soybeans. To counter this resistance, crops engineered ...

  11. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  12. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  13. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  14. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  15. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate

    Directory of Open Access Journals (Sweden)

    Cristiane Fortes Gris

    2013-04-01

    Full Text Available Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha. The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.

  16. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.

    Science.gov (United States)

    Mutava, Raymond N; Prince, Silvas Jebakumar K; Syed, Naeem Hasan; Song, Li; Valliyodan, Babu; Chen, Wei; Nguyen, Henry T

    2015-01-01

    Many sources of drought and flooding tolerance have been identified in soybean, however underlying molecular and physiological mechanisms are poorly understood. Therefore, it is important to illuminate different plant responses to these abiotic stresses and understand the mechanisms that confer tolerance. Towards this goal we used four contrasting soybean (Glycine max) genotypes (PI 567690--drought tolerant, Pana--drought susceptible, PI 408105A--flooding tolerant, S99-2281--flooding susceptible) grown under greenhouse conditions and compared genotypic responses to drought and flooding at the physiological, biochemical, and cellular level. We also quantified these variations and tried to infer their role in drought and flooding tolerance in soybean. Our results revealed that different mechanisms contribute to reduction in net photosynthesis under drought and flooding stress. Under drought stress, ABA and stomatal conductance are responsible for reduced photosynthetic rate; while under flooding stress, accumulation of starch granules played a major role. Drought tolerant genotypes PI 567690 and PI 408105A had higher plastoglobule numbers than the susceptible Pana and S99-2281. Drought stress increased the number and size of plastoglobules in most of the genotypes pointing to a possible role in stress tolerance. Interestingly, there were seven fibrillin proteins localized within the plastoglobules that were up-regulated in the drought and flooding tolerant genotypes PI 567690 and PI 408105A, respectively, but down-regulated in the drought susceptible genotype Pana. These results suggest a potential role of Fibrillin proteins, FBN1a, 1b and 7a in soybean response to drought and flooding stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  18. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  19. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  20. Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA

    Directory of Open Access Journals (Sweden)

    Sylvie Bonny

    2011-08-01

    Full Text Available Genetically modified (GM herbicide-tolerant (HT crops have been largely adopted where they have been authorized. Nevertheless, they are fiercely criticized by some, notably because of the herbicide use associated with them. However, how much herbicide is applied to GMHT crops compared to conventional crops, and what impacts does the use of herbicide have? The paper first presents some factors explaining the predominance of GMHT crops. Then, trends in the use of herbicide for GM crops are studied in the case of the most widespread HT crop: HT soybean in the USA. The trends in the toxicity of herbicides applied to HT soybean are also addressed, as well as the appearance of glyphosate-resistant (GR weeds. Lastly, the paper examines the spread of GR weeds and its impact. How are farmers, weed scientists, and the industry coping with this development, and what are the prospects of glyphosate-tolerant crops given weed resistance? In conclusion, some issues of sustainability and innovation governance raised by genetically modified herbicide-tolerant crops are discussed.

  1. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  2. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Science.gov (United States)

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  3. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  4. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  5. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Gaoyi Cao

    Full Text Available A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops.

  6. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  7. Effects of glyphosate and endosulfan on soil microorganisms in soybean crop Efeitos do endosulfan e glyphosate sobre microrganismos do solo na cultura da soja

    Directory of Open Access Journals (Sweden)

    J.L. Pereira

    2008-01-01

    Full Text Available Transgenic soybean, resistant to glyphosate, is the most dominant transgenic crop grown commercially in the world. Research works on herbicide and insecticide mixtures and their effects on microorganisms are rarely reported. This work aimed to study the impact of glyphosate, endosulfan and their mixtures on the microbial soil activity in soybean crop. The experiment was carried out in a complete randomized block design with four treatments and five replications. The treatments were glyphosate 480 SL [540 g of active ingredient (a.i. ha-1], endosulfan 350 EC (525 g a.i. ha-1, the glyphosate 480 SL [540 g of active ingredient (a.i. ha-1] mixed with endosulfan 350 EC (525 g a.i. ha-1 and the control. Microbial activity was evaluated five days after treatment application. Glyphosate application was not an impacting factor for soil CO2 production. Endosulfan application (alone or mixed with glyphosate suppressed CO2 production by microorganisms in the soil. Microbial biomass and microbial quotient were lower in the treatments using endosulfan alone and in those using endosulfan mixed with glyphosate than in the treatments using glyphosate alone and control.A soja resistente ao glyphosate é a cultura transgênica mais cultivada em todo o mundo. Pesquisas envolvendo o impacto de mistura de herbicidas e inseticidas e seus efeitos sobre microrganismos do solo são raramente reportadas. Este trabalho teve por objetivo avaliar o impacto do herbicida (glyphosate, do inseticida (endosulfan e da mistura de ambos sobre a atividade microbiana do solo na cultura da soja. O delineamento experimental foi em blocos casualizados, com quatro tratamentos e cinco repetições. Os tratamentos foram o herbicida glyphosate 480 SL [540 g de ingrediente ativo (i.a. ha-1], endosulfan 350 EC (525 g i.a. ha-1, a mistura de glyphosate 480 SL (540 g de i.a. ha-1 com endosulfan 350 EC (525 g i.a. ha-1 e a testemunha onde se aplicou água. A atividade microbiana foi avaliada aos

  8. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean

    OpenAIRE

    Feng, Paul C. C.; Baley, G. James; Clinton, William P.; Bunkers, Greg J.; Alibhai, Murtaza F.; Paulitz, Timothy C.; Kidwell, Kimberlee K.

    2005-01-01

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. ...

  9. Características da epiderme foliar de eucalipto e seu envolvimento com a tolerância ao glyphosate Characteristics of eucalypt leaf epidermis and its role in glyphosate tolerance

    Directory of Open Access Journals (Sweden)

    L.D. Tuffi Santos

    2006-09-01

    Full Text Available Em áreas de reflorestamento, a deriva do glyphosate causa injúrias nas plantas de eucalipto. Trabalhos preliminares de pesquisa e observações de campo apontam para uma tolerância diferencial ao glyphosate entre os genótipos cultivados. Nesse contexto, objetivou-se estudar as estruturas anatômicas da epiderme foliar de cinco espécies de eucalipto, correlacionando com a tolerância ao glyphosate em deriva simulada. Utilizou-se o esquema fatorial, sendo cinco espécies (Eucalyptus urophylla, E. grandis, E. pellita, E. resinifera e E. saligna e cinco subdoses (0; 43,2; 86,4; 172,8 e 345,6 g e.a. ha-1 de glyphosate, simulando uma deriva. Imediatamente antes da aplicação do herbicida, coletaram-se folhas, totalmente expandidas, para análise anatômica da superfície epidérmica segundo metodologia de dissociação. Entre as espécies estudadas, E. resinifera mostrou-se mais tolerante à deriva de glyphosate, apresentando os menores valores de porcentagem de intoxicação aos 45 dias após aplicação, não sendo encontrada diferença entre as demais espécies. As cinco espécies apresentam folhas glabras, anfiestomáticas, com estômatos do tipo anomocítico e cutícula proeminente. Apesar de presentes em ambas as faces, os estômatos são raros na face adaxial, apresentando baixo índice e densidade estomática. Os maiores valores para índice estomático foram observados em E. resinifera, enquanto E. saligna apresentou a maior densidade estomática. Cavidades subepidérmicas evidenciadas na superfície pelas células de cobertura estão presentes nas cinco espécies, com maior densidade em E. pellita. Houve alta correlação entre a porcentagem de intoxicação por glyphosate e o número de células epidérmicas da superfície adaxial, indicando envolvimento desta característica com a tolerância diferencial ao herbicida. Estudos sobre absorção, translocação e metabolismo do glyphosate em eucalipto devem ser realizados para elucidar

  10. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    Science.gov (United States)

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  11. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2014-09-01

    Full Text Available Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of

  12. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    A series of aliphatic and aromatic aldehydes and ketones were reduced using plant cell preparations of Glycine max seeds (soybean). The biotransformation of five aromatic aldehydes in water, at room temperature afforded the corresponding alcohols in excellent yields varying from 89 to 100%. Two prochiral aromatic ...

  13. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  14. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    International Nuclear Information System (INIS)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-01-01

    Highlights: ► We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. ► Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. ► The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. ► GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  15. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  16. Ecotoxicological assessment of Roundup-ready soybean agriculture investigated in a D. magna model

    OpenAIRE

    Cuhra, Marek

    2015-01-01

    Paper III of this thesis is not available i Munin: III: M. Cuhra, T. Traavik & T. Bøhn. 2014. 'Life cycle fitness differences in Daphnia magna fed Roundup-Ready soybean or conventional soybean or organic soybean', available in Aquaculture Nutrition Transgenic glyphosate tolerant soybeans are constituents of an industrial production system with specific agricultural practices and supplementary agrochemicals as interwoven additional elements. Thus the material produced should not be see...

  17. Identification and Analysis of NaHCO3 Stress Responsive Genes in Wild Soybean (Glycine soja Roots by RNA-seq

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2016-12-01

    Full Text Available Soil alkalinity is a major abiotic constraint to crop productivity and quality. Wild soybean (Glycine soja is considered to be more stress-tolerant than cultivated soybean (G. max, and has considerable genetic variation for increasing alkalinity tolerance of soybean. In this study, we analyzed the transcriptome profile in the roots of an alkalinity tolerant wild soybean variety N24852 at 12 and 24 h after 90 mM NaHCO3 stress by RNA-sequencing. Compared with the controls, a total of 449 differentially expressed genes (DEGs were identified, including 95 and 140 up-regulated genes, and 108 and 135 down-regulated genes at 12 and 24 h after NaHCO3 treatment, respectively. Quantitative RT-PCR analysis of 14 DEGs showed a high consistency with their expression profiles by RNA-sequencing. Gene Ontology (GO terms related to transcription factors and transporters were significantly enriched in the up-regulated genes at 12 and 24 h after NaHCO3 stress, respectively. Nuclear Factor Y subunit A (NF-YA transcription factors were enriched at 12 h after NaHCO3 stress, and high percentages of basic helix-loop-helix (bHLH, ethylene-responsive factor (ERF, Trihelix and zinc finger (C2H2, C3H transcription factors were found at both 12 and 24 h after NaHCO3 stress. Genes related to ion transporters such as ABC transporter, aluminum activated malate transporter (ALMT, glutamate receptor (GLR, nitrate transporter (NRT / proton dependent oligopeptide (POT family, and S-type anion channel (SLAH were enriched in up-regulated DEGs at 24 h after NaHCO3 treatment, implying their roles in maintaining ion homeostasis in soybean roots under alkalinity. KEGG pathway enrichment analysis showed phenylpropanoid biosynthesis and phenylalanine metabolism pathways might participate in soybean response to alkalinity. This study provides a foundation to further investigate the functions of NaHCO3 stress-responsive genes and the molecular basis of soybean tolerance to alkalinity.

  18. Tolerance of Glyphosate-Resistant Maize to Glyphosate Plus MCPA Amine Is Influenced by Dose and Timing

    Directory of Open Access Journals (Sweden)

    Nader Soltani

    2015-01-01

    Full Text Available There is little information on tolerance of glyphosate-resistant maize to glyphosate plus MCPA amine as influenced by dose and timing under Ontario environmental conditions. A total of seven field trials were conducted at various locations in Ontario, Canada, in 2011–2013 to evaluate tolerance of field maize to tank mixes of glyphosate (900 g a.e./ha plus MCPA amine (79, 158, 315, 630, 1260, 2520, or 5040 g a.e./ha at either the 4- or 8-leaf stage. The predicted dose of MCPA amine that caused 5, 10, and 20% injury was 339, 751, and 1914 g a.e./ha when applied to 4-leaf maize but only 64, 140, and 344 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% reduction in shoot dry weight of maize was 488, 844, and 1971 g a.e./ha when applied to 4-leaf maize and only 14, 136, and 616 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% yield reduction was 2557, 4247, and >5040 g a.e./ha when applied to 4-leaf maize and 184, 441, and 1245 g a.e./ha when applied to 8-leaf maize, respectively. Based on these results, glyphosate plus MCPA amine applied at the manufacturer’s recommended dose of 630 g a.e./ha applied to 4-leaf maize has potential to cause injury but the injury is transient with no significant reduction in yield. However, when glyphosate plus MCPA amine is applied to 8-leaf maize it has the potential to cause significant injury and yield loss in maize.

  19. Comparative Metabolomic Analyses of Ipomoea lacunosa Biotypes with Contrasting Glyphosate Tolerance Captures Herbicide-Induced Differential Perturbations in Cellular Physiology.

    Science.gov (United States)

    Maroli, Amith S; Nandula, Vijay K; Duke, Stephen O; Gerard, Patrick; Tharayil, Nishanth

    2018-02-28

    Glyphosate-tolerant Ipomoea lacunosa is emerging as a problematic weed in the southeastern United States. Metabolomic profiling was conducted to examine the innate physiology and the glyphosate induced perturbations in two biotypes of I. lacunosa (WAS and QUI) that had contrasting glyphosate tolerance. Compared to the less tolerant QUI-biotype, the innate metabolism of the more tolerant WAS-biotype was characterized by a higher abundance of amino acids, and pyruvate; whereas the sugar profile of the QUI biotype was dominated by the transport sugar sucrose. Glyphosate application (80 g ae/ha) caused similar shikimate accumulation in both biotypes. Compared to QUI, in WAS, the content of aromatic amino acids was less affected by glyphosate treatment, and the content of Ala, Val, Ile, and Pro increased. However, the total sugars decreased by ∼75% in WAS, compared to ∼50% decrease in QUI. The innate, higher proportional abundance, of the transport-sugar sucrose in QUI coud partly explain the higher translocation and greater sensitivity of this biotype to glyphosate. The decrease in sugars, accompanied by an increase in amino acids could delay feedback regulation of upstream enzymes of the shikimate acid pathway in WAS, which could contribute to a greater glyphosate tolerance. Our study, through a metabolomics approach, provides complementary data that elucidates the cellular physiology of herbicide tolerance in Ipomoea lacunosa biotypes.

  20. Tolerância do Tifton 85 (Cynodon spp. e da Brachiaria brizantha ao glyphosate Tifton 85 (Cynodon spp. and Brachiaria brizantha tolerance to glyphosate

    Directory of Open Access Journals (Sweden)

    M.V. Santos

    2008-06-01

    Full Text Available Objetivou-se avaliar a tolerância de Tifton 85 e Brachiaria brizantha ao glyphosate e verificar o controle de B. brizantha em área de pastagem de Tifton 85 já estabelecida. O delineamento experimental foi em blocos casualizados, com quatro repetições, em que se testaram as doses: 0, 720, 1.440, 2.160 e 2.880 g ha-1 de glyphosate. Cada parcela possuía dimensões de 3,5 m de comprimento por 3,0 m de largura, totalizando 10,5 m², com área útil de 7,5 m ². A eficiência do herbicida no controle de B. brizantha e o nível de intoxicação nas plantas de Tifton 85 foram avaliados 15, 30 e 60 dias após aplicação (DAA, mediante escala de 0 a 100, em que 0 é ausência de controle e/ou intoxicação e 100, controle total ou morte das plantas. Para avaliação da produção e do potencial de rebrota das forrageiras, as plantas de ambas as espécies foram colhidas aos 300 DAA e secas em estufa. Observou-se controle acima de 90% das plantas de B. brizantha a partir das doses de 1.473,75 e 1.721,25 g ha-1 de glyphosate, aos 30 e 60 DAA, respectivamente. As porcentagens de intoxicação das plantas de Tifton 85, referente a estas doses de controle de B. brizantha, foram, respectivamente, de 24,90 e 4,13% aos 30 e 60 DAA. Além disso, aos 60 DAA, para a maior dose avaliada (2.880 g ha-1 de glyphosate foi observada intoxicação das plantas de Tifton 85 de apenas 18,22%. Aos 300 DAA, observou-se ausência de produção de massa seca de B. brizantha a partir da dose de 2.160 g ha-1 do herbicida, devido ao eficiente controle. Os resultados evidenciam maior tolerância das plantas de Tifton 85 ao glyphosate em relação às plantas de B. brizantha, possibilitando o controle desta espécie em pastagem estabelecida de Tifton 85, sem causar danos à forrageira cultivada.This study aimed to evaluate Tifton 85 and Brachiaria brizantha tolerance glyphosate and verity Brachiaria brizantha control in an established Tifton 85 pasture area. Rates of 0; 720; 1

  1. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  2. Environmental and health effects of the herbicide glyphosate.

    Science.gov (United States)

    Van Bruggen, A H C; He, M M; Shin, K; Mai, V; Jeong, K C; Finckh, M R; Morris, J G

    2018-03-01

    The herbicide glyphosate, N-(phosphonomethyl) glycine, has been used extensively in the past 40years, under the assumption that side effects were minimal. However, in recent years, concerns have increased worldwide about the potential wide ranging direct and indirect health effects of the large scale use of glyphosate. In 2015, the World Health Organization reclassified glyphosate as probably carcinogenic to humans. A detailed overview is given of the scientific literature on the movement and residues of glyphosate and its breakdown product aminomethyl phosphonic acid (AMPA) in soil and water, their toxicity to macro- and microorganisms, their effects on microbial compositions and potential indirect effects on plant, animal and human health. Although the acute toxic effects of glyphosate and AMPA on mammals are low, there are animal data raising the possibility of health effects associated with chronic, ultra-low doses related to accumulation of these compounds in the environment. Intensive glyphosate use has led to the selection of glyphosate-resistant weeds and microorganisms. Shifts in microbial compositions due to selective pressure by glyphosate may have contributed to the proliferation of plant and animal pathogens. Research on a link between glyphosate and antibiotic resistance is still scarce but we hypothesize that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents. We recommend interdisciplinary research on the associations between low level chronic glyphosate exposure, distortions in microbial communities, expansion of antibiotic resistance and the emergence of animal, human and plant diseases. Independent research is needed to revisit the tolerance thresholds for glyphosate residues in water, food and animal feed taking all possible health risks into account. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of enhanced UVB on growth and yield of alfalfa (Medic ago Sativa L.) and soybean (Glycine max L.) under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydoun, S.A.; Mohamad, A.

    1997-04-01

    The effects of 20% increase of UVB on growth and yield of alfalfa (Medicago Sativa L.) and two cultivars of soybean (Glycine Max (L.) Mer) under field conditions have been investigated. The increase of UVB dose ranged between 1.746 and 7.112 J/cm 2 during experiment. The results showed that soybean yield decrease by 16% and 31% in A. 3803 and A. 2522 cultivars respectively, under UVB exposure. The dry weight and leaf area were sensitive in the A. 3803 cultivar, while they were tolerant in the A. 2522 cultivar. Alfalfa response to UVB varied during the different stages of growth, whereas the yield was 12% less in the exposed plants. (author). 21 refs., 17 tabs

  4. Manejo de Conyza bonariensis resistente ao herbicida glyphosate Management of Glyphosate-resistant Conyza bonariensis

    Directory of Open Access Journals (Sweden)

    J.M. Paula

    2011-03-01

    Full Text Available C. bonariensis (Conyza bonariensis é uma planta daninha da família Asteraceae, amplamente distribuída no Brasil, com presença marcante nos Estados do Rio Grande do Sul e do Paraná. Biótipos de C. bonariensis resistentes ao glyphosate foram identificados nos Estados do Rio Grande do Sul, Paraná e São Paulo. O objetivo deste trabalho foi avaliar o efeito de diferentes manejos de inverno e na pré-semeadura da soja sobre a população de plantas de C. bonariensis resistente ao herbicida glyphosate. Os resultados evidenciaram que a população de C. bonariensis é maior em áreas mantidas sem cultivo (pousio do que naquelas áreas cultivadas com trigo ou aveia-preta durante o inverno. Observou-se que o trigo e a aveia-preta exercem efeito supressor sobre a população de C. bonariensis, proporcionando maior facilidade de controle com herbicida na pré-semeadura da cultura usada em sucessão. O controle de C. bonariensis resistente ao herbicida glyphosate foi satisfatório quando se utilizaram herbicidas pós-emergentes na cultura do trigo e glyphosate + 2,4-D ou glyphosate + diuron + paraquat na pré-semeadura da soja.Horseweed (Conyza bonariensis, which belongs to the Asteraceae family, is a weed species widely spread in Brazil. Horseweed biotypes resistant to glyphosate, the main herbicide used in Roundup Ready soybean fields, were identified in the states of Rio Grande do Sul and Parana. The aim of this study was to evaluate the effect of different winter and pre-sowing management techniques on soybean plant population of C. bonariensis resistant to glyphosate. The results showed that the population of C. bonariensis is larger in areas maintained fallow than in areas planted with wheat or oats during the winter. Wheat and oats were found to exert a suppressive effect on the population of C. bonariensis, providing greater ease of control with herbicide before seeding in the culture used in succession. The control of glyphosate-resistant C

  5. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.

    Science.gov (United States)

    Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri

    2017-04-01

    Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

  6. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  7. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    Science.gov (United States)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  8. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc. for Use in Ecological Risk Assessment of Insect Protected Soybean.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Goto

    Full Text Available Insect-protected soybean (Glycine max (L. Merr. was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc. is required as one aspect of the environmental risk assessment (ERA in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2% caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100% was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible.

  10. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  11. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    Science.gov (United States)

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  12. Soyasaponin Bh, a Triterpene Saponin Containing a Unique Hemiacetal-Functional Five-Membered Ring from Glycine max (Soybeans)

    Science.gov (United States)

    Soybeans (Glycine max L. Merill) and soy-based food products are major dietary sources of saponins. An oleanane triterpenoid saponin, soyasaponin Bh (1) containing a unique five-membered ring with a hemiacetal functionality together with seven known saponins were isolated from soybeans. Their struct...

  13. Gamma radiation effect on the anatomical structure of soybean (Glycine max. Merr)

    International Nuclear Information System (INIS)

    Bhikuningputra, W.

    1976-01-01

    Gamma radiation effects on soybean plant (Glycine max. Merr) have been studied by using radiation doses of 0, 20, 25, 30, and 35 Krad. Investigation is carried out after each treatment. It proves that each treatment causes different morphological changes on leaves, stems, roots, and fibres of the treated plants. (SMN)

  14. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Efeito de formulações na absorção e translocação do glyphosate em soja transgênica Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2007-01-01

    Full Text Available Este trabalho teve como objetivo avaliar a absorção e translocação de glyphosate em diferentes formulações por plantas de soja (variedade CD 219RR. Para isso, aplicou-se o 14C-glyphosate misturado à calda em três formulações comerciais (Roundup Ready® e R. Transorb®, ambas contendo o sal de isopropilamina, e Zapp Qi��, formulado à base do sal potássico, quando as plantas apresentavam o segundo trifólio completamente expandido. Transcorridas 4, 16, 40 e 64 horas após a aplicação, as plantas foram coletadas e fracionadas, separando-se a folha de aplicação (trifólio, a parte aérea, as raízes e os nódulos radiculares. O 14C-glyphosate não-absorvido foi recuperado e contado por meio da lavagem da folha (metanol 80%. Entre as formulações foi observada variação na penetração e na translocação do 14C-glyphosate para as diferentes partes avaliadas. Todavia, em todas as formulações a maior absorção se deu nos intervalos posteriores a 16 horas da aplicação. Em relação ao total de herbicida encontrado nas plantas de soja, maior percentual na parte aérea foi observado quando se aplicou o Zapp Qi® (sal potássico e, nas raízes, o R. Transorb® (sal de isopropilamina. Detectou-se a presença de 14C glyphosate nos nódulos radiculares das plantas em todos os tratamentos, sendo o maior percentual observado quando se utilizou R. Transorb®, 40 horas após a aplicação (0,13% do total medido ou 0,4% considerando somente o total presente na planta. Os resultados reforçam a hipótese de que o glyphosate pode prejudicar a simbiose entre rizóbio e soja, uma vez que o microssimbionte também apresenta em seu metabolismo a EPSPS, sensível a esse herbicida.This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready® and R. Transorb® - both with isopropylamine salt

  16. Overexpression of a modiifed AM79 aroA gene in transgenic maize confers high tolerance to glyphosate

    Institute of Scientific and Technical Information of China (English)

    REN Zhen-jing; CAO Gao-yi; ZHANG Yu-wen; LIU Yan; LIU Yun-jun

    2015-01-01

    It has previously been shown that a bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene AM79 aroA can be a candidate gene to develop glyphosate-tolerant transgenic crops (Cao et al. 2012). In this study, AM79 aroA was redesigned using the plant biased codons and eliminating the motifs which would lead to the instability of mRNA, to create a synthetic gene that would be expressed highly in plant cel s. The redesigned and artiifcial y synthesized gene, named as mAM79, was cloned into plant expression vector pM3301UbiSpAM79, where mAM79 is fused with signal peptide sequence of pea rib-1,5-bisphospate carboxylase (rbcS) smal subunit and control ed by ubiquitin promoter. The plasmid was transformed into maize (Zea mays) immature embryos using Agrobacterium-mediated transformation method. Total 74 regenerated plants were obtained and PCR analysis showed that these transgenic plants had the integration of mAM79. Southern blot analysis was performed on the genomic DNA from four transgenic lines, and the result showed that one or two copies of mAM79 were integrated into maize genome. RT-PCR analysis result indicated that mAM79 was highly transcribed in transgenic maize plants. When sprayed with glyphosate, transgenic maize line AM85 and AM72 could tolerate 4-fold of commercial usage of glyphosate;however, al the non-transgenic maize plants were kil ed by glyphosate. The results in this study conifrmed that mAM79 could be used to develop glyphosate-tolerant maize, and the obtained transgenic maize lines could be used for the breeding of glyphosate-tolerant maize.

  17. Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements

    NARCIS (Netherlands)

    Loureiro, M.D.; Kaschuk, G.; Alberton, O.; Hungria, M.

    2007-01-01

    In this study, soybean nodules were collected from 12 sites in the State of Mato Grosso, in the Brazilian Cerrados, where both exotic soybean [Glycine max (L.) Merrill] and bradyrhizobial strains have been introduced from 1 to 18 years before. All soils were originally devoid of rhizobia capable of

  18. Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2 BC3 and fertile soybean plants

    Science.gov (United States)

    The genetic resources of the 26 species of the subgenus Glycine have not been exploited to broaden the genetic base of soybean (Glycine max; 2n = 40). Initially, we hybridized eight soybean cultivars with six accessions of 78- and one accession of 40-chromosome G. tomentella. One accession of G. arg...

  19. Possible effects of glyphosate on Mucorales abundance in the rumen of dairy cows in Germany.

    Science.gov (United States)

    Schrödl, Wieland; Krüger, Susanne; Konstantinova-Müller, Theodora; Shehata, Awad A; Rulff, Ramon; Krüger, Monika

    2014-12-01

    Glyphosate (N-phosphonomethyl glycine) is registered as a herbicide for many food and non-food crops, as well as non-crop areas where total vegetation control is desired. Glyphosate influences the soil mycobiota; however, the possible effect of glyphosate residues in animal feed (soybean, corn, etc.) on animal mycobiota is almost unknown. Accordingly, the present study was initiated to investigate the mycological characteristics of dairy cows in relationship to glyphosate concentrations in urine. A total of 258 dairy cows on 14 dairy farms in Germany were examined. Glyphosate was detected in urine using ELISA. The fungal profile was analyzed in rumen fluid samples using conventional microbiological culture techniques and differentiated by MALDI-TOF mass spectrometry. LPS-binding protein (LBP) and antibodies (IgG1, IgG2, IgA, and IgM) against fungi were determined in blood using ELISA. Different populations of Lichtheimia corymbifera, Lichtheimia ramosa, Mucor, and Rhizopus were detected. L. corymbifera and L. ramosa were significantly more abundant in animals containing high glyphosate (>40 ng/ml) concentrations in urine. There were no significant changes in IgG1 and IgG2 antibodies toward isolated fungi that were related to glyphosate concentration in urine; however, IgA antibodies against L. corymbifera and L. ramosa were significantly lower in the higher glyphosate groups. Moreover, a negative correlation between IgM antibodies against L. corymbifera, L. ramosa, and Rhizopus relative to glyphosate concentration in urine was observed. LBP also was significantly decreased in animals with higher concentrations of glyphosate in their urine. In conclusion, glyphosate appears to modulate the fungal community. The reduction of IgM antibodies and LBP indicates an influence on the innate immune system of animals.

  20. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  1. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    Science.gov (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  3. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).

    Science.gov (United States)

    Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E

    2017-07-26

    The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.

  4. Efeitos da dessecação com glyphosate e chlorimuron-ethyl na comunidade infestante e na produtividade da soja Effects of dissection with glyphosate and chlorimuron-ethyl on weed community and soybean yield

    Directory of Open Access Journals (Sweden)

    L.B Carvalho

    2009-12-01

    Full Text Available O efeito de dessecantes sobre o período anterior à interferência (PAI pode auxiliar na tomada de decisão para o manejo das plantas daninhas. O objetivo desta pesquisa foi verificar se a adição de chlorimuron-ethyl ao glyphosate, para dessecação em pré-semeadura, altera a extensão do PAI na soja. O experimento foi realizado em Jaboticabal-SP, Brasil, submetendo-se o cultivar Monsoy 7908RR a oito períodos de convivência com plantas daninhas, além de testemunhas no mato e no limpo, nos quais foram aplicados dois grupos de tratamentos: glyphosate e glyphosate + chlorimuron-ethyl. Em cada período, foram calculados o índice de importância relativa e os índices de diversidade e equitabilidade; por meio da análise de regressão dos dados de produtividade de grãos, determinou-se o PAI. Digitaria insularis, Acanthospermum hispidum, Raphanus raphanistrum e Commelina benghalensis apresentaram maior importância relativa. Os índices de diversidade e equitabilidade oscilaram durante os períodos, e a diferença entre as plantas daninhas fundamentou-se no acúmulo de massa seca. O PAI na soja no tratamento com glyphosate foi de 37 dias após a semeadura (DAS e de 51 DAS naquele com glyphosate + chlorimuron-ethyl. A adição de chlorimuron-ethyl ao glyphosate permite que a cultura conviva mais tempo com as plantas daninhas sem que ocorra redução significativa na produtividade.The effects of burndown herbicides on the period before weed interference (PBI may provide support to weed management decision-making. The objective of this research was to verify whether the PBI is affected by the application of glyphosate plus chlorimuron-ethyl to pre-sowing burndown in soybean. The experiment was carried out in Jaboticabal-SP, Brazil, submitting the cultivar Monsoy 7908RR to eight coexistence periods with weeds, maintaining weedy and-weed-free checks, which were applied to two groups of treatments: glyphosate and glyphosate + chlorimuron-ethyl. At

  5. Proteomic Techniques and Management of Flooding Tolerance in Soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Tougou, Makoto; Nanjo, Yohei

    2015-09-04

    Climate change is considered a major threat to world agriculture and food security. To improve the agricultural productivity and sustainability, the development of high-yielding stress-tolerant, and climate-resilient crops is essential. Of the abiotic stresses, flooding stress is a very serious hazard because it markedly reduces plant growth and grain yield. Proteomic analyses indicate that the effects of flooding stress are not limited to oxygen deprivation but include many other factors. Although many flooding response mechanisms have been reported, flooding tolerance mechanisms have not been fully clarified for soybean. There were limitations in soybean materials, such as mutants and varieties, while they were abundant in rice and Arabidopsis. In this review, plant proteomic technologies are introduced and flooding tolerance mechanisms of soybeans are summarized to assist in the improvement of flooding tolerance in soybeans. This work will expedite transgenic or marker-assisted genetic enhancement studies in crops for developing high-yielding stress-tolerant lines or varieties under abiotic stress.

  6. Glyphosate catabolism by Pseudomonas sp

    International Nuclear Information System (INIS)

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3- 14 C] glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO 2 . Fractionation of stationary phase cells labeled with [3- 14 C]glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with [3- 14 C]glyphosate revealed that [3- 14 C]sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates

  7. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    OpenAIRE

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacte...

  8. Selection individual on mutant genotype of soybean (Glycine maxl.merrill) in m5 generation based on resistance of stem rot disease Athelia rolfsii (curzi)

    Science.gov (United States)

    Rahmah, M.; Hanafiah, D. S.; Siregar, L. A. M.; Safni, I.

    2018-02-01

    This study was aimed to obtain selected individuals on soybean plant Glycine max L. (Merrill) in M5 generation based on high production character and tolerance of stem rot disease Athelia rolfsii (Curzi). This research was conducted in Plant Disease Laboratory and experimental field Faculty of Agriculture Universitas Sumatera Utara Medan, Indonesia. This research was conducted from December 2016 to June 2017. The treatments were 15 mutant lines genotypes and Anjasmoro variety. The results showed that some lines mutant genotypes can gave the good agronomic appearance character than Anjasmoro variety on inoculation treatment of stem rot disease. Selection performed on population M5 producesselected individuals with tolerance of stem rot disease from 100 and 200 Gy population.

  9. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    Science.gov (United States)

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-02-17

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  10. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    Science.gov (United States)

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  11. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  12. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzo, Pablo J. [Grupo Materiales Polimericos, INIFTA - Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (UNLP-CONICET), Diag. 113 y 64, CC 16 Suc 4, 1900 La Plata (Argentina); Porta, Atilio A. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina); Division Quimica Analitica, Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)], E-mail: aporta@quimica.unlp.edu.ar; Ronco, Alicia E. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)

    2008-11-15

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas.

  13. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    International Nuclear Information System (INIS)

    Peruzzo, Pablo J.; Porta, Atilio A.; Ronco, Alicia E.

    2008-01-01

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas

  14. Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae cultivar MG/BR46 (Conquista under two water deficit induction systems

    Directory of Open Access Journals (Sweden)

    Polyana K. Martins

    2008-01-01

    Full Text Available Drought cause serious yield losses in soybean (Glycine max, roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista and characterize their expression levels during water deficit. Soybean plants grown in nutrient solution hydroponically and in sand-pots were submitted to water stress and gene expression analysis was conducted using the differential display (DD and real time polymerase chain reaction (PCR techniques. Three differentially expressed mRNA transcripts showed homology to the Antirrhinum majus basic helix-loop-helix transcription factor bHLH, the Arabidopsis thaliana phosphatidylinositol transfer protein PITP and the auxin-independent growth regulator 1 (axi 1. The hydroponic experiments showed that after 100 min outside the nutrient solution photosynthesis completely stopped, stomata closed and leaf temperature rose. Both stress induction treatments produced significant decrease in the mitotic indices of root cells. Axi 1, PITP and bHLH were not only differentially expressed during dehydration in the hydroponics experiments but also during induced drought in the pot experiments. Although, there were differences between the two sets of experiments in the time at which up or down regulation occurred, the expression pattern of all three transcripts was related. Similar gene expression and cytological analysis results occurred in both systems, suggesting that hydroponics could be used to simulate drought detection by roots growing in soil and thus facilitate rapid and easy root sampling.

  15. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae.

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhong

    Full Text Available Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA against Aphis glycines Matsumura, the soybean aphid (SA was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL, peroxidase (POX, polyphenol oxidase (PPO, chitinase (CHI, and β-1, 3-glucanase (GLU in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

  16. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  17. Toothpick test: a methodology for the detection of RR soybean plants1

    Directory of Open Access Journals (Sweden)

    Fabiana Mota da Silva

    Full Text Available Due to the large increase in the area cultivated with genetically modified soybean in Brazil, it has become necessary to determine methods that are fast and efficient for detecting these cultivars. The aim of this work was to test the efficiency of the toothpick method in the detection of RR soybean plants, as well as to distinguish between cultivars, for sensitivity caused by herbicide. Ten transgenic soybean cultivars, resistant to the active ingredient glyphosate, and ten conventional soybean cultivars were used. Toothpicks soaked in glyphosate were applied to all the plants at stage V6 and evaluations were made at 2, 4, 6, 8 and 10 days after application (DAA. The effects of the glyphosate on the cultivars, and the symptoms of phytotoxicity caused in the transgenic plants were evaluated by means of grading scales. The toothpick test is effective in identifying RR soybean cultivars and also in separating them into groups by sensitivity to the symptoms caused by the glyphosate.

  18. Nutritional requirements for soybean cyst nematode

    Science.gov (United States)

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  19. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  20. Elisa development for detection of glyphosat resistant gm soybean

    Directory of Open Access Journals (Sweden)

    Владислав Геннадійович Спиридонов

    2015-11-01

    Full Text Available During research we have utilized recombinant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS, conferring resistance to glyphosate for GM soybean, for the hen immunization and obtaining specific yolk antibodies IgY. Stages of ELISA development that can detect at least 0,1 % of GM-soybean resistant to glyphosate were present

  1. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.

    Science.gov (United States)

    Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko

    2017-08-01

    Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.

  2. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method

    Directory of Open Access Journals (Sweden)

    Bingfu Guo

    2016-07-01

    Full Text Available Molecular characterization of sequences flanking exogenous fragment insertions is essential for safety assessment and labeling of genetically modified organisms (GMO. In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS method. About 21 Gb sequence data (~21× coverage for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundary of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of the genomic insertion site of the G2-EPSPS and GAT transgenes will facilitate the use of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS is a cost-effective and rapid method of identifying sites of T-DNA insertions and flanking sequences in soybean.

  3. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes.

    Science.gov (United States)

    Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko

    2014-10-01

    Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  5. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Glyphosate resistance in common ragweed (Ambrosia artemisiifolia L.)from Mississippi, USA

    Science.gov (United States)

    Glyphosate is one of the most commonly used broad-spectrum herbicides over the last 40 years. Due to widespread adoption of glyphosate-resistant (GR) crop technology, especially, corn, cotton, and soybean, several weed species in agronomic situations have developed resistance to this herbicide. Rese...

  7. UV-Vis Spectrophotometric Analysis and Quantification of Glyphosate for an Interdisciplinary Undergraduate Laboratory

    Science.gov (United States)

    Felton, Daniel E.; Ederer, Martina; Steffens, Timothy; Hartzell, Patricia L.; Waynant, Kristopher V.

    2018-01-01

    Glyphosate (N-(phosphonomethyl)glycine) is the most widely used herbicide on earth. A simple assay to quantify glyphosate concentrations in environmental samples was developed as part of an interdisciplinary effort linking introductory laboratory courses in chemistry, biology, and microbiology. In this 3 h laboratory experiment, students used…

  8. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Nanjo, Yohei; Nishimura, Minoru

    2013-02-21

    Flooding stress of soybean is a serious problem because it reduces growth; however, flooding-tolerant cultivars have not been identified. To analyze the flooding tolerance mechanism of soybean, the flooding-tolerant mutant was isolated and analyzed using a proteomic technique. Flooding-tolerance tests were repeated five times using gamma-ray irradiated soybeans, whose root growth (M6 stage) was not suppressed even under flooding stress. Two-day-old wild-type and mutant plants were subjected to flooding stress for 2days, and proteins were identified using a gel-based proteomic technique. In wild-type under flooding stress, levels of proteins related to development, protein synthesis/degradation, secondary metabolism, and the cell wall changed; however, these proteins did not markedly differ in the mutant. In contrast, an increased number of fermentation-related proteins were identified in the mutant under flooding stress. The root tips of mutant plants were not affected by flooding stress, even though the wild-type plants had damaged root. Alcohol dehydrogenase activity in the mutant increased at an early stage of flooding stress compared with that of the wild-type. Taken together, these results suggest that activation of the fermentation system in the early stages of flooding may be an important factor for the acquisition of flooding tolerance in soybean. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Physicochemical characteristics and functional properties of vitabosa (mucuna deeringiana and soybean (glycine max

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Chaparro Acuña

    2012-03-01

    Full Text Available Physicochemical characteristics and functional properties of vitabosa flour (Mucuna deeringiana and soybean flour (Glycine max were determined. Oil absorption capacity was higher in vitabosa. Water absorption capacity was higher in soy and it was affected by the change in the ionic strength of the medium. Emulsifying Activity (EA decreased with increasing concentration of flour, while Emulsifying Stability (ES showed an increased. EA and ES of flours have more ionic strength in the range between 0.0 and 0.4 M, but it is reduced afterwards with the higher concentration of NaCl. Foaming stability varied with the concentration of flour solution reaching maximum values of 39 and 33% for vitabosa and soybean, respectively at 10% flour concentration.Vitabosa had the best foaming capacity (56% to 0.6 M compared with soybeans (47% to 0.4 M. Maximum capacity of gelation was observed in vitabosa at 10% flour concentration. Increases in ionic strength of the flour solution, at low salt concentrations (<0.4 M, improved the gelation of flours.

  10. The role of paraquat (1,1-dimethyl-4,4-bipyridinium chloride) and glyphosate (n-phosphonomethyl glycine) in translocation of metal ions to subsurface soils

    International Nuclear Information System (INIS)

    Mbuk, R.O.; Sha'Ato, R.; Nkpa, N.N.

    2009-01-01

    We investigated the role of paraquat (1,1'-Dimethyl-4,4'-bipyridinium dichloride) and glyphosate (N-(phosphonomethyl) glycine), on the translocation of some metals (K, Mg(II), Mn(II), Fe(II), Pb(II), Cu(II) and Cd(II)) in soil, using a topsoil (Aquic Ustifluvent: USDA Soil Taxonomy, 2000) sampled at the University of Agriculture Makurdi Crop Farm, in Central Nigeria (7 degree 47'N, 8 degree 32'E). Employing column leaching experiments with water only on native soil and soil spiked with the metals and different levels of glyphosate or paraquat treatment, leachates were collected and analyzed for their metal contents. Results showed that in the presence of paraquat the transport of Fe(II) and Mn(II) by leaching in the soil was suppressed while that of Cu(II), K and Pb(II) was enhanced. Glyphosate, similarly suppressed Mn(II) and to some extent Fe(II) translocation in the soil; however, it enhanced the mobility of Cd(II), Cu(II), Mg(II), Pb(II) and K under similar treatment. While paraquat seemed to enhance the translocation of Mg(II) at low application rates of the herbicide, glyphosate promoted its transport only at high application rates; there was no evidence that paraquat affected the movement of Cd(II) in the soil. Our results show that the long term use of these pesticides in the field may result in the depletion of Cu(II), K and Mg(II) in agricultural soils, and that the use of glyphosate may present the additional risk of possible groundwater contamination with Cd(II) and Pb(II). (author)

  11. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Science.gov (United States)

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on s...

  12. Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae).

    Science.gov (United States)

    C Zanuncio, José; C Lacerda, Mabio; Alcántara-de la Cruz, Ricardo; P Brügger, Bruno; Pereira, Alexandre I A; F Wilcken, Carlos; E Serrão, José; S Sediyama, Carlos

    2018-01-01

    The increase of agricultural areas with glyphosate-resistant (GR) crops, and use of this herbicide in Brazil, makes necessary to assess its impacts on non-target organisms. The objective was to evaluate the development, reproduction and life table parameters of Podisus nigrispinus (Heteroptera: Pentatomidae) reared on GR-soybean plants treated with glyphosate formulations (Zapp-Qi, Roundup-Transorb-R and Roundup-Original) at the recommended field dose (720g acid equivalent ha -1 ). Glyphosate formulations had no affect on nymph and adult weight of this predator. Fourth instar stage was shortest with Zapp Qi. Egg-adult period was similar between treatments (26 days) with a survival over 90%. Zapp-Qi and Roundup-Transorb-R (potassium-salt: K-salt) reduced the egg, posture and nymph number per female, and the longevity and oviposition periods of this predator. Podisus nigrispinus net reproductive rate was highest in GR-soybean plants treated with Roundup-Original (isopropylamine-salt: IPA-salt). However, the duration of one generation, intrinsic and finite increase rates, and time to duplicate the population, were similar between treatments. Glyphosate toxicity on P. nigrispinus depends of the glyphosate salt type. IPA-salt was least harmless to this predator. Formulations based on K-salt altered its reproductive parameters, however, the development and population dynamic were not affect. Therefore, these glyphosate formulations are compatible with the predator P. nigrispinus with GR-soybean crop. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Overview of glyphosate-resistant weeds worldwide.

    Science.gov (United States)

    Heap, Ian; Duke, Stephen O

    2018-05-01

    Glyphosate is the most widely used and successful herbicide discovered to date, but its utility is now threatened by the occurrence of several glyphosate-resistant weed species. Glyphosate resistance first appeared in Lolium rigidum in an apple orchard in Australia in 1996, ironically the year that the first glyphosate-resistant crop (soybean) was introduced in the USA. Thirty-eight weed species have now evolved resistance to glyphosate, distributed across 37 countries and in 34 different crops and six non-crop situations. Although glyphosate-resistant weeds have been identified in orchards, vineyards, plantations, cereals, fallow and non-crop situations, it is the glyphosate-resistant weeds in glyphosate-resistant crop systems that dominate the area infested and growing economic impact. Glyphosate-resistant weeds present the greatest threat to sustained weed control in major agronomic crops because this herbicide is used to control weeds with resistance to herbicides with other sites of action, and no new herbicide sites of action have been introduced for over 30 years. Industry has responded by developing herbicide resistance traits in major crops that allow existing herbicides to be used in a new way. However, over reliance on these traits will result in multiple-resistance in weeds. Weed control in major crops is at a precarious point, where we must maintain the utility of the herbicides we have until we can transition to new weed management technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?

    Energy Technology Data Exchange (ETDEWEB)

    Fagúndez, G.A.; Blettler, D.C.; Krumrick, C.G.; Bertos, M.A.; Trujillo, C.G.

    2016-11-01

    In the Pampa region of Argentina, most beehives are situated near to soybean [Glycine max (L.) Merr.] crop and honey bees (Apis mellifera L.) use its floral resources. Soybean is often sprayed with pesticides but very little is known about their repellent action against bees. This study evaluates the visit of honey bees to crop after the application of agrochemicals aiming to check for repellency of them and estimate the possible impact on crop pollination. For this, six treatments were used (glyphosate + cypermethrin; glyphosate; cypermethrin; lambda-cyhalothrin; methoxyfenocide; Bacillus thuringiensis) and developed on plots of 625 m2, located in Oro Verde (Argentina), applying two sprays during the crop flowering. The bees were captured using entomological net every 4 days in three different times from the day after the first spraying and up the end of crop flowering. The results showed very little or no repellent action of pesticides on A. mellifera, noting that it foraged on soybean flowers regardless of the temporal proximity and the type of product used in sprays. Possible causes are discussed and the need for larger studies is evident in field conditions related to pesticides repellency and mixtures. Also, further evaluation of the effects of the different chemical formulations available on the market and used regionally where the subspecies A. mellifera can be found. Simultaneously some management practices that could help minimize the risk of contamination are mentioned; the use of defensive crop products of biological origin is encouraged as well as further research in this topic. (Author)

  15. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  16. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) is the major oilseed crop in the world and is a main source of oil and high-quality protein for both humans and animals worldwide. Plant diseases inflict heavy losses on soybean yield that negatively impact the US economy. Implicit in the high economic value of this ...

  17. Roundup Ready soybean gene concentrations in field soil aggregate size classes.

    Science.gov (United States)

    Levy-Booth, David J; Gulden, Robert H; Campbell, Rachel G; Powell, Jeff R; Klironomos, John N; Pauls, K Peter; Swanton, Clarence J; Trevors, Jack T; Dunfield, Kari E

    2009-02-01

    Roundup Ready (RR) soybeans containing recombinant Agrobacterium spp. CP4 5-enol-pyruvyl-shikimate-3-phosphate synthase (cp4 epsps) genes tolerant to the herbicide glyphosate are extensively grown worldwide. The concentration of recombinant DNA from RR soybeans in soil aggregates was studied due to the possibility of genetic transformation of soil bacteria. This study used real-time PCR to examine the concentration of cp4 epsps in four field soil aggregate size classes (>2000 microm, 2000-500 microm, 500-250 microm and 2000 mum fraction contained between 66.62% and 99.18% of total gene copies, although it only accounted for about 30.00% of the sampled soil. Aggregate formation may facilitate persistence of recombinant DNA.

  18. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  19. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    Science.gov (United States)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  20. Root growth and lignification of glyphosate susceptible and resistant soybean at low temperaturesCrescimento e lignificação de raízes de soja convencional e resistente ao glifosato, em baixa temperatura

    Directory of Open Access Journals (Sweden)

    Patricia da Costa Zonetti

    2013-05-01

    Full Text Available Low temperature stress affects plant growth, including primary and secondary metabolism. Glyphosateresistant soybean contains a modified DNA, which encodes a different type of secondary metabolism enzyme related to lignin synthesis compared to conventional glyphosate-susceptible cultivars. Thus, this soybean cultivar might respond differently to low temperatures, compared to glyphosate-susceptible cultivars. This work aimed to investigate how decreasing temperatures influence the growth and lignin content of the glyphosate-resistant soybean compared to its susceptible parental cultivars. Three-day-old seedlings were cultivated in nutrient solution at 10, 15, 20, and 25°C (±2°C, using a 12-h photoperiod. After 96 h, taproot growth, fresh and dry biomass, and lignin levels were determined. The results indicate that lower temperatures decreased seedling and root growth in both types of cultivars; however, glyphosate-resistant soybean exhibited greater root length, biomass, and lignin content compared to the glyphosate-susceptible parental cultivar. O estresse causado pela baixa temperatura, dentre outras implicações, afeta o crescimento do vegetal assim como o seu metabolismo secundário. Pelo fato da soja RR apresentar variante enzimática de uma das principais vias do metabolismo secundário, ligada à síntese de lignina, pode apresentar comportamento diferenciado, sob baixa temperatura, se comparada com sua linhagem parental. O objetivo deste trabalho foi investigar possíveis diferenças no crescimento e nos conteúdos de lignina nas raízes de soja cultivar transgênica resistente ao glifosato e cultivar parental em resposta a redução de temperatura. Após três dias de germinação das sementes, as plântulas foram mantidas em solução nutritiva, a 10, 15, 20 e 25°C (±2°C, com fotoperíodo de 12 horas. Após 96 horas, foi avaliado o comprimento relativo da raiz primária, biomassa fresca e seca das raízes e os teores de lignina

  1. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge.

    Science.gov (United States)

    Shen, Jiangnan; Huang, Jie; Liu, Lifen; Ye, Wenyuan; Lin, Jiuyang; Van der Bruggen, Bart

    2013-09-15

    Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L(-1) is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Márquez-García, Belén; Comadira, Gloria; Fernandez-Garcia, Nieves; Olmos, Enrique; Schnaubelt, Daniel; Kunert, Karl J; Foyer, Christine H

    2014-09-01

    Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Field Phenotyping of Soybean Roots for Drought Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Berhanu A. Fenta

    2014-08-01

    Full Text Available Root architecture was determined together with shoot parameters under well watered and drought conditions in the field in three soybean cultivars (A5409RG, Jackson and Prima 2000. Morphology parameters were used to classify the cultivars into different root phenotypes that could be important in conferring drought tolerance traits. A5409RG is a drought-sensitive cultivar with a shallow root phenotype and a root angle of <40°. In contrast, Jackson is a drought-escaping cultivar. It has a deep rooting phenotype with a root angle of >60°. Prima 2000 is an intermediate drought-tolerant cultivar with a root angle of 40°–60°. It has an intermediate root phenotype. Prima 2000 was the best performing cultivar under drought stress, having the greatest shoot biomass and grain yield under limited water availability. It had abundant root nodules even under drought conditions. A positive correlation was observed between nodule size, above-ground biomass and seed yield under well-watered and drought conditions. These findings demonstrate that root system phenotyping using markers that are easy-to-apply under field conditions can be used to determine genotypic differences in drought tolerance in soybean. The strong association between root and nodule parameters and whole plant productivity demonstrates the potential application of simple root phenotypic markers in screening for drought tolerance in soybean.

  4. Manejo de Conyza bonariensis resistente ao glyphosate: coberturas de inverno e herbicidas em pré-semeadura da soja Management of glyphosate resistant Conyza bonariensis: winter cover crops and herbicides in soybean pre-seeding

    Directory of Open Access Journals (Sweden)

    F.P. Lamego

    2013-06-01

    Full Text Available Conyza bonariensis tornou-se a principal planta daninha da cultura da soja no Sul do Brasil, em decorrência da evolução para resistência ao herbicida glyphosate. O objetivo deste trabalho foi avaliar o efeito de diferentes coberturas de inverno e da associação de manejo de dessecação pré-semeadura da soja, visando ao controle de C. bonariensis resistente ao glyphosate. Um experimento foi conduzido em campo, na safra 2010/2011. Os tratamentos foram conduzidos em esquema de parcelas subdivididas, em que as coberturas de inverno foram alocadas nas parcelas principais: aveia-preta, nabo, ervilhaca, azevém, trigo e pousio. Nas subparcelas, foram alocados os tratamentos de manejo de dessecação pré-semeadura da soja: glyphosate (720 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha‑1 e roçada. O nabo foi a espécie de cobertura que produziu o maior volume de massa seca durante o inverno, enquanto a ervilhaca foi a que apresentou maior efeito supressor sobre a germinação e o desenvolvimento inicial de C. bonariensis. Associações de glyphosate com 2,4-D ou chlorimuron-ethyl, seguidas da aplicação sequencial de paraquat + diuron, causaram maior redução na infestação de C. bonariensis.Conyza bonariensis became the main weed in soybean crop in Southern Brazil, as a consequence of the evolution of resistance to the herbicide glyphosate. The objective of this work was to evaluate the effect of different winter cover crops and the association of burn-down herbicides on the control of glyphosate-resistant C. bonariensis. A field experiment was conducted in the 2010/2011 season. The treatments were arranged in a split-plot scheme, with the winter

  5. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    Science.gov (United States)

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  6. Impacts of Repeated Glyphosate Use on Wheat-Associated Bacteria Are Small and Depend on Glyphosate Use History.

    Science.gov (United States)

    Schlatter, Daniel C; Yin, Chuntao; Hulbert, Scot; Burke, Ian; Paulitz, Timothy

    2017-11-15

    Glyphosate is the most widely used herbicide worldwide and a critical tool for weed control in no-till cropping systems. However, there are concerns about the nontarget impacts of long-term glyphosate use on soil microbial communities. We investigated the impacts of repeated glyphosate treatments on bacterial communities in the soil and rhizosphere of wheat in soils with and without long-term history of glyphosate use. We cycled wheat in the greenhouse using soils from 4 paired fields under no-till (20+-year history of glyphosate) or no history of use. At each cycle, we terminated plants with glyphosate (2× the field rate) or by removing the crowns, and soil and rhizosphere bacterial communities were characterized. Location, cropping history, year, and proximity to the roots had much stronger effects on bacterial communities than did glyphosate, which only explained 2 to 5% of the variation. Less than 1% of all taxa were impacted by glyphosate, more in soils with a long history of use, and more increased than decreased in relative abundance. Glyphosate had minimal impacts on soil and rhizosphere bacteria of wheat, although dying roots after glyphosate application may provide a "greenbridge" favoring some copiotrophic taxa. IMPORTANCE Glyphosate (Roundup) is the most widely used herbicide in the world and the foundation of Roundup Ready soybeans, corn, and the no-till cropping system. However, there have been recent concerns about nontarget impacts of glyphosate on soil microbes. Using next-generation sequencing methods and glyphosate treatments of wheat plants, we described the bacterial communities in the soil and rhizosphere of wheat grown in Pacific Northwest soils across multiple years, different locations, and soils with different histories of glyphosate use. The effects of glyphosate were subtle and much less than those of drivers such as location and cropping systems. Only a small percentage of the bacterial groups were influenced by glyphosate, and most of

  7. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    Science.gov (United States)

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  8. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome

    International Nuclear Information System (INIS)

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.; Franceschi, V.R.

    1987-01-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with 3 H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and then either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted

  9. Efeitos de dessecantes no controle de plantas daninhas na cultura da soja Effects of burndown herbicides in weed control in soybean crop

    Directory of Open Access Journals (Sweden)

    S.O. Procópio

    2006-01-01

    before sowing day; five days before sowing day; paraquat + diuron 20 days before sowing day and on sowing day; glyphosate 10 days before sowing day and paraquat + diuron on sowing day; glyphosate 15 days before sowing day and paraquat + diuron on sowing day; glyphosate 20 days before sowing day and paraquat + diuron on sowing day; and control (presence of weeds. Acceptable control and re-growth impairing of D. insularis and L. filiformis were obtained when glyphosate was applied five days before soybean sowing or when sequential applications of glyphosate and paraquat + diuron were applied. Sequential applications of paraquat + diuron were not efficient in controlling or impairing re-growth of the weeds D. insularis and L. filiformis. S. grisebachii showed to be tolerant to glyphosate.

  10. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  11. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: simple@affrc.go.jp; Ae, N. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: aenoriha@kobe-u.ac.jp; Ishikawa, S. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: isatoru@niaes.affrc.go.jp

    2007-01-15

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg{sup -1}, during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot.

  12. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Murakami, M.; Ae, N.; Ishikawa, S.

    2007-01-01

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg -1 , during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot

  13. Ecological aspects study of replacement intercropping patterns of Soybean (Glycine max L. and Millet (Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Goudarz Ahmadvand

    2016-03-01

    Full Text Available Intercropping is considered for increasing and stability of yield in per unit. In order to study the effects of soybean (Glycine max L. and millet (Panicum miliaceum L. replacement intercropping on agronomic traits, diversity of weeds and soil biological activity, an experiment was conducted at the Research Station of Agricultural Faculty, of Bu-Ali Sina University, in 2014. The experiment was carried out as a randomized complete block design with three replications. The replacement intercropping series consisted of monoculture of soybean, monoculture of millet, 75% soybean+ 25% millet, 50% soybean+ 50% millet and 25% soybean+ 75% millet. The results showed that the highest seed yield of 219.8 and 171.9 gm-2 belonged to monoculture of soybean and monoculture of millet, respectively. Intercropping reduced maximum leaf area index of soybean and millet but leaf chlorophyll content of soybean and millet were increased. The highest number of pods per plant, number of seeds per plant in soybean and panicle number per plant in millet were obtained in 50S:50M ratio. Mean soil respiration rate in intercropping treatments was 4 and 8 % higher than the monoculture of soybean and millet, respectively. Intercropping patterns of 50S:50M and 25S:75M were successful in reducing weed plant density and diversity in comparison with soybean monoculture. Results showed that in all intercropping treatments, land equivalent ratio was more than one. Maximum value of land equivalent ratio (2.20 was achieved in 50S:50M treatment. Soybean and millet intercropping at different levels of replacement, didn’t have actual yield loss. Calculating the aggressivity showed that millet was more dominate than soybean. The maximum relative crowding coefficient of soybean was observed in 75S:25M, however that of millet was obtained in 25S:75M and 50S:50M intercroppings indicating that millet is more competitor than soybean.

  14. Weeds and ground-dwelling predators' response to two different weed management systems in glyphosate-tolerant cotton: A farm-scale study.

    Science.gov (United States)

    García-Ruiz, Esteban; Loureiro, Íñigo; Farinós, Gema P; Gómez, Pablo; Gutiérrez, Elena; Sánchez, Francisco Javier; Escorial, María Concepción; Ortego, Félix; Chueca, María Cristina; Castañera, Pedro

    2018-01-01

    The use of glyphosate, as a post-emergence broad-spectrum herbicide in genetically modified glyphosate-tolerant (GT) cotton, supposes a big change in weed management programs with respect to a conventional regime. Thus, alterations in arable flora and arthropod fauna must be considered when evaluating their potential impacts. A 3-year farm-scale study was conducted in a 2-ha GT cotton crop, in southern Spain, to compare the effects of conventional and glyphosate herbicide regimes on weed abundance and diversity and their consequences for ground-dwelling predators. Surveys reveal that weed density was relatively low within all treatments with a few dominant species, with significantly higher weed densities and modifications of the floristic composition in glyphosate-treated plots that led to an increase in the abundance of Portulaca oleracea and to a reduction in plant diversity. The activity-density of the main predatory arthropod taxa (spiders, ground beetles, rove beetles and earwigs) varied among years, but no significant differences were obtained between conventional and glyphosate herbicide regimes. However, significant differences between treatments were obtained for ground beetles species richness and diversity, being higher under the glyphosate herbicide regime, and a positive correlation with weed density could be established for both parameters. The implications of these findings to weed control in GT cotton are discussed.

  15. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    International Nuclear Information System (INIS)

    Yun Juan; Li Xihong; Fan Xuetong; Tang Yao; Xiao Yao; Wan Sen

    2012-01-01

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on soybeans, isoflavone, tocopherol contents, raffinose family oligosaccharides, color and sensory properties were evaluated as a function of irradiation dose. The results indicated that gamma irradiation reduced aerobic bacterial and fungal load. Irradiation at the doses applied did not cause any significant change (p>0.05) in the contents of isoflavone of soybeans, but decreased tocopherol contents. The content of key flatulence-producing raffinose family oligosaccharides in irradiated soybeans (10.0 kGy) decreased by 82.1% compared to the control. Sensory analysis showed that the odor of the soybeans was organoleptically acceptable at doses up to 5.0 kGy and no significant differences were observed between irradiated and nonirradiated samples in flavor, texture and color after irradiation. - Highlights: ► The objective of this study concerns the elimination of microbial load factors at different radiation dose (0.0, 1.0, 3.0, 5.0 and 10.0 kGy). ► Investigated the degradation of the gamma irradiation on the reduction of flatulence-causing. ► Indicated the effect of irradiation on the isoflavone and tocopherol contents of the soybeans. ► Evaluated the effect of the gamma irradiation on the sensory properties of soybeans.

  16. Induced mutation for the improvement of soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Asencion, A.B.; Lapade, A.G.; Grafia, A.O.; Barrida, A.C.; Veluz, A.M.; Marbella, L.J.

    2004-01-01

    A study on the use of gamma radiation in the induction of mutations in eight varieties of soybean was conducted. The radiosensitivity of the seeds of both local and introduced soybean varieties was determined. The effects of gamma radiation in the M1 generation were evaluated. Percentage germination was not affected by doses of 200 and 250 Gy gamma radiation in all the eight soybean varieties. No significant differences in seedling height were observed at 200 Gy and the control except for the 250 Gy in BPI-Sy4, PSB-Sy4 and PSB-Sy5. In the Vietnamese varieties, significant differences in seedling height were obtained in doses of 200, 250 Gy and the control except for the variety AKO 6. There was significant difference in plant height of mature plants between the control and treatment dose of 250 Gy in varieties DT 95 and AKO 6. Likewise, significant differences in mature plant height were noted between the control and those at 250 Gy in local varieties BPI-Sy4, PSB-Sy5 and NSIC-Sy8. The number of days to flower was not affected by gamma radiation in both the local and introduced varieties. There were significant differences in the number of pods per plant between the control and a low dose of 200 Gy in Vietnamese variety DT 96 and the local varieties PSB-Sy4, PSB-Sy5 and NSIC-Sy8. The 3 types of chlorophyll mutation induced by gamma rays in the local varieties were: chlorina, striatia,and spotted yellow. Only chlorina mutant was induced in the introduced varieties. Desirable mutants that are early and high yielding were selected. Results of the drought tolerance tests indicated that the number of days to flowering of the control and 8 varieties was not affected by the duration of irrigation withdrawals 20,30,40 and 50 days after planting. Significant differences in seed weight among the different varieties were noted only in 20 and 30 day irrigation withdrawal treatment. When the effects of the different treatments were analyzed on a per variety bases, some of the

  17. EFFECTS OF ZEOLITE AND CADMIUM ON GROWTH AND CHEMICAL COMPOSITION OF SOYBEAN (Glycine max L.)

    OpenAIRE

    Mohammad Reza Mahmoodabadi; Abdol-majid Ronaghi; Mehdi Khayyat; Gholamreza Hadarbadi

    2009-01-01

      There are areas in the world which are polluted by trace metals some of which may not be degraded by biotic process. Some of these metals might enter into surface and/or underground water resources thus causing serious human and animal health problems. In recent years, natural amendments, such as the use of zeolite, have been widely used to address trace metals contamination. In the present study the effect of zeolite on the growth and nodulation of soybean (Glycine max L.) was evaluat...

  18. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean.

    Science.gov (United States)

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-11-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Aplicação simultânea de dessecantes e boro no manejo de plantas daninhas e na nutrição mineral das culturas de soja e girassol Simultaneous application of desiccants and boron for weed control and mineral nutrition of soybean and sunflower

    Directory of Open Access Journals (Sweden)

    A.M. Brighenti

    2006-12-01

    Full Text Available Dois experimentos foram conduzidos com o objetivo de avaliar o controle de plantas daninhas em pré-semeadura da soja (Glycine max e do girassol (Helianthus annuus, por meio de aplicações de herbicidas dessecantes, isolados ou em combinação com boro, bem como a resposta dessas culturas à aplicação desse micronutriente. Nas parcelas de soja, foram aplicados os tratamentos glyphosate (1,44 kg e.a. ha-1, glyphosate potássico (2,48 kg i.a. ha-1, diuron (0,2 kg i.a. ha-1 + paraquat (0,4 kg i.a. ha-1, e paraquat (0,400 kg i.a. ha-1. Nas parcelas de girassol, foram aplicados os tratamentos glyphosate (0,54 kg e.a. ha-1, glyphosate (0,72 kg e.a. ha-1, glyphosate potássico (1,24 kg i.a. ha-1, paraquat (0,4 kg i.a. ha-1, glyphosate (0,72 kg e.a. ha-1 + flumioxazin (0,025 kg i.a. ha-1 e glyphosate (0,72 kg e.a. ha-1 + carfentrazone (0,02 kg i.a. ha-1. Ambos os experimentos continham as testemunhas capinada e sem capina. As subparcelas dos dois experimentos foram constituídas pela ausência ou presença de B, junto à calda de pulverização, na fonte ácido bórico [H3BO3 - 17% B]. A adição de ácido bórico à calda de pulverização não prejudicou o controle das plantas daninhas pelos tratamentos dessecantes, exceto para a mistura formulada de paraquat + diuron. Houve aumento dos teores de boro no solo e nas folhas da cultura da soja e do girassol quando foram associados os tratamentos com herbicidas dessecantes e o ácido bórico. É viável a aplicação de herbicidas dessecantes e ácido bórico, controlando as plantas daninhas em présemeadura e aumentando o teor de B no solo e nas plantas de soja e de girassol.Two experiments were carried out to evaluate weed control in soybean (Glycine max and sunflower (Helianthus annuus pre-sowing by desiccant application alone or in combination with boron (B, as well as to evaluate the response of these crops to that micronutrient. The plots consisted of the desiccants glyphosate (1.44 kg a.e. ha-1

  20. Identification and functional analysis of a new glyphosate resistance gene from a fungus cDNA library.

    Science.gov (United States)

    Tao, Bo; Shao, Bai-Hui; Qiao, Yu-Xin; Wang, Xiao-Qin; Chang, Shu-Jun; Qiu, Li-Juan

    2017-08-01

    Glyphosate is a widely used broad spectrum herbicide; however, this limits its use once crops are planted. If glyphosate-resistant crops are grown, glyphosate can be used for weed control in crops. While several glyphosate resistance genes are used in commercial glyphosate tolerant crops, there is interest in identifying additional genes for glyphosate tolerance. This research constructed a high-quality cDNA library form the glyphosate-resistant fungus Aspergillus oryzae RIB40 to identify genes that may confer resistance to glyphosate. Using a medium containing glyphosate (120mM), we screened several clones from the library. Based on a nucleotide sequence analysis, we identified a gene of unknown function (GenBank accession number: XM_001826835.2) that encoded a hypothetical 344-amino acid protein. The gene was named MFS40. Its ORF was amplified to construct an expression vector, pGEX-4T-1-MFS40, to express the protein in Escherichia coli BL21. The gene conferred glyphosate tolerance to E. coli ER2799 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts. - Highlights: ► Investigated the germination rate and the sprouts length after irradiation. ► Indicated the effect of irradiation on the antioxidants of the soybean sprouts. ► Evaluated the visual and olfactory quality of irradiated samples.

  2. The history and current status of glyphosate.

    Science.gov (United States)

    Duke, Stephen O

    2018-05-01

    Glyphosate is the only herbicide to target the enzyme 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS). It is a high use rate, non-selective herbicide that translocates primarily to metabolic sinks, killing meristematic tissues away from the application site. Its phloem-mobile properties and slow action in killing weeds allow the herbicide to move throughout the plant to kill all meristems, making it effective for perennial weed control. Since commercialization in 1974, its use has grown to dominate the herbicide market. Much of its use is on transgenic, glyphosate-resistant crops (GRCs), which have been the dominant transgenic crops worldwide. GRCs with glyphosate provided the most effective and inexpensive weed management technology in history for a decade or more. However, as a consequence of the rapid increase in glyphosate-resistant (GR) weeds, the effectiveness of glyphosate use in GRCs is declining. Critics have claimed that glyphosate-treated GRCs have altered mineral nutrition and increased susceptibility to plant pathogens because of glyphosate's ability to chelate divalent metal cations, but the complete resistance of GRCs to glyphosate indicates that chelating metal cations do not contribute to the herbicidal activity or significantly affect mineral nutrition. The rates of increases in yields of maize, soybean, and cotton in the USA have been unchanged after high adoption rates of GRCs. Glyphosate is toxic to some plant pathogens, and thereby can act as a fungicide in GRCs. Ultra-low doses of glyphosate stimulate plant growth in glyphosate-susceptible plants by unknown mechanisms. Despite rapid and widespread increases in GR weeds, glyphosate use has not decreased. However, as GR weeds increase, adoption of alternative technologies will eventually lead to decreased use. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in

  3. Assessment of the levels of N- (Phosphonomethyl) glycine glyphosate in selected glyphosate-based herbicides on the Ghanaian market

    International Nuclear Information System (INIS)

    Iddrisu, Adisatu

    2016-07-01

    Sixty one (61) samples of Glyphosate based herbicides were collected from the central commercial hub of Kumasi (Kejetia) and ware houses of importers in Ashanti and Greater Accra regions of Ghana and analyzed using high performance liquid chromatography (HPLC). Information about the efficacy of the numerous Glyphosate herbicides on the market was also collected by way of questionnaire. Results of the analysis indicated that only ten (16.4 %) out of the sixty one samples met the Environmental Protection Agency’s requirement of ±5 % of the stated active ingredient concentration and 51 samples representing 83.6 % were all out of the acceptable range. Active ingredient was either understated or overstated. About 21.6 % of the samples that failed to meet requirements were overstated and 78.4 % were understated. Apart from a few of the samples that had concentrations higher than stated label claims with 69 g/L (19.2 %) highest, most samples were generally lower than stated label claims. Some (G09, G18 and G44) samples contained virtually no active ingredient with shortfalls as high as 98.6%. Some of these shortfalls explained findings from the field investigations where some respondents complained of Glyphosate not being efficacious. Farmers may follow the application and safety instructions but this only holds true as long as the herbicides provide efficient control of weed. This can only be achieved with products of consistently high quality. This study also discovered that, there was no possibility of adulteration of the herbicide along the value chain as results for products picked from ware houses of importers did not differ much from those picked from the open market. Results from the other method employed in Glyphosate determination was UV/VIV spectroscopy, this method is simpler and faster and readily available in most laboratories in Ghana. Results from UV/VIS were comparable to that of the HPLC with generally lower values for UV/VIS readings. It is therefore

  4. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  5. Discrimination of transgenic soybean seeds by terahertz spectroscopy

    Science.gov (United States)

    Liu, Wei; Liu, Changhong; Chen, Feng; Yang, Jianbo; Zheng, Lei

    2016-10-01

    Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of glyphosate-resistant and conventional soybean seeds and their hybrid descendants was examined by terahertz time-domain spectroscopy system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM) and PCA-back propagation neural network (PCA-BPNN) models with the first and second derivative and standard normal variate (SNV) transformation pre-treatments were applied to classify soybean seeds based on genotype. Results demonstrated clear differences among glyphosate-resistant, hybrid descendants and conventional non-transformed soybean seeds could easily be visualized with an excellent classification (accuracy was 88.33% in validation set) using the LS-SVM and the spectra with SNV pre-treatment. The results indicated that THz spectroscopy techniques together with chemometrics would be a promising technique to distinguish transgenic soybean seeds from non-transformed seeds with high efficiency and without any major sample preparation.

  6. Strategy for selection of soybean genotypes tolerant to drought during germination.

    Science.gov (United States)

    Dantas, S A G; Silva, F C S; Silva, L J; Silva, F L

    2017-05-10

    Water deficit is the main reason for instability in the context of soybean culture. The development of strategies for the selection of more tolerant genotypes is necessary. These strategies include the use of polyethylene glycol 6000 solutions (PEG-6000) for conducting the germination test under conditions of water restriction. Thus, the objective of this study was to determine the osmotic potential and the main characteristics that promote the discrimination of soybean genotypes with regard to water stress tolerance during germination and the vigor test. Thirteen soybean cultivars were used. The seeds were allowed to germinate on sheets of germitest paper moistened in solution with PEG-6000, simulating different levels of water availability, which is expressed as osmotic potential (0.0, -0.2, -0.4, and -0.6 MPa). We assessed germination, length, and dry mass for seedlings and seeds, as well as reserve dynamics. Germination and variables related to the dynamics of reservation have great influence on the expression of variability in environments under stress. Among the different osmotic potentials, the -0.2 MPa was the most efficient for the expression of genetic variability among the cultivars. Conducting the germination test with PEG-6000 solution to -0.2 MPa was efficient for selecting soybean cultivars tolerant to water stress. This was accomplished by evaluating the percentage of germination, along with variables related to the dynamics of reservation.

  7. Weeds and ground-dwelling predators′ response to two different weed management systems in glyphosate-tolerant cotton: A farm-scale study

    Science.gov (United States)

    Farinós, Gema P.; Gómez, Pablo; Gutiérrez, Elena; Sánchez, Francisco Javier; Escorial, María Concepción; Ortego, Félix; Chueca, María Cristina; Castañera, Pedro

    2018-01-01

    The use of glyphosate, as a post-emergence broad-spectrum herbicide in genetically modified glyphosate-tolerant (GT) cotton, supposes a big change in weed management programs with respect to a conventional regime. Thus, alterations in arable flora and arthropod fauna must be considered when evaluating their potential impacts. A 3-year farm-scale study was conducted in a 2-ha GT cotton crop, in southern Spain, to compare the effects of conventional and glyphosate herbicide regimes on weed abundance and diversity and their consequences for ground-dwelling predators. Surveys reveal that weed density was relatively low within all treatments with a few dominant species, with significantly higher weed densities and modifications of the floristic composition in glyphosate-treated plots that led to an increase in the abundance of Portulaca oleracea and to a reduction in plant diversity. The activity-density of the main predatory arthropod taxa (spiders, ground beetles, rove beetles and earwigs) varied among years, but no significant differences were obtained between conventional and glyphosate herbicide regimes. However, significant differences between treatments were obtained for ground beetles species richness and diversity, being higher under the glyphosate herbicide regime, and a positive correlation with weed density could be established for both parameters. The implications of these findings to weed control in GT cotton are discussed. PMID:29351549

  8. Efeitos de diferentes formulações comerciais de glyphosate sobre estirpes de Bradyrhizobium Effects of different glyphosate commercial formulations on Bradyrhizobium strains

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2004-06-01

    the strains were inoculated in yeast extract manitol (YM. Herbicide effect on the growth of the Bradyrhizobium strains was assessed by optic density reading in a spectrophotometer. Twenty seven treatments arranged in a factorial design were evaluated and consisted of one strain of B. japonicum: SEMIA 5079; and two strains of B. elkanii: SEMIA 5019 and SEMIA 587, under the effect of nine glyphosate formulations: Zapp QI®, Roundup®, Roundup Multiação®, Roundup Transorb®, Roundup WG®, Trop®, Agrisato®, technical glyphosate [N-(phosphonomethyl glycine] and control without herbicide addition (as the strain control treatment, with six replications. A growth curve was established for each strain. It could be observed that the different glyphosate formulations Zapp Qi, Roundup, Roundup Multiação, Roundup transorb, Roundup WG, Trop and Agrisato caused differentiated effects on the strains of Bradyrhizobium SEMIA 5019, SEMIA 5079 and SEMIA 587. It was verified that the Zapp Qi formulation was the least toxic to the strains. The highest toxicity was observed for Roundup Transorb, which reduced growth over 94% for all the strains assessed. Correlation was not observed among the type of salt, isopropylamine, ammonium or potassic, present in the formulation herbicides, and the toxicity degree to the strains. The strain SEMIA 587 was the least tolerant to most formulations while SEMIA 5019 was the most sensitive to the control treatment N- (phosphonomethyl glycine, without salts or other additives.

  9. 40 CFR 174.524 - Glyphosate Oxidoreductase GOX or GOXv247 in all plants; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Glyphosate Oxidoreductase GOX or... REQUIREMENTS FOR PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.524 Glyphosate... Glyphosate Oxidoreductase GOX or GOXv247 enzyme in all plants are exempt from the requirement of a tolerance...

  10. THE EFFECT OF SOME RHIZOBACTERIAN STRAINS ON SOLUBLE PROTEINS CONTENT IN SOYBEANS (GLYCINE MAX L. MERR.

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2007-08-01

    Full Text Available Now it is an accepted fact that plant growth-promoting rhizobacteria (PGPR can increase the productivity of several crops. The main objective of the present study was to find if there are any differences in protein content in the seeds of soybean (Glycine max L. MERR.. Using spectrophotometric methods for analyzing the protein contents and electrophoretic methods for qualitative analysis it was observed that no major modifications occur in protein spectrum. Looking at the quantitative side there was a small improvement in protein quantity.

  11. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    Science.gov (United States)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts.

  12. Recovery Plan for Red Leaf Blotch of Soybean Caused by Phoma glycinicola

    Science.gov (United States)

    Red leaf blotch (RLB) of soybean is caused by the fungal pathogen Phoma glycinicola, formerly known in the plant pathology literature as Pyrenochaeta glycines, Dactuliophora glycines, and Dactuliochaeata glycines. The disease presently occurs in only a few African countries on soybean and a wild leg...

  13. Degradation of 14C-glyphosate in compost amended soils.

    Science.gov (United States)

    Alexa, E; Bragea, M; Sumalan, R; Negrea, M; Lazureanu, A

    2009-01-01

    Glyphosate (N-phosphonomethyl-glycine), the active ingredient in several herbicide formulations, is a non-selective, post-emergent herbicide used in a variety of crop and non-crop situations. Glyphosate is a non-volatile herbicide that is relatively immobile in soil. Its degradation is due to microbiological processes and most laboratory studies have been conducted with 14C-glyphosate with the rate of 14CO2 evolution being used as an indication of herbicide breakdown. In this paper we have studied the glyphosate degradation in compost amendment soils using Scientilator Liquid TRIATHLER and Glyphosate-phosphonomethyl-14C-labeled with specific activity 2,2mCi/mmol. Four types of soils have been taken under study: Black Chernozem, Vertisol, Gleysol and Phaeozem with different characteristics. For the each type of soil have been realized four experimental variants (glyphosate blind sample with 1,5 ppm, concentration, autoclaved soil, soil with glyphosate and addition of compost in field concentration of 40 t/ha, respectively 60 t/ha. The mineralization curves of 14CO2 accumulated were compared during of 40 days. All the mineralization curves for the soils exhibited same patterns, with only two phases, the initial rapid phase of degradation, for about 20 days, attributed to microbial action on the free glyphosate and the second slow phase, when the curves attained plateaus. Compost applied with different concentrations to Vertisol and Black Chernozem did not appear to stimulate the microbial degradation of glyphosate. In Gleysol and Phaeozem with lower humus content, the mineralization curve of 14C indicate the increase degradation capacity, expressed as accumulated 14CO2 as % total 14C, with the increase of compost concentration.

  14. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  15. Weed Control in Soybean (Glycine max)

    International Nuclear Information System (INIS)

    Kipkemoi, P.L.

    2002-01-01

    Weed Compete for limited growth factors with crop plants. This result in loss of crop vigour and hence reduces crop yields. A study was conducted in 1997 and 2001 to evaluate the use of herbicides and hand hoeing for weed control in soybeans. Crop establishment was by hand planting. The herbicides were applied using CP3 Knap sack sprayer calibrated to deliver a spray volume of 150l/ha. Hand weeding treatment were done as appropriate. The trial layout was randomised complete block design with four replications in both years. The tested herbicides did not satisfactorily control the weeds present at the experimental site in both years. Hand weeding on the other hand gave good control of the weeds which were reflected in high soybean yields. In these trials yields were negatively correlated with the number of weeds present. The tested herbicides alone appeared to be inadequate in controlling weeds in soybean. Compared with the weed-free treatment a single application of soil-applied or post-emergence herbicides did not control a broad spectrum of weeds and reduced soybean yields. It can also be inferred that soybean yield losses are minimised if they are kept weed free for at most 6 weeks after emergence

  16. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max).

    Science.gov (United States)

    Zhang, Jiaoping; Song, Qijian; Cregan, Perry B; Jiang, Guo-Liang

    2016-01-01

    Twenty-two loci for soybean SW and candidate genes conditioning seed development were identified; and prediction accuracies of GS and MAS were estimated through cross-validation and validation with unrelated populations. Soybean (Glycine max) is a major crop for plant protein and oil production, and seed weight (SW) is important for yield and quality in food/vegetable uses of soybean. However, our knowledge of genes controlling SW remains limited. To better understand the molecular mechanism underlying the trait and explore marker-based breeding approaches, we conducted a genome-wide association study in a population of 309 soybean germplasm accessions using 31,045 single nucleotide polymorphisms (SNPs), and estimated the prediction accuracy of genomic selection (GS) and marker-assisted selection (MAS) for SW. Twenty-two loci of minor effect associated with SW were identified, including hotspots on Gm04 and Gm19. The mixed model containing these loci explained 83.4% of phenotypic variation. Candidate genes with Arabidopsis orthologs conditioning SW were also proposed. The prediction accuracies of GS and MAS by cross-validation were 0.75-0.87 and 0.62-0.75, respectively, depending on the number of SNPs used and the size of training population. GS also outperformed MAS when the validation was performed using unrelated panels across a wide range of maturities, with an average prediction accuracy of 0.74 versus 0.53. This study convincingly demonstrated that soybean SW is controlled by numerous minor-effect loci. It greatly enhances our understanding of the genetic basis of SW in soybean and facilitates the identification of genes controlling the trait. It also suggests that GS holds promise for accelerating soybean breeding progress. The results are helpful for genetic improvement and genomic prediction of yield in soybean.

  17. Toxicity assessment of glyphosate on honey bee (Apis mellifera) spermatozoa

    Science.gov (United States)

    During 2016-2017, 33.2% of managed honey bee colonies in the U.S. were lost due to Colony Collapse Disorder (CCD). Commonly used pesticides are among the suspected reasons for bee mortality. N-(phosphonomethyl)glycine (glyphosate) is a widely used herbicide in the U.S. and has previously been shown ...

  18. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake, Iran

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-01-01

    Full Text Available Background: Glyphosate (N-phosphonomethyl Glycine is an organophosphorus pesticide with dangerous effects on the environment. In this study, the biodegradation of glyphosate herbicide by halophilic bacteria isolated from Qom Hoze-Soltan Lake has been investigated. Methods: After sampling and bacterial isolation, native halophilic strains grown in the presence of glyphosate at a wavelength of 660 nm and also the disappearance of the glyphosate in the plates at a wavelength of 220 nm were determined and the dominant bacteria were isolated. Biochemical, molecular (according to the 16S rRNA sequence, antibiotic, and the Minimum Inhibitory Concentration (MIC test was performed for the dominant bacteria. Analysis of the remaining glyphosate herbicide was performed by HPLC analysis after derivation with FMOC-Cl. Results: According to the results of the biochemical, antibiotic and molecular 16S rRNA tests, the native halophilic isolates with the ability to biodegrade glyphosate were gram positive cocci very similar to Salinicoccusspp. The results of HPLC showed that Salinicoccusspp is able to biodegrade glyphosate herbicide. Conclusion: The native bacteria in Qom Hoze-soltanlake, Iran can be used for biodegradation of glyphosate herbicide.

  19. Response of Glycine max to drought stress in relation to growth parameters and some key enzymes of carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Maryam Nasr Esfahani

    2015-06-01

    Full Text Available Drought stress is one of the major constraints for production and yield of soybean (Glycine max. For this reason, identifying mechanisms associated with drought tolerance in soybean is very impotent for improving and increasing drought resistance by genetic engineering methods. In this study, the effect of drought on growth traits (plant height, fresh and dry weight of shoot and also fresh and dry weight of root and enzyme activities of isocitrate dehydrogenase (ICDH, phosphoenolpyruvate carboxylase (PEPC, malate dehydrogenase (MDH, glutamine synthetase (GS and nitrate reductase (NR were assessed in drought sensitive and tolerant cultivars of soybean. The results showed that growth indicators are higher in drought tolerant cultivar under water availability (control and water deficient when compared with those of drought sensitive cultivar. An increase in the activity of ICDH was observed in both the cultivars under drought stress as compared with their respective control plants but this activity was higher in tolerant cultivar. The activities of PEPC, MDH, GS and NR were significantly decreased in drought sensitive cultivar whereas the activities of these enzymes were higher in another cultivar. In general, the results of this study showed different behavior in the activities of assayed enzymes in two sets of soybean cultivars differing in drought tolerance and also decline of the activities of these enzymes in drought sensitive cultivar due to water deficit stress may be one of the possible reasons for decreased growth of the soybean plants under drought.

  20. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    Science.gov (United States)

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  1. Evaluation of the Protective Role of Glycine max Seed Extract (Soybean Oil) in Drug-Induced Nephrotoxicity in Experimental Rats.

    Science.gov (United States)

    Ramasamy, Anand; Jothivel, Nandhakumar; Das, Saibal; Swapna, A; Albert, Alice Padmini; Barnwal, Preeti; Babu, Dinesh

    2017-09-28

    This study was conducted to evaluate the nephroprotective effect of Glycine max seed extract (soybean oil) against gentamicin- and rifampicin-induced nephrotoxicity in Sprague-Dawley rats and to compare its effects with those of vitamin E, which has well-established antioxidant and nephroprotective effects. Sixty male Sprague-Dawley rats (body weight 150-210 g) were divided into 10 groups. The first five groups were treated for 14 consecutive days with normal saline (5 ml/kg, by mouth [p.o.]); gentamicin (80 mg/kg intraperitoneally [i.p.]); gentamicin (80 mg/kg, i.p.) + vitamin E (250 mg/kg p.o.); gentamicin (80 mg/kg i.p.) + soybean oil (2.5 ml/kg p.o.); and gentamicin (80 mg/kg, i.p.) + soybean oil (5 ml/kg p.o.), respectively. For the next five groups, the same group allocation was done, but gentamicin was replaced with rifampicin (1 g/kg i.p.). Various biomarkers for nephrotoxicity in serum and urine were evaluated along with histopathological examination of kidneys. Analysis of variance (ANOVA) was done following Tukey's multiple comparison test; p Soybean oil in both doses significantly (p Soybean oil also showed strong antioxidant effects, causing significant (p Soybean oil demonstrated good nephroprotective activity due to antioxidant effects.

  2. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  3. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Ehling, Stefan; Reddy, Todime M

    2015-12-09

    A straightforward analytical method based on derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry has been developed for the analysis of residues of glyphosate and aminomethylphosphonic acid (AMPA) in a suite of nutritional ingredients derived from soybean, corn, and sugar beet and also in cow's milk and human breast milk. Accuracy and intermediate precision were 91-116% and soy protein isolate. Limits of quantitation were 0.05 and 0.005 μg/g in powdered and liquid samples, respectively. Glyphosate and AMPA were quantified at 0.105 and 0.210 μg/g (soy protein isolate) and 0.850 and 2.71 μg/g (soy protein concentrate, both derived from genetically modified soybean), respectively. Residues were not detected in soy milk, soybean oil, corn oil, maltodextrin, sucrose, cow's milk, whole milk powder, or human breast milk. The method is proposed as a convenient tool for the survey of glyphosate and AMPA in the ingredient supply chain.

  4. Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata [L] Wilczek).

    Science.gov (United States)

    María Landete, José; Hernández, Teresa; Robredo, Sergio; Dueñas, Montserrat; de Las Rivas, Blanca; Estrella, Isabel; Muñoz, Rosario

    2015-03-01

    Mung beans (Vigna radiata [L] Wilczek) purchased from a Spanish company as "green soybeans", showed a different phenolic composition than yellow soybeans (Glycine max cv. Merit). Isoflavones were predominant in yellow soybeans, whereas they were completely absent in the green seeds on which flavanones were predominant. In order to enhance their health benefits, both types of bean were subjected to technological processes, such as soaking and fermentation. Soaking increased malonyl glucoside isoflavone extraction in yellow beans and produced an increase in apigenin derivatives in the green beans. Lactobacillus plantarum CECT 748 T fermentation produced an increase in the bioactivity of both beans since a conversion of glycosylated isoflavones into bioactive aglycones and an increase of the bioactive vitexin was observed in yellow and green beans, respectively. In spite of potential consumer confusion, since soybean and "green soybean" are different legumes, the health benefits of both beans were enhanced by lactic fermentation.

  5. Initial organic products of fixation of [13N]dinitrogen by root nodules of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Meeks, J.C.; Wolk, C.P.; Schilling, N.; Shaffer, P.W.; Avissar, Y.; Chien, W.S.

    1978-01-01

    When detached soybean Glycine max (L.) Merr. cv. Hark, nodules assimilate ( 13 N)N 2 , the initial organic product of fixation is glutamine; glutamate becomes more highly radioactive than glutamine within 1 minute; 13 N in alanine becomes detectable at 1 minute of fixation and increases rapidly between 1 and 2 minutes. After 15 minutes of fixation, the major 13 N-labeled organic products in both detached and attached nodules are glutamate and alanine, plus, in the case of attached nodules, an unidentified substance, whereas ( 13 N)glutamine comprises only a small fraction of organic 13 N, and very little 13 N is detected in asparagine. The fixation of ( 13 N)N 2 into organic products was inhibited more than 99 percent by C 2 H 2 (10 percent, v/v). The results support the idea that the glutamine synthetase-glutamate synthase pathway is the primary route for assimilation of fixed nitrogen in soybean nodules

  6. Characteristics of superior soybean breeding lines tolerance to rust (Phakopsora pachyrhizi Syd.

    Directory of Open Access Journals (Sweden)

    Alfi Inayati

    2016-04-01

    Full Text Available Soybean rust caused by Phakopsora pachyrhizi is one of the most important diseases which limits soybean production. The aim of this study was to evaluate the resistance of 28 superior soybean lines and their tolerance to rust. The study was conducted at a screen house and arranged in a completely randomized design (CRD; three replications. All genotypes tested were artificially inoculated with P. pachyrhizi, and a set of un-inoculated genotypes was planted as a comparison. Number of pustules was recorded weekly, and resistant criteria was rated based on the International working group on soybean rust IWGSR method. Lesion color (LC, sporulation level (SL, number of uredia (NoU, frequency of pustule which had uredia, and yield were also recorded. Among 28 genotypes tested, only one was categorized as resistant and 2 genotypes were susceptible. Resistant genotypes had few pustules, lower AUDPC values, low disease severity, and Reddish Brown lesion type. Soybean rust affected yield components, i.e. number of intact pods and yield per plant. Yield loses due to rust in this study varied from 5-89%, and the average was 51%. The set of lines from Tanggamus pedigree showed more resistant to rust but less tolerant compared to Sinabung pedigree.How to CiteInayati, A., & Yusnawan, E. (2016. Characteristics of superior soybean breeding lines tolerancet to rust (Phakopsora pachyrhizi Syd.. Biosaintifika: Journal of Biology & Biology Education, 8(1, 47-55.

  7. Seletividade de cultivares de soja RR® submetidos a misturas em tanque de glyphosate + chlorimuron-ethyl associadas a óleo mineral e inseticidas selectivity of soybean RR® genotypes submitted to glyphosate + chlorimuron-ethyl tank mixtures associated to mineral oil and insecticides

    Directory of Open Access Journals (Sweden)

    C.D.G. Maciel

    2009-01-01

    Full Text Available O uso de glyphosate para o controle de plantas daninhas em soja RR® apresenta características essenciais no conceito de praticabilidade. Entretanto, apesar de não permitido na legislação brasileira, tem-se aumentado a associação com outros herbicidas para manejo de espécies de difícil controle, assim como a sua mistura em tanque em combinação com inseticidas e adjuvantes. Com o objetivo de avaliar a seletividade de cultivares de soja RR® submetidos a misturas em tanque de formulações de glyphosate (Polaris®, Roundup Ready® e Roundup WG® com chlorimuron-ethyl (Classic®, e suas associações com óleo mineral (Joint Oil® e inseticidas novaluron (Gallaxy 100 EC®, permethrin (Piredan® e methomyl (Lannate BR®, um experimento foi conduzido a campo na cidade de Maracaí-SP, na safra 2006/2007. O delineamento experimental utilizado foi o de blocos ao acaso, com quatro repetições, em esquema fatorial 16 x 4, sendo 16 as associações das misturas em tanque entre as formulações de glyphosate, óleo mineral e inseticidas e quatro cultivares: Monsoy 7210RR®, Monsoy 7979RR®, BRS 245RR® e CD 214RR®. Sintomas visuais de intoxicação inicial dos cultivares estudados foram caracterizados por clorose e encarquilhamento nas folhas para todas as misturas em tanque das formulações de glyphosate + chlorimuron-ethyl, associadas ou não ao óleo mineral e inseticidas novaluron, permethrin e methomyl. Todas as misturas em tanque não promoveram reduções significativas de produtividade para os cultivares Monsoy 7210RR®, Monsoy 7979RR® e BRS 245RR® e controlaram Ipomoea spp. com eficácia apenas satisfatória a partir dos 21 DAA (dias após aplicação.The use of glyphosate for weed control in soybean RR® presents essential practical characteristics. However, although not allowed by the current Brazilian legislation, the association with other herbicides has been increasing for species of difficult control, as well as the use of tank

  8. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  9. Efeitos dos herbicidas glyphosate e paraquat, aplicados ao solo, sobre a emergência de feijão e soja e de algumas espécies daninhas Effects of the herbicides glyphosate and paraquat, applied to the soil, on the emergence of dry beans and soybeans and some weed species

    Directory of Open Access Journals (Sweden)

    C.A. Dias

    1982-06-01

    Full Text Available Em trabalho conduzido a campo na Estação Experimental Agronômica da UFRGS, Guaíba, RS em 1979/80, usaram-se os herbicidas glyphosate, paraquat e sua combinação, objetivando determinar os efe itos de doses e de épocas de aplicação destes herbicidas em plântulas de feijão e de soja e sobre nutrientes do solo. Pelos resultados obtidos para emergência e peso de maté ria seca da parte aé re a de soja , não houve di ferenças para os tratamentos testados. Também não ocorreram diferenças significativas à população in ic ia l de feijão e sobre os elementos de solo analisados (Ca, Mg e K. Com relação ao peso de matéria seca da parte aérea do feijão, verificou-se que houve interação entre herbicida e doses usadas, tendo glyphosate isolado e glyphosate mais paraquat aplicados seqüencialmente nas doses máximas causado redução significativa naquele parâmetro. Com relação ao paraquat, não foram detectadas diferenças significativas entre as doses testadas.A field xeperiment was conducted during the 1979/80 growing season at the Agronomic Experimental Station of the Federal University of Rio Grande do Sul, in Guaíba, RS, Brazil, in order to evaluate the efects of rates and times of appl ication of the herbicides glyphosate, paraqu at, and the ir combin at ion, on dry beans (Phaseolus vulgaris L. and soybeans (Glvcine max (L. Merrill, and on some soil nutrierts. The results indicated no significant differences among the soybeans treatments tested fo r plant population and shoot dry weight. Also no sta ti sti cal diffe re nces occurred fo r dry beans plant population and for soil nutrients analysed (Ca, Mg, and K. For dry beans shoot dry weight, there was an interaction of herbicides and rates, where glyphosate sprayed alone and glyphosate plus paraquat applied at the maxima ra te s te sted caused significant decreases on that variable. For paraquat utilized alone, no significant effects were detected among the rates applied.

  10. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress.

    Science.gov (United States)

    Zhu, Dan; Bai, Xi; Luo, Xiao; Chen, Qin; Cai, Hua; Ji, Wei; Zhu, Yanming

    2013-02-01

    Wild soybean (Glycine soja L. G07256) exhibits a greater adaptability to soil bicarbonate stress than cultivated soybean, and recent discoveries show that TIFY family genes are involved in the response to several abiotic stresses. A genomic and transcriptomic analysis of all TIFY genes in G. soja, compared with G. max, will provide insight into the function of this gene family in plant bicarbonate stress response. This article identified and characterized 34 TIFY genes in G. soja. Sequence analyses indicated that most GsTIFY proteins had two conserved domains: TIFY and Jas. Phylogenetic analyses suggested that these GsTIFY genes could be classified into two groups. A clustering analysis of all GsTIFY transcript expression profiles from bicarbonate stress treated G. soja showed that there were five different transcript patterns in leaves and six different transcript patterns in roots when the GsTIFY family responds to bicarbonate stress. Moreover, the expression level changes of all TIFY genes in cultivated soybean, treated with bicarbonate stress, were also verified. The expression comparison analysis of TIFYs between wild and cultivated soybeans confirmed that, different from the cultivated soybean, GsTIFY (10a, 10b, 10c, 10d, 10e, 10f, 11a, and 11b) were dramatically up-regulated at the early stage of stress, while GsTIFY 1c and 2b were significantly up-regulated at the later period of stress. The frequently stress responsive and diverse expression profiles of the GsTIFY gene family suggests that this family may play important roles in plant environmental stress responses and adaptation.

  11. Clastogenic Effects of Glyphosate in Bone Marrow Cells of Swiss Albino Mice

    International Nuclear Information System (INIS)

    Prasad, S.; Srivastava, S.; Singh, M.; Shukla, Y.

    2009-01-01

    Glyphosate (N-(phosphonomethyl) glycine, C 3 H 8 NO 5 P), a herbicide, used to control unwanted annual and perennial plants all over the world. Nevertheless, occupational and environmental exposure to pesticides can pose a threat to nontarget species including human beings. Therefore, in the present study, genotoxic effects of the herbicide glyphosate were analyzed by measuring chromosomal aberrations (CAs) and micronuclei (MN) in bone marrow cells of Swiss albino mice. A single dose of glyphosate was given intraperitoneally (i.p) to the animals at a concentration of 25 and 50 mg/kg b.wt. Animals of positive control group were injected i.p. benzo(a)pyrene (100 mg/kg b.wt., once only), whereas, animals of control (vehicle) group were injected i.p. dimethyl sulfoxide (0.2 mL). Animals from all the groups were sacrificed at sampling times of 24, 48, and 72 hours and their bone marrow was analyzed for cytogenetic and chromosomal damage. Glyphosate treatment significantly increases CAs and MN induction at both treatments and time compared with the vehicle control (P<.05). The cytotoxic effects of glyphosate were also evident, as observed by significant decrease in mitotic index (MI). The present results indicate that glyphosate is clastogenic and cytotoxic to mouse bone marrow.

  12. The influence of Lasius neoniger (Hymenoptera: Formicidae) on population growth and biomass of Aphis glycines (Hemiptera: Aphididae) in soybeans.

    Science.gov (United States)

    Schwartzberg, Ezra G; Johnson, D W; Brown, G C

    2010-12-01

    In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest. © 2010 Entomological Society of America

  13. Vermiculite's strong buffer capacity renders it unsuitable for studies of acidity on soybean (Glycine max L.) nodulation and growth.

    Science.gov (United States)

    Indrasumunar, Arief; Gresshoff, Peter M

    2013-11-14

    Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.

  14. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  15. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation.

    Science.gov (United States)

    Wang, Tiecheng; Ren, Jingyu; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2016-12-15

    Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh -1 , and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO 4 3- and NO 3 - . The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO 4 3- and NO 3 - , CO 2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impact of no-till cover cropping of Italian ryegrass on above and below ground faunal communities inhabiting a soybean field with special emphasis on soybean cyst nematodes

    Science.gov (United States)

    Two field trials were conducted in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop in a no-till soybean (Glycine max) planting to 1) reduce populations of plant-parasitic nematodes (i.e., the soybean cyst nematode, Heterodera glycines and lesion nematodes...

  17. Synchrotron-Based Techniques Shed Light on Mechanisms of Plant Sensitivity and Tolerance to High Manganese in the Root Environment

    Science.gov (United States)

    Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µM Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albu...

  18. Sulphur dioxide metabolism in soy-bean, Glycine max var. biloxi

    International Nuclear Information System (INIS)

    Garsed, S.G.; Read, D.J.

    1977-01-01

    First-trifoliate leaves of soybeans Glycine max (L.) Merr. were exposed to 35 SO 2 in the light or dark, and the chemical distribution of the radioactivity in the source leaves and in the remainder of the plant was determined after 1.5 and 24 h. Only 35 SO 4 2- was found in leachates in the light but substantial quantities of 35 SO 3 2- were present in the dark. Radioactivity was present in all fractions of the source leaves examined (insoluble, centrifuge pellet, soluble protein, chloroform-soluble and water-soluble). The main water-soluble compounds labelled were sulphate >glutathione >cysteine. Small quantities of sulphite were also recovered in the dark but not in the light. The ratio of soluble: insoluble radioactivity in the sink tissues was influenced more by leaf age than by light treatment. Sulphate, glutathione and cysteine were labelled in the petioles of the source leaves and 35 SO 4 2- was found in the nutrient solution after 1.5 h in both treatments. It is concluded that light is not necessary for the reduction of internal 35 SO 2 products. The results are discussed in relation to current knowledge of SO 2 metabolism. (author)

  19. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    Science.gov (United States)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in

  20. Effects of the herbicide glyphosate on the uptake of 239Pu and 241Am to vegetation

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Shaw, S.

    1990-01-01

    Glyphosate (n-phosphonomethyl glycine) is a broad spectrum herbicide widely used in lowland agriculture, forestry and improved upland pastures. Although its metal chelating properties are well established, its interaction with radionuclides remains unknown. A pot experiment was conducted to determine the effect of soil applications of glyphosate on the uptake of 239 Pu and 241 Am to peas and carrots grown in loam, peat and sand soils. Soil-to-plant transfer factors were calculated for treated and untreated soils at harvest. The most marked effect was an increase in 241 Am uptake to crops grown in loam soil. Supplementary laboratory batch experiments were conducted by shaking radiolabelled soil and its associated soil solution with glyphosate. The activity concentration of 241 Am increased ten fold in the liquid phase of loam soils treated with glyphosate. It is postulated that this 241 Am desorption could have been mediated by the formation of a stable Am-glyphosate complex which was subsequently more available for crop uptake than Am alone. (author)

  1. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies

    OpenAIRE

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-01-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are ...

  2. EMERGÊNCIA E ESTABELECIMENTO DE PLANTAS CULTIVADAS APÓS APLICAÇÃO DE GLYPHOSATE

    OpenAIRE

    BELUCI, Lucas Ribeiro; AZANIA, Carlos Alberto Mathias; VITORINO, Renan; AZANIA, Andrea Padua; GARCIA, Julio César; SILVA, Danilo Manoel da

    2014-01-01

    The research aimed to study the effect glyphosate doses, used in the sugarcane chemical destruction, on the emergence and early development of soybean, corn and peanut, sown in succession. An experiment was conducted for each crop in pots using a randomized design with treatments arranged in a 2 x 6 factorial and four replications with seeding times (1 and 12 days after application) and glyphosate doses (0, 1440, 2160, 2880, 3600 and 4320 g ha-1). The experimental units consisted of plast...

  3. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  4. Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions.

    Science.gov (United States)

    Lescure, A M; Massenet, O; Briat, J F

    1990-11-15

    Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.

  5. Evaluation of replacement intercropping of soybean (Glycine max L. with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. under weed infestation

    Directory of Open Access Journals (Sweden)

    M. Bagheri Shirvan

    2016-05-01

    Full Text Available In order to evaluate intercropping of soybean (Glycine max L. cv. JK with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. with weed interference, an experiment was performed in randomized complete block design with 12 treatments and three replications at a field located 10 km of Shirvan during year of 2011. The treatments were included 75% soybean: 25%sweet basil, 50%soybean: 50% sweet basil, 25% soybean: 75% sweet basil, 75% soybean: 25% borage, 50% soybean: 50% borage and 25% soybean: 75% borage under weed infestation, in addition sole cropping of plants under weed control and weed interference. Intercropped plants had more success in reduction of weed density and biomass compared to monoculture. Soybean50: sweet basil50, reduced the weed density by 47.95% and 52.9%, and reduced the weed biomass by 68.91% and 61.87% more than sweet basil and soybean pure stand, respectively. Investigation of dry matter accumulation showed that increasing of plant proportion in intercropping caused increasing of plant dry matter. The height of soybean and borage was increased in intercropping and weed interference, while the highest height of sweet basil was observed in monoculture at second harvest. Biological and economical yield of soybean in intercropping with sweet basil was higher than intercropping with borage. The highest harvest index was related to 50:50 soybean: sweet basil ratio. In this ratio, the harvest index increased 4.9% compared to soybean monoculture. Yield of sweet basil and borage decreased with increasing of soybean rows in intercropping. Based on area-time equivalent ratio, soybean 75% with sweet basil and borage 25% (based on borage seed yield had 3% and 4% advantage compared to monoculture.

  6. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  7. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  8. Bermudagrass (Cynodon spp) dose-response relationships with clethodim, glufosinate and glyphosate.

    Science.gov (United States)

    Webster, Theodore M; Hanna, Wayne W; Mullinix, Benjamin G

    2004-12-01

    Greenhouse studies were conducted to evaluate the sensitivity of three commercial cultivars, eight experimental cultivars and common bermudagrass to clethodim, glufosinate and glyphosate. Each herbicide was applied at eight doses. Data were regressed on herbicide dose using a log-logistic curve (R2 = 0.56-0.95 for clethodim, R2 = 0.60-0.94 for glufosinate, and R2 = 0.70-0.96 for glyphosate). The herbicide rate that elicited a 50% plant response (I50) in the bermudagrass cultivars ranged from 0.04 to 0.19 kg ha(-1) clethodim, 0.19 to 1.33 kg ha(-1) glufosinate and 0.34 to 1.14 kg ha(-1) glyphosate. Relative to other cultivars, common bermudagrass was intermediate in its response to clethodim and among the most tolerant cultivars to glufosinate and glyphosate. TifSport was relatively tolerant to clethodim and glufosinate compared with other cultivars, but relatively sensitive to glyphosate. One cultivar, 94-437, was consistently among the most sensitive cultivars to each of the herbicides. While there were differential herbicide tolerances among the tested bermudagrass cultivars, there did not appear to be any naturally occurring herbicide resistance that could be commercially utilized. However, research indicated that breeding efforts should target herbicide resistance that is at least four times the registered use rate. Also, TifSport and Tifway have been identified as suitable representatives of triploid hybrid bermudagrass cultivars to be used to evaluate the success of turfgrass renovation programs. 2004 Society of Chemical Industry.

  9. Soil compaction and fertilization in soybean productivity

    Directory of Open Access Journals (Sweden)

    Beutler Amauri Nelson

    2004-01-01

    Full Text Available Soil compaction and fertilization affect soybean development. This study evaluated the effects of soil compaction and fertilization on soybean (Glycine max cv. Embrapa 48 productivity in a Typic Haplustox under field conditions in Jaboticabal, SP, Brazil. A completely randomized design with a 5 x 2 factorial layout (compaction vs. fertilization, with four replications in each treatment, was employed. Each experimental unit (replicate consisted of a 3.6 m² useful area. After the soil was prepared by cultivation, an 11 Mg tractor passed over it a variable number of times to create five levels of compaction. Treatments were: T0= no compaction, T1= one tractor pass, T2= two, T4= four, and T6= six passes, and no fertilizer and fertilizer to give soybean yields of 2.5 to 2.9 Mg ha-1. Soil was sampled at depths of 0.02-0.05, 0.07-0.10, and 0.15-0.18 m to determine macro and microporosity, penetration resistance (PR, and bulk density (Db. After 120 days growing under these conditions, the plants were analyzed in terms of development (plant height, number of pods, shoot dry matter per plant and weight of 100 seeds and seed productivity per hectare. Soil compaction decreased soybean development and productivity, but this effect was decreased by soil fertilization, showing that such fertilization increased soybean tolerance to soil compaction.

  10. Transgenic and conventional Brazilian soybeans don't cause or prevent preneoplastic colon lesions or oxidative stress in a 90-day in vivo study

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Sbruzzi

    2013-08-01

    Full Text Available OBJECTIVE: The study presents the results of a 90-day safety assessment of rats fed with four varieties of soybeans, BRS 245 RR and BRS Valiosa RR (transgenic, BRS 133 and MG BR46 Conquista (non-transgenic. METHODS: Diets were prepared by incorporating toasted soybean flour to a commercial diet at 1%, 10% or 20% weight In the in vivo experimental the rats' body weight, body weight gain, food consumption, number of aberrant crypt foci, oxidative stress biomarkers, urea and creatinine levels were analyzed and compared between experimental groups, as well as histopathological observations (digestive tract, liver, kidneys. RESULTS: The results indicate that glyphosate-tolerant soy varieties neither induce nor prevent aberrant crypt foci induction, nor do their conventional counterparts. Similarly, none of the four soybean varieties tested induced changes in the digestive tract, liver or kidney. Serum biochemical parameters were also unchanged. CONCLUSION: The consumption of both, conventional and transgenic soybeans, were insufficient to ameliorate dimethylhydrazine-induced oxidative stress.

  11. Resposta de diferentes populações de Digitaria insularis ao herbicida glyphosate Response of different Digitaria insularis populations to glyphosate

    Directory of Open Access Journals (Sweden)

    N.M Correia

    2010-12-01

    Full Text Available Objetivou-se com estse trabalho avaliar o controle químico de diferentes populações de capim-amargoso (Digitaria insularis pelo herbicida glyphosate por meio de curva de dose-resposta, além de propor tratamentos alternativos para as populações mais tolerantes. O delineamento experimental foi o de blocos ao acaso, com quatro repetições, em esquema fatorial 5 x 9. As sementes de capim-amargoso foram coletadas em cinco locais: área de produção de grãos da Fazenda de Ensino, Pesquisa e Produção da UNESP, Jaboticabal (SP; área de produção comercial de grãos, localizada nos municípios de Campo Florido-MG e Rio Verde-GO; pomar de laranja, localizado no município de Matão (SP; e área não agrícola sem histórico da aplicação de glyphosate (Jaboticabal-SP. O glyphosate (0D, 1/4D, 1/2D, D, 2D, 4D e 8D, em que D é a dose recomendada de 1,5 kg ha-1 de equivalente ácido e as suas associações [glyphosate + fluazifop-p-butil (1,5 + 0,25 kg ha-1 e glyphosate (1,5 kg ha-1 com sequencial de diuron + paraquat (0,20 + 0,40 kg ha-1 + 0,2% de surfatante] foram pulverizados em plantas de sete a oito perfilhos e altura média de 20 cm. As populações de capim-amargoso de Campo Florido e Rio Verde foram consideradas suscetíveis; as de Jaboticabal e Matão, tolerantes; e a da área não agrícola, de sensibilidade intermediária. A associação de glyphosate ao fluazifop ou a sua aplicação com sequencial de diuron + paraquat foram eficazes no controle das populações mais tolerantes de capim-amargoso.The objective of this study was to evaluate the chemical control of different sourgrass (Digitaria insularis populations by the herbicide glyphosate through dose-response curves, besides considering alternative treatments to control tolerant populations. A randomized block design was used with four replications, in a factorial scheme (5 x 9. Sourgrass seeds were colleted from five locations: a grain production area located at the educational

  12. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach.

    Science.gov (United States)

    Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne

    2010-12-01

    As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Life Cycle, Ultrastructure, and Host Specificity of the North American Isolate of Pasteuria that Parasitizes the Soybean Cyst Nematode, Heterodera glycines.

    Science.gov (United States)

    Atibalentja, N; Jakstys, B P; Noel, G R

    2004-06-01

    Light and transmission electron microscopy were used to investigate the life cycle and ultrastructure of an undescribed isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. Studies also were conducted to determine the host specificity of Pasteuria. The endospores that attached to the cuticle of second-stage juveniles (J2) of H. glycines in soil did not germinate until the encumbered nematodes invaded soybean roots. Thereafter, the bacterium developed and completed its life cycle only in females. The stages of endosporogenesis were typical of Pasteuria spp. The mature endospore, like that of P. nishizawae, the only other Pasteuria known to infect H. glycines, produces an epicortical layer that completely surrounds the cortex, an outer spore coat that tapers progressively from the top to the base of the central body, and a double basal adhesion layer. However, subtle differences exist between the Pasteuria from North America and P. nishizawae with regard to size of the central body, nature and function of the mesosomes observed in the earlier stages of endosporogenesis, and appearance of the fibers lining the basal adhesion layer and the exosporium of the mature endospore. Endospores of the North American Pasteuria attached to J2 of H. schachtii, H. trifolii, and H. lespedezae but not to Meloidogyne arenaria race 1, Tylenchorhynchus nudus, and Labronema sp. Results from this study indicate that the North American Pasteuria is more similar to P. nishizawae than to any other known member of the genus. Additional evidence from comparative analysis of 16S rDNA sequences is needed to clarify whether these two Pasteuria belong to the same species.

  14. Selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in greenhouse

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-07-01

    Full Text Available An experiment on the selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in green house. The aim of the experiment the selection and potency of the Rhizobium strain to increase the growth of soybean. The experiment was carried out in green house condition in Microbiology Division, Research Center for Biology-LIPI with sterile sand medium. The research design was Completely Randomized Design with three replications for each treatment. The Rhizobium strains used were 1 W (isolated from bean, Vigna radiata, 2 W (isolated from soybean, 3 W (isolated from bean, 4 W (isolated from soybean, 5 W (isolated from soybean, 6 W (isolated from peanut, Arachis hypogaea, 7 W (isolated from peanut, 8 W (isolated from peanut, the controls were uninoculated with Rhizobium strain and without urea fertilizer (K1, uninoculated and with urea fertilizer equal 100 kg/ha (K2. The plants were harvested after 50 days, the variable of investigation were the dry weight of canopy, roots, nodules root, total plants, number of nodules and ‘symbiotic capacity”. The results showed that all of experiment plant which be inoculated with Rhizobium able to form nodule. Strain of 2 W (isolated from soybean has given the best effects on the growth of soybean.

  15. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  16. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  17. Radiation processing and functional properties of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V; Sharma, Arun

    2010-01-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  18. Changes in micronutrients, dry weight and plant growth of soybean ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... of soybean (Glycine max L. Merrill) cultivars under salt stress. Murat Tunçturk1* ... Salinity stress negatively affected soybean cultivars and the extent of ... INTRODUCTION. Soybean is a ..... A general approach. Science 210: ...

  19. Identifying Chloris Species from Cuban Citrus Orchards and Determining Their Glyphosate-Resistance Status

    Directory of Open Access Journals (Sweden)

    Enzo R. Bracamonte

    2017-11-01

    Full Text Available The Chloris genus is a C4 photosynthetic species mainly distributed in tropical and subtropical regions. Populations of three Chloris species occurring in citrus orchards from central Cuba, under long history glyphosate-based weed management, were studied for glyphosate-resistant status by characterizing their herbicide resistance/tolerance mechanisms. Morphological and molecular analyses allowed these species to be identified as C. ciliata Sw., Chloris elata Desv., and Chloris barbata Sw. Based on the glyphosate rate that causes 50% mortality of the treated plants, glyphosate resistance (R was confirmed only in C. elata, The R population was 6.1-fold more resistant compared to the susceptible (S population. In addition, R plants of C. elata accumulated 4.6-fold less shikimate after glyphosate application than S plants. Meanwhile, populations of C. barbata and C. ciliata with or without glyphosate application histories showed similar LD50 values and shikimic acid accumulation rates, demonstrating that resistance to glyphosate have not evolved in these species. Plants of R and S populations of C. elata differed in 14C-glyphosate absorption and translocation. The R population exhibited 27.3-fold greater 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS activity than the S population due to a target site mutation corresponding to a Pro-106-Ser substitution found in the EPSPS gene. These reports show the innate tolerance to glyphosate of C. barbata and C. ciliata, and confirm the resistance of C. elata to this herbicide, showing that both non-target site and target-site mechanisms are involved in its resistance to glyphosate. This is the first case of herbicide resistance in Cuba.

  20. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  1. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    Science.gov (United States)

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  2. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid

  3. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    Science.gov (United States)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  4. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    Science.gov (United States)

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  5. Effects of enhanced UVB on growth and yield of alfalfa and soybean under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydon, S.A.; Mohamad, A.

    1998-01-01

    The effects of 20% increase of UVB on growth and yield of alfalfa (Medicago Sativa L.) and two cultivars of soybean (Glycine Max (L.) Mer) under field conditions have been investigated. The increase of UVB dose ranged between 1.746 and 7.112 J/cm 2 during experiment. The results showed that soybean yield decrease by 16% and 31% in A. 3803 and A. 2522 cultivars respectively, under UVB exposure. The dry weight and leaf area were sensitive in the A. 3803 cultivar, while they were tolerant in the A. 2522 cultivar. Alfalfa response to UVB varied during the different stages of growth, whereas the yield was 12% less in the exposed plants. (author)

  6. Glyphosate and AMPA in U.S. streams, groundwater, precipitation and soils

    Science.gov (United States)

    Battaglin, William A.; Meyer, Michael T.; Kuivila, Kathryn; Dietze, Julie E.

    2014-01-01

    Herbicides containing glyphosate are used in more than 130 countries on more than 100 crops. In the United States (U.S.), agricultural use of glyphosate [N-(phosphonomethyl)glycine] has increased from less than 10,000 metric tons per year (active ingredient) in 1993 to more than 70,000 metric tons per year in 2006. In 2006, glyphosate accounted for about 20 percent of all herbicide use (by weight of active ingredient). Glyphosate formulations such as Roundup® are used in homes and in agriculture. Part of the reason for the popularity of glyphosate is the perception that it is an “environmentally benign” herbicide that has low toxicity and little mobility or persistence in the environment. The U.S. Geological Survey developed an analytical method using liquid chromatography/tandem mass spectrometry that can detect small amounts of glyphosate and its primary degradation product aminomethylphosphonic acid (AMPA) in water and sediment. Results from more than 2,000 samples collected from locations distributed across the U.S. indicate that glyphosate is more mobile and occurs more widely in the environment than was previously thought. Glyphosate and AMPA were detected (reporting limits between 0.1 and 0.02 micrograms per liter) in samples collected from surface water, groundwater, rainfall, soil water, and soil, at concentrations from less than 0.1 to more than 100 micrograms per liter. Glyphosate was detected more frequently in rain (86%), ditches and drains (71%), and soil (63%); and less frequently in groundwater (3%) and large rivers (18%). AMPA was detected more frequently in rain (86%), soil (82%), and large rivers (78%); and less frequently in groundwater (8%) and wetlands or vernal pools (37%). Most observed concentrations of glyphosate were well below levels of concern for humans or wildlife, and none exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 700 micrograms per liter. However, the ecosystem effects of chronic low

  7. Mutants obtained by chronic gamma irradiation of soybean [Glycine Max (l.) Merrill]varieties

    International Nuclear Information System (INIS)

    Hajos Novak, M; Korosi, F.; Sipos, T.; Hodosne Kotvics, G.

    2001-01-01

    Soybean [Glycine max (L.) Merrill] is a wonder crop, containing about 20% oil and 40% high quality protein, having multiple uses such as food, fodder and industrial products. In Hungary in he last few years there has been a renewed interest in improving protein and oil content of the soybean crop. Selection for oil and/or protein content from segregating populations, derived from induced mutagenesis or hybridization, is known to be effective. Orf and Helms (1994) emphasized, that to fulfill demands of both sellers and purchasers, combined selection for yield components, yield, oil and/or protein content has to be carried out. For this purpose mutant soybean germplasm s were developed by pedigree method from a Carpathian-Ukrainian (KA) further more a Vietnamese (VL40) local variety adapted to Hungarian environmental conditions by 100-300 Gy chronic gamma irradiation. A function index was introduced to evaluate the genetic variability for the quality parameters and the most important agronomic traits. Chronic gamma irradiation increased the genetic variability of the oil content in the KA and of the protein content in the VL40 germplasm. Function index predicted up to 28% oil content in the KA mutant germplasm. Plants with 24.1 and 23.6% oil content were selected from the 150 Gy and the 100 Gy populations in the M4 generation. In the M5, progenies of a superior plant with 23.6% oil content were homozygous for this characteristics, while progenies of a superior plant with 24.1% oil content were segregating. Year can cause +-2.0-2.5% differences in the oil content of the seeds. Oil content had a moderate negative correlation with 1000-seed weight in both of the above mentioned generations .Seed samples with the highest oil content were analysed for fatty acid composition using gas-liquid chromatography. Their linoleic acid content ranged from 51.8 to 55.0%. Unfortunately, in M5 the linolenic acid content was higher than in M4, varying between 7.9% and 9.3%. The 200 Gy

  8. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins.

    Science.gov (United States)

    Feng, Shengbao; Saw, Chin Lee; Lee, Yuan Kun; Huang, Dejian

    2008-11-12

    Black soybeans [Glycine max (L.) Merrill] were germinated under fungal stress with food grade R. oligosporus for 3 days and were homogenized and fermented with lactic acid bacteria (LAB) to produce soy yogurt. Fungal stress led to the generation of oxylipins [oxooctadecadienoic acids (KODES) isomers and their respective glyceryl esters] and glyceollins--a type of phytoalexins unique to soybeans. In soy yogurt, the concentrations of total KODES and total glyceollins were 0.678 mg/g (dry matter) and 0.953 mg/g, respectively. The concentrations of other isoflavones (mainly genistein and daidzein and their derivatives) in soy yogurt remained largely unchanged after the processes compared with the control soy yogurt. Germination of black soybean under fungal stress for 3 days was sufficient to reduce stachyose and raffinose (which cause flatulence) by 92 and 80%, respectively. With a pH value of 4.42, a lactic acid content of 0.262%, and a maximum viable cell count of 2.1 x 10 (8) CFU/mL in the final soy yogurt, soy milk from germinated soybeans under fungal stress was concluded to be a suitable medium for yogurt-making. The resulting soy yogurt had significantly altered micronutrient profiles with significantly reduced oligosaccharides and enriched glyceollins.

  9. Effect of foliar treatments on distribution of 14C-glyphosate in Convolvulus arvensis L

    International Nuclear Information System (INIS)

    Lauridson, T.C.

    1986-01-01

    Field bindweed is a perennial weed which produces shoots from buds on its roots. Herbicides, such as glyphosate [N-(phosphonomethyl)glycine] used for control of field bindweed usually do not kill all shoot buds on the roots, thus field bindweed often reinfests areas within 3 to 6 weeks of treatment. This dissertation deals with the development of a technique to change glyphosate distribution in field bindweed roots and could result in less shoot regrowth after glyphosate application. In field studies eight plant growth regulators were applied in September, 3 days before 2.24 kg/ha of 2.4-D[(2,4-dichlorophenoxy) acetic acid] or 1.68 kg/ha of glyphosate. Eight months later, regrowth of shoots was least where glyphosate was applied at 0.028 kg/ha as a pretreatment, followed by a standard rate of 1.68 kg/ha. In subsequent greenhouse studies, typical patterns of shoot growth and 14 C-glyphosate distribution in isolated root sections taken from 15-week-old intact plants were determined. In subsequent growth chamber studies, plants were decapitated to observe the effect of shoot apical dominance on 14 C-glyphosate translocation. After 14 C-glyphosate was applied, intact plants had about twice as much 14 C in distal root sections as in proximal or middle root sections. Decapitated plants had more 14 C in proximal and middle root sections than in distal sections, and about twice as much 14 C was translocated to roots of decapitated plants than intact plants. Eight concentrations of 2,4,-D or glyphosate from 1 to 5000 ppm were applied in logarithmic series to 6-week old plants

  10. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    DEFF Research Database (Denmark)

    Li, Ying-hui; Zhao, Shan-cen; Ma, Jian-xin

    2013-01-01

    and genetic improvement were identified.CONCLUSIONS:Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes......BACKGROUND:Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re...

  11. Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD

    International Nuclear Information System (INIS)

    Atak, Cimen; Alikamanoglu, Sema; Acik, Leyla; Canbolat, Yasemin

    2004-01-01

    The aim of our study was to induce with radiation of atrazine resistant and tolerated mutants in Coles, Amsoy-71 and 1937 soybean varieties. Atrazine that is photosynthetic inhibitor is the most important herbicide of S-triazin group, and shows toxic effect on soybean plant. For the improvement of the atrazine resistant plants with mutation breeding, the seeds belonging to the three varieties were irradiated with 200 Gy of gamma radiation dose. The irradiated seeds were sown in the field and at the end of harvesting season, every pod at node situated on the main stem was picked up separately and M 2 generations were obtained. At the plants, which were obtained from M 2 generation, chlorophyll mutants were determined and atrazine selection was made. The percentage of chlorophyll mutants for Amsoy-71, Coles and 1937 soybean varieties were found as 1.07, 1.48 and 1.32, respectively. At the end of atrazine selection, the percentages of atrazine resistant plants for Amsoy-71, Coles and 1937 soybean varieties were 0.80, 0.60 and 0.53, respectively. The percentages of atrazine tolerated plants were 1.07, 1.18 and 1.05, respectively as well. In our research; the differences among the mutants replying to atrazine in various concentrations were examined by using RAPD procedure as the molecular marker techniques in comparison with polymorphism. In the study done by using 14 primers; according to the amplification results, the differences between atrazine resistant plants were shown

  12. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    Science.gov (United States)

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-11-23

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P bioremediation of glyphosate-contaminated soils.

  13. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  14. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.

    Science.gov (United States)

    Van, Kyujung; McHale, Leah K

    2017-06-01

    Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.

  15. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  16. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  17. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars.

    Science.gov (United States)

    Hussain, Reem M; Ali, Mohammed; Feng, Xing; Li, Xia

    2017-02-28

    The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such

  18. A model based on spectrofluorimetry to study the interaction between glyphosate and serum albumin of Salminus brasiliensis

    Science.gov (United States)

    Escobar, Marta Araujo Cyrino; Cortez, Celia Martins; Silva, Dilson; Neto, Jayme da Cunha Bastos

    2017-11-01

    The aim of this work is to initiate an investigation on the albumin of Salminus brasiliensis (gold fish) as a biomarker of environmental actions of glyphosate. We started using a mathematical-computational model based on spectrofluorimetric measurements to study the interaction of glyphosate with gold fish albumin and human serum albumin. Salminus brasiliensis is a migratory freshwater fish species found in southern and central-western Brazil, mainly in the Prata river basin, where most of soybean plantations are set. Glyphosate is a very used herbicide in this type of crop. Differently from the organophosphorate methyl parathion, glyphosate does not form complex with HSA, and the quenching constants estimated for its binding with gold fish albumin at 20 °C and 25 °C is 1.3(± 0.3) × 104 / M e 2.5 (± 0.3) × 104 / M, respectively.

  19. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress

    OpenAIRE

    Bilal, Saqib; Khan, Abdul L.; Shahzad, Raheem; Asaf, Sajjad; Kang, Sang-Mo; Lee, In-Jung

    2017-01-01

    This study investigated the Ni-removal efficiency of phytohormone-producing endophytic fungi Penicillium janthinellum, Paecilomyces formosus, Exophiala sp., and Preussia sp. Among four different endophytes, P. formosus LHL10 was able to tolerate up to 1 mM Ni in contaminated media as compared to copper and cadmium. P. formosus LHL10 was further assessed for its potential to enhance the phytoremediation of Glycine max (soybean) in response to dose-dependent increases in soil Ni (0.5, 1.0, and ...

  20. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    Science.gov (United States)

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Makarla, Udayakumar

    2017-07-01

    In recent years, concerns about the use of glyphosate-resistant crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate-detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1- or OsAKRI-expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. GmSALT3, which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl– Exclusion prior to Na+ Exclusion but does not Improve Early Vigour under Salinity

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2016-09-01

    Full Text Available Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3 has the potential to improve soybean yields in salinized conditions. To evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions, three sets of near isogenic lines (NILs, with genetic similarity 95.6-99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties, 85-140 (salt-sensitive, S and Tiefeng 8 (salt-tolerant, T by using marker-assisted selection. Each NIL; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigour under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl– in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl– than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl– accumulation in soybean, and contributes to improved soybean yield through maintaining a

  2. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean

    Directory of Open Access Journals (Sweden)

    Peipei Wei

    2016-07-01

    Full Text Available The family of chloride channel proteins that mediate Cl- transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl- homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl-, on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl-/H+ antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl- accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl- in their roots and transferred less Cl- to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl, enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl- stress.

  3. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina.

    Science.gov (United States)

    Okada, Elena; Pérez, Débora; De Gerónimo, Eduardo; Aparicio, Virginia; Massone, Héctor; Costa, José Luis

    2018-05-01

    We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

  4. Micromorfologia foliar na análise da fitotoxidez por glyphosate em Eucalyptus grandis Leaf micromorphology in the analysis of glyphosate toxicity in Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    L.D. Tuffi Santos

    2009-01-01

    Full Text Available Foram avaliados os efeitos da deriva de formulações comerciais de glyphosate sobre a superfície foliar e o crescimento de clones de eucalipto. Mudas de seis clones foram submetidas a 129,6 g ha-1 de glyphosate das formulações comerciais Scout®, Roundup NA®, Roundup transorb® e Zapp QI®. Entre os clones não foram identificadas diferenças quanto à tolerância ao glyphosate. Plantas expostas à deriva simulada de Roundup transorb® e Zapp QI® apresentaram, respectivamente, a maior e menor porcentagem de intoxicação. Observou-se menor massa seca em plantas expostas ao glyphosate, independentemente da formulação, e menor altura naquelas expostas ao Scout® e ao Roundup transorb®. As características quantitativas da superfície foliar não foram afetadas pelo glyphosate. As alterações micromorfológicas ocorreram na ausência de danos visíveis e foram observadas em ambas as faces da epiderme, em todos os clones avaliados. Danos como erosão e aspecto amorfo das ceras epicuticulares e infestação por hifas fúngicas ocorreram, independentemente da formulação utilizada. A avaliação anatômica da superfície foliar foi relevante para descrição e interpretação dos danos causados pelo glyphosate. Os dados de crescimento e de intoxicação indicam o Zapp QI® como a formulação de menor risco para a cultura do eucalipto quanto aos efeitos indesejáveis da deriva.The effects of commercial glyphosate drift on the leaf surface and growth of eucalypt clones were evaluated. Seedlings of six clones were submitted to 129.6 g ha-1 sub-rate of commercial glyphosate formulations Scout®, Roundup NA®, Roundup transorb® and Zapp QI®. No differences in tolerance to glyphosate were observed among the clones. Plants exposed to simulated drift of Roundup transorb® and Zapp QI® presented the highest and lowest intoxication percentages, respectively. Plants exposed to glyphosate reduced dry biomass, regardless of the formulation, and also

  5. Occurrence of glyphosate and AMPA residues in soy-based infant formula sold in Brazil.

    Science.gov (United States)

    Rodrigues, Nadia Regina; de Souza, Ana Paula Ferreira

    2018-04-01

    Glyphosate is an herbicide widely used in the world, being applied in several crops, among them soybeans. Recently, glyphosate and its metabolite aminomethylphosphonic acid (AMPA) have been identified as possible contributors to the emergence of various diseases such as autism, Parkinson's and Alzheimer's diseases, as well as cancer. The child population-consuming cereal-based foods is the most exposed to the effects of pesticides because of their developmental phase and they have a higher food intake per kilogram of body weight than adults. The presence of glyphosate and AMPA residues in soy-based infant formulas was evaluated during the years 2012-2017, totalising 105 analyses carried out on 10 commercial brands from different batches. Glyphosate and AMPA were determined by liquid chromatography with fluorescence detection after derivatisation reaction. The method was validated and showed accuracy and precision with a limit of quantification (LOQ) of 0.02 mg kg -1 . Among those samples that contained levels above the LOQ, the variation of glyphosate residues was from 0.03 mg kg -1 to 1.08 mg kg -1 and for AMPA residues was from 0.02 mg kg -1 to 0.17 mg kg -1 . This is the first scientific communication about glyphosate and AMPA contamination in soy-based infant formula in Brazil, The study was conducted under good laboratory practice (GLP) and supported by good scientific practice.

  6. Glyphosate em mistura com herbicidas alternativos para o manejo de plantas daninhas Glyphosate combined with alternative herbicides for vegetation management

    Directory of Open Access Journals (Sweden)

    P.A. Monquero

    2001-12-01

    Full Text Available O uso intensivo de glyphosate como herbicida não-seletivo tem selecionado espécies de plantas daninhas tolerantes. Dessa forma, é importante que sejam estudadas misturas de tanque com herbicidas de mecanismos de ação alternativos e que apresentem efeitos sinergísticos ou aditivos. Por essa razão, foi instalado um experimento inteiramente casualizado, composto por 13 tratamentos e 4 repetições, em casa de vegetação da Universidade de São Paulo - ESALQ/USP, Piracicaba-SP, com as plantas daninhas Richardia brasiliensis, Commelina benghalensis, Amaranthus hybridus, Galinsoga parviflora e Ipomoea grandifolia em misturas de tanque dos herbicidas chlorimuron-ethyl, sulfentrazone, carfentrazone, bentazon ou flumioxazin com glyphosate. As interações foram aditivas para as plantas daninhas I. grandifolia e C. benghalensis, e os herbicidas flumioxazin, sulfentrazone e carfentrazone aplicados isoladamente e em mistura com glyphosate foram os que proporcionaram os melhores níveis de controle. A interação de glyphosate com sulfentrazone foi antagônica em R. brasiliensis; a mistura de glyphosate com os demais herbicidas estudados foi aditiva, sendo os tratamentos com mistura de glyphosate e chlorimuron-ethyl ou flumioxazin os mais eficazes. Em A. hybridus, os tratamentos que apresentaram melhores níveis de controle foram o glyphosate e carfentrazone, aplicados isoladamente, e a mistura de glyphosate com flumioxazin, sulfentrazone, chlorimuron-ethyl e bentazon, sendo estes interações aditivas. No caso de G. parviflora, os tratamentos com flumioxazin e sulfentrazone apresentaram controle total, o mesmo acontecendo com as misturas de glyphosate com carfentrazone, flumioxazin, sulfentrazone, chlorimuron-ethyl ou bentazon.The intensive use of glyphosate as a non-selective herbicide for weed vegetation management has selected some tolerant weed species. Thus, it is important to study the synergistic or antagonic or additive effects of tank

  7. Identification of Alternaria alternata Mycotoxins by LC-SPE-NMR and Their Cytotoxic Effects to Soybean (Glycine max Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Edson Rodrigues-Filho

    2013-02-01

    Full Text Available This present work describes the application of liquid chromatograpy-solid phase extraction-nuclear magnetic resonance spectroscopy to analyse Alternaria alternata crude extracts. Altenusin (1, alternariol (2, 3'-hydroxyalternariol monomethyl ether (3, and alternariol monomethyl ether (4, were separated and identified. High-resolution mass spectrometry confirmed the proposed structures. The cytotoxic effects of these compounds towards plants were determined using soybean (Glycine max cell cultures as a model. EC50 values which range from 0.11 (±0.02 to 4.69 (±0.47 μM showed the high cytotoxicity of these compounds.

  8. The Endosymbiont Arsenophonus Is Widespread in Soybean Aphid, Aphis glycines, but Does Not Provide Protection from Parasitoids or a Fungal Pathogen

    Science.gov (United States)

    Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.

    2013-01-01

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027

  9. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    Science.gov (United States)

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  10. Gamma radiation effects on crude oil yield of some soybean seeds ...

    African Journals Online (AJOL)

    Abstract. Purpose: To investigate the crude oil yield of eight different varieties of soybean (Glycine max L.) seeds ... the health advantages of soybeans in both in vivo and in vitro experiments [2]. Therefore, plant breeding has gained importance especially soybean plants. ..... Ionizing radiation might affect the quality of oils.

  11. Disposition and metabolism of glyphosate in the Sprague Dawley rat following oral administration

    International Nuclear Information System (INIS)

    Brewster, D.W.; Warren, J.A.; Hopkins, W.E.

    1991-01-01

    Five groups of male SD rats were administered 14 C-labelled glyphosate, (N-[(phosphonomethyl)glycine]) by gavage at a dose level of 10 mg/kg. Animals were killed 2, 6.3, 28, 96 and 168 hours after dosing and the amount of glyphosate-derived material in various organs and excreta were determined. In addition, the metabolic profile in tissues containing > 1% of the administered dose was evaluated. Approximately 93% of the body burden 2 hours after administration was associated with the GI contents and small intestinal tissue. The total body burden 7 days after administration was ∼1% of the dose. Only the kidneys, small intestine, colon, bone, GI contents, residual carcass contained > 1% of the dose 6 hours after administration and the metabolic profiles of these tissues indicated that ∼100% of the body burden was present as unmetabolized parent material. Glyphosate was rapidly eliminated from these tissues with halflives ranging from 20 to 90 hours. A minor metabolite comprising < 0.1% of the dose was detected in the GI contents and colon tissue of 3 animals. Less than 40% of the administered dose was absorbed from the gut and glyphosate was rapidly eliminated from the body with urine and feces being equally important routes of elimination. The whole body halflife was approximately 52 hours. The results from this study indicate that no toxic metabolites of glyphosate were produced, as there was little evidence of metabolism, and essentially 100% of the body burden was parent glyphosate with no significant persistence of accumulated material

  12. Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates.

    Science.gov (United States)

    Domier, L L; Latorre, I J; Steinlage, T A; McCoppin, N; Hartman, G L

    2003-10-01

    The variability of North American and Asian strains and isolates of Soybean mosaic virus was investigated. First, polymerase chain reaction (PCR) products representing the coat protein (CP)-coding regions of 38 SMVs were analyzed for restriction fragment length polymorphisms (RFLP). Second, the nucleotide and predicted amino acid sequence variability of the P1-coding region of 18 SMVs and the helper component/protease (HC/Pro) and CP-coding regions of 25 SMVs were assessed. The CP nucleotide and predicted amino acid sequences were the most similar and predicted phylogenetic relationships similar to those obtained from RFLP analysis. Neither RFLP nor sequence analyses of the CP-coding regions grouped the SMVs by geographical origin. The P1 and HC/Pro sequences were more variable and separated the North American and Asian SMV isolates into two groups similar to previously reported differences in pathogenic diversity of the two sets of SMV isolates. The P1 region was the most informative of the three regions analyzed. To assess the biological relevance of the sequence differences in the HC/Pro and CP coding regions, the transmissibility of 14 SMV isolates by Aphis glycines was tested. All field isolates of SMV were transmitted efficiently by A. glycines, but the laboratory isolates analyzed were transmitted poorly. The amino acid sequences from most, but not all, of the poorly transmitted isolates contained mutations in the aphid transmission-associated DAG and/or KLSC amino acid sequence motifs of CP and HC/Pro, respectively.

  13. Manejo de capim pé-de-galinha em lavouras de soja transgênica resistente ao glifosato Management of goose grass on transgenic soybean, resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    André da Rosa Ulguim

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar a resistência de capim pé-de-galinha (Eleusine indica ao glifosato, em lavouras de soja transgênica; avaliar o efeito de aplicações de glifosato em diferentes estádios de desenvolvimento; identificar práticas agronômicas associadas à seleção de biótipos resistentes; e avaliar a eficiência dos herbicidas cletodim, fluazifope-P-butílico, clomazona, glufosinato de amônio e glifosato nas plantas resistentes. Plantas escapes ao tratamento com glifosato foram coletadas em 24 propriedades, no Rio Grande do Sul. As plantas foram cultivadas em casa de vegetação, tendo-se avaliado a sua resistência ao glifosato. Os acessos resistentes foram selecionados e avaliados quanto ao efeito da aplicação do glifosato em diferentes estádios de crescimento e quanto à sensibilidade aos herbicidas. Foi aplicado um questionário aos produtores para identificação das práticas agronômicas associadas às falhas no controle. O controle de E. indica pelo glifosato é mais efetivo com a aplicação em estádios iniciais de desenvolvimento. Práticas agronômicas, como uso contínuo de baixas doses do herbicida, aplicação em estádios de desenvolvimento avançados das plantas daninhas (mais de um afilho e a ausência de rotação de culturas foram relacionadas às falhas de controle observadas. Os herbicidas cletodim, fluazifope-P-butílico e glufosinato de amônio são alternativas eficientes para o controle de E. indica.The objective of this work was to evaluate the resistance of goose grass (Eleusine indica to glyphosate application in transgenic soybean crops; evaluate the effect of glyphosate applications in different growth stages; identify the main agronomic practices associated with the selection of resistant biotypes; and evaluate the effect of the herbicides clethodim, fluazifop-p-butyl, clomazone, glufosinate ammonium, and glyphosate on resistant plants. Plants that survived glyphosate application

  14. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  15. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max–potato (Solanum tuberosum cropping system

    Directory of Open Access Journals (Sweden)

    Sushmita Munda

    2018-04-01

    Full Text Available Present study was conducted to assess role of phosphorus (P fertilization on economics, energy efficiency, P use indices and soil P balance in soybean [Glycine max (L. Merril]–potato (Solanum tuberosum L. cropping system during 2008–09 and 2009–10. Treatments in soybean as main plots consisted of two sources and two levels of phosphorus with or without biofertilizers [phosphorus solubilizing bacteria, PSB and arbuscular mycorrhizae, AM]. Three levels of P were applied to potato as subplots. System productivity was calculated in terms of soybean equivalent yield and found to be better with biofertilizers treated plots. When applied in combination with biofertilizers, 50% recommended dose of P (RDP as diammonium phosphate (DAP recorded B:C ratio at par with 100% RDP. Direct application of 100% RDP to potato resulted in significantly higher returns, enhancing the net returns. Application of biofertilizers alone increased the energy use efficiency over no biofertilizer application. Irrespective of source (DAP or rock phosphate treatments with biofertilizers had improved P use indices and apparent soil P balance even at 50% RDP. This indicates the role of biofertilizers in P solubilization and making it available to plant. Biofertilizers application can help cutting down the fertilizer P application in soybean–potato cropping system without any considerable reduction in yield and economic returns. Keywords: AM, B:C ratio, P use indices, PSB, Rock phosphate, Agronomic use efficiency

  16. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    Science.gov (United States)

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. EFFECT OF ALUMINUM ON PLANT GROWTH, PHOSPORUS AND CALCIUM UPTAKE OF TROPICAL RICE (Oryza sativa, MAIZE (Zea mays, AND SOYBEAN (Glycine max

    Directory of Open Access Journals (Sweden)

    D. Nursyamsi

    2018-01-01

    Full Text Available Aluminum toxicity is the most limiting factor to plant growth on acid soils. Structural and functional damages in the root system by Al decrease nutrient uptake and lead to reduce plant growth and mineral deficiency in shoot. Greenhouse experiment was conducted to study the effect of Al on plant growth, and P and Ca uptake of rice, maize, and soybean. The plants were grown in hydroponic solution added with 0, 5, 10, and 30 ppm Al, at pH 4.0. The results showed that relative growth of shoots and roots of upland rice, lowland rice, maize, and soybean decreased with an increase of Al level. However, sometimes the low Al level (5 ppm stimulated shoot and root growth of some varieties in these species. According to total AlRG30 values, which is Al concentration in solution when relative growth decreased to 50%, Al tolerance of species was in order of barley < maize < soybean < lowland rice < upland rice. For maize, Al tolerance was in the order of Arjuna < Kalingga < P 3540 < SA 5 < SA 4 < PM 95 A < SA 3 < Antasena; for soybean was Wilis < INPS < Galunggung < Kerinci < Kitamusume; for lowland rice was RD 23 < Kapuas < Cisadane < KDML 105 < IR 66 < RD 13, and for upland rice was Dodokan < JAC165 < Cirata < Orizyca sabana 6 < Danau Tempe < Laut Tawar. Based on the rank of Al tolerance, rice was the useful crop to be planted in acid soils. Antasena (maize, Kitamusume ( soybean , RD 13 (lowland rice, and Laut Tawar (upland rice were also recommended for acid soils. P and Ca concentration in shoots and roots commonly decreased with an increase of Al level. However, the low Al level stimulated absorption of P and Ca concentrations in shoots and roots.

  18. Sugars and Desiccation Tolerance in Seeds 1

    Science.gov (United States)

    Koster, Karen L.; Leopold, A. Carl

    1988-01-01

    Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing. PMID:16666392

  19. RELATIVE COMPETITIVENESS OF GOOSEGRASS BIOTYPES AND SOYBEAN CROPS

    Directory of Open Access Journals (Sweden)

    JADER JOB FRANCO

    2017-01-01

    Full Text Available he goosegrass ( Eleusine indica (L. Gaertn is an annual plant that has a low - level resistance to glyphosate (LLRG, resulting in control failure in genetically modified soybean crops for resistance to this herbicide. Alleles related to resistance may cause changes in the plant biotype, such as inferior competitive ability. Thus, the objective of this work was to evaluated the competitive ability of soybean crops and susceptible and resistant (LLRG goosegrass biotypes. Replacement series experiments were conducted with soybean crops and goosegrass biotypes. The ratios of soybean to susceptible or resistant (LLRG goosegrass plants were 100:0, 75:25, 50:50, 25:75 and 0:100, with a total population of 481 plants m - 2 . The leaf area, plant height and shoot dry weight were evaluated at 40 days after emergence of the soybean crops and weeds. The soybean crop had superior competitive ability to the susceptible and resistant (LLRG goosegrass biotypes. The soybean crop showed similar competitive ability in both competitions, either with the susceptible or resistant (LLRG goosegrass biotypes. The intraspecific competition was more harmful to the soybean crop, while the interspecific competition caused greater damage to the goosegrass biotypes competing with the soybean crop

  20. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhou

    Full Text Available Soybean cyst nematode (SCN is the most damaging soybean pest worldwide. To improve soybean resistance to SCN, we employed a soybean seed-coating strategy through combination of three rhizobacterial strains, including Bacillus simple, B. megaterium and Sinarhizobium fredii at various ratios. We found seed coating by such rhizobacterial strains at a ratio of 3:1:1 (thereafter called SN101 produced the highest germination rate and the mortality of J2 of nematodes. Then, the role of soybean seed coating by SN101 in nematode control was evaluated under both greenhouse and two field conditions in Northeast China in 2013 and 2014. Our results showed that SN101 treatment greatly reduced SCN reproduction and significantly promoted plant growth and yield production in both greenhouse and field trials, suggesting that SN101 is a promising seed-coating agent that may be used as an alternative bio-nematicide for controlling SCN in soybean fields. Our findings also demonstrate that combination of multiple rhizobacterial strains needs to be considered in the seed coating for better management of plant nematodes.

  1. What do farmers' weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields.

    Science.gov (United States)

    Wechsler, Seth J; McFadden, Jonathan R; Smith, David J

    2018-05-01

    The first case of glyphosate-resistant weeds in the United States was documented in 1998, 2 years after the commercialization of genetically engineered herbicide-resistant (HR) corn and soybeans. Currently, over 15 glyphosate-resistant weed species affect US crop production areas. These weeds have the potential to reduce yields, increase costs, and lower farm profitability. The objective of our study is to develop a behavioral model of farmers' weed management decisions and use it to analyze weed resistance to glyphosate in US corn farms. On average, we find that weed control increased US corn yields by 3700 kg ha -1 (worth approximately $US 255 ha -1 ) in 2005 and 3500 kg ha -1 (worth approximately $US 575 ha -1 ) in 2010. If glyphosate resistant weeds were absent, glyphosate killed approximately 99% of weeds, on average, when applied at the label rate in HR production systems. Average control was dramatically lower in states where glyphosate resistance was widespread. We find that glyphosate resistance had a significant impact on weed control costs and corn yields of US farmers in 2005 and 2010. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Yield and Yield Attributes Responses of Soybean (Glycine max L. Merrill to Elevated CO2 and Arbuscular Mycorrhizal Fungi Inoculation in the Humid Transitory Rainforest

    Directory of Open Access Journals (Sweden)

    Nurudeen ADEYEMI

    2017-06-01

    Full Text Available Variations in yield components and grain yield of arbuscular mycorrhizal fungi (AMF inoculated soybean varieties (Glycine max L. Merrill grown in CO2 enriched environment in the humid rainforest were tested.  A screen house trial was established with soybean varieties (‘TGx 1448-2E’, ‘TGx 1440-1E’ and ‘TGx 1740-2F’, AMF inoculation (with and without and CO2 enrichment (350±50 ppm and 550±50 ppm in open top chamber, arranged in completely randomised design, replicated three times. A field trial was also conducted; the treatments were arranged in a split-split plot configuration fitted into randomised complete block design. In the main plot the variant was CO2 enrichment, the sub-plot consisted of AMF inoculation (with and without, while the sub-sub plot consisted of soybean varieties, replicated three times. Both trials had significantly higher grain yield at elevated CO2 than ambient. This could be attributed to improved yield attributes, more spore count and root colonisation. In both trials, inoculated soybean had significantly higher dry pod weight than un-inoculated, which could suggest the increased grain yield observed on the field. AMF inoculated soybean varieties outperformed un-inoculated in both CO2 enriched and ambient concentrations. AMF inoculated soybean variety ‘TGx 1740-2F’ is most preferable in CO2 enriched environment, while variety ‘TGx 1448-2E’ had the most stable grain yield in all growth environments.

  3. Genetic improvement of soybean through induced mutagenesis

    International Nuclear Information System (INIS)

    Manjaya, J.G.; Nandanwar, R.S.; Thengane, R.J.; Muthiah, A.R.

    2009-01-01

    Soybean (Glycine max (L.) Merril) is one of the important oilseed crops of India. The country produces more than 9.00 million tonnes of soybean per annum and has acquired first place amongst oilseed crops grown in India. Narrow genetic base of cultivated varieties in soybean is of global concern. Efficient mutant production systems, through physical or chemical mutagenesis, have been well established in soybean. A vast amount of genetic variability, of both quantitative and qualitative traits, has been generated through experimental mutagenesis. Two soybean varieties TAMS-38 and TAMS 98-21 have been developed and released for commercial cultivation by Bhabha Atomic Research Centre (BARC). In this paper the role of mutation breeding in soybean improvement has been discussed. (author)

  4. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  5. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  6. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean.

    Science.gov (United States)

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    2015-07-01

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.

  7. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  8. Effect of soybean derivatives (glycine max) on thyroid of rats

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1977-01-01

    The effect of a Brazilian variety soybean and their comercial products on thyroid gland is studied. Soybean derivatives are tested in rats through acute experiments of 3 to 24 hours and semichronic experiments of 16 to 29 days. The autoclaved extract administered after 6 to 24 hours decreases the percentage of iodine ( 131 I) uptake. Semichronic experiments show that the factor found in soybean provokes both an increase or a reduction in percentage of iodine ( 131 I) uptake, depending ou the oeriod of action [pt

  9. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  10. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    Directory of Open Access Journals (Sweden)

    Ri-He Peng

    Full Text Available The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19 is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli, while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P and phosphoenolpyruvate (PEP. The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  11. Resposta de varjão (Parkia multijuga a subdoses de glyphosate Response of varjão (Parkia multijuga seedlings to reduced glyphosate rates

    Directory of Open Access Journals (Sweden)

    O.M. Yamashita

    2006-09-01

    Full Text Available O consumo de madeira no Brasil e no mundo apresenta demanda crescente. Em confronto com a pressão ambientalista de manutenção das florestas nativas, há necessidade de se estabelecerem áreas de reflorestamento para suprir o aumento da demanda de madeira, com a utilização de formas de manejo e tratos culturais que permitam o pleno crescimento das essências florestais. Um dos principais problemas do manejo de reflorestamento é a interferência das plantas daninhas após o plantio das mudas no campo, sendo o uso de herbicidas a principal forma de manejo. Este trabalho teve o objetivo de avaliar a eficiência de doses crescentes de glyphosate em mudas de varjão em condições de ambiente protegido. Foram avaliadas as doses de 0, 90, 180, 360 e 720 g ha-1 de glyphosate em plantas com quatro meses de idade, observando a intoxicação das plantas, altura, diâmetro do caule e número de folhas. O varjão, nas condições do experimento, apresentou tolerância e recuperação ao glyphosate até a dose de 360 g ha-1. Doses superiores a esta retardaram o crescimento da planta. O prejuízo causado pela deriva de glyphosate nessas plantas foi diretamente proporcional ao aumento da dose. Os sintomas evoluíram para queda de folhas, comprometendo o crescimento das plantas.Wood consumption has significantly increased in Brazil and worldwide.The environmental pressure to preserve native forest led to the need to establish reforestation areas to meet the increasing wood demand by applying cultural practices and management allowing a total growth of forest trees. One of the main problems in reforestation management is weed competition after seedling planting, with herbicide use being the main form of management. The objective of this work was to evaluate the phytotoxic effect of increasing rates of glyphosate on Varjão seedlings, under greenhouse conditions. Concentrations of 90, 180, 360 and 720 g ha-1 of glyphosate were evaluated in four

  12. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes.

    Directory of Open Access Journals (Sweden)

    Tiffany Langewisch

    Full Text Available In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L. Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species.

  13. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  14. Fluxo gênico em soja geneticamente modificada e método para sua detecção Gene flow in genetically modified soybean and method for its detection

    Directory of Open Access Journals (Sweden)

    Welison Andrade Pereira

    2007-07-01

    Full Text Available O objetivo deste trabalho foi avaliar métodos para detecção de sementes de soja tolerante ao glifosato e o fluxo gênico de uma cultivar transgênica para uma convencional, em Florestal e Viçosa, MG. Para adequar método de detecção, foi conduzido experimento comparativo entre cinco bioensaios, dos quais se destacou o teste de germinação em substrato umedecido com solução do glifosato. O experimento de fluxo gênico foi instalado em campo, no esquema de quadrados concêntricos. No centro, foi plantada a cultivar tolerante ao glifosato (fonte de pólen. À sua volta, foi semeada a cultivar sensível (receptora do pólen. No estádio R8, foram colhidas sementes das laterais dos quadrados, em distâncias variadas da fonte de pólen: 0,5, 1, 2, 4 e 8 m. Amostras de 900 sementes, por fileira, foram avaliadas pelo teste de germinação em substrato umedecido com solução de glifosato a 0,06%. Plântulas tolerantes ao glifosato indicaram fecundação cruzada. As maiores porcentagens de hibridação - 1,27% em Florestal e 0,25% em Viçosa - ocorreram a 0,5 m de distância, entre fonte e receptor de pólen, e essas taxas aproximaram-se de zero às distâncias de 2,26 e 1,16 m, para Florestal e Viçosa, respectivamente.The objective of this work was to assess the methods for detection of glyphosate tolerance soybean seeds and the gene flow from a genetically modified soybean cultivar to a conventional one, in Viçosa and Florestal, MG, Brazil. In order to assess the method for detection, a comparative experiment was conduct among five bioassays, from which the germination test in moistened substrate with glyphosate solution was outstanding. The experiment of gene flow was installed in field, in the concentric squares design. In the center, the glyphosate-tolerant cultivar (pollen source was planted. Around it, the sensitive cultivar (pollen receptor was sowed. In the stage R8, seeds of lateral of the squares were harvested, in various distances

  15. Quantitative nuclear magnetic resonance spectrometry II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by 1H and 31P QNMR spectrometry

    International Nuclear Information System (INIS)

    Saed Al Deen, Tareq; Brynn Hibbert, D.; Hook, James M.; Wells, Robert J.

    2002-01-01

    The purities of the widely-used herbicide glyphosate (N-(phosphonomethyl)glycine), and the insecticide profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) were determined by 1 H and 31 P quantitative nuclear magnetic resonance (QNMR) spectrometry using an internal standard. QNMR does not need a standard reference of the same target analyte, in contrast to chromatographic methods, but only a compound containing the nucleus of interest. Sodium acetate and sodium phosphate of known purity were chosen as internal standards for 1 H NMR and 31 P NMR), respectively for the water soluble glyphosate and a single internal standard, trimethyl phosphate for both 1 H and 31 P NMR quantitative analysis of the organic soluble profenofos. These standards have NMR peaks that do not interfere with those of the analyte, they are chemically inert and are soluble in the deuterated solvent. The average purity of glyphosate obtained by 1 H NMR (97.07%, σ=0.68) agreed with that by 31 P NMR (96.53%, σ=0.90; ANOVA, P=0.074) for the five batches provided by the manufacturer according to the procedures for chemical registration in Australia. The standard deviations of seven independent analyses of a single batch by 1 H NMR and 31 P NMR were σ=0.24% and σ=0.33%, respectively, values which confirm the exceptional precision of the method. The purity of profenofos by 1 H NMR (94.63%, σ=0.14) also agreed with that by 31 P NMR (94.62%, σ=0.59; ANOVA, P=0.97). Uncertainty budgets for the measured purities of glyphosate and profenofos show that the uncertainty in the purity of the internal standard is a major contributor to the uncertainty of the result. NMR was also used to establish the impurity profile of both compounds, and quantify the impurities present

  16. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina.

    Science.gov (United States)

    Castro Berman, M; Marino, D J G; Quiroga, María Victoria; Zagarese, Horacio

    2018-06-01

    Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide used to kill weeds that compete with commercial crops. In Argentina, the use of glyphosate-based herbicides increased dramatically (up to ∼200,000 tons on 2012) since the introduction of glyphosate-resistant crops, such as transgenic soy and resistant corn, and the adoption of non-till practices in the 1990's. Sallow lakes within the Pampa region may be potentially impacted by continuous herbicide usage. We surveyed 52 shallow lakes from the Pampa region (Buenos Aires Province, Argentina) to assess the occurrence and concentrations of glyphosate and its main degradation product (AMPA). For comparison, we also sampled 24 shallow lakes from an area with no agricultural use of glyphosate (Northern Patagonia). Glyphosate and AMPA were analyzed by UPLC-MS/MS ESI (±) in lake water, suspended particulate matter (SPM), and sediment samples. Within the Pampa region, glyphosate residues were detected in >40% of samples. Glyphosate residues were detected more frequently in sediment and surface water than in SPM samples. The mean (maximum) concentrations of glyphosate were 2.11 (4.52) μg l -1 for surface water; 0.10 (0.13) μg l -1 for SPM and 10.47 (20.34) μg kg -1 for sediment samples, respectively. Whereas, mean (maximum) concentrations of AMPA were 0.84 and (0.90) μg l -1 for surface water; 0.07 (0.07) μg l -1 for SPM; and 22.53 (32.89) μg kg -1 for sediment samples. The herbicide was not detected in samples from the Patagonian region. To our knowledge, this is the first study reporting the occurrence and concentrations of the herbicide in freshwater lakes of Argentina. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Water use efficiency by coffee arabica after glyphosate application

    Directory of Open Access Journals (Sweden)

    Felipe Paolinelli de Carvalho

    2014-07-01

    Full Text Available Many coffee growers apply glyphosate in directed applications, but some phytotoxicity has been noted. It is believed some herbicides can exert a direct or indirect negative effect on photosynthesis by reducing the metabolic rate in a way that can affect the water use efficiency. The objective of this study was to investigate the variables related to water use among coffee cultivars subjected to the application of glyphosate and the effects of each dose. The experiment was conducted in a greenhouse using three varieties of coffee (Coffea arabica, Acaiá (MG-6851, Catucaí Amarelo (2SL and Topázio (MG-1190, and three doses of glyphosate (0.0, 115.2 and 460.8 g acid equivalent ha-1, in a factorial 3 x 3 design. At 15 days after application, a reduction in stomatal conductance was observed, and smaller transpiration rate and water use efficiency were found in the fourth leaf at 15 days after application. There was a decrease in the transpiration rate at 45 DAA, with the Acaiá cultivar showing reductions with 115.2 g ha-1. There was transitory reduction in water use efficiency with glyphosate application, but can affect the growth and production. The Acaiá cultivar showed the highest tolerance to glyphosate because the water use efficiency after herbicide application.

  18. Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae).

    Science.gov (United States)

    Herbert, John J; Horn, David J

    2008-10-01

    Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.

  19. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  20. Seletividade de herbicidas pós-emergentes aplicados na soja geneticamente modificada Selectivity of post-emergence herbicides applied on genetically modified soybeans

    Directory of Open Access Journals (Sweden)

    M.E.F. Neto

    2009-06-01

    pelo fato de o herbicida ser registrado para controle em pré-emergência e ter sido aplicado em pós-emergência. Nenhum dos tratamentos influenciou significativamente a produção de grãos da cultura da soja. A aplicação única ou a complementação com aplicação sequencial de glyphosate promoveram excelente controle de Commelina benghalensis e Ipomoea triloba.The experiment was carried out in a Roundup Ready® commercial soybean field in the Pontal do Paranapanema region in Euclides da Cunha Paulista-SP, located 20º 43' 11'' S and 50º 10' 20'' W, 270 m altitude. The experimental phase was carried out from December 2006 to April 2007, under no-tillage system. The soil classification is sandy clay loam Argisol. This work aimed to evaluate the efficiency of Roundup Transorb® glyphosate formulation selectivity associated with the herbicides diclosulam, cloransulam-methyl, flumioxazina and S-metolachlor under two spray modalities (single, with glyphosate associated to the herbicides and sequential, with only glyphosate in tropical Spiderwort (Commelina benghalensis and little bell (Ipomoea triloba management during soybean cultivation. The experiment was arranged in a randomized block design, with 12 treatments and 4 replications. Treatments were distributed in a factorial scheme + 2 controls (no control and clean field. The factorial scheme 2 x 5 comprises two herbicide sprays (single and sequential and five herbicides (glyphosate, glyphosate + diclosulam, glyphosate + cloransulam-methyl, glyphosate + flumioxazin and glyphosate + S-metolachlor. Under the conditions and time the herbicides were used as well as spray dosage, the results showed that glyphosate sprayed in a single dose or sequentially, in combination with diclosulan and cloransulam-methyl in the first spray did not cause phyto-intoxication in the soybean plants. The flumioxazin and S-metolachlor combination promoted delay in the growing plants as well as in the complete formation of the culture due

  1. Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran.

    Science.gov (United States)

    Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Tajbakhsh, Mahmood; Baharfar, Robabeh

    2017-04-01

    Glycine max (L.) Merrill (soybean) is a major leguminous crop, cultivated globally as well as in Iran. This study examines the chemical composition of soybean essential oil, and evaluates the antioxidant and antimicrobial activities of seeds on various plant pathogens that commonly cause irreparable damages to agricultural crops. The essential oil of soybean seeds was analyzed by gas chromatography coupled to mass spectrometry. Antimicrobial activity was tested against 14 microorganisms, including three gram-positive, five gram-negative bacteria, and six fungi, using disk diffusion method and the Minimum Inhibitory Concentration technique. The soybean seeds were also subjected to screening for possible antioxidant activity by using catalase, peroxidase, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Forty components were identified, representing 96.68% of the total oil. The major constituents of the oil were carvacrol (13.44%), (E,E)-2,4-decadienal (9.15%), p-allylanisole (5.65%), p-cymene (4.87%), and limonene (4.75%). The oil showed significant activity against Pseudomonas syringae subsp. syringae, Rathayibacter toxicus with MIC = 25 µg/mL, and Pyricularia oryzae with MIC = 12.5 µg/mL. In addition, the free radical scavenging capacity of the essential oil was determined with an IC 50 value of 162.35 µg/mL. Our results suggest that this plant may be a potential source of biocide, for economical and environmentally friendly disease control strategies. It may also be a good candidate for further biological and pharmacological investigations.

  2. Quantifying sublethal effects of glyphosate and Roundup® to Daphnia magna using a fluorescence based enzyme activity assay and video tracking

    DEFF Research Database (Denmark)

    Roslev, Peter; R. Hansen, Lone; Ørsted, Michael

    Glyphosate (N-(phosphonomethyl)glycine) is the active ingredient in a range of popular broad-spectrum, non-selective herbicide formulations. The toxicity of this herbicide to non-target aquatic organisms such as Daphnia magna is often evaluated using conventional toxicity assays that focus...... on endpoints such as immobility and mortality. In this study, we investigated sublethal effects of glyphosate and Roundup® to D. magna using video tracking for quantifying behavioral changes, and a novel fluorescence based assay for measuring in vivo hydrolytic enzyme activity (FLEA assay). Roundup® exposure...... resulted in concentration-dependent inhibition of alkaline phosphatase activity in D. magna. The inhibition of alkaline phosphatase by Roundup® was temperature-dependent with lowest inhibition at 14 °C and greater inhibition at 20 and 26 °C. Exposure of D. magna to sublethal concentrations of glyphosate...

  3. Comparison of herbicide regimes and the associated potential enviromental effects of glyphosate-resistant crops versus what they replace in Europe

    NARCIS (Netherlands)

    Kleter, G.A.; Harris, C.; Stephenson, G.R.; Unsworth, J.

    2008-01-01

    While cultivation of transgenic crops takes place in seven of the EU member states, this constitutes a relatively limited part of the total acreage planted to these crops worldwide. The only glyphosate-resistant (GR) crop grown commercially until recently has been soybean in Romania. In addition,

  4. Glyphosate

    NARCIS (Netherlands)

    A. Arcuri (Alessandra)

    2017-01-01

    markdownabstractGlyphosate is the rock star of pesticides, albeit a controversial one. With 6.1 billion kilograms applied globally in the last decade alone, it is the most widely used herbicide compound in the world. Glyphosate, is at the centre of an acrimonious controversy relating to whether the

  5. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-07-01

    Full Text Available The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the

  6. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  7. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata).

    Science.gov (United States)

    Xu, Yanggui; Li, Adela Jing; Li, Kaibin; Qin, Junhao; Li, Huashou

    2017-12-01

    This study tests the hypotheses that whether environmental relevance of glyphosate would help control spread of the invasive snail Pomacea canaliculata, or benefit its population growth worldwide. Our results showed that glyphosate induced acute toxicity to the snail only at high concentrations (96h LC50 at 175mg/L) unlikely to occur in the environment. Long-term exposures to glyphosate at sublethal levels (20 and 120mg/L) caused inhibition of food intake, limitation of growth performance and alterations in metabolic profiles of the snail. It is worth noting that glyphosate at 2mg/L benefited growth performance in P. canaliculata. Chronic exposures of glyphosate significantly enhanced overall metabolic rate and altered catabolism from protein to carbohydrate/lipid mode. Cellular responses in enzyme activities showed that the exposed snails could increase tolerance by their defense system against glyphosate-induced oxidative stress, and adjustment of metabolism to mitigate energy crisis. Our study displayed that sublethal concentrations of glyphosate might be helpful in control of the invasive species by food intake, growth performance and metabolic interruption; whether environmental relevance of glyphosate (≤2mg/L) benefits population growth of P. canaliculata is still inconclusive, which requires further field study. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Recent advances in glyphosate biodegradation.

    Science.gov (United States)

    Zhan, Hui; Feng, Yanmei; Fan, Xinghui; Chen, Shaohua

    2018-06-01

    Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.

  9. Evaluation of carcinogenic potential of the herbicide glyphosate, drawing on tumor incidence data from fourteen chronic/carcinogenicity rodent studies.

    Science.gov (United States)

    Greim, Helmut; Saltmiras, David; Mostert, Volker; Strupp, Christian

    2015-03-01

    Abstract Glyphosate, an herbicidal derivative of the amino acid glycine, was introduced to agriculture in the 1970s. Glyphosate targets and blocks a plant metabolic pathway not found in animals, the shikimate pathway, required for the synthesis of aromatic amino acids in plants. After almost forty years of commercial use, and multiple regulatory approvals including toxicology evaluations, literature reviews, and numerous human health risk assessments, the clear and consistent conclusions are that glyphosate is of low toxicological concern, and no concerns exist with respect to glyphosate use and cancer in humans. This manuscript discusses the basis for these conclusions. Most toxicological studies informing regulatory evaluations are of commercial interest and are proprietary in nature. Given the widespread attention to this molecule, the authors gained access to carcinogenicity data submitted to regulatory agencies and present overviews of each study, followed by a weight of evidence evaluation of tumor incidence data. Fourteen carcinogenicity studies (nine rat and five mouse) are evaluated for their individual reliability, and select neoplasms are identified for further evaluation across the data base. The original tumor incidence data from study reports are presented in the online data supplement. There was no evidence of a carcinogenic effect related to glyphosate treatment. The lack of a plausible mechanism, along with published epidemiology studies, which fail to demonstrate clear, statistically significant, unbiased and non-confounded associations between glyphosate and cancer of any single etiology, and a compelling weight of evidence, support the conclusion that glyphosate does not present concern with respect to carcinogenic potential in humans.

  10. Comparison of corn, grain sorghum, soybean, and sunflower under limited irrigation.

    Science.gov (United States)

    Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] constitute a large share of the annual total irrigated planted area in the central Great Plains. This study aimed to determine the effect of limited irrigation on grain yield, water use, and profitability of corn and soybean in comparison with ...

  11. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica).

    Science.gov (United States)

    Chen, Jingchao; Huang, Hongjuan; Zhang, Chaoxian; Wei, Shouhui; Huang, Zhaofeng; Chen, Jinyi; Wang, Xu

    2015-10-01

    Field-evolved resistance of goosegrass to glyphosate is due to double or single mutation in EPSPS , or amplification of EPSPS leads to increased transcription and protein levels. Glyphosate has been used widely in the south of China. The high selection pressure from glyphosate use has led to the evolution of resistance to glyphosate in weeds. We investigated the molecular mechanisms of three recently discovered glyphosate-resistant Eleusine indica populations (R1, R2 and R3). The results showed that R1 and R2 had double Thr102Ile and Pro106Ser mutation and a single mutation of Pro106Leu in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, respectively. Escherichia coli containing the mutated EPSPS genes was tolerant to glyphosate. EPSPS activity in R1 and R2 plants was higher than in the sensitive plants. There was no amino acid substitution in EPSPS gene in R3. However, expression of EPSPS in R3 plants was higher than in glyphosate-susceptible (S) population (13.8-fold) after glyphosate treatment. EPSPS enzyme activity in both R3 and S plants was inhibited by glyphosate, while shikimate accumulation in R3 was significantly lower than for the S population. Further analysis revealed that the genome of R3 contained 28.3-fold more copies of the EPSPS gene than that of susceptible population. EPSPS expression was positively correlated with copy number of EPSPS. In conclusion, mutation of the EPSPS gene and increased EPSPS expression are part of the molecular mechanisms of resistance to glyphosate in Eleusine indica.

  12. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement

    Science.gov (United States)

    The seed of soybean (Glycine max L. Merr) is a valuable source of high quality edible oil and protein. Despite dramatic breeding gains over the past 80 years, soybean seed oil continues to be oxidatively unstable. Until recently, the majority of soybean oil underwent partial chemical hydrogenation. ...

  13. The need for independent research on the health effects of glyphosate-based herbicides.

    Science.gov (United States)

    Landrigan, Philip J; Belpoggi, Fiorella

    2018-05-29

    Glyphosate, formulated as Roundup, is the world's most widely used herbicide. Glyphosate is used extensively on genetically modified (GM) food crops designed to tolerate the herbicide, and global use is increasing rapidly. Two recent reviews of glyphosate's health hazards report conflicting results. An independent review by the International Agency for Research on Cancer (IARC) found that glyphosate is a "probable human carcinogen". A review by the European Food Safety Agency (EFSA) found no evidence of carcinogenic hazard. These differing findings have produced regulatory uncertainty. Reflecting this regulatory uncertainty, the European Commission on November 27 2017, extended authorization for glyphosate for another 5 years, while the European Parliament opposed this decision and issued a call that pesticide approvals be based on peer-reviewed studies by independent scientists rather than on the current system that relies on proprietary industry studies. The Ramazzini Institute has initiated a pilot study of glyphosate's health hazards that will be followed by an integrated experimental research project. This evaluation will be independent of industry support and entirely sponsored by worldwide crowdfunding. The aim of the Ramazzini Institute project is to explore comprehensively the effects of exposures to glyphosate-based herbicides at current real-world levels on several toxicological endpoints, including carcinogenicity, long-term toxicity, neurotoxicity, endocrine disrupting effects, prenatal developmental toxicity, the microbiome and multi-generational effects.

  14. Interação de glyphosate com carfentrazone-ethyl Glyphosate - carfentrazone-ethyl interaction

    Directory of Open Access Journals (Sweden)

    R.C. Werlang

    2002-04-01

    Full Text Available Foi conduzido um experimento em condições controladas para determinar a interação do carfentrazone-ethyl em mistura no tanque com o herbicida glyphosate, no controle de seis espécies de plantas daninhas. Glyphosate aplicado isoladamente na dose de 720 g ha-1 foi eficaz no controle de Amaranthus hybridus (100%, Desmodium tortuosum (100%, Bidens pilosa (99%, Eleusine indica (96%, Digitaria horizontalis (100% e Commelina benghalensis (93% aos 21 DAA. Carfentrazone-ethyl aplicado isoladamente controlou eficazmente C. benghalensis. As misturas de glyphosate nas doses de 252 e 720 g ha-1 com carfentrazone-ethyl nas doses de 15 e 30 g ha¹ demonstraram efeito aditivo no controle de A. hybridus, D. tortuosum e Bidens pilosa, à exceção das misturas de glyphosate na dose de 252 g ha-1 com as doses de 15 e 30 g ha-1 de carfentrazone-ethyl, que proporcionam efeito sinergístico no controle de D. tortuosum. A adição das duas doses de carfentrazone-ethyl antagonizou o efeito de glyphosate na menor dose (252 g ha-1 no controle de E. indica, apresentando, no entanto, efeito aditivo com o glyphosate na maior dose (720 g ha-1. Já para D. horizontalis, as misturas de carfentrazone-ethyl com glyphosate na menor dose (252 g ha-1 apresentaram efeito sinergístico no controle dessa espécie, demonstrando, ainda, efeito aditivo na mistura com glyphosate na dose de 720 g ha-1. A mistura de carfentrazone-ethyl com glyphosate proporcionou efeito aditivo no controle de C. benghalensis, independentemente das combinações de doses avaliadas. Os resultados deste experimento indicam que carfentrazone-ethyl apresenta comportamento diferenciado quanto à interação com glyphosate, dependendo da espécie de planta daninha e da dose dos herbicidas utilizados na mistura em tanque, sendo complementar na mistura em tanque com glyphosate, pois demonstrou efeito antagônico em poucas das combinações estudadas, prevalecendo seu efeito aditivo na mistura com glyphosate, no

  15. Characterization of type and genetic diversity among soybean cyst nematode differentiators

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2012-04-01

    Full Text Available The development of soybean cyst nematode, Heterodera glycines Ichinohe, resistant genotypes with high yields has been one of the objectives of soybean (Glycine max (L. Merrill breeding programs. The objective of this study was to characterize the pathotype of soybean cyst nematodes and analyze the genetic diversity of ten differentiator lines ('Lee 74', Peking, Pickett, PI 88788, PI 90763, PI 437654, PI 209332, PI 89772, PI 548316 and 'Hartwig'. Inoculum was obtained from plants cultivated in field soil in Viçosa, state of Minas Gerais, Brazil. Thirty-four days after inoculating each plant with 4,000 eggs, the number of females, female index, total number of eggs, number of eggs per female, reproduction factor, plant height, number of nodes, fresh and dry matter weights were assessed. The differential lines were first grouped with Scott-Knott test. Subsequently, the genetic diversity was evaluated using dendrograms, graphic analysis and the Tocher grouping method. The inoculum of H. glycines obtained from NBSGBP-UFV was characterized as HG Type 0. The differentiating lines were divergent, and PI 89772, PI 437654, 'Hartwig' and 'Peking' had the greatest potential for use in breeding programs.

  16. A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis.

    Science.gov (United States)

    Bonfanti, Patrizia; Saibene, M; Bacchetta, R; Mantecca, P; Colombo, A

    2018-02-01

    Glyphosate is the active ingredient in broad-spectrum herbicide formulations used in agriculture, domestic area and aquatic weed control worldwide. Its market is growing steadily concurrently with the cultivation of glyphosate-tolerant transgenic crops and emergence of weeds less sensitive to glyphosate. Ephemeral and lentic waters near to agricultural lands, representing favorite habitats for amphibian reproduction and early life-stage development, may thus be contaminated by glyphosate based herbicides (GBHs) residues. Previous studies on larval anuran species highlighted increased mortality and growth effects after exposure to different GBHs in comparison to glyphosate itself, mainly because of the surfactants such as polyethoxylated tallow amine present in the formulations. Nevertheless, these conclusions are not completely fulfilled when the early development, characterized by primary organogenesis events, is considered. In this study, we compare the embryotoxicity of Roundup ® Power 2.0, a new GBH formulation currently authorized in Italy, with that of technical grade glyphosate using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Our results evidenced that glyphosate was not embryolethal and only at the highest concentration (50 mg a.e./L) caused edemas. Conversely, Roundup ® Power 2.0 exhibited a 96 h LC50 of 24.78 mg a.e./L and a 96 h EC50 of 7.8 mg a.e./L. A Teratogenic Index of 3.4 was derived, pointing out the high teratogenic potential of the Roundup ® Power 2.0. Specific concentration-dependent abnormal phenotypes, such as craniofacial alterations, microphthalmia, narrow eyes and forebrain regionalization defects were evidenced by gross malformation screening and histopathological analysis. These phenotypes are coherent with those evidenced in Xenopus laevis embryos injected with glyphosate, allowing us to hypothesize that the teratogenicity observed for Roundup ® Power 2.0 may be related to the improved efficacy in delivering

  17. Changes in the physiological activity of soybean (Glycine max L. Merr. under the influence of exogenous growth regulators

    Directory of Open Access Journals (Sweden)

    Anna Nowak

    2015-07-01

    Full Text Available In a two-year pot experiment (2008–2009 conducted at the Vegetation Hall, West Pomeranian University of Technology in Szczecin, we investigated the influence of exogenous growth regulators, i.e. indole-3-butyric acid (IBA and 6-benzylaminopurine (BAP and their mixture, on the activity of gas exchange and selected physiological features of soybeans (Glycine max L. Merr.. The experimental factors included the following Polish soybean cultivars: ‘Aldana’, ‘Progres’ and ‘Jutro’. During plant growth, CO2 assimilation (A, transpiration rate (E, stomatal conductance (gs, and substomatal CO2 concentration (ci were determined. Two soybean cultivars, i.e. ‘Jutro’ and ‘Progres’, showed a significant increase in the intensity of assimilation and transpiration after using all kinds of growth regulators as compared with the control plants. It was found that the ‘Jutro’ cultivar, after using a mixture of growth regulators (IBA + BAP, was characterized by the significantly highest CO2 assimilation (A and transpiration (E as well as the highest stomatal conductance (gs. The ‘Aldana’ cultivar, on the other hand, responded by a significant reduction in the transpiration rate, stomatal conductance and subsomatal CO2 concentration. The spraying of the plants with exogenous growth regulators had a significant influence on the increase in the number of stomata and stomatal pore length, mostly on the lower epidermis of the lamina. It was also found that plants from the ‘Jutro’ and ‘Aldana’ cultivars sprayed with IBA and IBA + BAP were characterized by the highest yield, as compared with the control plants. In the case of the ‘Jutro’ cultivar, after using the growth regulators, a positive correlation was observed between the assimilation and transpiration rates and the length of stomata, which in consequence produced increased yields.

  18. Replenishment of Cultivated Soybean Varietes Market (Glycine hispida Maxim, Moench..

    Directory of Open Access Journals (Sweden)

    О. І. Безручко

    2009-12-01

    Full Text Available There provided ways of using valuable protein crop, soybean, as well as its production worldwide growth rates during recent years, possibility and necessity of attaching to the crop a strategic importance in our State and the tasks and outlooks of soybeanrecourses generation. A complete description of new soybean varieties listed in the Register of Varieties Suitable for Dissemination in Ukraine has also been provided.

  19. On glyphosate

    Directory of Open Access Journals (Sweden)

    Tamas Komives

    2016-11-01

    Full Text Available This Editorial briefly discusses the current issues surrounding glyphosate - the most controversial pesticide active ingredient of our time. The paper pays special attention to the effects of glyphosate on plant-pathogen interactions.

  20. Spatial analysis of soybean canopy response to soybean cyst nematodes (Heterodera glycines) in eastern Arkansas: An approach to future precision agriculture technology application

    Science.gov (United States)

    Kulkarni, Subodh

    2008-10-01

    Heterodera glycines Ichinohe, commonly known as soybean cyst nematode (SCN) is a serious widespread pathogen of soybean in the US. Present research primarily investigated feasibility of detecting SCN infestation in the field using aerial images and ground level spectrometric sensing. Non-spatial and spatial linear regression analyses were performed to correlate SCN population densities with Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) derived from soybean canopy spectra. Field data were obtained from two fields; Field A and B under different nematode control strategies in 2003 and 2004. Analysis of aerial image data from July 18, 2004 from the Field A showed a significant relationship between SCN population at planting and the GNDVI (R2=0.17 at p=0.0006). Linear regression analysis revealed that SCN had a little effect on yield (R2 =0.14, at p=0.0001, RMSEP=1052.42 kg ha-1) and GNDVI (R 2=0.17 at p=0.0006, RMSEP=0.087) derived from the aerial imagery on a single date. However, the spatial regression analysis based on spherical semivariogram showed that the RMSEP was 0.037 for the GNDVI on July 18, 2004 and 427.32 kg ha-1 for yield on October 14, 2003 indicating better model performance. For July 18, 2004 data from Field B, a relationship between NDVI and the cyst counts at planting was significant (R2=0.5 at p=0.0468). Non-spatial analyses of the ground level spectrometric data for the first field showed that NDVI and GNDVI were correlated with cyst counts at planting (R 2=0.34 and 0.27 at p=0.0015 and 0.0127, respectively), and GNDVI was correlated with eggs count at planting (R2= 0.27 at p=0.0118). Both NDVI and GNDVI were correlated with egg counts at flowering (R 2=0.34 and 0.27 at p=0.0013 and 0.0018, respectively). However, paired T test to validate the above relationships showed that, predicted values of NDVI and GNDVI were significantly different. The statistical evidences suggested that variability in vegetation indices was caused

  1. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development

    Directory of Open Access Journals (Sweden)

    Linghong Lu

    2018-04-01

    Full Text Available Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development.

  2. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean

    NARCIS (Netherlands)

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without

  3. 76 FR 5780 - Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the...

    Science.gov (United States)

    2011-02-02

    ...] Determination of Regulated Status of Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate... decision and determination on the petition regarding the regulated status of alfalfa genetically engineered... regulated status of alfalfa genetically engineered for tolerance to the herbicide glyphosate based on an...

  4. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  5. Elevated carbon dioxide increases salicylic acid in Glycine max.

    Science.gov (United States)

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  6. Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril and its molecular characterization in leaves and roots during dehydration

    Directory of Open Access Journals (Sweden)

    Cibelle Engels

    2013-01-01

    Full Text Available The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA-independent Dehydration Responsive Element Binding (DREB gene family has been used to obtain plants with increased tolerance to abiotic stresses. In the present study, the rd29A:AtDREB2A CA gene from Arabidopsis thaliana was inserted into soybean using biolistics. Seventy-eight genetically modified (GM soybean lines containing 2-17 copies of the AtDREB2A CA gene were produced. Two GM soybean lines (P1397 and P2193 were analyzed to assess the differential expression of the AtDREB2A CA transgene in leaves and roots submitted to various dehydration treatments. Both GM lines exhibited high expression of the transgene, with the roots of P2193 showing the highest expression levels during water deficit. Physiological parameters examined during water deficit confirmed the induction of stress. This analysis of AtDREB2A CA expression in GM soybean indicated that line P2193 had the greatest stability and highest expression in roots during water deficit-induced stress.

  7. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  8. Circadian response of annual weeds to glyphosate and glufosinate.

    Science.gov (United States)

    Martinson, Krishona B; Sothern, Robert B; Koukkari, Willard L; Durgan, Beverly R; Gunsolus, Jeffrey L

    2002-03-01

    Five field experiments were conducted in 1998 and 1999 in Minnesota to examine the influence of time of day efficacy of glyphosate [N-(phosphonomethyl)glycine] and glufosinate [2-amino-4-(hydroxymethyl-phosphinyl)butanoic acid] applications on the control of annual weeds. Each experiment was designed to be a randomized complete block with four replications using plot sizes of 3 x 9 m. Glyphosate and glufosinate were applied at rates of 0.421 kg ae/ha and 0.292 kg ai/ha, respectively, with and without an additional adjuvant that consisted of 20% nonionic surfactant and 80% ammonium sulfate. All treatments were applied with water at 94 L/ha. Times of day for the application of herbicide were 06:00h, 09:00h, 12:00h, 15:00h, 18:00h, 21:00h, and 24:00h. Efficacy was evaluated 14 d after application by visual ratings. At 14 d, a circadian response to each herbicide was found, with greatest annual weed control observed with an application occurring between 09:00h and 18:00h and significantly less weed control observed with an application at 06:00h, 21:00h, or 24:00h. The addition of an adjuvant to both herbicides increased overall efficacy, but did not overcome the rhythmic time of day effect. Results of the multiple regression analysis showed that after environmental temperature, time of day was the second most important predictor of percent weed kill. Thus, circadian timing of herbicide application significantly influenced weed control with both glyphosate and glufosinate.

  9. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate Lignificação da planta e qualidade de sementes de soja RR pulverizadas com herbicida glifosato

    Directory of Open Access Journals (Sweden)

    Cristiane Fortes Gris

    2013-04-01

    Full Text Available Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha. The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.Diferenças nos teores de lignina na planta entre cultivares transgênicos RR e convencionais, tem sido relatadas, por vários autores, no entanto, são escassos os trabalhos avaliando a influência da aplicação do glifosato sobre os teores de lignina na planta e em sementes de soja RR. Neste sentido, objetivou-se, com este trabalho, avaliar a qualidade fisiológica de sementes de soja transgênica RR e os teores de lignina de plantas submetidas à pulverização com o herbicida glifosato. Os ensaios foram conduzidos em casa de vegetação e em campo, no munic

  10. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  11. Registration of N6001 soybean germplasm with enhanced yield derived from Japanese cultivar Suzuyutaka

    Science.gov (United States)

    The genetic base of U.S. soybean (Glycine max (L.) Merr.) is relatively narrow, with Chinese ancestors providing most of the genetic base. Japanese lines have made relatively small contributions, suggesting that incorporation of novel Japanese genetics into USA breeding populations may aid soybean ...

  12. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  13. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  14. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance.

    Science.gov (United States)

    Mao, Chanjuan; Xie, Hongjie; Chen, Shiguo; Valverde, Bernal E; Qiang, Sheng

    2017-09-01

    Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana. However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore, LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and 422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in recombinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-transformed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thaliana was about 5.4 fold and 2-fold resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. Therefore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resistant crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Manganese (Mn) stress toward hyperaccumulators plants combination (HPC) using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition on soybean (Glycine max) seedling stage

    Science.gov (United States)

    Darmawan, Tania Sylviana; Zahroh, Tata Taqiyyatuz; Merindasya, Mirza; Masfaridah, Ririn; Hartanti, Dyah Ayu Sri; Arum, Sekar; Nurhatika, Sri; Muhibuddin, Anton; Surtiningsih, Tini; Arifiyanto, Achmad

    2017-06-01

    Heavy metals were a metal bracket which had a specific gravity greater than 5 g / cm3. Manganese was one of them because it has a specific gravity of 7.4 g / cm3. Together with widespread cases of soil contamination caused by heavy metals as well as increased development of the science of breeding ground rapidly, then the alternative rehabilitation techniques were relatively cheap and effective it needs to be developed and even some cases of contaminated management soil using a combination of plants with microorganisms to be more effective. Thus it was necessary to develop research on plants that were able to accumulate heavy metals and other toxic materials, such as Mn so that the land becomes safe for health and the environment. Based on above reason this research aimed to see the influence of hyperaccumulators combination of plants using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition to stressed by manganese (Mn) on soybean (Glycine max). Observations of growth, chlorophyll content and heavy metals analysis performed on nine treatments (P1-P9) and one control (P0). The results showed a combination of hyperaccumulators under mychorrizal helped overcome the stress of manganese (Mn) in the leaves of soybean (G. max). It gave an influence on the number of leaves and chlorophyll content of soybean (G. max), but no effect performed on the height and the roots of soybean (G. max). The use of plants in small amounts hyperaccumulators (P1;1 jatropha and 1 lamtoro) was sufficient to cope with stress of Mn in the leaves of soybean (G. max).

  16. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Science.gov (United States)

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  17. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H

    2006-10-01

    We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.

  18. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent

    Directory of Open Access Journals (Sweden)

    Kwanyuen Prachuab

    2009-11-01

    Full Text Available Abstract Background In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin. Results When tested against different alternate selection agents our studies show that 0.16 μg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl-L-cysteine (AEC and the acetolactate synthase (ALS inhibitors Exceed® and Synchrony® both at 150 μg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed. Conclusion Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate (Roundup®, AEC and the ALS inhibitors Exceed® and Synchrony® against different tissues of soybean

  19. Weed control, biomass and microbial metabolism of soil depending on the application of glyphosate and imazethapyr on crop soybeansControle de plantas daninhas, biomassa e metabolismo microbiano do solo em função da aplicação de glifosato ou imazetapir na cultura da soja

    Directory of Open Access Journals (Sweden)

    Dirceu Agostinetto

    2011-08-01

    Full Text Available Studied the weed control and the changes of biomass and microbial soil properties at crop cultivated both genetically modified and non altered soybeans because of glyphosate or imazethapyr herbicide applications. Soybean cultivations were tested (BRS 244RR, genetically modified and BRS 154, non modified and herbicides (glyphosate and imazethapyr, and control treatment with weed. Variables were evaluated for phytotoxicity to the crop, control of Raphanus raphanistrum (wild radish, Digitaria sp. (crabgrass and Brachiaria plantaginea (alexsandregrass, total organic carbon (TOC, microbial biomass carbon (MBC, basal respiration (BR and metabolic quocient (QCO2. The herbicide glyphosate, applied as a single dose or sequentially, effectively controls the weeds wild radish, crabgrass and alexsandregrass and increases microbial activity, basal respiration and metabolic quocient. The microbial metabolism was not affected by the fact that the genotype or not genetically modified, but the use of the herbicide glyphosate.Estudou-se o controle de plantas daninhas, as variações da biomassa e do metabolismo microbiano do solo em áreas cultivadas com soja geneticamente modificada e não modificada, em função da aplicação dos herbicidas glifosato ou imazetapir. Testaram-se cultivares de soja (BRS 244RR, geneticamente modificada e BRS 154, não modificada e herbicidas (glifosato e imazetapir, e tratamento controle com capina. Como variáveis foram avaliadas a fitotoxicidade à cultura, controle de Raphanus raphanistrum (nabo, Digitaria sp. (milhã e Brachiaria plantaginea (papuã, teores de carbono orgânico total (COT, carbono da biomassa microbiana (CBM, respiração basal (RB e quociente metabólico (QCO2. O herbicida glifosato, aplicado em dose única ou seqüencial, controla eficientemente as plantas daninhas nabo, milhã e papuã, e aumenta a atividade microbiana, a taxa de respiração basal e o quociente metabólico. O metabolismo microbiano do solo

  20. Application of Polymerase Chain Reaction for High Sensitivity Detection of Roundup Ready™ Soybean Seeds and Grains in Varietal Mixtures

    Directory of Open Access Journals (Sweden)

    Ashok Pandey

    2011-01-01

    Full Text Available Strong increase in the production of genetically modified organisms (GMOs observed over the years has led to a consolidation of transgenic seed industries worldwide. The dichotomy between the evaluated risk and the perceived risk of transgenic use has defined their level of acceptability among different global societies. GMOs have been widely applied to agricultural commodities, among them the Roundup Ready™ (RR™ soybean line GTS 40-3-2 has become the most prevalent transgenic crop in the world. This variety was developed to confer plant tolerance against glyphosate-based agricultural herbicide Roundup Ready™. Issues related to detection and traceability of GMOs have gained worldwide interest due to their increasing global diffusion and the related socioeconomic and health implications. Also, due to the widespread use of GMOs in food production, labelling regulations have been established in some countries to protect the right of consumers and producers. Besides regulatory demand, consumer concern issues have resulted in the development of several methods of detecting and quantifying foods derived from genetically engineered crops and their raw materials. Polymerase chain reaction (PCR has been proven to be the method of choice to detect the presence or absence of the introduced genes of GMOs at DNA level. The present paper aims to verify whether the PCR technique can detect RR™ soybean seeds among conventional ones to further certification as non-GM soybean seeds and grains. This analysis could be accomplished through the development of new methodology called 'intentional contamination' of soybean conventional seeds or grains with the respective RR™ soybeans. The results show that the PCR method can be applied with high sensitivity in order to certify conventional soybean seeds and grains.

  1. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L. Merril

    Directory of Open Access Journals (Sweden)

    Husni Thamrin Sebayang

    2018-04-01

    Full Text Available The growth and yield of soybeans can decrease due to competition from weeds. Various efforts have been made to control the growth of weeds such as land preparation and weeding periods. An experiment to study the effect of soil tillage systems and weeding time on the growth of weeds and soybean crop yield (Glycine max (L. Merril has been done in Wringinsongo Village, Tumpang Sub-District, Malang Regency from February to May 2017. The split-plot design with three replicates was used with the soil tillage system as the main plot consisting of three levels, T0: no tillage, T1: minimum tillage, and T2: conventional tillage, and weeding time as the sub plot consisting of 4 levels, P0: no weeding, P1: weeding 1 time, P2: weeding two times and P3: weeding three times. The results showed that the dominant weed species before treatment were Amaranthus spinosus (Spiny amaranth, Cynodon dactylon (Bermuda grass, Cyperus rotundus (Purple nutsedge, Ageratum conyzoides (Billygoat weed, and Portulaca oleracea (Common purslane. After treatment, the dominant weed species were Cyperus rotundus (Purple nutsedge, Amaranthus spinosus (Spiny amaranth, Ageratum conyzoides (Billygoat weed, Physalis peruviana (Cape gooseberry, and Eclipta alba (False daisy. There was no significant difference of the dry weight of weeds in conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting, and minimum tillage and no tillage. For the yield of soybeans, conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting were not significant with that of minimum tillage. The yield of soybeans was lower than that of with no tillage and no weeding.

  2. New Cyst Nematode, Heterodera sojae n. sp. (Nematoda: Heteroderidae) from Soybean in Korea.

    Science.gov (United States)

    Kang, Heonil; Eun, Geun; Ha, Jihye; Kim, Yongchul; Park, Namsook; Kim, Donggeun; Choi, Insoo

    2016-12-01

    A new soybean cyst nematode Heterodera sojae n. sp. was found from the roots of soybean plants in Korea. Cysts of H. sojae n. sp. appeared more round, shining, and darker than that of H. glycines . Morphologically, H. sojae n. sp. differed from H. glycines by fenestra length (23.5-54.2 µm vs. 30-70 µm), vulval silt length (9.0-24.4 µm vs. 43-60 µm), tail length of J2 (54.3-74.8 µm vs. 40-61 µm), and hyaline part of J2 (32.6-46.3 µm vs. 20-30 µm). It is distinguished from H. elachista by larger cyst (513.4-778.3 µm × 343.4-567.1 µm vs. 350-560 µm × 250-450 µm) and longer stylet length of J2 (23.8-25.3 µm vs. 17-19 µm). Molecular analysis of rRNA large subunit (LSU) D2-D3 segments and ITS gene sequence shows that H. sojae n. sp. is more close to rice cyst nematode H. elachista than H. glycines . Heterodera sojae n. sp. was widely distributed in Korea. It was found from soybean fields of all three provinces sampled.

  3. Glyphosate resistance: state of knowledge

    Science.gov (United States)

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  4. The effect of gamma radiation from sources "6"0Co of soybean for shade tolerant

    International Nuclear Information System (INIS)

    Lilik Harsanti; Yulidar

    2016-01-01

    Gamma rays are electromagnetic waves that have a very strong penetrating power. One of the sources of gamma rays is from "6"0Co. The gamma rays have strong penetration power can be used of plant breeding to create new genetic diversity in the make of high-yielding varieties. Irradiation of gamma rays at a dose of 300 gray and 400 gray on soybean Denna 1 seed varieties has been done, then it was planted as M.1 the plants look healthy and robust and strong stems. The parameters observed plant height, sum book leaf, sum seed, sum pod and Percentage plant to live shade tolerant. The parameters observed were good: plant height doze 300 Gy (37.76 cm) and 400 gray (33.03 cm) The number of branches with doze 300 Gy (1.75) and 400 Gy (1.95), number of pod with doze 300 Gy (26.25) and 400 Gy (24.72), number of seed with doze 300 Gy (35.55 kg) and 400 Gy (33.65 kg), number of Naut with doze 300 Gy (9.28) and 400 Gy (8.53) and the percentage of plants capable of shade tolerant with doze 300 Gy (85) and 400 Gy(75). In conclusion, selection mutant lines of soybeans shade tolerant at generation M1 and next generation. (author)

  5. Biological responses of two soybean cultivars exposed to enhanced UVB radiation

    International Nuclear Information System (INIS)

    D'Surney, S.J.; Tschaplinski, T.J.; Edwards, N.T.; Shugart, L.R.

    1993-01-01

    A UVB exposure and monitoring system has been established at the Oak Ridge National Laboratory's Global Climate Change Research Facility. The system consists of a power supply, and data acquisition and exposure equipment to accomplish controlled, elevated exposure of terrestrial plants to UVB. Plant biomass, selected compounds that absorb UV radiation, and DNA integrity/damage were measured for two soybean cultivars [Glycine max (L.) Merr.] Forrest and Essex exposed to elevated UVB (32% above ambient) in this system. The biomass of each major plant organ was observed to be less in soybean cultivar Forrest upon exposure to enhanced UVB with the greatest response in seed pods and stems. In contrast, soybean cultivar Essex showed no biomass response to elevated UVB. Enhanced UVB caused significant (P < 0.1) changes in concentrations of UV-absorbing compounds in both soybean cultivars. The Essex cultivar had an increase in UV-absorbing compounds, whereas a decline was observed for soybean Forrest. There was a decrease in the integrity of DNA, as measured by strand breaks, from both cultivars at 30 and 52 days to exposure. DNA pyrimidine dimers in isolated plant DNA were measured with Micrococcus luteus UV endonuclease. DNA from soybean Forrest exposed to UVB and sampled at 30 and 52 days of exposure had significantly greater (P<0.05) pyrimidine dimer concentration (dimer frequency ≈ 1 dimer per 28,000 DNA bases) than either cultivar exposed to UV treatment for 1 day or Essex at days 30–52 (dimer frequencies < /1 per 120,000 bases of DNA). Decrease in DNA integrity and biomass production in Forrest under elevated UVB may be related to the inability to maintain high concentrations of UV-absorbing compounds in leaves. The tolerant cultivar Essex increased the concentration of UV-absorbing compounds while maintaining biomass production and DNA integrity under elevated UVB

  6. Characterization of bacterial functional groups and microbial activity in microcosms with glyphosate application

    Science.gov (United States)

    Moyano, Sofia; Bonetto, Mariana; Baigorria, Tomas; Pegoraro, Vanesa; Ortiz, Jimena; Faggioli, Valeria; Conde, Belen; Cazorla, Cristian; Boccolini, Monica

    2017-04-01

    Glyphosate is a worldwide used herbicide as c. 90% of transgenic crops are tolerant to it. Microbial degradation of glyphosate molecule in soil is considered the most important process that determines its persistence in the environment. However, the impact of this herbicide on target groups of soil biota remains poorly understood. Our objective was to characterize the abundance of bacterial groups and global microbial activity, under controlled conditions with application of increasing doses of glyphosate. A bioassay was carried out in microcosms using an agricultural soil (Typic Argiudoll) with registered history of glyphosate application from National Institute of Agricultural Technology (INTA, EEA Marcos Juarez, Argentina). Glyphosate of commercial formulation (74.7%) was used and the following treatments were evaluated: Soil without glyphosate (control), and Soil with doses equivalent to 1.12 and 11.2 kg ai ha-1. Microbiological parameters were estimated at 3, 7, 14 and 21 days after herbicide application by counting heterotrophic, cellulolytic, nitrogen fixing (N), and nitrifying bacteria; and fluorescein diacetate hydrolysis (FDA), microbial respiration (MR) and microbial biomass (C-BM). The N cycle related bacteria showed greater sensitivity to glyphosate with significant increases in abundance. On the other hand the C cycle parameters were strongly conditioned by the time elapsed since the application of the herbicide, as did the MR. The FDA declined with the highest dose, while the C-BM was not affected. Therefore, we conclude that in the studied experimental conditions glyphosate stimulated bacterial growth (i.e. target abundances) representing a source of N, C and nutrients. On the other hand, enzymatic activity (FDA) decreased when glyphosate was applied in the highest dose, whereas, it had no effect on the MR nor C-BM, which could be attributable to the organic matter content of the soil. However, future research in field conditions is necessary, for

  7. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    Science.gov (United States)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded

  8. Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Rämö, Sari; Jauhiainen, Lauri; Eronen, Liisa; Oinonen, Seija; Hartikainen, Helinä

    2008-01-01

    The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.

  9. Effects of N management on growth, N-2 fixation and yield of soybean

    NARCIS (Netherlands)

    Gan, YB; Stulen, [No Value; Posthumus, F; van Keulen, H; Kuiper, P

    Soybean (Glycine max) is one of the most important food and cash crops in China. Although soybean has the capacity to obtain a large proportion of its N from N-2 fixation, it is common farmer's practice to apply an N top dressing to maximize grain yield. A field experiment was conducted to study the

  10. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Dong, Lidong; Cheng, Yingxin; Wu, Junjiang; Cheng, Qun; Li, Wenbin; Fan, Sujie; Jiang, Liangyu; Xu, Zhaolong; Kong, Fanjiang; Zhang, Dayong; Xu, Pengfei; Zhang, Shuzhen

    2015-05-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Environmental assessment of organic soybean (Glycine max.) imported from China to Denmark

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Yu-Hui, Qiao; Van, Luo

    2010-01-01

    Growing global trade with organic products has increased the demand for environmental impact assessments during both production and transport. Environmental hotspots of organic soybeans produced in China and imported to Denmark were identified in a case study using a life cycle assessment approach....... Furthermore, environmental impacts of organic and conventional soybeans at farm gate were compared in the case study. The total global warming potential (GWP) per ton organic soybeans imported to Denmark revealed that 51% came from transportation and 35% from the farm level. Comparing organic and conventional...

  12. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  13. Quantitative nuclear magnetic resonance spectrometry II. Purity of phosphorus-based agrochemicals glyphosate (N-(phosphonomethyl)-glycine) and profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) measured by {sup 1}H and {sup 31}P QNMR spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saed Al Deen, Tareq; Brynn Hibbert, D.; Hook, James M.; Wells, Robert J

    2002-12-09

    The purities of the widely-used herbicide glyphosate (N-(phosphonomethyl)glycine), and the insecticide profenofos (O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate) were determined by {sup 1}H and {sup 31}P quantitative nuclear magnetic resonance (QNMR) spectrometry using an internal standard. QNMR does not need a standard reference of the same target analyte, in contrast to chromatographic methods, but only a compound containing the nucleus of interest. Sodium acetate and sodium phosphate of known purity were chosen as internal standards for {sup 1}H NMR and {sup 31}P NMR), respectively for the water soluble glyphosate and a single internal standard, trimethyl phosphate for both {sup 1}H and {sup 31}P NMR quantitative analysis of the organic soluble profenofos. These standards have NMR peaks that do not interfere with those of the analyte, they are chemically inert and are soluble in the deuterated solvent. The average purity of glyphosate obtained by {sup 1}H NMR (97.07%, {sigma}=0.68) agreed with that by {sup 31}P NMR (96.53%, {sigma}=0.90; ANOVA, P=0.074) for the five batches provided by the manufacturer according to the procedures for chemical registration in Australia. The standard deviations of seven independent analyses of a single batch by {sup 1}H NMR and {sup 31}P NMR were {sigma}=0.24% and {sigma}=0.33%, respectively, values which confirm the exceptional precision of the method. The purity of profenofos by {sup 1}H NMR (94.63%, {sigma}=0.14) also agreed with that by {sup 31}P NMR (94.62%, {sigma}=0.59; ANOVA, P=0.97). Uncertainty budgets for the measured purities of glyphosate and profenofos show that the uncertainty in the purity of the internal standard is a major contributor to the uncertainty of the result. NMR was also used to establish the impurity profile of both compounds, and quantify the impurities present.

  14. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  15. Optimization of soybean (glycine max L.) regeneration for korean cultivars

    International Nuclear Information System (INIS)

    Phat, P.; Rehman, S. U.; Ju, H. J.; Jung, H. I.

    2015-01-01

    Tissue culture could provide key insights into the development of transgenic plants, production of good cultivars and secondary metabolites, conservation of endangered plants, and safeguarding of germplasms. In this study, the effects of shoot induction media, explants, cultivars, and phytohormone concentrations on the regeneration efficiency of Korean soybean cultivars were evaluated. Restricted dormancy and poor germination may affect regeneration, depending on the type of germination medium or initiation of phytohormone treatment. Therefore, we analyzed the effects of different germination media containing plant growth regulators, i.e. 6-benzyladenine (BAP), gibberellic acid 3 (GA /sub 3/), and naphthalene acetic acid (NAA), prior to investigating the influences of explant types, media with or without vitamins, cultivars, and different phytohormones (BAP and GA3). A high frequency of germination was observed in Murashige and Skooge (MS) medium with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.25 mg L /sup -1/ GA /sub 3/. Cotyledonary node explants and Gamborg B5 with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.17 mg L /sup -1/ GA /sub 3/ in callus induction medium (CIM) and 1 mg L /sup -1/ BAP in shoot induction medium (SIM) were found to be the most efficient conditions for induction of soybean regeneration, both in callus development and shoot regeneration. Two Korean soybean cultivars, cv. Daepung and Nampung, showed similar development of shoot regeneration efficiency, but significantly different shoot induction times. Therefore, the protocol reported here may be used for further development of regeneration efficiency and can be employed for efficient transformation in soybeans. (author)

  16. Formulants of glyphosate-based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells.

    Science.gov (United States)

    Vanlaeys, Alison; Dubuisson, Florine; Seralini, Gilles-Eric; Travert, Carine

    2018-05-15

    Roundup and Glyphogan are glyphosate-based herbicides containing the same concentration of glyphosate and confidential formulants. Formulants are declared as inert diluents but some are more toxic than glyphosate, such as the family of polyethoxylated alkylamines (POEA). We tested glyphosate alone, glyphosate-based herbicide formulations and POEA on the immature mouse Sertoli cell line (TM4), at concentrations ranging from environmental to agricultural-use levels. Our results show that formulations of glyphosate-based herbicides induce TM4 mitochondrial dysfunction (like glyphosate, but to a lesser extent), disruption of cell detoxification systems, lipid droplet accumulation and mortality at sub-agricultural doses. Formulants, especially those present in Glyphogan, are more deleterious than glyphosate and thus should be considered as active principles of these pesticides. Lipid droplet accumulation after acute exposure to POEA suggests the rapid penetration and accumulation of formulants, leading to mortality after 24 h. As Sertoli cells are essential for testicular development and normal onset of spermatogenesis, disturbance of their function by glyphosate-based herbicides could contribute to disruption of reproductive function demonstrated in mammals exposed to these pesticides at a prepubertal stage of development. Copyright © 2017. Published by Elsevier Ltd.

  17. Synthesis of {sup 15}N labeled glyphosate; Sintese do glifosato enriquecido com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Tavares, Glauco Arnold; Rossete, Alexssandra L.R.M.; Tagliassachi, Romulo Barbieri; Prestes, Cleuber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    Amongst the actually commercialized herbicides the Glyphosate is the most used in Brazil. Its efficiency as well as the others herbicides against undesirable weeds is harmed by its final composts left at the environment. Although studies has being carried out to improve the knowledge about the herbicides behavior at the environment its complexity has led them towards innumerous to new significant research work where the use of radiolabeled composts (radiative tracers) are recommended to evaluate their bio-availability in the soil. However is the use, the manipulation and the storage of radiolabeled composts is requires an extra care under chemical safety point of view. The use of non radiolabeled composts is a world tendency especially for field researches. Under this context the presented work describes a method for the synthesis of {sup 15}N labeled glyphosate. The {sup 15}N-herbicide was undertaken by phosphometilation with the phosphit dialquil and {sup 15}N-glycine. The tests where carried out through a micro scale production plant and of equimolars amounts. At these conditions it's was possible to reach approximately a 20% of yield. At the conclusion of a best operational condition its expected to offer another important toll that shall be used in glyphosate behavior at the environment and undesirably weeds. (author)

  18. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Baerson, Scott R; Rodriguez, Damian J; Tran, Minhtien; Feng, Yongmei; Biest, Nancy A; Dill, Gerald M

    2002-07-01

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.

  19. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Control of volunteer soybean plants in sunflower crop

    Directory of Open Access Journals (Sweden)

    Alexandre Magno Brighenti

    2015-09-01

    Full Text Available Sunflower (Helianthus annuus sown offseason, after soybean crop (Glycine max, is affected by the competition imposed by volunteer plants. Two experiments were carried out to evaluate the control of volunteer soybean plants in sunflower crops. The sulfentrazone herbicide (75 g ha-1, 100 g ha-1 and 250 g ha-1 causes phytotoxicity to sunflower immediately after application, however, plants recover, with no yield losses. These doses do not cause the total death of volunteer soybean plants, but temporarily paralyzes their growth, avoiding the competition with the sunflower crop. The glufosinate ammonium and ametryn herbicides are effective in controlling volunteer soybean plants, however, symptoms of phytotoxicity in the sunflower crop are high, reflecting in losses of dry weight biomass and crop yield. The other treatments do not provide satisfactory control of volunteer soybean plants and even reduce the sunflower dry weight biomass and yield.

  1. From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as a marker.

    NARCIS (Netherlands)

    Smaling, E.M.A.; Roscoe, R.; Lesschen, J.P.; Bouwman, A.F.; Comunello, E.

    2008-01-01

    Soybean (Glycine max) is a booming crop in Brazil. In 2004, the export value was equivalent to 10 billion US $, covering over 10% of total Brazilian exports. Three-quarters of total production leaves the country, mainly to China and the European Union (EU). Soybean cultivation in Brazil is expected

  2. Sudden death syndrome of soybean in Argentina

    Science.gov (United States)

    Sudden death syndrome (SDS) is one of the most common and widely spread root disease affecting soybean [Glycine max (L.) Merr.] in Argentina where it is an economically important crop. This disease was first discovered in this country in 1992 in the Pampas Region, and the following year in Northwest...

  3. Comparative phytochemical profiling of different soybean (Glycine max (L. Merr genotypes using GC–MS

    Directory of Open Access Journals (Sweden)

    Salem S. Alghamdi

    2018-01-01

    Full Text Available This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L. Merr genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC–MS analysis resulted identification of 88 compounds categorized into aldehydes (5, ketones (13, alcohols (5, carboxylic acids (7, esters (13, alkanes (2, heterocyclic compounds (19, phenolic compound (9, sugar moiety (7 ether (4 and amide (3, one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1 had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.

  4. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.

    Science.gov (United States)

    Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F

    2013-04-25

    The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.

  5. Glyphosate

    OpenAIRE

    Arcuri, Alessandra

    2017-01-01

    markdownabstractGlyphosate is the rock star of pesticides, albeit a controversial one. With 6.1 billion kilograms applied globally in the last decade alone, it is the most widely used herbicide compound in the world. Glyphosate, is at the centre of an acrimonious controversy relating to whether the substance is carcinogenic to humans and toxic for the environment. The controversy took a sharp legal turn when, in March 2015, the International Agency for Research on Cancer (IARC), which is the ...

  6. EFFECTS OF ZEOLITE AND CADMIUM ON GROWTH AND CHEMICAL COMPOSITION OF SOYBEAN (Glycine max L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mahmoodabadi

    2009-04-01

    Full Text Available   There are areas in the world which are polluted by trace metals some of which may not be degraded by biotic process. Some of these metals might enter into surface and/or underground water resources thus causing serious human and animal health problems. In recent years, natural amendments, such as the use of zeolite, have been widely used to address trace metals contamination. In the present study the effect of zeolite on the growth and nodulation of soybean (Glycine max L. was evaluated. Treatments consisted on factorial combination of three levels of zeolite (0, 2 and 5 g kg-1 and three levels of cadmium (0, 10 and 50 mg kg-1. Cadmium application significantly decreased shoot and root dry weight while its concentration in plant parts was increased. In addition, cadmium application decreased number and dry weight of nodules, and N, K, and Mn concentrations. On the other hand, zeolite application markedly increased number and dry weight of nodules and N, P, K concentrations in shoot, Mn and Cu concentrations in shoot and root. The results from the present study can be used for predicting the efficiency of zeolite application for the remediation of contaminated soils.

  7. Processing soybeans of different origins : response of a Chinese and a western pig breed to dietary inclusion

    NARCIS (Netherlands)

    Qin, G.

    1996-01-01


    Soybeans (Glycine max) have high nutritional value for domestic animals, due to their protein and energy contents. The feeding effects of full-fat soybeans for non-ruminant and immature ruminant animals, however, are limited by the presence of some antinutritional

  8. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  9. Use of chemical flocculation and nested PCR for Heterodera glycines detection in DNA extracts from field soils with low population densities

    Science.gov (United States)

    The soybean cyst nematode (SCN) Heterodera glycines is a major pathogen of soybean world-wide. Distinction between SCN and other members of H. schachtii sensu stricto group based on morphology is a tedious task. A molecular assay was developed to detect SCN in field soils with low population densiti...

  10. Development of glyphosate-resistant alfalfa (Medicago sativa L.) upon transformation with the GR79Ms gene encoding 5-enolpyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Yi, Dengxia; Ma, Lin; Lin, Min; Li, Cong

    2018-07-01

    The glyphosate-resistant gene, GR79Ms, was successfully introduced into the genome of alfalfa. The transgenic events may serve as novel germplasm resources in alfalfa breeding. Weed competition can reduce the alfalfa yield, generating new alfalfa germplasm with herbicide resistance is essential. To obtain transgenic alfalfa lines with glyphosate resistance, a new synthetic glyphosate-resistant gene GR79Ms encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) was introduced into alfalfa germplasm by Agrobacterium tumefaciens-mediated transformation. In total, 67 transformants were obtained. PCR and Southern blot analyses confirmed that GR79Ms was successfully inserted into the genome of alfalfa. Reverse transcription-PCR and western blot analyses further demonstrated the expression of GR79Ms and its product, GR79Ms EPSPS. Moreover, two homozygous transgenic lines were developed in the T 2 generation by means of molecular-assisted selection. Herbicide tolerance spray tests showed that the transgenic plants T 0 -GR1, T 0 -GR2, T 0 -GR3 and two homozygous lines were able to tolerate fourfold higher commercial usage of glyphosate than non-transgenic plants.

  11. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-08-01

    Full Text Available The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr., GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD. Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  12. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    Science.gov (United States)

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  13. First report of new phytoplasma diseases associated with soybean, sweet pepper, and passion fruit in Costa Rica

    Science.gov (United States)

    A new soybean disease outbreak occurred in 2002 in a soybean (Glycine max) plantation in Alajuela Province, Costa Rica. Symptoms in the affected plants included general stunting, little leaf, formation of excessive buds, and aborted seed pods. Another two diseases occurred in sweet pepper (Capsicum ...

  14. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of fertilization and soil treatment on the soybean nodulation

    International Nuclear Information System (INIS)

    Abdel aziz, H.A.

    1993-01-01

    Soybean (Glycine max L. ) is one of the most important leguminosae crops all over the world. It is considered one of the most important protein sources for human and animals. During the last 20 years, soybean was introduced to Egypt, however the nodulation of soybean under field conditions remains a problem because the egyptian soils were void of soybean rhizobia. Since soybean is a leguminosae crop, symbiosis with root - nodule R hizobium might play a significant role in the management of its production . Nevertheless, soybean suffers from poor nodulation in egypt, hence nitrogenase fertilization for legume is a logical practice. Soybean can utilize both soil -N or applied N and symbiotically fixed atmospheric nitrogen under normal field condition. The fixation of atmospheric N by the legume/Rhizobium symbiosis is an integrated process in which the host plant ( macrosymbiont) supplies the bacterium (microsymbiont) with energy and the bacterium supplies the plant with reduced N. figs.,172 refs

  16. [Poisonings with the herbicides glyphosate and glyphosate-trimesium].

    Science.gov (United States)

    Mortensen, O S; Sørensen, F W; Gregersen, M; Jensen, K

    2000-08-28

    Generally the herbicide glyphosate is considered harmless to humans. Glyphosate-trimesium is labelled harmful (Xn), whereas glyphosate-isopropylamine carries no warning sign. As cases of serious poisoning have emerged contacts to the Poison Information Centre have been reviewed. The persons exposed were mainly smaller children and adults 20 to 59 years of age. Oral exposure was recorded in 47 persons, inhalation exposure in 24 and topical contact in 42. About one fourth of the exposed persons were asymptomatic. Most of the symptomatic poisonings demonstrated complaints from the mouth, the gastrointestinal tract and the airways. Eleven patients were admitted to hospital. Two died, one of them having ingested the isopropylamine salt, the other the trimesium salt. Death ensued quickly in the latter patient. A similar fate was observed in a child--not included in the present material--who had also ingested the trimesium compound.

  17. Manejo de herbicidas na cultura da soja Roundup Ready® Herbicide management in Roundup Ready® soybean crop

    Directory of Open Access Journals (Sweden)

    F.A. Petter

    2007-09-01

    entre os sistemas de aplicação de herbicidas, porém todos resultaram em produtividade superior ao da testemunha. O cultivar TMG 108 apresentou maior produtividade de grãos em todos os sistemas de aplicação de herbicidas, inclusive nas parcelas da testemunha, mas não diferindo do cultivar P98R91, nos "sistemas 1, 3 e 4" de aplicação de herbicidas e na testemunha, e do cultivar M-SOY 8585, no "sistema 3".This study was carried out to evaluate the effectiveness of different herbicide management systems in weed control and the development and yield of different Roundup Ready® soybean cultivars. A randomized block experimental design with four replicates was used under a 5x5 factorial scheme, using five herbicide application systems: [(1 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 days before sowing (DAS, paraquat + diuron (400 + 200 g ha-1 at the sowing day, and glyphosate (960 g ha-1 at 35 days after crop emergence (DAE; (2 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS, paraquat + diuron (400 + 200 g ha-1 at the sowing day, and glyphosate (480 g ha-1 17 at DAE; (3 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS, and glyphosate (960 g ha-1 at 35 DAE; (4 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS and glyphosate (480 g ha-1 at 17 days after plant emergence; and (5 control - glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS, without herbicide application at post-emergence] combined with five RR® soybean varieties (M-SOY 8585, P98R91, Valiosa, CD 219 and TMG 108,comprising 25 treatments. All herbicide application systems controlled the weed species Chamaesyce hirta, Alternanthera tenella, Euphorbia heterophylla, Spermacoce latifolia and Tridax procumbens. This control was superior to that without herbicide application at post-emergence, being thus efficient in controlling those species. "System 3" showed a lower control level of the species Spermacoce latifolia, Tridax procumbens and Chamaesyce hirta, the last one

  18. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    Science.gov (United States)

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  19. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate.

    Science.gov (United States)

    Van Horn, Christopher R; Moretti, Marcelo L; Robertson, Renae R; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Schulz, Burkhard; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Hall, J Christopher; McLean, Michael D; Lawton, Mark B; Sammons, R Douglas; Wang, Dafu; Westra, Philip; Gaines, Todd A

    2018-05-01

    Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    Science.gov (United States)

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  1. Twenty year results on application of induced mutation in soybean (Glycine max (L.) Merr.) breeding at Agricultural Genetics Institute (AGI), Hanoi, Vietnam

    International Nuclear Information System (INIS)

    Mai Quang Vinh; Phan Phai; Ngo Phuong Thinh; Tran Dinh Dong; Tran Thuy Oanh

    2001-01-01

    Research on application of the induced mutation method combined with crossing in soybean breeding for 20 years (1980-2000) plays an important role in research work at AGI, (Ministry of Agriculture and Rural Development of Vietnam). 23 soybean varieties and hybrid lines (including 6 local cultivars, 14 selected and introduced varieties, 3 hybrid lines) were treated with Roentgen ray irradiation, Gamma Ray 60 Co with doses 7, 10, 12, 15, 18, 20 krad, and with chemical mutagens: EI, NMU, DNMU, DES, EMS, DEU with various concentrations 0.008, 0.02, 0.04, 0.06, 0.08%. As the results, we obtained the important conclusions about the rule of induced mutation process in soybean in the natural conditions of Vietnam. 8 mutant varieties [1 National varieties (DT84) and 6 regional production varieties (DT83, DT90, DT94, DT95, DT99, AK06 (DT-55). Several promising varieties were selected and released for farmers to produce in the large areas that occupied 50-90% percentage of soybean cultivated areas in Vietnam. These varieties have high-yield 1.5-3.5 tons/ha, short growth duration 75-100 days, tolerance to cold and hot temperature and can be planted in 3 crops per year (Winter, Spring and Summer season) over 35-40 thousands ha/year. At present, the mutagens are being used for defect- orientated repair of some promising hybrid lines, in order to contribute new good varieties to soybean production in Vietnam. (author)

  2. Twenty year results on application of induced mutation in soybean (Glycine max (L.) Merr.) breeding at Agricultural Genetics Institute (AGI), Hanoi, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Mai Quang Vinh; Phan Phai; Ngo Phuong Thinh; Tran Dinh Dong; Tran Thuy Oanh [Agricultural Genetics Institute (AGI), Hanoi (Viet Nam)

    2001-03-01

    Research on application of the induced mutation method combined with crossing in soybean breeding for 20 years (1980-2000) plays an important role in research work at AGI, (Ministry of Agriculture and Rural Development of Vietnam). 23 soybean varieties and hybrid lines (including 6 local cultivars, 14 selected and introduced varieties, 3 hybrid lines) were treated with Roentgen ray irradiation, Gamma Ray {sup 60}Co with doses 7, 10, 12, 15, 18, 20 krad, and with chemical mutagens: EI, NMU, DNMU, DES, EMS, DEU with various concentrations 0.008, 0.02, 0.04, 0.06, 0.08%. As the results, we obtained the important conclusions about the rule of induced mutation process in soybean in the natural conditions of Vietnam. 8 mutant varieties [1 National varieties (DT84) and 6 regional production varieties (DT83, DT90, DT94, DT95, DT99, AK06 (DT-55))]. Several promising varieties were selected and released for farmers to produce in the large areas that occupied 50-90% percentage of soybean cultivated areas in Vietnam. These varieties have high-yield 1.5-3.5 tons/ha, short growth duration 75-100 days, tolerance to cold and hot temperature and can be planted in 3 crops per year (Winter, Spring and Summer season) over 35-40 thousands ha/year. At present, the mutagens are being used for defect-orientated repair of some promising hybrid lines, in order to contribute new good varieties to soybean production in Vietnam. (author)

  3. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  4. Nodulin gene expression during soybean (Glycine max) nodule development.

    NARCIS (Netherlands)

    Gloudemans, T.; Vries, de S.; Bussink, H.J.; Malik, N.S.A.; Franssen, H.; Louwerse, J.; Bisseling, T.

    1987-01-01

    In vitro translation products of total RNA isolated from soybean nodules at successive stages of nodule development were analyzed by two-dimensional gel electrophoresis. In that way the occurrence of over 20 mRNAs specifically transcribed from nodulin genes was detected. The nodulin genes could be

  5. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies.

    Science.gov (United States)

    Ohnesorg, Wayne J; Johnson, Kevin D; O'Neal, Matthew E

    2009-10-01

    Insect predators in North America suppress Aphis glycines Matsumura (Hemiptera: Aphididae) populations; however, insecticides are required when populations reach economically damaging levels. Currently, insecticides used to manage A. glycines are broad-spectrum (pyrethroids and organophosphates), and probably reduce beneficial insect abundance in soybean, Glycine max (L.) Merr. Our goal was to determine whether insecticides considered reduced-risk by the Environmental Protection Agency could protect soybean yield from A. glycines herbivory while having a limited impact on the aphid's natural enemies. We compared three insecticides (imidacloprid, thiamethoxam, and pymetrozine,) to a broad-spectrum insecticide (lamda-cyhalothrin) and an untreated control using two application methods. We applied neonicotinoid insecticides to seeds (imidacloprid and thiamethoxam) as well as foliage (imidacloprid); pymetrozine and lamda-cyhalothrin were applied only to foliage. Foliage-applied insecticides had lower A. glycines populations and higher yields than the seed-applied insecticides. Among foliage-applied insecticides, pymetrozine and imidacloprid had an intermediate level of A. glycines population and yield protection compared with lamda-cyhalothrin and the untreated control. We monitored natural enemies with yellow sticky cards, sweep-nets, and direct observation. Before foliar insecticides were applied (i.e., before aphid populations developed) seed treatments had no observable effect on the abundance of natural enemies. After foliar insecticides were applied, differences in natural enemy abundance were observed when sampled with sweep-nets and direct observation but not with yellow sticky cards. Based on the first two sampling methods, pymetrozine and the foliage-applied imidacloprid had intermediate abundances of natural enemies compared with the untreated control and lamda-cyhalothrin.

  6. Soybean (Glycine max) oil bodies and their associated phytochemicals.

    Science.gov (United States)

    Fisk, Ian D; Gray, David A

    2011-01-01

    Soybean oil bodies were isolated from 3 cultivars (Ustie, K98, and Elena) and the occurrence of 2 classes of phytochemicals (tocopherol isoforms and isoflavones) and strength of their association with isolated oil bodies was evaluated. Tocopherol is shown to be closely associated with soybean oil bodies; δ-tocopherol demonstrated a significantly greater association with oil bodies over other tocopherol isoforms. Isoflavones do not show a significant physical association with oil bodies, although there is some indication of a passive association of the more hydrophobic aglycones during oil body isolation. Oil bodies are small droplets of oil that are stored as energy reserves in the seeds of oil seeds, and have the potential to be used as future food ingredients. If oil body suspensions are commercialized on a large scale, knowledge of the association of phytochemicals with oil bodies will be valuable in deciding species of preference and predicting shelf life and nutritional value. © 2011 Institute of Food Technologists®

  7. Inheritance and molecular mapping of an allele providing resistance to Cowpea mild mottle virus-like symptoms in soybean

    Science.gov (United States)

    Damage to soybean [Glycine max (L.) Merr.] from Cowpea mild mottle virus-like (CPMMV-L) symptoms (family: Betaflexiviridae, genus: Carlavirus) has been of increasing concern in Argentina, Brazil, Mexico, and Puerto Rico. Soybean cultivars and lines differing in their reaction to the virus have been ...

  8. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02.

    Science.gov (United States)

    Fu, Gui-Ming; Chen, Yan; Li, Ru-Yi; Yuan, Xiao-Qiang; Liu, Cheng-Mei; Li, Bin; Wan, Yin

    2017-09-14

    Aspergillus oryzae A-F02, a glyphosate-degrading fungus, was isolated from an aeration tank in a pesticide factory. The pathway and rate-limiting step of glyphosate (GP) degradation were investigated through metabolite analysis. GP, aminomethylphosphonic acid (AMPA), and methylamine were detected in the fermentation liquid of A. oryzae A-F02, whereas sarcosine and glycine were not. The pathway of GP degradation in A. oryzae A-F02 was revealed: GP was first degraded into AMPA, which was then degraded into methylamine. Finally, methylamine was further degraded into other products. Investigating the effects of the exogenous addition of substrates and metabolites showed that the degradation of GP to AMPA is the rate-limiting step of GP degradation by A. oryzae A-F02. In addition, the accumulation of AMPA and methylamine did not cause feedback inhibition in GP degradation. Results showed that degrading GP to AMPA was a crucial step in the degradation of GP, which determines the degradation rate of GP by A. oryzae A-F02.

  9. 75 FR 17566 - Flutolanil; Pesticide Tolerances

    Science.gov (United States)

    2010-04-07

    ... ppm, and the greater tolerance value is needed to accommodate indirect residues from soybean..., and soybean hay at 2.5 ppm are being revoked since the same tolerance values are being established...; Pesticide Tolerances AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: This...

  10. Herbicide Glyphosate Impact to Earthworm (E. fetida

    Directory of Open Access Journals (Sweden)

    Greta Dajoraitė

    2016-10-01

    Full Text Available Glyphosate is a broad spectrum weed resistant herbicide. Glyphosate may pose negative impact on land ecosystems because of wide broad usage and hydrofilic characteristic. The aim of this study was to investigate negative effects of glyphosate on soil invertebrate organisms (earthworm Eisenia fetida. The duration of experiment was 8 weeks. The range of the test concentrations of glyphosate were: 0,1, 1, 5, 10, 20 mg/kg. To investigate the glyphosate impact on earthworm Eisenia fetida the following endpoints were measured: survival, reproduction and weight. The exposure to 20 mg/kg glyphosate has led to the 100% mortality of earthworms. Glyphosate has led to decreased E. fetida reproduction, the cocoons were observed only in the lowest concentration (0,1 mg/kg. In general: long-term glyphosate toxicity to earthworms (E. fetida may be significant.

  11. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    Science.gov (United States)

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  12. Genome Sequence of the Palaeopolyploid soybean

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  13. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  14. Soybean (Glycine max L.) N-Turnover Effects on Sustainable Agriculture

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    on account of its exceptional food value. Nowadays of planted area, it comes fifth after wheat, rice, maize and barley. World soya production is twice as great as that of all other grain legumes. It is a legume able to fix the atmospheric nitrogen it needs for growth through the agency of specific (Rhisobium japonicum) bacteria (Haberlandt 1878, Kurnik et al. 1987, Bódis et al. 1988). Soya is an exelent preparatory crop. It improves soil structure, it leaves considerable residues of nitrogen for the following crop (Walter et al. 1970, Marcus-Wuner 1983, Márton et al. 1990, Németh 1995): it is a first-class entry for winter wheat. It is harvested in good time to allow cultivations for winter wheat and also leaves the ground in good condition for direct drilling. It is a good break crop in cereal rotations, limiting the build-up of fungal diseases. Soya is a reliable crop, tolerant of temporary water excess, more tolerant of cold than sorghum at shooting and flowering and it is more drought resistant than maize. Soya is demanding crop and responds well to physical and chemical soil improvement. The grain of present-day varieties contains on average 40-43 % protein and 21 % oil in dry matter. The various uses for soybeans can be summarised thus: a; whole grain, ground or unground after cooking, for human and animal foods, b; oil in human nutrition, c; special oilseed cakes for human diet (low-fat flour) and on a larger scale, for animal nutrition as a complement to forages and cereals. In the subject of much soybean research has been to find means of improving yields (Norman 1963, Walter et al. 1970, Caldwell 1973, Hinson and Hartwig 1977, Mengel and Kirkby 1982, Marcus-Wuner 1983, Márton et al. 1990, Németh 1995). Among the means for yield improvement fertilizers (nitrogen) occupy a prime position. The nitrogen is indispensable to the plant, being a yield and an essential constituent of amino acids, proteins and nucleic acids (Fauconnier 1986). Soya uses some 300

  15. Association mapping of soybean seed germination under salt stress.

    Science.gov (United States)

    Kan, Guizhen; Zhang, Wei; Yang, Wenming; Ma, Deyuan; Zhang, Dan; Hao, Derong; Hu, Zhenbin; Yu, Deyue

    2015-12-01

    Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection.

  16. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.

    Science.gov (United States)

    Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.

  17. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  18. New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems.

    Science.gov (United States)

    Vera, María S; Lagomarsino, Leonardo; Sylvester, Matías; Pérez, Gonzalo L; Rodríguez, Patricia; Mugni, Hernán; Sinistro, Rodrigo; Ferraro, Marcela; Bonetto, Carlos; Zagarese, Horacio; Pizarro, Haydée

    2010-04-01

    Argentina is the second largest world producer of soybeans (after the USA) and along with the increase in planted surface and production in the country, glyphosate consumption has grown in the same way. We investigated the effects of Roundup (glyphosate formulation) on the periphyton colonization. The experiment was carried out over 42 days in ten outdoor mesocosms of different typology: "clear" waters with aquatic macrophytes and/or metaphyton and "turbid" waters with great occurrence of phytoplankton or suspended inorganic matter. The herbicide was added at 8 mg L(-1) of the active ingredient (glyphosate) in five mesocosms while five were left as controls (without Roundup addition). The estimate of the dissipation rate (k) of glyphosate showed a half-life value of 4.2 days. Total phosphorus significantly increased in treated mesocosms due to Roundup degradation what favored eutrophication process. Roundup produced a clear delay in periphytic colonization in treated mesocosms and values of the periphytic mass variables (dry weight, ash-free dry weight and chlorophyll a) were always higher in control mesocosms. Despite the mortality of algae, mainly diatoms, cyanobacteria was favored in treated mesocosms. It was observed that glyphosate produced a long term shift in the typology of mesocosms, "clear" turning to "turbid", which is consistent with the regional trend in shallow lakes in the Pampa plain of Argentina. Based on our findings it is clear that agricultural practices that involve the use of herbicides such as Roundup affect non-target organisms and the water quality, modifying the structure and functionality of freshwater ecosystems.

  19. A New Race (X12) of Soybean Cyst Nematode in China.

    Science.gov (United States)

    Lian, Yun; Guo, Jianqiu; Li, Haichao; Wu, Yongkang; Wei, He; Wang, Jinshe; Li, Jinying; Lu, Weiguo

    2017-09-01

    The soybean cyst nematode (SCN), Heterodera glycines , is a serious economic threat to soybean-producing regions worldwide. A new SCN population (called race X12) was detected in Shanxi province, China. Race X12 could reproduce on all the indicator lines of both race and Heterodera glycines (HG) type tests. The average number of females on Lee68 (susceptible control) was 171.40 with the lowest Female Index (FI) 61.31 on PI88788 and the highest FI 117.32 on Pickett in the race test. The average number of females on Lee68 was 323.17 with the lowest FI 44.18 on PI88788 and the highest FI 97.83 on PI548316 in the HG type test. ZDD2315 and ZDD24656 are elite resistant germplasms in China. ZDD2315 is highly resistant to race 4, the strongest infection race in the 16 races with FI 1.51 while being highly sensitive to race X12 with FI 64.32. ZDD24656, a variety derived from PI437654 and ZDD2315, is highly resistant to race 1 and race 2. ZDD24656 is highly sensitive to race X12 with FI 99.12. Morphological and molecular studies of J2 and cysts confirmed the population as the SCN H. glycines . This is a new SCN race with stronger virulence than that of race 4 and is a potential threat to soybean production in China.

  20. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  1. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  2. Intercrop performance of different varieties of soybean (Glycine Max ...

    African Journals Online (AJOL)

    ONOS

    2010-12-13

    Dec 13, 2010 ... (TGX 1894-3E, medium maturing variety), gave the highest grain yield of Soybean and fresh tuber yield of cassava at 12MAP,. Key words: ... basic component of cropping systems in many areas of south eastern Nigeria. ... and aquatic environment, increased soil acidity and highly selective transport or ...

  3. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Vauclare, Pierre; Bligny, Richard; Gout, Elisabeth; Widmer, Francois

    2013-01-01

    Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13 C- and 31 P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homo-spermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells. (authors)

  4. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  5. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  6. Secondary effects of glyphosate on plants

    Science.gov (United States)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  7. Comportamento de cultivares de soja [Glycine max (L. Merrill] em resposta ao metribuzin aplicado em diferentes doses Response of soybean [Glycine max (L. Merrill] cultivars to rates of metribuzin

    Directory of Open Access Journals (Sweden)

    J.A.R.O. Velloso

    1980-06-01

    Full Text Available Durante o ano agrícola de 1978/79, foi realizado um experimento a campo, na re gião da Depressão Central do Rio Grande do Sul, com o objetivo de conhecer o comportamento das cultivares de soja BR1, Bragg, Davis, IAS4, IAS5, Paraná e Planalto em relação ao metribuzin aplicado em pré-emergência nas doses de 0, 490 e 980 g/ha. Os efeitos dos tratamentos foram estimados através de avaliação visual de fitotoxicidade, contagem da população de plantas, determinações do peso seco da parte aérea e do número de grãos e obtenção do rendimento de grãos. Para a maioria das variáveis em estudo, constatou-se que ocorreram reduções proporcionais aos acréscimos das doses do herbicida. Os resultados da avaliação visual de fitotoxicidade mostraram que houve diferenças significativas entre os tratamentos de doses, tendo as cultivares Bragg e Davis demonstrado o menor efeito fito-tóxico, enquanto BR1 foi a que apresentou maior grau de injúria. Quanto ao rendimento de grãos alcançado pelas cultivares, foi constatado que Bragg comportou-se como altamente tolerante; BR1 e Davis como moderadamente tolerantes; IAS5 como intermediária e Paraná, Planalto e IAS4 como moderadamente suscetíveis.A field experiment was conducted during the 1978/79 growing season at the Central Depression Region of Rio Grande do Sul, Brazil, in order to evaluate the response soybean cultivars BR1, Bragg, Davis, IAS4, IAS5, Paraná, and Planalto to metribuzin applied in pre-emergence at rates of 0, 490 and 980 g/ha. The effects of the treatments were evaluated through visual rating of phytotoxicity, counting of soybean population, and determinations of dry weight of soybean stems, number of grains per unit area and grain yield. For most of the variables measured there were reductions proportional to increasing rates of metribuzin appl ied. Results of visual evaluation of soybean injury showed statistical differences among rates of the herbicide, being Bragg and

  8. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  9. Dual element ((15)N/(14)N, (13)C/(12)C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS.

    Science.gov (United States)

    Mogusu, Emmanuel O; Wolbert, J Benjamin; Kujawinski, Dorothea M; Jochmann, Maik A; Elsner, Martin

    2015-07-01

    To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even (13)C/(12)C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific (15)N/(14)N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH 10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10-24, greatest yields and accurate (15)N/(14)N ratios were obtained (deviation from elemental analyzer-IRMS: -0.2 ± 0.9% for glyphosate; -0.4 ± 0.7% for AMPA). Limits for accurate δ(15)N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ(15)N and δ(13)C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

  10. SELECTION FOR ALUMINUM TOLERANCE IN TROPICAL SOYBEANS SELEÇÃO PARA TOLERÂNCIA AO ALUMÍNIO EM SOJA TROPICAL

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Copati Souza

    2007-09-01

    Full Text Available

    Soil acidity is a limiting factor for most of the cultivated plants in the Brazilian Savannah. Toxicity caused by aluminum (Al is especially serious in the acid subsurface, which remains acidic after soil has been amended, by hindering root growth and causing drought susceptibility and nutritional unbalance. This research aimed at selecting soybean with increased tolerance to Al through association of hydroponics and field experiments. Crosses including savannah adapted genotypes were obtained. Seeds of contrasting individuals, selected in hydroponics at F2 generation for root growth, were obtained for progeny evaluation at F3, in the field, and at F4 in hydroponics. Grain production and total dry matter of selected progenies were superior to the parentals, in the acid soil experiment. These results were confirmed by performance in hydroponics, indicating the method may be successfully employed in breeding programs for crop adaptation to subsurface acid soil conditions.

    KEY-WORDS: Subsurface acidity; Glycine max; Al stress; plant breeding.

    A acidez do solo é fator limitante para a maioria das plantas cultivadas no Cerrado Brasileiro. A toxidez causada por alumínio (Al é especialmente séria na subsuperfície, que permanece ácida após o uso de corretivos, por impedir o crescimento radicular e causar suscetibilidade à seca e desbalanceamento nutricional. Aqui objetivou-se a seleção de genótipos de soja com maior tolerância ao Al, pela associação de experimentos em hidroponia e no campo. Cruzamentos incluindo genótipos selecionados no Cerrado foram realizados. Sementes de indivíduos contrastantes, selecionados em hidroponia na geração F2 pelo crescimento radicular, foram obtidas para avaliação de progênies em F3, no campo, e em F4, novamente em hidroponia

  11. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  12. Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics

    Directory of Open Access Journals (Sweden)

    Hajime eOhyanagi

    2012-05-01

    Full Text Available The Soybean Proteome Database (SPD was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei proteins collected from several organs, tissues and organelles including the maps for plasma membrane, cell wall, chloroplast and mitochondrion, which were electrophoresed on two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. An omics table also has been provided to reveal relationships among mRNAs, proteins and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of multiple omes in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean/.

  13. Electronic tongue system to evaluate flavor of soybean (Glycine Max (L. Merrill genotypes

    Directory of Open Access Journals (Sweden)

    Sandra Maria Zoldan

    2014-10-01

    Full Text Available An electronic tongue system was tested as a fast and efficient analytical tool for flavor evaluation of soybean genotypes. Grain samples of 25 soybean lines were analyzed using 0.25 g of milled samples added to 100 mL of distilled water and mixing for one minute on a magnetic stirrer. An aliquot (50 mL from the filtered liquid was used for the analysis on a pre-fixed frequency of 1 kHz and alternate tension of 50 mV. Two analyses were conducted in a complete randomized design with three replicates. Electrical response (capacitance of eight polymeric chemical sensors used to analyze the soybean lines were submitted to Principal Component Analysis (PCA. In the spatial distribution of the PCA graphic, the lines close to each other were similar, while the distant ones showed different characteristics. The electronic tongue system was efficient in discriminating flavor of soybean lines.

  14. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  15. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing.

    Science.gov (United States)

    Tian, Bin; Wang, Shichen; Todd, Timothy C; Johnson, Charles D; Tang, Guiliang; Trick, Harold N

    2017-08-02

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.

  16. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    Science.gov (United States)

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  17. Analysis of resource use efficiency among soybean ( Glycine max ...

    African Journals Online (AJOL)

    Also, 87.5% of the farmers were in their active age, and 81.7% utilized their personal saving as a major source of finance for production. The result of the production function analysis indicated that 87.21% of the variation in the output of soybean is explained for by the independent variables. Resource-use efficiency ...

  18. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Yungang Xu

    Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional

  19. The soybean and mungbean improvement programs at AVRDC

    International Nuclear Information System (INIS)

    Shanmugasundaram, S.; Ahn, G.S.

    1983-01-01

    At the Asian Vegetable Research and Development Center (AVRDC) Soybean, Glycine max (L.) Merr. and mungbean, Vigna radiata (L.) Wilczek are included in the Legume Program for improvement. Germplasm collection in soybean and mungbean are 9,524 and 5,108 respectively. Developing improved selections with early, uniform maturity, high yield, wide adaptability and resistance to diseases and insects are the major breeding objectives for the tropics and subtropics. Genetic diversity and genetic resources are available in the germplasm for most of the desired traits both in soybean as well as mungbean. However, for traits such as soybean rust resistance in soybean and resistance to insects in mungbean are rare. Limited amount of radiation breeding is being employed in cooperation with Korean Atomic Energy Agency to obtain desirable genes in both species. A number of AVRDC identified accessions and breeding lines are being used by the national programs to develop improved cultivars. AVRDC developed breeding selections have been released as new cultivars in Costa Rica, Fiji, Korea, India, Indonesia, Malaysia and Taiwan. (author)

  20. Drought stress responses in soybean roots and nodules

    Directory of Open Access Journals (Sweden)

    Karl Kunert

    2016-07-01

    Full Text Available Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.

  1. Drought Stress Responses in Soybean Roots and Nodules.

    Science.gov (United States)

    Kunert, Karl J; Vorster, Barend J; Fenta, Berhanu A; Kibido, Tsholofelo; Dionisio, Giuseppe; Foyer, Christine H

    2016-01-01

    Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.

  2. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  3. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    Science.gov (United States)

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  4. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis

    Science.gov (United States)

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...

  5. Glyphosate-Degrading Microorganisms from Industrial Activated Sludge

    OpenAIRE

    Balthazor, Terry M.; Hallas, Laurence E.

    1986-01-01

    A plating medium was developed to isolate N-phosphonomethylglycine (glyphosate)-degrading microorganisms, with glyphosate as the sole phosphorus source. Two industrial biosystems treating glyphosate wastes contained elevated microbial counts on the medium. One purified isolate metabolized glyphosate to aminomethylphosphonic acid, mineralizing this accumulating intermediate during log growth. This microorganism has been identified as a Flavobacterium species.

  6. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings

    Science.gov (United States)

    Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.

    2018-01-01

    Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.

  7. Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.

    Science.gov (United States)

    McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula

    2017-08-16

    Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.

  8. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    Science.gov (United States)

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.

  9. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.

    Science.gov (United States)

    Pérez, Débora J; Okada, Elena; De Gerónimo, Eduardo; Menone, Mirta L; Aparicio, Virginia C; Costa, José L

    2017-12-01

    In the present study, we evaluated the spatial and temporal trends of current-use pesticides in surface water and sediments as well as their relationship with hydrological stream dynamics within the agricultural watershed of El Crespo stream (Buenos Aires Province, Argentina). We sampled 2 contrasting sites: site 1 (upstream), surrounded by agricultural lands, and site 2 (downstream), surrounded by natural grasslands. Most of the applied pesticides (glyphosate, 2,4-D, atrazine, tebuconazole, and imidacloprid) were detected at high frequencies in surface water samples at both sites. However, only glyphosate and aminomethylphosphonic acid (AMPA) were present at high concentrations and had a significant spatial-temporal trend. The highest concentrations were found during spring 2014 at site 1, in association with the intense rains that occurred in that season. The fact that glyphosate and AMPA concentrations were higher than the rest of the studied compounds is closely related to the land use within the watershed, as glyphosate was the most applied herbicide during the fallow period of glyphosate-resistant crops (soybean, maize). The pesticide mixture had a significant spatial-temporal trend, reaching the highest levels during storm flow events in spring 2014. The intensive rains in spring 2014 could be the main factor influencing stream hydrology and pesticide behavior at El Crespo watershed. The estimated annual pesticide losses were 3.11 g/ha at site 1 and 0.72 g/ha at site 2. This result indicates that an attenuation process could be decreasing pesticide loads during downstream transport from site 1 to site 2. Environ Toxicol Chem 2017;36:3206-3216. © 2017 SETAC. © 2017 SETAC.

  10. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    Science.gov (United States)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  11. Integrating winter camelina into maize and soybean cropping systems

    Science.gov (United States)

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  12. Water deficiency at different developmental stages of Glycine max can improve drought tolerance Deficiência hídrica em diferentes estágios de desenvolvimento de soja pode aumentar a tolerância à seca

    Directory of Open Access Journals (Sweden)

    Alan Panaia Kron

    2008-01-01

    Full Text Available Developmental windows are specific periods of sensitivity during normal plant development in which a perturbation may be adaptively integrated. In these periods, sub-lethal environmental perturbations may improve the capacity to grow at lethal conditions. The aim of this study was to test the hypothesis that previous non-lethal water deficit applied in different developmental stages in soybean plants could enables them to improve the tolerance to environmental perturbations. In order to test this hypothesis we carried out an experiment with soybean plants submitted to water deficit in different stages of plant development, evaluating yield and physiological aspects. Our results indicated that water deficit experienced on V4 stage (vegetative induces more suitable response, enabling plants to develop a process of tolerance improvement to a further water shortage period, probably through a reduction of growth, which maintains a conservative strategy of energy use. On the other hand, water deficit in R1 stage (reproductive, increased the plant susceptibility to posterior water withholding. This " strategy" was the opposite of the one employed by plants on V4 stage, i.e., to maintain growth rate probably at the expense of a higher energetic cost.Janelas de desenvolvimento são períodos específicos durante o ciclo de vida das plantas em que uma perturbação ambiental pode ser incorporada através de um processo de adaptação. Nesses períodos, perturbações ambientais subletais podem capacitar as plantas a crescer em condições letais. O objetivo deste trabalho foi testar a hipótese de que plantas de soja (Glycine max submetidas à deficiência hídrica não-letal em diferentes estágios de seu desenvolvimento poderiam otimizar sua tolerância a estresses ambientais posteriores. Para testar essa hipótese, foi conduzido um experimento com plantas de soja submetidas à deficiência hídrica em diferentes estágios de desenvolvimento, avaliando

  13. Soybean (Glycine max L. Response to Fungicides in the Absence of Disease Pressure

    Directory of Open Access Journals (Sweden)

    W. James Grichar

    2013-01-01

    Full Text Available Field studies were conducted during the 2010 and 2011 growing seasons along the Texas Upper Gulf Coast region to study the effects of fungicides on soybean disease development and to evaluate the response of four soybean cultivars to prothioconazole plus trifloxystrobin and pyraclostrobin. In neither year did any soybean diseases develop enough to be an issue. Only NKS 51-T8 responded to a fungicide treatment in 2010 while HBK 5025 responded in 2011. Prothioconazole plus trifloxystrobin increased NKS 51-T8 yield by 23% in 2010 while in 2011 the yield of HBK 5025 was increased 14% over the unsprayed check. No yield response was noted with pyraclostrobin on any soybean cultivar. Only prothioconazole + trifloxystrobin applied to either NKS 51-T8 or DP5335 in 2010 resulted in a net increase in dollars per hectare over the unsprayed check of the respective cultivar. In 2011, under extremely dry conditions, all fungicides with the exception of prothioconazole + trifloxystrobin applied to HBK 5025 resulted in a net decrease in returns over the unsprayed check.

  14. Phosphorus-31, 15N, and 13C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    International Nuclear Information System (INIS)

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A.

    1989-01-01

    The herbicidal dead-end ternary complex (E S3P Glyph ) of glyphosate [N-(phosphonomethyl)glycine] with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by 31 P, 15 N, and 13 C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts (δ) for each of the three nuclei. By 31 P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The 13 C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The 15 N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the 31 P δ and the C-P-O bond angle, and the 13 C and 15 N δ values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield 31 P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P 31 P δ vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E S3P binary complex, while the E S3P Glyph complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle

  15. Effects of gamma ray irradiation on early growth of soybean (Glycine mac (L). Merrill)

    International Nuclear Information System (INIS)

    Lilik Harsanti; Yulidar

    2015-01-01

    Increase my in domestic soybean production is one of the government's program to reduce dependence on imported soybeans and soybean efforts to achieve self-sufficiency in 2015. An experiment has been conducted to study the effects of gamma ray irradiation of of 60 Cobalt on early growth of soybean seed. Variety Denna 2 varieties have been irradiated by gamma rays with 0 Gy, 200 Gy, 300 Gy, 400 Gy doses, and then planted in green house on Ps Jumat PAIR-BATAN. Plant growth from each doses is proved to be varied. From germination viability on the third day, the highest percentage of seedling with leaves is on 100 Gy dose (73.75%), and 7, 14 and 21 day the lowest is on dose 400 Gy. (author)

  16. Resposta de plantas de beterraba (Beta vulgaris e de cenoura (Daucus carota à deriva simulada de glyphosate e clomazone Response of beetroot (Beta vulgaris and carrot (Daucus carota to simulated glyphosate and clomazone drift

    Directory of Open Access Journals (Sweden)

    R.P. Rogoli

    2008-06-01

    Full Text Available Várias espécies de hortaliças são de muita importância para a alimentação humana e tornam-se alvos da deriva de herbicidas, pois comumente são cultivadas nas proximidades de culturas como arroz, soja e milho, pulverizadas com esses produtos. Neste trabalho, objetivou-se verificar possíveis efeitos de doses reduzidas dos herbicidas glyphosate e clomazone sobre plantas de beterraba (Beta vulgaris e de cenoura (Daucus carota, em diferentes fases de desenvolvimento. As doses avaliadas dos herbicidas foram de 0, 5, 10, 15 e 20% da dose recomendada, equivalentes a 0, 63, 126, 189 e 252 g ha-1 de glyphosate e 0, 14,4, 28,8, 43,2 e 57,6 g ha-1 de clomazone, respectivamente, aplicadas aos 20, 30 e 40 dias após a emergência das culturas. Observou-se aumento no percentual de fitotoxicidade do glyphosate com o incremento na dose do herbicida, e a maior suscetibilidade ocorreu com a deriva nos estádios mais precoces, em ambas as espécies. As doses de clomazone não causaram qualquer sintoma detectável visualmente para as plantas de beterraba e de cenoura. Os resultados sugerem que o herbicida glyphosate causa injúrias às plantas de beterraba e cenoura, independentemente do estádio em que ocorre a interceptação do produto. No entanto, o herbicida clomazone não interfere no desenvolvimento inicial de plantas de beterraba e cenoura.Herbicide drift over horticultural crops is a common problem in the state of Rio Grande do Sul, mainly in areas near rice, soybean and corn fields. The objective of this research was to evaluate glyphosate and clomazone drift effects on beetroot (Beta vulgaris and carrot (Daucus carota plants. The herbicides were sprayed at three different growth stages: 20, 30 and 40 days after seedling emergence. Herbicide rates evaluated were 0, 5, 10, 15, and 20% of the label rate. The sprayed rates were 0, 63, 126, 189 and 252 g ha-1 of glyphosate and 0.0, 14.4, 28.8, 43.2 and 57.6 g ha-1 of clomazone. Glyphosate injury to

  17. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhang Yanwei

    2013-02-01

    Full Text Available Abstract Background SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. Results In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1 encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY; Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. Conclusions In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the

  18. Energy issues affecting corn/soybean systems: Challenges for sustainable production

    Science.gov (United States)

    Quantifying energy issues associated with agricultural systems, even for a simple two-crop corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) rotation, is not a simple task. It becomes even more complicated if the goal is to include all aspects of sustainability (i.e., economic, environmental, ...

  19. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  20. Two-year oscillation cycle in abundance of soybean aphid in Indiana

    Czech Academy of Sciences Publication Activity Database

    Rhainds, M.; Yoo, H. J. S.; Kindlmann, Pavel; Voegtlin, D.; Castillo, D.; Rutledge, C.; Sadof, C.; Yaninek, S.; O'Neil, R. J.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 251-257 ISSN 1461-9555 Institutional research plan: CEZ:AV0Z60870520 Keywords : Aphididae * Aphis glycines * autumn migration * Hemiptera * heteroecy * Rhamnus * seesaw effect * soybean aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.484, year: 2010

  1. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    Science.gov (United States)

    Chiasson, David M; Loughlin, Patrick C; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D M; Smith, Sally E; Bisseling, Ton; Tyerman, Stephen D; Day, David A; Kaiser, Brent N

    2014-04-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.

  2. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  3. Structural Basis of Glyphosate Resistance Resulting from the Double Mutation Thr97 → Ile and Pro101 → Ser in 5-Enolpyruvylshikimate-3-phosphate Synthase from Escherichia coli*S⃞

    Science.gov (United States)

    Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst

    2009-01-01

    The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (Ki = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (Km = 0.1 mm). The crystal structure at 1.7-Å resolution revealed that the dual mutation causes a shift of residue Gly96 toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile97 points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr97 and Pro101 induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS. PMID:19211556

  4. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  5. CULTIVAR RELEASE-BRS 217 Flora: Early-maturing soybean cultivar

    Directory of Open Access Journals (Sweden)

    Plínio Itamar de Mello de Souza

    2008-01-01

    Full Text Available The soybean (Glycine max L. Merr. cultivar BRS 217 Flora was developed by Embrapa and released forproduction in the states of Goiás, Minas Gerais, Bahia, Mato Grosso and the Distrito Federal, Brazil. It is resistant to stemcanker, frog-eye leaf spot, bacterial pustule, and partially resistant to powdery mildew.

  6. Effects of Methanol Spraying on Qualitative traits, Yield and Yield Components of Soybean (Glycine max L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    J Esazadeh Panjali Kharabasi

    2017-12-01

    Full Text Available Introduction Soybean (Glycin max L. is one of the most important oilseed crops in the world. It can provide oil and vegetable protein suitable for feeding humans as well as animals. The productivity Increasing of this crop in Iran has been the subject of continuous investigation over the past few years. It is well known that adequate water supply is considered as a very important factor to affect the accumulation of dry matter in the plant as well as vegetative growth of most crops. Irrigation is an important factor affecting soybean growth and yield and its related components. Exposing soybean plants to soil moisture stress at any phase of its life cycle may lead to a detrimental effect on growth, yield and its components. The methanol spraying can lead to increase in yield, expediting in maturity and reduction in drought stress impacts and water requirement of crops. Material and Methods The experiment was conducted as split plots based on randomized complete block design with three replications at the Research Farm, Faculty of Agriculture of Moghan, Iran, in 2011. Treatments included three levels of drought stress as follows irrigation after, 40 (control, 55 and 70 percentage of available soil moisture depletion as main plots, and four levels of methanol spraying including 0 (control, 7, 21 and 35 volumetric percentage as sub plots. The studied traits were included plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents. Statistical analysis was carried out using SAS version 9.1 software. Significant difference was set at p ≤ 0.05 by using Duncan’s multiple range test. Results and Discussion The results showed that the plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents as well as number of leaf per plant significantly affected by drought stress and methanol

  7. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Glyphosate: too much of a good thing?

    Directory of Open Access Journals (Sweden)

    Marek eCuhra

    2016-04-01

    Full Text Available Although previously accepted as the less toxic alternative, with low impact on animals, farmers as well as consumers who are exposed to residues in food, glyphosate chemicals are now increasingly controversial as new evidence from research is emerging. We argue that specific aspects of the history, chemistry and safety of glyphosate and glyphosate-based herbicides should be thoroughly considered in present and future re-evaluations of these dominant agrochemicals:· Glyphosate is not a single chemical, it is a family of compounds with different chemical, physical and toxicological properties.· Glyphosate is increasingly recognized as having more profound toxicological effects than assumed from previous assessments.· Global use of glyphosate is continuously increasing and residues are detected in food, feed and drinking water. Thus, consumers are increasingly exposed to higher levels of glyphosate residues, and from an increasing number of sources.· Glyphosate regulation is predominantly still based on primary safety-assessment testing in various indicator organisms. However, archive studies indicate fraud and misbehavior committed by the commercial laboratories providing such research.We see emerging evidences from studies in test-animals, ecosystems indicators and studies in human health, which justify stricter regulatory measures. This implies revising glyphosate residue definitions and lowering Maximum Residue Limits (MRLs permissible in biological material intended for food and feed, as well as strengthening environmental criteria such as accepted residue concentrations in surface waters.It seems that although recent research indicates that glyphosates are less harmless than previously assumed and have complex toxicological potential, still regulatory authorities accept industry demands for approving higher levels of these residues in food and feed.

  9. Foliar Desiccators Glyphosate, Carfentrazone, and Paraquat Affect the Technological and Chemical Properties of Cowpea Grains.

    Science.gov (United States)

    Lindemann, Igor da Silva; Lang, Gustavo Heinrich; Hoffmann, Jessica Fernanda; Rombaldi, Cesar Valmor; de Oliveira, Maurício; Elias, Moacir Cardoso; Vanier, Nathan Levien

    2017-08-16

    The effects of the use of glyphosate (GLY), glyphosate plus carfentrazone (GLY/CAR), and paraquat (PAR) as plant desiccators on the technological and chemical properties of cowpea grains were investigated. All studied desiccants provided lower cooking time to freshly harvested cowpea. However, the coat color of PAR- and GLY/CAR-treated cowpea was reddish in comparison to the control treatment. Principal component analysis (PCA) from liquid chromatography-mass spectrometry (LC-MS) data sets showed a clear distinction among cowpea from the different treatments. Catechin-3-glucoside and epicatechin significantly contributed for discriminating GLY-treated cowpea, while citric acid was responsible for discriminating GLY/CAR-treated cowpea. Quercetin derivative and gluconic acid were responsible for discriminating control treatment. Residual glyphosate and paraquat content was higher than the maximum limits allowed by Codex Alimentarius and the European Union Commission. Improvements in the technological and chemical properties of cowpea may not be overlapped by the risks that those desiccants exhibit when exceeding the maximum limits of tolerance in food.

  10. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  11. Location, Root Proximity, and Glyphosate-use History Modulate the Effects of Glyphosate on Fungal Community Networks of Wheat

    Science.gov (United States)

    Glyphosate is the most-used herbicide worldwide and an essential tool for weed control in no-till cropping systems. However, concerns have been raised regarding the long-term effects of glyphosate on soil microbial communities. We examined the impact of repeated glyphosate application on bulk and rh...

  12. SEED VIGOR TESTING OF SOME DOMESTIC SOYBEAN CULTIVARS (Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Luka Andrić

    2004-12-01

    Full Text Available Seed ageing is an important cause of low vigor and bad field emergence, especially in adverse seedbed conditions. Therefore, in this investigation, soybean seed vigor was tested by four laboratory tests (germination energy GE, standard germination SG, cold test CT, electrical conductivity EC and in field trial, as well (early planting dates Epd and optimal planting dates Opd. The soybean seed of 5 cultivars from Agricultural Institute Osijek, produced in the 3 years (1999., 2000., 2001. was used in the investigation. The seed was stored in a warehouse conditions for 6, 18 or 30 months prior to testing. Tested soybean seed showed significant differences in seed vigor influenced by seed age, seed treatment with fungicide (Vitavax 200 FF, cultivar and planting date. High quality seed with GE and SG over 85%,performed quite well in both planting dates, as well as seeds with the CT over 70% or with EC under 42 μScm-1g-1. On the contrary, considering seed with reduced vigor there is a very great possibility of reduced FE especially in Epd. However, seed treatment with fungicide and sowing in optimal seedbed conditions can significantly contribute to improvement of soybean seed performance and stand establishment. Correlation analyses showed that all tested seed vigor parameters were significantly connected (sign. level 99%. At early planting, the strongest correlation was established between the field emergence and CT (untreated seed, r=0.949** and for treated seed r=0.951** whereas in optimal planting date was between the field emergence and SG (for untreated seed r=0. 938** and for treated seed r=0.942**. Laboratory seed health testing showed significant differences in fungal disease intensity influenced by fungicide seed treatment, cultivar and seed age. Total seed infection and infection with Fusarium spp. was adversely correlated with all vigor parameters. All tested vigor parameters of soybean seed had influence on grain yield indirectly by

  13. 135 - 146 Effect of Different Levels of Soybean /Glycine Max

    African Journals Online (AJOL)

    USER

    sheep were blocked into six blocks of four animals based on initial body weight and ... sheep on natural pasture hay supplemented with 375 g/day soybean meal .... sheep were made to fast for 12 hours and slaughtered ...... Swedish University of Agricultural sciences. ... Synthesis of working papers, Soil Science Bulletin.

  14. Ncl Synchronously Regulates Na+, K+, and Cl- in Soybean and Greatly Increases the Grain Yield in Saline Field Conditions.

    Science.gov (United States)

    Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe

    2016-01-08

    Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.

  15. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    OpenAIRE

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that ...

  16. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  17. Influence of planting date on seed protein oil sugars minerals and nitrogen metabolism in soybean under irrigated and non-irrigated enviroments

    Science.gov (United States)

    Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, o...

  18. Effect of the nitrogen fertilizer type on the enzyme activity in the rhizosphere of calcic chernozem and soybean production

    Science.gov (United States)

    Emnova, E. E.; Daraban, O. V.; Bizgan, Ya. V.; Toma, S. I.; Vozian, V. I.; Iacobuta, M. D.

    2015-05-01

    Three varieties (Aura, Magie, and Indra) of soybean ( Glycine max [L.] Merr.) were grown in a small-plot experiment on a calcic chernozem with the application of two types of nitrogen fertilizers: ammonium nitrate (Nan) or carbamide (Nc). These fertilizers at the rate of 20 kg N/ha were applied before sowing together with potassium phosphate (60 kg P2O5/ha). The microbial nitrification capacity and the activity of enzymes related to the nitrogen cycle (urease and nitrate reductase) were measured in the rhizosphere (0-20 cm) at the stage of soybean flowering. It was determined that the biological (enzyme) activity of the calcic chernozem in the soybean rhizosphere was more intense on the plots with the Nan fertilizer than on the plots with the Nc fertilizer. The urease activity depended on the type of nitrogen fertilizer (Nan or Nc) under the conditions of soil water deficiency. In the soil under the Aura variety, the urease activity was significantly lower in the treatments with Nc application, and this was accompanied by a decrease in the crop yield. The nitrification capacity of the calcic chernozem was generally low; in the case of the Nc fertilizer, it was significantly lower than in the case of the Nan fertilizer. The nitrate reductase activity of the soil was also lower in the case of the Nc fertilizer. Each of the three soybean varieties had its own response to changes in the nitrogen nutrition aimed at improving the soybean tolerance to fluctuations in the soil water content during the growing season.

  19. KARAKTER FENOTIP KEDELAI (Glycine max (L. Merr. HASIL POLIPLOIDISASI DENGAN KOLKISIN

    Directory of Open Access Journals (Sweden)

    Irma Nofitahesti

    2016-12-01

    Full Text Available Abstract - Soybean (Glycine max (L. Merr is one of the most important food commodity to fulfill the protein necessity in Indonesia. Although Indonesia has many prime soybean seeds, it cannot fulfill the whole need of soybean and always rely on soybean import. This problem can be solved by increasing the quality and productivity of prime soybean seed by polyploidization with colchicine. This research aimed to study ploidy level and phenotype characters of Anjasmoro soybean which was induced by colchicine. The phenotype characters in this research were stomata size, plant height, total pod in one plant, total seed in one plant, weight of 100 seeds, flowering time, and ripening time of soybean. The ploidy level was analyzed with flow cytometry methode. The data was analyzed with one way ANOVA and Duncan test in SPSS 22 program. The result of this research showed that Anjasmoro soybean did not successfully induced by colchicine using concentration 0.01%, 0.02%, 0.025%, 0.05%, 0.075%, 0.1%, 0.15%, 0.2%, and 0.25% with duration of treatment 6, 8, 10, 12, 16, 18, and 24 hours. The treatment with colchicine concentration 0.01% and 0.02% with duration of treatment 10 hours effected the increasing of stomata size, the plant height, and the weight of 100 seeds.Key words : Soybean, polyploidization, colchicine, phenotypeAbstrak - Kedelai (Glycine max (L. Merr merupakan salah satu komoditas pangan penting sebagai sumber protein nabati yang kebutuhannya selalu mengalami peningkatan di Indonesia. Meskipun saat ini Indonesia memiliki banyak varietas kedelai unggul, namun Indonesia masih belum mampu mencukupi kebutuhan kedelai nasional sehingga terus bergantung pada impor kedelai. Permasalahan ini dapat diatasi dengan meningkatkan kualitas dan produktivitas varietas kedelai unggul yang sudah ada melalui teknik poliploidisasi dengan kolkisin. Penelitian ini bertujuan untuk mengetahui derajat ploidi dan karakter fenotip pada kedelai Anjasmoro yang diinduksi dengan

  20. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  1. Lethal and sublethal effects of glyphosate (roundup active) to embryos of colombian anurans

    International Nuclear Information System (INIS)

    Triana Velasquez, Teofila Maria; Montes Rojas, Claudia; Bernal Bautista, Manuel Hernando

    2013-01-01

    Glyphosate is an herbicide widely used in agriculture, which may affect non-target species. the aim of this study was to determine the lethal (median lethal concentration - LC 5 0) and sublethal effects (changes on body size and development) of glyphosate (roundup active) to embryos of four anuran species, exposed during 96 hours under laboratory and microcosm tests. under laboratory conditions, engystomops pustulosus was the most tolerant species (LC 5 0 = 3033,18 ?g a.e./L) and rhinella marina was the most sensitive (lc50 = 1421,46 ?g a.e./L), which also showed a delayed development and significantly reduced body size. The other species had an intermediate LC50 (Rhinella humboldti = 2899.54 ?g a.e./L; hypsiboas crepitans = 2151,88 ?g a.e./L). In all cases, the laboratory LC 5 0 was lower than the concentration used in field (5392.92 ?g a.e./L), indicating a high toxic effect. In the microcosm tests, embryos of e. pustulosus were the most tolerant (LC 5 0 = 19,41 kg a.e./ha), while R. humboldti were the most sensitive (LC 5 0 = 10,61 kg a.e./ha). In this case, all four study species had a higher LC 5 0 than the concentration sprayed in field (3,69 kg a.e./ ha), so a lower lethal effect, and there were no significant differences in body size and development. This result shows that the glyphosate, as the commercial presentation roundup active, produce a moderate mortality on anuran embryos.

  2. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  3. Analysis and Characterization of Vitamin B Biosynthesis Pathways in the Phytoparasitic Nematode Heterodera Glycines

    Science.gov (United States)

    Craig, James P.

    2009-01-01

    The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…

  4. Analysis of embryo, cytoplasm and maternal effects on fatty acid components in soybean (Glycine max Merill.)

    Institute of Scientific and Technical Information of China (English)

    NING Hailong; LI Wenxia; LI Wenbin

    2007-01-01

    The quality of oil determined by the constituents and proportion of fatty acid components,and the understanding of heredity of fatty acid components are of importance to breeding good quality soybean varieties.Embryo,cytoplasmic and maternal effects and genotype×environment interaction effects for quality traits of soybean [Glycine max (L.) Merrill.] seeds were analyzed using a general genetic model for quantitative traits of seeds with parents,F1 and F2,of 20 crosses from a diallel mating design of five parents planted in the field in 2003 and 2004 in Harbin,China.The interaction effects of palmitic,stearic,and linoleic acid contents were larger than the genetic main effects,while the genetic main effects were equal to interaction effects for linolenic and oleic acid content.Among all kinds of genetic main effects,the embryo effects were the largest for palmitic,stearic,and linoleic acids,while the cytoplasm effects were the largest for oleic and linolenic acids.Among all kinds of interaction effects,the embryo interaction effects were the largest for fatty acids.The sum of additive and additive× environment effects were larger than that of dominance and dominance×environment effects for the linolenic acid content,but not for other quality traits.The general heritabilities were the main parts of heritabilities for palmitic and oleic acid contents,but the interaction was more important for stearic,linoleic,and linolenic acid contents.For the general heritability,maternal and cytoplasm heritabilities were the main components for palmitic,oleic,and linolenic acid contents.It was shown for the interaction heritabilities that the embryo interaction heritabilities were more important for oleic and linolenic acid contents,while the maternal interaction heritabilities were more important for linoleic acid content.Among selection response components,the maternal and cytoplasm general responses and/or interaction responses were more important for palmitic

  5. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    Science.gov (United States)

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  6. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Science.gov (United States)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  7. Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Eronen, Liisa; Rämö, Sari; Welling, Leena; Oinonen, Seija; Mattsoff, Leona; Ruohonen-Lehto, Marja

    2006-06-01

    The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution. Copyright (c) 2006 Society of Chemical Industry

  8. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    Science.gov (United States)

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  9. Registration of Wyandot × PI 567301B soybean recombinant inbred line population

    Science.gov (United States)

    A soybean [Glycine max (L.) Merr] mapping population (Reg. No., SNL MAP) consisting of 357 F7-derived recombinant inbred lines (RILs) was jointly developed by the USDA-Agricultural Research Service and the Ohio Agricultural Research and Development Center (OARDC) in Wooster, OH. The population was ...

  10. Genetic Variability in Soybean (Glycine max L.) for Low Soil ...

    African Journals Online (AJOL)

    Abush Tesfaye

    worldwide importance as food and market crop. This is mainly because of its high ... The application of inorganic P fertilizers is one of the possibilities for addressing the problem of low P availability. However ...... Soybean Research Conference held in Foz do Iguassu, Brazil, 1-5 March, 2004. Tong, X.J., X. Yan, Y.G. Lu, ...

  11. Glyphosate-resistant goosegrass from Mississippi

    Science.gov (United States)

    A glyphosate resistant population of goosegrass (Eleusine indica (L.) Gaertn.) was documented near Stoneville, Mississippi, USA, in an area which had received multiple applications of glyphosate each year for the previous eleven years. Resistance ratios based on dose response growth reduction assays...

  12. Irrigation, Planting Date And Intra-Row Spacing Effects On Soybean Grown Under Dry Farming Systems

    OpenAIRE

    Ismail, A. M. A. [احمد محمد علي اسماعيل; Khalifa, F. M.

    1987-01-01

    Two soybean cultivars (Glycine maxima (L) Merr.) differing in maturity period, leaf size and stem height were sown five times at fortnight intervals during the rainy season at four intra—row spacings under supplementary irrigation at one site and under rainfed conditions at another site in the central rainlands of Sudan. Cultivars responded differently to the system of production. Sowing date and moisture availability were the main factors controlling soybean production. The late maturing cul...

  13. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones

    Science.gov (United States)

    Kang, Sang-Mo; Shahzad, Raheem; Seo, Chang-Woo; Kim, Ah-Yeong; Lee, Sang-Uk; Oh, Kyeong Yeol; Lee, Dong Yeol; Lee, In-Jung; Yun, Byung-Wook

    2017-01-01

    Plant growth promoting rhizobacteria (PGPR) are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography—mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT) and superoxide dismutase (SOD) activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity. PMID:28282395

  14. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones.

    Directory of Open Access Journals (Sweden)

    Yeon-Gyeong Park

    Full Text Available Plant growth promoting rhizobacteria (PGPR are diverse, naturally occurring bacteria that establish a close association with plant roots and promote the growth and immunity of plants. Established mechanisms involved in PGPR-mediated plant growth promotion include regulation of phytohormones, improved nutrient availability, and antagonistic effects on plant pathogens. In this study, we isolated a bacterium from the rhizospheric soil of a soybean field in Chungcheong buk-do, South Korea. Using 16S rRNA sequencing, the bacterium was identified as Bacillus aryabhattai strain SRB02. Here we show that this strain significantly promotes the growth of soybean. Gas chromatography-mass spectrometry analysis showed that SRB02 produced significant amounts of abscisic acid, indole acetic acid, cytokinin and different gibberellic acids in culture. SRB02-treated soybean plants showed significantly better heat stress tolerance than did untreated plants. These plants also produced consistent levels of ABA under heat stress and exhibited ABA-mediated stomatal closure. High levels of IAA, JA, GA12, GA4, and GA7, were recorded in SRB02-treated plants. These plants produced longer roots and shoots than those of control plants. B. aryabhattai SRB02 was found to be highly tolerant to oxidative stress induced by H2O2 and MV potentiated by high catalase (CAT and superoxide dismutase (SOD activities. SRB02 also tolerated high nitrosative stress induced by the nitric oxide donors GSNO and CysNO. Because of these attributes, B. aryabhattai SRB02 may prove to be a valuable resource for incorporation in biofertilizers and other soil amendments that seek to improve crop productivity.

  15. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    Science.gov (United States)

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  16. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    Science.gov (United States)

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. © 2014 Institute of Botany, Chinese Academy of Sciences.

  17. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars

    Institute of Scientific and Technical Information of China (English)

    Hong Lin; Jun Rao; Jianxin Shi; Chaoyang Hu; Fang Cheng; Zoe AWilson; Dabing Zhang; Sheng Quan

    2014-01-01

    Soybean [Glycine max (L.) Merr.] is one of the world’s major crops, and soybean seeds are a rich and important resource for proteins and oils. While “omics”studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especial y in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetical y related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  18. Apex simulation: environmental benefits of agroforestry and grass buffers for corn-soybean watersheds

    Science.gov (United States)

    The Agricultural Policy Environmental Extender (APEX) model is used to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. A long-term paired watershed study under corn (Zea mays L-soybean [Glycine max (L.) Merr.] rotation with agroforestr...

  19. Glyphosate-Resistant Goosegrass from Mississippi

    Directory of Open Access Journals (Sweden)

    Vijay K. Nandula

    2013-05-01

    Full Text Available A suspected glyphosate-resistant goosegrass [Eleusine indica (L. Gaertn.] population, found in Washington County, Mississippi, was studied to determine the level of resistance and whether the resistance was due to a point mutation, as was previously identified in a Malaysian population. Whole plant dose response assays indicated a two- to four-fold increase in resistance to glyphosate. Leaf disc bioassays based on a glyphosate-dependent increase in shikimate levels indicated a five- to eight-fold increase in resistance. Sequence comparisons of messenger RNA for epsps, the gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, from resistant and sensitive goosegrass, revealed a cytosine to thymine nucleotide change at position 319 in the resistant accessions. This single nucleotide polymorphism causes a proline to serine amino acid substitution at position 106 in 5-enolpyruvylshikimate-3-phosphate synthase. A real-time polymerase chain reaction assay using DNA probes specific for the nucleotide change at position 319 was developed to detect this polymorphism. Goosegrass from 42 locations were screened, and the results indicated that glyphosate-resistant goosegrass remained localized to where it was discovered. Pendimethalin, s-metolachlor, clethodim, paraquat and fluazifop controlled resistant goosegrass 93% to 100%, indicating that several control options for glyphosate-resistant goosegrass are available.

  20. The effects of water stress on the chemical composition of soybean ...

    African Journals Online (AJOL)

    The response of soybean [Glycine max (L) Merrill] cv. Akiyoshi to three moisture levels at three growth stages was investigated in a glasshouse experiment. Percent leaf nitrogen was reduced by water deficit at late flowering and early podding but increased after rewatering. This parameter was not affected by water deficit at ...

  1. Effects of glyphosate acid and the glyphosate-commercial formulation (Roundup) on Dimorphandra wilsonii seed germination: Interference of seed respiratory metabolism.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Borges, Felipe Viègas; Fonseca, Marcia Bacelar; Juneau, Philippe; Garcia, Queila Souza

    2017-01-01

    Glyphosate-formulations are widely used in the Brazilian Cerrado (neotropical savanna) with little or no control, threatening population of the endangered species Dimorphandra wilsonii. We investigated the toxicity of different concentrations (0, 5, 25 and 50 mg l -1 ) of glyphosate acid and one of its formulations (Roundup ® ) on seed germination in D. wilsonii. Glyphosate acid and Roundup drastically decreased seed germination by decreasing seed respiration rates. The activation of antioxidant enzymes, ascorbate peroxidase and catalase assure no hydrogen peroxide accumulation in exposed seeds. Glyphosate acid and the Roundup-formulation negatively affected the activities of enzymes associated with the mitochondrial electron transport chain (ETC), with Complex III as its precise target. The toxicity of Roundup-formulation was greater than that of glyphosate acid due to its greater effects on respiration. The herbicide glyphosate must impair D. wilsonii seed germination by disrupting the mitochondrial ETC, resulting in decreased energy (ATP) production. Our results therefore indicate the importance of avoiding (or closely regulating) the use of glyphosate-based herbicides in natural Cerrado habitats of D. wilsonni as they are toxic to seed germination and therefore threaten conservation efforts. It will likewise be important to investigate the effects of glyphosate on the seeds of other species and to investigate the impacts of these pesticides elsewhere in the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    Science.gov (United States)

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  3. Water absorption, cooking properties and cell structure of gamma irradiated soybeans

    International Nuclear Information System (INIS)

    Kang, I.J.; Byun, M.W.

    1996-01-01

    Gamma irradiation was applied to soybean(Glycine max.), Hwangkeum, at dose levels of 0, 5, 10 and 20 kGy to improve the physical properties of soybeans. The time to reach a fixed moisture content was reduced depending on the increment of soaking temperatures and applied irradiation dose levels. Irradiation at 5~20 kGy resulted in reduction in soaking time of the soybeans by about 3~6 hrs at soaking temperature of 20°. The degree of cooking of soybeans in boiling water was determined by measuring the maximum cutting force of cotyledon. The cutting force to reach complete cooking was about 145g/g. Irradiation at 5~20 kGy resulted in a reduction of cooking time of soybeans by 55~75% as compared to the nonirradiated soybean. In electron microscopic observation of seed coat inner, the parenchyma of nonirradiated soybean showed tight fibrillar structure, whereas that of irradiated soybeans showed loosened and deformed structure. The microstructure of compressed cells and cotyledon epidermis was also deformed by gamma irradiation. In subcellular structure of cotyledon, the roundness of protein body was deformed and changed to spike shape at 20 kGy. Also, the size of lipid body decreased as the irradiation dose levels increased

  4. Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots

    Directory of Open Access Journals (Sweden)

    Mingxia Li

    2017-06-01

    Full Text Available Soybean is an important economic crop that is continually threatened by abiotic stresses, especially salt stress. Wild soybean is an important germplasm resource for the breeding of cultivated soybean. The root system plays a very important role in plant salt tolerance. To explore the salt tolerance-related mechanisms among Soja, we have demonstrated the seedling roots' growth and metabolomics in wild soybean, semi-wild soybean, and cultivated soybean under two types of salt stress by using gas chromatography-mass spectrometry. We characterized 47 kinds of differential metabolites under neutral salt stress, and isoleucine, serine, l-allothreonine, glutamic acid, phenylalanine, asparagines, aspartic acid, pentadecanoic acid, lignoceric acid, oleic acid, galactose, tagatose, d-arabitol, dihydroxyacetone, 3-hydroxybutyric acid, and glucuronic acid increased significantly in the roots of wild soybean seedlings. However, these metabolites were suppressed in semi-wild and cultivated soybeans. Amino acid, fatty acid, sugars, and organic acid synthesis and the secondary metabolism of antioxidants increased significantly in the roots of wild soybean seedling. Under alkaline salt stress, wild soybean contained significantly higher amounts of proline, glutamic acid, aspartic acid, l-allothreonine, isoleucine, serine, alanine, arachidic acid, oleic acid, cis-gondoic acid, fumaric acid, l-malic acid, citric acid, malonic acid, gluconic acid, 5-methoxytryptamine, salicylic acid, and fluorene than semi-wild and cultivated soybeans. Our study demonstrated that carbon and nitrogen metabolism, and the tricarboxylic acid (TCA cycle and receiver operating characteristics (especially the metabolism of phenolic substances of the seedling roots were important to resisting salt stress and showed a regular decreasing trend from wild soybean to cultivated soybean. The metabolomics's changes were critical factors in the evolution of salt tolerance among Soja. This study

  5. [Glyphosate--a non-toxic pesticide?].

    Science.gov (United States)

    Pieniazek, Danuta; Bukowska, Bozena; Duda, Wirgiliusz

    2003-01-01

    Glyphosate is currently the most commonly applied herbicide and its use is still growing. Nowadays, over 50 commercial preparations containing this compound are used, and these formulations are much more toxic than their active compound, glyphosate, owing to the presence of many surfactants and carrier compounds. Toxicological investigations provide evidence that glyphosate is an extremely "safe" herbicide for animals. This is why its use in agriculture is universal. In June 1991, the Environmental Protection Agency (EPA) categorized this compound into class E (according to EPA there are five categories of carcinogenicity), which means that it is probably not carcinogenic to humans. Unfortunately, the study carried out by Swedish oncologists in 2001 showed that glyphosate may induce cancer of the lymphatic system. The results of the Swedish study have changed our opinion about "safety" of this herbicide. Investigations concerning both its accumulation and toxic effect in animals and plants are now under way in many laboratories.

  6. Effect of the ingestion of soybeans derivatives (Glycine max) on rat thyroid

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1978-01-01

    Soybean derivatives were tested in rat through acute experiments of 3 to 24 hours and two semichronic experiments of 16 and 29 days. The acute essay were realized with Total Extract (TEs) obtained from Defated Soybean Flour by precipitation in an aqueous medium and posteriorly in acetone. The percentage of iodine ( 131 I) uptake by 100 gr. of rat was decreased by the Total Autoclaved Extract administered by gastric tube after 6 and 24 hours. The Total Extract, without previous autoclaving showed effect on the gland after 6 hours and lost its activity 24 hours after its administration. TEs obtained from Comercial Soybean Products as: Proteic Concentrate, Tosted Flour and Milk also provoked a decrease in percentage of iodine ( 131 I) uptake after 24 hours by 100 gr. of rat. The semichronic experiments were realized with Soybean fraction products, which were incorporated to experimental diet. The first of 16 days, showed a reduction in percentage of iodide ( 131 I) uptake by 10mg of thyroid and an increase of the triiodothyronine-binding capacity of rat serm. In the second of 29 days an increase was observed in the percentage of iodine ( 131 I) uptake by 10mg of thyroid, caused by the factor in study and no alteration of seric hormones. The thyroid hormones and their precursors were also assayed and an increase of monoiodotyrosine (MIT), triiodothyronine (T3) and thyroxine (T4) was noted, as well as a decrease of diiodotyrosine (DIT) and inorganic iodine. An increase in the MIT/DIT ratio and decrease in T 3 /T 4 ratio, were observed. In preliminary physicochemical tests, the fraction sephadex G-25 showed a positive reaction for ninhidrin, Molish and flavenoids [pt

  7. Genome Sequence of Bacillus velezensis S141, a New Strain of Plant Growth-Promoting Rhizobacterium Isolated from Soybean Rhizosphere.

    Science.gov (United States)

    Sibponkrung, Surachat; Kondo, Takahiko; Tanaka, Kosei; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung; Yoshida, Ken-Ichi

    2017-11-30

    Bacillus velezensis strain S141 is a plant growth-promoting rhizobacterium isolated from soybean ( Glycine max ) rhizosphere that enhances soybean growth, nodulation, and N 2 fixation efficiency by coinoculation with Bradyrhizobium diazoefficiens USDA110. The S141 genome was identified to comprise a 3,974,582-bp-long circular DNA sequence encoding at least 3,817 proteins. Copyright © 2017 Sibponkrung et al.

  8. Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid.

    Science.gov (United States)

    Brusick, David; Aardema, Marilyn; Kier, Larry; Kirkland, David; Williams, Gary

    2016-09-01

    In 2015, the International Agency for Research on Cancer (IARC) published a monograph concluding there was strong evidence for genotoxicity of glyphosate and glyphosate formulations and moderate evidence for genotoxicity of the metabolite aminomethylphosphonic acid (AMPA). These conclusions contradicted earlier extensive reviews supporting the lack of genotoxicity of glyphosate and glyphosate formulations. The IARC Monograph concluded there was strong evidence of induction of oxidative stress by glyphosate, glyphosate formulations, and AMPA. The Expert Panel reviewed the genotoxicity and oxidative stress data considered in the IARC Monograph, together with other available data not considered by IARC. The Expert Panel defined and used a weight of evidence (WoE) approach that included ranking of studies and endpoints by the strength of their linkage to events associated with carcinogenic mechanisms. Importantly, the Expert Panel concluded that there was sufficient information available from a very large number of regulatory genotoxicity studies that should have been considered by IARC. The WoE approach, the inclusion of all relevant regulatory studies, and some differences in interpretation of individual studies led to significantly different conclusions by the Expert Panel compared with the IARC Monograph. The Expert Panel concluded that glyphosate, glyphosate formulations, and AMPA do not pose a genotoxic hazard and the data do not support the IARC Monograph genotoxicity evaluation. With respect to carcinogenicity classification and mechanism, the Expert Panel concluded that evidence relating to an oxidative stress mechanism of carcinogenicity was largely unconvincing and that the data profiles were not consistent with the characteristics of genotoxic carcinogens.

  9. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    Science.gov (United States)

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  11. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  12. Polygenic Inheritance of Canopy Wilting in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    As water demand for agriculture exceeds water availability, cropping systems need to become more efficient in water usage, such as deployment of cultivars that sustain yield under drought conditions. Soybean cultivars differ in how quickly they wilt during water-deficit stress, and this trait may l...

  13. Differential response of two sourgrass populations to glyphosate

    Directory of Open Access Journals (Sweden)

    São Paulo State University, Jaboticabal, SP, Brazil

    2013-02-01

    Full Text Available The repetitive use of glyphosate may cause increase on the resistance of sourgrass (Digitaria insularis through mechanisms of natural selection. The aim of this study was to verify the response of two populations of sourgrass (one collected from nonagricultural area and the other one from area suspected of glyphosate resistance to increasing doses of glyphosate. The experimental design was completely randomized with four repetitions. For both populations, glyphosate was sprayed at 10 doses (0D, D/16, D/8, D/4, D/2, D, 2D, 4D, 8D, and 16D; so that D is the dose of 1.08 kg e.a. ha-1. The treatments were sprayed when the plants had shown 3-5 tillers. The population collected in the nonagricultural area was slightly more sensible to the herbicide glyphosate than the population originated from an area where the herbicide application is common, not indicating glyphosate resistance.

  14. Glyphosate: cancerous or not? Perspectives from both ends of the debate

    Directory of Open Access Journals (Sweden)

    Syeda Aamna Hassan

    2017-08-01

    Full Text Available Glyphosate is non-selective herbicide. Studies published in the last decade, point towards glyphosate toxicity. Shikimic acid pathway for the biosynthesis of folates and aromatic amino acids is inhibited by glyphosate. Glyphosate carcinogenicity is still considered to be a controversial issue. The World Health Organizations’ International Agency recently concluded that glyphosate is “probably carcinogenic to humans.” Some researchers believed that glyphosate is not linked with carcinogenicity.

  15. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N

    2008-04-01

    Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions. Copyright (c) 2008 by John Wiley & Sons

  16. 75 FR 24969 - Glyphosate From China

    Science.gov (United States)

    2010-05-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1178 (Preliminary)] Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Notice of withdrawal of petition in... investigation concerning glyphosate from China (investigation No. 731-TA-1178 (Preliminary)) is discontinued...

  17. Comprehensive analysis of the soybean (Glycine max GmLAX auxin transporter gene family

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-03-01

    Full Text Available The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plants via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTANT 1 ⁄ LIKE AUX1 (AUX⁄LAX auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA. In this study, genome-wide comprehensive analysis of the soybean AUX⁄LAX (GmLAX gene family, including phylogenic relationships, chromosome localization, and gene structure, were carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.

  18. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  19. Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River

    NARCIS (Netherlands)

    Li, Y.H.; Zhang, C.; Smulders, M.J.M.; Li, W.; Ma, Y.S.; Xu, Qu; Chang, R.Z.; Qiu, Li-Juan

    2013-01-01

    Soybean (Glycine max) was domesticated in China from its wild progenitor G. soja. The geographic region of domestication is, however, not exactly known. Here we employed the directional evolution of SSR (microsatellite) repeats (which mutate preferentially into longer alleles) to analyze the

  20. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  1. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  2. 75 FR 17768 - Glyphosate From China

    Science.gov (United States)

    2010-04-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1178 (Preliminary)] Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Institution of antidumping investigation... States is materially retarded, by reason of imports from China of glyphosate, provided for in subheadings...

  3. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans[OPEN

    Science.gov (United States)

    Shen, Bo; Damude, Howard G.; Everard, John D.; Booth, John R.

    2016-01-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae. Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm. Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  4. Carfentrazone-ethyl, isolado e associado a duas formulações de glyphosate no controle de duas espécies de trapoeraba Carfentrazone-ethyl isolated and in mixture with two glyphosate formulations on the control of two dayflower species

    Directory of Open Access Journals (Sweden)

    C.P. Ronchi

    2002-04-01

    parte aérea provocada pelos herbicidas.This research was conducted to evaluate the effectiveness of carfentrazone-ethyl, isolated and in mixture with to glyphosate or glyphosate-potassium salt, on controlling two dayflower species, Commelina diffusa and C. benghalensis. These species were grown from stem segments in 12 L pots filled with soil, during 120 days. A complete randomized block design with four replicates was performed for each species. The treatments were carfentrazone-ethyl (0, 10, 20, 30, 40 and 50 g ha-1, isolated and in mixture with glyphosate or glyphosate-potassium salt, these being applied at doses of 720 g ha-1. The percentages of weed control and shoot fresh weight (SFW were evaluated. C. diffusa was more tolerant to carfentrazone-ethyl alone or combined with both glyphosate and glyphosate-potassium salt than C. benghalensis. Both glyphosate and glyphosate-potassium salt were inefficient (control below 30% when applied isolated, regardless of the species. The efficiency of controlling herbicide mixtures was greater than their single applications, except for the carfentrazone-ethyl in doses above 30 g ha-1, with C. benghalensis, in which control was similar to the employed mixtures. Despite the reasonable control (from 71 to 80% for C. diffusa and the very good control (above 81% for C. benghalensis, obtained with carfentrazone-ethyl + glyphosate or carfentrazone-ethyl + glyphosate-potassium salt mixtures, a sole application did not decisively control Commelina spp. In effect, recovery of plants as seen through SFW evaluation took place irrespective of the species; moreover, for C. benghalensis, reinfestation from underground seeds that became viable after the shoot's death, due to herbicide application, was also found.

  5. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  6. MORPHOLOGICAL AND PHYSIOLOGICAL CHANGES ON Schizolobium parahybaVAR .Amazonicum(HUBER EX DUCKE BARNEBY PLANTS INTOXICATED BY GLYPHOSATE

    Directory of Open Access Journals (Sweden)

    Kaléo Dias Pereira

    2017-06-01

    Full Text Available The objective of this study was to evaluate the morphological and physiological changes in paricá plants (Schizolobium parahyba var. amazonicum intoxicated by glyphosate. The experiment was conducted in a protected environment using paricá plants during their planting stage, which were intoxicated with increasing doses of glyphosate: 0 (control; 43.2; 86.2; 129.6 and 172.8 g.ha-1. At 7 and 21 days after the application of the herbicide, the photosynthesis, transpiration, stomatal conductance and leaf temperature were measured. The visual intoxication degree and the growth of the shoot and the root of the plants were evaluated 21 days after the application. Paricá shows symptoms of visual intoxication characterized by chlorosis/winding, evolving to necrosis/abscission of the youngest leaflets. The growth of the stem and the roots of the intoxicated plants is preserved; however, an expressive leaf loss occurs, and paricá may have adaptation mechanisms to tolerate the action of the herbicide molecule. The photosynthesis decrease promoted by an indirect action of glyphosate represents the main reduction on the growth of plants. The decrease on the stomatal conductance, which was the most sensitive physiological variable to glyphosate, resulted in lower transpiration rates, which, consequently, caused increases on the leaf temperature.

  7. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    Science.gov (United States)

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.

    Directory of Open Access Journals (Sweden)

    Thiago J Nakayama

    Full Text Available Soybean (Glycine max is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic or total (anoxic oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790, unknown protein related to N-terminal protein myristoylation (Glyma06g03430, protein suppressor of phyA-105 (Glyma06g37080, and fibrillin (Glyma10g32620. RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980 indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements, and CRT/DREs (C-repeat/dehydration-responsive elements frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression

  9. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization.

    Science.gov (United States)

    Nakayama, Thiago J; Rodrigues, Fabiana A; Neumaier, Norman; Marcolino-Gomes, Juliana; Molinari, Hugo B C; Santiago, Thaís R; Formighieri, Eduardo F; Basso, Marcos F; Farias, José R B; Emygdio, Beatriz M; de Oliveira, Ana C B; Campos, Ângela D; Borém, Aluízio; Harmon, Frank G; Mertz-Henning, Liliane M; Nepomuceno, Alexandre L

    2017-01-01

    Soybean (Glycine max) is one of the major crops worldwide and flooding stress affects the production and expansion of cultivated areas. Oxygen is essential for mitochondrial aerobic respiration to supply the energy demand of plant cells. Because oxygen diffusion in water is 10,000 times lower than in air, partial (hypoxic) or total (anoxic) oxygen deficiency is important component of flooding. Even when oxygen is externally available, oxygen deficiency frequently occurs in bulky, dense or metabolically active tissues such as phloem, meristems, seeds, and fruits. In this study, we analyzed conserved and divergent root transcriptional responses between flood-tolerant Embrapa 45 and flood-sensitive BR 4 soybean cultivars under hypoxic stress conditions with RNA-seq. To understand how soybean genes evolve and respond to hypoxia, stable and differentially expressed genes were characterized structurally and compositionally comparing its mechanistic relationship. Between cultivars, Embrapa 45 showed less up- and more down-regulated genes, and stronger induction of phosphoglucomutase (Glyma05g34790), unknown protein related to N-terminal protein myristoylation (Glyma06g03430), protein suppressor of phyA-105 (Glyma06g37080), and fibrillin (Glyma10g32620). RNA-seq and qRT-PCR analysis of non-symbiotic hemoglobin (Glyma11g12980) indicated divergence in gene structure between cultivars. Transcriptional changes for genes in amino acids and derivative metabolic process suggest involvement of amino acids metabolism in tRNA modifications, translation accuracy/efficiency, and endoplasmic reticulum stress in both cultivars under hypoxia. Gene groups differed in promoter TATA box, ABREs (ABA-responsive elements), and CRT/DREs (C-repeat/dehydration-responsive elements) frequency. Gene groups also differed in structure, composition, and codon usage, indicating biological significances. Additional data suggests that cis-acting ABRE elements can mediate gene expression independent of ABA

  10. Search for Nodulation and Nodule Development-related cystatin genes in the genome of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Songli Yuan

    2016-10-01

    Full Text Available Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97~245 amino acid residues, different isoelectric points (pI and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS - specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16 was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to

  11. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    International Nuclear Information System (INIS)

    Schmidt, W.E.; Ebel, J.

    1987-01-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a β-1,3-[ 3 H] glucan elicitor fraction from Phytophthora megasperma f.sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent K/sub d/ value for β-glucan elicitor binding is ≅ 0.2 x 10 -6 M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies the [ 3 H]glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched β-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay

  12. Glyphosate in Irish adults - A pilot study in 2017.

    Science.gov (United States)

    Connolly, Alison; Leahy, Michelle; Jones, Kate; Kenny, Laura; Coggins, Marie A

    2018-05-02

    Glyphosate is the highest volume herbicide used globally and has recently been classified as a 2 A 'probably carcinogenic to humans' by the International Agency for Research on Cancer (IARC). There is limited data to evaluate the public health impacts from glyphosate exposure. The objective of this study is to conduct an exploratory glyphosate exposure assessment study among Irish adults, who were non-occupational users of glyphosate. A convenient sampling method was used, collecting one first morning void spot urine sample from each participant. A biomonitoring survey involving the collection and analysis of 20 ml spot urine samples from 50 Irish adults was conducted in June 2017. Participants completed a short questionnaire to collect information on demographics, dietary habits and lifestyle. Glyphosate was extracted using solid phase extraction (SPE) and analysed by liquid chromatography tandem mass spectrometry (LC-MC/MS). Of the 50 urine samples analysed, 10 (20%) contained detectable levels of glyphosate (0.80-1.35 µg L -1 ). Exposure concentrations are higher than those reported in comparable studies of European and American adults. Glyphosate was detectable in 20% of the samples collected from Irish adults. The low proportion of detectable glyphosate levels could be due to lower localised use of pesticides, having a small sample size or the higher analytical detection limit used in this study (0.5 µg L -1 ), which could underestimate the true exposure and warrants further investigation. Given the widespread use of glyphosate, further information on population exposure is required to advance our understanding of the relationship between chronic low dose exposure to glyphosate and human health risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Glyphosate, a chelating agent-relevant for ecological risk assessment?

    Science.gov (United States)

    Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram

    2018-02-01

    Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.

  14. Mechanism of Resistance to Glyphosate in Lolium perenne from Argentina

    Directory of Open Access Journals (Sweden)

    Marcos Yanniccari

    2017-10-01

    Full Text Available In Argentina, glyphosate resistance was reported in a Lolium perenne population after 12 years of successful herbicide use. The aim of the current paper was to put in evidence for the mechanism of glyphosate resistance of this weed. Susceptible leaves treated with different doses of glyphosate and incubated in vitro showed an accumulation of shikimic acid of around three to five times the basal level, while no changes were detected in leaves of glyphosate-resistant plants. The resistance mechanism prevents shikimate accumulation in leaves, even under such tissue-isolation conditions. The activity of the glyphosate target enzyme (EPSPS: 5-enolpyruvylshikimate-3-phosphate synthase was quantified at different herbicide concentrations. EPSPS from resistant plants showed no difference in glyphosate-sensitivity compared to EPSPS from susceptible plants, and, accordingly, no amino acid substitution causing mutations associated with resistance were found. While the glyphosate target enzymes were equally sensitive, the basal EPSPS activity in glyphosate resistant plants was approximately 3-fold higher than the EPSPS activity in susceptible plants. This increased EPSPS activity in glyphosate resistant plants was associated with a 15-fold higher expression of EPSPS compared with susceptible plants. Therefore, the over-expression of EPSPS appears to be the main mechanism responsible for resistance to glyphosate. This mechanism has a constitutive character and has important effects on plant fitness, as recently reported.

  15. Effects of spent engine oil contamination on soybean (Glycine max L ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Research Farm to determine the effect of spent auto-engine oil on soil and soybean ... importance and diverse domestic usage, nevertheless, ... 3 % equivalent to 0, 10, 000, 20,000 and 30,000 mg ... moisture content to obtain the yield. ... (Table 1) revealed that the texture of the ..... cowpea in two contrasting soil types from.

  16. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress

    Directory of Open Access Journals (Sweden)

    Hongyu Ma

    2014-09-01

    Full Text Available Salinity stress is one of the major abiotic stresses that limit agricultural yield. To understand salt-responsive protein networks in soybean seedling, the extracted proteins from seedling roots of two different genotypes (Lee 68 and Jackson were analyzed under salt stress by two-dimensional polyacrylamide gel electrophoresis. Sixty-eight differentially expressed proteins were detected and identified. The identified proteins were involved in 13 metabolic pathways and cellular processes. Proteins correlated to brassinosteroid and gilbberellin signalings were significantly increased only in the genotype Lee 68 under salt stress; abscisic acid content was positively correlated with this genotype; proteins that can be correlated to Ca2+ signaling were more strongly enhanced by salt stress in the seedling roots of genotype Lee 68 than in those of genotype Jackson; moreover, genotype Lee 68 had stronger capability of reactive oxygen species scavenging and cell K+/Na+ homeostasis maintaining in seedling roots than genotype Jackson under salt stress. Since the genotype Lee 68 has been described in literature as being tolerant and Jackson as sensitive, we hypothesize that these major differences in the genotype Lee 68 might contribute to salt tolerance. Combined with our previous comparative proteomics analysis on seedling leaves, the similarities and differences between the salt-responsive protein networks found in the seedling leaves and roots of both the genotypes were discussed. Such a result will be helpful in breeding of salt-tolerant soybean cultivars.

  17. Resposta de cultivares de algodoeiro a subdoses de glyphosate Response of cotton cultivars to reduced rates of glyphosate

    Directory of Open Access Journals (Sweden)

    O.M. Yamashita

    2005-12-01

    Full Text Available Avaliou-se a resposta de nove cultivares de algodoeiro, de importância econômica no Estado do Mato Grosso, quanto à intoxicação causada por subdoses de glyphosate. Os cultivares de algodoeiro utilizados foram Fabrika, Makina, ITA-90, FM 986, FM 966, Delta Opal, BRS Facual, Antares e Coodetec 407. As plantas foram cultivadas em tubetes preenchidos com substrato de solo e mantidas em casa telada, tendo recebido a aplicação do glyphosate aos 20 dias após a emergência, época em que apresentavam quatro folhas verdadeiras. As subdoses de glyphosate, simulando deriva, foram de 270 e 540 g ha-1. Também foi utilizada testemunha, sem aplicação do herbicida, para efeito de comparação. Foram realizadas avaliações semanais até 42 dias após a aplicação dos tratamentos (DAA, período em que também foi tomada a altura das plantas. Os sintomas visuais de intoxicação iniciaram-se aos 3 DAA, caracterizados pelo amarelecimento das pontas das folhas mais novas, seguido de murchamento do ápice das plantas. Na dose de 270 g ha-1 esses sintomas foram de baixa intensidade, mas a 540 g ha-1 causaram, na maioria dos casos, toxidez "preocupante" a "muito alta". Os cultivares BRS Facual e FM 986 mostraram-se os mais suscetíveis. A altura das plantas foi mais afetada quando se aplicou a menor dose de glyphosate. Houve recuperação de todos os cultivares tratados com 270 g ha-1 de glyphosate até os 42 DAA. Quando tratados com 540 g ha-1 de glyphosate, os cultivares Fabrika, Coodetec 407, BRS-Facual e ITA-90 foram mais sensíveis, apresentando redução de altura entre 84 e 90% aos 42 DAA. Os cultivares menos sensíveis na dose de 270 g ha-1 de glyphosate não foram os mesmos para a dose de 540 g ha-1.The response of nine cotton cultivars economically important in the state of Mato Grosso was evaluated in relation to the toxicity caused by reduced rates of glyphosate. The cotton cultivars used were Fabrika, Makina, ITA-90, FM 986, FM 966, Delta Opal

  18. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress.

    Science.gov (United States)

    Bilal, Saqib; Khan, Abdul L; Shahzad, Raheem; Asaf, Sajjad; Kang, Sang-Mo; Lee, In-Jung

    2017-01-01

    This study investigated the Ni-removal efficiency of phytohormone-producing endophytic fungi Penicillium janthinellum , Paecilomyces formosus , Exophiala sp., and Preussia sp. Among four different endophytes, P. formosus LHL10 was able to tolerate up to 1 mM Ni in contaminated media as compared to copper and cadmium. P. formosus LHL10 was further assessed for its potential to enhance the phytoremediation of Glycine max (soybean) in response to dose-dependent increases in soil Ni (0.5, 1.0, and 5.0 mM). Inoculation with P. formosus LHL10 significantly increased plant biomass and growth attributes as compared to non-inoculated control plants with or without Ni contamination. LHL10 enhanced the translocation of Ni from the root to the shoot as compared to the control. In addition, P. formosus LHL10 modulated the physio-chemical apparatus of soybean plants during Ni-contamination by reducing lipid peroxidation and the accumulation of linolenic acid, glutathione, peroxidase, polyphenol oxidase, catalase, and superoxide dismutase. Stress-responsive phytohormones such as abscisic acid and jasmonic acid were significantly down-regulated in fungal-inoculated soybean plants under Ni stress. LHL10 Ni-remediation potential can be attributed to its phytohormonal synthesis related genetic makeup. RT-PCR analysis showed the expression of indole-3-acetamide hydrolase , aldehyde dehydrogenase for indole-acetic acid and geranylgeranyl-diphosphate synthase , ent-kaurene oxidase ( P450-4 ), C13-oxidase ( P450-3 ) for gibberellins synthesis. In conclusion, the inoculation of P. formosus can significantly improve plant growth in Ni-polluted soils, and assist in improving the phytoremediation abilities of economically important crops.

  19. Germinaton performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG)

    Science.gov (United States)

    Pane, R. F.; Damanik, R. I.; Khardinata, E. H.

    2018-02-01

    Drought stress is one of the factors that can decreased growth and production, so that required a variety that has the ability to sustain cellular metabolism, and growth during the stress. This research was aimed to investigated the involvement of germination performance invitro of five local soybean cultivars, Grobogan, Kaba, Anjasmoro, Argomulyo, and Dering to drought stress induced by polyethylene glycol (PEG) 6000 (0%, 2%, 4%, and 6%). The measurable seedling traits as the day appearance of shoots and roots, total of leaves, shoot length, root length, fresh plant weight, dry plant weight, fresh root weight, and dry root weight under control as well as water stress condition were recorded. The experiment units were arranged in factorial completely randomized design with four replications. The result showed that the value for most parameters was recorded highest for Argomulyo cultivar compared with Dering cultivar which is known to be tolerant to drought. In terms of roots performance, Grobogan and Argomulyo cultivars produced the longest and heaviest of roots, while Grobogan cultivar had no significant different for root length compared with control. In conclusion, the root length and fresh weight root parameters can be used as quick criteria for drought tolerance.

  20. Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Ozge Cebeci

    2009-01-01

    Full Text Available Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate.