WorldWideScience

Sample records for glyphosate-resistant soybean electronic

  1. Agricultural impacts of glyphosate-resistant soybean cultivation in South America.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B

    2011-06-08

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of the soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soybean. GRS resulted in a significant shift toward no-tillage practices in Brazil and Argentina, but weed resistance may reduce this trend. Probably the highest agricultural risk in adopting GRS in Brazil and South America is related to weed resistance due to use of glyphosate. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. Five weed species, in order of importance, Conyza bonariensis (L.) Cronquist, Conyza canadensis (L.) Cronquist, Lolium multiflorum Lam., Digitaria insularis (L.) Mez ex Ekman, and Euphorbia heterophylla L., have evolved resistance to glyphosate in GRS in Brazil. Conyza spp. are the most difficult to control. A glyphosate-resistant biotype of Sorghum halepense L. has evolved in GRS in Argentina and one of D. insularis in Paraguay. The following actions are proposed to minimize weed resistance problem: (a) rotation of GRS with conventional soybeans in order to rotate herbicide modes of action; (b) avoidance of lower than recommended glyphosate rates; (c) keeping soil covered with a crop or legume at intercrop intervals; (d) keeping machinery free of weed seeds; and (d) use of a preplant nonselective herbicide plus residuals to eliminate early weed interference with the crop and to minimize escapes from later applications of glyphosate due to natural resistance of older weeds and/or incomplete glyphosate coverage.

  2. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

  3. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    Science.gov (United States)

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Identification of geneticaly modified soybean seeds resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    Tillmann Maria Ângela André

    2004-01-01

    Full Text Available Advances in genetic engineering permit the modification of plants to be tolerant to certain herbicides that are usually not selective. For practical and commercial purposes, it is important to be able to detect the presence or absence of these traits in genotypes. The objective of this research was to develop a procedure for identifying genetically modified soybean (Glycine max L. Merr. with resistance to the herbicide glyphosate. Two studies were conducted based on germination test. In the first study, soybean seeds were pre-imbibed in paper towel with the herbicide solutions, then transferred to moist paper towel for the germination test. In the second study, seeds were placed directly in herbicide solutions in plastic cups and tested for germination using the paper towel method. Eight soybean genotypes were compared: four Roundup Ready, that contained the gene resistant to the herbicide (G99-G725, Prichard RR, G99-G6682, and H7242 RR and four non-transgenic parental cultivars (Boggs, Haskell, Benning, and Prichard. In the first study, the seeds were imbibed for 16 hours at 25°C in herbicide concentrations between 0.0 and 1.5% of the glyphosate active ingredient. In the second, seeds were subjected to concentrations between 0.0 and 0.48%, for one hour, at 30°C. The evaluation parameters were: germination, hypocotyl length, root length and total length of the seedlings. Both methods are efficient in identifying glyphosate-resistant soybean genotypes. It is possible to identify the genetically modified soybean genotypes after three days, by imbibing the seed in 0.12% herbicide solution, and after six days if the substrate is pre-imbibed in a 0.6% herbicide solution. The resistance trait was identified in all cultivars, independent of the initial physiological quality of the seed.

  5. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  6. Glyphosate tolerance of soybean mutant gained after boarding on satellite

    International Nuclear Information System (INIS)

    Jiang Lingxue; Ren Honglei; Zhang Hongyan; Liu Zhangxiong; Jin Longguo; Guo Yong; Qiu Lijuan; Tao Bo

    2011-01-01

    Glyphosate-tolerant germplasm and genetic variation characteristics of SP 2 and SP 3 soybean varieties boarded on Shijian No.8 satellite were analyzed after treated by herbicide glyphosate in the field. Abundant variations of traits were produced, and the resistance within and among cultivars were different in their offspring of space mutagenesis. Plant height and maturity were used as index to screen glyphosate tolerant materials. Space mutation increased of soybean 661 SP 3 of Zhongpin, and one glyphosate-resistance variant was screened from Zhongpin 661 SP 3 . It showed that glyphosate tolerance was different among offspring of different space mutagenesis soybean materials. It is feasible to systemically screen elite traits soybean by applying space mutation breeding. (authors)

  7. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    Science.gov (United States)

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  8. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean

    OpenAIRE

    Feng, Paul C. C.; Baley, G. James; Clinton, William P.; Bunkers, Greg J.; Alibhai, Murtaza F.; Paulitz, Timothy C.; Kidwell, Kimberlee K.

    2005-01-01

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. ...

  9. Overview of glyphosate-resistant weeds worldwide.

    Science.gov (United States)

    Heap, Ian; Duke, Stephen O

    2018-05-01

    Glyphosate is the most widely used and successful herbicide discovered to date, but its utility is now threatened by the occurrence of several glyphosate-resistant weed species. Glyphosate resistance first appeared in Lolium rigidum in an apple orchard in Australia in 1996, ironically the year that the first glyphosate-resistant crop (soybean) was introduced in the USA. Thirty-eight weed species have now evolved resistance to glyphosate, distributed across 37 countries and in 34 different crops and six non-crop situations. Although glyphosate-resistant weeds have been identified in orchards, vineyards, plantations, cereals, fallow and non-crop situations, it is the glyphosate-resistant weeds in glyphosate-resistant crop systems that dominate the area infested and growing economic impact. Glyphosate-resistant weeds present the greatest threat to sustained weed control in major agronomic crops because this herbicide is used to control weeds with resistance to herbicides with other sites of action, and no new herbicide sites of action have been introduced for over 30 years. Industry has responded by developing herbicide resistance traits in major crops that allow existing herbicides to be used in a new way. However, over reliance on these traits will result in multiple-resistance in weeds. Weed control in major crops is at a precarious point, where we must maintain the utility of the herbicides we have until we can transition to new weed management technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Lack of glyphosate resistance gene transfer from Roundup Ready soybean to Bradyrhizobium japonicum under field and laboratory conditions.

    Science.gov (United States)

    Isaza, Laura Arango; Opelt, Katja; Wagner, Tobias; Mattes, Elke; Bieber, Evi; Hatley, Elwood O; Roth, Greg; Sanjuán, Juan; Fischer, Hans-Martin; Sandermann, Heinrich; Hartmann, Anton; Ernst, Dieter

    2011-01-01

    A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.

  11. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings

    Science.gov (United States)

    Weed species are becoming resistant to intensive and extensive use of specific herbicides associated with the production of herbicide resistant crops, e.g., the use of glyphosate for weed management with glyphosate resistant soybeans. To counter this resistance, crops engineered ...

  12. Elisa development for detection of glyphosat resistant gm soybean

    Directory of Open Access Journals (Sweden)

    Владислав Геннадійович Спиридонов

    2015-11-01

    Full Text Available During research we have utilized recombinant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS, conferring resistance to glyphosate for GM soybean, for the hen immunization and obtaining specific yolk antibodies IgY. Stages of ELISA development that can detect at least 0,1 % of GM-soybean resistant to glyphosate were present

  13. Manejo de Conyza bonariensis resistente ao herbicida glyphosate Management of Glyphosate-resistant Conyza bonariensis

    Directory of Open Access Journals (Sweden)

    J.M. Paula

    2011-03-01

    Full Text Available C. bonariensis (Conyza bonariensis é uma planta daninha da família Asteraceae, amplamente distribuída no Brasil, com presença marcante nos Estados do Rio Grande do Sul e do Paraná. Biótipos de C. bonariensis resistentes ao glyphosate foram identificados nos Estados do Rio Grande do Sul, Paraná e São Paulo. O objetivo deste trabalho foi avaliar o efeito de diferentes manejos de inverno e na pré-semeadura da soja sobre a população de plantas de C. bonariensis resistente ao herbicida glyphosate. Os resultados evidenciaram que a população de C. bonariensis é maior em áreas mantidas sem cultivo (pousio do que naquelas áreas cultivadas com trigo ou aveia-preta durante o inverno. Observou-se que o trigo e a aveia-preta exercem efeito supressor sobre a população de C. bonariensis, proporcionando maior facilidade de controle com herbicida na pré-semeadura da cultura usada em sucessão. O controle de C. bonariensis resistente ao herbicida glyphosate foi satisfatório quando se utilizaram herbicidas pós-emergentes na cultura do trigo e glyphosate + 2,4-D ou glyphosate + diuron + paraquat na pré-semeadura da soja.Horseweed (Conyza bonariensis, which belongs to the Asteraceae family, is a weed species widely spread in Brazil. Horseweed biotypes resistant to glyphosate, the main herbicide used in Roundup Ready soybean fields, were identified in the states of Rio Grande do Sul and Parana. The aim of this study was to evaluate the effect of different winter and pre-sowing management techniques on soybean plant population of C. bonariensis resistant to glyphosate. The results showed that the population of C. bonariensis is larger in areas maintained fallow than in areas planted with wheat or oats during the winter. Wheat and oats were found to exert a suppressive effect on the population of C. bonariensis, providing greater ease of control with herbicide before seeding in the culture used in succession. The control of glyphosate-resistant C

  14. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  15. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  16. Glyphosate resistance in common ragweed (Ambrosia artemisiifolia L.)from Mississippi, USA

    Science.gov (United States)

    Glyphosate is one of the most commonly used broad-spectrum herbicides over the last 40 years. Due to widespread adoption of glyphosate-resistant (GR) crop technology, especially, corn, cotton, and soybean, several weed species in agronomic situations have developed resistance to this herbicide. Rese...

  17. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    Science.gov (United States)

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  18. Implication of Legal References on Technological Dissemination: A Study on Transgenic Soybeans Resistant to Glyphosate Herbicide in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta Rodrigues

    2013-04-01

    Full Text Available The following paper aims at establishing a connection between the evolution of legal landmarks related to soybeans tolerant to glyphosate-based herbicide in Brazil and the planting growth of this transgenic soybean in Brazil, in order to determine the role that such soybeans play in today's domestic agricultural scenario. To do so, a study of Brazilian laws that protect intellectual creations was carried out (Industrial Property Law - Law number 9.279/96 and the Plant Protection Law – Law number 9.456/97, the Law on Biosafety – Law number 11105 / 05 – and the Law on Brazilian Seeds and Seedlings - Law number 10.711/03, in order to delimit the matter protected by each of those laws while establishing its interfaces. Regarding planting, the Biosafety Law of 2005 corresponds to the fourth law which deals with soybeans tolerant to glyphosate-based herbicide and ensures that those previously registered may be marketed without limitation per crop. In order to estimate the space that soybean seeds tolerant to glyphosate-based herbicide began to occupy in the Brazilian market, in the 2008/2009 harvest, compared to the other not genetically modified soybeans, a search in the Ministry of Agriculture´s database was done (http://www.agricultura.gov.br through the available records of certified, non-certified and basic seeds.

  19. Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans.

    Science.gov (United States)

    Bøhn, T; Cuhra, M; Traavik, T; Sanden, M; Fagan, J; Primicerio, R

    2014-06-15

    This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional "chemical" cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating "substantial non-equivalence" in compositional characteristics for 'ready-to-market' soybeans. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Response of Pennsylvania native plant species, corn and soybean to tank mixes of dicamba and glyphosate

    Science.gov (United States)

    Crops such as soybean are being genetically modified to be tolerant to multiple herbicides, such as dicamba and glyphosate, in order to allow treatment with several herbicides to control the development of herbicide resistance in weeds. However, with increased use of multiple-he...

  1. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean

    International Nuclear Information System (INIS)

    Santos, J.B.; Ferreira, E.A.; Silva, A.A.; Oliveira, J.A.; Fialho, C.M.T.

    2007-01-01

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  2. Glyphosate resistance: state of knowledge

    Science.gov (United States)

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  3. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean; Efeito de formulacoes na absorcao e translocacao do glyphosate em soja transgenica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.B. [UNIVALE, Governador Valadares, MG (Brazil). FAAG. Agronomia]. E-mail: jbarbosa@univale.br; Ferreira, E.A.; Silva, A.A. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia]. E-mail: evanderalves@yahoo.com.br; aasilva@ufv.br; Oliveira, J.A. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Geral]. E-mail: jalves@ufv.br; Fialho, C.M.T. [Universidade Federal de Vicosa (UFV), MG (Brazil). Agronomia]. E-mail: cintiamtfialho@yahoo.com.br

    2007-07-01

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  4. What do farmers' weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields.

    Science.gov (United States)

    Wechsler, Seth J; McFadden, Jonathan R; Smith, David J

    2018-05-01

    The first case of glyphosate-resistant weeds in the United States was documented in 1998, 2 years after the commercialization of genetically engineered herbicide-resistant (HR) corn and soybeans. Currently, over 15 glyphosate-resistant weed species affect US crop production areas. These weeds have the potential to reduce yields, increase costs, and lower farm profitability. The objective of our study is to develop a behavioral model of farmers' weed management decisions and use it to analyze weed resistance to glyphosate in US corn farms. On average, we find that weed control increased US corn yields by 3700 kg ha -1 (worth approximately $US 255 ha -1 ) in 2005 and 3500 kg ha -1 (worth approximately $US 575 ha -1 ) in 2010. If glyphosate resistant weeds were absent, glyphosate killed approximately 99% of weeds, on average, when applied at the label rate in HR production systems. Average control was dramatically lower in states where glyphosate resistance was widespread. We find that glyphosate resistance had a significant impact on weed control costs and corn yields of US farmers in 2005 and 2010. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Interference of Selected Palmer Amaranth (Amaranthus palmeri Biotypes in Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2012-01-01

    Full Text Available Palmer amaranth (Amaranthus palmeri S. Wats. has become difficult to control in row crops due to selection for biotypes that are no longer controlled by acetolactate synthase inhibiting herbicides and/or glyphosate. Early season interference in soybean [Glycine max (L. Merr.] for 40 days after emergence by three glyphosate-resistant (GR and three glyphosate-susceptible (GS Palmer amaranth biotypes from Georgia and North Carolina was compared in the greenhouse. A field experiment over 2 years compared season-long interference of these biotypes in soybean. The six Palmer amaranth biotypes reduced soybean height similarly in the greenhouse but did not affect soybean height in the field. Reduction in soybean fresh weight and dry weight in the greenhouse; and soybean yield in the field varied by Palmer amaranth biotypes. Soybean yield was reduced 21% by Palmer amaranth at the established field density of 0.37 plant m−2. When Palmer amaranth biotypes were grouped by response to glyphosate, the GS group reduced fresh weight, dry weight, and yield of soybean more than the GR group. The results indicate a possible small competitive disadvantage associated with glyphosate resistance, but observed differences among biotypes might also be associated with characteristics within and among biotypes other than glyphosate resistance.

  6. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate

    OpenAIRE

    Gris,Cristiane Fortes; Pinho,Edila Vilela de Resende Von; Carvalho,Maria Laene de Moreira; Diniz,Rafael Parreira; Andrade,Thaís de

    2013-01-01

    Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the muni...

  7. Glyphosate-Resistant Goosegrass from Mississippi

    Directory of Open Access Journals (Sweden)

    Vijay K. Nandula

    2013-05-01

    Full Text Available A suspected glyphosate-resistant goosegrass [Eleusine indica (L. Gaertn.] population, found in Washington County, Mississippi, was studied to determine the level of resistance and whether the resistance was due to a point mutation, as was previously identified in a Malaysian population. Whole plant dose response assays indicated a two- to four-fold increase in resistance to glyphosate. Leaf disc bioassays based on a glyphosate-dependent increase in shikimate levels indicated a five- to eight-fold increase in resistance. Sequence comparisons of messenger RNA for epsps, the gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, from resistant and sensitive goosegrass, revealed a cytosine to thymine nucleotide change at position 319 in the resistant accessions. This single nucleotide polymorphism causes a proline to serine amino acid substitution at position 106 in 5-enolpyruvylshikimate-3-phosphate synthase. A real-time polymerase chain reaction assay using DNA probes specific for the nucleotide change at position 319 was developed to detect this polymorphism. Goosegrass from 42 locations were screened, and the results indicated that glyphosate-resistant goosegrass remained localized to where it was discovered. Pendimethalin, s-metolachlor, clethodim, paraquat and fluazifop controlled resistant goosegrass 93% to 100%, indicating that several control options for glyphosate-resistant goosegrass are available.

  8. Effects of glyphosate and endosulfan on soil microorganisms in soybean crop Efeitos do endosulfan e glyphosate sobre microrganismos do solo na cultura da soja

    Directory of Open Access Journals (Sweden)

    J.L. Pereira

    2008-01-01

    Full Text Available Transgenic soybean, resistant to glyphosate, is the most dominant transgenic crop grown commercially in the world. Research works on herbicide and insecticide mixtures and their effects on microorganisms are rarely reported. This work aimed to study the impact of glyphosate, endosulfan and their mixtures on the microbial soil activity in soybean crop. The experiment was carried out in a complete randomized block design with four treatments and five replications. The treatments were glyphosate 480 SL [540 g of active ingredient (a.i. ha-1], endosulfan 350 EC (525 g a.i. ha-1, the glyphosate 480 SL [540 g of active ingredient (a.i. ha-1] mixed with endosulfan 350 EC (525 g a.i. ha-1 and the control. Microbial activity was evaluated five days after treatment application. Glyphosate application was not an impacting factor for soil CO2 production. Endosulfan application (alone or mixed with glyphosate suppressed CO2 production by microorganisms in the soil. Microbial biomass and microbial quotient were lower in the treatments using endosulfan alone and in those using endosulfan mixed with glyphosate than in the treatments using glyphosate alone and control.A soja resistente ao glyphosate é a cultura transgênica mais cultivada em todo o mundo. Pesquisas envolvendo o impacto de mistura de herbicidas e inseticidas e seus efeitos sobre microrganismos do solo são raramente reportadas. Este trabalho teve por objetivo avaliar o impacto do herbicida (glyphosate, do inseticida (endosulfan e da mistura de ambos sobre a atividade microbiana do solo na cultura da soja. O delineamento experimental foi em blocos casualizados, com quatro tratamentos e cinco repetições. Os tratamentos foram o herbicida glyphosate 480 SL [540 g de ingrediente ativo (i.a. ha-1], endosulfan 350 EC (525 g i.a. ha-1, a mistura de glyphosate 480 SL (540 g de i.a. ha-1 com endosulfan 350 EC (525 g i.a. ha-1 e a testemunha onde se aplicou água. A atividade microbiana foi avaliada aos

  9. Root growth and lignification of glyphosate susceptible and resistant soybean at low temperaturesCrescimento e lignificação de raízes de soja convencional e resistente ao glifosato, em baixa temperatura

    Directory of Open Access Journals (Sweden)

    Patricia da Costa Zonetti

    2013-05-01

    Full Text Available Low temperature stress affects plant growth, including primary and secondary metabolism. Glyphosateresistant soybean contains a modified DNA, which encodes a different type of secondary metabolism enzyme related to lignin synthesis compared to conventional glyphosate-susceptible cultivars. Thus, this soybean cultivar might respond differently to low temperatures, compared to glyphosate-susceptible cultivars. This work aimed to investigate how decreasing temperatures influence the growth and lignin content of the glyphosate-resistant soybean compared to its susceptible parental cultivars. Three-day-old seedlings were cultivated in nutrient solution at 10, 15, 20, and 25°C (±2°C, using a 12-h photoperiod. After 96 h, taproot growth, fresh and dry biomass, and lignin levels were determined. The results indicate that lower temperatures decreased seedling and root growth in both types of cultivars; however, glyphosate-resistant soybean exhibited greater root length, biomass, and lignin content compared to the glyphosate-susceptible parental cultivar. O estresse causado pela baixa temperatura, dentre outras implicações, afeta o crescimento do vegetal assim como o seu metabolismo secundário. Pelo fato da soja RR apresentar variante enzimática de uma das principais vias do metabolismo secundário, ligada à síntese de lignina, pode apresentar comportamento diferenciado, sob baixa temperatura, se comparada com sua linhagem parental. O objetivo deste trabalho foi investigar possíveis diferenças no crescimento e nos conteúdos de lignina nas raízes de soja cultivar transgênica resistente ao glifosato e cultivar parental em resposta a redução de temperatura. Após três dias de germinação das sementes, as plântulas foram mantidas em solução nutritiva, a 10, 15, 20 e 25°C (±2°C, com fotoperíodo de 12 horas. Após 96 horas, foi avaliado o comprimento relativo da raiz primária, biomassa fresca e seca das raízes e os teores de lignina

  10. Response of Pennsylvania native plant species to dicamba and/or glyphosate

    Science.gov (United States)

    Weeds may become resistant to intensive and extensive use of specific herbicides associated with the growth of herbicide tolerant crops, e.g., the use of glyphosate for weed control with glyphosate tolerant soybeans. To counter this resistance, crops modified to contain genes for...

  11. Avaliação do uso de glyphosate em soja geneticamente modificada e sua relação com o ácido chiquímico Evaluation of glyphosate application on transgenic soybean and its relationship with shikimic acid

    Directory of Open Access Journals (Sweden)

    D.A.S. Franco

    2012-09-01

    plantas de soja transgênica no campo quando tratadas de forma isolada com glyphosate. Os resultados também mostraram exsudação radicular do glyphosate por soja transgênica, com posterior absorção por soja convencional. Foram detectados resíduos de glyphosate e ácido aminometilfosfônico na solução nutritiva.Glyphosate [N-(phosphonomethyl glycine]-resistant crops (GRC are the transgenic crops most extensively grown worldwide, with soybean being the major GRC. It is important to evaluate the impact of glyphosate on transgenic soybean and its relationship with shikimic acid. A field experiment was conducted at Engenheiro Coelho-SP, Brazil, during the agricultural year 2007/2008 to evaluate the effect of glyphosate on the growth, development, and seed quality of GRC soybean variety BRS Valiosa RR. A randomized block design was used with four replications. Glyphosate was applied at 720 and 960 g a.e. ha-1 (acid equivalent and in sequence at the doses 720/720, 960/720, and 960/720/720 g a.e. ha-1 (acid equivalent. To evaluate transfer from GRC soybean to non GRC soybean cultivated in nutrient solution, a pot experiment was conducted at Instituto Biológico, SP, Brazil. Glyphosate was applied on the GRC soybean (M8045RR at 2,400 g a.e. ha-1. Both GRC soybean and non GRC soybean were sown in the same box with nutrient solution. At 0, 1, 3, 7, and 10 days after application, shikimic acid was measured by HPLC and the glyphosate and aminomethylphosphonic acid (AMPA levels in nutrient solution were determined by GC-MS. The results showed that yield, plant height, seed oil, and protein contents were not affected by glyphosate application. GRC soybean accumulated shikimic acid in the field. Glyphosate and AMPA were released through the roots of GRC soybean, and subsequently taken up by non-GRC soybean, exerting inhibitory effects on their shikimic pathway.

  12. Manejo de Conyza bonariensis resistente ao glyphosate: coberturas de inverno e herbicidas em pré-semeadura da soja Management of glyphosate resistant Conyza bonariensis: winter cover crops and herbicides in soybean pre-seeding

    Directory of Open Access Journals (Sweden)

    F.P. Lamego

    2013-06-01

    Full Text Available Conyza bonariensis tornou-se a principal planta daninha da cultura da soja no Sul do Brasil, em decorrência da evolução para resistência ao herbicida glyphosate. O objetivo deste trabalho foi avaliar o efeito de diferentes coberturas de inverno e da associação de manejo de dessecação pré-semeadura da soja, visando ao controle de C. bonariensis resistente ao glyphosate. Um experimento foi conduzido em campo, na safra 2010/2011. Os tratamentos foram conduzidos em esquema de parcelas subdivididas, em que as coberturas de inverno foram alocadas nas parcelas principais: aveia-preta, nabo, ervilhaca, azevém, trigo e pousio. Nas subparcelas, foram alocados os tratamentos de manejo de dessecação pré-semeadura da soja: glyphosate (720 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha‑1 e roçada. O nabo foi a espécie de cobertura que produziu o maior volume de massa seca durante o inverno, enquanto a ervilhaca foi a que apresentou maior efeito supressor sobre a germinação e o desenvolvimento inicial de C. bonariensis. Associações de glyphosate com 2,4-D ou chlorimuron-ethyl, seguidas da aplicação sequencial de paraquat + diuron, causaram maior redução na infestação de C. bonariensis.Conyza bonariensis became the main weed in soybean crop in Southern Brazil, as a consequence of the evolution of resistance to the herbicide glyphosate. The objective of this work was to evaluate the effect of different winter cover crops and the association of burn-down herbicides on the control of glyphosate-resistant C. bonariensis. A field experiment was conducted in the 2010/2011 season. The treatments were arranged in a split-plot scheme, with the winter

  13. Glyphosate-resistant goosegrass from Mississippi

    Science.gov (United States)

    A glyphosate resistant population of goosegrass (Eleusine indica (L.) Gaertn.) was documented near Stoneville, Mississippi, USA, in an area which had received multiple applications of glyphosate each year for the previous eleven years. Resistance ratios based on dose response growth reduction assays...

  14. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate.

    Science.gov (United States)

    Van Horn, Christopher R; Moretti, Marcelo L; Robertson, Renae R; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Schulz, Burkhard; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Hall, J Christopher; McLean, Michael D; Lawton, Mark B; Sammons, R Douglas; Wang, Dafu; Westra, Philip; Gaines, Todd A

    2018-05-01

    Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate

    Directory of Open Access Journals (Sweden)

    Cristiane Fortes Gris

    2013-04-01

    Full Text Available Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha. The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.

  16. Manejo de capim pé-de-galinha em lavouras de soja transgênica resistente ao glifosato Management of goose grass on transgenic soybean, resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    André da Rosa Ulguim

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar a resistência de capim pé-de-galinha (Eleusine indica ao glifosato, em lavouras de soja transgênica; avaliar o efeito de aplicações de glifosato em diferentes estádios de desenvolvimento; identificar práticas agronômicas associadas à seleção de biótipos resistentes; e avaliar a eficiência dos herbicidas cletodim, fluazifope-P-butílico, clomazona, glufosinato de amônio e glifosato nas plantas resistentes. Plantas escapes ao tratamento com glifosato foram coletadas em 24 propriedades, no Rio Grande do Sul. As plantas foram cultivadas em casa de vegetação, tendo-se avaliado a sua resistência ao glifosato. Os acessos resistentes foram selecionados e avaliados quanto ao efeito da aplicação do glifosato em diferentes estádios de crescimento e quanto à sensibilidade aos herbicidas. Foi aplicado um questionário aos produtores para identificação das práticas agronômicas associadas às falhas no controle. O controle de E. indica pelo glifosato é mais efetivo com a aplicação em estádios iniciais de desenvolvimento. Práticas agronômicas, como uso contínuo de baixas doses do herbicida, aplicação em estádios de desenvolvimento avançados das plantas daninhas (mais de um afilho e a ausência de rotação de culturas foram relacionadas às falhas de controle observadas. Os herbicidas cletodim, fluazifope-P-butílico e glufosinato de amônio são alternativas eficientes para o controle de E. indica.The objective of this work was to evaluate the resistance of goose grass (Eleusine indica to glyphosate application in transgenic soybean crops; evaluate the effect of glyphosate applications in different growth stages; identify the main agronomic practices associated with the selection of resistant biotypes; and evaluate the effect of the herbicides clethodim, fluazifop-p-butyl, clomazone, glufosinate ammonium, and glyphosate on resistant plants. Plants that survived glyphosate application

  17. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    Science.gov (United States)

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  18. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N

    2008-04-01

    Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions. Copyright (c) 2008 by John Wiley & Sons

  19. Mechanism of Resistance to Glyphosate in Lolium perenne from Argentina

    Directory of Open Access Journals (Sweden)

    Marcos Yanniccari

    2017-10-01

    Full Text Available In Argentina, glyphosate resistance was reported in a Lolium perenne population after 12 years of successful herbicide use. The aim of the current paper was to put in evidence for the mechanism of glyphosate resistance of this weed. Susceptible leaves treated with different doses of glyphosate and incubated in vitro showed an accumulation of shikimic acid of around three to five times the basal level, while no changes were detected in leaves of glyphosate-resistant plants. The resistance mechanism prevents shikimate accumulation in leaves, even under such tissue-isolation conditions. The activity of the glyphosate target enzyme (EPSPS: 5-enolpyruvylshikimate-3-phosphate synthase was quantified at different herbicide concentrations. EPSPS from resistant plants showed no difference in glyphosate-sensitivity compared to EPSPS from susceptible plants, and, accordingly, no amino acid substitution causing mutations associated with resistance were found. While the glyphosate target enzymes were equally sensitive, the basal EPSPS activity in glyphosate resistant plants was approximately 3-fold higher than the EPSPS activity in susceptible plants. This increased EPSPS activity in glyphosate resistant plants was associated with a 15-fold higher expression of EPSPS compared with susceptible plants. Therefore, the over-expression of EPSPS appears to be the main mechanism responsible for resistance to glyphosate. This mechanism has a constitutive character and has important effects on plant fitness, as recently reported.

  20. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  1. Pool of resistance mechanisms to glyphosate in Digitaria insularis.

    Science.gov (United States)

    de Carvalho, Leonardo Bianco; Alves, Pedro Luis da Costa Aguiar; González-Torralva, Fidel; Cruz-Hipolito, Hugo Enrique; Rojano-Delgado, Antonia María; De Prado, Rafael; Gil-Humanes, Javier; Barro, Francisco; de Castro, María Dolores Luque

    2012-01-18

    Digitaria insularis biotypes resistant to glyphosate have been detected in Brazil. Studies were carried out in controlled conditions to determine the role of absorption, translocation, metabolism, and gene mutation as mechanisms of glyphosate resistance in D. insularis. The susceptible biotype absorbed at least 12% more (14)C-glyphosate up to 48 h after treatment (HAT) than resistant biotypes. High differential (14)C-glyphosate translocation was observed at 12 HAT, so that >70% of the absorbed herbicide remained in the treated leaf in resistant biotypes, whereas 42% remained in the susceptible biotype at 96 HAT. Glyphosate was degraded to aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine by >90% in resistant biotypes, whereas a small amount of herbicide (up to 11%) was degraded by the susceptible biotype up to 168 HAT. Two amino acid changes were found at positions 182 and 310 in EPSPS, consisting of a proline to threonine and a tyrosine to cysteine substitution, respectively, in resistant biotypes. Therefore, absorption, translocation, metabolism, and gene mutation play an important role in the D. insularis glyphosate resistance.

  2. Intellectual property rights related to the genetically modified glyphosate tolerant soybeans in Brazil.

    Science.gov (United States)

    Rodrigues, Roberta L; Lage, Celso L S; Vasconcellos, Alexandre G

    2011-06-01

    The present work analyzes the different modalities of protection of the intellectual creations in the biotechnology agricultural field. Regarding the Brazilian legislations related to the theme (the Industrial Property Law - no. 9. 279/96 and the Plant Variety Protection Law - no. 9. 456/97), and based in the international treaties signed by Brazil, the present work points to the inclusions of each of them, as well as to their interfaces using as reference the case study of glyphosate tolerant genetically modified soybean. For this case study, Monsanto's pipelines patents were searched and used to analyze the limits of patent protection in respect to others related to the Intellectual Property (IP) laws. Thus, it was possible to elucidate the complex scenario of the Intellectual Property of the glyphosate tolerant soybeans, since for the farmer it is hard to correlate the royalties payment with the IP enterprise's rights.

  3. Comparison of herbicide regimes and the associated potential enviromental effects of glyphosate-resistant crops versus what they replace in Europe

    NARCIS (Netherlands)

    Kleter, G.A.; Harris, C.; Stephenson, G.R.; Unsworth, J.

    2008-01-01

    While cultivation of transgenic crops takes place in seven of the EU member states, this constitutes a relatively limited part of the total acreage planted to these crops worldwide. The only glyphosate-resistant (GR) crop grown commercially until recently has been soybean in Romania. In addition,

  4. Toothpick test: a methodology for the detection of RR soybean plants1

    Directory of Open Access Journals (Sweden)

    Fabiana Mota da Silva

    Full Text Available Due to the large increase in the area cultivated with genetically modified soybean in Brazil, it has become necessary to determine methods that are fast and efficient for detecting these cultivars. The aim of this work was to test the efficiency of the toothpick method in the detection of RR soybean plants, as well as to distinguish between cultivars, for sensitivity caused by herbicide. Ten transgenic soybean cultivars, resistant to the active ingredient glyphosate, and ten conventional soybean cultivars were used. Toothpicks soaked in glyphosate were applied to all the plants at stage V6 and evaluations were made at 2, 4, 6, 8 and 10 days after application (DAA. The effects of the glyphosate on the cultivars, and the symptoms of phytotoxicity caused in the transgenic plants were evaluated by means of grading scales. The toothpick test is effective in identifying RR soybean cultivars and also in separating them into groups by sensitivity to the symptoms caused by the glyphosate.

  5. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  6. Herbicide-resistant weed management: focus on glyphosate.

    Science.gov (United States)

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. Copyright © 2011 Society of Chemical Industry.

  7. Glyphosate e adubação foliar com manganês na cultura da soja transgênica Glyphosate and foliar fertilization using manganese in transgenic soybean crop

    Directory of Open Access Journals (Sweden)

    N.M. Correia

    2009-01-01

    Full Text Available Com base na hipótese de que a soja transgênica tolerante ao glyphosate necessitaria da adição complementar de manganês devido a alterações na absorção e no metabolismo do elemento pelas plantas, objetivou-se estudar a interação da soja transgênica pulverizada com glyphosate e a adubação foliar com manganês. Foi desenvolvido experimento em campo, no ano agrícola 2007/2008, na Fazenda de Ensino, Pesquisa e Produção da UNESP, campus de Jaboticabal, SP. O delineamento experimental foi o de blocos ao acaso, no esquema fatorial 4 x 4, com quatro repetições. Foram avaliados quatro manejos de plantas daninhas [glyphosate (p.c. Roundup Ready a 0,72 e 1,20 kg ha-1 de equivalente ácido, fluazifop-p-butyl + fomesafen (p.c. Fusiflex a 0,25 + 0,25 kg ha-1 e testemunha capinada, sem herbicida] e quatro doses (0, 42, 84 e 126 g ha-1 de manganês em aplicação foliar na soja. Os tratamentos estudados não alteraram significativamente a produtividade de grãos, os teores de manganês no solo, a altura e a matéria seca das plantas de soja. Apenas a mistura fluazifop-p-butyl mais fomesafen ocasionou injúrias visuais nas plantas, porém os sintomas ficaram restritos às folhas que interceptaram o jato de pulverização. Para massa de 100 grãos, os herbicidas estudados não diferiram da testemunha; no entanto, as plantas tratadas com 0,72 kg ha-1 de glyphosate apresentaram menor massa de grãos. A aplicação de manganês não influenciou os teores do elemento nas plantas tratadas com glyphosate e naquelas sem herbicida. Portanto, o glyphosate não prejudicou a absorção ou o metabolismo do manganês pela planta, e o crescimento e desenvolvimento das plantas tratadas foram estatisticamente similares aos das não tratadas com herbicidas.Based on the hypothesis that glyphosate-tolerant transgenic soybean would need a manganese complementation due to alterations in the absorption and metabolism of this element by the plants, this work aimed to

  8. Foliar Potassium Fertilizer Additives Affect Soybean Response and Weed Control with Glyphosate

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2012-01-01

    Full Text Available Research in 2004 and 2005 determined the effects of foliar-applied K-fertilizer sources (0-0-62-0 (%N-%P2O5-%K2O-%S, 0-0-25-17, 3-18-18-0, and 5-0-20-13 and additive rates (2.2, 8.8, and 17.6 kg K ha−1 on glyphosate-resistant soybean response and weed control. Field experiments were conducted at Novelty and Portageville with high soil test K and weed populations and at Malden with low soil test K and weed populations. At Novelty, grain yield increased with fertilizer additives at 8.8 kg K ha−1 in a high-yield, weed-free environment in 2004, but fertilizer additives reduced yield up to 470 kg ha−1 in a low-yield year (2005 depending on the K source and rate. At Portageville, K-fertilizer additives increased grain yield from 700 to 1160 kg ha−1 compared to diammonium sulfate, depending on the K source and rate. At Malden, there was no yield response to K sources. Differences in leaf tissue K (P=0.03, S (P=0.03, B (P=0.0001, and Cu (P=0.008 concentrations among treatments were detected 14 d after treatment at Novelty and Malden. Tank mixtures of K-fertilizer additives with glyphosate may provide an option for foliar K applications.

  9. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  10. Germination test as a fast method to detect glyphosate-resistant sourgrass

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2015-01-01

    Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.

  11. Germination test as a fast method to detect glyphosate-resistant sourgrass

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2015-09-01

    Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.

  12. Identification of glyphosate resistance in Salsola tragus in north-eastern Oregon.

    Science.gov (United States)

    Barroso, Judit; Gourlie, Jennifer A; Lutcher, Larry K; Liu, Mingyang; Mallory-Smith, Carol A

    2018-05-01

    Farmers in the low-rainfall region of eastern Oregon rely on repeated applications of non-selective herbicides, predominately glyphosate, to control Salsola tragus in no-till fallow systems. Reports of poor glyphosate effectiveness have increased in recent years. Reduced efficacy is often attributed to dust, water stress, or generally poor growing conditions during application. Inadequate control also may be the result of the evolution of glyphosate resistance. Therefore, studies were undertaken to determine if glyphosate-resistant S. tragus populations occur in Oregon. Results from dose-response studies confirmed glyphosate resistance in three of 10 Oregon Salsola tragus populations. The ratio I 50R /I 50S from dose-response curves was, on average, 3.1 for the relative dry biomass per plant and 3.2 for the % of surviving plants per pot in these three populations. Plant mortality at recommended glyphosate doses for the resistant populations was less than 30% 3 weeks after treatment. Glyphosate resistance in S. tragus highlights the imperative need to diversify weed control strategies to preserve the longevity and sustainability of herbicides in semi-arid cropping systems of the Pacific Northwest. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Discrimination of transgenic soybean seeds by terahertz spectroscopy

    Science.gov (United States)

    Liu, Wei; Liu, Changhong; Chen, Feng; Yang, Jianbo; Zheng, Lei

    2016-10-01

    Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of glyphosate-resistant and conventional soybean seeds and their hybrid descendants was examined by terahertz time-domain spectroscopy system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM) and PCA-back propagation neural network (PCA-BPNN) models with the first and second derivative and standard normal variate (SNV) transformation pre-treatments were applied to classify soybean seeds based on genotype. Results demonstrated clear differences among glyphosate-resistant, hybrid descendants and conventional non-transformed soybean seeds could easily be visualized with an excellent classification (accuracy was 88.33% in validation set) using the LS-SVM and the spectra with SNV pre-treatment. The results indicated that THz spectroscopy techniques together with chemometrics would be a promising technique to distinguish transgenic soybean seeds from non-transformed seeds with high efficiency and without any major sample preparation.

  14. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia.

    Science.gov (United States)

    Ngo, The D; Malone, Jenna M; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Five glyphosate-resistant populations of Chloris truncata originally collected from New South Wales were compared with one susceptible (S) population from South Australia to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the amounts of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in five populations of C. truncata (A536, A528, T27, A534 and A535.1). GR plants were 2.4-8.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. There was no difference in glyphosate absorption and translocation between GR and S plants. The EPSPS gene did not contain any point mutation that had previously been associated with resistance to glyphosate. The resistant plants (A528 and A536) contained up to 32-48 more copies of the EPSPS gene than the susceptible plants. This study has identified EPSPS gene amplification contributing to glyphosate resistance in C. truncata. In addition, a Glu-91-Ala mutation within EPSPS was identified that may contribute to glyphosate resistance in this species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  16. The history and current status of glyphosate.

    Science.gov (United States)

    Duke, Stephen O

    2018-05-01

    Glyphosate is the only herbicide to target the enzyme 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS). It is a high use rate, non-selective herbicide that translocates primarily to metabolic sinks, killing meristematic tissues away from the application site. Its phloem-mobile properties and slow action in killing weeds allow the herbicide to move throughout the plant to kill all meristems, making it effective for perennial weed control. Since commercialization in 1974, its use has grown to dominate the herbicide market. Much of its use is on transgenic, glyphosate-resistant crops (GRCs), which have been the dominant transgenic crops worldwide. GRCs with glyphosate provided the most effective and inexpensive weed management technology in history for a decade or more. However, as a consequence of the rapid increase in glyphosate-resistant (GR) weeds, the effectiveness of glyphosate use in GRCs is declining. Critics have claimed that glyphosate-treated GRCs have altered mineral nutrition and increased susceptibility to plant pathogens because of glyphosate's ability to chelate divalent metal cations, but the complete resistance of GRCs to glyphosate indicates that chelating metal cations do not contribute to the herbicidal activity or significantly affect mineral nutrition. The rates of increases in yields of maize, soybean, and cotton in the USA have been unchanged after high adoption rates of GRCs. Glyphosate is toxic to some plant pathogens, and thereby can act as a fungicide in GRCs. Ultra-low doses of glyphosate stimulate plant growth in glyphosate-susceptible plants by unknown mechanisms. Despite rapid and widespread increases in GR weeds, glyphosate use has not decreased. However, as GR weeds increase, adoption of alternative technologies will eventually lead to decreased use. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in

  17. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan.

    Science.gov (United States)

    Yoshimura, Yasuyuki; Matsuo, Kazuhito; Yasuda, Koji

    2006-01-01

    Natural out-crossing rates were evaluated for conventional soybeans (Glycine max (L.) Merr.) cultivated adjacent to genetically modified (GM) glyphosate-tolerant soybeans under field conditions during a four-year period in Japan. A total of 107 846 progeny of 2772 plants harvested from conventional varieties were screened for glyphosate herbicide tolerance. The highest out-crossing rates, 0.19% in 2001 and 0.16% in 2002, were observed in adjacent rows 0.7 m from the pollen source. The highest rate in 2004 was 0.052%, which was observed at 2.1 m. No out-crossing was observed in the rows 10.5 m from the pollen source over the four-year period. The farthest distances between receptor and pollen source at which out-crossing was observed were 7 m in 2001, 2.8 m in 2002, and 3.5 m in 2004. The greatest airborne pollen density during the flowering period, determined by Durham pollen samplers located between the rows of each variety, was 0.368 grains.cm(-2).day(-1), with the average value at 0.18 grains.cm(-2).day(-1), indicating that the possibility of out-crossing by wind is minimal. Thrips species and predatory Hemiptera visited the soybean flowers more frequently during the four-year period than any other common pollinators, such as bees.

  18. Glyphosate-Resistant Parthenium hysterophorus in the Caribbean Islands: Non Target Site Resistance and Target Site Resistance in Relation to Resistance Levels.

    Directory of Open Access Journals (Sweden)

    Enzo Bracamonte

    2016-12-01

    Full Text Available Glyphosate has been the most intensely herbicide used worldwide for decades, and continues to be a single tool for controlling weeds in woody crops. However, the adoption of this herbicide in a wide range of culture systems has led to the emergence of resistant weeds. Glyphosate has been widely used primarily on citrus in the Caribbean area, but a study of resistance in the Caribbean islands of Cuba and the Dominican Republic has never been carried out. Unfortunately, Parthenium hysterophorus has developed glyphosate-resistance in both islands, independently. The resistance level and mechanisms of different P. hysterophorus accessions (three collected in Cuba (Cu-R and four collected in the Dominican Republic (Do-R have been studied under greenhouse and laboratory conditions. In in vivo assays (glyphosate dose causing 50% reduction in above-ground vegetative biomass and survival, the resistance factor levels showed susceptible accessions (Cu-S≥Do-S, low-resistance accessions (Cu-R3Do-R2>Cu-R2>Do-R3>Do-R4>Cu-R3>>Cu-S≥Do-S. Glyphosate was degraded to aminomethylphosphonic acid, glyoxylate and sarcosine by >88% in resistant accessions except in Cu-R3 and Do-R4 resistant accessions (51.12 and 44.21, respectively, whereas a little glyphosate (<9.32% was degraded in both susceptible accessions at 96 h after treatment. There were significant differences between P. hysterophorus accessions in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS activity enzyme with and without different glyphosate rates. The R accessions showed values of between 0.026 and 0.21 µmol µg-1 TSP protein min-1 basal EPSPS activity values with respect to the S (0.024 and 0.025 accessions. The same trend was found in the EPSPS enzyme activity treated with glyphosate, where a higher enzyme activity inhibition (glyphosate µM corresponded to greater resistance levels in P. hysterophorus accessions. One amino acid substitution was found at position 106 in EPSPS, consisting

  19. Glyphosate efficacy on sourgrass biotypes with suspected resistance collected in GR-crop fields

    Directory of Open Access Journals (Sweden)

    Hellen Martins da Silveira

    2017-11-01

    Full Text Available In Brazil, infestations of crop areas with glyphosate-resistant (GR sourgrass (Digitaria insularis (L. Fedde biotypes has risen significantly, increasing crop production costs. Glyphosate efficacy on three biotypes (GO, BA and MT of sourgrass with suspected resistance was evaluated. A susceptible biotype (MG was used as the control. The results confirmed that the MG and GO biotypes were susceptible to glyphosate (control > 90%. The MG biotype exhibited growth reduction and mortality by 50% (GR50 and LD50, respectively with mean glyphosate doses of 243.7 and 431.6 g ae ha-1. The resistance index of the biotypes with suspected resistance ranged from 2.8 to 6.1 in relation to GR50 and between 1.4 to 26.7 in relation to LD50. The glyphosate susceptibility ranking of the sourgrass biotypes was MG < GO < MT < BA. The MT and BA biotypes demonstrated high glyphosate resistance levels, and the GO biotype had a high potential to develop resistance. Farmers should avoid the application of glyphosate overdoses to minimize the selection pressure on weeds.

  20. Identifying Chloris Species from Cuban Citrus Orchards and Determining Their Glyphosate-Resistance Status

    Directory of Open Access Journals (Sweden)

    Enzo R. Bracamonte

    2017-11-01

    Full Text Available The Chloris genus is a C4 photosynthetic species mainly distributed in tropical and subtropical regions. Populations of three Chloris species occurring in citrus orchards from central Cuba, under long history glyphosate-based weed management, were studied for glyphosate-resistant status by characterizing their herbicide resistance/tolerance mechanisms. Morphological and molecular analyses allowed these species to be identified as C. ciliata Sw., Chloris elata Desv., and Chloris barbata Sw. Based on the glyphosate rate that causes 50% mortality of the treated plants, glyphosate resistance (R was confirmed only in C. elata, The R population was 6.1-fold more resistant compared to the susceptible (S population. In addition, R plants of C. elata accumulated 4.6-fold less shikimate after glyphosate application than S plants. Meanwhile, populations of C. barbata and C. ciliata with or without glyphosate application histories showed similar LD50 values and shikimic acid accumulation rates, demonstrating that resistance to glyphosate have not evolved in these species. Plants of R and S populations of C. elata differed in 14C-glyphosate absorption and translocation. The R population exhibited 27.3-fold greater 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS activity than the S population due to a target site mutation corresponding to a Pro-106-Ser substitution found in the EPSPS gene. These reports show the innate tolerance to glyphosate of C. barbata and C. ciliata, and confirm the resistance of C. elata to this herbicide, showing that both non-target site and target-site mechanisms are involved in its resistance to glyphosate. This is the first case of herbicide resistance in Cuba.

  1. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  2. Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae).

    Science.gov (United States)

    C Zanuncio, José; C Lacerda, Mabio; Alcántara-de la Cruz, Ricardo; P Brügger, Bruno; Pereira, Alexandre I A; F Wilcken, Carlos; E Serrão, José; S Sediyama, Carlos

    2018-01-01

    The increase of agricultural areas with glyphosate-resistant (GR) crops, and use of this herbicide in Brazil, makes necessary to assess its impacts on non-target organisms. The objective was to evaluate the development, reproduction and life table parameters of Podisus nigrispinus (Heteroptera: Pentatomidae) reared on GR-soybean plants treated with glyphosate formulations (Zapp-Qi, Roundup-Transorb-R and Roundup-Original) at the recommended field dose (720g acid equivalent ha -1 ). Glyphosate formulations had no affect on nymph and adult weight of this predator. Fourth instar stage was shortest with Zapp Qi. Egg-adult period was similar between treatments (26 days) with a survival over 90%. Zapp-Qi and Roundup-Transorb-R (potassium-salt: K-salt) reduced the egg, posture and nymph number per female, and the longevity and oviposition periods of this predator. Podisus nigrispinus net reproductive rate was highest in GR-soybean plants treated with Roundup-Original (isopropylamine-salt: IPA-salt). However, the duration of one generation, intrinsic and finite increase rates, and time to duplicate the population, were similar between treatments. Glyphosate toxicity on P. nigrispinus depends of the glyphosate salt type. IPA-salt was least harmless to this predator. Formulations based on K-salt altered its reproductive parameters, however, the development and population dynamic were not affect. Therefore, these glyphosate formulations are compatible with the predator P. nigrispinus with GR-soybean crop. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inheritance of Evolved Glyphosate Resistance in a North Carolina Palmer Amaranth (Amaranthus palmeri Biotype

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2012-01-01

    Full Text Available Inheritance of glyphosate resistance in a Palmer amaranth biotype from North Carolina was studied. Glyphosate rates for 50% survival of glyphosate-resistant (GR and glyphosate-susceptible (GS biotypes were 1288 and 58 g ha−1, respectively. These values for F1 progenies obtained from reciprocal crosses (GR×GS and GS×GR were 794 and 501 g ha−1, respectively. Dose response of F1 progenies indicated that resistance was not fully dominant over susceptibility. Lack of significant differences between dose responses for reciprocal F1 families suggested that genetic control of glyphosate resistance was governed by nuclear genome. Analysis of F1 backcross (BC1F1 families showed that 10 and 8 BC1F1 families out of 15 fitted monogenic inheritance at 2000 and 3000 g ha−1 glyphosate, respectively. These results indicate that inheritance of glyphosate resistance in this biotype is incompletely dominant, nuclear inherited, and might not be consistent with a single gene mechanism of inheritance. Relative 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS copy number varied from 22 to 63 across 10 individuals from resistant biotype. This suggested that variable EPSPS copy number in the parents might be influential in determining if inheritance of glyphosate resistance is monogenic or polygenic in this biotype.

  4. RELATIVE COMPETITIVENESS OF GOOSEGRASS BIOTYPES AND SOYBEAN CROPS

    Directory of Open Access Journals (Sweden)

    JADER JOB FRANCO

    2017-01-01

    Full Text Available he goosegrass ( Eleusine indica (L. Gaertn is an annual plant that has a low - level resistance to glyphosate (LLRG, resulting in control failure in genetically modified soybean crops for resistance to this herbicide. Alleles related to resistance may cause changes in the plant biotype, such as inferior competitive ability. Thus, the objective of this work was to evaluated the competitive ability of soybean crops and susceptible and resistant (LLRG goosegrass biotypes. Replacement series experiments were conducted with soybean crops and goosegrass biotypes. The ratios of soybean to susceptible or resistant (LLRG goosegrass plants were 100:0, 75:25, 50:50, 25:75 and 0:100, with a total population of 481 plants m - 2 . The leaf area, plant height and shoot dry weight were evaluated at 40 days after emergence of the soybean crops and weeds. The soybean crop had superior competitive ability to the susceptible and resistant (LLRG goosegrass biotypes. The soybean crop showed similar competitive ability in both competitions, either with the susceptible or resistant (LLRG goosegrass biotypes. The intraspecific competition was more harmful to the soybean crop, while the interspecific competition caused greater damage to the goosegrass biotypes competing with the soybean crop

  5. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods.

    Science.gov (United States)

    Imura, Osamu; Shi, Kun; Iimura, Keiji; Takamizo, Tadashi

    2010-01-01

    We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods. © ISBR, EDP Sciences, 2011.

  7. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    Science.gov (United States)

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Makarla, Udayakumar

    2017-07-01

    In recent years, concerns about the use of glyphosate-resistant crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate-detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1- or OsAKRI-expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Identification and functional analysis of a new glyphosate resistance gene from a fungus cDNA library.

    Science.gov (United States)

    Tao, Bo; Shao, Bai-Hui; Qiao, Yu-Xin; Wang, Xiao-Qin; Chang, Shu-Jun; Qiu, Li-Juan

    2017-08-01

    Glyphosate is a widely used broad spectrum herbicide; however, this limits its use once crops are planted. If glyphosate-resistant crops are grown, glyphosate can be used for weed control in crops. While several glyphosate resistance genes are used in commercial glyphosate tolerant crops, there is interest in identifying additional genes for glyphosate tolerance. This research constructed a high-quality cDNA library form the glyphosate-resistant fungus Aspergillus oryzae RIB40 to identify genes that may confer resistance to glyphosate. Using a medium containing glyphosate (120mM), we screened several clones from the library. Based on a nucleotide sequence analysis, we identified a gene of unknown function (GenBank accession number: XM_001826835.2) that encoded a hypothetical 344-amino acid protein. The gene was named MFS40. Its ORF was amplified to construct an expression vector, pGEX-4T-1-MFS40, to express the protein in Escherichia coli BL21. The gene conferred glyphosate tolerance to E. coli ER2799 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia.

    Science.gov (United States)

    Ngo, The D; Krishnan, Mahima; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Chloris virgata is a warm-season, C 4 , annual grass weed affecting field crops in northern Australia that has become an emerging weed in southern Australia. Four populations with suspected resistance to glyphosate were collected in South Australia, Queensland and New South Wales, Australia, and compared with one susceptible (S) population to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the rate of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in four populations of C. virgata (V12, V14.2, V14.16 and V15). GR plants were 2-9.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. GR and S plants did not differ in glyphosate absorption and translocation. Target-site EPSPS mutations corresponding to Pro-106-Leu (V14.2) and Pro-106-Ser (V15, V14.16 and V12) substitutions were found in GR populations. The population with Pro-106-Leu substitution was 2.9-4.9-fold more resistant than the three other populations with Pro-106-Ser substitution. This report confirms glyphosate resistance in C. virgata and shows that target-site EPSPS mutations confer resistance to glyphosate in this species. The evolution of glyphosate resistance in C. virgata highlights the need to identify alternative control tactics. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  11. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).

    Science.gov (United States)

    Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E

    2017-07-26

    The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.

  12. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    Science.gov (United States)

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  13. Herbicide-tolerant Transgenic Soybean over 15 Years of Cultivation: Pesticide Use, Weed Resistance, and Some Economic Issues. The Case of the USA

    Directory of Open Access Journals (Sweden)

    Sylvie Bonny

    2011-08-01

    Full Text Available Genetically modified (GM herbicide-tolerant (HT crops have been largely adopted where they have been authorized. Nevertheless, they are fiercely criticized by some, notably because of the herbicide use associated with them. However, how much herbicide is applied to GMHT crops compared to conventional crops, and what impacts does the use of herbicide have? The paper first presents some factors explaining the predominance of GMHT crops. Then, trends in the use of herbicide for GM crops are studied in the case of the most widespread HT crop: HT soybean in the USA. The trends in the toxicity of herbicides applied to HT soybean are also addressed, as well as the appearance of glyphosate-resistant (GR weeds. Lastly, the paper examines the spread of GR weeds and its impact. How are farmers, weed scientists, and the industry coping with this development, and what are the prospects of glyphosate-tolerant crops given weed resistance? In conclusion, some issues of sustainability and innovation governance raised by genetically modified herbicide-tolerant crops are discussed.

  14. Structural Basis of Glyphosate Resistance Resulting from the Double Mutation Thr97 → Ile and Pro101 → Ser in 5-Enolpyruvylshikimate-3-phosphate Synthase from Escherichia coli*S⃞

    Science.gov (United States)

    Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst

    2009-01-01

    The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (Ki = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (Km = 0.1 mm). The crystal structure at 1.7-Å resolution revealed that the dual mutation causes a shift of residue Gly96 toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile97 points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr97 and Pro101 induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS. PMID:19211556

  15. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica).

    Science.gov (United States)

    Chen, Jingchao; Huang, Hongjuan; Zhang, Chaoxian; Wei, Shouhui; Huang, Zhaofeng; Chen, Jinyi; Wang, Xu

    2015-10-01

    Field-evolved resistance of goosegrass to glyphosate is due to double or single mutation in EPSPS , or amplification of EPSPS leads to increased transcription and protein levels. Glyphosate has been used widely in the south of China. The high selection pressure from glyphosate use has led to the evolution of resistance to glyphosate in weeds. We investigated the molecular mechanisms of three recently discovered glyphosate-resistant Eleusine indica populations (R1, R2 and R3). The results showed that R1 and R2 had double Thr102Ile and Pro106Ser mutation and a single mutation of Pro106Leu in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, respectively. Escherichia coli containing the mutated EPSPS genes was tolerant to glyphosate. EPSPS activity in R1 and R2 plants was higher than in the sensitive plants. There was no amino acid substitution in EPSPS gene in R3. However, expression of EPSPS in R3 plants was higher than in glyphosate-susceptible (S) population (13.8-fold) after glyphosate treatment. EPSPS enzyme activity in both R3 and S plants was inhibited by glyphosate, while shikimate accumulation in R3 was significantly lower than for the S population. Further analysis revealed that the genome of R3 contained 28.3-fold more copies of the EPSPS gene than that of susceptible population. EPSPS expression was positively correlated with copy number of EPSPS. In conclusion, mutation of the EPSPS gene and increased EPSPS expression are part of the molecular mechanisms of resistance to glyphosate in Eleusine indica.

  16. Efeito de formulações na absorção e translocação do glyphosate em soja transgênica Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2007-01-01

    Full Text Available Este trabalho teve como objetivo avaliar a absorção e translocação de glyphosate em diferentes formulações por plantas de soja (variedade CD 219RR. Para isso, aplicou-se o 14C-glyphosate misturado à calda em três formulações comerciais (Roundup Ready® e R. Transorb®, ambas contendo o sal de isopropilamina, e Zapp Qi��, formulado à base do sal potássico, quando as plantas apresentavam o segundo trifólio completamente expandido. Transcorridas 4, 16, 40 e 64 horas após a aplicação, as plantas foram coletadas e fracionadas, separando-se a folha de aplicação (trifólio, a parte aérea, as raízes e os nódulos radiculares. O 14C-glyphosate não-absorvido foi recuperado e contado por meio da lavagem da folha (metanol 80%. Entre as formulações foi observada variação na penetração e na translocação do 14C-glyphosate para as diferentes partes avaliadas. Todavia, em todas as formulações a maior absorção se deu nos intervalos posteriores a 16 horas da aplicação. Em relação ao total de herbicida encontrado nas plantas de soja, maior percentual na parte aérea foi observado quando se aplicou o Zapp Qi® (sal potássico e, nas raízes, o R. Transorb® (sal de isopropilamina. Detectou-se a presença de 14C glyphosate nos nódulos radiculares das plantas em todos os tratamentos, sendo o maior percentual observado quando se utilizou R. Transorb®, 40 horas após a aplicação (0,13% do total medido ou 0,4% considerando somente o total presente na planta. Os resultados reforçam a hipótese de que o glyphosate pode prejudicar a simbiose entre rizóbio e soja, uma vez que o microssimbionte também apresenta em seu metabolismo a EPSPS, sensível a esse herbicida.This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready® and R. Transorb® - both with isopropylamine salt

  17. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost.

    Science.gov (United States)

    Han, Heping; Vila-Aiub, Martin M; Jalaludin, Adam; Yu, Qin; Powles, Stephen B

    2017-12-01

    A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost. © 2017 John Wiley & Sons Ltd.

  18. Efeitos da dessecação com glyphosate e chlorimuron-ethyl na comunidade infestante e na produtividade da soja Effects of dissection with glyphosate and chlorimuron-ethyl on weed community and soybean yield

    Directory of Open Access Journals (Sweden)

    L.B Carvalho

    2009-12-01

    Full Text Available O efeito de dessecantes sobre o período anterior à interferência (PAI pode auxiliar na tomada de decisão para o manejo das plantas daninhas. O objetivo desta pesquisa foi verificar se a adição de chlorimuron-ethyl ao glyphosate, para dessecação em pré-semeadura, altera a extensão do PAI na soja. O experimento foi realizado em Jaboticabal-SP, Brasil, submetendo-se o cultivar Monsoy 7908RR a oito períodos de convivência com plantas daninhas, além de testemunhas no mato e no limpo, nos quais foram aplicados dois grupos de tratamentos: glyphosate e glyphosate + chlorimuron-ethyl. Em cada período, foram calculados o índice de importância relativa e os índices de diversidade e equitabilidade; por meio da análise de regressão dos dados de produtividade de grãos, determinou-se o PAI. Digitaria insularis, Acanthospermum hispidum, Raphanus raphanistrum e Commelina benghalensis apresentaram maior importância relativa. Os índices de diversidade e equitabilidade oscilaram durante os períodos, e a diferença entre as plantas daninhas fundamentou-se no acúmulo de massa seca. O PAI na soja no tratamento com glyphosate foi de 37 dias após a semeadura (DAS e de 51 DAS naquele com glyphosate + chlorimuron-ethyl. A adição de chlorimuron-ethyl ao glyphosate permite que a cultura conviva mais tempo com as plantas daninhas sem que ocorra redução significativa na produtividade.The effects of burndown herbicides on the period before weed interference (PBI may provide support to weed management decision-making. The objective of this research was to verify whether the PBI is affected by the application of glyphosate plus chlorimuron-ethyl to pre-sowing burndown in soybean. The experiment was carried out in Jaboticabal-SP, Brazil, submitting the cultivar Monsoy 7908RR to eight coexistence periods with weeds, maintaining weedy and-weed-free checks, which were applied to two groups of treatments: glyphosate and glyphosate + chlorimuron-ethyl. At

  19. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance.

    Science.gov (United States)

    Mao, Chanjuan; Xie, Hongjie; Chen, Shiguo; Valverde, Bernal E; Qiang, Sheng

    2017-09-01

    Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana. However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore, LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and 422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in recombinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-transformed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thaliana was about 5.4 fold and 2-fold resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. Therefore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resistant crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The intensity of non-target site mechanisms influences the level of resistance of sourgrass to glyphosate

    Directory of Open Access Journals (Sweden)

    Flávia Regina da Costa

    2014-02-01

    Full Text Available Non-target site mechanisms are involved in the resistance of sourgrass (Digitaria insularis to glyphosate. Studies on the 14C-glyphosate absorption and translocation as well as the detection of glyphosate and its metabolites in sourgrass plants were carried out under controlled conditions to investigate if the differential response of resistant sourgrass biotypes (R1 and R2 is derived from the intensity of non-target site mechanisms involved in the resistance to glyphosate. Different pattern of absorption was observed between S (susceptible and R2 from 12 up to 48 hours after treatment with glyphosate (HAT, and between S and R1 just at 12 HAT. The initial difference in glyphosate absorption among the biotypes did not maintained at 96 HAT and afterwards. Smaller amount of herbicide left the treated leaf into the rest of shoot and roots in R2 (25% than in S (58% and R1 (52%. In addition, slight difference in glyphosate translocation was observed between S and R1. We found high percentage (81% of glyphosate in the S biotype up to 168 HAT, while just 44% and 2% of glyphosate was recovered from R1 and R2 plant tissues. In addition, high percentage of glyphosate metabolites was found in R2 (98% and R1 (56% biotypes, while a very low percentage (11% was found in the S biotype. As previous studies indicated resistant factors of 3.5 and 5.6 for R1 and R2, respectively, we conclude that the differential response of sourgrass biotypes is derived from the intensity of the non-target site mechanisms involved in the resistance to glyphosate.

  1. Impact of glyphosate resistant corn, glyphosate applications, and tillage on soil nutrient ratios, exoenzyme activities, and nutrient acquisition ratios

    Science.gov (United States)

    We report results of the last two years of a 7-year (2008-2014) field experiment designed to test the null hypothesis that applications of glyphosate on glyphosate resistant corn (Zea mays L.) as a routine weed control practice under both conventional and reduced tillage practices would have no effe...

  2. WEED CONTROL IN GENETICALLY MODIFIED GLYPHOSATE-TOLERANT SOYBEAN MANEJO DE PLANTAS DANINHAS EM SOJA GENETICAMENTE MODIFICADA TOLERANTE AO GLYPHOSATE

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Durigan

    2011-04-01

    Full Text Available The transgenic production systems, as well as conventional systems, require, in addition to chemical control, the adoption of other weed management strategies. This study was developed to evaluate the weed chemical control in glyphosate tolerant soybean, associated to cover crops cultivated in the autumn/winter. The experiment was carried out under field conditions at the FCAV/Unesp, Jaboticabal, São Paulo State, Brazil. A randomized split-plot block design was used, with four replications. St. Lucia Grass (Brachiaria brizantha ‘Marandu’, forage millet (Pennisetum americanum ‘BN2’, and a treatment with spontaneous growth vegetation were evaluated for plots, and, for subplots, the herbicides glyphosate, chlorimuron - ethyl plus lactofen, and fluazifop-p-butyl, in a sequential spraying, and two controls without any application. Grass cover contributed to the chemical control, suppressing weeds, and the single application of 720 g a.e. ha-1 of glyphosate, independently of the cover crop cultivated in the autumn/winter, was sufficient for adequately controlling Acanthospermum hispidum, Alternanthera tenella, Amaranthus sp., Bidens pilosa, Xanthium strumarium, Cenchrus echinatus, Digitaria sp., and Eleusine indica, with results similar to the treatment (chlorimuron-ethyl + lactofen + fluazifop-p-buthyl. When compared to the weeded control, the herbicides did not affect plants height, dry matter of the aerial parts, mass of 100 grains, and grain yield. Soybean plants grown over St. Lucia Grass and forage millet presented a higher height, however, no other feature was influenced by the cover crop.

    KEY-WORDS: Brachiaria brizantha; Pennisetum americanum; no-tillage; Roundup Ready; spontaneous vegetation.

    Os sistemas de produção transgênicos, assim como os

  3. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    Science.gov (United States)

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    Science.gov (United States)

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  5. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico.

    Science.gov (United States)

    Dominguez-Valenzuela, Jose Alfredo; Gherekhloo, Javid; Fernández-Moreno, Pablo Tomás; Cruz-Hipolito, Hugo Enrique; Alcántara-de la Cruz, Ricardo; Sánchez-González, Eduardo; De Prado, Rafael

    2017-06-01

    Following the introduction of glyphosate-resistant (GR)-cotton crops in Mexico, farmers have relied upon glyphosate as being the only herbicide for in-season weed control. Continuous use of glyphosate within the same year and over multiple successive years has resulted in the selection of glyphosate resistance in Palmer amaranth (Amarantus palmeri). Dose-response assays confirmed resistance in seven different accessions. The resistance ratio based on GR 50 values (50% growth reduction) varied between 12 and 83. At 1000 μM glyphosate, shikimic acid accumulation in the S-accession was 30- to 2-fold higher at compared to R-accessions. At 96 h after treatment, 35-44% and 61% of applied 14 C-glyphosate was taken up by leaves of plants from R- and S-accessions, respectively. At this time, a significantly higher proportion of the glyphosate absorbed remained in the treated leaf of R-plants (55-69%) compared to S-plants (36%). Glyphosate metabolism was low and did not differ between resistant and susceptible plants. Glyphosate was differentially metabolized to AMPA and glyoxylate in plants of R- and S-accessions, although it was low in both accessions (glyphosate collected from GR-cotton crops from Mexico. This is the first study demonstrating glyphosate-resistance in Palmer amaranth from Mexico. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    Science.gov (United States)

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-08-12

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.

  7. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzo, Pablo J. [Grupo Materiales Polimericos, INIFTA - Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (UNLP-CONICET), Diag. 113 y 64, CC 16 Suc 4, 1900 La Plata (Argentina); Porta, Atilio A. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina); Division Quimica Analitica, Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)], E-mail: aporta@quimica.unlp.edu.ar; Ronco, Alicia E. [CIMA - Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata (Argentina)

    2008-11-15

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas.

  8. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina

    International Nuclear Information System (INIS)

    Peruzzo, Pablo J.; Porta, Atilio A.; Ronco, Alicia E.

    2008-01-01

    Levels of glyphosate were determined in water, soil and sediment samples from a transgenic soybean cultivation area located near to tributaries streams of the Pergamino-Arrecifes system in the north of the Province of Buenos Aires, Argentina. Field work took into account both the pesticide application and the rains occurring after applications. The pesticide was analysed by HPLC-UV detection, previous derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl). In addition, SoilFug multimedia model was used to analyse the environmental distribution of the pesticides. In the field, levels of glyphosate in waters ranged from 0.10 to 0.70 mg/L, while in sediments and soils values were between 0.5 and 5.0 mg/Kg. Temporal variation of glyphosate levels depended directly on the time of application and the rain events. The results obtained from the application of the model are in accordance with the values found in the field. - Glyphosate concentrations in the environment from a region where little information exists about this and intensive cultivation activities predominate in large areas

  9. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Baerson, Scott R; Rodriguez, Damian J; Tran, Minhtien; Feng, Yongmei; Biest, Nancy A; Dill, Gerald M

    2002-07-01

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.

  10. Glyphosate resistant weeds - a threat to conservation agriculture

    Science.gov (United States)

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  11. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  13. Control of glyphosate resistant hairy fleabane (Conyza bonariensis with dicamba and 2,4-D Controle de buva (Conyza bonariensis resistente ao glyphosate com dicamba e 2,4-D

    Directory of Open Access Journals (Sweden)

    D.J. Soares

    2012-06-01

    Full Text Available Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis. The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.Os herbicidas mimetizadores de auxinas como dicamba e 2,4-D são alternativas para o controle de buva resistente ao glyphosate. Com a possível futura liberação comercial de culturas resistentes ao dicamba e 2,4-D, a aplicação destes herbicidas reguladores de crescimento será uma provável alternativa de controle de buva resistente ao glyphosate. O objetivo desta pesquisa foi modelar por meio de curvas de dose-resposta a efic

  14. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  15. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology.

    Science.gov (United States)

    Chen, Jingchao; Huang, Hongjuan; Wei, Shouhui; Huang, Zhaofeng; Wang, Xu; Zhang, Chaoxian

    2017-01-01

    Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK, EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  16. Alterations in the 5 'untranslated region of the EPSPS gene influence EPSPS overexpression in glyphosate-resistant Eleusine indica.

    Science.gov (United States)

    Zhang, Chun; Feng, Li; Tian, Xing-Shan

    2018-04-26

    The herbicide glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Overexpression of the EPSPS gene is one of the molecular mechanisms conferring glyphosate resistance in weeds, but the transcriptional regulation of this gene is poorly understood. The EPSPS gene was found to be significantly up-regulated following glyphosate treatment in a glyphosate- resistant Eleusine indica population from South China. To further investigate the regulation of EPSPS overexpression, the promoter of the EPSPS gene from this E. indica population was cloned and analyzed. Two upstream regulatory sequences, Epro-S (862 bp) and Epro-R (877 bp) of EPSPS were obtained from glyphosate-susceptible (S) and -resistant (R) E. indica plants respectively by HiTAIL-PCR. The Epro-S and Epro-R sequences were 99% homologous, except for the two insertions (3 bp and12 bp) in the R sequence. The 12-base insertion of the Epro-R sequence was located in the 5'-UTR-Py-rich stretch element. The promoter activity tests showed that the 12-base insertion resulted in significant enhancement of the Epro-R promoter activity, whereas the 3-base insertion had little effect on Epro-R promoter activity. Alterations in the 5'-UTR-Py-rich stretch element of EPSPS are responsible for glyphosate induced EPSPS overexpression. Therefore, EPSPS transcriptional regulation confers glyphosate resistance in this E. indica population. This article is protected by copyright. All rights reserved.

  17. Identification and characterization of RAPD-SCAR markers linked to glyphosate-susceptible and -resistant biotypes of Eleusine indica (L.) Gaertn.

    Science.gov (United States)

    Cha, Thye San; Anne-Marie, Kaben; Chuah, Tse Seng

    2014-02-01

    Eleusine indica is one of the most common weed species found in agricultural land worldwide. Although herbicide-glyphosate provides good control of the weed, its frequent uses has led to abundant reported cases of resistance. Hence, the development of genetic markers for quick detection of glyphosate-resistance in E. indica population is imperative for the control and management of the weed. In this study, a total of 14 specific random amplified polymorphic DNA (RAPD) markers were identified and two of the markers, namely S4R727 and S26R6976 were further sequence characterized. Sequence alignment revealed that marker S4R727 showing a 12-bp nucleotides deletion in resistant biotypes, while marker S26R6976 contained a 167-bp nucleotides insertion in the resistant biotypes. Based on these sequence differences, three pairs of new sequence characterized amplified region (SCAR) primers were developed. The specificity of these primer pairs were further validated with genomic DNA extracted from ten individual plants of one glyphosate-susceptible and five glyphosate-resistant (R2, R4, R6, R8 and R11) populations. The resulting RAPD-SCAR markers provided the basis for assessing genetic diversity between glyphosate-susceptible and -resistant E. indica biotypes, as well for the identification of genetic locus link to glyphosate-resistance event in the species.

  18. Investigation of glyphosate resistance levels and target-site based resistance (TSR) mechanisms in Conyza canadensis (L.) from apple orchards around areas of Bohai seas and Loess Plateau in China.

    Science.gov (United States)

    Mei, Yu; Xu, Yufang; Wang, Shipeng; Qiu, Lihong; Zheng, Mingqi

    2018-04-01

    The resistance levels to glyphosate and target-site based resistance mechanisms in susceptible (S) and resistant (R) Conyza canadensis (L.) populations, which were collected from apple orchards around areas of Bohai seas and Loess Plateau in China, were investigated. Among forty C. canadensis populations, eighteen populations (45%) were still susceptible; fourteen populations (35%) evolved low resistance levels resistance to glyphosate with resistance index (RI) of 2.02 to 3.90. In contrast, eight populations (20%) evolved medium resistance levels with RI of 4.35 to 8.38. The shikimic acid concentrations in R populations were highly negative relative with the glyphosate resistance levels in C. canadensis, the Pearson correlation coefficient was -0.82 treated by glyphosate at 1.8mg/L. Three 5-enoylpyruvylshikimate 3'-phosphate synthase genes (EPSPS1, EPSPS2 and EPSPS3) were cloned in all S and glyphosate-resistant C. canadensis populations. No amino acid substitution was identified at site of 102 and 106 in three EPSPS genes, which were reported to confer glyphosate resistance in other weed species. The relative expression level of EPSPS mRNA in R populations (SD07, LN05, SHX06 and SD09) was 4.5 to 13.2 times higher than in S biotype. The Pearson correlation coefficient between EPSPS expression levels and RI was 0.79, which indicated the over expression of EPSPS mRNA may cause these R populations evolve higher resistance level to glyphosate. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Intellectual property rights related to the genetically modified glyphosate tolerant soybeans in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta L Rodrigues

    2011-06-01

    Full Text Available The present work analyzes the different modalities of protection of the intellectual creations in the biotechnology agricultural field. Regarding the Brazilian legislations related to the theme (the Industrial Property Law - no. 9. 279/96 and the Plant Variety Protection Law - no. 9. 456/97, and based in the international treaties signed by Brazil, the present work points to the inclusions of each of them, as well as to their interfaces using as reference the case study of glyphosate tolerant genetically modified soybean. For this case study, Monsanto's pipelines patents were searched and used to analyze the limits of patent protection in respect to others related to the Intellectual Property (IP laws. Thus, it was possible to elucidate the complex scenario of the Intellectual Property of the glyphosate tolerant soybeans, since for the farmer it is hard to correlate the royalties payment with the IP enterprise's rightsO presente trabalho analisa as diferentes modalidades de proteção das criações intelectuais no campo da biotecnologia agrícola. A partir das leis Brasileiras relacionadas ao tema (Lei da Propriedade Industrial - nº 9.279/96 e Lei da Proteção de Cultivares - nº 9.456/97, e com base nos tratados internacionais assinados pelo Brasil, o presente trabalho aponta as inclusões de cada uma, assim como, suas interfaces usando como referência o estudo de caso da soja geneticamente modificada para tolerância ao glifosato. Para este caso, patentes pipelines da Monsanto foram buscadas e usadas para analisar os limites de proteção das patentes frente às outras leis de Propriedade Intelectual (PI relacionadas. Assim, foi possível elucidar o cenário complexo da Propriedade Intelectual das sojas tolerantes ao glifosato, já que para o agricultor não é fácil correlacionar o pagamento dos royalties com os direitos de PI da empresa

  20. Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance.

    Science.gov (United States)

    Tehranchian, Parsa; Nandula, Vijay; Jugulam, Mithila; Putta, Karthik; Jasieniuk, Marie

    2018-04-01

    Glyphosate, paraquat and acetyl CoA carboxylase (ACCase)-inhibiting herbicides are widely used in California annual and perennial cropping systems. Recently, glyphosate, paraquat, and ACCase- and acetolactate synthase (ALS)-inhibitor resistance was confirmed in several Italian ryegrass populations from the Central Valley of California. This research characterized the possible mechanisms of resistance. Multiple-resistant populations (MR1, MR2) are resistant to several herbicides from at least three modes of action. Dose-response experiments revealed that the MR1 population was 45.9-, 122.7- and 20.5-fold, and the MR2 population was 24.8-, 93.9- and 4.0-fold less susceptible to glyphosate, sethoxydim and paraquat, respectively, than the susceptible (Sus) population. Accumulation of shikimate in Sus plants was significantly greater than in MR plants 32 h after light pretreatments. Glyphosate resistance in MR plants was at least partially due to Pro106-to-Ala and Pro106-to-Thr substitutions at site 106 of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS gene copy number and expression level were similar in plants from the Sus and MR populations. An Ile1781-to-Leu substitution in ACCase gene of MR plants conferred a high level of resistance to sethoxydim and cross-resistance to other ACCase-inhibitors. Radiolabeled herbicide studies and phosphorimaging indicated that MR plants had restricted translocation of 14 C-paraquat to untreated leaves compared to Sus plants. This study shows that multiple herbicide resistance in Italian ryegrass populations in California, USA, is due to both target-site and non-target-site resistance mechanisms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Simulating the evolution of glyphosate resistance in grains farming in northern Australia.

    Science.gov (United States)

    Thornby, David F; Walker, Steve R

    2009-09-01

    The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies.

  2. Tolerance of Glyphosate-Resistant Maize to Glyphosate Plus MCPA Amine Is Influenced by Dose and Timing

    Directory of Open Access Journals (Sweden)

    Nader Soltani

    2015-01-01

    Full Text Available There is little information on tolerance of glyphosate-resistant maize to glyphosate plus MCPA amine as influenced by dose and timing under Ontario environmental conditions. A total of seven field trials were conducted at various locations in Ontario, Canada, in 2011–2013 to evaluate tolerance of field maize to tank mixes of glyphosate (900 g a.e./ha plus MCPA amine (79, 158, 315, 630, 1260, 2520, or 5040 g a.e./ha at either the 4- or 8-leaf stage. The predicted dose of MCPA amine that caused 5, 10, and 20% injury was 339, 751, and 1914 g a.e./ha when applied to 4-leaf maize but only 64, 140, and 344 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% reduction in shoot dry weight of maize was 488, 844, and 1971 g a.e./ha when applied to 4-leaf maize and only 14, 136, and 616 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% yield reduction was 2557, 4247, and >5040 g a.e./ha when applied to 4-leaf maize and 184, 441, and 1245 g a.e./ha when applied to 8-leaf maize, respectively. Based on these results, glyphosate plus MCPA amine applied at the manufacturer’s recommended dose of 630 g a.e./ha applied to 4-leaf maize has potential to cause injury but the injury is transient with no significant reduction in yield. However, when glyphosate plus MCPA amine is applied to 8-leaf maize it has the potential to cause significant injury and yield loss in maize.

  3. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species.

    Science.gov (United States)

    Fernández, Pablo; Alcántara, Ricardo; Osuna, María D; Vila-Aiub, Martin M; Prado, Rafael De

    2017-05-01

    In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds. Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L. rigidum, L. perenne, L. multiflorum) collected from perennial crops in the Iberian Peninsula have also evolved resistance to glufosinate and oxyfluorfen herbicides, despite their recent introduction. Based on the LD 50 resistance parameter, the resistance factor was similar among Lolium species and ranged from 14- to 21-fold and from ten- to 12-fold for oxyfluorfen and glufosinate respectively. Similarly, about 14-fold resistance to both oxyfluorfen and glufosinate was estimated on average for the three Lolium species when growth reduction (GR 50 ) was assessed. This study identified oxyfluorfen resistance in a grass species for the first time. A major threat to sustainability of perennial crops in the Iberian Peninsula is evident, as multiple resistance to non-selective glyphosate, glufosinate and oxyfluorfen herbicides has evolved in L. rigidum, L. perenne and L. multiflorum weeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    Science.gov (United States)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  5. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  6. Evaluation of glyphosate resistance in Arabidopsis thaliana expressing an altered target site EPSPS.

    Science.gov (United States)

    Sammons, R Douglas; You, Jinsong; Qi, Youlin; Flasinski, Stanislaw; Kavanaugh, Christina; Washam, Jeannie; Ostrander, Elizabeth; Wang, Dafu; Heck, Greg

    2018-05-01

    Glyphosate-resistant goosegrass has recently evolved and is homozygous for the double mutant of EPSPS (T 102 I, P 106 S or TIPS). These same mutations combined with EPSPS overexpression, have been used to create transgenic glyphosate-resistant crops. Arabidopsis thaliana (Wt EPSPS K i ∼ 0.5 μM) was engineered to express a variant AtEPSPS-T 102 I, P 106 A (TIPA K i = 150 μM) to determine the resistance magnitude for a more potent variant EPSPS that might evolve in weeds. Transgenic A. thaliana plants, homozygous for one, two or four copies of AtEPSPS-TIPA, had resistance (IC 50 values, R/S) as measured by seed production ranging from 4.3- to 16-fold. Plants treated in reproductive stage were male sterile with a range of R/S from 10.1- to 40.6-fold. A significant hormesis (∼ 63% gain in fresh weight) was observed for all genotypes when treated at the initiation of reproductive stage with 0.013 kg ha -1 . AtEPSPS-TIPA enzyme activity was proportional to copy number and correlated with resistance magnitude. A. thaliana, as a model weed expressing one copy of AtEPSPS-TIPA (300-fold more resistant), had only 4.3-fold resistance to glyphosate for seed production. Resistance behaved as a single dominant allele. Vegetative tissue resistance was 4.7-fold greater than reproductive tissue resistance and was linear with gene copy number. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  7. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica).

    Science.gov (United States)

    Gherekhloo, Javid; Fernández-Moreno, Pablo T; Alcántara-de la Cruz, Ricardo; Sánchez-González, Eduardo; Cruz-Hipolito, Hugo E; Domínguez-Valenzuela, José A; De Prado, Rafael

    2017-07-27

    Glyphosate has been used for more than 15 years for weed management in citrus groves in the Gulf of Mexico, at up to 3-4 applications per year. Goosegrass (Eleusine indica (L.) Gaertn.) control has sometimes failed. In this research, the mechanisms governing three goosegrass biotypes (Ein-Or from an orange grove, and Ein-Pl1 and Ein-Pl2 from Persian lime groves) with suspected resistance to glyphosate were characterized and compared to a susceptible biotype (Ein-S). Dose-response and shikimate accumulation assays confirmed resistance of the resistant (R) biotypes. There were no differences in glyphosate absorption, but the R biotypes retained up to 62-78% of the herbicide in the treated leaf at 96 h after treatment (HAT), in comparison to the Ein-S biotype (36%). The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity in the Ein-Or and Ein-S biotypes was over 100-fold lower than the Ein-Pl1 and Ein-Pl2 ones. The latter showed a high EPSPS-basal activity, a mutation at Pro-106-Ser position in the EPSPS gene, and EPSPS overexpression. The EPSPS basal and EPSPS overexpression were positively correlated. The R goosegrass biotypes displayed poor glyphosate translocation. Furthermore, this grassweed showed, for the first time, two mechanisms at the target-site level (Pro-106-Ser mutation + EPSPS overexpression) acting together simultaneously against glyphosate.

  8. Herbicidas alternativos para controle de biótipos de Conyza bonariensis e C. canadensis resistentes ao glyphosate Alternative herbicides to control glyphosate-resistant biotypes of Conyza bonariensis and C. canadensis

    Directory of Open Access Journals (Sweden)

    M.S. Moreira

    2010-01-01

    Full Text Available Após sucessivos anos, aplicações do herbicida glyphosate em pomares de citros no Estado de São Paulo selecionaram biótipos resistentes de Conyza bonariensis e C. canadensis. Na ocorrência de plantas daninhas resistentes em uma área agrícola, tornam-se necessárias mudanças nas práticas de manejo para obtenção de adequado controle das populações resistentes, bem como para a redução da pressão de seleção sobre outras espécies. Assim, este trabalho foi realizado com o objetivo de identificar herbicidas alternativos para controle de biótipos de Conyza spp. resistentes ao herbicida glyphosate, com aplicações em diferentes estádios fenológicos da planta daninha. Três experimentos foram conduzidos em campo, em pomares de citros em formação, sobre plantas de buva em estádio fenológico de dez folhas e no pré-florescimento. Para plantas no estádio de dez folhas, controle satisfatório foi obtido com aplicações de glyphosate + bromacil + diuron (1.440 + 1.200 + 1.200 g ha-1, glyphosate + atrazina (1.440 + 1.500 g ha-1 e glyphosate + diuron (1.440 + 1.500 g ha-1. Quando em estádio de pré-florescimento de Conyza spp., a aplicação do herbicida amônio-glufosinato, na dose de 400 g ha-1, isolado ou associado a MSMA, bromacil+diuron, metsulfuron, carfentrazone e paraquat, foi a alternativa viável para controle dos biótipos resistentes ao glyphosate.After successive years, glyphosate applications on São Paulo-Brazil citrus orchards selected resistant biotypes of Conyza bonariensis and C. canadensis. The occurrence of herbicide-resistant weed biotypes at some agricultural area makes it necessary to change the management practices to reach effective control of the selected resistant populations, as well as to reduce selection pressure on the other species. Thus, this work aimed to identify the alternative herbicides to control glyphosate-resistant biotypes of Conyza spp., with applications at different weed phenological

  9. Environmental and health effects of the herbicide glyphosate.

    Science.gov (United States)

    Van Bruggen, A H C; He, M M; Shin, K; Mai, V; Jeong, K C; Finckh, M R; Morris, J G

    2018-03-01

    The herbicide glyphosate, N-(phosphonomethyl) glycine, has been used extensively in the past 40years, under the assumption that side effects were minimal. However, in recent years, concerns have increased worldwide about the potential wide ranging direct and indirect health effects of the large scale use of glyphosate. In 2015, the World Health Organization reclassified glyphosate as probably carcinogenic to humans. A detailed overview is given of the scientific literature on the movement and residues of glyphosate and its breakdown product aminomethyl phosphonic acid (AMPA) in soil and water, their toxicity to macro- and microorganisms, their effects on microbial compositions and potential indirect effects on plant, animal and human health. Although the acute toxic effects of glyphosate and AMPA on mammals are low, there are animal data raising the possibility of health effects associated with chronic, ultra-low doses related to accumulation of these compounds in the environment. Intensive glyphosate use has led to the selection of glyphosate-resistant weeds and microorganisms. Shifts in microbial compositions due to selective pressure by glyphosate may have contributed to the proliferation of plant and animal pathogens. Research on a link between glyphosate and antibiotic resistance is still scarce but we hypothesize that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents. We recommend interdisciplinary research on the associations between low level chronic glyphosate exposure, distortions in microbial communities, expansion of antibiotic resistance and the emergence of animal, human and plant diseases. Independent research is needed to revisit the tolerance thresholds for glyphosate residues in water, food and animal feed taking all possible health risks into account. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. How glyphosate affects plant disease development: it is more than enhanced susceptibility.

    Science.gov (United States)

    Hammerschmidt, Ray

    2018-05-01

    Glyphosate has been shown to affect the development of plant disease in several ways. Plants utilize phenolic and other shikimic acid pathway-derived compounds as part of their defense against pathogens, and glyphosate inhibits the biosynthesis of these compounds via its mode of action. Several studies have shown a correlation between enhanced disease and suppression of phenolic compound production after glyphosate. Glyphosate-resistant crop plants have also been studied for changes in resistance as a result of carrying the glyphosate resistance trait. The evidence indicates that neither the resistance trait nor application of glyphosate to glyphosate-resistant plants increases susceptibility to disease. The only exceptions to this are cases where glyphosate has been shown to reduce rust diseases on glyphosate-resistant crops, supporting a fungicidal role for this chemical. Finally, glyphosate treatment of weeds or volunteer crops can cause a temporary increase in soil-borne pathogens that may result in disease development if crops are planted too soon after glyphosate application. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Secondary effects of glyphosate on plants

    Science.gov (United States)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  12. Impacts of Repeated Glyphosate Use on Wheat-Associated Bacteria Are Small and Depend on Glyphosate Use History.

    Science.gov (United States)

    Schlatter, Daniel C; Yin, Chuntao; Hulbert, Scot; Burke, Ian; Paulitz, Timothy

    2017-11-15

    Glyphosate is the most widely used herbicide worldwide and a critical tool for weed control in no-till cropping systems. However, there are concerns about the nontarget impacts of long-term glyphosate use on soil microbial communities. We investigated the impacts of repeated glyphosate treatments on bacterial communities in the soil and rhizosphere of wheat in soils with and without long-term history of glyphosate use. We cycled wheat in the greenhouse using soils from 4 paired fields under no-till (20+-year history of glyphosate) or no history of use. At each cycle, we terminated plants with glyphosate (2× the field rate) or by removing the crowns, and soil and rhizosphere bacterial communities were characterized. Location, cropping history, year, and proximity to the roots had much stronger effects on bacterial communities than did glyphosate, which only explained 2 to 5% of the variation. Less than 1% of all taxa were impacted by glyphosate, more in soils with a long history of use, and more increased than decreased in relative abundance. Glyphosate had minimal impacts on soil and rhizosphere bacteria of wheat, although dying roots after glyphosate application may provide a "greenbridge" favoring some copiotrophic taxa. IMPORTANCE Glyphosate (Roundup) is the most widely used herbicide in the world and the foundation of Roundup Ready soybeans, corn, and the no-till cropping system. However, there have been recent concerns about nontarget impacts of glyphosate on soil microbes. Using next-generation sequencing methods and glyphosate treatments of wheat plants, we described the bacterial communities in the soil and rhizosphere of wheat grown in Pacific Northwest soils across multiple years, different locations, and soils with different histories of glyphosate use. The effects of glyphosate were subtle and much less than those of drivers such as location and cropping systems. Only a small percentage of the bacterial groups were influenced by glyphosate, and most of

  13. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    Science.gov (United States)

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    Science.gov (United States)

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  15. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt; Narasimhan, Meena L.; Merzaban, Jasmeen; Bressan, Ray A.; Weller, Steve; Gehring, Christoph A

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  16. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  17. Fitness Outcomes Related to Glyphosate Resistance in Kochia (Kochia scoparia: What Life History Stage to Examine?

    Directory of Open Access Journals (Sweden)

    Omobolanle Adewale Osipitan

    2017-06-01

    Full Text Available A fast-spreading weed, kochia (Kochia scoparia, has developed resistance to the widely-used herbicide, glyphosate. Understanding the relationship between the occurrence of glyphosate resistance caused by multiple EPSPS gene copies and kochia fitness may suggest a more effective way of controlling kochia. A study was conducted to assess fitness cost of glyphosate resistance compared to susceptibility in kochia populations at different life history stages, that is rate of seed germination, increase in plant height, days to flowering, biomass accumulation at maturity, and fecundity. Six kochia populations from Scott, Finney, Thomas, Phillips, Wallace, and Wichita counties in western Kansas were characterized for resistance to field-use rate of glyphosate and with an in vivo shikimate accumulation assay. Seed germination was determined in growth chambers at three constant temperatures (5, 10, and 15 C while vegetative growth and fecundity responses were evaluated in a field study using a target-neighborhood competition design in 2014 and 2015. One target plant from each of the six kochia populations was surrounded by neighboring kochia densities equivalent to 10 (low, 35 (moderate, or 70 (high kochia plants m−2. In 2015, neighboring corn densities equivalent to 10 and 35 plants m−2 were also evaluated. Treatments were arranged in a randomized complete block design with at least 7 replications. Three kochia populations were classified as glyphosate-resistant (GR [Scott (SC-R, Finney (FN-R, and Thomas (TH-R] and three populations were classified as glyphosate-susceptible (GS [Phillips (PH-S, Wallace (WA-S and Wichita (WI-S]. Of the life history stages measured, fitness differences between the GR and GS kochia populations were consistently found in their germination characteristics. The GR kochia showed reduced seed longevity, slower germination rate, and less total germination than the GS kochia. In the field, increases in plant height, biomass

  18. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  19. Glyphosate Mineralization: Effect of Temperature and Soybean and Corn Crop Residues Mineralización de Glifosato: Efecto de la Temperatura y los Residuos Vegetales de Soya y Maíz

    Directory of Open Access Journals (Sweden)

    Ariel Rampoldi

    2008-03-01

    Full Text Available Mineralization is the main mechanism of dissipation of glyphosate herbicide (N-[phosphonomethyl] glycine in soil. However, there is scarce information about the mineralization process in strata formed by stubbles in no-tillage systems. The kinetics and rate of mineralization of herbicide in stubbles of soybean (Glycine max L. Merr. and corn (Zea mays L. were investigated. To evaluate the effect of age of crop residues, samples of soybean stubbles were collected immediately after harvest (Soja 1 and four months after harvest (Soja 2. Corn crop residues were collected three months after harvest. Glyphosate evolution and total microbial activity (TMA were monitored by release of 14C-CO2 and C-CO2 under laboratory conditions with two temperatures, 15 and 28 ºC. Crop residues size was evaluated using grinding (1 mm and cut (1 to 2 cm stubbles. Results showed that glyphosate mineralization was affected by the incubation temperature and the origin and age of crop residues. Size of crop residues did not modify glyphosate mineralization. Average glyphosate mineralization after 56 days of incubation at 15 and 28 ºC was of 3.9 and 9.9%, respectively, of the 14C-glyphosate initially applied. In maize crop residues the percentages were 2.0 and 3.0%, respectively, at 15 and 28 ºC. A similar evolution was detected for TMA. The co-metabolic nature of glyphosate mineralization was corroborated. An inverse relation between C/N ratio and glyphosate mineralization was detected. Higher glyphosate mineralization was detected in fresh soybean stubbles, suggesting that applications on aged crop residues could increase the persistence of glyphosate in no-tillage systemsLa mineralización es el principal mecanismo de disipación del herbicida glifosato (N-[fosfonometil] glicina en el suelo. Existe escasa información sobre el proceso de mineralización de glifosato en el estrato formado por rastrojos en suelos cultivados en sistema de siembra directa. Las muestras de

  20. Chemical control of different Digitaria insularis populations and management of a glyphosate-resistant population

    OpenAIRE

    CORREIA,N.M.; ACRA,L.T.; BALIEIRO,G.

    2015-01-01

    This study aimed to control different populations of Digitaria insularisby glyphosate herbicide, isolated and mixed, besides the combination of methods (chemical and mechanical) to manage resistant adult plants. Three experiments were conducted, one in pots which were maintained under non-controlled conditions and two under field conditions. In the experiment in pots, twelve populations of D. insularis were sprayed with isolated glyphosate (1.44 and 2.16 kg a.e. ha-1) and mixed (1.44 and 2.16...

  1. Differential response of two sourgrass populations to glyphosate

    Directory of Open Access Journals (Sweden)

    São Paulo State University, Jaboticabal, SP, Brazil

    2013-02-01

    Full Text Available The repetitive use of glyphosate may cause increase on the resistance of sourgrass (Digitaria insularis through mechanisms of natural selection. The aim of this study was to verify the response of two populations of sourgrass (one collected from nonagricultural area and the other one from area suspected of glyphosate resistance to increasing doses of glyphosate. The experimental design was completely randomized with four repetitions. For both populations, glyphosate was sprayed at 10 doses (0D, D/16, D/8, D/4, D/2, D, 2D, 4D, 8D, and 16D; so that D is the dose of 1.08 kg e.a. ha-1. The treatments were sprayed when the plants had shown 3-5 tillers. The population collected in the nonagricultural area was slightly more sensible to the herbicide glyphosate than the population originated from an area where the herbicide application is common, not indicating glyphosate resistance.

  2. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    Science.gov (United States)

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  3. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  4. Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823

    Science.gov (United States)

    Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance to P. pachyrhizi conditioned by Rpp genes has been found in numerous soybean accessions, and at...

  5. Resistance of Advanced Soybean Lines to Pod Borrer (Etiella zinckenella

    Directory of Open Access Journals (Sweden)

    Heru Kuswantoro

    2017-07-01

    Full Text Available The increasing and stabilizing of soybean product in Indonesia face many limitations. One of the limiting factors is pod borrer (Etiella zinckenella Treitschke infestation that is able to cause yield loss up to 80%. Objective of the research was to find out some advanced soybean lines that resistant to pod borrer. Design was randomized complete block with three replications. Soybean lines were grown gradualy to ensure the simultanously flowering. The plants were caged at 35 days after planting (DAT and infested with the imago of E. zinckenella at 56 DAT. Results showed that different soybean lines affected imago population, eggs population, larvae population, infected pods and infected seeds. Some genotypes were consistantly resistant to E. zinckenella. The resistance of those genotypes were non preference resistance based on eggs population, larvae population, infected pod and infected seeds. This study discovered nine soybean lines that is resistant to E. zinckenella, so that it can be beneficial for improving soybean resistance to this pest through releasing as a new resistant pod borer variety after tested further in potential yield and genetic x environment interaction trials. In addition, there were three varieties and two germplasm accessions that can be used as gene sources for improving the resistance of the varieties. The three varieties are able to be cultivated directly in field to decrease the E. zinckenella occurrence. 

  6. Identificação de biótipos de azevém (Lolium multiflorum resistentes ao herbicida glyphosate em pomares de maçã Identification of glyphosate-resistant ryegrass (Lolium multiflorum biotypes in apple orchards

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2004-12-01

    Full Text Available O glyphosate é um herbicida de amplo espectro utilizado há mais de 15 anos em pomares de maçã na região de Vacaria-RS, para manejo da vegetação nas linhas da cultura. São realizadas, em geral, três a quatro aplicações por ciclo e a dose normalmente utilizada é de 720 a 1.080 g e.a. ha-1 de glyphosate (2 a 3 L ha-1 do produto comercial. O azevém (Lolium multiflorum é uma planta daninha comum em pomares e, tradicionalmente, sensível ao glyphosate. Entretanto, nos últimos anos a ocorrência de plantas de azevém que, após receberem o tratamento com glyphosate, não manifestam sintomas significativos de toxicidade sugere que elas adquiriram resistência ao produto. Assim, com o objetivo de avaliar a resposta de uma população de plantas de azevém ao glyphosate, foram realizados três experimentos: um em campo e dois em casa de vegetação. No experimento em campo os tratamentos avaliados constaram de doses crescentes de glyphosate (0, 360, 720, 1.440, 2.880, 5.760 e 11.520 g e.a. ha-1, e os herbicidas paraquat, glufosinate, haloxyfop e diclofop foram empregados como produtos-padrão, aplicados em dois estádios vegetativos do azevém. No experimento em casa de vegetação, os tratamentos constaram de doses crescentes de glyphosate (0, 360, 720, 1.440, 2.880 e 5.760 g e.a. ha-1 mais os herbicidas testemunhas, aplicados sobre plantas do biótipo considerado resistente e de um sensível. No segundo experimento realizado em casa de vegetação foram avaliados tratamentos contendo glyphosate (720, 1.440, 2.880, 720 + 720 e 720 + 1.440 g e.a. ha-1, em aplicações únicas e seqüenciais, mais os herbicidas paraquat, glufosinate, haloxyfop, clethodim, sethoxydim, diclofop, fenoxaprop, fluazifop, paraquat + diuron, atrazine + simazine, trifluralin e metolachlor. A toxicidade dos tratamentos herbicidas foi avaliada aos 15, 30 e 45 DAT (dias após tratamento. Os resultados obtidos nos experimentos em campo e em casa de vegetação, de forma

  7. Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina.

    Science.gov (United States)

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2018-03-01

    Brassica rapa L. is an annual Brassicaceae species cultivated for oil and food production, whose wild form is a weed of crops worldwide. In temperate regions of South America and especially in the Argentine Pampas region, this species is widely distributed. During 2014, wild B. rapa populations that escaped control with glyphosate applications by farmers were found in this area. These plants were characterized by morphology and seed acidic profile, and all the characters agreed with B. rapa description. The dose-response assays showed that the biotypes were highly resistant to glyphosate. It was also shown that they had multiple resistance to AHAS-inhibiting herbicides. The transgenic origin of the glyphosate resistance in B. rapa biotypes was verified by an immunological test which confirmed the presence of the CP4 EPSPS protein and by an event-specific GT73 molecular marker. The persistence of the transgene in nature was confirmed for at least 4 years, in ruderal and agrestal habitats. This finding suggests that glyphosate resistance might come from GM oilseed rape crops illegally cultivated in the country or as a seed contaminant, and it implies gene flow and introgression between feral populations of GM B. napus and wild B. rapa. The persistence and spread of the resistance in agricultural environments was promoted by the high selection pressure imposed by intensive herbicide usage in the prevalent no-till farming systems.

  8. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Development of glyphosate-resistant alfalfa (Medicago sativa L.) upon transformation with the GR79Ms gene encoding 5-enolpyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Yi, Dengxia; Ma, Lin; Lin, Min; Li, Cong

    2018-07-01

    The glyphosate-resistant gene, GR79Ms, was successfully introduced into the genome of alfalfa. The transgenic events may serve as novel germplasm resources in alfalfa breeding. Weed competition can reduce the alfalfa yield, generating new alfalfa germplasm with herbicide resistance is essential. To obtain transgenic alfalfa lines with glyphosate resistance, a new synthetic glyphosate-resistant gene GR79Ms encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) was introduced into alfalfa germplasm by Agrobacterium tumefaciens-mediated transformation. In total, 67 transformants were obtained. PCR and Southern blot analyses confirmed that GR79Ms was successfully inserted into the genome of alfalfa. Reverse transcription-PCR and western blot analyses further demonstrated the expression of GR79Ms and its product, GR79Ms EPSPS. Moreover, two homozygous transgenic lines were developed in the T 2 generation by means of molecular-assisted selection. Herbicide tolerance spray tests showed that the transgenic plants T 0 -GR1, T 0 -GR2, T 0 -GR3 and two homozygous lines were able to tolerate fourfold higher commercial usage of glyphosate than non-transgenic plants.

  10. Herbicide Glyphosate Impact to Earthworm (E. fetida

    Directory of Open Access Journals (Sweden)

    Greta Dajoraitė

    2016-10-01

    Full Text Available Glyphosate is a broad spectrum weed resistant herbicide. Glyphosate may pose negative impact on land ecosystems because of wide broad usage and hydrofilic characteristic. The aim of this study was to investigate negative effects of glyphosate on soil invertebrate organisms (earthworm Eisenia fetida. The duration of experiment was 8 weeks. The range of the test concentrations of glyphosate were: 0,1, 1, 5, 10, 20 mg/kg. To investigate the glyphosate impact on earthworm Eisenia fetida the following endpoints were measured: survival, reproduction and weight. The exposure to 20 mg/kg glyphosate has led to the 100% mortality of earthworms. Glyphosate has led to decreased E. fetida reproduction, the cocoons were observed only in the lowest concentration (0,1 mg/kg. In general: long-term glyphosate toxicity to earthworms (E. fetida may be significant.

  11. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    Science.gov (United States)

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-02-17

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  12. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Ehling, Stefan; Reddy, Todime M

    2015-12-09

    A straightforward analytical method based on derivatization with fluorenylmethyloxycarbonyl chloride and liquid chromatography-mass spectrometry has been developed for the analysis of residues of glyphosate and aminomethylphosphonic acid (AMPA) in a suite of nutritional ingredients derived from soybean, corn, and sugar beet and also in cow's milk and human breast milk. Accuracy and intermediate precision were 91-116% and soy protein isolate. Limits of quantitation were 0.05 and 0.005 μg/g in powdered and liquid samples, respectively. Glyphosate and AMPA were quantified at 0.105 and 0.210 μg/g (soy protein isolate) and 0.850 and 2.71 μg/g (soy protein concentrate, both derived from genetically modified soybean), respectively. Residues were not detected in soy milk, soybean oil, corn oil, maltodextrin, sucrose, cow's milk, whole milk powder, or human breast milk. The method is proposed as a convenient tool for the survey of glyphosate and AMPA in the ingredient supply chain.

  13. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.

    Science.gov (United States)

    Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri

    2017-04-01

    Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

  14. Seletividade de cultivares de soja RR® submetidos a misturas em tanque de glyphosate + chlorimuron-ethyl associadas a óleo mineral e inseticidas selectivity of soybean RR® genotypes submitted to glyphosate + chlorimuron-ethyl tank mixtures associated to mineral oil and insecticides

    Directory of Open Access Journals (Sweden)

    C.D.G. Maciel

    2009-01-01

    Full Text Available O uso de glyphosate para o controle de plantas daninhas em soja RR® apresenta características essenciais no conceito de praticabilidade. Entretanto, apesar de não permitido na legislação brasileira, tem-se aumentado a associação com outros herbicidas para manejo de espécies de difícil controle, assim como a sua mistura em tanque em combinação com inseticidas e adjuvantes. Com o objetivo de avaliar a seletividade de cultivares de soja RR® submetidos a misturas em tanque de formulações de glyphosate (Polaris®, Roundup Ready® e Roundup WG® com chlorimuron-ethyl (Classic®, e suas associações com óleo mineral (Joint Oil® e inseticidas novaluron (Gallaxy 100 EC®, permethrin (Piredan® e methomyl (Lannate BR®, um experimento foi conduzido a campo na cidade de Maracaí-SP, na safra 2006/2007. O delineamento experimental utilizado foi o de blocos ao acaso, com quatro repetições, em esquema fatorial 16 x 4, sendo 16 as associações das misturas em tanque entre as formulações de glyphosate, óleo mineral e inseticidas e quatro cultivares: Monsoy 7210RR®, Monsoy 7979RR®, BRS 245RR® e CD 214RR®. Sintomas visuais de intoxicação inicial dos cultivares estudados foram caracterizados por clorose e encarquilhamento nas folhas para todas as misturas em tanque das formulações de glyphosate + chlorimuron-ethyl, associadas ou não ao óleo mineral e inseticidas novaluron, permethrin e methomyl. Todas as misturas em tanque não promoveram reduções significativas de produtividade para os cultivares Monsoy 7210RR®, Monsoy 7979RR® e BRS 245RR® e controlaram Ipomoea spp. com eficácia apenas satisfatória a partir dos 21 DAA (dias após aplicação.The use of glyphosate for weed control in soybean RR® presents essential practical characteristics. However, although not allowed by the current Brazilian legislation, the association with other herbicides has been increasing for species of difficult control, as well as the use of tank

  15. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Juneau, Philippe

    2016-11-01

    We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H 2 O 2 ) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l -1 . Inhibition of mitochondrial ETC Complex I by rotenone reduced H 2 O 2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H 2 O 2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Controle químico de biótipos de buva (Conyza canadensis e Conyza bonariensis resistentes ao glyphosate Chemical Control of glyphosate-resistant horseweed (Conyza Canadensis and hairy fleabane (Conyza bonariensis biotypes

    Directory of Open Access Journals (Sweden)

    Micheli Satomi Yamauti

    2010-09-01

    Full Text Available Estudos foram conduzidos na Estação Experimental de Citricultura de Bebedouro, SP para avaliar a resposta de biótipos de buva resistentes aos herbicidas glyphosate, bromacil + diuron, diuron e paraquat isolados e em mistura, e o efeito de uma aplicação seqüencial com glyphosate. O delineamento foi o de blocos casualizados com quatro repetições e sete tratamentos.. Os herbicidas foram aplicados com pulverizador costal, à pressão constante (mantido por CO2 comprimido, munido com barra com três bicos do tipo TT110015 com um consumo de calda equivalente a 150 L ha-1. O controle foi avaliado visualmente, através de escala percentual de notas. Para o controle geral das plantas daninhas os melhores resultados foram obtidos com diuron isolado e com glyphosate em mistura com bromacil + diuron, enquanto para o controle da buva não houve diferença entre os tratamentos. Depois da aplicação seqüencial, o melhor tratamento para o controle de buva foi com diuron e bromacil+diuron.Studies were conducted at Estação Experimental de Citricultura de Bebedouro, SP to evaluate the response of glyphosate-resistant horseweed and hairy fleabane biotypes to herbicides glyphosate, bromacil + diuron, diuron e paraquat isolated and in mixture and effect of a sequential application of glyphosate. The experimental design was of complete randomized blocks with four replication and seven treatments. The herbicides were applied with costal sprayer, constant pressure with three nozzles TT110015, the equivalent spray volume was 150 L ha-1. The control was visually evaluated, trough percentile note scale. The best results were obtained to general control of weed with diuron isolated and glyphosate in mixture with bromacil + diuron while to glyphosate-resistant horseweed and hairy fleabane there was no difference between the treatments. After sequential application to Conyza sp control, the best treatment was obtained associated with diuron and bromacil+diuron.

  17. Efeitos dos herbicidas glyphosate e paraquat, aplicados ao solo, sobre a emergência de feijão e soja e de algumas espécies daninhas Effects of the herbicides glyphosate and paraquat, applied to the soil, on the emergence of dry beans and soybeans and some weed species

    Directory of Open Access Journals (Sweden)

    C.A. Dias

    1982-06-01

    Full Text Available Em trabalho conduzido a campo na Estação Experimental Agronômica da UFRGS, Guaíba, RS em 1979/80, usaram-se os herbicidas glyphosate, paraquat e sua combinação, objetivando determinar os efe itos de doses e de épocas de aplicação destes herbicidas em plântulas de feijão e de soja e sobre nutrientes do solo. Pelos resultados obtidos para emergência e peso de maté ria seca da parte aé re a de soja , não houve di ferenças para os tratamentos testados. Também não ocorreram diferenças significativas à população in ic ia l de feijão e sobre os elementos de solo analisados (Ca, Mg e K. Com relação ao peso de matéria seca da parte aérea do feijão, verificou-se que houve interação entre herbicida e doses usadas, tendo glyphosate isolado e glyphosate mais paraquat aplicados seqüencialmente nas doses máximas causado redução significativa naquele parâmetro. Com relação ao paraquat, não foram detectadas diferenças significativas entre as doses testadas.A field xeperiment was conducted during the 1979/80 growing season at the Agronomic Experimental Station of the Federal University of Rio Grande do Sul, in Guaíba, RS, Brazil, in order to evaluate the efects of rates and times of appl ication of the herbicides glyphosate, paraqu at, and the ir combin at ion, on dry beans (Phaseolus vulgaris L. and soybeans (Glvcine max (L. Merrill, and on some soil nutrierts. The results indicated no significant differences among the soybeans treatments tested fo r plant population and shoot dry weight. Also no sta ti sti cal diffe re nces occurred fo r dry beans plant population and for soil nutrients analysed (Ca, Mg, and K. For dry beans shoot dry weight, there was an interaction of herbicides and rates, where glyphosate sprayed alone and glyphosate plus paraquat applied at the maxima ra te s te sted caused significant decreases on that variable. For paraquat utilized alone, no significant effects were detected among the rates applied.

  18. Framing the issues of resistance management in soybean

    Science.gov (United States)

    The soybean insect-pest complex consists of both long-established and new invasive pests. Management of these pests has been achieved by various means, but often relies heavily on the application of insecticides and the development of insect-resistant soybean varieties. Pest management practitione...

  19. Application of soybean shoot-cutting in SMV-resistance genetic analysis

    Institute of Scientific and Technical Information of China (English)

    Haifeng Chen; Zhihui Shan; Xin'an zhou; Zhonglu Yang; Qiao Wan; Yanyan Yang; Shuilian Chen; Chanjuan Zhang; Limiao Chen; Songli Yuan; Dezhen Qiu

    2016-01-01

    Soybean mosaic virus (SMV) is one of the most serious diseases affecting soy-bean yield. Recombination inbred lines (RILs) are common materials for resistance genetic research. However, the population construction always takes quite a long time which pro-long the breading process. Shoot-cutting is a well-established technique for plant multipli-cation. It has high successful ratio in soybean. In this study, we use shoot-cutting to multiply two F2 populations from the crosses of susceptible and resistant varieties. Soybean plants can be multiplied from 1 into 3 homogenous ones within 30 days, bringing on well-grown plants with normal seeds. The SMV resistance from cutting-shoot plants was consistent with that from original plants. When shoot-cutting is applied in a F2 population, the pheno-typic and genotypic data can be simultaneously collected and corresponding saved during population development. The genetic research and resistant breeding can be effectively promoted by this technology.

  20. Biodegradation of glyphosate in rhizospheric soil cultivated with Glycine max, Canavalia ensiformis e Stizolobium aterrimum Biodegradação de glyphosate em solo rizosférico de Glycine max, Canavalia ensiformis e Stizolobium aterrimum

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2009-01-01

    Full Text Available Biodegradation of glyphosate was evaluated in rhizospheric soil cultivated with Glycine max (soybean, var. BRS245-RR, Canavalia ensiformis and Stizolobium aterrimum. After these species were cultivated for 60 days, soil samples were collected, placed in flasks and treated with 14C-glyphosate. After 30 days of incubation, the total release rate of C-CO2 was determined along with microbial biomass (MBC, metabolic quotient (qCO2, and degradation percentage of the radio-labeled glyphosate released as 14C-CO2. A higher mass of rhizosphere-associated microorganisms was verified in the soil samples from pots cultivated with soybean, regardless of glyphosate addition. However, in the presence of the herbicide, this characteristic was the most negatively affected. Microorganisms from the C. ensiformis rhizosphere released a lower amount of 14C-CO2, while for those originated from S. aterrimum, the amount released reached 1.3% more than the total carbon derived from the respiratory activity. The rhizospheric soil from S. aterrimum also presented higher glyphosate degradation efficiency per microbial biomass unit. However, considering qCO2, the microbiota of the rhizospheric soil cultivated with soybean was more efficient in herbicide degradation.Avaliou-se neste trabalho a degradação de glyphosate em solo rizosférico proveniente do cultivo de Glycine max (soja var. BRS245-RR, Canavalia ensiformis e Stizolobium aterrimum. Para isso, após o cultivo, em vasos, das citadas espécies por 60 dias, coletaram-se amostras de solo, as quais foram acondicionadas em frascos e tratadas com 14C-glyphosate. Após 32 dias de incubação, foram determinados a taxa de desprendimento total de C-CO2, a biomassa microbiana (MBC, o quociente metabólico (qCO2 e a porcentagem de degradação do glyphosate radiomarcado liberado na forma de 14C-CO2. Verificou-se a maior massa de microrganismos associados à rizosfera em amostras de solo proveniente de vasos cultivados com a

  1. Non-antibiotic selection systems for soybean somatic embryos: the lysine analog aminoethyl-cysteine as a selection agent

    Directory of Open Access Journals (Sweden)

    Kwanyuen Prachuab

    2009-11-01

    Full Text Available Abstract Background In soybean somatic embryo transformation, the standard selection agent currently used is hygromycin. It may be preferable to avoid use of antibiotic resistance genes in foods. The objective of these experiments was to develop a selection system for producing transgenic soybean somatic embryos without the use of antibiotics such as hygromycin. Results When tested against different alternate selection agents our studies show that 0.16 μg/mL glufosinate, 40 mg/L isopropylamine-glyphosate, 0.5 mg/mL (S-(2 aminoethyl-L-cysteine (AEC and the acetolactate synthase (ALS inhibitors Exceed® and Synchrony® both at 150 μg/mL inhibited soybean somatic embryo growth. Even at the concentration of 2 mg/mL, lysine+threonine (LT were poor selection agents. The use of AEC may be preferable since it is a natural compound. Unlike the plant enzyme, dihydrodipicolinate synthase (DHPS from E. coli is not feed-back inhibited by physiological concentrations of lysine. The dapA gene which codes for E. coli DHPS was expressed in soybean somatic embryos under the control of the CaMV 35S promoter. Following introduction of the construct into embryogenic tissue of soybean, transgenic events were recovered by incubating the tissue in liquid medium containing AEC at a concentration of 5 mM. Only transgenic soybeans were able to grow at this concentration of AEC; no escapes were observed. Conclusion Genetically engineered soybeans expressing a lysine insensitive DHPS gene can be selected with the non-antibiotic selection agent AEC. We also report here the inhibitory effects of glufosinate, (isopropylamine-glyphosate (Roundup®, AEC and the ALS inhibitors Exceed® and Synchrony® against different tissues of soybean

  2. Ecotoxicological assessment of Roundup-ready soybean agriculture investigated in a D. magna model

    OpenAIRE

    Cuhra, Marek

    2015-01-01

    Paper III of this thesis is not available i Munin: III: M. Cuhra, T. Traavik & T. Bøhn. 2014. 'Life cycle fitness differences in Daphnia magna fed Roundup-Ready soybean or conventional soybean or organic soybean', available in Aquaculture Nutrition Transgenic glyphosate tolerant soybeans are constituents of an industrial production system with specific agricultural practices and supplementary agrochemicals as interwoven additional elements. Thus the material produced should not be see...

  3. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean.

    Science.gov (United States)

    Ortega, María A; All, John N; Boerma, H Roger; Parrott, Wayne A

    2016-04-01

    QTL-M and QTL-E enhance soybean resistance to insects. Pyramiding these QTLs with cry1Ac increases protection against Bt-tolerant pests, presenting an opportunity to effectively deploy Bt with host-plant resistance genes. Plant resistance to leaf-chewing insects minimizes the need for insecticide applications, reducing crop production costs and pesticide concerns. In soybean [Glycine max (L.) Merr.], resistance to a broad range of leaf-chewing insects is found in PI 229358 and PI 227687. PI 229358's resistance is conferred by three quantitative trait loci (QTLs): M, G, and H. PI 227687's resistance is conferred by QTL-E. The letters indicate the soybean Linkage groups (LGs) on which the QTLs are located. This study aimed to determine if pyramiding PI 229358 and PI 227687 QTLs would enhance soybean resistance to leaf-chewing insects, and if pyramiding these QTLs with Bt (cry1Ac) enhances resistance against Bt-tolerant pests. The near-isogenic lines (NILs): Benning(ME), Benning(MGHE), and Benning(ME+cry1Ac) were developed. Benning(ME) and Benning(MGHE) were evaluated in detached-leaf and greenhouse assays with soybean looper [SBL, Chrysodeixis includens (Walker)], corn earworm [CEW, Helicoverpa zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda (J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia gemmatalis (Hübner)]; and in field-cage assays with SBL. Benning(ME+cry1Ac) was tested in detached-leaf assays against SBL, VBC, and Southern armyworm [SAW, Spodoptera eridania (Cramer)]. In the detached-leaf assay, Benning(ME) showed the strongest antibiosis against CEW, FAW, and VBC. In field-cage conditions, Benning(ME) and Benning(MGHE) suffered 61 % less defoliation than Benning. Benning(ME+cry1Ac) was more resistant than Benning(ME) and Benning (cry1Ac) against SBL and SAW. Agriculturally relevant levels of resistance in soybean can be achieved with just two loci, QTL-M and QTL-E. ME+cry1Ac could present an opportunity to protect the durability of Bt

  4. EMERGÊNCIA E ESTABELECIMENTO DE PLANTAS CULTIVADAS APÓS APLICAÇÃO DE GLYPHOSATE

    OpenAIRE

    BELUCI, Lucas Ribeiro; AZANIA, Carlos Alberto Mathias; VITORINO, Renan; AZANIA, Andrea Padua; GARCIA, Julio César; SILVA, Danilo Manoel da

    2014-01-01

    The research aimed to study the effect glyphosate doses, used in the sugarcane chemical destruction, on the emergence and early development of soybean, corn and peanut, sown in succession. An experiment was conducted for each crop in pots using a randomized design with treatments arranged in a 2 x 6 factorial and four replications with seeding times (1 and 12 days after application) and glyphosate doses (0, 1440, 2160, 2880, 3600 and 4320 g ha-1). The experimental units consisted of plast...

  5. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  6. Characterization of Insect Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies

    Directory of Open Access Journals (Sweden)

    Hao-Xun Chang

    2017-05-01

    Full Text Available Management of insects that cause economic damage to yields of soybean mainly rely on insecticide applications. Sources of resistance in soybean plant introductions (PIs to different insect pests have been reported, and some of these sources, like for the soybean aphid (SBA, have been used to develop resistant soybean cultivars. With the availability of SoySNP50K and the statistical power of genome-wide association studies, we integrated phenotypic data for beet armyworm, Mexican bean beetle (MBB, potato leafhopper (PLH, SBA, soybean looper (SBL, velvetbean caterpillar (VBC, and chewing damage caused by unspecified insects for a comprehensive understanding of insect resistance in the United States Department of Agriculture Soybean Germplasm Collection. We identified significant single nucleotide (SNP polymorphic markers for MBB, PLH, SBL, and VBC, and we highlighted several leucine-rich repeat-containing genes and myeloblastosis transcription factors within the high linkage disequilibrium region surrounding significant SNP markers. Specifically for soybean resistance to PLH, we found the PLH locus is close but distinct to a locus for soybean pubescence density on chromosome 12. The results provide genetic support that pubescence density may not directly link to PLH resistance. This study offers a novel insight of soybean resistance to four insect pests and reviews resistance mapping studies for major soybean insects.

  7. Review on resistance to soybean mosaic virus in soybean%大豆抗大豆花叶病毒研究进展

    Institute of Scientific and Technical Information of China (English)

    王大刚; 智海剑; 张磊

    2013-01-01

    Soybean mosaic virus disease caused by soybean mosaic virus (SMV) is the major virus disease worldwide in soybean (Glycine max (L.) Merr.),resulting in substantial yield losses and significant seed quality deterioration.This paper reviewed the research advances on resistance to SMV in soybean,which includes screening of resistant germplasm,studying on inheritance of resistance,fine mapping and marker-assisted selection of resistance genes,and some resistant candidate genes to SMV in soybeans.Future research directions of SMV resistance are proposed.The summary of related study could assist molecular breeding and functional analysis of resistance genes to SMV in soybean.%由大豆花叶病毒(soybean mosaic virus,SMV)引起的大豆花叶病毒病是一种世界性大豆病害,严重地影响了大豆的产量和品质.本文介绍了国内外大豆抗SMV的最新研究进展,主要包括:抗源筛选、抗性遗传、抗性基因的精细定位和分子标记辅助选择以及大豆对SMV候选抗性基因的研究等,并对该领域的研究进行了初步展望,以期为大豆抗SMV分子育种和抗性候选基因的功能研究提供参考.

  8. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  9. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    Science.gov (United States)

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  10. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  11. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.

    Science.gov (United States)

    Pérez, Débora J; Okada, Elena; De Gerónimo, Eduardo; Menone, Mirta L; Aparicio, Virginia C; Costa, José L

    2017-12-01

    In the present study, we evaluated the spatial and temporal trends of current-use pesticides in surface water and sediments as well as their relationship with hydrological stream dynamics within the agricultural watershed of El Crespo stream (Buenos Aires Province, Argentina). We sampled 2 contrasting sites: site 1 (upstream), surrounded by agricultural lands, and site 2 (downstream), surrounded by natural grasslands. Most of the applied pesticides (glyphosate, 2,4-D, atrazine, tebuconazole, and imidacloprid) were detected at high frequencies in surface water samples at both sites. However, only glyphosate and aminomethylphosphonic acid (AMPA) were present at high concentrations and had a significant spatial-temporal trend. The highest concentrations were found during spring 2014 at site 1, in association with the intense rains that occurred in that season. The fact that glyphosate and AMPA concentrations were higher than the rest of the studied compounds is closely related to the land use within the watershed, as glyphosate was the most applied herbicide during the fallow period of glyphosate-resistant crops (soybean, maize). The pesticide mixture had a significant spatial-temporal trend, reaching the highest levels during storm flow events in spring 2014. The intensive rains in spring 2014 could be the main factor influencing stream hydrology and pesticide behavior at El Crespo watershed. The estimated annual pesticide losses were 3.11 g/ha at site 1 and 0.72 g/ha at site 2. This result indicates that an attenuation process could be decreasing pesticide loads during downstream transport from site 1 to site 2. Environ Toxicol Chem 2017;36:3206-3216. © 2017 SETAC. © 2017 SETAC.

  12. A model based on spectrofluorimetry to study the interaction between glyphosate and serum albumin of Salminus brasiliensis

    Science.gov (United States)

    Escobar, Marta Araujo Cyrino; Cortez, Celia Martins; Silva, Dilson; Neto, Jayme da Cunha Bastos

    2017-11-01

    The aim of this work is to initiate an investigation on the albumin of Salminus brasiliensis (gold fish) as a biomarker of environmental actions of glyphosate. We started using a mathematical-computational model based on spectrofluorimetric measurements to study the interaction of glyphosate with gold fish albumin and human serum albumin. Salminus brasiliensis is a migratory freshwater fish species found in southern and central-western Brazil, mainly in the Prata river basin, where most of soybean plantations are set. Glyphosate is a very used herbicide in this type of crop. Differently from the organophosphorate methyl parathion, glyphosate does not form complex with HSA, and the quenching constants estimated for its binding with gold fish albumin at 20 °C and 25 °C is 1.3(± 0.3) × 104 / M e 2.5 (± 0.3) × 104 / M, respectively.

  13. Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion

    Science.gov (United States)

    Early detection of crop injury from glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resist...

  14. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  15. Characterization of Eleusine indica with gene mutation or amplification in EPSPS to glyphosate.

    Science.gov (United States)

    Chen, Jingchao; Jiang, Cuilan; Huang, Hongjuan; Wei, Shouhui; Huang, Zhaofeng; Wang, Huimin; Zhao, Dandan; Zhang, Chaoxian

    2017-11-01

    The evolution of weed-resistant species threatens the sustainable use of glyphosate, which is the most important herbicide widely used in agriculture worldwide. Moreover, the high glyphosate resistance (>180-fold based on LD 50 ) of Eleusine indica found in Malaysia, which carries a double mutation in its 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), made the control of this species more difficult. By contrast, the same species carrying the same double mutation in EPSPS (T102I+P106S) but found in China only shows a resistance level of not more than 14-fold based on GR 50 . The resistance level of this population is four times higher than that of the population carrying a single mutation (P106L). Although the members of this population survive under a high glyphosate dosage of 10,080gaeha -1 , their growth was significantly inhibited by glyphosate under the recommend dose (840gaeha -1 ), where in the fresh weight was 85.4% of the control. EPSPS expression, relative copy number, and EPSPS activity in this population were similar to those of the susceptible population. In addition, the expression of two glutathione transferase (GST) genes (GST-U8 and GST-23) and the enzyme activity of the GST in this population did not significantly differ from those of the susceptible population. This finding is important in elucidating the resistance of the naturally evolved glyphosate-resistant (GR) weed species carrying a double mutation in EPSPS to glyphosate. Copyright © 2017. Published by Elsevier Inc.

  16. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  17. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Science.gov (United States)

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  18. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina.

    Science.gov (United States)

    Okada, Elena; Pérez, Débora; De Gerónimo, Eduardo; Aparicio, Virginia; Massone, Héctor; Costa, José Luis

    2018-05-01

    We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

  20. Possible effects of glyphosate on Mucorales abundance in the rumen of dairy cows in Germany.

    Science.gov (United States)

    Schrödl, Wieland; Krüger, Susanne; Konstantinova-Müller, Theodora; Shehata, Awad A; Rulff, Ramon; Krüger, Monika

    2014-12-01

    Glyphosate (N-phosphonomethyl glycine) is registered as a herbicide for many food and non-food crops, as well as non-crop areas where total vegetation control is desired. Glyphosate influences the soil mycobiota; however, the possible effect of glyphosate residues in animal feed (soybean, corn, etc.) on animal mycobiota is almost unknown. Accordingly, the present study was initiated to investigate the mycological characteristics of dairy cows in relationship to glyphosate concentrations in urine. A total of 258 dairy cows on 14 dairy farms in Germany were examined. Glyphosate was detected in urine using ELISA. The fungal profile was analyzed in rumen fluid samples using conventional microbiological culture techniques and differentiated by MALDI-TOF mass spectrometry. LPS-binding protein (LBP) and antibodies (IgG1, IgG2, IgA, and IgM) against fungi were determined in blood using ELISA. Different populations of Lichtheimia corymbifera, Lichtheimia ramosa, Mucor, and Rhizopus were detected. L. corymbifera and L. ramosa were significantly more abundant in animals containing high glyphosate (>40 ng/ml) concentrations in urine. There were no significant changes in IgG1 and IgG2 antibodies toward isolated fungi that were related to glyphosate concentration in urine; however, IgA antibodies against L. corymbifera and L. ramosa were significantly lower in the higher glyphosate groups. Moreover, a negative correlation between IgM antibodies against L. corymbifera, L. ramosa, and Rhizopus relative to glyphosate concentration in urine was observed. LBP also was significantly decreased in animals with higher concentrations of glyphosate in their urine. In conclusion, glyphosate appears to modulate the fungal community. The reduction of IgM antibodies and LBP indicates an influence on the innate immune system of animals.

  1. Occurrence of glyphosate and AMPA residues in soy-based infant formula sold in Brazil.

    Science.gov (United States)

    Rodrigues, Nadia Regina; de Souza, Ana Paula Ferreira

    2018-04-01

    Glyphosate is an herbicide widely used in the world, being applied in several crops, among them soybeans. Recently, glyphosate and its metabolite aminomethylphosphonic acid (AMPA) have been identified as possible contributors to the emergence of various diseases such as autism, Parkinson's and Alzheimer's diseases, as well as cancer. The child population-consuming cereal-based foods is the most exposed to the effects of pesticides because of their developmental phase and they have a higher food intake per kilogram of body weight than adults. The presence of glyphosate and AMPA residues in soy-based infant formulas was evaluated during the years 2012-2017, totalising 105 analyses carried out on 10 commercial brands from different batches. Glyphosate and AMPA were determined by liquid chromatography with fluorescence detection after derivatisation reaction. The method was validated and showed accuracy and precision with a limit of quantification (LOQ) of 0.02 mg kg -1 . Among those samples that contained levels above the LOQ, the variation of glyphosate residues was from 0.03 mg kg -1 to 1.08 mg kg -1 and for AMPA residues was from 0.02 mg kg -1 to 0.17 mg kg -1 . This is the first scientific communication about glyphosate and AMPA contamination in soy-based infant formula in Brazil, The study was conducted under good laboratory practice (GLP) and supported by good scientific practice.

  2. Stacked -gene hybrids were not found to be superior to glyphosate resistant or Non-GMO corn hybrids

    Science.gov (United States)

    Seed costs of modern corn hybrids genetically modified with multiple traits for insect and herbicide resistance “stacked-gene” are in excess of $100.00 US per acre. Yields and net returns per acre along with yield component data were determined for ten hybrids, four stacked-gene, four glyphosate re...

  3. Induced mutations for soybean rust resistance

    International Nuclear Information System (INIS)

    Smutkupt, S.; Wongpiyasatid, A.; Lamseejan, S.

    1983-01-01

    Soybean mutation experiments for inducing rust resistance in the cultivars G 8375, Wakashima mutant number 10, Taichung N, S.J.2, S.J.4, BM 50, BM 98, G 8377, G 8586 and G 8587 have been carried out since 1979. Six pods from each of 4438 control and 43,907 M 1 plants were randomly harvested. M 2 seeds of each cultivar of different doses were bulked (M 2 bulk). In addition, 270 good M 1 plants were selected and threshed singly (M 2 single). M 2 -bulk and M 2 -single seeds were advanced to M 3 . Both, M 3 -bulk and M 3 -single plants, together with the remaining M 2 -bulk seeds were screened for rust resistance in the rainy season of 1980 in Nong Hoi Valley (altitude about 1000 m above sea level) and at Mae Joe Station, both in Chiang Mai Province (latitude 18 deg. 31'-19 deg. N). Based on the IWGSR rating system, soybean plants with slow growth of rust were selected from both locations. The results were as follows: Six plants were selected from a total of 2802 control plants, and 115 from a total of 28,834 M 2 and M 3 plants. Further evaluation of these selections for rust resistance will be carried out in the rainy season of 1981 in Nong Hoi Valley, Chiang Mai. (author)

  4. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  5. Inheritance and Gene Mapping of Resistance to Soybean Mosaic Virus Strain SC14 in Soybean

    Institute of Scientific and Technical Information of China (English)

    Hai-Chao Li; Hai-Jian Zhi; Jun-Yi Gai; Dong-Quan Guo; Yan-Wei Wang; Kai Li; Li Bai; Hua Yang

    2006-01-01

    Soybean mosaic virus (SMV) is one of the most broadly distributed diseases worldwide. It causes severe yield loss and seed quality deficiency in soybean (Glycine max (L.) Merr.). SMV Strain SC14 isolated from Shanxi Province, China, was a newly identified virulent strain and can infect Kefeng No. 1, a source with wide spectrum resistance. In the present study, soybean accessions, PI96983, Qihuang No. 1 and Qihuang No. 22 were identified to be resistant (R) and Nannong 1138-2, Pixianchadou susceptible (S) to SC14. Segregation analysis of PI96983 × Nannong 1138-2 indicated that a single dominant gene (designated as Rsc14) controlled the resistance to SC14 at both V2 and R1 developmental stages. The same results were obtained for the crosses of Qihuang No. 1 × Nannong 1138-2 and Qihuang No. 22 × Nannong 1138-2 as in PI96983 × Nannong 1138-2 at V2 stage, but at R1 stage,the F1 performed as necrosis (a susceptible symptom other than mosaic), F2 segregated in a ratio of 1R:2N:1S,and the progenies of necrotic (N) F2 individuals segregated also in R, N and S. It indicated that a single gene (designated as Rsc14o, to be different from that of PI96983) controlled the resistance to SC14, its dominance was the same as in PI96983 × Nannong 1138-2 (without symptoms) at V2 stage and not the same at R1 stage. The tightly linked co-dominant simple sequence repeat (SSR) marker Satt334 indicated that all the heterozygous bands were completely corresponding to the necrotic F2 individuals, or all the necrotic F2 individuals were heterozygotes.It was inferred that necrosis might be due to the interaction among SMV strains, resistance genes, genetic background of the resistance genes, and plant development stage. Furthermore, the bulked segregant analysis (BSA) of SSR markers was conducted to map the resistance genes. In F2 of PI96983 × Nannong 1138-2, five SSR markers, Sat_297, Sat_234, Sat_154, Sct_033 and Sat_120, were found closely linked to Rsc14, with genetic distances of 14

  6. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    Science.gov (United States)

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Efeitos de dessecantes no controle de plantas daninhas na cultura da soja Effects of burndown herbicides in weed control in soybean crop

    Directory of Open Access Journals (Sweden)

    S.O. Procópio

    2006-01-01

    Full Text Available Este trabalho teve como objetivo avaliar a eficiência do glyphosate e da mistura comercial paraquat + diuron, bem como o efeito do intervalo entre as aplicações desses herbicidas e a semeadura da soja, sobre o controle e a rebrota de Digitaria insularis, Synedrellopsis grisebachii e Leptochloa filiformis. O experimento foi conduzido em área de soja em sistema de plantio direto, utilizando-se o delineamento de blocos casualizados com nove tratamentos e quatro repetições. Foram avaliados os seguintes tratamentos: glyphosate no dia da semeadura e um, dois e cinco dias antes desta; paraquat + diuron 20 dias antes e no dia da semeadura; glyphosate 10 dias antes da semeadura e paraquat + diuron no dia da semeadura; glyphosate 15 dias antes da semeadura e paraquat + diuron no dia da semeadura; glyphosate 20 dias antes da semeadura e paraquat + diuron no dia da semeadura; e testemunha infestada. Verificou-se controle satisfatório e impedimento de rebrota de D. insularis e L. filiformis quando o glyphosate foi aplicado cinco dias antes da semeadura da soja ou quando foi realizada aplicação seqüencial de glyphosate e paraquat + diuron. Aplicações seqüenciais da mistura comercial de paraquat + diuron não foram eficientes no controle e no impedimento da rebrota de D. insularis e L. filiformis. S. grisebachii mostrou-se tolerante ao glyphosate.The objectives of this work were to evaluate the efficiency of glyphosate and preformulated mixture paraquat + diuron as well as the effect of the interval between herbicide applications and soybean sowing on the control and re-growth impairment of the following weeds: Digitaria insularis, Synedrellopsis grisebach and Leptochloa filiformis. The experiment was carried out in a soybean area under no-till system and was arranged in a randomized block design, with 9 treatments and four replications. The following treatments were evaluated: glyphosate applied on sowing day; one day before sowing day; two days

  8. Overlapping Residual Herbicides for Control of Photosystem (PS) II- and 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibitor-Resistant Palmer amaranth (Amaranthus palmeri S. Watson) in Glyphosate-Resistant Maize

    Science.gov (United States)

    Chahal, Parminder S.; Ganie, Zahoor A.; Jhala, Amit J.

    2018-01-01

    A Palmer amaranth (Amaranthus palmeri S. Watson) biotype has evolved resistance to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize seed production field in Nebraska, USA. The objectives of this study were to determine the effect of soil residual pre-emergence (PRE) herbicides followed by (fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net economic returns. Field experiments were conducted in a grower's field infested with PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County, Nebraska, USA in 2015 and 2016. The contrast analysis suggested that saflufenacil plus dimethenamid-P or pyroxasulfone plus saflufenacil applied PRE provided 80–82% Palmer amaranth control compared to 65 and 39% control with saflufenacil and pyroxasulfone applied alone at 3 weeks after PRE (WAPRE), respectively. Among the PRE fb POST herbicide programs, 95–98% Palmer amaranth control was achieved with pyroxasulfone plus safluefenacil, or saflufenacil plus dimethenamid-P applied PRE, fb glyphosate plus topramezone plus dimethenamid-P plus atrazine, glyphosate plus diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate plus diflufenzopyr plus pendimethalin, or glyphosate plus diflufenzopyr plus dicamba plus atrazine applied POST at 3 weeks after POST (WAPOST) through maize harvest. Based on contrast analysis, PRE fb POST programs provided 77–83% Palmer amaranth control at 3 WAPOST through maize harvest compared to 12–15% control with PRE-only and 66–84% control with POST-only programs. Similarly, PRE fb POST programs provided 99% biomass reduction at 6 WAPOST compared to PRE-only (28%) and POST-only (87%) programs. PRE fb POST programs provided higher maize yield (13,617 kg ha−1) and net return (US $1,724 ha−1) compared to the PRE

  9. Effects of glyphosate acid and the glyphosate-commercial formulation (Roundup) on Dimorphandra wilsonii seed germination: Interference of seed respiratory metabolism.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Borges, Felipe Viègas; Fonseca, Marcia Bacelar; Juneau, Philippe; Garcia, Queila Souza

    2017-01-01

    Glyphosate-formulations are widely used in the Brazilian Cerrado (neotropical savanna) with little or no control, threatening population of the endangered species Dimorphandra wilsonii. We investigated the toxicity of different concentrations (0, 5, 25 and 50 mg l -1 ) of glyphosate acid and one of its formulations (Roundup ® ) on seed germination in D. wilsonii. Glyphosate acid and Roundup drastically decreased seed germination by decreasing seed respiration rates. The activation of antioxidant enzymes, ascorbate peroxidase and catalase assure no hydrogen peroxide accumulation in exposed seeds. Glyphosate acid and the Roundup-formulation negatively affected the activities of enzymes associated with the mitochondrial electron transport chain (ETC), with Complex III as its precise target. The toxicity of Roundup-formulation was greater than that of glyphosate acid due to its greater effects on respiration. The herbicide glyphosate must impair D. wilsonii seed germination by disrupting the mitochondrial ETC, resulting in decreased energy (ATP) production. Our results therefore indicate the importance of avoiding (or closely regulating) the use of glyphosate-based herbicides in natural Cerrado habitats of D. wilsonni as they are toxic to seed germination and therefore threaten conservation efforts. It will likewise be important to investigate the effects of glyphosate on the seeds of other species and to investigate the impacts of these pesticides elsewhere in the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis weeds and plant community composition.

    Directory of Open Access Journals (Sweden)

    Collin W Ahrens

    Full Text Available Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB and redtop (RT, where the glyphosate resistance (GR trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  11. Glyphosate, a chelating agent-relevant for ecological risk assessment?

    Science.gov (United States)

    Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram

    2018-02-01

    Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.

  12. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance

  13. Pleiotropic effects of herbicide-resistance genes on crop yield: a review.

    Science.gov (United States)

    Darmency, Henri

    2013-08-01

    The rapid adoption of genetically engineered herbicide-resistant crop varieties (HRCVs)-encompassing 83% of all GM crops and nearly 8% of the worldwide arable area-is due to technical efficiency and higher returns. Other herbicide-resistant varieties obtained from genetic resources and mutagenesis have also been successfully released. Although the benefit for weed control is the main criteria for choosing HRCVs, the pleiotropic costs of genes endowing resistance have rarely been investigated in crops. Here the available data of comparisons between isogenic resistant and susceptible varieties are reviewed. Pleiotropic harmful effects on yield are reported in half of the cases, mostly with resistance mechanisms that originate from genetic resources and mutagenesis (atrazine in oilseed rape and millet, trifluralin in millet, imazamox in cotton) rather than genetic engineering (chlorsulfuron and glufosinate in some oilseed rape varieties, glyphosate in soybean). No effect was found for sethoxydim and bromoxynil resistance. Variable minor effects were found for imazamox, chlorsulfuron, glufosinate and glyphosate resistance. The importance of the breeding plan and the genetic background on the emergence of these effects is pointed out. Breeders' efforts to produce better varieties could compensate for the yield loss, which eliminates any possibility of formulating generic conclusions on pleiotropic effects that can be applied to all resistant crops. © 2013 Society of Chemical Industry.

  14. Antibiosis in Soybean Genotypes and the Resistance Levels to Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Souza, B H S; Silva, A G; Janini, J C; Boica Júnior, A L

    2014-12-01

    The southern armyworm (SAW) Spodoptera eridania (Cramer) is one of the most common armyworm species defoliating soybeans. Preliminary screening trials have indicated that some soybean genotypes exhibit resistance to SAW. Therefore, in this study, we evaluated the development of SAW larvae fed on ten soybean genotypes in order to identify genotypes with antibiosis-type resistance. Neonate SAW larvae were daily fed with young leaves collected from plants at the vegetative growth stages V4-V5. Larval development and survival were recorded. Genotypes PI 227687 and PI 227682 delayed larval, pupal, and larva-adult development and yielded larvae with the lowest weight and survival and pupae with the lowest weight. Genotypes IAC 100 and DM 339 also negatively affected larval and pupal development and larval survival but at a lower level. Based on our results, the soybean lines PI 227687 and PI 227682 could be used as sources of genes for soybean breeding programs aiming to develop high yield, SAW-resistant cultivars. Moreover, further trials must be carried out under field conditions to validate if the commercial cultivars IAC 100 and DM 339, which expressed moderate levels of antibiosis-type resistance in the laboratory, are effective in suppressing SAW larvae populations.

  15. Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; MacDonald, Margaret H; Kabir, Sara; Youssef, Reham M; Hosseini, Parsa; Brewer, Eric

    2013-05-01

    During pathogen attack, the host plant induces genes to ward off the pathogen while the pathogen often produces effector proteins to increase susceptibility of the host. Gene expression studies of syncytia formed in soybean root by soybean cyst nematode (Heterodera glycines) identified many genes altered in expression in resistant and susceptible roots. However, it is difficult to assess the role and impact of these genes on resistance using gene expression patterns alone. We selected 100 soybean genes from published microarray studies and individually overexpressed them in soybean roots to determine their impact on cyst nematode development. Nine genes reduced the number of mature females by more than 50 % when overexpressed, including genes encoding ascorbate peroxidase, β-1,4-endoglucanase, short chain dehydrogenase, lipase, DREPP membrane protein, calmodulin, and three proteins of unknown function. One gene encoding a serine hydroxymethyltransferase decreased the number of mature cyst nematode females by 45 % and is located at the Rhg4 locus. Four genes increased the number of mature cyst nematode females by more than 200 %, while thirteen others increased the number of mature cyst nematode females by more than 150 %. Our data support a role for auxin and ethylene in susceptibility of soybean to cyst nematodes. These studies highlight the contrasting gene sets induced by host and nematode during infection and provide new insights into the interactions between host and pathogen at the molecular level. Overexpression of some of these genes result in a greater decrease in the number of cysts formed than recognized soybean cyst nematode resistance loci.

  16. Uses of glyphosate in German arable farming – operational aspects

    Directory of Open Access Journals (Sweden)

    Wiese, Armin

    2016-02-01

    Full Text Available Glyphosate is the most frequently used herbicide active ingredient in Germany. Studies regarding its usage in non-GMO arable farming are still rare even though it plays an important role in several agronomic situations. Therefore, we conducted a comprehensive survey, which was carried out among conventional German farms in Winter 2014/2015. Based on the results of this survey we analyzed via cluster analysis how types of farms differ in terms of glyphosate usage. An illustration of seven clusters allows deep insights into arable farm structures. The farm types can be distinguished regarding their tillage system and similar to this differentiation also concerning their intensity of glyphosate application. Furthermore, it becomes obvious that farm clusters with a higher level of glyphosate usage are characterized by a lower number of labourers per hectare, more arable land and/or enhanced cover cropping. Moreover, groups of farmers who rely more on glyphosate are more likely to state that they need glyphosate for herbicide resistance management. Farmers’ assessments of the economic importance of glyphosate usage vary depending on the type of farm. By means of the farm clusters, the most important situations of glyphosate usage can be further analyzed economically and scenarios for impact assessments can be made.

  17. Improving food and agricultural production. Thailand. Breeding for soybean resistance to anthracnose disease

    International Nuclear Information System (INIS)

    Backman, P.A.

    1992-01-01

    This is the report of a mission to evaluate projects using mutation breeding techniques to develop resistance in soybeans to anthracnose disease. The project to date is generally successful in that training has been provided to numerous scientists in Thailand, and this will lead to improved University teaching and better research. Several changes in experimental procedure are suggested to increase the chances of finding anthracnose resistance in soybean

  18. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.

    Science.gov (United States)

    Huang, Jing; Guo, Na; Li, Yinghui; Sun, Jutao; Hu, Guanjun; Zhang, Haipeng; Li, Yanfei; Zhang, Xing; Zhao, Jinming; Xing, Han; Qiu, Lijuan

    2016-06-18

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.

  19. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.

    Science.gov (United States)

    Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F

    2013-04-25

    The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.

  20. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening.

    Science.gov (United States)

    Low, F L; Shaw, I C; Gerrard, J A

    2005-01-01

    To investigate the ability of baker's yeast (Saccharomyces cerevisiae) to degrade the herbicide glyphosate during the fermentation cycle of the breadmaking process. Aqueous glyphosate was added to bread ingredients and kneaded by commercially available breadmaking equipment into dough cultures. Cultures were incubated in the breadmaker throughout the fermentation cycle. The recovery of glyphosate levels following fermentation was determined, thus allowing an estimation of glyphosate degradation by yeast. It was shown, for the first time, that S. cerevisiae plays a role in metabolizing glyphosate during the fermentation stages of breadmaking. Approximately 21% was degraded within 1 h. As a result of projected increases in the glyphosate use on wheat and the role of bread as a dietary staple, this may contribute to more informed decisions being made relating to the use of glyphosate on glyphosate-resistant wheat, from a public health/regulatory perspective.

  1. Seletividade de herbicidas pós-emergentes aplicados na soja geneticamente modificada Selectivity of post-emergence herbicides applied on genetically modified soybeans

    Directory of Open Access Journals (Sweden)

    M.E.F. Neto

    2009-06-01

    pelo fato de o herbicida ser registrado para controle em pré-emergência e ter sido aplicado em pós-emergência. Nenhum dos tratamentos influenciou significativamente a produção de grãos da cultura da soja. A aplicação única ou a complementação com aplicação sequencial de glyphosate promoveram excelente controle de Commelina benghalensis e Ipomoea triloba.The experiment was carried out in a Roundup Ready® commercial soybean field in the Pontal do Paranapanema region in Euclides da Cunha Paulista-SP, located 20º 43' 11'' S and 50º 10' 20'' W, 270 m altitude. The experimental phase was carried out from December 2006 to April 2007, under no-tillage system. The soil classification is sandy clay loam Argisol. This work aimed to evaluate the efficiency of Roundup Transorb® glyphosate formulation selectivity associated with the herbicides diclosulam, cloransulam-methyl, flumioxazina and S-metolachlor under two spray modalities (single, with glyphosate associated to the herbicides and sequential, with only glyphosate in tropical Spiderwort (Commelina benghalensis and little bell (Ipomoea triloba management during soybean cultivation. The experiment was arranged in a randomized block design, with 12 treatments and 4 replications. Treatments were distributed in a factorial scheme + 2 controls (no control and clean field. The factorial scheme 2 x 5 comprises two herbicide sprays (single and sequential and five herbicides (glyphosate, glyphosate + diclosulam, glyphosate + cloransulam-methyl, glyphosate + flumioxazin and glyphosate + S-metolachlor. Under the conditions and time the herbicides were used as well as spray dosage, the results showed that glyphosate sprayed in a single dose or sequentially, in combination with diclosulan and cloransulam-methyl in the first spray did not cause phyto-intoxication in the soybean plants. The flumioxazin and S-metolachlor combination promoted delay in the growing plants as well as in the complete formation of the culture due

  2. Potassium silicate and calcium silicate on the resistance of soybean to Phakopsora pachyrhizi infection

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Cruz

    2013-01-01

    Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.

  3. Radiation-induced electron paramagnetic resonance signal and soybean isoflavones content

    International Nuclear Information System (INIS)

    Oliveira, Marcos R.R. de; Mandarino, José M.G.; Mastro, Nelida L. del

    2012-01-01

    Electron Paramagnetic Resonance (EPR) is a well-known spectroscopic technique that detects paramagnetic centers and can detect free radicals with high sensitivity. In food, free radicals can be generated by several commonly used industrial processes, such as radiosterilization or heat treatment. EPR spectroscopy is used to detect radioinduced free radicals in food. In this work the relation between EPR signal induced by gamma irradiation treatment and soybean isoflavones content was investigated. Present results did not show correlation between total isoflavones content and the EPR signal. Nevertheless, some isoflavone contents had a negative correlation with the radiation-induced EPR signal. - Highlights: ► Electron Paramagnetic Resonance (EPR) detects free radicals. ► Ionizing radiation as free radicals inducer. ► Total soybean isoflvones do not correlate with radiation-induced EPR intensity but a soybean glucosyl glucoside isoflavone does.

  4. Glyphosate

    NARCIS (Netherlands)

    A. Arcuri (Alessandra)

    2017-01-01

    markdownabstractGlyphosate is the rock star of pesticides, albeit a controversial one. With 6.1 billion kilograms applied globally in the last decade alone, it is the most widely used herbicide compound in the world. Glyphosate, is at the centre of an acrimonious controversy relating to whether the

  5. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    Directory of Open Access Journals (Sweden)

    Ri-He Peng

    Full Text Available The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19 is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli, while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P and phosphoenolpyruvate (PEP. The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  6. Recent advances in glyphosate biodegradation.

    Science.gov (United States)

    Zhan, Hui; Feng, Yanmei; Fan, Xinghui; Chen, Shaohua

    2018-06-01

    Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.

  7. Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean.

    Science.gov (United States)

    Ghio, Cecilia; Ramos, María Laura; Altieri, Emiliano; Bulos, Mariano; Sala, Carlos A

    2013-12-01

    The AHAS gene family in soybean was characterized. The locus Als1 for sulfonylurea resistance was mapped and the resistant allele was characterized at the molecular level. Sulfonylurea (SU) resistance in soybean is controlled by Als1, a semi-dominant allele obtained by EMS mutagenesis over the cultivar Williams 82. The overall objective of this research was to map Als1 in the soybean genome and to determine the nucleotidic changes conferring resistance to SU. Four nucleotide sequences (GmAhas1-4) showing high homology with the Arabidopsis thaliana acetohydroxyacid synthase (AHAS, EC 4.1.3.18) gene sequence were identified by in silico analysis, PCR-amplified from the SU-resistant line BTK323STS and sequenced. Expression analysis showed that GmAhas1, located on chromosome 4 by in silico analysis, is the most expressed sequence in true leaves. F2:3 families derived from the cross between susceptible and resistant lines were evaluated for SU resistance. Mapping results indicate that the locus als1 is located on chromosome 4. Sequence comparison of GmAhas1 between BTK323STS and Williams 82 showed a single nucleotide change from cytosine to thymine at position 532. This transversion generates an amino acid change from proline to serine at position 197 (A. thaliana nomenclature) of the AHAS catalytic subunit. An allele-specific marker developed for the GmAhas1 mutant sequence cosegregated with SU resistance in the F2 population. Taking together, the mapping, expression and sequencing results indicate that the GmAhas1 sequence corresponds to the Als1 gene sequence controlling SU resistance in soybean. The molecular breeding tools described herein create the basis to speed up the identification of new mutations in soybean AHAS leading to enhanced levels of resistance to SU or to other families of AHAS inhibitor herbicides.

  8. Improving hybrid seed production in corn with glyphosate-mediated male sterility.

    Science.gov (United States)

    Feng, Paul C C; Qi, Youlin; Chiu, Tommy; Stoecker, Martin A; Schuster, Christopher L; Johnson, Scott C; Fonseca, Augustine E; Huang, Jintai

    2014-02-01

    Hybrid corn varieties exhibit benefits associated with heterosis and account for most of the corn acreage in the USA. Hybrid seed corn is produced by crossing a female parent which is male-sterile and therefore incapable of self-pollination with a male parent as the pollen donor. The majority of hybrid seed corn is produced by mechanical detasseling which involves physically removing the tassel, a process that is laborious and costly. Glyphosate-resistant corn was developed via expression of a glyphosate insensitive 5-enolpyruvyl-shikimate 3-phosphate synthase enzyme (CP4-EPSPS). Experimentation with molecular expression elements resulted in selective reduction of CP4-EPSPS expression in male reproductive tissues. The resulting plant demonstrated sterile tassel following glyphosate application with little to no injury to the rest of the plant. Using (14)C-glyphosate as a marker, we also examined the translocation of glyphosate to the tassel via spray application in a track sprayer to simulate field application. The results allowed optimization of spray parameters such as dose, spray timing and target to maximize tassel delivery of glyphosate for efficient sterilization. The Roundup hybridization system (RHS) is a novel process for hybrid seed production based on glyphosate-mediated male sterility. RHS replaces mechanical detasseling with glyphosate spray and greatly simplifies the process of hybrid seed corn production. © 2013 Society of Chemical Industry.

  9. Interação de glyphosate com carfentrazone-ethyl Glyphosate - carfentrazone-ethyl interaction

    Directory of Open Access Journals (Sweden)

    R.C. Werlang

    2002-04-01

    Full Text Available Foi conduzido um experimento em condições controladas para determinar a interação do carfentrazone-ethyl em mistura no tanque com o herbicida glyphosate, no controle de seis espécies de plantas daninhas. Glyphosate aplicado isoladamente na dose de 720 g ha-1 foi eficaz no controle de Amaranthus hybridus (100%, Desmodium tortuosum (100%, Bidens pilosa (99%, Eleusine indica (96%, Digitaria horizontalis (100% e Commelina benghalensis (93% aos 21 DAA. Carfentrazone-ethyl aplicado isoladamente controlou eficazmente C. benghalensis. As misturas de glyphosate nas doses de 252 e 720 g ha-1 com carfentrazone-ethyl nas doses de 15 e 30 g ha¹ demonstraram efeito aditivo no controle de A. hybridus, D. tortuosum e Bidens pilosa, à exceção das misturas de glyphosate na dose de 252 g ha-1 com as doses de 15 e 30 g ha-1 de carfentrazone-ethyl, que proporcionam efeito sinergístico no controle de D. tortuosum. A adição das duas doses de carfentrazone-ethyl antagonizou o efeito de glyphosate na menor dose (252 g ha-1 no controle de E. indica, apresentando, no entanto, efeito aditivo com o glyphosate na maior dose (720 g ha-1. Já para D. horizontalis, as misturas de carfentrazone-ethyl com glyphosate na menor dose (252 g ha-1 apresentaram efeito sinergístico no controle dessa espécie, demonstrando, ainda, efeito aditivo na mistura com glyphosate na dose de 720 g ha-1. A mistura de carfentrazone-ethyl com glyphosate proporcionou efeito aditivo no controle de C. benghalensis, independentemente das combinações de doses avaliadas. Os resultados deste experimento indicam que carfentrazone-ethyl apresenta comportamento diferenciado quanto à interação com glyphosate, dependendo da espécie de planta daninha e da dose dos herbicidas utilizados na mistura em tanque, sendo complementar na mistura em tanque com glyphosate, pois demonstrou efeito antagônico em poucas das combinações estudadas, prevalecendo seu efeito aditivo na mistura com glyphosate, no

  10. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  11. Interactions of glyphosate use with farm characteristics and cropping patterns in Central Europe.

    Science.gov (United States)

    Wiese, Armin; Schulte, Michael; Theuvsen, Ludwig; Steinmann, Horst-Henning

    2018-05-01

    Although glyphosate is the most widely used herbicide in the European Union, little is known about the patterns of its usage in arable farming. Therefore, a nationwide survey of 2026 German farmers was analysed to obtain further knowledge about glyphosate applications in conventional European arable farming. Given its broad range of agri-environmental and farm-type conditions, Germany can be regarded as a suitable study region to represent Central European farming. The growing season 2013/2014 was set as a reference. Farmers who participated in the survey employ diverse patterns of glyphosate use. While 23% stated that they did not use glyphosate in the season in question, others applied glyphosate to their total arable area. However, most applications occurred on specific parts of the farm. Application patterns of oilseed rape, winter wheat, maize and sugar beet were studied in detail, and U-shaped distributions of glyphosate use intensity were observed. The effects of farm type and management practices on glyphosate use patterns were mixed in the various crops. Motivation for glyphosate use differs widely within the farming community. Agricultural researchers, extension services and policy makers are recommended to mitigate vulnerabilities associated with glyphosate use, such as routine spraying and practices that increase selection pressure for the evolution of glyphosate-resistant weeds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Soybean Resistance to White Mold: Evaluation of Soybean Germplasm Under Different Conditions and Validation of QTL

    Science.gov (United States)

    Kandel, Ramkrishna; Chen, Charles Y.; Grau, Craig R.; Dorrance, Ann E.; Liu, Jean Q.; Wang, Yang; Wang, Dechun

    2018-01-01

    Soybean (Glycine max L. Merr.) white mold (SWM), caused by Sclerotinia sclerotiorum (Lib) de Barry), is a devastating fungal disease in the Upper Midwest of the United States and southern Canada. Various methods exist to evaluate for SWM resistance and many quantitative trait loci (QTL) with minor effect governing SWM resistance have been identified in prior studies. This study aimed to predict field resistance to SWM using low-cost and efficient greenhouse inoculation methods and to confirm the QTL reported in previous studies. Three related but independent studies were conducted in the field, greenhouse, and laboratory to evaluate for SWM resistance. The first study evaluated 66 soybean plant introductions (PIs) with known field resistance to SWM using the greenhouse drop-mycelium inoculation method. These 66 PIs were significantly (P greenhouse inoculation methods with disease severity index (DSI) in field evaluations. Moderate correlation (r) between PM under drop-mycelium method and DSI in field trials (r = 0.65, p greenhouse inoculation methods and DSI across field trials. These findings suggest that greenhouse inoculation methods could predict the field resistance to SWM. The third study attempted to validate 33 QTL reported in prior studies using seven populations that comprised a total of 392 F4 : 6 lines derived from crosses involving a partially resistant cultivar “Skylla,” five partially resistant PIs, and a known susceptible cultivar “E00290.” The estimates of broad-sense heritability (h2) ranged from 0.39 to 0.66 in the populations. Of the seven populations, four had h2 estimates that were significantly different from zero (p < 0.05). Single marker analysis across populations and inoculation methods identified 11 significant SSRs (p < 0.05) corresponding to 10 QTL identified by prior studies. Thus, these five new PIs could be used as new sources of resistant alleles to develop SWM resistant commercial cultivars. PMID:29731761

  13. On glyphosate

    Directory of Open Access Journals (Sweden)

    Tamas Komives

    2016-11-01

    Full Text Available This Editorial briefly discusses the current issues surrounding glyphosate - the most controversial pesticide active ingredient of our time. The paper pays special attention to the effects of glyphosate on plant-pathogen interactions.

  14. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    Science.gov (United States)

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  15. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  16. Bermudagrass (Cynodon spp) dose-response relationships with clethodim, glufosinate and glyphosate.

    Science.gov (United States)

    Webster, Theodore M; Hanna, Wayne W; Mullinix, Benjamin G

    2004-12-01

    Greenhouse studies were conducted to evaluate the sensitivity of three commercial cultivars, eight experimental cultivars and common bermudagrass to clethodim, glufosinate and glyphosate. Each herbicide was applied at eight doses. Data were regressed on herbicide dose using a log-logistic curve (R2 = 0.56-0.95 for clethodim, R2 = 0.60-0.94 for glufosinate, and R2 = 0.70-0.96 for glyphosate). The herbicide rate that elicited a 50% plant response (I50) in the bermudagrass cultivars ranged from 0.04 to 0.19 kg ha(-1) clethodim, 0.19 to 1.33 kg ha(-1) glufosinate and 0.34 to 1.14 kg ha(-1) glyphosate. Relative to other cultivars, common bermudagrass was intermediate in its response to clethodim and among the most tolerant cultivars to glufosinate and glyphosate. TifSport was relatively tolerant to clethodim and glufosinate compared with other cultivars, but relatively sensitive to glyphosate. One cultivar, 94-437, was consistently among the most sensitive cultivars to each of the herbicides. While there were differential herbicide tolerances among the tested bermudagrass cultivars, there did not appear to be any naturally occurring herbicide resistance that could be commercially utilized. However, research indicated that breeding efforts should target herbicide resistance that is at least four times the registered use rate. Also, TifSport and Tifway have been identified as suitable representatives of triploid hybrid bermudagrass cultivars to be used to evaluate the success of turfgrass renovation programs. 2004 Society of Chemical Industry.

  17. Lignification of the plant and seed quality of RR soybeans sprayed with herbicide glyphosate Lignificação da planta e qualidade de sementes de soja RR pulverizadas com herbicida glifosato

    Directory of Open Access Journals (Sweden)

    Cristiane Fortes Gris

    2013-04-01

    Full Text Available Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha. The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.Diferenças nos teores de lignina na planta entre cultivares transgênicos RR e convencionais, tem sido relatadas, por vários autores, no entanto, são escassos os trabalhos avaliando a influência da aplicação do glifosato sobre os teores de lignina na planta e em sementes de soja RR. Neste sentido, objetivou-se, com este trabalho, avaliar a qualidade fisiológica de sementes de soja transgênica RR e os teores de lignina de plantas submetidas à pulverização com o herbicida glifosato. Os ensaios foram conduzidos em casa de vegetação e em campo, no munic

  18. PVP capped silver nanocubes assisted removal of glyphosate from water-A photoluminescence study.

    Science.gov (United States)

    Sarkar, Sumit; Das, Ratan

    2017-10-05

    Glyphosate [N-phosphono-methylglycine (PMG)] is the most used herbicide worldwide and it has been reported very recently that Glyphosate is very harmful and can produce lots of diseases such as alzheimer and parkinson's disease, depression, cancer, infertility including genotoxic effects. As it is mostly present in stable water body and ground water system, its detection and removal is very important. Here, we have shown a fluorescence technique for the removal of glyphosate from water using chemically synthesized polyvinylpyrrolidone (PVP) silver nanocrystals. Transmission Electron Microscopy (TEM) study shows the average size of silver nanocrystals of 100nm approximately with a morphology of cubic shape. Glyphosate does not show absorption in the visible region. But both glyphosate and silver nanocrystals show strong fluorescence in the visible region. So, photoluminescence study has been successfully utilized to detect the glyphosate in water samples and on treating the glyphosate contaminated water sample with silver nanocrystals, the sample shows no emission peak of glyphosate at 458nm. Thus, this approach is a promising and very rapid method for the detection and removal of glyphosate from water samples on treatment with silver nanocubes. NMR spectra further confirms that the silver nanocrystals treated contaminated water samples are glyphosate free. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  20. 76 FR 78232 - Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a...

    Science.gov (United States)

    2011-12-16

    ... peer review of safety tests, and health effects of genetically modified organisms and glyphosate. APHIS...] Monsanto Co.; Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified... that there is reason to believe are plant pests. Such genetically engineered organisms and products are...

  1. Weed control, biomass and microbial metabolism of soil depending on the application of glyphosate and imazethapyr on crop soybeansControle de plantas daninhas, biomassa e metabolismo microbiano do solo em função da aplicação de glifosato ou imazetapir na cultura da soja

    Directory of Open Access Journals (Sweden)

    Dirceu Agostinetto

    2011-08-01

    Full Text Available Studied the weed control and the changes of biomass and microbial soil properties at crop cultivated both genetically modified and non altered soybeans because of glyphosate or imazethapyr herbicide applications. Soybean cultivations were tested (BRS 244RR, genetically modified and BRS 154, non modified and herbicides (glyphosate and imazethapyr, and control treatment with weed. Variables were evaluated for phytotoxicity to the crop, control of Raphanus raphanistrum (wild radish, Digitaria sp. (crabgrass and Brachiaria plantaginea (alexsandregrass, total organic carbon (TOC, microbial biomass carbon (MBC, basal respiration (BR and metabolic quocient (QCO2. The herbicide glyphosate, applied as a single dose or sequentially, effectively controls the weeds wild radish, crabgrass and alexsandregrass and increases microbial activity, basal respiration and metabolic quocient. The microbial metabolism was not affected by the fact that the genotype or not genetically modified, but the use of the herbicide glyphosate.Estudou-se o controle de plantas daninhas, as variações da biomassa e do metabolismo microbiano do solo em áreas cultivadas com soja geneticamente modificada e não modificada, em função da aplicação dos herbicidas glifosato ou imazetapir. Testaram-se cultivares de soja (BRS 244RR, geneticamente modificada e BRS 154, não modificada e herbicidas (glifosato e imazetapir, e tratamento controle com capina. Como variáveis foram avaliadas a fitotoxicidade à cultura, controle de Raphanus raphanistrum (nabo, Digitaria sp. (milhã e Brachiaria plantaginea (papuã, teores de carbono orgânico total (COT, carbono da biomassa microbiana (CBM, respiração basal (RB e quociente metabólico (QCO2. O herbicida glifosato, aplicado em dose única ou seqüencial, controla eficientemente as plantas daninhas nabo, milhã e papuã, e aumenta a atividade microbiana, a taxa de respiração basal e o quociente metabólico. O metabolismo microbiano do solo

  2. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC

    OpenAIRE

    Tarazona, Jose V.; Court-Marques, Daniele; Tiramani, Manuela; Reich, Hermine; Pfeil, Rudolf; Istace, Frederique; Crivellente, Federica

    2017-01-01

    Glyphosate is the most widely used herbicide worldwide. It is a broad spectrum herbicide and its agricultural uses increased considerably after the development of glyphosate-resistant genetically modified (GM) varieties. Since glyphosate was introduced in 1974, all regulatory assessments have established that glyphosate has low hazard potential to mammals, however, the International Agency for Research on Cancer (IARC) concluded in March 2015 that it is probably carcinogenic. The IARC conclus...

  3. QTLs for resistance to Phomopsis seed decay are associated with days to maturity in soybean (Glycine max).

    Science.gov (United States)

    Sun, Suli; Kim, Moon Young; Van, Kyujung; Lee, Yin-Won; Li, Baodu; Lee, Suk-Ha

    2013-08-01

    Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100-Satt460 and Sat_038-Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.

  4. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    Science.gov (United States)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded

  5. Is it time to reassess current safety standards for glyphosate-based herbicides?

    Science.gov (United States)

    Vandenberg, Laura N; Blumberg, Bruce; Antoniou, Michael N; Benbrook, Charles M; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vom Saal, Frederick S; Welshons, Wade V; Myers, John Peterson

    2017-06-01

    Use of glyphosate-based herbicides (GBHs) increased ∼100-fold from 1974 to 2014. Additional increases are expected due to widespread emergence of glyphosate-resistant weeds, increased application of GBHs, and preharvest uses of GBHs as desiccants. Current safety assessments rely heavily on studies conducted over 30 years ago. We have considered information on GBH use, exposures, mechanisms of action, toxicity and epidemiology. Human exposures to glyphosate are rising, and a number of in vitro and in vivo studies challenge the basis for the current safety assessment of glyphosate and GBHs. We conclude that current safety standards for GBHs are outdated and may fail to protect public health or the environment. To improve safety standards, the following are urgently needed: (1) human biomonitoring for glyphosate and its metabolites; (2) prioritisation of glyphosate and GBHs for hazard assessments, including toxicological studies that use state-of-the-art approaches; (3) epidemiological studies, especially of occupationally exposed agricultural workers, pregnant women and their children and (4) evaluations of GBHs in commercially used formulations, recognising that herbicide mixtures likely have effects that are not predicted by studying glyphosate alone. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Non Target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    Directory of Open Access Journals (Sweden)

    Pablo Tomas Fernandez-Moreno

    2016-08-01

    Full Text Available Sterile wild oat (Avena sterilis L. is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage before the beginning of summer period (due to the possibility of intense drought stress. In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha-1 for exposed (E and un-exposed (UE glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE, while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica and Lolium rigidum.

  7. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    Science.gov (United States)

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  8. Electronic tongue system to evaluate flavor of soybean (Glycine Max (L. Merrill genotypes

    Directory of Open Access Journals (Sweden)

    Sandra Maria Zoldan

    2014-10-01

    Full Text Available An electronic tongue system was tested as a fast and efficient analytical tool for flavor evaluation of soybean genotypes. Grain samples of 25 soybean lines were analyzed using 0.25 g of milled samples added to 100 mL of distilled water and mixing for one minute on a magnetic stirrer. An aliquot (50 mL from the filtered liquid was used for the analysis on a pre-fixed frequency of 1 kHz and alternate tension of 50 mV. Two analyses were conducted in a complete randomized design with three replicates. Electrical response (capacitance of eight polymeric chemical sensors used to analyze the soybean lines were submitted to Principal Component Analysis (PCA. In the spatial distribution of the PCA graphic, the lines close to each other were similar, while the distant ones showed different characteristics. The electronic tongue system was efficient in discriminating flavor of soybean lines.

  9. Formulants of glyphosate-based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells.

    Science.gov (United States)

    Vanlaeys, Alison; Dubuisson, Florine; Seralini, Gilles-Eric; Travert, Carine

    2018-05-15

    Roundup and Glyphogan are glyphosate-based herbicides containing the same concentration of glyphosate and confidential formulants. Formulants are declared as inert diluents but some are more toxic than glyphosate, such as the family of polyethoxylated alkylamines (POEA). We tested glyphosate alone, glyphosate-based herbicide formulations and POEA on the immature mouse Sertoli cell line (TM4), at concentrations ranging from environmental to agricultural-use levels. Our results show that formulations of glyphosate-based herbicides induce TM4 mitochondrial dysfunction (like glyphosate, but to a lesser extent), disruption of cell detoxification systems, lipid droplet accumulation and mortality at sub-agricultural doses. Formulants, especially those present in Glyphogan, are more deleterious than glyphosate and thus should be considered as active principles of these pesticides. Lipid droplet accumulation after acute exposure to POEA suggests the rapid penetration and accumulation of formulants, leading to mortality after 24 h. As Sertoli cells are essential for testicular development and normal onset of spermatogenesis, disturbance of their function by glyphosate-based herbicides could contribute to disruption of reproductive function demonstrated in mammals exposed to these pesticides at a prepubertal stage of development. Copyright © 2017. Published by Elsevier Ltd.

  10. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup ® . This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup ® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup ® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup ® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup ® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup ® -treated adult zebrafish demonstrated a significant

  11. Glyphosate

    OpenAIRE

    Arcuri, Alessandra

    2017-01-01

    markdownabstractGlyphosate is the rock star of pesticides, albeit a controversial one. With 6.1 billion kilograms applied globally in the last decade alone, it is the most widely used herbicide compound in the world. Glyphosate, is at the centre of an acrimonious controversy relating to whether the substance is carcinogenic to humans and toxic for the environment. The controversy took a sharp legal turn when, in March 2015, the International Agency for Research on Cancer (IARC), which is the ...

  12. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  13. Gamma Radiation-Induced Mutations in Soybeans

    International Nuclear Information System (INIS)

    Smutkupt, S.

    1998-01-01

    The main objective of soybean radiation experiments was to create genetic variability in soybeans of various cultivars, mutants and mutation-derived lines with the aim of producing superior breeding lines with resistance to soybean rust (Phakopsora pachyhrizi Syd.) It took altogether 12 generations over six years after gamma irradiation if soybean seeds to produce the best resistant line (81-1-038) which a variety could be developed from it. This Line 81-1-038 showed a very good specific resistance to soybean rust, Thai race 2 and moderately resistance to Thai race 1. In the rainy season of 1985, Line 81-1-038 out yielded S.J.4 (a mother line) by 868 kg/ha in a yield trail at Suwan Farm, Pak Chong, Nakorn Rajchasima. This soybean rust mutant was later named D oi Kham

  14. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method

    Directory of Open Access Journals (Sweden)

    Bingfu Guo

    2016-07-01

    Full Text Available Molecular characterization of sequences flanking exogenous fragment insertions is essential for safety assessment and labeling of genetically modified organisms (GMO. In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS method. About 21 Gb sequence data (~21× coverage for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundary of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of the genomic insertion site of the G2-EPSPS and GAT transgenes will facilitate the use of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS is a cost-effective and rapid method of identifying sites of T-DNA insertions and flanking sequences in soybean.

  15. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    Science.gov (United States)

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-22

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed.

  16. Rebelling against the (Insulin Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jaime L. Clark

    2018-03-01

    Full Text Available Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.

  17. [Poisonings with the herbicides glyphosate and glyphosate-trimesium].

    Science.gov (United States)

    Mortensen, O S; Sørensen, F W; Gregersen, M; Jensen, K

    2000-08-28

    Generally the herbicide glyphosate is considered harmless to humans. Glyphosate-trimesium is labelled harmful (Xn), whereas glyphosate-isopropylamine carries no warning sign. As cases of serious poisoning have emerged contacts to the Poison Information Centre have been reviewed. The persons exposed were mainly smaller children and adults 20 to 59 years of age. Oral exposure was recorded in 47 persons, inhalation exposure in 24 and topical contact in 42. About one fourth of the exposed persons were asymptomatic. Most of the symptomatic poisonings demonstrated complaints from the mouth, the gastrointestinal tract and the airways. Eleven patients were admitted to hospital. Two died, one of them having ingested the isopropylamine salt, the other the trimesium salt. Death ensued quickly in the latter patient. A similar fate was observed in a child--not included in the present material--who had also ingested the trimesium compound.

  18. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Yifei, Zhang; Yang, Dai; Guijun, Wan; Bin, Liu; Guangnan, Xing; Fajun, Chen

    2018-04-25

    Atmospheric CO2 level arising is an indisputable fact in the future climate change, as predicted, it could influence crops and their herbivorous insect pests. The growth and development, reproduction, and consumption of Spodoptera litura (F.) (Lepidoptera: Noctuidae) fed on resistant (cv. Lamar) and susceptible (cv. JLNMH) soybean grown under elevated (732.1 ± 9.99 μl/liter) and ambient (373.6 ± 9.21 μl/liter) CO2 were examined in open-top chambers from 2013 to 2015. Elevated CO2 promoted the above- and belowground-biomass accumulation and increased the root/shoot ratio of two soybean cultivars, and increased the seeds' yield for Lamar. Moreover, elevated CO2 significantly reduced the larval and pupal weight, prolonged the larval and pupal life span, and increased the feeding amount and excretion amount of two soybean cultivars. Significantly lower foliar nitrogen content and higher foliar sugar content and C/N ratio were observed in the sampled foliage of resistant and susceptible soybean cultivars grown under elevated CO2, which brought negative effects on the growth of S. litura, with the increment of foliar sugar content and C/N ratio were greater in the resistant soybean in contrast to the susceptible soybean. Furthermore, the increment of larval consumption was less than 50%, and the larval life span was prolonged more obvious of the larvae fed on resistant soybean compared with susceptible soybean under elevated CO2. It speculated that the future climatic change of atmospheric CO2 level arising would likely cause the increase of the soybean yield and the intake of S. litura, but the resistant soybean would improve the resistance of the target Lepidoptera pest, S. litura.

  19. Manejo de herbicidas na cultura da soja Roundup Ready® Herbicide management in Roundup Ready® soybean crop

    Directory of Open Access Journals (Sweden)

    F.A. Petter

    2007-09-01

    entre os sistemas de aplicação de herbicidas, porém todos resultaram em produtividade superior ao da testemunha. O cultivar TMG 108 apresentou maior produtividade de grãos em todos os sistemas de aplicação de herbicidas, inclusive nas parcelas da testemunha, mas não diferindo do cultivar P98R91, nos "sistemas 1, 3 e 4" de aplicação de herbicidas e na testemunha, e do cultivar M-SOY 8585, no "sistema 3".This study was carried out to evaluate the effectiveness of different herbicide management systems in weed control and the development and yield of different Roundup Ready® soybean cultivars. A randomized block experimental design with four replicates was used under a 5x5 factorial scheme, using five herbicide application systems: [(1 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 days before sowing (DAS, paraquat + diuron (400 + 200 g ha-1 at the sowing day, and glyphosate (960 g ha-1 at 35 days after crop emergence (DAE; (2 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS, paraquat + diuron (400 + 200 g ha-1 at the sowing day, and glyphosate (480 g ha-1 17 at DAE; (3 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS, and glyphosate (960 g ha-1 at 35 DAE; (4 glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS and glyphosate (480 g ha-1 at 17 days after plant emergence; and (5 control - glyphosate (1.080 g ha-1 + 2.4-D (241.8 g ha-1 at 14 DAS, without herbicide application at post-emergence] combined with five RR® soybean varieties (M-SOY 8585, P98R91, Valiosa, CD 219 and TMG 108,comprising 25 treatments. All herbicide application systems controlled the weed species Chamaesyce hirta, Alternanthera tenella, Euphorbia heterophylla, Spermacoce latifolia and Tridax procumbens. This control was superior to that without herbicide application at post-emergence, being thus efficient in controlling those species. "System 3" showed a lower control level of the species Spermacoce latifolia, Tridax procumbens and Chamaesyce hirta, the last one

  20. Screening of soybean germplasm for resistance against colletotrichum truncatum infection

    International Nuclear Information System (INIS)

    Hossain, I.; Islam, M.R.; Hamiduzzaman, M.M.

    2001-01-01

    One hundred and five soybean germplasms of exotic and national origin were evaluated for their reaction to anthracnose under field condition in Bangladesh. In the field 36 materials were found to be free from infection of C. truncatum (highly resistant) while 19, 37, 3, 5 and 5 germplasms were graded as resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible, respectively. Percentage of seed-borne infection by colletotrichum truncatum varied from one germplasm to another. In total 43 germplasms were completely free from seed-borne infection, whereas up to 5% infection was recorded in 25 samples, 6-30% in 32 samples and 31-36% infection was found in five samples. (author)

  1. Roundup Ready soybean gene concentrations in field soil aggregate size classes.

    Science.gov (United States)

    Levy-Booth, David J; Gulden, Robert H; Campbell, Rachel G; Powell, Jeff R; Klironomos, John N; Pauls, K Peter; Swanton, Clarence J; Trevors, Jack T; Dunfield, Kari E

    2009-02-01

    Roundup Ready (RR) soybeans containing recombinant Agrobacterium spp. CP4 5-enol-pyruvyl-shikimate-3-phosphate synthase (cp4 epsps) genes tolerant to the herbicide glyphosate are extensively grown worldwide. The concentration of recombinant DNA from RR soybeans in soil aggregates was studied due to the possibility of genetic transformation of soil bacteria. This study used real-time PCR to examine the concentration of cp4 epsps in four field soil aggregate size classes (>2000 microm, 2000-500 microm, 500-250 microm and 2000 mum fraction contained between 66.62% and 99.18% of total gene copies, although it only accounted for about 30.00% of the sampled soil. Aggregate formation may facilitate persistence of recombinant DNA.

  2. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina.

    Science.gov (United States)

    Castro Berman, M; Marino, D J G; Quiroga, María Victoria; Zagarese, Horacio

    2018-06-01

    Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide used to kill weeds that compete with commercial crops. In Argentina, the use of glyphosate-based herbicides increased dramatically (up to ∼200,000 tons on 2012) since the introduction of glyphosate-resistant crops, such as transgenic soy and resistant corn, and the adoption of non-till practices in the 1990's. Sallow lakes within the Pampa region may be potentially impacted by continuous herbicide usage. We surveyed 52 shallow lakes from the Pampa region (Buenos Aires Province, Argentina) to assess the occurrence and concentrations of glyphosate and its main degradation product (AMPA). For comparison, we also sampled 24 shallow lakes from an area with no agricultural use of glyphosate (Northern Patagonia). Glyphosate and AMPA were analyzed by UPLC-MS/MS ESI (±) in lake water, suspended particulate matter (SPM), and sediment samples. Within the Pampa region, glyphosate residues were detected in >40% of samples. Glyphosate residues were detected more frequently in sediment and surface water than in SPM samples. The mean (maximum) concentrations of glyphosate were 2.11 (4.52) μg l -1 for surface water; 0.10 (0.13) μg l -1 for SPM and 10.47 (20.34) μg kg -1 for sediment samples, respectively. Whereas, mean (maximum) concentrations of AMPA were 0.84 and (0.90) μg l -1 for surface water; 0.07 (0.07) μg l -1 for SPM; and 22.53 (32.89) μg kg -1 for sediment samples. The herbicide was not detected in samples from the Patagonian region. To our knowledge, this is the first study reporting the occurrence and concentrations of the herbicide in freshwater lakes of Argentina. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems.

    Science.gov (United States)

    Vera, María S; Lagomarsino, Leonardo; Sylvester, Matías; Pérez, Gonzalo L; Rodríguez, Patricia; Mugni, Hernán; Sinistro, Rodrigo; Ferraro, Marcela; Bonetto, Carlos; Zagarese, Horacio; Pizarro, Haydée

    2010-04-01

    Argentina is the second largest world producer of soybeans (after the USA) and along with the increase in planted surface and production in the country, glyphosate consumption has grown in the same way. We investigated the effects of Roundup (glyphosate formulation) on the periphyton colonization. The experiment was carried out over 42 days in ten outdoor mesocosms of different typology: "clear" waters with aquatic macrophytes and/or metaphyton and "turbid" waters with great occurrence of phytoplankton or suspended inorganic matter. The herbicide was added at 8 mg L(-1) of the active ingredient (glyphosate) in five mesocosms while five were left as controls (without Roundup addition). The estimate of the dissipation rate (k) of glyphosate showed a half-life value of 4.2 days. Total phosphorus significantly increased in treated mesocosms due to Roundup degradation what favored eutrophication process. Roundup produced a clear delay in periphytic colonization in treated mesocosms and values of the periphytic mass variables (dry weight, ash-free dry weight and chlorophyll a) were always higher in control mesocosms. Despite the mortality of algae, mainly diatoms, cyanobacteria was favored in treated mesocosms. It was observed that glyphosate produced a long term shift in the typology of mesocosms, "clear" turning to "turbid", which is consistent with the regional trend in shallow lakes in the Pampa plain of Argentina. Based on our findings it is clear that agricultural practices that involve the use of herbicides such as Roundup affect non-target organisms and the water quality, modifying the structure and functionality of freshwater ecosystems.

  4. Analysis of Gamma-irradiated Soybean Components by Electron Paramagnetic Resonance

    International Nuclear Information System (INIS)

    Oliveira, M.R. R. de; Quadrado, M.G.O.; Mastro, N.L. del

    2007-01-01

    Soybean (Glycine max) seeds contain besides oil and protein, important phytochemicals that have been shown in recent years to offer important health benefits. Soybean contains at least six classes of antioxidant compounds: flavonol, isoflavones, anthocyanins, proanthocyanidins, tocopherols, and poly carboxylic acids. An increasing number of studies have documented the significant value of many classes of these compounds, mainly isoflavones, not only as potent antioxidants, but also as antitumor agents and cardio protective compounds. Food irradiation is gaining increasing attention around the world but it is not a worldwide approved treatment yet. Electron paramagnetic resonance, EPR, is considered the most important technique to detect free-radicals on food. Results from a previous work showed that irradiated soybean could be detected by EPR only when higher doses were employed. This study was undertaken to investigate the radiation response of the diverse parts of the soy seed: hull or seed coat, cotyledons, hilum and hypocotyl axis or germ, from different soybean cultivars. Soybean samples were obtained from the National Soybean Research Center (Embrapa-Soja), Londrina, Brazil, separated in their components and gamma-irradiated in a Gamma cell 220 (AECL) with doses of 0.1 and 2.0 kGy at a dose rate of 2.9 kGy/h. EPR measurements were performed on an X-band spectrometer (ER 041 XG Microwave Bridge, Bruker). Both irradiation and EPR measurements were performed at room temperature (20-25 C). The results showed that the EPR signal intensity correlated with the ionizing radiation dose, although different cultivars presented differences in their radiation response. The main EPR peak corresponding to free radical presented differences in shape and intensity. The hull and the hilum presented signals higher and easier to be analyzed than the whole bean, indicating strong differences in radiation sensitivity of soybean components. (Author)

  5. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae.

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhong

    Full Text Available Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA against Aphis glycines Matsumura, the soybean aphid (SA was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL, peroxidase (POX, polyphenol oxidase (PPO, chitinase (CHI, and β-1, 3-glucanase (GLU in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

  6. Crescimento diferencial de biótipos de Conyza SPP. resistente e suscetível ao herbicida glifosato Differential growth of glyphosate-resistant and susceptible biotypes of Conyza SPP

    Directory of Open Access Journals (Sweden)

    Murilo Sala Moreira

    2010-01-01

    Full Text Available Este trabalho foi realizado com o objetivo de comparar, em condição controlada e não-competitiva, o crescimento de biótipos de Conyza canadensis e C. bonariensis resistente e suscetível ao herbicida glifosato, a fim de quantificar os efeitos da pressão de seleção para resistência nos biótipos. Dois experimentos foram desenvolvidos com tratamentos organizados em esquema fatorial 9 x 2, com nove avaliações periódicas de crescimento e dois biótipos de cada espécie. As variáveis avaliadas por planta foram: área foliar; massa seca da parte aérea, das raízes e total, obtendo-se, a partir desta última, a taxa de crescimento absoluto. O biótipo de C. canadensis resistente ao glifosato possui crescimento mais lento, menor acúmulo de área foliar e de massa seca que o biótipo suscetível. Menores áreas foliar e massa seca também foram registradas para o biótipo de C. bonariensis resistente ao glifosato quando comparado ao suscetível, porém com diferenças mais sutis que aquelas constatadas para C. canadensis. O crescimento absoluto do biótipo suscetível foi superior ao do resistente em ambas as espécies. A pressão de seleção para resistência ao glifosato teve impactos negativos na habilidade de crescimento dos biótipos.This work was carried out with the objective of comparing, under controlled and non-competitive condition, the growth of glyphosate-resistant and susceptible biotypes of Conyza canadensis and C. bonariensis; to quantify the effects of resistance selection pressure on the biotypes. Two trials were developed with treatments organized according to a factorial scheme 9 x 2, where nine were periodical growth evaluations and two were biotypes of each species. The variables evaluated per plant were: leaf area and dry mass (shoot, root and total; to determine absolute growth rate from the total dry mass. The glyphosate-resistant biotype of C. canadensis exhibits slower growth and smaller accumulation of leaf area

  7. Induction of soybean resistance to the Mexican bean beetle (Coleoptera: Coccinellidae)

    Science.gov (United States)

    A.L. Iverson; R.B. Hammond; L.R. Iverson

    2001-01-01

    We tested chemical and insect feeding-induced insect resistance on soybean plants.The chemical induction effects of jasmonic acid (JA) and salicylic acid (SA) were investigated. We also evaluated the effects of plants stressed with previous insect herbivory. A larval antibiosis screening technique (LAST) and a preference test were performed in petri dishes using...

  8. Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis

    Directory of Open Access Journals (Sweden)

    Wang Hehe

    2012-08-01

    Full Text Available Abstract Background Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils. Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide there are populations that have adapted to the most commonly deployed resistance to P. sojae ( Rps genes. Hence, this system has received increased attention towards identifying mechanisms and molecular markers associated with partial resistance to this pathogen. Several quantitative trait loci (QTL have been identified in the soybean cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates. Results In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and expression analysis of genes in both resistant (Conrad and susceptible (‘Sloan’ genotypes. There were 1025 single nucleotide polymorphisms (SNPs in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in 54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with qRT-PCR had significant differences in fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification, ubiquitination, and basal resistance. Conclusions These findings may indicate a complex defense network with multiple mechanisms underlying these two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute to fine mapping of QTL and marker assisted breeding for

  9. Glyphosate-Degrading Microorganisms from Industrial Activated Sludge

    OpenAIRE

    Balthazor, Terry M.; Hallas, Laurence E.

    1986-01-01

    A plating medium was developed to isolate N-phosphonomethylglycine (glyphosate)-degrading microorganisms, with glyphosate as the sole phosphorus source. Two industrial biosystems treating glyphosate wastes contained elevated microbial counts on the medium. One purified isolate metabolized glyphosate to aminomethylphosphonic acid, mineralizing this accumulating intermediate during log growth. This microorganism has been identified as a Flavobacterium species.

  10. Genome-Wide Identification of Chalcone Reductase Gene Family in Soybean: Insight into Root-Specific GmCHRs and Phytophthora sojae Resistance

    Directory of Open Access Journals (Sweden)

    Caroline J. Sepiol

    2017-12-01

    Full Text Available Soybean (Glycine max [L.] Merr is one of the main grain legumes worldwide. Soybean farmers lose billions of dollars’ worth of yield annually due to root and stem rot disease caused by the oomycete Phytophthora sojae. Many strategies have been developed to combat the disease, however, these methods have proven ineffective in the long term. A more cost effective and durable approach is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of phytoalexin glyceollins in soybean. Glyceollins are isoflavonoids, synthesized via the legume-specific branch of general phenylpropanoid pathway. The first key enzyme exclusively involved in glyceollin synthesis is chalcone reductase (CHR which coacts with chalcone synthase for the production of isoliquiritigenin, the precursor for glyceollin biosynthesis. Here we report the identification of 14 putative CHR genes in soybean where 11 of them are predicted to be functional. Our results show that GmCHRs display tissue-specific gene expression, and that only root-specific GmCHRs are induced upon P. sojae infection. Among 4 root-specific GmCHRs, GmCHR2A is located near a QTL that is linked to P. sojae resistance suggesting GmCHR2A as a novel locus for partial resistance that can be utilized for resistance breeding.

  11. 76 FR 27268 - Glyphosate; Pesticide Tolerance

    Science.gov (United States)

    2011-05-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2010-0938; FRL-8872-6] Glyphosate... regulation increases the established tolerance for residues of glyphosate in or on corn, field, forage... tolerance for residues of the herbicide glyphosate, N-(phosphonomethyl) glycine, in or on corn, field...

  12. Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene.

    Science.gov (United States)

    Wang, Tieshan; Su, Jianrong

    2016-12-28

    Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii . Nineteen multidrug-resistant A. baumannii strains were clinifcally isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii . The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis . Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.

  13. Do agrochemicals used during soybean flowering affect the visits of Apis mellifera L.?

    Energy Technology Data Exchange (ETDEWEB)

    Fagúndez, G.A.; Blettler, D.C.; Krumrick, C.G.; Bertos, M.A.; Trujillo, C.G.

    2016-11-01

    In the Pampa region of Argentina, most beehives are situated near to soybean [Glycine max (L.) Merr.] crop and honey bees (Apis mellifera L.) use its floral resources. Soybean is often sprayed with pesticides but very little is known about their repellent action against bees. This study evaluates the visit of honey bees to crop after the application of agrochemicals aiming to check for repellency of them and estimate the possible impact on crop pollination. For this, six treatments were used (glyphosate + cypermethrin; glyphosate; cypermethrin; lambda-cyhalothrin; methoxyfenocide; Bacillus thuringiensis) and developed on plots of 625 m2, located in Oro Verde (Argentina), applying two sprays during the crop flowering. The bees were captured using entomological net every 4 days in three different times from the day after the first spraying and up the end of crop flowering. The results showed very little or no repellent action of pesticides on A. mellifera, noting that it foraged on soybean flowers regardless of the temporal proximity and the type of product used in sprays. Possible causes are discussed and the need for larger studies is evident in field conditions related to pesticides repellency and mixtures. Also, further evaluation of the effects of the different chemical formulations available on the market and used regionally where the subspecies A. mellifera can be found. Simultaneously some management practices that could help minimize the risk of contamination are mentioned; the use of defensive crop products of biological origin is encouraged as well as further research in this topic. (Author)

  14. Resposta de plantas de beterraba (Beta vulgaris e de cenoura (Daucus carota à deriva simulada de glyphosate e clomazone Response of beetroot (Beta vulgaris and carrot (Daucus carota to simulated glyphosate and clomazone drift

    Directory of Open Access Journals (Sweden)

    R.P. Rogoli

    2008-06-01

    Full Text Available Várias espécies de hortaliças são de muita importância para a alimentação humana e tornam-se alvos da deriva de herbicidas, pois comumente são cultivadas nas proximidades de culturas como arroz, soja e milho, pulverizadas com esses produtos. Neste trabalho, objetivou-se verificar possíveis efeitos de doses reduzidas dos herbicidas glyphosate e clomazone sobre plantas de beterraba (Beta vulgaris e de cenoura (Daucus carota, em diferentes fases de desenvolvimento. As doses avaliadas dos herbicidas foram de 0, 5, 10, 15 e 20% da dose recomendada, equivalentes a 0, 63, 126, 189 e 252 g ha-1 de glyphosate e 0, 14,4, 28,8, 43,2 e 57,6 g ha-1 de clomazone, respectivamente, aplicadas aos 20, 30 e 40 dias após a emergência das culturas. Observou-se aumento no percentual de fitotoxicidade do glyphosate com o incremento na dose do herbicida, e a maior suscetibilidade ocorreu com a deriva nos estádios mais precoces, em ambas as espécies. As doses de clomazone não causaram qualquer sintoma detectável visualmente para as plantas de beterraba e de cenoura. Os resultados sugerem que o herbicida glyphosate causa injúrias às plantas de beterraba e cenoura, independentemente do estádio em que ocorre a interceptação do produto. No entanto, o herbicida clomazone não interfere no desenvolvimento inicial de plantas de beterraba e cenoura.Herbicide drift over horticultural crops is a common problem in the state of Rio Grande do Sul, mainly in areas near rice, soybean and corn fields. The objective of this research was to evaluate glyphosate and clomazone drift effects on beetroot (Beta vulgaris and carrot (Daucus carota plants. The herbicides were sprayed at three different growth stages: 20, 30 and 40 days after seedling emergence. Herbicide rates evaluated were 0, 5, 10, 15, and 20% of the label rate. The sprayed rates were 0, 63, 126, 189 and 252 g ha-1 of glyphosate and 0.0, 14.4, 28.8, 43.2 and 57.6 g ha-1 of clomazone. Glyphosate injury to

  15. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  16. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  17. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase.

    Science.gov (United States)

    Warabi, E; Usui, K; Tanaka, Y; Matsumoto, H

    2001-08-01

    The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.

  18. Glyphosate em mistura com herbicidas alternativos para o manejo de plantas daninhas Glyphosate combined with alternative herbicides for vegetation management

    Directory of Open Access Journals (Sweden)

    P.A. Monquero

    2001-12-01

    Full Text Available O uso intensivo de glyphosate como herbicida não-seletivo tem selecionado espécies de plantas daninhas tolerantes. Dessa forma, é importante que sejam estudadas misturas de tanque com herbicidas de mecanismos de ação alternativos e que apresentem efeitos sinergísticos ou aditivos. Por essa razão, foi instalado um experimento inteiramente casualizado, composto por 13 tratamentos e 4 repetições, em casa de vegetação da Universidade de São Paulo - ESALQ/USP, Piracicaba-SP, com as plantas daninhas Richardia brasiliensis, Commelina benghalensis, Amaranthus hybridus, Galinsoga parviflora e Ipomoea grandifolia em misturas de tanque dos herbicidas chlorimuron-ethyl, sulfentrazone, carfentrazone, bentazon ou flumioxazin com glyphosate. As interações foram aditivas para as plantas daninhas I. grandifolia e C. benghalensis, e os herbicidas flumioxazin, sulfentrazone e carfentrazone aplicados isoladamente e em mistura com glyphosate foram os que proporcionaram os melhores níveis de controle. A interação de glyphosate com sulfentrazone foi antagônica em R. brasiliensis; a mistura de glyphosate com os demais herbicidas estudados foi aditiva, sendo os tratamentos com mistura de glyphosate e chlorimuron-ethyl ou flumioxazin os mais eficazes. Em A. hybridus, os tratamentos que apresentaram melhores níveis de controle foram o glyphosate e carfentrazone, aplicados isoladamente, e a mistura de glyphosate com flumioxazin, sulfentrazone, chlorimuron-ethyl e bentazon, sendo estes interações aditivas. No caso de G. parviflora, os tratamentos com flumioxazin e sulfentrazone apresentaram controle total, o mesmo acontecendo com as misturas de glyphosate com carfentrazone, flumioxazin, sulfentrazone, chlorimuron-ethyl ou bentazon.The intensive use of glyphosate as a non-selective herbicide for weed vegetation management has selected some tolerant weed species. Thus, it is important to study the synergistic or antagonic or additive effects of tank

  19. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge.

    Science.gov (United States)

    Shen, Jiangnan; Huang, Jie; Liu, Lifen; Ye, Wenyuan; Lin, Jiuyang; Van der Bruggen, Bart

    2013-09-15

    Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L(-1) is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Felipe Nunes Linhares

    2018-03-01

    Full Text Available Abstract Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR is widely used to produce vehicular parts that are constantly in contact with fuels. This paper aimed to assess the resistance of carboxylated nitrile rubber (XNBR with 28% of acrylonitrile content to soybean biodiesel in comparison with non-carboxylated nitrile rubber samples, with high and medium acrylonitrile content (33 and 45%. NBR with medium acrylonitrile content showed little resistance to biodiesel. However, carboxylated nitrile rubber even with low acrylonitrile content had similar performance to NBR with high acrylonitrile content.

  1. O papel de Rhizoctonia spp. binucleadas na indução de resistência a mela da soja = The role of binucleate Rhizoctonia spp. inducing resistance to the soybean foliar blight

    Directory of Open Access Journals (Sweden)

    Marco Antonio Basseto

    2008-04-01

    Full Text Available O papel de Rhizoctonia spp. binucleadas (RBN, no biocontrole de doenças causadas por R. solani Kühn em várias culturas, tem sido relatado na literatura. No entanto, não há informação, no Brasil, sobre o potencial de RBN como agentes de biocontrole contradoenças causadas por Rhizoctonia na soja. A hipótese testada foi de que isolados de RBN podem induzir resistência na soja contra a mela, causada por R. solani do grupo de anastomose (AG 1 IA. Desta forma, o objetivo deste trabalho foi avaliar isolados de RBN, obtidos de amendoim, feijão e soja quanto à capacidade de induzir resistência na soja contra a mela, em condições de casa de vegetação. Esta pesquisa evidencia a ação de RBN na indução de resistência em plantas de soja contra a mela. Entretanto, a manifestação e a efetividade do fenômeno de indução de resistência são dependentes da época de cultivo da soja.The role of non-pathogenic binucleate Rhizoctonia spp. (BNR onthe biocontrol of diseases caused by R. solani on many crops has been reported in the literature. However, in Brazil, there is no information about the potential of BNR as biocontrol agents against Rhizoctonia diseases on soybean. On this research we tested thehypothesis that BNR can induce resistance on soybean against the foliar blight caused by R. solani anastomosis group (AG 1 IA. Thus, the objective of this research was to evaluate BNR isolates isolated from peanuts, snapbeans and soybean according to their ability forinducing resistance on soybean against the foliar blight disease, under greenhouse conditions. This research evidenced the role of BNR inducing resistance on soybeans against the foliar blight. However, both the occurrence and effectiveness of the phenomenon of induced resistance are dependent on the soybean cultivation season.

  2. Glyphosate: too much of a good thing?

    Directory of Open Access Journals (Sweden)

    Marek eCuhra

    2016-04-01

    Full Text Available Although previously accepted as the less toxic alternative, with low impact on animals, farmers as well as consumers who are exposed to residues in food, glyphosate chemicals are now increasingly controversial as new evidence from research is emerging. We argue that specific aspects of the history, chemistry and safety of glyphosate and glyphosate-based herbicides should be thoroughly considered in present and future re-evaluations of these dominant agrochemicals:· Glyphosate is not a single chemical, it is a family of compounds with different chemical, physical and toxicological properties.· Glyphosate is increasingly recognized as having more profound toxicological effects than assumed from previous assessments.· Global use of glyphosate is continuously increasing and residues are detected in food, feed and drinking water. Thus, consumers are increasingly exposed to higher levels of glyphosate residues, and from an increasing number of sources.· Glyphosate regulation is predominantly still based on primary safety-assessment testing in various indicator organisms. However, archive studies indicate fraud and misbehavior committed by the commercial laboratories providing such research.We see emerging evidences from studies in test-animals, ecosystems indicators and studies in human health, which justify stricter regulatory measures. This implies revising glyphosate residue definitions and lowering Maximum Residue Limits (MRLs permissible in biological material intended for food and feed, as well as strengthening environmental criteria such as accepted residue concentrations in surface waters.It seems that although recent research indicates that glyphosates are less harmless than previously assumed and have complex toxicological potential, still regulatory authorities accept industry demands for approving higher levels of these residues in food and feed.

  3. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    International Nuclear Information System (INIS)

    Mamy, Laure; Gabrielle, Benoit; Barriuso, Enrique

    2010-01-01

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  4. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    Energy Technology Data Exchange (ETDEWEB)

    Mamy, Laure, E-mail: laure.mamy@versailles.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Gabrielle, Benoit, E-mail: benoit.gabrielle@agroparistech.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Barriuso, Enrique, E-mail: barriuso@grignon.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)

    2010-10-15

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  5. Effects of EPSPS Copy Number Variation (CNV and Glyphosate Application on the Aromatic and Branched Chain Amino Acid Synthesis Pathways in Amaranthus palmeri

    Directory of Open Access Journals (Sweden)

    Manuel Fernández-Escalada

    2017-11-01

    Full Text Available A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19, is the known target of the widely used herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the most troublesome weeds in agriculture, has evolved through increased EPSPS gene copy number. The aim of this work was to study the pleiotropic effects of (i EPSPS increased transcript abundance due to gene copy number variation (CNV and of (ii glyphosate application on the aromatic amino acid (AAA and branched chain amino acid (BCAA synthesis pathways. Hydroponically grown glyphosate sensitive (GS and glyphosate resistant (GR plants were treated with glyphosate 3 days after treatment. In absence of glyphosate treatment, high EPSPS gene copy number had only a subtle effect on transcriptional regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment provoked a general accumulation of the transcripts corresponding to genes of the AAA pathway leading to synthesis of chorismate in both GS and GR. After chorismate, anthranilate synthase transcript abundance was higher while chorismate mutase transcription showed a small decrease in GR and remained stable in GS, suggesting a regulatory branch point in the pathway that favors synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate treatment. This was confirmed by studying enzyme activities in vitro and amino acid analysis. Importantly, this upregulation was glyphosate dose dependent and was observed similarly in both GS and GR populations. Glyphosate treatment also had a slight effect on the expression of BCAA genes but no general effect on the pathway could be observed. Taken together, our observations suggest that the high CNV of EPSPS in A. palmeri GR populations has no major pleiotropic effect on the expression of AAA biosynthetic genes, even in response to glyphosate treatment. This finding supports the idea that the fitness cost associated

  6. Location, Root Proximity, and Glyphosate-use History Modulate the Effects of Glyphosate on Fungal Community Networks of Wheat

    Science.gov (United States)

    Glyphosate is the most-used herbicide worldwide and an essential tool for weed control in no-till cropping systems. However, concerns have been raised regarding the long-term effects of glyphosate on soil microbial communities. We examined the impact of repeated glyphosate application on bulk and rh...

  7. The effect of glyphosate application on soil microbial activities in ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... bacterial populations in the presence of glyphosate as P source was significantly (p<0.01) higher than N ... bes by transferring hydrogen or electrons from substrates .... of utilizing GP as carbon or other nutrient sources.

  8. Determination of the resistance types to Spodoptera cosmioides (Walker (Lepidoptera: Noctuidae in soybean genotypes

    Directory of Open Access Journals (Sweden)

    Arlindo Leal Boiça Júnior

    2015-04-01

    Full Text Available The aim of this work was to evaluate the resistance types in soybean genotypes to Spodoptera cosmioides (Walker in laboratory. Soybean genotypes assessed were as follows: ‘IAC 100’ (resistance standard, ‘BR16’ (susceptible standard, ‘Dowling’, PI 227687, PI 274454, ‘IGRA RA 626 RR’, PI 227682, ‘BRSGO 8360’, ‘IGRA RA 516 RR’ and ‘P 98Y11 RR’. Free-choice and no-choice feeding non-preference tests were done using two newly-hatched larvae per genotype or one third-instar larva per genotype in both tests. Larvae attractiveness was evaluated in different times, and at the end of the experiments the leaf area consumed was quantified. In the antibiosis test, newly-hatched larvae were individualized into Petri dishes, where leaflets of the genotypes were offered over the larval stage, and the following biological parameters were assessed: period and viability of larvae, pupae and overall (larvae + pupae, weight of larvae and pupae, sex ratio and adults longevity. Overall, in the feeding preference tests, significant differences were not found in leaf consumption among the genotypes. In the antibiosis assay, genotypes PI 227687, PI 227682 and ‘IAC 100’ caused 100% larval mortality and the lowest weight of larvae, ranging between 37.65 and 85.56 mg. All soybean genotypes evaluated do not exhibit feeding non-preference type resistance to S. cosmioides, and PI 227687, PI 227682 and ‘IAC 100’ highlighted for possessing antibiosis.

  9. Host Resistance and Chemical Control for Management of Sclerotinia Stem Rot of Soybean in Ohio.

    Science.gov (United States)

    Huzar-Novakowiski, Jaqueline; Paul, Pierce A; Dorrance, Anne E

    2017-08-01

    Recent outbreaks of Sclerotinia stem rot (SSR) of soybean in Ohio, along with new fungicides and cultivars with resistance to this disease, have led to a renewed interest in studies to update disease management guidelines. The effect of host resistance (in moderately resistant [MR] and moderately susceptible [MS] cultivars) and chemical control on SSR and yield was evaluated in 12 environments from 2014 to 2016. The chemical treatments evaluated were an untreated check, four fungicides (boscalid, picoxystrobin, pyraclostrobin, and thiophanate-methyl), and one herbicide (lactofen) applied at soybean growth stage R1 (early flowering) alone or at R1 followed by a second application at R2 (full flowering). SSR developed in 6 of 12 environments, with mean disease incidence in the untreated check of 2.5 to 41%. The three environments with high levels of SSR (disease incidence in the untreated check >20%) were used for further statistical analysis. There were significant effects (P Pyraclostrobin increased SSR compared with the untreated check in the three environments with high levels of disease. In the six fields where SSR did not develop, chemical treatment did not increase yield, nor was the yield from the MR cultivar significantly different from the MS cultivar. For Ohio, MR cultivars alone were effective for management of SSR in soybean fields where this disease has historically occurred.

  10. Phytoplankton growth and PSII efficiency sensitivity to a glyphosate-based herbicide (Factor 540®).

    Science.gov (United States)

    Smedbol, Élise; Lucotte, Marc; Labrecque, Michel; Lepage, Laurent; Juneau, Philippe

    2017-11-01

    The use of glyphosate-based herbicides in agriculture has increased steadily since the mid 90's and there is now evidence of glyphosate leaching and contamination of aquatic ecosystems. The aim of this study was to evaluate the effects of a glyphosate-based herbicide (Factor 540 ® ) on growth and photosynthetic capacity of algae and cyanobacteria. Six algal and three cyanobacterial species/strains, of three different taxonomic groups, were exposed to five glyphosate concentrations (10, 50, 100, 500 and 1000μgl -1 ) during 48h. All species have significant growth inhibition at concentrations varying between 50 and 500μgl -1 . The photosynthetic response, after glyphosate exposure, varied among species, but a general pattern has emerged. There was an increase in the amount of photons absorbed (ABS/RC), in dissipated (DI O /RC) and trapped (TR O /RC) energy in the photosystem II reaction centers, along with a decreased of the maximum photosystem II quantum yield (F V /F M ) and electron transport per reaction center (ET O /RC). The EC 50 and LOEC values for growth and photosynthesis were calculated and established that growth was the most affected parameter by glyphosate-based herbicide, while parameter TR O /RC was the least affected. All species showed reduced growth at glyphosate concentrations lower than the Canadian standard for the protection of aquatic life, set at 800μgl -1 or the American aquatic life benchmark for acute toxicity in non vascular plants of 12 100μgl -1 questioning the validity of these thresholds in assessing the risks related to the presence of glyphosate and glyphosate-based herbicides in aquatic systems. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Li, Yinping; Sun, Suli; Zhong, Chao; Wang, Xiaoming; Wu, Xiaofei; Zhu, Zhendong

    2017-06-01

    The RpsQ Phytophthora resistance locus was finely mapped to a 118-kb region on soybean chromosome 3. A best candidate gene was predicted and three co-segregating gene markers were developed. Phytophthora root rot (PRR), caused by Phytophthora sojae, is a major threat to sustainable soybean production. The use of genetically resistant cultivars is considered the most effective way to control this disease. The Chinese soybean cultivar Qichadou 1 exhibited a broad spectrum resistance, with a distinct resistance phenotype, following inoculation with 36 Chinese P. sojae isolates. Genetic analyses indicated that the disease resistance in Qichadou 1 is controlled by a single dominant gene. This gene locus was designated as RpsQ and mapped to a 118-kb region between BARCSOYSSR_03_0165 and InDel281 on soybean chromosome 3, and co-segregated with Insert11, Insert144 and SNP276. Within this region, there was only one gene Glyma.03g27200 encoding a protein with a typical serine/threonine protein kinase structure, and the expression pattern analysis showed that this gene induced by P. sojae infection, which was suggested as a best candidate gene of RpsQ. Candidate gene specific marker Insert144 was used to distinguish RpsQ from the other known Rps genes on chromosome 3. Identical polymerase chain reaction amplification products were produced for cultivars Qichadou 1 (RpsQ) and Ludou 4 (Rps9). All other cultivars carrying Rps genes on chromosome 3 produced different PCR products, which all lacked a 144-bp fragment present in Qichadou 1 and Ludou 4. The phenotypes of the analyzed cultivars combined with the physical position of the PRR resistance locus, candidate gene analyses, and the candidate gene marker test revealed RpsQ and Rps9 are likely the same gene, and confer resistance to P. sojae.

  12. Electron beam irradiation: a novel technology to enhance the quality of soybean seeds

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Singh, Subadas; Thakur, Manju; Sharma, S.K.; Pramod, R.; Dwivedi, J.; Bapna, S.C.

    2010-01-01

    Soybean seeds, rich in protein and oil, maintain their germinability only for short durations under ambient conditions. Loss of viability of stored seeds often hampers soybean production in harsh environments worldwide. Physiological factors favored by high temperature and high moisture content accelerate the seed deterioration in the tropics. Several chemical and physical treatments are being used to enhance quality. Irradiation is a novel technology for food preservation and is gaining importance all over the world. Low doses of irradiation bring about improvement in quality of food/seeds, which can be beneficial in several ways. Electron Beam (EB) irradiation is a new approach in this area. The objective of present study was to investigate the effect of EB irradiation in enhancing the quality of low vigour soybean seeds

  13. Different responses of soybean cyst nematode resistance between ...

    Indian Academy of Sciences (India)

    YONGCHUN LI

    95, xx–xx]. Introduction. Soybean is one of the most important crops worldwide accounting for about 30% of the vegetable oil and 60% of the vegetable protein in world production. However, the sustain- ability of soybean production has been challenged by inten- sified pest problems (Skorupska et al. 1994). Soybean cyst.

  14. Interaction of 2,4-D or Dicamba with Glufosinate for Control of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida L. in Glufosinate-Resistant Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Zahoor A. Ganie

    2017-07-01

    Full Text Available Glyphosate-resistant (GR giant ragweed is a problematic broadleaf weed in crops including maize and soybean in the Midwestern United States. Commercialization of crops with 2,4-D or dicamba and glufosinate resistance will allow post-emergence (POST applications of these herbicides. Therefore, information is needed on how 2,4-D/dicamba will interact with glufosinate in various rate combinations. The objectives of this study were to evaluate the interaction of glufosinate plus 2,4-D and/or dicamba for control of GR giant ragweed, and to determine their effect on GR giant ragweed density, biomass, maize injury, and yield. Field experiments were conducted in 2013 and 2014 in a field infested with GR giant ragweed in Nebraska, United States. The treatments included POST applications of glufosinate (450 or 590 g ai ha-1, 2,4-D, or dicamba at 280 or 560 g ae ha-1 applied alone and in tank-mixtures in glufosinate-resistant maize. The results showed that dicamba applied alone resulted in 56 to 62% and 73 to 83% control at 14 and 28 days after treatment (DAT, respectively, and ≥95% control at 60 DAT or at harvest compared to 17 to 30% and 57 to 73% control with 2,4-D applied alone at 280 and 560 g ai ha-1, respectively. Glufosinate tank-mixed with 2,4-D and/or dicamba consistently provided ≥89% control of GR giant ragweed, except that control with glufosinate plus 2,4-D varied from 80 to 92% at 60 DAT and at harvest. The comparison between the observed and expected control (determined by Colby’s equation suggested an additive interaction between glufosinate and 2,4-D or dicamba for control of GR giant ragweed. Contrast analysis also indicated that GR giant ragweed control with glufosinate plus 2,4-D or dicamba was either consistently higher or comparable with individual herbicides excluding 2,4-D applied alone. Herbicide programs, excluding 2,4-D at 280 g ae ha-1, resulted in ≥80% reduction in GR giant ragweed density. Tank-mixing glufosinate with

  15. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach.

    Science.gov (United States)

    Rouquié, David; Capt, Annabelle; Eby, William H; Sekar, Vaithilingam; Hérouet-Guicheney, Corinne

    2010-12-01

    As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Effect of Temperature and Chemical Additives on the Efficacy of the Herbicides Glufosinate and Glyphosate in Weed Management of Liberty-Link and Roundup-Ready Soybeans

    OpenAIRE

    Pline, Wendy Ann

    1999-01-01

    The introduction of herbicide resistant crops offers producers many more options for weed control systems. These crops allow environmentally safe, non-selective herbicides to be used as selective herbicides, broadening the spectrum of weeds controlled, while not harming the crop. As these crops are very new on the market, investigation of their performance under various environmental conditions as well as in various weed control programs is needed. Liberty-link ® soybeans are resistant t...

  17. [Glyphosate--a non-toxic pesticide?].

    Science.gov (United States)

    Pieniazek, Danuta; Bukowska, Bozena; Duda, Wirgiliusz

    2003-01-01

    Glyphosate is currently the most commonly applied herbicide and its use is still growing. Nowadays, over 50 commercial preparations containing this compound are used, and these formulations are much more toxic than their active compound, glyphosate, owing to the presence of many surfactants and carrier compounds. Toxicological investigations provide evidence that glyphosate is an extremely "safe" herbicide for animals. This is why its use in agriculture is universal. In June 1991, the Environmental Protection Agency (EPA) categorized this compound into class E (according to EPA there are five categories of carcinogenicity), which means that it is probably not carcinogenic to humans. Unfortunately, the study carried out by Swedish oncologists in 2001 showed that glyphosate may induce cancer of the lymphatic system. The results of the Swedish study have changed our opinion about "safety" of this herbicide. Investigations concerning both its accumulation and toxic effect in animals and plants are now under way in many laboratories.

  18. Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid.

    Science.gov (United States)

    Brusick, David; Aardema, Marilyn; Kier, Larry; Kirkland, David; Williams, Gary

    2016-09-01

    In 2015, the International Agency for Research on Cancer (IARC) published a monograph concluding there was strong evidence for genotoxicity of glyphosate and glyphosate formulations and moderate evidence for genotoxicity of the metabolite aminomethylphosphonic acid (AMPA). These conclusions contradicted earlier extensive reviews supporting the lack of genotoxicity of glyphosate and glyphosate formulations. The IARC Monograph concluded there was strong evidence of induction of oxidative stress by glyphosate, glyphosate formulations, and AMPA. The Expert Panel reviewed the genotoxicity and oxidative stress data considered in the IARC Monograph, together with other available data not considered by IARC. The Expert Panel defined and used a weight of evidence (WoE) approach that included ranking of studies and endpoints by the strength of their linkage to events associated with carcinogenic mechanisms. Importantly, the Expert Panel concluded that there was sufficient information available from a very large number of regulatory genotoxicity studies that should have been considered by IARC. The WoE approach, the inclusion of all relevant regulatory studies, and some differences in interpretation of individual studies led to significantly different conclusions by the Expert Panel compared with the IARC Monograph. The Expert Panel concluded that glyphosate, glyphosate formulations, and AMPA do not pose a genotoxic hazard and the data do not support the IARC Monograph genotoxicity evaluation. With respect to carcinogenicity classification and mechanism, the Expert Panel concluded that evidence relating to an oxidative stress mechanism of carcinogenicity was largely unconvincing and that the data profiles were not consistent with the characteristics of genotoxic carcinogens.

  19. Are herbicide-resistant crops the answer to controlling Cuscuta?

    Science.gov (United States)

    Nadler-Hassar, Talia; Shaner, Dale L; Nissen, Scott; Westra, Phill; Rubin, Baruch

    2009-07-01

    Herbicide-resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide-resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate-resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone-resistant host. The growth of C. campestris on glyphosate-resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3-4 weeks. The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite-resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. (c) 2009 by John Wiley & Sons, Ltd.

  20. Glyphosate catabolism by Pseudomonas sp

    International Nuclear Information System (INIS)

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3- 14 C] glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO 2 . Fractionation of stationary phase cells labeled with [3- 14 C]glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with [3- 14 C]glyphosate revealed that [3- 14 C]sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates

  1. Induced mutations and marker assisted breeding in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Chotechuen, Somsong [Prachinburi Rice Research Center, Prachinburi (Thailand); Srisombun, Somsak [Department of Agriculture, Field Crops Research Institute, Bangkok (Thailand); Lamseejan, Siranut [Kasetsart Univ., Department of Applied Radiation and Isotopes, Bangkok (Thailand)

    2002-02-01

    Soybean is one of the important crops in Thailand. Constraints to soybean production include low yield potential, susceptibility to diseases and insects, and non-adoption of appropriate management practices. Mutation induction has been used to improve soybean yield and resistance to major diseases such as rust, purple seed, crinkle leaf, anthracnose and green seed. This paper reviews previous work and achievements of induced mutations in soybean. Successful examples are the release of a soybean variety, Doi Kham, and the development of a mutant CM 60-10kr-71; both are resistant to rust disease. The paper also gives example of the use of soybean SSR markers to identify QTL associated with pod shattering, and emphasizes the integration of mutation techniques and marker assisted selection for soybean improvement. (author)

  2. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States

    Science.gov (United States)

    Coupe, Richard H.; Capel, Paul D.

    2016-01-01

    BACKGROUNDGenetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected.RESULTSThere has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops.CONCLUSIONSThe observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis.

  3. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  4. Aplicação simultânea de dessecantes e boro no manejo de plantas daninhas e na nutrição mineral das culturas de soja e girassol Simultaneous application of desiccants and boron for weed control and mineral nutrition of soybean and sunflower

    Directory of Open Access Journals (Sweden)

    A.M. Brighenti

    2006-12-01

    Full Text Available Dois experimentos foram conduzidos com o objetivo de avaliar o controle de plantas daninhas em pré-semeadura da soja (Glycine max e do girassol (Helianthus annuus, por meio de aplicações de herbicidas dessecantes, isolados ou em combinação com boro, bem como a resposta dessas culturas à aplicação desse micronutriente. Nas parcelas de soja, foram aplicados os tratamentos glyphosate (1,44 kg e.a. ha-1, glyphosate potássico (2,48 kg i.a. ha-1, diuron (0,2 kg i.a. ha-1 + paraquat (0,4 kg i.a. ha-1, e paraquat (0,400 kg i.a. ha-1. Nas parcelas de girassol, foram aplicados os tratamentos glyphosate (0,54 kg e.a. ha-1, glyphosate (0,72 kg e.a. ha-1, glyphosate potássico (1,24 kg i.a. ha-1, paraquat (0,4 kg i.a. ha-1, glyphosate (0,72 kg e.a. ha-1 + flumioxazin (0,025 kg i.a. ha-1 e glyphosate (0,72 kg e.a. ha-1 + carfentrazone (0,02 kg i.a. ha-1. Ambos os experimentos continham as testemunhas capinada e sem capina. As subparcelas dos dois experimentos foram constituídas pela ausência ou presença de B, junto à calda de pulverização, na fonte ácido bórico [H3BO3 - 17% B]. A adição de ácido bórico à calda de pulverização não prejudicou o controle das plantas daninhas pelos tratamentos dessecantes, exceto para a mistura formulada de paraquat + diuron. Houve aumento dos teores de boro no solo e nas folhas da cultura da soja e do girassol quando foram associados os tratamentos com herbicidas dessecantes e o ácido bórico. É viável a aplicação de herbicidas dessecantes e ácido bórico, controlando as plantas daninhas em présemeadura e aumentando o teor de B no solo e nas plantas de soja e de girassol.Two experiments were carried out to evaluate weed control in soybean (Glycine max and sunflower (Helianthus annuus pre-sowing by desiccant application alone or in combination with boron (B, as well as to evaluate the response of these crops to that micronutrient. The plots consisted of the desiccants glyphosate (1.44 kg a.e. ha-1

  5. Resistance of some early mutant lines of soybean to rust fungus (Phakospora pachyrhizi Syd)

    International Nuclear Information System (INIS)

    Ratma, Rivaie

    1984-01-01

    A trial for resistance to rust fungus (Phakospora pachyrhizi Syd.) was conducted on 11 early mutant lines of soybean M6 (derived from Orba variety with a dose of 0.4 kGy of Co-60) at Citayam Experimental Station, Bogor, in the wet season of 80/81. Based on IWGSR rating system, soybean mutant lines number M6/40/6 was moderately susceptible to rust fungus (Phakospora pachyrhizi Syd). While 10 other soybean mutant lines M6/40/1, M6/40/2, M6/40/3, M6/40/4, M6/40/5, M6/40/7, M6/40/8, M6/40/9, M6/40/10 and M6/40/11 were susceptible to rust fungus. Significant differences in yield were observed between the early mutant lines M6/40/6 (moderate susceptible), 10 other mutant lines (susceptible) and ringgit variety (susceptible). However, a significant lower yield was produced by those mutant lines compared with the yield of orba variety. (author)

  6. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    Science.gov (United States)

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  7. Glyphosate: cancerous or not? Perspectives from both ends of the debate

    Directory of Open Access Journals (Sweden)

    Syeda Aamna Hassan

    2017-08-01

    Full Text Available Glyphosate is non-selective herbicide. Studies published in the last decade, point towards glyphosate toxicity. Shikimic acid pathway for the biosynthesis of folates and aromatic amino acids is inhibited by glyphosate. Glyphosate carcinogenicity is still considered to be a controversial issue. The World Health Organizations’ International Agency recently concluded that glyphosate is “probably carcinogenic to humans.” Some researchers believed that glyphosate is not linked with carcinogenicity.

  8. Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel

    Science.gov (United States)

    Charcoal rot disease caused by Macrophomina phaseolina is responsible for significant yield losses in soybean production. Among the methodologies available for controlling this disease, breeding for resistance is the most promising. Progress in breeding efforts has been slow due to the insufficient ...

  9. 75 FR 24969 - Glyphosate From China

    Science.gov (United States)

    2010-05-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1178 (Preliminary)] Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Notice of withdrawal of petition in... investigation concerning glyphosate from China (investigation No. 731-TA-1178 (Preliminary)) is discontinued...

  10. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  11. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  12. 75 FR 17768 - Glyphosate From China

    Science.gov (United States)

    2010-04-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1178 (Preliminary)] Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Institution of antidumping investigation... States is materially retarded, by reason of imports from China of glyphosate, provided for in subheadings...

  13. Glyphosate in Irish adults - A pilot study in 2017.

    Science.gov (United States)

    Connolly, Alison; Leahy, Michelle; Jones, Kate; Kenny, Laura; Coggins, Marie A

    2018-05-02

    Glyphosate is the highest volume herbicide used globally and has recently been classified as a 2 A 'probably carcinogenic to humans' by the International Agency for Research on Cancer (IARC). There is limited data to evaluate the public health impacts from glyphosate exposure. The objective of this study is to conduct an exploratory glyphosate exposure assessment study among Irish adults, who were non-occupational users of glyphosate. A convenient sampling method was used, collecting one first morning void spot urine sample from each participant. A biomonitoring survey involving the collection and analysis of 20 ml spot urine samples from 50 Irish adults was conducted in June 2017. Participants completed a short questionnaire to collect information on demographics, dietary habits and lifestyle. Glyphosate was extracted using solid phase extraction (SPE) and analysed by liquid chromatography tandem mass spectrometry (LC-MC/MS). Of the 50 urine samples analysed, 10 (20%) contained detectable levels of glyphosate (0.80-1.35 µg L -1 ). Exposure concentrations are higher than those reported in comparable studies of European and American adults. Glyphosate was detectable in 20% of the samples collected from Irish adults. The low proportion of detectable glyphosate levels could be due to lower localised use of pesticides, having a small sample size or the higher analytical detection limit used in this study (0.5 µg L -1 ), which could underestimate the true exposure and warrants further investigation. Given the widespread use of glyphosate, further information on population exposure is required to advance our understanding of the relationship between chronic low dose exposure to glyphosate and human health risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Soybean-Enriched Snacks Based on African Rice

    Science.gov (United States)

    Marengo, Mauro; Akoto, Hannah F.; Zanoletti, Miriam; Carpen, Aristodemo; Buratti, Simona; Benedetti, Simona; Barbiroli, Alberto; Johnson, Paa-Nii T.; Sakyi-Dawson, Esther O.; Saalia, Firibu K.; Bonomi, Francesco; Pagani, Maria Ambrogina; Manful, John; Iametti, Stefania

    2016-01-01

    Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content. PMID:28231133

  15. Resposta de cultivares de algodoeiro a subdoses de glyphosate Response of cotton cultivars to reduced rates of glyphosate

    Directory of Open Access Journals (Sweden)

    O.M. Yamashita

    2005-12-01

    Full Text Available Avaliou-se a resposta de nove cultivares de algodoeiro, de importância econômica no Estado do Mato Grosso, quanto à intoxicação causada por subdoses de glyphosate. Os cultivares de algodoeiro utilizados foram Fabrika, Makina, ITA-90, FM 986, FM 966, Delta Opal, BRS Facual, Antares e Coodetec 407. As plantas foram cultivadas em tubetes preenchidos com substrato de solo e mantidas em casa telada, tendo recebido a aplicação do glyphosate aos 20 dias após a emergência, época em que apresentavam quatro folhas verdadeiras. As subdoses de glyphosate, simulando deriva, foram de 270 e 540 g ha-1. Também foi utilizada testemunha, sem aplicação do herbicida, para efeito de comparação. Foram realizadas avaliações semanais até 42 dias após a aplicação dos tratamentos (DAA, período em que também foi tomada a altura das plantas. Os sintomas visuais de intoxicação iniciaram-se aos 3 DAA, caracterizados pelo amarelecimento das pontas das folhas mais novas, seguido de murchamento do ápice das plantas. Na dose de 270 g ha-1 esses sintomas foram de baixa intensidade, mas a 540 g ha-1 causaram, na maioria dos casos, toxidez "preocupante" a "muito alta". Os cultivares BRS Facual e FM 986 mostraram-se os mais suscetíveis. A altura das plantas foi mais afetada quando se aplicou a menor dose de glyphosate. Houve recuperação de todos os cultivares tratados com 270 g ha-1 de glyphosate até os 42 DAA. Quando tratados com 540 g ha-1 de glyphosate, os cultivares Fabrika, Coodetec 407, BRS-Facual e ITA-90 foram mais sensíveis, apresentando redução de altura entre 84 e 90% aos 42 DAA. Os cultivares menos sensíveis na dose de 270 g ha-1 de glyphosate não foram os mesmos para a dose de 540 g ha-1.The response of nine cotton cultivars economically important in the state of Mato Grosso was evaluated in relation to the toxicity caused by reduced rates of glyphosate. The cotton cultivars used were Fabrika, Makina, ITA-90, FM 986, FM 966, Delta Opal

  16. 78 FR 60707 - Glyphosate; Pesticide Tolerances

    Science.gov (United States)

    2013-10-02

    ... chromatography/mass spectrometry/mass spectrometry Method 15444) is available to enforce the tolerance expression...) 566-1744, and the telephone number for the OPP Docket is (703) 305- 5805. Please review the visitor...-acetyl-glyphosate (expressed as glyphosate equivalents). VI. Statutory and Executive Order Reviews This...

  17. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing.

    Science.gov (United States)

    Cheng, Yanbo; Ma, Qibin; Ren, Hailong; Xia, Qiuju; Song, Enliang; Tan, Zhiyuan; Li, Shuxian; Zhang, Gengyun; Nian, Hai

    2017-05-01

    Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao. Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F 2 individuals and 196 F 7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F 2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.

  18. Creation of glyphosate-resistant Brassica napus L. plants expressing DesC desaturase of cyanobacterium Synechococcus vulcanus

    Directory of Open Access Journals (Sweden)

    Goldenkova-Pavlova I. V.

    2012-12-01

    Full Text Available Aim. Creation of glyphosate-resistant canola plants expressing bifunctional hybrid desC::licBM3 gene. In the hybrid gene the sequence of DesC desaturase of cyanobacterium S. vulcanus without plastid targeting was fused with the sequence of thermostable lichenase reporter LicBM3 gene. Methods. Agrobacterium tumefaciens-mediated transformation, PCR, quantitative and qualitative determination of lichenase activity, genetic analysis. Results. Transgenic canola plants, carring the enolpyruvat shikimat phosphate syntase gene (epsps, conferring on plants resistance to phosphonomethyl glycine herbicides (Roundup, as well as the desC::licBM3 gene, were selected. The presence of transgenes was confimed by multiplex PCR. The epsps gene expression in canola was shown at the transcription level, during in vitro growth and after greenhouse herbicide treatment. Activity of the licBM3 gene product as a part of hybrid protein allowed quantitative and qualitative estimation of the desaturase gene expression. Inheritance of heterologous genes and their expression in the first generation were investigated. Conclusions. Transgenic canola plants were obtained, the presence of trangenes in plant genome was proved and expression of the target genes was detected.

  19. Different responses of soybean cyst nematode resistance between two RIL populations derived from Peking x 7605 under two ecological sites.

    Science.gov (United States)

    Li, Yongchun; Guo, Na; Zhao, Jinming; Zhou, Bin; Xu, Ran; Ding, Hui; Zhao, Weiguo; Gai, Junyi; Xing, Han

    2016-12-01

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a plant-parasitic nematode that feeds on the roots of soybean and most economically devastating pathogen of soybean (Glycine max (L.) Merr.) worldwide. Host plant resistance is the most effective control method. To understand SCN resistance in different environments, two recombinant-inbred lines (RILs) populations NJ(RN)P7 (217 F 2:8:11 lines) and JN(RN)P7 (248 F 2:7:9 lines) were developed from the cross of the cultivars Peking x 7605 in Nanjing and Jinan, respectively, and examined in this study. Peking is resistant to SCN race 1 (HG types 2.5.7), while 7605 is highly susceptible. Chi-square test of frequency distribution of families' female index (FI) showed that resistance to SCN was significantly different between NJ(RN)P7 and JN(RN)P7 populations. Three recessive genes conditioned the inheritance of resistance to SCN race 1 in both populations, but significant difference was detected for the mean of FI on two populations (DM= -16.68, P< 0.01). This indicated that natural selection may affect resistance to SCN. By analysing the variation of phenotype, the genetic structure of the two populations was determined to be different. The inheritance and variation of resistance were confirmed by simple sequence repeat (SSR) markers. For the two populations, 10 SSR markers showed polymorphism of resistant and susceptible DNA bulks. Some markers associated with the resistance of SCN races 1, 2, 3 and 5, and two markers, Satt163 and Satt309, reportedly related to rgh1 were detected both in NJ(RN)P7 and JN(RN)P7 populations. The results support the view that a disease acts as a selective force on plant resistance characteristics, which may alter the relative fitness of resistance alleles.

  20. RESISTANCE OF SOME GROUNDNUT CULTIVARS TO SOYBEAN POD BORER, ETIELLA ZINCKENELLA TREIT. (LEPIDOPTERA: PYRALIDAE

    Directory of Open Access Journals (Sweden)

    Dwinardi Apriyanto, Edi Gunawan, dan Tri Sunardi .

    2011-11-01

    Full Text Available Resistance of some groundnut cultivars to soybean pod borer, Etiella zinckenella Treit. (Lepidoptera: Pyralidae.  Five groundnut cultivars: Badak, Panther, Sima, Gajah, and Simpai, were grown in field in June-August, 2006 to determine their resistance/susceptibility to Etiella zinckenella Treit.  Two local cultivars (big and small seeds were included as comparison (controls. All cultivars were grown in experimental plots arranged in a randomized complete block design (RCBD, replicated three times. The incidence of soybean pod borer and damaged pods were observed at 9, 11, 13 weeks after sowing (WAS at 10 sample plants taken randomly from each plot. All cultivars were harvested at 13 WAS. Number of damaged pods was counted and percentages per plant were calculated. Larvae observed inside pod or in the soil were counted and collected. The seed yield per plant and weight of 100 seeds from 100 sample plants taken randomly at harvest were weighted to nearest gram at 10% water content. Pod toughness (hardness was measured with penetrometer. Resistance level of each cultivar was determined based on cultivar’s means and overall mean and standard deviation of the percentages of damaged pods. Data were analyzed with analysis of variance (ANOVA and means were separated with DMRT. The result revealed that mean percentages of damaged pod differed significantly between cultivars. Seed yield of cultivar Panther, Sima and Badak were significantly higher than those of the other two and local cultivars. Cultivar Panther was categorized as resistant, cultivar Sima and Badak as moderately resistant, while the others as susceptible. The relative resistance of groundnut cultivar seems, at least in part, to correlate with the structural hardness of pod.

  1. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean.

    Science.gov (United States)

    Zhong, Chao; Sun, Suli; Li, Yinping; Duan, Canxing; Zhu, Zhendong

    2018-03-01

    A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F 2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.

  2. Gene Expression Profiling Soybean Stem Tissue Early Response to Sclerotinia sclerotiorum and In Silico Mapping in Relation to Resistance Markers

    Directory of Open Access Journals (Sweden)

    Bernarda Calla

    2009-07-01

    Full Text Available White mold, caused by (Lib. de Bary, can be a serious disease of crops grown under cool, moist environments. In many plants, such as soybean [ (L. Merr.], complete genetic resistance does not exist. To identify possible genes involved in defense against this pathogen, and to determine possible physiological changes that occur during infection, a microarray screen was conducted using stem tissue to evaluate changes in gene expression between partially resistant and susceptible soybean genotypes at 8 and 14 hours post inoculation. RNA from 15 day-old inoculated plants was labeled and hybridized to soybean cDNA microarrays. ANOVA identified 1270 significant genes from the comparison between time points and 105 genes from the comparison between genotypes. Selected genes were classified into functional categories. The analyses identified changes in cell-wall composition and signaling pathways, as well as suggesting a role for anthocyanin and anthocyanidin synthesis in the defense against . In-silico mapping of both the differentially expressed transcripts and of public markers associated with partial resistance to white mold, provided evidence of several differentially expressed genes being closely positioned to white mold resistance markers, with the two most promising genes encoding a PR-5 and anthocyanidin synthase.

  3. Soybean-Enriched Snacks Based on African Rice

    Directory of Open Access Journals (Sweden)

    Mauro Marengo

    2016-05-01

    Full Text Available Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content.

  4. Resistence of Euphorbia Heterophylla L. to ALS-inhibiting herbicides in soybean Resistência de Euphorbia Heterophylla L. aos herbicidas inibidores da ALS na cultura da soja

    Directory of Open Access Journals (Sweden)

    Gerson Augusto Gelmini

    2005-10-01

    Full Text Available Herbicides are widely used in soybean for weed control, and the selection pressure attributed to the repeated use of herbicides with similar modes of action on the same site has caused selection for resistant biotypes within and among previously susceptible species, such as Euphorbia heterophylla L., in relation to ALS enzyme inhibitors, in the states of Paraná, Rio Grande do Sul, and São Paulo, Brazil. Seeds of E. heterophylla were collected to examine possible new cases of resistant populations and to test alternative herbicide treatments to manage these populations, in the Caarapó region, State of Mato Grosso do Sul, Brazil, in areas where plants of this species have survived continuous herbicide applications. The experiment was carried out under greenhouse conditions, where biotypes with a history of suspected resistance were compared with a known susceptible biotype. Several post-emergence herbicides were sprayed at zero, one, two, four, and eight times the recommended field application rates. Twenty days after application, plants were harvested, and control percentage and fresh weight were determined to establish dose-response curves, in the aim to obtain the resistance factor using CD50 and RD50 data. The chlorimuron-ethyl resistance factor values for the control percentage and fresh weight parameters were higher than 16.5 and 16.9, respectively, while imazethapyr showed resistance factors higher than 25.0 and 23.5, respectively. The resistant biotype showed different resistance levels to chlorimuron-ethyl and imazethapyr, showing cross-resistance to the sulfonylurea and imidazolinone groups. Nevertheless, this biotype was effectively controlled by fomesafen (250 g ha-1, lactofen (120 g ha-1, flumiclorac-pentyl (40 g ha-1, glufosinate-ammonium (150 g ha-1, and glyphosate (360 g ha-1.Os herbicidas constituem a principal medida de controle de plantas daninhas na cultura da soja, mas através da pressão de seleção, o uso contínuo e

  5. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants.

    Science.gov (United States)

    Meng, Fanli; Li, Yang; Zang, Zhenyuan; Li, Na; Ran, Ruixue; Cao, Yingxue; Li, Tianyu; Zhou, Quan; Li, Wenbin

    2017-12-01

    The soybean pod borer [SPB; Leguminivora glycinivorella (Matsumura) (Lepidoptera: Tortricidae)] is the most important soybean pest in northeastern Asia. Silencing genes using plant-mediated RNA-interference is a promising strategy for controlling SPB infestations. The ribosomal protein P0 is important for protein translation and DNA repair in the SPB. Thus, transferring P0 double-stranded RNA (dsRNA) into plants may help prevent SPB-induced damage. We investigated the effects of SpbP0 dsRNA injections and SpbP0 dsRNA-expressing transgenic soybean plants on the SPB. Larval mortality rates were greater for SpbP0 dsRNA-injected larvae (96%) than for the control larvae (31%) at 14 days after injections. Transgenic T 2 soybean plants expressing SpbP0 dsRNA sustained less damage from SPB larvae than control plants. In addition, the expression level of the SpbP0 gene decreased and the mortality rate increased when SPB larvae were fed on T 3 transgenic soybean pods. Moreover, the surviving larvae were deformed and exhibited inhibited growth. Silencing SpbP0 expression is lethal to the SPB. Transgenic soybean plants expressing SpbP0 dsRNA are more resistant to the SPB than wild-type plants. Thus, SpbP0 dsRNA-expressing transgenic plants may be useful for controlling insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Facilitated transport of diuron and glyphosate in high copper vineyard soils.

    Science.gov (United States)

    Dousset, Sylvie; Jacobson, Astrid R; Dessogne, Jean-Baptiste; Guichard, Nathalie; Baveye, Philippe C; Andreux, Francis

    2007-12-01

    The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.

  7. Effects of soybean resistance on variability in life history traits of the higher trophic level parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae).

    Science.gov (United States)

    Li, X; Li, B; Xing, G; Meng, L

    2017-02-01

    To extrapolate the influence of plant cultivars varying in resistance levels to hosts on parasitoid life history traits, we estimated variation in parasitoid developmental and reproductive performances as a function of resistance in soybean cultivars, which were randomly chosen from a line of resistant genotypes. Our study showed that the parasitoid Meteorus pulchricornis varied widely in offspring survival and lifetime fecundity, but varied slightly in development time and adult body size, in response to the soybean cultivars that varied in resistance to the host Spodoptera litura. Furthermore, the variability in survival and lifetime fecundity was different between attacking the 2nd and the 4th instar host larvae, varying more in survival but less in lifetime fecundity when attacking the 4th than 2nd instar larvae. Our study provides further evidence supporting that plant resistance to herbivorous hosts have variable effects on different life history traits of higher trophic level parasitoids.

  8. Surfactant-induced deposit structures in relation to the biological efficacy of glyphosate on easy- and difficult-to-wet weed species.

    Science.gov (United States)

    Kraemer, Thorsten; Hunsche, Mauricio; Noga, Georg

    2009-08-01

    Typical active ingredient (AI) residue patterns are formed during droplet drying on plant surfaces owing to the interaction of spray solution characteristics and leaf micromorphology. Currently, comparatively little is known about the influence of AI deposit patterns within a spray droplet residue area on the penetration and biological efficacy of glyphosate. A scanning electron microscope with energy dispersive X-ray microanalysis has been used to characterise residue patterns and to quantify the area ultimately covered by glyphosate within the droplet spread area. The easy-to-wet weed species Stellaria media L. and Viola arvensis L., as well as the difficult-to-wet Chenopodium album L. and Setaria viridis L., differing in their surface micromorphology, have been used. Rapeseed oil ethoxylates (RSO 5 or RSO 60) were added to glyphosate solutions to provide different droplet spread areas. Addition of RSO 5 enhanced droplet spread area more than RSO 60, and both caused distinct glyphosate residue patterns. The biological efficacy of treatment solutions showed no significant correlation with the area ultimately covered by glyphosate. The results have implications on herbicide uptake models. This study shows that droplet spread area does not correspond to the area ultimately covered by glyphosate, and that the latter does not affect glyphosate phytotoxicity.

  9. Degradation of 14C-glyphosate in compost amended soils.

    Science.gov (United States)

    Alexa, E; Bragea, M; Sumalan, R; Negrea, M; Lazureanu, A

    2009-01-01

    Glyphosate (N-phosphonomethyl-glycine), the active ingredient in several herbicide formulations, is a non-selective, post-emergent herbicide used in a variety of crop and non-crop situations. Glyphosate is a non-volatile herbicide that is relatively immobile in soil. Its degradation is due to microbiological processes and most laboratory studies have been conducted with 14C-glyphosate with the rate of 14CO2 evolution being used as an indication of herbicide breakdown. In this paper we have studied the glyphosate degradation in compost amendment soils using Scientilator Liquid TRIATHLER and Glyphosate-phosphonomethyl-14C-labeled with specific activity 2,2mCi/mmol. Four types of soils have been taken under study: Black Chernozem, Vertisol, Gleysol and Phaeozem with different characteristics. For the each type of soil have been realized four experimental variants (glyphosate blind sample with 1,5 ppm, concentration, autoclaved soil, soil with glyphosate and addition of compost in field concentration of 40 t/ha, respectively 60 t/ha. The mineralization curves of 14CO2 accumulated were compared during of 40 days. All the mineralization curves for the soils exhibited same patterns, with only two phases, the initial rapid phase of degradation, for about 20 days, attributed to microbial action on the free glyphosate and the second slow phase, when the curves attained plateaus. Compost applied with different concentrations to Vertisol and Black Chernozem did not appear to stimulate the microbial degradation of glyphosate. In Gleysol and Phaeozem with lower humus content, the mineralization curve of 14C indicate the increase degradation capacity, expressed as accumulated 14CO2 as % total 14C, with the increase of compost concentration.

  10. A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae

    Directory of Open Access Journals (Sweden)

    Ninghui Li

    2017-07-01

    Full Text Available Phytophthora root and stem rot caused by the oomycete pathogen Phytophthora sojae is a destructive disease of soybean worldwide. Plant dirigent proteins (DIR are proposed to have roles in biosynthesis of either lignan or lignin-like molecules, and are important for defense responses, secondary metabolism, and pathogen resistance. In the present work, a novel DIR gene expressed sequence tag is identified as up-regulated in the highly resistant soybean cultivar ‘Suinong 10’ inoculated with P. sojae. The full length cDNA is isolated using rapid amplification of cDNA ends, and designated GmDIR22 (GenBank accession no. HQ_993047. The full length GmDIR22 is 789 bp and contains a 567 bp open reading frame encoding a polypeptide of 188 amino acids. The sequence analysis indicated that GmDIR22 contains a conserved dirigent domain at amino acid residues 43–187. The quantitative real-time reverse transcription PCR demonstrated that soybean GmDIR22 mRNA is expressed most highly in stems, followed by roots and leaves. The treatments with stresses demonstrated that GmDIR22 is significantly induced by P. sojae and gibberellic acid (GA3, and also responds to salicylic acid, methyl jasmonic acid, and abscisic acid. The GmDIR22 is targeted to the cytomembrane when transiently expressed in Arabidopsis protoplasts. Moreover, The GmDIR22 recombinant protein purified from Escherichia coli could effectively direct E-coniferyl alcohol coupling into lignan (+-pinoresinol. Accordingly, the overexpression of GmDIR22 in transgenic soybean increased total lignan accumulation. Moreover, the lignan extracts from GmDIR22 transgenic plants effectively inhibits P. sojae hyphal growth. Furthermore, the transgenic overexpression of GmDIR22 in the susceptible soybean cultivar ‘Dongnong 50’ enhances its resistance to P. sojae. Collectively, these data suggested that the primary role of GmDIR22 is probably involved in the regulation of lignan biosynthesis, and which

  11. Dissipation of glyphosate from grapevine soils in Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Norma J. Salazar López

    2016-10-01

    Full Text Available Grapevine is one of the important crops in Sonora, due to revenue generation from its export to foreign countries. Among the most widely used herbicides for this crop is glyphosate, which is considered moderately toxic and persistent. The present research evaluates the dissipation of glyphosate in grapevine planted soil at three depths (5, 30 and 60 cm. Sampling was carried out before glyphosate application, and 5, 10, 18, 27, and 65 days after. Glyphosate was extracted from soil samples using ammonium hydroxide. The derivate extracts were partitioned with dichloromethane and analyzed using gas chromatography with pulsed flame photometric detector (PFPD. The results showed that average glyphosate residues are significantly greater at 5 cm (0.09 mg kg-1 than the other depths (30 and 60 cm, having a difference of 0.078 mg kg-1 between them (P < 0.03. Glyphosate concentration time profiles were similar; it reached maximum soil concentration in a range of 10 to 18 days after application. The half-life of glyphosate in soil has an average of 39 days at all depths. Our data suggests that the release in soil of glyphosate applied to weeds delays its transference to soil by 14 days, and extends residue half life to 55 days after application. These results could be the basis for further research, including more environmental parameters that could affect the dissipation or degradation process in soil.

  12. A glyphosate-based pesticide impinges on transcription

    International Nuclear Information System (INIS)

    Marc, Julie; Le Breton, Magali; Cormier, Patrick; Morales, Julia; Belle, Robert; Mulner-Lorillon, Odile

    2005-01-01

    Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate. Glyphosate, the active herbicide ingredient of Roundup, by itself delayed hatching as judged from the comparable effect of different commercial glyphosate-based pesticides and from the effect of pure glyphosate addition to a threshold concentration of Roundup. The surfactant polyoxyethylene amine (POEA), the major component of commercial Roundup, was found to be highly toxic to the embryos when tested alone and therefore could contribute to the inhibition of hatching. Hatching, a landmark of early development, is a transcription-dependent process. Correlatively, the herbicide inhibited the global transcription, which follows fertilization at the 16-cell stage. Transcription inhibition was dose-dependent in the millimolar glyphosate range concentration. A 1257-bp fragment of the hatching enzyme transcript from Sphaerechinus granularis was cloned and sequenced; its transcription was delayed by 2 h in the pesticide-treated embryos. Because transcription is a fundamental basic biological process, the pesticide may be of health concern by inhalation near herbicide spraying at a concentration 25 times the adverse transcription concentration in the sprayed microdroplets

  13. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    Science.gov (United States)

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  14. Removal of glyphosate herbicide from water using biopolymer membranes.

    Science.gov (United States)

    Carneiro, Rafael T A; Taketa, Thiago B; Gomes Neto, Reginaldo J; Oliveira, Jhones L; Campos, Estefânia V R; de Moraes, Mariana A; da Silva, Camila M G; Beppu, Marisa M; Fraceto, Leonardo F

    2015-03-15

    Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to

  15. The soybean and mungbean improvement programs at AVRDC

    International Nuclear Information System (INIS)

    Shanmugasundaram, S.; Ahn, G.S.

    1983-01-01

    At the Asian Vegetable Research and Development Center (AVRDC) Soybean, Glycine max (L.) Merr. and mungbean, Vigna radiata (L.) Wilczek are included in the Legume Program for improvement. Germplasm collection in soybean and mungbean are 9,524 and 5,108 respectively. Developing improved selections with early, uniform maturity, high yield, wide adaptability and resistance to diseases and insects are the major breeding objectives for the tropics and subtropics. Genetic diversity and genetic resources are available in the germplasm for most of the desired traits both in soybean as well as mungbean. However, for traits such as soybean rust resistance in soybean and resistance to insects in mungbean are rare. Limited amount of radiation breeding is being employed in cooperation with Korean Atomic Energy Agency to obtain desirable genes in both species. A number of AVRDC identified accessions and breeding lines are being used by the national programs to develop improved cultivars. AVRDC developed breeding selections have been released as new cultivars in Costa Rica, Fiji, Korea, India, Indonesia, Malaysia and Taiwan. (author)

  16. Effects of additives on glyphosate activity in purple nutsedge

    International Nuclear Information System (INIS)

    Rungsit Suwanketnikom

    1998-01-01

    Effects of additives on 14 C-glyphosate penetration into purple nutsedge leaves were examined in the laboratory and efficacy of glyphosate for purple nutsedge control was studied in the greenhouse and field. The addition of (NH 4 ) 2 SO 4 at 1.0% (v/v) + diesel oil at 1,0% (v/v) + Tendal at 1.0% (v/v) increased 14 C-glyphosate penetration into nutsedge leaves more than the addition of either one alone. (NH 4 ) 2 SO 4 at 1.0% + diesel oil at 1.0% + Tendal at 0.12 or 0.25% increased the phytotoxicity of glyphosate at 0.5 and 0.75 kg, a.e./ha on nutsedge plants in the greenhouse but not in the field. Additives did not enhance glyphosate activity by reducing the number of nutsedae tubers. (author)

  17. Epidemiologic studies of glyphosate and cancer: a review.

    Science.gov (United States)

    Mink, Pamela J; Mandel, Jack S; Sceurman, Bonnielin K; Lundin, Jessica I

    2012-08-01

    The United States Environmental Protection Agency and other regulatory agencies around the world have registered glyphosate as a broad-spectrum herbicide for use on multiple food and non-food use crops. Glyphosate is widely considered by regulatory authorities and scientific bodies to have no carcinogenic potential, based primarily on results of carcinogenicity studies of rats and mice. To examine potential cancer risks in humans, we reviewed the epidemiologic literature to evaluate whether exposure to glyphosate is associated causally with cancer risk in humans. We also reviewed relevant methodological and biomonitoring studies of glyphosate. Seven cohort studies and fourteen case-control studies examined the association between glyphosate and one or more cancer outcomes. Our review found no consistent pattern of positive associations indicating a causal relationship between total cancer (in adults or children) or any site-specific cancer and exposure to glyphosate. Data from biomonitoring studies underscore the importance of exposure assessment in epidemiologic studies, and indicate that studies should incorporate not only duration and frequency of pesticide use, but also type of pesticide formulation. Because generic exposure assessments likely lead to exposure misclassification, it is recommended that exposure algorithms be validated with biomonitoring data. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Subtle impacts of repeated glyphosate use on wheat-associated bacteria are small and depend on glyphosate use history

    Science.gov (United States)

    Glyphosate (Roundup) is the most widely used herbicide in the world and a critical tool for weed control in no-till wheat cropping systems. However, there are persistent concerns about non-target impacts of long-term glyphosate use on soil communities. We investigated the impacts of repeated glyphos...

  20. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing.

    Science.gov (United States)

    Tian, Bin; Wang, Shichen; Todd, Timothy C; Johnson, Charles D; Tang, Guiliang; Trick, Harold N

    2017-08-02

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.

  1. Transgenic and conventional Brazilian soybeans don't cause or prevent preneoplastic colon lesions or oxidative stress in a 90-day in vivo study

    Directory of Open Access Journals (Sweden)

    Felipe Augusto Sbruzzi

    2013-08-01

    Full Text Available OBJECTIVE: The study presents the results of a 90-day safety assessment of rats fed with four varieties of soybeans, BRS 245 RR and BRS Valiosa RR (transgenic, BRS 133 and MG BR46 Conquista (non-transgenic. METHODS: Diets were prepared by incorporating toasted soybean flour to a commercial diet at 1%, 10% or 20% weight In the in vivo experimental the rats' body weight, body weight gain, food consumption, number of aberrant crypt foci, oxidative stress biomarkers, urea and creatinine levels were analyzed and compared between experimental groups, as well as histopathological observations (digestive tract, liver, kidneys. RESULTS: The results indicate that glyphosate-tolerant soy varieties neither induce nor prevent aberrant crypt foci induction, nor do their conventional counterparts. Similarly, none of the four soybean varieties tested induced changes in the digestive tract, liver or kidney. Serum biochemical parameters were also unchanged. CONCLUSION: The consumption of both, conventional and transgenic soybeans, were insufficient to ameliorate dimethylhydrazine-induced oxidative stress.

  2. Glyphosate accumulation, translocation, and biological effects in Coffea arabica after single and multiple exposures

    DEFF Research Database (Denmark)

    Schrübbers, Lars Christoph; Valverde, Bernal E.; Strobel, Bjarne W.

    2016-01-01

    In perennial crops like coffee, glyphosate drift exposure can occur multiple times during its commercial life span. Due to limited glyphosate degradation in higher plants, a potential accumulation of glyphosate could lead to increased biological effects with increased exposure frequency....... In this study, we investigated glyphosate translocation over time, and its concentration and biological effects after single and multiple simulated spray-drift exposures. Additionally, shikimic acid/glyphosate ratios were used as biomarkers for glyphosate binding to its target enzyme.Four weeks after...... the exposure, glyphosate was continuously translocated. Shikimic acid levels were lin-ear correlated with glyphosate levels. After two months, however, glyphosate appeared to have reduced activity. In the greenhouse, multiple applications resulted in higher internal glyphosate concentrations.The time...

  3. Natural glyphosate tolerance in sweetvetch Hedysarum boreale

    Science.gov (United States)

    Sweetvetch (Hedysarum boreale Nutt.) a legume native to the western USA and Canada, is purported to have tolerance to glyphosate {N-(phosphonomethyl) glycine} herbide. Eight rates of glyphosate were tested for their effect on biomass yield (BMY) and survival of seedlings and mature plants. Treatme...

  4. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC.

    Science.gov (United States)

    Tarazona, Jose V; Court-Marques, Daniele; Tiramani, Manuela; Reich, Hermine; Pfeil, Rudolf; Istace, Frederique; Crivellente, Federica

    2017-08-01

    Glyphosate is the most widely used herbicide worldwide. It is a broad spectrum herbicide and its agricultural uses increased considerably after the development of glyphosate-resistant genetically modified (GM) varieties. Since glyphosate was introduced in 1974, all regulatory assessments have established that glyphosate has low hazard potential to mammals, however, the International Agency for Research on Cancer (IARC) concluded in March 2015 that it is probably carcinogenic. The IARC conclusion was not confirmed by the EU assessment or the recent joint WHO/FAO evaluation, both using additional evidence. Glyphosate is not the first topic of disagreement between IARC and regulatory evaluations, but has received greater attention. This review presents the scientific basis of the glyphosate health assessment conducted within the European Union (EU) renewal process, and explains the differences in the carcinogenicity assessment with IARC. Use of different data sets, particularly on long-term toxicity/carcinogenicity in rodents, could partially explain the divergent views; but methodological differences in the evaluation of the available evidence have been identified. The EU assessment did not identify a carcinogenicity hazard, revised the toxicological profile proposing new toxicological reference values, and conducted a risk assessment for some representatives uses. Two complementary exposure assessments, human-biomonitoring and food-residues-monitoring, suggests that actual exposure levels are below these reference values and do not represent a public concern.

  5. A new soybean variety ''Ichihime''

    International Nuclear Information System (INIS)

    Hajika, M.; Takahashi, M.; Igita, K.; Sakai, S.; Nakazawa, Y.

    2002-01-01

    Ichihime, a new soybean variety registered as ''Soybean Norin 103'', was developed at Kyushu National Agricultural Experiment Station in 1995. It was selected from the progeny induced by a cross between Kankei 2 and Kankei 1 using gamma-ray irradiation. ''Ichihime'' is a medium-early maturing variety with determinate growth. It has broad leaflets, and purple flowers. The color of its pubescence is light tawny and its pods are dark brown. The main stem length, number of main stem nodes, and seed size are medium. It has strong resistance to the soybean mosaic virus (SMV), medium resistance to the soybean cyst nematode, and medium resistance to purple seed stain. The yield of Ichihime is slightly lower than Suzuyutaka, but classified as medium. The protein components of its seeds are medium and the firmness of the tofu (soybean curd) is the same as that of Suzuyutaka. Ichihime lacks all seed lipoxygenase isozymes and is recommended for new type of soybean food processing materials. Ichihime is suitable for growth in the southern part of the Tohoku area and the northern part of the Kanto area

  6. Determination of glyphosate by high performance liquid ...

    African Journals Online (AJOL)

    The aim of this study was to design a glyphosate analysis method. This molecule is an organic pollutant from water and soil. We have developed a chromatographic method with phenylisothiocyanate. This molecule has allowed obtaining an intermediate molecule with the glyphosate being easily detectable in ...

  7. 150 ACUTE TOXICITY OF GLYPHOSATE ON CLARIAS ...

    African Journals Online (AJOL)

    The effects of glyphosate on mortality rate and behavioural responses of Clarias gariepinus fingerlings were investigated under laboratory conditions for 96 hours exposure period. The lethal concentration (LC50) value of glyphosate on fingerlings of Clarias gariepinus was 0.0018 ml/l for 96 hours of exposure.

  8. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  9. Selection and characterization of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus)

    International Nuclear Information System (INIS)

    Boerboom, C.M.

    1989-01-01

    If birdsfoot trefoil (Lotus corniculatus L.) was tolerant to glyphosate [N-(phosphonomethyl)glycine], Canada thistle [Cirsium arvense (L.) Scop.] and other dicot weeds could be selectively controlled in certified seed production fields. Glyphosate tolerance in birdsfoot trefoil was identified in plants from the cultivar Leo, plants regenerated from tolerant callus, and selfed progeny of plants regenerated from callus. Plants from the three sources were evaluated in field studies for tolerance to glyphosate at rates up to 1.6 kg ae/ha. Plants of Leo selected for tolerance exhibited a twofold range in the rate required to reduce shoot weight 50% (I 50 s from 0.6 to 1.2 kg/ha glyphosate). Plants regenerated from tolerant callus had tolerance up to 66% greater than plants regenerated from unselected callus. Transgressive segregation for glyphosate tolerance was observed in the selfed progeny of two regenerated plants that both had I 50 s of 0.7 kg/ha glyphosate. The selfed progeny ranged from highly tolerant (I 50 of 1.5 kg/ha) to susceptible (I 50 of 0.5 kg/ha). Spray retention, 14 C-glyphosate absorption and translocation did not account for the differential tolerance of nine plants that were evaluated from the three sources. The specific activity of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase ranged from 1.3 to 3.5 nmol/min sm-bullet mg among the nine plants and was positively correlated with glyphosate tolerance. Leo birdsfoot trefoil was found to have significant variation in glyphosate tolerance which made it possible to initiate a recurrent selection program to select for glyphosate tolerance in birdsfoot trefoil. Two cycles of selection for glyphosate tolerance were practiced in three birdsfoot trefoil populations, Leo, Norcen, and MU-81

  10. Inheritance and genetic mapping of resistance to Asian soybean rust in cultivar TMG 803

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2014-11-01

    Full Text Available This study analyzed the inheritance and identified microsatellite markers linked to the resistance gene to Phakopsora pachyrhizi in soybean cultivar TMG 803. Hybridization between the cultivars TMG 803 and BRS Valiosa RR was performed to obtain F1 progenies and the F2 population. The response of the parents ‘TMG 803’ and ‘BRS Valiosa RR’ to P. pachyrhizi was, respectively, resistant and susceptible, and among the 116 F2 plants, 93 were resistant and 23 susceptible, under natural infection and field conditions. It was found that the resistance of cultivar TMG 803 is controlled by one gene with complete dominance, mapped as resistance locus Rpp4 of linkage group G. Of the 16 tested, one microsatellite marker, sc21_3420, was completely linked to the resistance gene (distance 0.0cM and the favorable allelic form was present in cultivar TMG 803, which may therefore be useful in assisted selection in segregating populations.

  11. Effect of glyphosate on wheat quality characteristics

    Science.gov (United States)

    Glyphosate is the most widely used herbicide in the world. It is a non-selective, broad spectrum, post-emergence herbicide, and therefore controls a wide range of different species. Although glyphosate is effective in weed control, side effects of this herbicide on the crop itself, micro and macro o...

  12. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    Science.gov (United States)

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-11-23

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P bioremediation of glyphosate-contaminated soils.

  13. Eficácia de imazethapyr e chlorimuron-ethyl em aplicações de pré-semeadura da cultura da soja Efficacy of imazethapyr and chlorimuron-ethyl in pre-sowing applications on soybean crop

    Directory of Open Access Journals (Sweden)

    S.O. Procópio

    2006-09-01

    chlorimuron-ethyl ao glyphosate não resultou em aumento de produtividade da soja.This work was carried out to evaluate the efficacy of the herbicides imazethapyr and chlorimuron-ethyl under pre-sowing conditions in soybean crop. Weed control before sowing and emergence reduction during the crop season were evaluated. The experiment was established in the field soybean had been cultivated, under no tillage, arranged in a randomized block design in a factorial design (4 x 4 + 1. Four herbicide treatments [glyphosate (1.62 kg ha-1; glyphosate (1.62 kg ha-1 + imazethapyr (100 g ha-1 ; glyphosate (1.62 kg ha-1 + chlorimuron-ethyl (10 g ha¹ ; glyphosate (1.62 kg ha-1 + chlorimuron-ethyl (20 g ha-1 ] were combined with four application intervals between herbicide application and sowing time (0, 1, 3 and 7 days. The variety MG/BR 46 (Conquista, with rows spaced 0.50 m was also used as control, with no herbicide application. The addition of the herbicides [imazethapyr (100 g ha-1 and chlorimuron-ethyl (10 ou 20 g ha-1] to glyphosate did not improve weed control nor decreased late re-growth of the following species: Digitaria insularis, Tridax procumbens and Leptochloa filiformis. Three days was the minimum interval in which the three species were not injured by the mechanical sowing process. The herbicide treatments did not affect the number of emerged plants of the following species: Sida santaremnensis, Digitaria insularis, Eleusine indica, Chamaesyce hirta, Bidens pilosa e Senna obtusifolia. Only Althernantela tenella had its emergence rate decreased by herbicide addition to glyphosate, showing pre-sowing efficiency. All the herbicide treatments during pre-sowing increased soybean yield, compared to the control. Herbicide addition to glyphosate did not result in increasing yield.

  14. Resposta de diferentes populações de Digitaria insularis ao herbicida glyphosate Response of different Digitaria insularis populations to glyphosate

    Directory of Open Access Journals (Sweden)

    N.M Correia

    2010-12-01

    Full Text Available Objetivou-se com estse trabalho avaliar o controle químico de diferentes populações de capim-amargoso (Digitaria insularis pelo herbicida glyphosate por meio de curva de dose-resposta, além de propor tratamentos alternativos para as populações mais tolerantes. O delineamento experimental foi o de blocos ao acaso, com quatro repetições, em esquema fatorial 5 x 9. As sementes de capim-amargoso foram coletadas em cinco locais: área de produção de grãos da Fazenda de Ensino, Pesquisa e Produção da UNESP, Jaboticabal (SP; área de produção comercial de grãos, localizada nos municípios de Campo Florido-MG e Rio Verde-GO; pomar de laranja, localizado no município de Matão (SP; e área não agrícola sem histórico da aplicação de glyphosate (Jaboticabal-SP. O glyphosate (0D, 1/4D, 1/2D, D, 2D, 4D e 8D, em que D é a dose recomendada de 1,5 kg ha-1 de equivalente ácido e as suas associações [glyphosate + fluazifop-p-butil (1,5 + 0,25 kg ha-1 e glyphosate (1,5 kg ha-1 com sequencial de diuron + paraquat (0,20 + 0,40 kg ha-1 + 0,2% de surfatante] foram pulverizados em plantas de sete a oito perfilhos e altura média de 20 cm. As populações de capim-amargoso de Campo Florido e Rio Verde foram consideradas suscetíveis; as de Jaboticabal e Matão, tolerantes; e a da área não agrícola, de sensibilidade intermediária. A associação de glyphosate ao fluazifop ou a sua aplicação com sequencial de diuron + paraquat foram eficazes no controle das populações mais tolerantes de capim-amargoso.The objective of this study was to evaluate the chemical control of different sourgrass (Digitaria insularis populations by the herbicide glyphosate through dose-response curves, besides considering alternative treatments to control tolerant populations. A randomized block design was used with four replications, in a factorial scheme (5 x 9. Sourgrass seeds were colleted from five locations: a grain production area located at the educational

  15. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    Science.gov (United States)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  16. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation

    Directory of Open Access Journals (Sweden)

    George Anifandis

    2018-05-01

    Full Text Available Glyphosate is the active ingredient of Roundup®, which is one of the most popular herbicides worldwide. Although many studies have focused on the reproductive toxicity of glyphosate or glyphosate-based herbicides, the majority of them have concluded that the effect of the specific herbicide is negligible, while only a few studies indicate the male reproductive toxicity of glyphosate alone. The aim of the present study was to investigate the effect of 0.36 mg/L glyphosate on sperm motility and sperm DNA fragmentation (SDF. Thirty healthy men volunteered to undergo semen analysis for the purpose of the study. Sperm motility was calculated according to WHO 2010 guidelines at collection time (zero time and 1 h post-treatment with glyphosate. Sperm DNA fragmentation was evaluated with Halosperm® G2 kit for both the control and glyphosate-treated sperm samples. Sperm progressive motility of glyphosate-treated samples was significantly reduced after 1 h post-treatment in comparison to the respective controls, in contrast to the SDF of glyphosate-treated samples, which was comparable to the respective controls. Conclusively, under these in vitro conditions, at high concentrations that greatly exceed environmental exposures, glyphosate exerts toxic effects on sperm progressive motility but not on sperm DNA integrity, meaning that the toxic effect is limited only to motility, at least in the first hour.

  17. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    OpenAIRE

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacte...

  18. Thermally stable, transparent, pressure-sensitive adhesives from epoxidized and dihydroxyl soybean oil.

    Science.gov (United States)

    Ahn, B Kollbe; Kraft, Stefan; Wang, D; Sun, X Susan

    2011-05-09

    Thermal stability and optical transparency are important factors for flexible electronics and heat-related applications of pressure-sensitive adhesives (PSAs). However, current acryl- and rubber-based PSAs cannot attain the required thermal stability, and silicon-based PSAs are much more expensive than the alternatives. Oleo-chemicals including functionalized plant oils have great potential to replace petrochemicals. In this study, novel biobased PSAs from soybean oils were developed with excellent thermal stability and transparency as well as peel strength comparable to current PSAs. In addition, the fast curing (drying) property of newly developed biobased PSAs is essential for industrial applications. The results show that soybean oil-based PSA films and tapes have great potential to replace petro-based PSAs for a broad range of applications including flexible electronics and medical devices because of their thermal stability, transparency, chemical resistance, and potential biodegradability from triglycerides.

  19. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents.

    Science.gov (United States)

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J Christopher; Ugarte, Ricardo; Antoniou, Michael N

    2017-10-01

    The safety, including the endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased the expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBluc cells, which was blocked by the estrogen antagonist ICI 182,780. Commercial GBH formulations or their adjuvants alone did not exhibit estrogenic effects in either assay. Transcriptomics analysis of MCF-7 cells treated with glyphosate revealed changes in gene expression reflective of hormone-induced cell proliferation but did not overlap with an ERα gene expression biomarker. Calculation of glyphosate binding energy to ERα predicts a weak and unstable interaction (-4.10 kcal mol -1 ) compared to estradiol (-25.79 kcal mol -1 ), which suggests that activation of this receptor by glyphosate is via a ligand-independent mechanism. Induction of ERE-luc expression by the PKA signalling activator IBMX shows that ERE-luc is responsive to ligand-independent activation, suggesting a possible mechanism of glyphosate-mediated activation. Our study reveals that glyphosate, but not other components present in GBHs, can activate ERα in vitro, albeit at relatively high concentrations. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Effective selection criteria for assessing the resistance of stink bugs complex in soybean

    Directory of Open Access Journals (Sweden)

    Fabiani da Rocha

    2014-10-01

    Full Text Available Soybean plants with resistance to the stink bug complex are currently selected by extremely labor-intensive methods, which limit the evaluation of a large number of genotypes. Thus, this paper proposed the use of an alternative trait underlying the selection of resistant genotypes under field conditions with natural infestation: the weight of healthy seeds (WHS. To this end, 24 genotypes were evaluated under two management systems: with systematic chemical control of insects (management I, and without control (management II. Different indices were calculated using grain weight (YP of management I and WHS of management II (YS . The high correlation between YS and the indices mean productivity, stress tolerance and geometric mean productivity, plus the agreement in determining the groups of genotypes with resistance and high yield indicate that WHS is a useful character in simultaneous selection for these traits.

  1. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean.

    Science.gov (United States)

    Dong, Lidong; Cheng, Yingxin; Wu, Junjiang; Cheng, Qun; Li, Wenbin; Fan, Sujie; Jiang, Liangyu; Xu, Zhaolong; Kong, Fanjiang; Zhang, Dayong; Xu, Pengfei; Zhang, Shuzhen

    2015-05-01

    Phytophthora root and stem rot of soybean [Glycine max (L.) Merr.], caused by Phytophthora sojae Kaufmann and Gerdemann, is a destructive disease throughout the soybean planting regions in the world. Here, we report insights into the function and underlying mechanisms of a novel ethylene response factor (ERF) in soybean, namely GmERF5, in host responses to P. sojae. GmERF5-overexpressing transgenic soybean exhibited significantly enhanced resistance to P. sojae and positively regulated the expression of the PR10, PR1-1, and PR10-1 genes. Sequence analysis suggested that GmERF5 contains an AP2/ERF domain of 58 aa and a conserved ERF-associated amphiphilic repression (EAR) motif in its C-terminal region. Following stress treatments, GmERF5 was significantly induced by P. sojae, ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). The activity of the GmERF5 promoter (GmERF5P) was upregulated in tobacco leaves with ET, ABA, Phytophthora nicotianae, salt, and drought treatments, suggesting that GmERF5 could be involved not only in the induced defence response but also in the ABA-mediated pathway of salt and drought tolerance. GmERF5 could bind to the GCC-box element and act as a repressor of gene transcription. It was targeted to the nucleus when transiently expressed in Arabidopsis protoplasts. GmERF5 interacted with a basic helix-loop-helix transcription factor (GmbHLH) and eukaryotic translation initiation factor (GmEIF) both in yeast cells and in planta. To the best of our knowledge, GmERF5 is the first soybean EAR motif-containing ERF transcription factor demonstrated to be involved in the response to pathogen infection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Phytotoxicity of glyphosate in the germination of and its effect on germinated seedlings

    Directory of Open Access Journals (Sweden)

    Subinoy Mondal

    2017-08-01

    Full Text Available The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v. But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings.

  3. EPA's evaluation of the carcinogenic potential of glyphosate

    Science.gov (United States)

    Recently, several international agencies have evaluated the carcinogenic potential of glyphosate. In March 2015, the International Agency for Research on Cancer (IARC), a subdivision of the World Health Organization (WHO), determined that glyphosate was a probable carcinogen (gro...

  4. [Mutual Effect on Determination of Gibberellins and Glyphosate in Groundwater by Spectrophotometry].

    Science.gov (United States)

    Zhang, Li; Chen, Liang; Liu, Fei

    2015-04-01

    In the present study, a spectrophotometry method for the simultaneous determination of gibberellins (GA3) and glyphosate in groundwater was established and optimized. In addition, the mutual effect on simultaneous determination of GA3 and glyphosate was studied. Based on the experiment, good linearity (R2 > 0.99) was obtained for GA3 in the range of 0-20 and 0-100 µg and for glyphosate in the range of 0-8 and 5-15 µg. The method's detection limit (MDL) of GA3 and glyphosate was 0.48 and 0.82 µg, respectively; and the recovery rates of 15 to 150 µg GA3 and 3 to 10 µg glyphosate in all samples at a spiked level were 71.3% ± 1.9% and 98.4% ± 8.1%, respectively. No obvious influence of glyphosate (0-100 mg · L(-1)) on the recovery rates of GA3 was observed, but the presence of glyphosate could cause slight determination precision decrease of GA3. Meanwhile, adding 2 mg · L(-1) GA3 can increase the recovery rate of glyphosate.

  5. Glyphosate and aminomethylphosphonic acid are not detectable in human milk.

    Science.gov (United States)

    McGuire, Michelle K; McGuire, Mark A; Price, William J; Shafii, Bahman; Carrothers, Janae M; Lackey, Kimberly A; Goldstein, Daniel A; Jensen, Pamela K; Vicini, John L

    2016-05-01

    Although animal studies have shown that exposure to glyphosate (a commonly used herbicide) does not result in glyphosate bioaccumulation in tissues, to our knowledge there are no published data on whether it is detectable in human milk and therefore consumed by breastfed infants. We sought to determine whether glyphosate and its metabolite aminomethylphosphonic acid (AMPA) could be detected in milk and urine produced by lactating women and, if so, to quantify typical consumption by breastfed infants. We collected milk (n = 41) and urine (n = 40) samples from healthy lactating women living in and around Moscow, Idaho and Pullman, Washington. Milk and urine samples were analyzed for glyphosate and AMPA with the use of highly sensitive liquid chromatography-tandem mass spectrometry methods validated for and optimized to each sample matrix. Our milk assay, which was sensitive down to 1 μg/L for both analytes, detected neither glyphosate nor AMPA in any milk sample. Mean ± SD glyphosate and AMPA concentrations in urine were 0.28 ± 0.38 and 0.30 ± 0.33 μg/L, respectively. Because of the complex nature of milk matrixes, these samples required more dilution before analysis than did urine, thus decreasing the sensitivity of the assay in milk compared with urine. No difference was found in urine glyphosate and AMPA concentrations between subjects consuming organic compared with conventionally grown foods or between women living on or near a farm/ranch and those living in an urban or suburban nonfarming area. Our data provide evidence that glyphosate and AMPA are not detectable in milk produced by women living in this region of the US Pacific Northwest. By extension, our results therefore suggest that dietary glyphosate exposure is not a health concern for breastfed infants. This study was registered at clinicaltrials.gov as NCT02670278. © 2016 American Society for Nutrition.

  6. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    Directory of Open Access Journals (Sweden)

    Lyndsay E. Saunders

    2013-12-01

    Full Text Available Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested.

  7. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  8. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  9. Circular RNA expression profiles in hippocampus from mice with perinatal glyphosate exposure.

    Science.gov (United States)

    Yu, Ning; Tong, Yun; Zhang, Danni; Zhao, Shanshan; Fan, Xinli; Wu, Lihui; Ji, Hua

    2018-05-19

    Glyphosate is the active ingredient in numerous herbicide formulations. The roles of glyphosate in embryo-toxicity and neurotoxicity have been reported in human and animal models. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. However, the role of glyphosate in neuronal development is still not fully understood. Our previous study found that perinatal glyphosate exposure resulted in differential microRNA expression in the prefrontal cortex of mouse offspring. However, the mechanism of glyphosate-induced neurotoxicity in the developing brain is still not fully understood. Considering the pivotal role of Circular RNAs (circRNAs) in the regulation of gene expression, a circRNA microarray method was used in this study to investigate circRNA expression changes in the hippocampus of mice with perinatal glyphosate exposure. The circRNA microarrays revealed that 663 circRNAs were significantly altered in the perinatal glyphosate exposure group compared with the control group. Among them, 330 were significantly upregulated, and the other 333 were downregulated. Furthermore, the relative expression levels of mmu-circRNA-014015, mmu-circRNA-28128 and mmu-circRNA-29837 were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that stress-associated steroid metabolism pathways, such as aldosterone synthesis and secretion pathways, may be involved in the neurotoxicity of glyphosate. These results showed that circRNAs are aberrantly expressed in the hippocampus of mice with perinatal glyphosate exposure and play potential roles in glyphosate-induced neurotoxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance

    Science.gov (United States)

    Samsel, Anthony

    2013-01-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of “ripening” sugar cane with glyphosate may explain the recent

  11. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance.

    Science.gov (United States)

    Samsel, Anthony; Seneff, Stephanie

    2013-12-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup(®), is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent

  12. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents

    OpenAIRE

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J. Christopher; Ugarte, Ricardo; Antoniou, Michael N.

    2017-01-01

    The safety, including endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBl...

  13. REVIEW - Advances on molecular studies of the interaction soybean - Asian rust

    Directory of Open Access Journals (Sweden)

    Aguida Maria Alves Pereira Morales

    2012-01-01

    Full Text Available Effective management practices are essential for controlling rust outbreaks. The main control methodused is the application of fungicides, which increases substantially the cost of production and is harmful to theenvironment. Prevention is still the best way to avoid more significant losses in soybean yields. Alternatives,such as planting resistant varieties to the fungus, are also important. The use of resistant or tolerant varietiesis the most promising method for controlling Asian soybean rust. Recently, five dominant genes resistant to soybean rust were described: Rpp1, Rpp2, Rpp3, Rpp4 and Rpp5. However, little is known about the molecular interaction among soybean plant and soybean rust and on the molecular pathway triggered by pathogen recognition. Understanding the molecular mechanisms involved in defense responses is of primary importance for planning strategies to control stress and, consequently, to increase plant adaptation to limiting conditions

  14. The different behaviors of glyphosate and AMPA in compost-amended soil.

    Science.gov (United States)

    Erban, Tomas; Stehlik, Martin; Sopko, Bruno; Markovic, Martin; Seifrtova, Marcela; Halesova, Tatana; Kovaricek, Pavel

    2018-05-04

    The broad-spectrum herbicide glyphosate is one of the most widely used pesticides. Both glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), persist in waters; thus, their environmental fates are of interest. We investigated the influence of compost dose, sampling depth, moisture and saturated hydraulic conductivity (K s ) on the persistence of these substances. The amounts of AMPA quantified by triple quadrupole liquid chromatography-mass spectrometry (LC-QqQ-MS/MS) using isotopically labeled extraction standards were higher than those of glyphosate and differed among the samples. Both glyphosate and AMPA showed gradually decreasing concentrations with soil depth, and bootstrapped ANOVA showed significant differences between the contents of glyphosate and AMPA and their behavior related to different compost dosages and sampling depths. However, the compost dose alone did not cause significant differences among samples. Bayesian statistics revealed that the amounts of glyphosate and AMPA were both dependent on the sampling depth and compost dose, but differences were found when considering the physical factors of K s and moisture. Glyphosate was influenced by moisture but not K s , whereas AMPA was influenced by K s but not moisture. Importantly, we found behavioral differences between glyphosate and its major metabolite, AMPA, related to the physical properties of K s and moisture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Resistência de biótipos de Euphorbia heterophylla l. Aos herbicidas inibidores da enzima ALS utilizados na cultura de soja Resistance of Euphorbia heterophylla l. Biotypes to ALS enzyme inhibitor herbicides used in soybean crop

    Directory of Open Access Journals (Sweden)

    GERSON AUGUSTO GELMINI

    2001-01-01

    Full Text Available Os herbicidas constituem-se na principal medida de controle de plantas daninhas na cultura de soja; no entanto, a pressão de seleção causada pelo uso contínuo de produtos com o mesmo mecanismo de ação pode provocar a seleção de biótipos resistentes, como ocorreu com Euphorbia heterophylla L., que se mostrou resistente aos herbicidas inibidores da enzima acetolactato sintase (ALS em áreas dos Estados do Paraná e Rio Grande do Sul. Para comprovar possíveis novos casos, bem como alternativas para prevenção e manejo, coletaram-se sementes de plantas de E. heterophylla L., na região de Assis (SP, que sobreviveram a tratamentos, em que esses herbicidas foram sistematicamente aplicados nos últimos anos. Desenvolveu-se o experimento em casa de vegetação, comparando-se o biótipo resistente ao suscetível, quando submetido aos diversos herbicidas aplicados em pós-emergência. Aplicaram-se quando as plantas encontravam-se no estádio de duas a quatro folhas verdadeiras, nas doses zero, uma, duas, quatro e oito vezes a recomendada. Aos 20 dias após a aplicação, avaliaram-se os parâmetros relativos ao controle e produção de fitomassa epígea visando ao estabelecimento de curvas de doses-resposta, à obtenção dos fatores de resistência com base nos valores da DL50 e GR50, e à verificação da ocorrência de resistência múltipla. O biótipo resistente apresentou diferentes níveis de resistência aos herbicidas chlorimuron-ethyl e imazethapyr, demonstrando resistência cruzada aos inibidores da ALS dos grupos das sulfoniluréias e imidazolinonas. No entanto, foi eficientemente controlado nos tratamentos com fomesafen (250 g.ha-1, lactofen (120 g.ha-1, flumiclorac-pentil (40 g.ha-1, glufosinato de amônio (150 g.ha-1 e glyphosate (360 g.ha-1.Herbicides are the main tool for weed control in soybean crop, but the selection pressure attributed to the repeated application of the same herbicides and the same mechanism of action can

  16. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    Science.gov (United States)

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Copyright © 2013 SETAC.

  17. Micromorfologia foliar na análise da fitotoxidez por glyphosate em Eucalyptus grandis Leaf micromorphology in the analysis of glyphosate toxicity in Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    L.D. Tuffi Santos

    2009-01-01

    Full Text Available Foram avaliados os efeitos da deriva de formulações comerciais de glyphosate sobre a superfície foliar e o crescimento de clones de eucalipto. Mudas de seis clones foram submetidas a 129,6 g ha-1 de glyphosate das formulações comerciais Scout®, Roundup NA®, Roundup transorb® e Zapp QI®. Entre os clones não foram identificadas diferenças quanto à tolerância ao glyphosate. Plantas expostas à deriva simulada de Roundup transorb® e Zapp QI® apresentaram, respectivamente, a maior e menor porcentagem de intoxicação. Observou-se menor massa seca em plantas expostas ao glyphosate, independentemente da formulação, e menor altura naquelas expostas ao Scout® e ao Roundup transorb®. As características quantitativas da superfície foliar não foram afetadas pelo glyphosate. As alterações micromorfológicas ocorreram na ausência de danos visíveis e foram observadas em ambas as faces da epiderme, em todos os clones avaliados. Danos como erosão e aspecto amorfo das ceras epicuticulares e infestação por hifas fúngicas ocorreram, independentemente da formulação utilizada. A avaliação anatômica da superfície foliar foi relevante para descrição e interpretação dos danos causados pelo glyphosate. Os dados de crescimento e de intoxicação indicam o Zapp QI® como a formulação de menor risco para a cultura do eucalipto quanto aos efeitos indesejáveis da deriva.The effects of commercial glyphosate drift on the leaf surface and growth of eucalypt clones were evaluated. Seedlings of six clones were submitted to 129.6 g ha-1 sub-rate of commercial glyphosate formulations Scout®, Roundup NA®, Roundup transorb® and Zapp QI®. No differences in tolerance to glyphosate were observed among the clones. Plants exposed to simulated drift of Roundup transorb® and Zapp QI® presented the highest and lowest intoxication percentages, respectively. Plants exposed to glyphosate reduced dry biomass, regardless of the formulation, and also

  18. Evaluation of North American isolates of Soybean mosaic virus for gain of virulence on Rsv-genotype soybeans with special emphasis on resistance-breaking determinants on Rsv4.

    Science.gov (United States)

    Khatabi, B; Fajolu, O L; Wen, R-H; Hajimorad, M R

    2012-12-01

    Resistance to Soybean mosaic virus (SMV) in soybean is conferred by three dominant genes: Rsv1, Rsv3 and Rsv4. Over the years, scientists in the USA have utilized a set of standard pathotypes, SMV-G1 to SMV-G7, to study interaction with Rsv-genotype soybeans. However, these pathotypes were isolated from a collection of imported soybean germplasm over 30 years ago. In this study, 35 SMV field isolates collected in recent years from 11 states were evaluated for gain of virulence on soybean genotypes containing individual Rsv genes. All isolates were avirulent on L78-379 (Rsv1), whereas 19 were virulent on L29 (Rsv3). On PI88788 (Rsv4), 14 of 15 isolates tested were virulent; however, only one was capable of systemically infecting all of the inoculated V94-5152 (Rsv4). Nevertheless, virulent variants from 11 other field isolates were rapidly selected on initial inoculation onto V94-5152 (Rsv4). The P3 cistrons of the original isolates and their variants on Rsv4-genotype soybeans were sequenced. Analysis showed that virulence on PI88788 (Rsv4) was not associated, in general, with selection of any new amino acid, whereas Q1033K and G1054R substitutions were consistently selected on V94-5152 (Rsv4). The role of Q1033K and G1054R substitutions, individually or in combination, in virulence on V94-5152 (Rsv4) was confirmed on reconstruction in the P3 cistron of avirulent SMV-N, followed by biolistic inoculation. Collectively, our data demonstrate that SMV has evolved virulence towards Rsv3 and Rsv4, but not Rsv1, in the USA. Furthermore, they confirm that SMV virulence determinants on V94-5152 (Rsv4) reside on P3. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  19. A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis.

    Science.gov (United States)

    Bonfanti, Patrizia; Saibene, M; Bacchetta, R; Mantecca, P; Colombo, A

    2018-02-01

    Glyphosate is the active ingredient in broad-spectrum herbicide formulations used in agriculture, domestic area and aquatic weed control worldwide. Its market is growing steadily concurrently with the cultivation of glyphosate-tolerant transgenic crops and emergence of weeds less sensitive to glyphosate. Ephemeral and lentic waters near to agricultural lands, representing favorite habitats for amphibian reproduction and early life-stage development, may thus be contaminated by glyphosate based herbicides (GBHs) residues. Previous studies on larval anuran species highlighted increased mortality and growth effects after exposure to different GBHs in comparison to glyphosate itself, mainly because of the surfactants such as polyethoxylated tallow amine present in the formulations. Nevertheless, these conclusions are not completely fulfilled when the early development, characterized by primary organogenesis events, is considered. In this study, we compare the embryotoxicity of Roundup ® Power 2.0, a new GBH formulation currently authorized in Italy, with that of technical grade glyphosate using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Our results evidenced that glyphosate was not embryolethal and only at the highest concentration (50 mg a.e./L) caused edemas. Conversely, Roundup ® Power 2.0 exhibited a 96 h LC50 of 24.78 mg a.e./L and a 96 h EC50 of 7.8 mg a.e./L. A Teratogenic Index of 3.4 was derived, pointing out the high teratogenic potential of the Roundup ® Power 2.0. Specific concentration-dependent abnormal phenotypes, such as craniofacial alterations, microphthalmia, narrow eyes and forebrain regionalization defects were evidenced by gross malformation screening and histopathological analysis. These phenotypes are coherent with those evidenced in Xenopus laevis embryos injected with glyphosate, allowing us to hypothesize that the teratogenicity observed for Roundup ® Power 2.0 may be related to the improved efficacy in delivering

  20. Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.).

    Science.gov (United States)

    Tong, Mengmeng; Gao, Wanjun; Jiao, Weiting; Zhou, Jie; Li, Yeyun; He, Lili; Hou, Ruyan

    2017-09-06

    The uptake, translocation, metabolism, and distribution behavior of glyphosate in nontarget tea plant were investigated. The negative effects appeared to grown tea saplings when the nutrient solution contained glyphosate above 200 mg L -1 . Glyphosate was highest in the roots of the tea plant, where it was also metabolized to aminomethyl phosphonic acid (AMPA). The glyphosate and AMPA in the roots were transported through the xylem or phloem to the stems and leaves. The amount of AMPA in the entire tea plant was less than 6.0% of the amount of glyphosate. The glyphosate level in fresh tea shoots was less than that in mature leaves at each day. These results indicated that free glyphosate in the soil can be continuously absorbed by, metabolized in, and transported from the roots of the tea tree into edible leaves, and therefore, free glyphosate residues in the soil should be controlled to produce teas free of glyphosate.

  1. Soybean breeding through cross breeding combined with irradiation mutation

    International Nuclear Information System (INIS)

    Zhang Xiutian; Zheng Yanhai; Yang Xiufeng; Zhang Kunpu; Jia Aijun

    2005-01-01

    Using 'Heidou 2' which immune to the race 2 of Soybean Cyst Nematode (SCN) crossbreeded with 'Huangsha soybean' which has high yield characteristic. The authors obtained some better cultivars of soybean. Then, the authors used laser irradiation to these cultivars and selected a variety with high yield, good quality, resistance to the race 2 of SCN, called 'Dedou 99-16' which in black seed coat. In the year 2001 to 2003, the authors joined the variety comparison and regional test of Shandong province. Its yield hit 2739.0 kg/hm 2 , crude protein and crude oil content had reached the governmental standard of good quality soybean, and it had high resistance to the race 2 of SCN. It is suitable for planting in Huanghuaihai area. (authors)

  2. The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Madan K

    2008-03-01

    Full Text Available Abstract Background A series of Rps (resistance to Pytophthora sojae genes have been protecting soybean from the root and stem rot disease caused by the Oomycete pathogen, Phytophthora sojae. Five Rps genes were mapped to the Rps1 locus located near the 28 cM map position on molecular linkage group N of the composite genetic soybean map. Among these five genes, Rps1-k was introgressed from the cultivar, Kingwa. Rps1-k has been providing stable and broad-spectrum Phytophthora resistance in the major soybean-producing regions of the United States. Rps1-k has been mapped and isolated. More than one functional Rps1-k gene was identified from the Rps1-k locus. The clustering feature at the Rps1-k locus might have facilitated the expansion of Rps1-k gene numbers and the generation of new recognition specificities. The Rps1-k region was sequenced to understand the possible evolutionary steps that shaped the generation of Phytophthora resistance genes in soybean. Results Here the analyses of sequences of three overlapping BAC clones containing the 184,111 bp Rps1-k region are reported. A shotgun sequencing strategy was applied in sequencing the BAC contig. Sequence analysis predicted a few full-length genes including two Rps1-k genes, Rps1-k-1 and Rps1-k-2. Previously reported Rps1-k-3 from this genomic region 1 was evolved through intramolecular recombination between Rps1-k-1 and Rps1-k-2 in Escherichia coli. The majority of the predicted genes are truncated and therefore most likely they are nonfunctional. A member of a highly abundant retroelement, SIRE1, was identified from the Rps1-k region. The Rps1-k region is primarily composed of repetitive sequences. Sixteen simple repeat and 63 tandem repeat sequences were identified from the locus. Conclusion These data indicate that the Rps1 locus is located in a gene-poor region. The abundance of repetitive sequences in the Rps1-k region suggested that the location of this locus is in or near a

  3. Facts and Fallacies in the Debate on Glyphosate Toxicity

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    2017-11-01

    Full Text Available The safety profile of the herbicide glyphosate and its commercial formulations is controversial. Reviews have been published by individuals who are consultants and employees of companies commercializing glyphosate-based herbicides in support of glyphosate’s reapproval by regulatory agencies. These authors conclude that glyphosate is safe at levels below regulatory permissible limits. In contrast, reviews conducted by academic scientists independent of industry report toxic effects below regulatory limits, as well as shortcomings of the current regulatory evaluation of risks associated with glyphosate exposures. Two authors in particular (Samsel and Seneff have published a series of commentaries proposing that long-term exposure to glyphosate is responsible for many chronic diseases (including cancers, diabetes, neuropathies, obesity, asthma, infections, osteoporosis, infertility, and birth defects. The aim of this review is to examine the evidential basis for these claimed negative health effects and the mechanisms that are alleged to be at their basis. We found that these authors inappropriately employ a deductive reasoning approach based on syllogism. We found that their conclusions are not supported by the available scientific evidence. Thus, the mechanisms and vast range of conditions proposed to result from glyphosate toxicity presented by Samsel and Seneff in their commentaries are at best unsubstantiated theories, speculations, or simply incorrect. This misrepresentation of glyphosate’s toxicity misleads the public, the scientific community, and regulators. Although evidence exists that glyphosate-based herbicides are toxic below regulatory set safety limits, the arguments of Samsel and Seneff largely serve to distract rather than to give a rational direction to much needed future research investigating the toxicity of these pesticides, especially at levels of ingestion that are typical for human populations.

  4. Facts and Fallacies in the Debate on Glyphosate Toxicity

    Science.gov (United States)

    Mesnage, Robin; Antoniou, Michael N.

    2017-01-01

    The safety profile of the herbicide glyphosate and its commercial formulations is controversial. Reviews have been published by individuals who are consultants and employees of companies commercializing glyphosate-based herbicides in support of glyphosate’s reapproval by regulatory agencies. These authors conclude that glyphosate is safe at levels below regulatory permissible limits. In contrast, reviews conducted by academic scientists independent of industry report toxic effects below regulatory limits, as well as shortcomings of the current regulatory evaluation of risks associated with glyphosate exposures. Two authors in particular (Samsel and Seneff) have published a series of commentaries proposing that long-term exposure to glyphosate is responsible for many chronic diseases (including cancers, diabetes, neuropathies, obesity, asthma, infections, osteoporosis, infertility, and birth defects). The aim of this review is to examine the evidential basis for these claimed negative health effects and the mechanisms that are alleged to be at their basis. We found that these authors inappropriately employ a deductive reasoning approach based on syllogism. We found that their conclusions are not supported by the available scientific evidence. Thus, the mechanisms and vast range of conditions proposed to result from glyphosate toxicity presented by Samsel and Seneff in their commentaries are at best unsubstantiated theories, speculations, or simply incorrect. This misrepresentation of glyphosate’s toxicity misleads the public, the scientific community, and regulators. Although evidence exists that glyphosate-based herbicides are toxic below regulatory set safety limits, the arguments of Samsel and Seneff largely serve to distract rather than to give a rational direction to much needed future research investigating the toxicity of these pesticides, especially at levels of ingestion that are typical for human populations. PMID:29226121

  5. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  6. Glyphosate and AMPA in U.S. streams, groundwater, precipitation and soils

    Science.gov (United States)

    Battaglin, William A.; Meyer, Michael T.; Kuivila, Kathryn; Dietze, Julie E.

    2014-01-01

    Herbicides containing glyphosate are used in more than 130 countries on more than 100 crops. In the United States (U.S.), agricultural use of glyphosate [N-(phosphonomethyl)glycine] has increased from less than 10,000 metric tons per year (active ingredient) in 1993 to more than 70,000 metric tons per year in 2006. In 2006, glyphosate accounted for about 20 percent of all herbicide use (by weight of active ingredient). Glyphosate formulations such as Roundup® are used in homes and in agriculture. Part of the reason for the popularity of glyphosate is the perception that it is an “environmentally benign” herbicide that has low toxicity and little mobility or persistence in the environment. The U.S. Geological Survey developed an analytical method using liquid chromatography/tandem mass spectrometry that can detect small amounts of glyphosate and its primary degradation product aminomethylphosphonic acid (AMPA) in water and sediment. Results from more than 2,000 samples collected from locations distributed across the U.S. indicate that glyphosate is more mobile and occurs more widely in the environment than was previously thought. Glyphosate and AMPA were detected (reporting limits between 0.1 and 0.02 micrograms per liter) in samples collected from surface water, groundwater, rainfall, soil water, and soil, at concentrations from less than 0.1 to more than 100 micrograms per liter. Glyphosate was detected more frequently in rain (86%), ditches and drains (71%), and soil (63%); and less frequently in groundwater (3%) and large rivers (18%). AMPA was detected more frequently in rain (86%), soil (82%), and large rivers (78%); and less frequently in groundwater (8%) and wetlands or vernal pools (37%). Most observed concentrations of glyphosate were well below levels of concern for humans or wildlife, and none exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 700 micrograms per liter. However, the ecosystem effects of chronic low

  7. Soybean growth and yield after single tillage and species mixture of cover plants

    Directory of Open Access Journals (Sweden)

    Gislaine Piccolo de Lima

    2012-10-01

    Full Text Available The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb. (BO and a cocktail (CO of BO, forage turnip (Raphanus sativus L. (FT and common vetch (Vicia sativa L. (V on the emergence speed index (ESI, seedling emergence speed (SES plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1 and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.

  8. [Study of the effect of occupational exposure to glyphosate on hepatorenal function].

    Science.gov (United States)

    Zhang, F; Pan, L P; Ding, E M; Ge, Q J; Zhang, Z H; Xu, J N; Zhang, L; Zhu, B L

    2017-07-06

    Objective: To explore the effect of occupational exposure to glyphosate on hepatorenal function. Methods: 526 workers who were occupationally exposed to glyphosate from 5 glyphosate-producing factories were selected as cases; and another 442 administrative staffs who were not exposed to glyphosate were selected as controls from April to November, 2014. All the subjects accepted occupational health examination. The concentration level of glyphosate in the air of workshop was detected and the time weighted average concentration (TWA) was calculated. And analyze the difference of hepatorenal fuction between case group and control group. Result: The age of the subjects in the case and control groups were separately (35.6±10.3), (34.3±9.7) years old, with the length of working for (6.5±5.7), (7.7±6.8) years. The TWA of glyphosate in the case group was between Glyphosate can affect the hepatic and renal function among occupational exposure population, and there was an association between the effect and the exposure dose.

  9. Effect of glyphosate on the microbial activity of two Romanian soils.

    Science.gov (United States)

    Sumalan, R M; Alexa, E; Negrea, M; Sumalan, R L; Doncean, A; Pop, G

    2010-01-01

    Glyphosate applied to soils potentially affect microbial activity. A series of field and laboratory experiments assessed the effect of this herbicide on soil microorganisms. The aim of experiments was to evaluate the effect of glyphosate application on the soil microbial community structure, function and their activity. We studied "in vitro", changes in the microbial activity of typical Chernozem and Gleysol soils, with and without applied glyphosate. The herbicide was applied at a rate of 2, respectively 4 mg kg(-1) of soil and microbial activity were measured by fluorescein diacetate (FDA) hydrolysis. We found an increase of 9 to 13% in FDA hydrolyses in the presence of glyphosate in rate of 2 mg kg (-1) compared with the same type of soil which had never received herbicide. The double quantity of glyphosate decrease soil microbial activity; the amount of hydrolyzed fluorescein is lower than the addition of 2 ppm. The greater decrease was observed in the Gleysol type where the fluorescein hydrolyzed is with 4, 85% lower than version control without glyphosate. Chemical characters of soil, influence soil biological activity when herbicide is added. In Chemozem case, rich in humus, whose predominant micro flora is represented by actinomycetes through glyphosate treatment these organisms growths of as major producers of antibiotics actinomycetes determine an inhibitory effect on eubacteria and micromycetes growth, which is highlighted by estimating a relatively small number of them. After 10 days, once with decreasing of glyphosate content in soil, decreases the number of active actinomycetes, therefore we are witnessing to a numerical growth of bacterial population. In Gleysol type the indigenous micro flora is represented by eubacteria, so when the glyphosate is added it was registered a high growth of these organisms fraction.

  10. Selection and evaluation of soybean lines derived from gamma irradiation for rust resistance

    International Nuclear Information System (INIS)

    Smutkupt, S.; Wongpiyasatid, A.; Lamseejan, S.

    1983-01-01

    In 1979, seeds of 11 soybean cultivars were gamma irradiated with 15 and 30 krad. Treated and control seeds of each cultivar were planted in the rainy season. In the rainy season of 1980, M 3 populations were screened for rust resistance in Nong Hoi Valley and Mae Joe Experiment Station, both in Chiang Main province. The IWGSR rust rating system was used. Based upon the slow growth of rust on soybean plants, 6 and 115 plants were selected from 2,802 control plants and from 28,824 treated plants, respectively. Selected lines were evaluated in Nong Hoi Valley in the rainy season of 1981. Sixteen selections with average good seed yield per plant and low percentage of shrivelled seeds were obtained. Among them, two lines, namely G8586/Line number 81-1-072 and S.J. 4/Line number 81-1-037 gave the higher average seed yield per plant than other lines. They are at present in a preliminary yield trial in Chiang Mai. Chiang Mai. (author)

  11. DIFFERENTIAL RESPONSE OF CLONES OF EUCALYPT TO GLYPHOSATE1

    Directory of Open Access Journals (Sweden)

    Leonardo Bianco de Carvalho

    2015-02-01

    Full Text Available Weed control is commonly performed by the inter-row mechanical weeding associated to intrarow glyphosate directed spraying, causing a risk for drift or accidental herbicide application, that can affect the crop of interest. The objective was to evaluate the response of clones C219, GG100, I144, and I224 of eucalypt (Eucalyptus grandis x E. urophylla to glyphosate doses of 0, 18, 36, 72, 180, 360, and 720 g of acid equivalent per hectare. The clones showed different growth patterns with regard to height, leaf number, stem dry weight, relative growth rate, net assimilation rate, and relative leaf growth rate. The clones I144 and GG100 were more susceptible to glyphosate, showing the doses required to reduce dry weight by 50% of 113.4 and 119.6 g acid equivalent per hectare, respectively. The clones C219 and I224 were less susceptible to glyphosate, showing the doses required to reduce dry weight by 50% of 237.5 and 313.5 g acid equivalent per hectare, respectively. Eucalyptus clones respond differently to glyphosate exposure, so that among I224, C219, GG100, and I144, the susceptibility to the herbicide is increasing.

  12. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study.

    Science.gov (United States)

    De Roos, Anneclaire J; Blair, Aaron; Rusiecki, Jennifer A; Hoppin, Jane A; Svec, Megan; Dosemeci, Mustafa; Sandler, Dale P; Alavanja, Michael C

    2005-01-01

    Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993-1997). Among private and commercial applicators, 75.5% reported having ever used glyphosate, of which > 97% were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; b) cumulative lifetime days of use, or "cumulative exposure days" (years of use times days/year); and c) intensity-weighted cumulative exposure days (years of use times days/year times estimated intensity level). Poisson regression was used to estimate exposure-response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers.

  13. Influence of foliar fertilization with manganese on germination, vigor and storage time of RR soybean seeds

    Directory of Open Access Journals (Sweden)

    Vanessa Leonardo Ignácio

    2015-10-01

    Full Text Available ABSTRACTThis study aimed to evaluate the influence of foliar fertilizer doses containing Mn of phenological stages of suggested application in RR soybeans, to recover management damages with glyphosate at postemergence application on seed vigor in post-harvest and post six months storage. The seeds originated from a field experiment conducted , which included two applications of glyphosate, concomitant with foliar fertilizer in growth stages V4 and V6, with 0.00, 113.50 and 227.00 mg ha-1doses of Mn2+. Germination, GSI (Germination Speed Index, electrical conductivity tests and the first count of seeds were conducted. The application of Mn did not affect the physiological quality of RR soy in postharvest. However, in post-storage, higher doses of Mn had a negative effect on tests of abnormal seedlings, GSI and electrical conductivity. The applications of Mn, regardless of the developmental stage, did not interfere in the germination and first count tests, with and without storage. The electrical conductivity test showed a higher correlation with the seed germination test in the post-harvest treatment.

  14. Breeding and application of high-oil soybean varieties through radiation

    International Nuclear Information System (INIS)

    Guo Tai; Liu Zhongtang; Hu Xiping; Wang Zhixin; Wu Xiuhong; Zheng Wei; Chen Dexiang

    2005-01-01

    This paper reported the results of breeding and utilizing of high-oil soybean varieties, and at the same time, discussed the key technique of selecting high-oil soybean variety. This research based on crossbreeding, through genetic improvement and radiation treatment, continuous directive selection, combined with quality analysis and disease-resistant identification, and we had created four high-oil soybean varieties (lines), they were Hefeng46 (Hefu93154-4), Hefeng47(Hefu 93154-2), Hefeng48 (Hefu 93155-6), Hefu 93148-4. Their oil content ranges from 21.28% to 23.18%, and the yield is 2208-2578.5 kg/hm 2 , compared with the check, the yield is 10.1%-13.1% higher. All those varieties resisted one or two main soybean diseases. (authors)

  15. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhou

    Full Text Available Soybean cyst nematode (SCN is the most damaging soybean pest worldwide. To improve soybean resistance to SCN, we employed a soybean seed-coating strategy through combination of three rhizobacterial strains, including Bacillus simple, B. megaterium and Sinarhizobium fredii at various ratios. We found seed coating by such rhizobacterial strains at a ratio of 3:1:1 (thereafter called SN101 produced the highest germination rate and the mortality of J2 of nematodes. Then, the role of soybean seed coating by SN101 in nematode control was evaluated under both greenhouse and two field conditions in Northeast China in 2013 and 2014. Our results showed that SN101 treatment greatly reduced SCN reproduction and significantly promoted plant growth and yield production in both greenhouse and field trials, suggesting that SN101 is a promising seed-coating agent that may be used as an alternative bio-nematicide for controlling SCN in soybean fields. Our findings also demonstrate that combination of multiple rhizobacterial strains needs to be considered in the seed coating for better management of plant nematodes.

  16. Structural studies on the development of soybean rust (Phakopsora pachyrhizi Syd.) in susceptible soybean leaves

    International Nuclear Information System (INIS)

    Koch, E.; Ebrahim-Nesbat, F.; Hoppe, H.H.

    1983-01-01

    Where soybeans are cultivated in the tropics, soybean rust may cause heavy crop losses. Resistance found so far was only of local and temporary value. More substantial breeding efforts are needed, but these may require a better understanding of the pathogen's biology and evolutionary capacity, the infection process and the host-pathogen relationships. The report deals with the infection process and the development of the fungus in a susceptible host variety. (author)

  17. Characteristics of superior soybean breeding lines tolerance to rust (Phakopsora pachyrhizi Syd.

    Directory of Open Access Journals (Sweden)

    Alfi Inayati

    2016-04-01

    Full Text Available Soybean rust caused by Phakopsora pachyrhizi is one of the most important diseases which limits soybean production. The aim of this study was to evaluate the resistance of 28 superior soybean lines and their tolerance to rust. The study was conducted at a screen house and arranged in a completely randomized design (CRD; three replications. All genotypes tested were artificially inoculated with P. pachyrhizi, and a set of un-inoculated genotypes was planted as a comparison. Number of pustules was recorded weekly, and resistant criteria was rated based on the International working group on soybean rust IWGSR method. Lesion color (LC, sporulation level (SL, number of uredia (NoU, frequency of pustule which had uredia, and yield were also recorded. Among 28 genotypes tested, only one was categorized as resistant and 2 genotypes were susceptible. Resistant genotypes had few pustules, lower AUDPC values, low disease severity, and Reddish Brown lesion type. Soybean rust affected yield components, i.e. number of intact pods and yield per plant. Yield loses due to rust in this study varied from 5-89%, and the average was 51%. The set of lines from Tanggamus pedigree showed more resistant to rust but less tolerant compared to Sinabung pedigree.How to CiteInayati, A., & Yusnawan, E. (2016. Characteristics of superior soybean breeding lines tolerancet to rust (Phakopsora pachyrhizi Syd.. Biosaintifika: Journal of Biology & Biology Education, 8(1, 47-55.

  18. Sensibilidade de estirpes de Bradyrhizobium ao glyphosate

    Directory of Open Access Journals (Sweden)

    Rodrigo Josemar Seminoti Jacques

    2010-02-01

    Full Text Available A aplicação do glyphosate sobre a soja resistente a este herbicida pode causar prejuízos à simbiose com o rizóbio. O objetivo deste trabalho foi avaliar a sensibilidade ao herbicida glyphosate de três estirpes de Bradyrhizobium recomendadas para a produção de inoculantes de sementes de soja no Brasil. Avaliou-se o efeito das concentrações de 0,0; 5,4; 10,8; 21,6 e 43,2 µg L-1 do ingrediente ativo do glyphosate [N-(fosfonometil glicina] no meio YM líquido sobre o crescimento de B. japonicum (estirpe SEMIA 5079 e de B. elkanii (estirpe SEMIA 5019 e estirpe SEMIA 587, por meio de leituras das densidades óticas e geração de curvas de crescimento. As reduções de crescimento na presença da menor concentração do glyphosate foram de 18% para SEMIA 5079, 29% para SEMIA 5019 e de 35% para SEMIA 587, sendo, de modo geral, quanto maior a concentração do herbicida no meio de cultura maior a inibição do crescimen­to. As estirpes apresentaram sensibilidade diferencial somente às concentrações mais baixas do glyphosate; nesse caso, foi possível determinar a seguinte ordem de sensibilidade: SEMIA 587 > SEMIA 5019 > SEMIA 5079. Essa sensibilidade diferencial é dependente da concentração do herbicida, pois na presença de 43,2 µg L-1 todas as estirpes tiveram seu crescimento severamente reduzido, não havendo diferença entre elas.

  19. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  20. Response of soybean genotypes against armyworm, Spodoptera litura based on no-choice test

    Science.gov (United States)

    Bayu, M. S. Y. I.; Krisnawati, A.; Adie, M. M.

    2018-01-01

    Armyworm is important polyphagous pest causing economic losses in many agricultural crops including soybean. In Indonesia, there are no soybean varieties which indicated had a resistance against armyworm. The experiment was conducted in Laboratory of Entomology and Green House of Indonesian Legumes and Tuber Crops Research Institute from March to April 2016. The experiment was arranged using randomized block design with a total of 18 soybean genotypes as a treatment in three replicates. The results showed that the difference of soybean genotypes had a significant effect on the leaf damaged intensity. Based on no-choice test and the leaves damaged intensity compared with resistant check genotypes, there was no genotype indicated resistant against S. litura. Most of the tested genotype showed moderately resistant and others showed susceptible to highly susceptible. Genotypes that indicated as moderately resistant are G 511 H/Anjs-1-1, G 511 H/Arg//Arg///Arg-30-7, G 511 H/Kaba//Kaba///-4-4, G 511 H/Kaba//Kaba///Kaba////Kaba-16-2, G 511 H/Anjs/Anjs///Anjs-3-3, G 511 H/Anjs/Anjs-1-2, G 511 H/Anjs/Anjs-5-5, G 511 H/Anjs/Anjs///Anjs-6-11, and Argomulyo. In conclusion, those nine genotypes indicated have antixenosis resistance against armyworm and can be considered as a source of gene for improving the soybean resistance to armyworm.

  1. Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae

    OpenAIRE

    Liu, C.-M.; McLean, P. A.; Sookdeo, C. C.; Cannon, F. C.

    1991-01-01

    Several strains of the family Rhizobiaceae were tested for their ability to degrade the phosphonate herbicide glyphosate (isopropylamine salt of N-phosphonomethylglycine). All organisms tested (seven Rhizobium meliloti strains, Rhizobium leguminosarum, Rhizobium galega, Rhizobium trifolii, Agrobacterium rhizogenes, and Agrobacterium tumefaciens) were able to grow on glyphosate as the sole source of phosphorus in the presence of the aromatic amino acids, although growth on glyphosate was not a...

  2. Glyphosate Use and Cancer Incidence in the Agricultural Health Study.

    Science.gov (United States)

    Andreotti, Gabriella; Koutros, Stella; Hofmann, Jonathan N; Sandler, Dale P; Lubin, Jay H; Lynch, Charles F; Lerro, Catherine C; De Roos, Anneclaire J; Parks, Christine G; Alavanja, Michael C; Silverman, Debra T; Beane Freeman, Laura E

    2018-05-01

    Glyphosate is the most commonly used herbicide worldwide, with both residential and agricultural uses. In 2015, the International Agency for Research on Cancer classified glyphosate as "probably carcinogenic to humans," noting strong mechanistic evidence and positive associations for non-Hodgkin lymphoma (NHL) in some epidemiologic studies. A previous evaluation in the Agricultural Health Study (AHS) with follow-up through 2001 found no statistically significant associations with glyphosate use and cancer at any site. The AHS is a prospective cohort of licensed pesticide applicators from North Carolina and Iowa. Here, we updated the previous evaluation of glyphosate with cancer incidence from registry linkages through 2012 (North Carolina)/2013 (Iowa). Lifetime days and intensity-weighted lifetime days of glyphosate use were based on self-reported information from enrollment (1993-1997) and follow-up questionnaires (1999-2005). We estimated incidence rate ratios (RRs) and 95% confidence intervals (CIs) using Poisson regression, controlling for potential confounders, including use of other pesticides. All statistical tests were two-sided. Among 54 251 applicators, 44 932 (82.8%) used glyphosate, including 5779 incident cancer cases (79.3% of all cases). In unlagged analyses, glyphosate was not statistically significantly associated with cancer at any site. However, among applicators in the highest exposure quartile, there was an increased risk of acute myeloid leukemia (AML) compared with never users (RR = 2.44, 95% CI = 0.94 to 6.32, Ptrend = .11), though this association was not statistically significant. Results for AML were similar with a five-year (RRQuartile 4 = 2.32, 95% CI = 0.98 to 5.51, Ptrend = .07) and 20-year exposure lag (RRTertile 3 = 2.04, 95% CI = 1.05 to 3.97, Ptrend = .04). In this large, prospective cohort study, no association was apparent between glyphosate and any solid tumors or lymphoid malignancies overall, including NHL and

  3. Induced mutation for soybean quality

    International Nuclear Information System (INIS)

    Wang Peiying; Xu Dechun; Guo Yuhong; Meng Lifen; Zhao Xiaonan

    2000-01-01

    Gamma rays of acute and chronic radiation, thermal neutrons as well as ethyl methane sulphonate (EMS), sodium azide (NaN 3 ) of chemical mutagens were used to improve the quality of soybean seed. Some mutants of better quality were selected. 'Heinong No.41' With protein and oil content of 45.23% and 18.80% respectively was tolerant to akali-saline and had a higher yield potential; 90-3527 with earlier mature (110 days of growth period) and high protein content (47.53%) had a resistance to soybean mosaic virus (SMV) and frog-eye lief spot of soybean. The mutants with higher linoleic acid content (more than 60%) and lower linolenic acid content (less than 3.5%) were developed

  4. Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Ilana Schneider Lima

    2014-09-01

    Full Text Available This study evaluated the impact of different concentrations of glyphosate (Rondup® on planktonic and biofilm growth of P. aeruginosa. Aerobic and anaerobic cultures of P. aeruginosa ATCC®15442 inoculated in MHB + glyphosate (0.845 ppm, 1.690 ppm, 8.45 ppm, 16.90 ppm, 84.50 ppm, 169 ppm, 845 ppm, and 1690 ppm and cultured in normoxia and anoxia, following their OD560nm every hour for 24 h. Biofilms of adapted cells were formed in the presence of glyphosate (0.845 to 1690 ppm in normoxia and anoxia for 36 h. Glyphosate at concentrations higher than 84.5 ppm reduces the cell density of planktonic aerobic cultures (p 0.05, and more pronounced over 169 ppm. Anaerobic biofilms have their growth more readily favored (p < 0.05, regardless of concentration. In a concentration-dependent manner, glyphosate interferes with the growth ability of P. aeruginosa ATCC®15442.

  5. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome

    International Nuclear Information System (INIS)

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.; Franceschi, V.R.

    1987-01-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with 3 H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and then either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted

  6. High permeation rates in liposome systems explain rapid glyphosate biodegradation associated with strong isotope fractionation.

    Science.gov (United States)

    Ehrl, Benno; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-05-23

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, pH-dependent membrane permeation coefficients (Papp) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from Papp(pH 7.0) = 3.7 (+/-0.3) × 10-7 m∙s-1 to Papp(pH 4.1) = 4.2 (+/-0.1) × 10-6 m∙s-1. This surprisingly rapid membrane permeation depended on glyphosate speciation and was, at physiological pH, in the range of polar, non-charged molecules suggesting that passive membrane permeation is a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, two orders of magnitudes higher than glyphosate degradation rates. Moreover, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect of AKIEcarbon= 1.014 ± 0.003. This value is consistent with unmasked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was little mass transfer-limited and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  7. Resistance and sheet resistance measurements using electron beam induced current

    International Nuclear Information System (INIS)

    Czerwinski, A.; Pluska, M.; Ratajczak, J.; Szerling, A.; KaPtcki, J.

    2006-01-01

    A method for measurement of spatially uniform or nonuniform resistance in layers and strips, based on electron beam induced current (EBIC) technique, is described. High electron beam currents are used so that the overall resistance of the measurement circuit affects the EBIC signal. During the evaluation, the electron beam is scanned along the measured object, whose load resistance varies with the distance. The variation is compensated by an adjustable resistance within an external circuit. The method has been experimentally deployed for sheet resistance determination of buried regions of lateral confinements in semiconductor laser heterostructures manufactured by molecular beam epitaxy

  8. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake, Iran

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-01-01

    Full Text Available Background: Glyphosate (N-phosphonomethyl Glycine is an organophosphorus pesticide with dangerous effects on the environment. In this study, the biodegradation of glyphosate herbicide by halophilic bacteria isolated from Qom Hoze-Soltan Lake has been investigated. Methods: After sampling and bacterial isolation, native halophilic strains grown in the presence of glyphosate at a wavelength of 660 nm and also the disappearance of the glyphosate in the plates at a wavelength of 220 nm were determined and the dominant bacteria were isolated. Biochemical, molecular (according to the 16S rRNA sequence, antibiotic, and the Minimum Inhibitory Concentration (MIC test was performed for the dominant bacteria. Analysis of the remaining glyphosate herbicide was performed by HPLC analysis after derivation with FMOC-Cl. Results: According to the results of the biochemical, antibiotic and molecular 16S rRNA tests, the native halophilic isolates with the ability to biodegrade glyphosate were gram positive cocci very similar to Salinicoccusspp. The results of HPLC showed that Salinicoccusspp is able to biodegrade glyphosate herbicide. Conclusion: The native bacteria in Qom Hoze-soltanlake, Iran can be used for biodegradation of glyphosate herbicide.

  9. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    Science.gov (United States)

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    Science.gov (United States)

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  11. Consequences of phosphate application on glyphosate uptake by roots: Impacts for environmental management practices.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Maccario, Sophie; Lucotte, Marc; Labrecque, Michel; Juneau, Philippe

    2015-12-15

    Phosphate (PO4(3-)) fertilization is a common practice in agricultural fields also targets for glyphosate application. Due to their chemical similarities, PO4(3-) and glyphosate compete for soil adsorbing sites, with PO4(3-) fertilization increasing glyphosate bioavailability in the soil solution. After PO4(3-) fertilization, its concentration will be elevated in the soil solution and both PO4(3-) and glyphosate will be readily available for runoff into aquatic ecosystems. In this context, man-made riparian buffer strips (RBS) at the interface of agricultural lands and waterways can be used as a green technology to mitigate water contamination. The plants used in RBS form a barrier to agricultural wastes that can limit runoff, and the ability of these plants to take up these compounds through their roots plays an important role in RBS efficacy. However, the implications of PO4(3-) for glyphosate uptake by roots are not yet clearly demonstrated. Here, we addressed this problem by hydroponically cultivating willow plants in nutrient solutions amended with glyphosate and different concentrations of PO4(3-), assuring full availability of both chemicals to the roots. Using a phosphate carrier inhibitor (phosphonophormic acid-PFA), we found that part of the glyphosate uptake is mediated by PO4(3-) transporters. We observed, however, that PO4(3-) increased glyphosate uptake by roots, an effect that was related to increased root cell membrane stability. Our results indicate that PO4(3-) has an important role in glyphosate physiological effects. Under agricultural conditions, PO4(3-) fertilization can amplify glyphosate efficiency by increasing its uptake by the roots of undesired plants. On the other hand, since simultaneous phosphate and glyphosate runoffs are common, non-target species found near agricultural fields can be affected. Copyright © 2015. Published by Elsevier B.V.

  12. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea.

    Science.gov (United States)

    Schneider, Rhiannon; Rolling, William; Song, Qijian; Cregan, Perry; Dorrance, Anne E; McHale, Leah K

    2016-08-11

    Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on P. sojae populations. Thus, partial resistance provides a more durable resistance against the pathogen. In previous work, plant introductions (PIs) originating from the Republic of Korea (S. Korea) have shown to be excellent sources for high levels of partial resistance against P. sojae. Resistance to two highly virulent P. sojae isolates was assessed in 1395 PIs from S. Korea via a greenhouse layer test. Lines exhibiting possible Rps gene immunity or rot due to other pathogens were removed and the remaining 800 lines were used to identify regions of quantitative resistance using genome-wide association mapping. Sixteen SNP markers on chromosomes 3, 13 and 19 were significantly associated with partial resistance to P. sojae and were grouped into seven quantitative trait loci (QTL) by linkage disequilibrium blocks. Two QTL on chromosome 3 and three QTL on chromosome 19 represent possible novel loci for partial resistance to P. sojae. While candidate genes at QTL varied in their predicted functions, the coincidence of QTLs 3-2 and 13-1 on chromosomes 3 and 13, respectively, with Rps genes and resistance gene analogs provided support for the hypothesized mechanism of partial resistance involving weak R-genes. QTL contributing to partial resistance towards P. sojae in soybean germplasm originating from S. Korea were identified. The QTL identified in this study coincide with previously reported QTL, Rps genes, as well as novel loci for partial resistance. Molecular markers associated with these QTL can be used in the marker-assisted introgression of these alleles into elite cultivars. Annotations of genes within QTL allow hypotheses on the possible mechanisms of partial

  13. Is the growth stimulation by low doses of glyphosate sustained over time?

    International Nuclear Information System (INIS)

    Cedergreen, Nina

    2008-01-01

    The herbicide, glyphosate, has been shown to stimulate growth in a range of species when applied at doses of 5-60 g a.e. ha -1 , corresponding to realistic spray drift events. This study investigates growth of shoot parameters over time to detect whether the glyphosate induced growth increase was sustained and had a final effect on reproduction. The results showed that an actual biomass growth rate increase took place within the first week after spraying with glyphosate doses -1 . This initial growth boost kept treated plants larger than untreated plants for up to six weeks, but at harvest there was no significant difference between control plants and treated plants. Possible effects of glyphosate hormesis on the competitive ability of spray drift affected plants are discussed. - Glyphosate induced hormesis in barley is not sustained over time

  14. Is the growth stimulation by low doses of glyphosate sustained over time?

    Energy Technology Data Exchange (ETDEWEB)

    Cedergreen, Nina [Department of Agricultural Sciences, Faculty of Life Science, University of Copenhagen, Hojbakkegard Alle 13, 2630 Tastrup (Denmark)], E-mail: ncf@life.ku.dk

    2008-12-15

    The herbicide, glyphosate, has been shown to stimulate growth in a range of species when applied at doses of 5-60 g a.e. ha{sup -1}, corresponding to realistic spray drift events. This study investigates growth of shoot parameters over time to detect whether the glyphosate induced growth increase was sustained and had a final effect on reproduction. The results showed that an actual biomass growth rate increase took place within the first week after spraying with glyphosate doses <60 g a.e. ha{sup -1}. This initial growth boost kept treated plants larger than untreated plants for up to six weeks, but at harvest there was no significant difference between control plants and treated plants. Possible effects of glyphosate hormesis on the competitive ability of spray drift affected plants are discussed. - Glyphosate induced hormesis in barley is not sustained over time.

  15. Water use efficiency by coffee arabica after glyphosate application

    Directory of Open Access Journals (Sweden)

    Felipe Paolinelli de Carvalho

    2014-07-01

    Full Text Available Many coffee growers apply glyphosate in directed applications, but some phytotoxicity has been noted. It is believed some herbicides can exert a direct or indirect negative effect on photosynthesis by reducing the metabolic rate in a way that can affect the water use efficiency. The objective of this study was to investigate the variables related to water use among coffee cultivars subjected to the application of glyphosate and the effects of each dose. The experiment was conducted in a greenhouse using three varieties of coffee (Coffea arabica, Acaiá (MG-6851, Catucaí Amarelo (2SL and Topázio (MG-1190, and three doses of glyphosate (0.0, 115.2 and 460.8 g acid equivalent ha-1, in a factorial 3 x 3 design. At 15 days after application, a reduction in stomatal conductance was observed, and smaller transpiration rate and water use efficiency were found in the fourth leaf at 15 days after application. There was a decrease in the transpiration rate at 45 DAA, with the Acaiá cultivar showing reductions with 115.2 g ha-1. There was transitory reduction in water use efficiency with glyphosate application, but can affect the growth and production. The Acaiá cultivar showed the highest tolerance to glyphosate because the water use efficiency after herbicide application.

  16. Adsorption-desorption, mobility and degradation of 14C-Glyphosate in two soil series

    International Nuclear Information System (INIS)

    Ismail, B. S.; Zaifah Abdul Kadir; Khairiah Jusoh; Nashriyah Mat

    2002-01-01

    The adsorption desorption and degradation of glyphosate (Roundup) have been studied using 14 C glyphosate in two soils, namely Serdang Series and Sungai Buloh Series. The percentage of adsorption was not significantly different (p 14 C- glyphosate was detected in 0-10 cm zone of the two soils studied. However, in Sungai Buloh Series, a significant amount of 14 C-glyphosate was detected in the 10-20 cm zone. A small amount of 14 C radioactivity was also detected in the leachate of the two soils. The percentage of degradation in the Sungai Buloh and Serdang Series soils was higher at 10 μg/ml and 50 μg/ml, concentration, respectively. At 50 μg/ml concentration the Sungai Buloh Series soil showed higher glyphosate residue (83%) as compared to Serdang Series (48%). In contrast, the glyphosate residue was found to be higher in the Serdang Series (73916) as compared to the Sungai Buloh Series (30%) at 10 μg/ml concentration. (Author)

  17. Research on the weed control degree and glyphosate soil biodegradation in apple plantations (Pioneer variety

    Directory of Open Access Journals (Sweden)

    Ersilia ALEXA

    2010-05-01

    Full Text Available In this study we follow control degree of glyphosate herbicide on weeds in apple plantations (Pioneer variety of the Research Station Timisoara. It was also followed glyphosate biodegradation capacity in the soil by determining the amount of CO2 released by the action of microorganisms on C14 glyphosate marked isotope. Laboratory analysis of glyphosate residues in soil was made using a Liquid Scintillation TRIATHLER. Glyphosate biodegradation ability in the presence of soil microorganisms is high, so glyphosate residues remaining in soil, in terms of its use in weed combating, are minimal. Study of glyphosate biodegradation capacity in the experimental field indicates that the CO2 fraction accumulated after 50 days is 28.02% for samples exposed in the experimental field. Weather conditions, especially temperature variations between day and night, influences the activity of soilmicroorganisms and affect biodegraded glyphosate percentage.Chemical method of weed control consisted in: herbicide used was Roundup 3 l/ha (glyphosate isopropyl amine salt 360 g/l and are based on chemical application on weeds, on the rows of trees, on their uptake and translocation in their organs having as principal scope the total destruction of weeds. The experimental results obtained reveal a weed combat degree of 82.98% , in the case of chemical variant, compared with control variant. The species combated mainly due to glyphosate herbicide, which is no longer found in the final mapping are: Capsella bursa-pastoris, Chenopodium album, Echinochloa crus-galli, Plantago major, Polygonum aviculare. Total combated weeds /m2 with glyphosate is 126.67.

  18. Glyphosate Shapes a Dinoflagellate-Associated Bacterial Community While Supporting Algal Growth as Sole Phosphorus Source

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2017-12-01

    Full Text Available Glyphosate is a widely used herbicide that can potentially be a phosphorus (P source for phytoplankton and microbes when discharged into the coastal ocean. In contrast to bacteria, few eukaryotic phytoplankton species appear capable of directly utilizing glyphosate. In this study, we observed, after a long delay (>60 days, Prorocentrum donghaiense, a dinoflagellate known to cause major harmful algal blooms in the East China Sea, could grow in a medium with glyphosate as the sole P source; suggesting that P. donghaiense growth was through bacterial mediation. To understand how the bacteria community might respond to glyphosate, we analyzed the 16S rRNA genes of the microbial community present in P. donghaiense cultures when grown under lower (36 μM and higher (360 μM glyphosate concentrations. Based on both Sanger and Illumina high throughput sequencing, we obtained more than 55,323 good-quality sequences, which were classified into six phyla. As the concentration of glyphosate rose, our results showed a significant increase in the phyla Proteobacteria and Firmicutes and a decrease in the phylum Bacteroidetes. Further qPCR (Quantitative PCR analysis showed higher abundances of two specific phylotypes in the higher-glyphosate P. donghaiense cultures when compared to the lower-glyphosate and no-glyphosate cultures. Correspondingly, qPCR displayed the same trend for the abundance of a gammaproteobacterial type of phnJ, a gene encoding Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase, which is responsible for phosphonate degradation. In addition, Tax4Fun analysis based on our 16S rRNA gene sequences results in higher predicted abundances of phosphonate metabolizing genes in glyphosate-treated cultures. This study demonstrates that glyphosate could selectively promote the growth of particular groups of bacteria within an algal culture and in glyphosate enriched coastal waters, this interaction may potentially further facilitate the growth of

  19. Sistemas de manejo de plantas daninhas no desenvolvimento e na produtividade da soja Burndown systems on growth and grain yield in soybeans in Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Jamil Constantin

    2009-01-01

    Full Text Available A escolha do momento adequado para a dessecação da cobertura vegetal antecedente à semeadura é fundamental para o êxito da cultura da soja cultivada no sistema de plantio direto. Neste contexto, o objetivo do trabalho foi o de avaliar dois sistemas de manejo de plantas daninhas: imediatamente antes da semeadura (sistema "Aplique-Plante" - AP e o manejo antecipado (MA, composto por duas aplicações. No MA, a primeira aplicação de glyphosate (1240 g ha-1 foi entre 30 e 35 dias antes da semeadura da cultura, e a segunda às vésperas da semeadura. Para o AP, as aplicações com 1.080 a 1.260 g ha-1 de glyphosate foram realizadas 48 horas antes da semeadura. Os trabalhos foram desenvolvidos na safra 2003/2004, em seis localidades no Estado do Paraná: Sertãozinho, Campo Mourão, Iretama, Pitanga, Boa Esperança e Mamborê, em áreas com grande densidade de infestação de plantas daninhas antes da semeadura direta da soja. Foram realizadas avaliações referentes ao controle das plantas daninhas e desenvolvimento e produtividade da cultura. Com a utilização do MA foi proporcionado maior controle das plantas daninhas após a emergência da cultura. As plantas de soja nas áreas AP estavam com menor altura, em comparação às no MA, evidenciando-se atraso no crescimento. Verificou-se redução de produtividade em todas as localidades onde se adotou o manejo AP, com reduções entre 15% e 50%.The choice of the adequate moment for the desiccation of the green cover that precedes the sowing is fundamental for the success of no-till soybeans. This context, the work was aimed to study two burndown systems: desiccation immediately before sowing (AP and anticipated desiccation (MA, composed by two burndown herbicide applications. For MA, the first application of glyphosate (1240 g ha-1 occurred between 30 and 35 days before the sowing of the crop, and the second was done just before sowing. For AP, the applications (1080 to 1260 g ha-1 of

  20. Correlation of leaf damage with uptake and translocation of glyphosate in velvetleaf (Abutilon theophrasti)

    International Nuclear Information System (INIS)

    Feng, P.C.C.; Ryerse, J.S.; Sammons, R.D.

    1998-01-01

    Uptake and translocation of glyphosate in three commercial formulations were examined in velvetleaf, a dicotyledonous weed that is commonly treated with glyphosate. The formulations included Roundup(R) (MON35085), Roundup Ultra, and Touchdown(R) as sold in Canada. A minimal amount of 14C-glyphosate was spiked into a lethal rate of each formulation, and the short-term (3 to 72 h) uptake into the treated leaf and subsequent translocation into the plant were measured. Time-course studies showed very rapid uptake and translocation of glyphosate in the Ultra formulation. In comparison, the uptake and translocation of glyphosate in Touchdown was much slower but continued throughout the 72-h period. Glyphosate in the Roundup formulation showed intermediate uptake and translocation. Tissue necrosis at the application sites of Ultra and Roundup was visible within 24 h after treatment. Examinations using stereo and fluorescence microscopy revealed extensive cell death and tissue disruption. Tissue necrosis from Ultra and Roundup was also observed in blank formulations containing no glyphosate and therefore was likely caused by the surfactants. In contrast, the application sites of Touchdown produced little to no leaf damage. Our results demonstrated a direct correlation between tissue necrosis and rapid rates of glyphosate uptake and translocation. (author)

  1. Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Ludmilla Aristilde

    2017-06-01

    Full Text Available Previous studies have reported adverse effects of glyphosate on crop-beneficial soil bacterial species, including several soil Pseudomonas species. Of particular interest is the elucidation of the metabolic consequences of glyphosate toxicity in these species. Here we investigated the growth and metabolic responses of soil Pseudomonas species grown on succinate, a common root exudate, and glyphosate at different concentrations. We conducted our experiments with one agricultural soil isolate, P. fluorescens RA12, and three model species, P. putida KT2440, P. putida S12, and P. protegens Pf-5. Our results demonstrated both species- and strain-dependent growth responses to glyphosate. Following exposure to a range of glyphosate concentrations (up to 5 mM, the growth rate of both P. protegens Pf-5 and P. fluorescens RA12 remained unchanged whereas the two P. putida strains exhibited from 0 to 100% growth inhibition. We employed a 13C-assisted metabolomics approach using liquid chromatography-mass spectrometry to monitor disruptions in metabolic homeostasis and fluxes. Profiling of the whole-cell metabolome captured deviations in metabolite levels involved in the tricarboxylic acid cycle, ribonucleotide biosynthesis, and protein biosynthesis. Altered metabolite levels specifically in the biosynthetic pathway of aromatic amino acids (AAs, the target of toxicity for glyphosate in plants, implied the same toxicity target in the soil bacterium. Kinetic flux experiments with 13C-labeled succinate revealed that biosynthetic fluxes of the aromatic AAs were not inhibited in P. fluorescens Pf-5 in the presence of low and high glyphosate doses but these fluxes were inhibited by up to 60% in P. putida KT2440, even at sub-lethal glyphosate exposure. Notably, the greatest inhibition was found for the aromatic AA tryptophan, an important precursor to secondary metabolites. When the growth medium was supplemented with aromatic AAs, P. putida S12 exposed to a lethal

  2. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  3. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  4. Nematode pests threatening soybean production in South Africa, with reference to Meloidogyne

    Directory of Open Access Journals (Sweden)

    Hendrika Fourie

    2015-09-01

    Full Text Available The area planted to soybean in South Africa has increased by 54% since the 2009 growing season, mainly as a result of the increasing demand for protein-rich food and fodder sources. Moreover, the introduction of advanced technology, namely the availability of genetically modified herbicide tolerant soybean cultivars also contributed towards increased soybean production. The omnipresence of plant-parasitic nematodes in local agricultural soils, however, poses a threat to the sustainable expansion and production of soybean and other rotation crops. Meloidogyne incognita and M. javanica are the predominant nematode pests in local soybean production areas and those where other grain-, legume- and/or vegetable crops are grown. The lack of registered nematicides for soybean locally, crop production systems that are conducive to nematode pest build-ups as well as the limited availability of genetic host plant resistance to root-knot nematode pests, complicate their management. Research aimed at various aspects related to soybean-nematode research, namely, audits of nematode assemblages associated with the crop, identification of genetic host plant resistance in soybean germplasm to M. incognita and M. javanica, the use of molecular markers that are linked to such genetic resistance traits as well as agronomic performance of pre-released cultivars that can be valuable to producers and the industry are accentuated in this review. Evaluation of synthetically-derived as well as biological-control agents are also discussed as complementary management tactics. It is important that lessons learned through extensive research on soybean-nematode interactions in South Africa be shared with researchers and industries in other countries as they might experience or expect similar problems and/or challenges.

  5. Characterization of bacterial functional groups and microbial activity in microcosms with glyphosate application

    Science.gov (United States)

    Moyano, Sofia; Bonetto, Mariana; Baigorria, Tomas; Pegoraro, Vanesa; Ortiz, Jimena; Faggioli, Valeria; Conde, Belen; Cazorla, Cristian; Boccolini, Monica

    2017-04-01

    Glyphosate is a worldwide used herbicide as c. 90% of transgenic crops are tolerant to it. Microbial degradation of glyphosate molecule in soil is considered the most important process that determines its persistence in the environment. However, the impact of this herbicide on target groups of soil biota remains poorly understood. Our objective was to characterize the abundance of bacterial groups and global microbial activity, under controlled conditions with application of increasing doses of glyphosate. A bioassay was carried out in microcosms using an agricultural soil (Typic Argiudoll) with registered history of glyphosate application from National Institute of Agricultural Technology (INTA, EEA Marcos Juarez, Argentina). Glyphosate of commercial formulation (74.7%) was used and the following treatments were evaluated: Soil without glyphosate (control), and Soil with doses equivalent to 1.12 and 11.2 kg ai ha-1. Microbiological parameters were estimated at 3, 7, 14 and 21 days after herbicide application by counting heterotrophic, cellulolytic, nitrogen fixing (N), and nitrifying bacteria; and fluorescein diacetate hydrolysis (FDA), microbial respiration (MR) and microbial biomass (C-BM). The N cycle related bacteria showed greater sensitivity to glyphosate with significant increases in abundance. On the other hand the C cycle parameters were strongly conditioned by the time elapsed since the application of the herbicide, as did the MR. The FDA declined with the highest dose, while the C-BM was not affected. Therefore, we conclude that in the studied experimental conditions glyphosate stimulated bacterial growth (i.e. target abundances) representing a source of N, C and nutrients. On the other hand, enzymatic activity (FDA) decreased when glyphosate was applied in the highest dose, whereas, it had no effect on the MR nor C-BM, which could be attributable to the organic matter content of the soil. However, future research in field conditions is necessary, for

  6. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  7. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.

    Science.gov (United States)

    Sandhu, Devinder; Tasma, I Made; Frasch, Ryan; Bhattacharyya, Madan K

    2009-08-05

    Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1

  8. Glyphosate Accumulation and Detrimental Effects on Coffea Arabica

    DEFF Research Database (Denmark)

    Schrübbers, Lars Christoph

    and the MS/MS system provided a limit of quantification (LOQ) below 0.1 mg/kg; the commonly used maximum residue limit (MRL) for glyphosate in plant derived food products. Glyphosate was found in all samples analyzed from different coffee fields, regardless of management practices. AMPA was not detected......Coffee is one of the most popular beverages worldwide and a highly traded commodity. In order to maintain a high yield of the perennial crop, weed competition for resources needs to be reduced. For this purpose herbicides are commonly applied, with glyphosate being one of the most prominent...

  9. Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley

    DEFF Research Database (Denmark)

    Imparato, Valentina; Santos, Susana; Johansen, Anders

    2016-01-01

    and protist communities to foliar application of glyphosate, we measured bacterial and protist abundance, diversity and physiological status, as well as soil organic carbon. Foliar application of glyphosate doubled bacterial abundance of the culturable fraction present in the rhizosphere compared to the other...... treatments with no effect on total abundance. Also the abundance of culturable protists increased as an effect of glyphosate and the bacterial genetic diversity as revealed by 16S rDNA DGGE analysis was affected. Overall, the results indicate that when barley leaves are treated with glyphosate......, the availability of organic carbon in the rhizosphere of the dying roots is altered, which in turn may alter the bacterial and protist communities and their interactions. This can have implications for general soil carbon turnover processes and CO2 release in arable systems....

  10. Legumes and forage species sole or intercropped with corn in soybean-corn succession in midwestern Brazil

    Directory of Open Access Journals (Sweden)

    Gessí Ceccon

    2013-02-01

    Full Text Available The feasibility of no-tillage in the Cerrado (Savanna-like vegetation of Brazil depends on the production of sufficient above-ground crop residue, which can be increased by corn-forage intercropping. This study evaluated how above-ground crop residue production and yields of soybean and late-season corn in a soybean-corn rotation were influenced by the following crops in the year before soybean: corn (Zea mays L. intercropped with Brachiaria (Urochloa brizantha cv. Marandu, B. decumbens cv. Basilisk, B. ruziziensis, cv. comum., Panicummaximum cv. Tanzânia, sunn hemp (Crotalaria juncea L., pigeon pea [Cajanus cajan (L. Millsp]; sole corn, forage sorghum [Sorghum bicolor (L. Moench (cv. Santa Elisa], and ruzi grass. In March 2005, corn and forage species were planted in alternate rows spaced 0.90 m apart, and sole forage species were planted in rows spaced 0.45 m apart. In October 2005, the forages were killed with glyphosate and soybean was planted. After the soybean harvest in March 2006, sole late-season corn was planted in the entire experimental area. Corn grain and stover yields were unaffected by intercropping. Above-ground crop residue was greater when corn was intercropped with Tanzania grass (10.7 Mg ha-1, Marandu (10.1 Mg ha-1, and Ruzi Grass (9.8 Mg ha-1 than when corn was not intercropped (4.0 Mg ha-1. The intercropped treatments increased the percentage of soil surface covered with crop residue. Soybean and corn grain yields were higher after sole ruzi grass and intercropped ruzi grass than after other crops. The intercropping corn with Brachiaria spp. and corn with Panicum spp. increases above-ground crop residue production and maintains nutrients in the soil without reducing late-season corn yield and the viability of no-till in the midwestern region of Brazil.

  11. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus.

    Science.gov (United States)

    Kittle, Ronald P; McDermid, Karla J; Muehlstein, Lisa; Balazs, George H

    2018-02-01

    In Hawaii, glyphosate-based herbicides frequently sprayed near shorelines may be affecting non-target marine species. Glyphosate inhibits aromatic amino acid biosynthesis (shikimate pathway), and is toxic to beneficial gut bacteria in cattle and chickens. Effects of glyphosate on gut bacteria in marine herbivorous turtles were assessed in vitro. When cultures of mixed bacterial communities from gastrointestinal tracts of freshly euthanized green turtles (Chelonia mydas), were exposed for 24h to six glyphosate concentrations (plus deionized water control), bacterial density was significantly lower at glyphosate concentrations≥2.2×10 -4 gL -1 (absorbance measured at 600nm wavelength). Using a modified Kirby-Bauer disk diffusion assay, the growth of four bacterial isolates (Pantoea, Proteus, Shigella, and Staphylococcus) was significantly inhibited by glyphosate concentrations≥1.76×10 -3 gL -1 . Reduced growth or lower survival of gut bacteria in green turtles exposed to glyphosate could have adverse effects on turtle digestion and overall health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Cassigneul, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Benoit, P.; Bergheaud, V.; Dumeny, V.; Etiévant, V. [INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Goubard, Y. [AgroParisTech, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Maylin, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); Justes, E. [INRA, UMR 1248 AGIR Auzeville — BP 52 627, 31 326, Castanet-Tolosan cedex (France); Alletto, L. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France)

    2016-03-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of {sup 14}C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. {sup 14}C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH{sub 4}OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends {sup 14}C-glyphosate degradation half-life from 7 to 28 days depending on the CC. {sup 14}C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. - Highlights: • Glyphosate sorption on cover crop residues increases with their decomposition degree. • Glyphosate degradation and mineralization are lower in mulch than in soil. • Nonextractable residue formation is one of the main dissipation pathways of glyphosate in cover crop mulch.

  13. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study

    International Nuclear Information System (INIS)

    Cassigneul, A.; Benoit, P.; Bergheaud, V.; Dumeny, V.; Etiévant, V.; Goubard, Y.; Maylin, A.; Justes, E.; Alletto, L.

    2016-01-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of "1"4C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. "1"4C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH_4OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends "1"4C-glyphosate degradation half-life from 7 to 28 days depending on the CC. "1"4C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. - Highlights: • Glyphosate sorption on cover crop residues increases with their decomposition degree. • Glyphosate degradation and mineralization are lower in mulch than in soil. • Nonextractable residue formation is one of the main dissipation pathways of glyphosate in cover crop mulch.

  14. Effects of mixtures of dicamba and glyphosate on nontarget plants

    Science.gov (United States)

    New technologies are being developed using mixtures of herbicides to manage a broader variety of weeds in multiple herbicide resistant crops such as soybean and cotton. As part of its regulation of pesticides, the US Environmental Protection Agency considers environmental risks,...

  15. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    Science.gov (United States)

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  16. Resposta de varjão (Parkia multijuga a subdoses de glyphosate Response of varjão (Parkia multijuga seedlings to reduced glyphosate rates

    Directory of Open Access Journals (Sweden)

    O.M. Yamashita

    2006-09-01

    Full Text Available O consumo de madeira no Brasil e no mundo apresenta demanda crescente. Em confronto com a pressão ambientalista de manutenção das florestas nativas, há necessidade de se estabelecerem áreas de reflorestamento para suprir o aumento da demanda de madeira, com a utilização de formas de manejo e tratos culturais que permitam o pleno crescimento das essências florestais. Um dos principais problemas do manejo de reflorestamento é a interferência das plantas daninhas após o plantio das mudas no campo, sendo o uso de herbicidas a principal forma de manejo. Este trabalho teve o objetivo de avaliar a eficiência de doses crescentes de glyphosate em mudas de varjão em condições de ambiente protegido. Foram avaliadas as doses de 0, 90, 180, 360 e 720 g ha-1 de glyphosate em plantas com quatro meses de idade, observando a intoxicação das plantas, altura, diâmetro do caule e número de folhas. O varjão, nas condições do experimento, apresentou tolerância e recuperação ao glyphosate até a dose de 360 g ha-1. Doses superiores a esta retardaram o crescimento da planta. O prejuízo causado pela deriva de glyphosate nessas plantas foi diretamente proporcional ao aumento da dose. Os sintomas evoluíram para queda de folhas, comprometendo o crescimento das plantas.Wood consumption has significantly increased in Brazil and worldwide.The environmental pressure to preserve native forest led to the need to establish reforestation areas to meet the increasing wood demand by applying cultural practices and management allowing a total growth of forest trees. One of the main problems in reforestation management is weed competition after seedling planting, with herbicide use being the main form of management. The objective of this work was to evaluate the phytotoxic effect of increasing rates of glyphosate on Varjão seedlings, under greenhouse conditions. Concentrations of 90, 180, 360 and 720 g ha-1 of glyphosate were evaluated in four

  17. Clastogenic Effects of Glyphosate in Bone Marrow Cells of Swiss Albino Mice

    International Nuclear Information System (INIS)

    Prasad, S.; Srivastava, S.; Singh, M.; Shukla, Y.

    2009-01-01

    Glyphosate (N-(phosphonomethyl) glycine, C 3 H 8 NO 5 P), a herbicide, used to control unwanted annual and perennial plants all over the world. Nevertheless, occupational and environmental exposure to pesticides can pose a threat to nontarget species including human beings. Therefore, in the present study, genotoxic effects of the herbicide glyphosate were analyzed by measuring chromosomal aberrations (CAs) and micronuclei (MN) in bone marrow cells of Swiss albino mice. A single dose of glyphosate was given intraperitoneally (i.p) to the animals at a concentration of 25 and 50 mg/kg b.wt. Animals of positive control group were injected i.p. benzo(a)pyrene (100 mg/kg b.wt., once only), whereas, animals of control (vehicle) group were injected i.p. dimethyl sulfoxide (0.2 mL). Animals from all the groups were sacrificed at sampling times of 24, 48, and 72 hours and their bone marrow was analyzed for cytogenetic and chromosomal damage. Glyphosate treatment significantly increases CAs and MN induction at both treatments and time compared with the vehicle control (P<.05). The cytotoxic effects of glyphosate were also evident, as observed by significant decrease in mitotic index (MI). The present results indicate that glyphosate is clastogenic and cytotoxic to mouse bone marrow.

  18. Glyphosate Utilization as the Source of Carbon: Isolation and Identification of new Bacteria

    Directory of Open Access Journals (Sweden)

    M. Mohsen Nourouzi

    2011-01-01

    Full Text Available Mixed bacteria from oil palm plantation soil (OPS were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA (99.5%. It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strains i.e. Stenotrophomonas maltophilia and Providencia alcalifaciens were obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.

  19. Physiological responses to glyphosate are dependent on Eucalyptus urograndis genotype

    Science.gov (United States)

    Two experiments were conducted to evaluate the response of Eucalyptus urograndis genotypes (C219 and GG100) to glyphosate in growth chambers. As glyphosate dose increased (18 up to 720 g ae ha-1), CO2 assimilation rate, transpiration rate, and stomatal conductance decreased fastest and strongest in ...

  20. DISPERSION OF GLYPHOSATE IN SOILS UNDERGOING EROSION

    Directory of Open Access Journals (Sweden)

    Gorana Todorovic Rampazzo

    2010-08-01

    Full Text Available Different physical, chemical and biological processes influence the behaviour of organic contaminants in soils. A better understanding of the organic pollutant behaviour in soils would improve the environmental protection. One possible way for better attenuation of the risk of pollution in agriculture can be achieved through ta better-specified pesticide management based on the adaptation of the pesticide type and application rates to the specific environmental characteristics of the area of application. Nowadays, one of the actually most applied herbicide world wide is glyphosate. Glyphosate is highly water soluble and traces have been found in surface and groundwater systems. For a better understanding of the natural influence of erosion processes on glyphosate behaviour and dispersion under heavy rain conditions after application in the field, two erosion simulation experiments were conducted on two different locations in Austria with completely different soil types in September 2008. The results of the experiments showed that under normal practical conditions (e.g. no rainfall is expected immediatly after application, the potential adsorption capacity of the Kirchberg soil (Stagnic Cambisol, with about 16.000 ppm Fe-oxides is confirmed compared to the low adsorption Chernosem soil (about 8.000 ppm pedogenic Fe-oxides.  Considering the enormous difference in the run-off amounts between the two sites Pixendorf and Kirchberg soils it can be concluded how important the soil structural conditions and vegetation type and cover are for the risks of erosion and, as a consequence, pollution of neighbouring waters. In the rainfall experiments under comparable simulation conditions, the amount of run-off was about 10 times higher at Kirchberg, owing to its better infiltration rate, than at the Pixendorf site. Moreover, the total loss of glyphosate (NT+CT through run-off at the Kirchberg site was more than double that at Pixendorf, which confirms the

  1. Effects of interactions between Collembola and soil microbial community on the degradation of glyphosate-based herbicide

    Science.gov (United States)

    Wee, J.; Lee, Y. S.; Son, J.; Kim, Y.; Nam, T. H.; Cho, K.

    2017-12-01

    Glyphosate is the most widely used herbicide because of its broad spectrum activity and effectiveness, however, little is known about adverse effects on non-target species and their interactions. Therefore, in this study, we investigated the effects of glyphosate on interactions between Collembola and soil microbial community and the effect of Collembola on degradation of glyphosate. The experiment carried out in PS container filled with 30g of soil according to OECD 232 guidelines. Investigating the effects of soil microbial community and Collembola on degradation of glyphosate, we prepared defaunated field soil (only maintaining soil microbial community, sampling in May and September, 2016.) and autoclaved soil with 0, 10, 30 adults of Paronychiurus kimi (Collembola) respectively. Survived adults and hatched juveniles of P. kimi were counted after 28-day exposures in both soils spiked with 100 mg/kg of glyphosate. Glyphosate in soil of 7, 14, 21, 28 days after spiking of glyphosate based herbicide was analyzed by spectrophotometer (Jan et al., 2009). Also soil microbial community structure was investigated using phospholipid fatty acids (PLFAs) composition analysis of soils following the procedures given by the Sherlock Microbial Identification System (MIDI Inc., Newark, DE). Glyphosate (100mg/kg soil) has no effects on reproduction and survival of P. kimi in any soils. Also, glyphosate in soils with Collembola was more rapidly degraded. Rapid increase of soil microbial biomass(PLFAs) was shown in soil with Collembola addition. This result showed that glyphosate affected interactions between Collembola and soil microorganisms, and also soil microbial community affected by Collembola changed degradation of glyphosate.

  2. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorous lyase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Zechel, David L; Jochimsen, Bjarne

    2014-01-01

    After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a l...

  3. Cancer Incidence among Glyphosate-Exposed Pesticide Applicators in the Agricultural Health Study

    OpenAIRE

    De Roos, Anneclaire J.; Blair, Aaron; Rusiecki, Jennifer A.; Hoppin, Jane A.; Svec, Megan; Dosemeci, Mustafa; Sandler, Dale P.; Alavanja, Michael C.

    2004-01-01

    Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in...

  4. Epidemiologic studies of glyphosate and non-cancer health outcomes: a review.

    Science.gov (United States)

    Mink, Pamela J; Mandel, Jack S; Lundin, Jessica I; Sceurman, Bonnielin K

    2011-11-01

    The United States (US) Environmental Protection Agency (EPA) and other regulatory agencies around the world have registered glyphosate as a broad-spectrum herbicide for use on multiple food and non-food use crops. To examine potential health risks in humans, we searched and reviewed the literature to evaluate whether exposure to glyphosate is associated causally with non-cancer health risks in humans. We also reviewed biomonitoring studies of glyphosate to allow for a more comprehensive discussion of issues related to exposure assessment and misclassification. Cohort, case-control and cross-sectional studies on glyphosate and non-cancer outcomes evaluated a variety of endpoints, including non-cancer respiratory conditions, diabetes, myocardial infarction, reproductive and developmental outcomes, rheumatoid arthritis, thyroid disease, and Parkinson's disease. Our review found no evidence of a consistent pattern of positive associations indicating a causal relationship between any disease and exposure to glyphosate. Most reported associations were weak and not significantly different from 1.0. Because accurate exposure measurement is crucial for valid results, it is recommended that pesticide-specific exposure algorithms be developed and validated. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. The need for independent research on the health effects of glyphosate-based herbicides.

    Science.gov (United States)

    Landrigan, Philip J; Belpoggi, Fiorella

    2018-05-29

    Glyphosate, formulated as Roundup, is the world's most widely used herbicide. Glyphosate is used extensively on genetically modified (GM) food crops designed to tolerate the herbicide, and global use is increasing rapidly. Two recent reviews of glyphosate's health hazards report conflicting results. An independent review by the International Agency for Research on Cancer (IARC) found that glyphosate is a "probable human carcinogen". A review by the European Food Safety Agency (EFSA) found no evidence of carcinogenic hazard. These differing findings have produced regulatory uncertainty. Reflecting this regulatory uncertainty, the European Commission on November 27 2017, extended authorization for glyphosate for another 5 years, while the European Parliament opposed this decision and issued a call that pesticide approvals be based on peer-reviewed studies by independent scientists rather than on the current system that relies on proprietary industry studies. The Ramazzini Institute has initiated a pilot study of glyphosate's health hazards that will be followed by an integrated experimental research project. This evaluation will be independent of industry support and entirely sponsored by worldwide crowdfunding. The aim of the Ramazzini Institute project is to explore comprehensively the effects of exposures to glyphosate-based herbicides at current real-world levels on several toxicological endpoints, including carcinogenicity, long-term toxicity, neurotoxicity, endocrine disrupting effects, prenatal developmental toxicity, the microbiome and multi-generational effects.

  6. Glyphosate (Ab)sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha).

    Science.gov (United States)

    Zheng, Tianye; Sutton, Nora B; de Jager, Pim; Grosshans, Richard; Munira, Sirajum; Farenhorst, Annemieke

    2017-11-01

    Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.

  7. Elevated Urinary Glyphosate and Clostridia Metabolites With Altered Dopamine Metabolism in Triplets With Autistic Spectrum Disorder or Suspected Seizure Disorder: A Case Study.

    Science.gov (United States)

    Shaw, William

    2017-02-01

    Autism is a neurodevelopmental disorder for which a number of genetic, environmental, and nutritional causes have been proposed. Glyphosate is used widely as a crop desiccant and as an herbicide in fields of genetically modified foods that are glyphosate resistant. Several researchers have proposed that it may be a cause of autism, based on epidemiological data that correlates increased usage of glyphosate with an increased autism rate. The current study was intended to determine if excessive glyphosate was present in the triplets and their parents and to evaluate biochemical findings for the family to determine the potential effects of its presence. The author performed a case study with the cooperation of the parents and the attending physician. The study took place at The Great Plains Laboratory, Inc (Lenexa, KS, USA). Participants were triplets, 2 male children and 1 female, and their parents. The 2 male children had autism, whereas the female had a possible seizure disorder. All 3 had elevated urinary glyphosate, and all of the triplets and their mother had elevated values of succinic acid or tiglylglycine, which are indicators of mitochondrial dysfunction. The participants received a diet of organic food only. The study performed organic acids, glyphosate, toxic chemicals and tiglylglycine, and creatinine testing of the participants' urine. The 2 male triplets with autism had abnormalities on at least 1 organic acids test, including elevated phenolic compounds such as 4-cresol, 3-[3-hydroxyphenyl]-3-hydroxypropionic acid and 4-hydroxyphenylacetic acid, which have been previously associated with Clostridia bacteria and autism. The female, who was suspected of having a seizure disorder but not autism, did not have elevated phenolic compounds but did have a significantly elevated value of the metabolite tiglylglycine, a marker for mitochondrial dysfunction and/or mutations. One male triplet was retested postintervention and was found to have a markedly lower

  8. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation.

    Science.gov (United States)

    Wang, Tiecheng; Ren, Jingyu; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2016-12-15

    Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh -1 , and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO 4 3- and NO 3 - . The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO 4 3- and NO 3 - , CO 2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of foliar treatments on distribution of 14C-glyphosate in Convolvulus arvensis L

    International Nuclear Information System (INIS)

    Lauridson, T.C.

    1986-01-01

    Field bindweed is a perennial weed which produces shoots from buds on its roots. Herbicides, such as glyphosate [N-(phosphonomethyl)glycine] used for control of field bindweed usually do not kill all shoot buds on the roots, thus field bindweed often reinfests areas within 3 to 6 weeks of treatment. This dissertation deals with the development of a technique to change glyphosate distribution in field bindweed roots and could result in less shoot regrowth after glyphosate application. In field studies eight plant growth regulators were applied in September, 3 days before 2.24 kg/ha of 2.4-D[(2,4-dichlorophenoxy) acetic acid] or 1.68 kg/ha of glyphosate. Eight months later, regrowth of shoots was least where glyphosate was applied at 0.028 kg/ha as a pretreatment, followed by a standard rate of 1.68 kg/ha. In subsequent greenhouse studies, typical patterns of shoot growth and 14 C-glyphosate distribution in isolated root sections taken from 15-week-old intact plants were determined. In subsequent growth chamber studies, plants were decapitated to observe the effect of shoot apical dominance on 14 C-glyphosate translocation. After 14 C-glyphosate was applied, intact plants had about twice as much 14 C in distal root sections as in proximal or middle root sections. Decapitated plants had more 14 C in proximal and middle root sections than in distal sections, and about twice as much 14 C was translocated to roots of decapitated plants than intact plants. Eight concentrations of 2,4,-D or glyphosate from 1 to 5000 ppm were applied in logarithmic series to 6-week old plants

  10. Características da epiderme foliar de eucalipto e seu envolvimento com a tolerância ao glyphosate Characteristics of eucalypt leaf epidermis and its role in glyphosate tolerance

    Directory of Open Access Journals (Sweden)

    L.D. Tuffi Santos

    2006-09-01

    Full Text Available Em áreas de reflorestamento, a deriva do glyphosate causa injúrias nas plantas de eucalipto. Trabalhos preliminares de pesquisa e observações de campo apontam para uma tolerância diferencial ao glyphosate entre os genótipos cultivados. Nesse contexto, objetivou-se estudar as estruturas anatômicas da epiderme foliar de cinco espécies de eucalipto, correlacionando com a tolerância ao glyphosate em deriva simulada. Utilizou-se o esquema fatorial, sendo cinco espécies (Eucalyptus urophylla, E. grandis, E. pellita, E. resinifera e E. saligna e cinco subdoses (0; 43,2; 86,4; 172,8 e 345,6 g e.a. ha-1 de glyphosate, simulando uma deriva. Imediatamente antes da aplicação do herbicida, coletaram-se folhas, totalmente expandidas, para análise anatômica da superfície epidérmica segundo metodologia de dissociação. Entre as espécies estudadas, E. resinifera mostrou-se mais tolerante à deriva de glyphosate, apresentando os menores valores de porcentagem de intoxicação aos 45 dias após aplicação, não sendo encontrada diferença entre as demais espécies. As cinco espécies apresentam folhas glabras, anfiestomáticas, com estômatos do tipo anomocítico e cutícula proeminente. Apesar de presentes em ambas as faces, os estômatos são raros na face adaxial, apresentando baixo índice e densidade estomática. Os maiores valores para índice estomático foram observados em E. resinifera, enquanto E. saligna apresentou a maior densidade estomática. Cavidades subepidérmicas evidenciadas na superfície pelas células de cobertura estão presentes nas cinco espécies, com maior densidade em E. pellita. Houve alta correlação entre a porcentagem de intoxicação por glyphosate e o número de células epidérmicas da superfície adaxial, indicando envolvimento desta característica com a tolerância diferencial ao herbicida. Estudos sobre absorção, translocação e metabolismo do glyphosate em eucalipto devem ser realizados para elucidar

  11. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata).

    Science.gov (United States)

    Xu, Yanggui; Li, Adela Jing; Li, Kaibin; Qin, Junhao; Li, Huashou

    2017-12-01

    This study tests the hypotheses that whether environmental relevance of glyphosate would help control spread of the invasive snail Pomacea canaliculata, or benefit its population growth worldwide. Our results showed that glyphosate induced acute toxicity to the snail only at high concentrations (96h LC50 at 175mg/L) unlikely to occur in the environment. Long-term exposures to glyphosate at sublethal levels (20 and 120mg/L) caused inhibition of food intake, limitation of growth performance and alterations in metabolic profiles of the snail. It is worth noting that glyphosate at 2mg/L benefited growth performance in P. canaliculata. Chronic exposures of glyphosate significantly enhanced overall metabolic rate and altered catabolism from protein to carbohydrate/lipid mode. Cellular responses in enzyme activities showed that the exposed snails could increase tolerance by their defense system against glyphosate-induced oxidative stress, and adjustment of metabolism to mitigate energy crisis. Our study displayed that sublethal concentrations of glyphosate might be helpful in control of the invasive species by food intake, growth performance and metabolic interruption; whether environmental relevance of glyphosate (≤2mg/L) benefits population growth of P. canaliculata is still inconclusive, which requires further field study. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The effect of glyphosate application on soil microbial activities in ...

    African Journals Online (AJOL)

    In this study, glyphosate effects as N, P and C nutrient sources on microbial population and the effect of different concentration of it on dehydrogenease activity and soil respiration were investigated. The results show that in a soil with a long historical use of glyphosate (soil 1), the hetrotrophic bacterial population was ...

  13. Application of Polymerase Chain Reaction for High Sensitivity Detection of Roundup Ready™ Soybean Seeds and Grains in Varietal Mixtures

    Directory of Open Access Journals (Sweden)

    Ashok Pandey

    2011-01-01

    Full Text Available Strong increase in the production of genetically modified organisms (GMOs observed over the years has led to a consolidation of transgenic seed industries worldwide. The dichotomy between the evaluated risk and the perceived risk of transgenic use has defined their level of acceptability among different global societies. GMOs have been widely applied to agricultural commodities, among them the Roundup Ready™ (RR™ soybean line GTS 40-3-2 has become the most prevalent transgenic crop in the world. This variety was developed to confer plant tolerance against glyphosate-based agricultural herbicide Roundup Ready™. Issues related to detection and traceability of GMOs have gained worldwide interest due to their increasing global diffusion and the related socioeconomic and health implications. Also, due to the widespread use of GMOs in food production, labelling regulations have been established in some countries to protect the right of consumers and producers. Besides regulatory demand, consumer concern issues have resulted in the development of several methods of detecting and quantifying foods derived from genetically engineered crops and their raw materials. Polymerase chain reaction (PCR has been proven to be the method of choice to detect the presence or absence of the introduced genes of GMOs at DNA level. The present paper aims to verify whether the PCR technique can detect RR™ soybean seeds among conventional ones to further certification as non-GM soybean seeds and grains. This analysis could be accomplished through the development of new methodology called 'intentional contamination' of soybean conventional seeds or grains with the respective RR™ soybeans. The results show that the PCR method can be applied with high sensitivity in order to certify conventional soybean seeds and grains.

  14. Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate.

    Science.gov (United States)

    Schönherr, Jörg; Schreiber, Lukas

    2004-10-20

    Potassium and calcium salts of glyphosate were obtained by titrating glyphosate acid with the respective bases to pH 4.0, and rates of penetration of these salts across isolated astomatous cuticular membranes (CMs) were measured at 20 degrees C and 70, 80, 90, and 100% humidity. K-glyphosate exhibited first-order penetration kinetics, and rate constants (k) increased with increasing humidity. Ca-glyphosate penetrated only when the humidity above the salt residue was 100%. At 90% humidity and below, Ca-glyphosate formed a solid residue on the CMs and penetration was not measurable. With Ca-glyphosate, the k value at 100% humidity decreased with time and the initial rates were lower than for K-glyphosate by a factor of 3.68. After equimolar concentrations of ammonium oxalate were added to Ca-glyphosate, high penetration rates close to those measured with K-glyphosate were measured at all humidities. Adding ammonium sulfate or potassium carbonate also increased rates between 70 and 100% humidity, but they were not as high as with ammonium oxalate. The data indicate that at pH 4.0 one Ca2+ ion is bound to two glyphosate anions. This salt has its deliquescence point near 100% humidity. Therefore, it is a solid at lower humidity and does not penetrate. Its molecular weight is 1.82 times larger than that of K-glyphosate, and this greatly slows down rates of penetration, even at 100% humidity. The additives tested have low solubility products and form insoluble precipitates with Ca2+ ions, but only ammonium oxalate binds Ca2+ quantitatively. The resulting ammonium salt of glyphosate penetrates at 70-100% humidity and at rates comparable to K-glyphosate. The results contribute to a better understanding of the hard water antagonism observed with glyphosate. It is argued that other pesticides and hormones with carboxyl functions are likely to respond to Ca2+ ions in a similar fashion. In all of these cases, ammonium oxalate is expected to overcome hard water antagonism

  15. Controle de plantas daninhas na cultura de soja resistente ao glyphosate

    Directory of Open Access Journals (Sweden)

    Núbia Maria Correia

    2010-01-01

    Full Text Available O objetivo da pesquisa foi avaliar o controle de plantas daninhas em área cultivada com soja resistente ao herbicida glyphosate, sem a utilização de práticas complementares de manejo de plantas daninhas. Foram desenvolvidos experimentos, em condições de campo, nos anos agrícolas 2005/2006 e 2006/2007 em Jaboticabal (SP. Foram avaliadas duas cultivares de soja resistentes ao glyphosate (CD 214 RR e M-SOY 8008 RR, oito tratamentos de herbicidas (glyphosate, em aplicação única, nas doses de 0,48; 0,72; 0,96 e 1,20 kg ha-1 de equivalente ácido, associadas ou não a aplicação sequencial na dose de 0,48 kg ha-1, além de duas testemunhas, uma capinada e outra mantida infestada. As cultivares de soja influenciaram na infestação das espécies de plantas daninhas na área. Sem a aplicação de glyphosate, houve o predomínio de X. strumarium na área, desfavorecendo a ocorrência de outras espécies. Quando utilizado glyphosate, independentemente da dose, a infestação contabilizada aos 35 e 40 dias após a primeira aplicação, no primeiro e segundo ano, respectivamente, foi baixa. O controle de plantas daninhas na cultura da soja transgênica é diretamente influenciado pela dose de glyphosate, havendo controle satisfatório com a aplicação única de 0,96 kg ha-1 ou a sequencial de 0,48 + 0,48 kg ha-1 de glyphosate. Em situação de menor infestação (2006/2007, a aplicação única de 0,48 kg ha-1 de glyphosate é suficiente para o controle das plantas daninhas. As cultivares de soja transgênica CD 214 RR e M-SOY 8008 RR influenciam diferencialmente a dinâmica das espécies de plantas daninhas, sendo o controle químico mais efetivo na situação de cultivo de M-SOY 8008 RR, em que houve menor diversidade e desenvolvimento das plantas daninhas.

  16. Assessment of the levels of N- (Phosphonomethyl) glycine glyphosate in selected glyphosate-based herbicides on the Ghanaian market

    International Nuclear Information System (INIS)

    Iddrisu, Adisatu

    2016-07-01

    Sixty one (61) samples of Glyphosate based herbicides were collected from the central commercial hub of Kumasi (Kejetia) and ware houses of importers in Ashanti and Greater Accra regions of Ghana and analyzed using high performance liquid chromatography (HPLC). Information about the efficacy of the numerous Glyphosate herbicides on the market was also collected by way of questionnaire. Results of the analysis indicated that only ten (16.4 %) out of the sixty one samples met the Environmental Protection Agency’s requirement of ±5 % of the stated active ingredient concentration and 51 samples representing 83.6 % were all out of the acceptable range. Active ingredient was either understated or overstated. About 21.6 % of the samples that failed to meet requirements were overstated and 78.4 % were understated. Apart from a few of the samples that had concentrations higher than stated label claims with 69 g/L (19.2 %) highest, most samples were generally lower than stated label claims. Some (G09, G18 and G44) samples contained virtually no active ingredient with shortfalls as high as 98.6%. Some of these shortfalls explained findings from the field investigations where some respondents complained of Glyphosate not being efficacious. Farmers may follow the application and safety instructions but this only holds true as long as the herbicides provide efficient control of weed. This can only be achieved with products of consistently high quality. This study also discovered that, there was no possibility of adulteration of the herbicide along the value chain as results for products picked from ware houses of importers did not differ much from those picked from the open market. Results from the other method employed in Glyphosate determination was UV/VIV spectroscopy, this method is simpler and faster and readily available in most laboratories in Ghana. Results from UV/VIS were comparable to that of the HPLC with generally lower values for UV/VIS readings. It is therefore

  17. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  18. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Gaoyi Cao

    Full Text Available A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops.

  19. The rise of glyphosate and new opportunities for biosentinel early-warning studies.

    Science.gov (United States)

    Kissane, Zoe; Shephard, Jill M

    2017-12-01

    Glyphosate has become the most commonly used herbicide worldwide and is reputedly environmentally benign, nontoxic, and safe for use near wildlife and humans. However, studies indicate its toxicity is underestimated and its persistence in the environment is greater than once thought. Its actions as a neurotoxin and endocrine disruptor indicate its potential to act in similar ways to persistent organic pollutants such as the organochlorines dichlorodiphenyltrichloroethane (DDT) and dioxin. Exposure to glyphosate and glyphosate-based herbicides for both wildlife and people is likely to be chronic and at sublethal levels, with multiple and ongoing exposure events occurring in urban and agricultural landscapes. Despite this, there has been little research on the impact of glyphosate on wildlife populations, and existing studies appear in the agricultural, toxicology, and water-chemistry literature that may have limited visibility among wildlife biologists. These studies clearly demonstrate a link between chronic exposure and neurotoxicity, endocrine disruption, cell damage, and immune suppression. There is a strong case for the recognition of glyphosate as an emerging organic contaminant and substantial potential exists for collaborative research among ecologists, toxicologists, and chemists to quantify the impact of glyphosate on wildlife and to evaluate the role of biosentinel species in a preemptive move to mitigate downstream impacts on people. There is scope to develop a decision framework to aid the choice of species to biomonitor and analysis methods based on the target contaminant, spatial and temporal extent of contamination, and perceived risk. Birds in particular offer considerable potential in this role because they span agricultural and urban environments, coastal, inland, and wetland ecosystems where glyphosate residues are known to be present. © 2017 Society for Conservation Biology.

  20. Induced mutations for disease resistance and other agronomic characteristics in bean (Phaseolus vulgaris L.) and soybean (Glycine max (L.) Merrill)

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.; Alberini, J.; Peixoto, T.C.

    1988-01-01

    The present research project aims to induce mutations with resistance to Xanthomonas phaseoli (common blight) and golden mosaic virus (GMV) in bean and resistance to Phakopsora pachyrhizi (rust) and Brazilian bud blight in soybean. At the same time, other mutant types of interest were selected. Gamma rays and ethyl methane-sulphonate (EMS) were generally utilized as mutagenic agents and seeds of several cultivars from both crops were treated. The selection was made at the M 2 or M 3 generation, utilizing progeny or mixtures of seeds from bulk. Screening was carried out in the field, greenhouse or insectary (according to the disease). Priority was given to GMV in bean and about 235,850 plants were observed in the field and 67,500 in the insectary. Only one plant showing mild GMV symptoms was obtained. However, owing to negative pleiotropic effects, this mutant could not be used. Concerning the other diseases, there are some selected plants that still require better observation before reporting that progress has been made. With regard to other mutant types, earliness was obtained in soybean and a bush variety and an earlier mutant was selected in bean. This mutant has already been utilized by breeders in cross-breeding and is being multiplied to be experimentally utilized by farmers under special conditions of cultivation. In soybean, preliminary yield trials are under way, and include some of the early mutants obtained. (author). 26 refs, 20 tabs

  1. Produtividade e qualidade de sementes de soja em função de estádios de dessecação e herbicidas Productivity and quality of soybean seeds in function of desiccation stages and herbicides

    Directory of Open Access Journals (Sweden)

    V.F. Guimarães

    2012-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a melhor época de aplicação de dessecantes, de forma a permitir antecipação da colheita sem prejudicar a produtividade e qualidade de sementes de soja. O delineamento experimental foi de blocos ao acaso em esquema fatorial (3x3 + 1, com quatro repetições. Um dos fatores foi constituído pelos herbicidas dessecantes paraquat, glufosinato de amônio e glyphosate, nas doses de 400, 400 e 960 g i.a. ha-1, respectivamente. Outro fator constituiu-se de três estádios de aplicação dos herbicidas, via pulverização (R6, R7.2 e R8.1. Avaliaram-se a antecipação da colheita, massa de 100 sementes, produtividade, germinação e vigor das sementes. A utilização de herbicidas, aliada aos estádios fenológicos de aplicação, permitiu antecipar a colheita de um a seis dias. A dessecação de plantas de soja em pré-colheita com os herbicidas nos diferentes estádios fenológicos não afetou a produtividade. O herbicida glufosinato de amônio reduziu a germinação de sementes de soja quando aplicado no estádio R6. O herbicida glyphosate reduziu o vigor das sementes de soja quando aplicado nos estádios R6 e R7.2. O herbicida paraquat promoveu os melhores índices de germinação e vigor de sementes de soja quando utilizado nos estádios R6 e R7.2.The objective of this work was to evaluate the best time to apply desiccants to allow earlier harvesting without compromising seed quality and yield of soybean plants. The experiment was arranged in a randomized block design in a factorial scheme (3x3 + 1, with four replications. One factor was composed of the desiccant herbicides paraquat, glufosinate ammonium, and glyphosate at doses of 400, 400, and 960 g a.i. ha-1, respectively. The other factor was constituted of three phenological herbicide application stages (R6, R7.2, and R8.1. Harvest anticipation, mass of 100 seeds, yield, germination, and seed vigor were evaluated. The use of herbicides combined with

  2. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Analysis of glyphosate residues in cereals using liquid chromatography-mass spectrometry (LC-MS/MS)

    DEFF Research Database (Denmark)

    Granby, Kit; Johannesen, S.; Gabrielsen, Martin Vahl

    2003-01-01

    A fast and specific method for the determination of glyphosate in cereals is described. The method is based on extraction with water by ultrasonication. The samples are cleaned up and separated by high-performance liquid chromatography on a polystyrene-based reverse-phase column (clean-up) in ser......A fast and specific method for the determination of glyphosate in cereals is described. The method is based on extraction with water by ultrasonication. The samples are cleaned up and separated by high-performance liquid chromatography on a polystyrene-based reverse-phase column (clean...... monitored m/z 168--> 150 (glyphosate) and 170-->152 (internal standard 2- 13 (CN)-N-15-glyphosate) for quantification. The mean recovery was 85% ( n =32) at spiking levels from 0.03 to 0.33 mg kg(-1) . From 1998 to 2001, from the analysis of about 50 samples per annum, a reduction in the glyphosate residues...... was observed owing to a Danish trade decision not to use grain with glyphosate residues for milling or bread production....

  4. GLYPHOSATE REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  5. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  6. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate.

    Science.gov (United States)

    Dosnon-Olette, Rachel; Couderchet, Michel; Oturan, Mehmet A; Oturan, Nihal; Eullaffroy, Philippe

    2011-07-01

    Pesticides are being detected in water bodies on an increasingly frequent basis. The present study focused on toxicity and phytoremediation potential of aquatic plants to remove phytosanitary products from contaminated water. We investigated the capacity of Lemna minor (L. minor) to eliminate two herbicides isoproturon and glyphosate from their medium. Since phytoremediation relies on healthy plants, pesticide toxicity was evaluated by exposing plants to 5 concentrations (0-20 microg L(-1) for isoproturon and 0-120 microg L(-1) for glyphosate) in culture media for 4 d using growth rate and chlorophyll a fluorescence as endpoints. At exposure concentrations of 10 microg x L(-1) for isoproturon and 80 microg x L(-1) for glyphosate, effects on growth rate and chlorophyll fluorescence were minor (isoproturon and glyphosate, respectively.

  7. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean.

    Science.gov (United States)

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-11-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. The fate of glyphosate in water hyacinth and its physiological and biochemical influences on growth of algae

    International Nuclear Information System (INIS)

    Tsai, Baolong.

    1989-01-01

    Absorption, translocation, distribution, exudation, and guttation of 14 C-glyphosate in water hyacinth (Eichhornia crassipes) were studied. Glyphosphate entered the plant by foliage and solution treatment. Plants were harvested and separated into the following parts: treated leaf blade, treated leaf petiole, young leaf blade, young leaf petiole, old leak blade, old leaf petiole, and root. Each part was extracted with methanol. Treated leaves, which exist only in foliage treatment, were washed with water and chloroform to remove the glyphosate residues. All 14 C counting was made by liquid scintillation spectrometry. Autoradiography was used to locate 14 C-glyphosate after foliage treatment. Results indicated that glyphosate can be absorbed from the leaf surface and translocated rapidly through phloem tissues into the whole plant body. The roots of water hyacinth absorbed glyphosate without vertical transport. Guttation of glyphosate occurred in treated leaf tips. Exudation of glyphosate from roots of water hyacinth occurred within 8 hr after foliage treatment. Chlorella vulgaris, Chlamydomonas reihardii, Anabaena cylindrica, and Chroococcus turgidus were used to explore the physiological and biochemical effects of glyphosate on algae. Spectrophotometric assays were performed for algal growth, chlorophyll, carotenoids, phycobiliprotein, carbohydrate, and protein. TLC procedures and an image analyzer were used to detect the metabolites of glyphosate inside algal cells. The common visible symptom of glyphosate toxicity in all algal cells were bleaching effect and reduction of contents of carbohydrate, protein, and pigments. The results highly suggested that glyphosate injured the algal cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate and protein in algal cells

  9. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Christian N., E-mail: calbers@ruc.d [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark); Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Banta, Gary T. [Dept. of Environmental, Social and Spatial Change, Roskilde University, DK-4000 Roskilde (Denmark); Hansen, Poul Erik [Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Jacobsen, Ole S. [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark)

    2009-10-15

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, approx40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only approx10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  10. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    International Nuclear Information System (INIS)

    Albers, Christian N.; Banta, Gary T.; Hansen, Poul Erik; Jacobsen, Ole S.

    2009-01-01

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, ∼40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only ∼10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  11. Differential content of glyphosate and its metabolites in Digitaria insularis biotypes

    Directory of Open Access Journals (Sweden)

    Leonardo Bianco de Carvalho

    2013-07-01

    Full Text Available Experiments were carried out in controlled conditions to analyze the role of metabolism of glyphosate in Digitaria insularis (sourgrass biotypes with differential response to the herbicide. Contents of glyphosate, aminomethylphosphonic acid (AMPA, glyoxylate, and sarcosine was detected in leaf tissues by using reversed-polarity capillarity electrophoresis. Glyphosate content in the A biotype increased from 19.7 up to 65.5 µg g fresh weight-1, whereas decreasing from 19.9 down to 5.0 µg g fresh weight-1 in the B biotype, from 48 up to 168 hours after treatment. At 168 hours after treatment, percentage of the sum of AMPA, glyoxylate, and sarcosine was > 56% in the B biotype, whereas a small percentage of metabolites (< 10% was found in the A biotype. Thus, the faster herbicide degradation in the B biotype is evidence that a differential metabolism of glyphosate can be conferring its lesser susceptibility to the herbicide.

  12. Monitoring glyphosate and AMPA concentrations in wells and drains using the sorbicell passive sampler

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; de Jonge, Hubert; Møldrup, Per

    2012-01-01

    Glyphosate is one of the world’s most extensively used weed control agents. Glyphosate, and its metabolite aminomethylphosphonic acid (AMPA), are suspected to be hazardous to human health and the aquatic environment. In Denmark, the extensive use has resulted in an increasing number of occurrences......Cell, will decrease the workload and number of samples freeing up funds for larger monitoring programs. When installed in a well the SorbiCell will continuously sample the water giving either a flux-weighed or time-weighted average measurement of the glyphosate/AMPA concentration throughout the sampling period....... It may therefore be possible to measure lower concentrations as the glyphosate/AMPA sorbed in the SorbiCell is an accumulated measurement. Also, glyphosate/AMPA associated with sudden flush events will be detected by the SorbiCells, while such events may pass between two consecutive grab samples...

  13. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses.

    Science.gov (United States)

    Srour, Ali; Afzal, Ahmed J; Blahut-Beatty, Laureen; Hemmati, Naghmeh; Simmonds, Daina H; Li, Wenbin; Liu, Miao; Town, Christopher D; Sharma, Hemlata; Arelli, Prakash; Lightfoot, David A

    2012-08-02

    Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium virguliforme (Akoi, O'Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK) GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30-50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. The inference that soybean has adapted part of an existing pathogen recognition and

  14. The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses

    Directory of Open Access Journals (Sweden)

    Srour Ali

    2012-08-01

    Full Text Available Abstract Background Soybean (Glycine max (L. Merr. resistance to any population of Heterodera glycines (I., or Fusarium virguliforme (Akoi, O’Donnell, Homma & Lattanzi required a functional allele at Rhg1/Rfs2. H. glycines, the soybean cyst nematode (SCN was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden death syndrome (SDS, was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence within the Rhg1/Rfs2 locus in causing resistance to SCN and SDS. Results A BAC (B73p06 encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or transgenic (and so hemizygous at a new location with, the resistance allele of GmRLK18-1. Those plants infested with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4 the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts were reduced by 30–50%. In the presence of Rhg4 the plants with the transgene were nearly classed as fully resistant to SCN (females reduced to 11% of the susceptible control as well as SDS. A reduction in the rate of early seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of transgenic plants showed an increase in foliar susceptibility to insect herbivory. Conclusions The inference that soybean has

  15. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Science.gov (United States)

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  16. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    Science.gov (United States)

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  17. Effect of space mutation on photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiaonan; Liu Qi

    2011-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photosynthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soybean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 > SP 3 > SP 4 > CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  18. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dessecação de plantas daninhas com glyphosate em mistura com ureia ou sulfato de amônio Weed desiccation with glyphosate mixed with urea or ammonium sulfate

    Directory of Open Access Journals (Sweden)

    S.J.P. Carvalho

    2009-06-01

    Full Text Available O glyphosate é um herbicida não-seletivo, sistêmico, usado para controle de plantas daninhas anuais e perenes em todo o mundo. A absorção da molécula do glyphosate ocorre pelos tecidos fotossinteticamente ativos das plantas, porém alguns fatores podem reduzir sua eficácia, como a morfologia e diversidade de espécies, chuva após aplicação, qualidade da água e misturas em tanque com outros defensivos, entre outros. Objetivou-se com este trabalho avaliar a influência da adição de sulfato de amônio ou ureia em calda na eficácia do herbicida glyphosate para dessecação de plantas daninhas. Dois experimentos foram desenvolvidos em Piracicaba - SP, com aplicações de glyphosate (720 e 1.440 g ha-1 isolado ou combinado com duas doses de sulfato de amônio (7,5 e 15,0 g L-1 ou ureia (2,5 e 5,0 g L-1 sobre as plantas daninhas: apaga-fogo (Alternanthera tenella e capim-massambará (Sorghum halepense. Para a espécie menos suscetível ao herbicida (capim-massambará, a adição de fontes nitrogenadas à menor dose de glyphosate acelerou a morte das plantas, elevando os níveis de controle em até 7,3% na avaliação de 21 dias após aplicação (DAA dos tratamentos. Contudo, os efeitos não foram observados nas avaliações de controle, massa fresca e seca, conduzidas aos 28 DAA. A dose recomendada de glyphosate para cada espécie proporcionou controle satisfatório, sem a necessidade de adição de sulfato de amônio ou ureia.Glyphosate is a non-selective systemic herbicide used to control annual and perennial weeds worldwide. Molecule absorption occurs through the plant's photosynthetically-active tissues; however, some factors might reduce its efficacy, such as morphology and specific diversity, rain after application, water quality and tank mixtures with other chemicals. Thus, this work aimed to evaluate the influence of ammonium sulfate or urea addiction to spray tank on glyphosate efficacy for weed desiccation. Two trials were

  20. Temporal Patterns of Glyphosate Leaching at a Loamy Agricultural Field in Denmark

    DEFF Research Database (Denmark)

    Nørgaard, Trine; Møldrup, Per; Olsen, Preben

    2013-01-01

    applications in combination with the effect of precipitation events, drain water runoff, soil water content at 25 cm soil depth, management, and particle leaching patterns, and compares this with monitored field-scale glyphosate and AMPA leaching to a tile drainage system. Preliminary findings indicate...... that there is an accumulation of glyphosate and AMPA in the soil after the successive applications of glyphosate, as the level of the peaking concentrations right after applications increases. Furthermore, large precipitation events with subsequent high drain water runoff together with management, especially plowing...

  1. Effects of glyphosate exposure on sperm concentration in rodents: A systematic review and meta-analysis.

    Science.gov (United States)

    Cai, Wenyan; Ji, Ying; Song, Xianping; Guo, Haoran; Han, Lei; Zhang, Feng; Liu, Xin; Zhang, Hengdong; Zhu, Baoli; Xu, Ming

    2017-10-01

    Correlation between exposure to glyphosate and sperm concentrations is important in reproductive toxicity risk assessment for male reproductive functions. Many studies have focused on reproductive toxicity on glyphosate, however, results are still controversial. We conducted a systematic review of epidemiological studies on the association between glyphosate exposure and sperm concentrations of rodents. The aim of this study is to explore the potential adverse effects of glyphosate on reproductive function of male rodents. Systematic and comprehensive literature search was performed in MEDLINE, TOXLINE, Embase, WANFANG and CNKI databases with different combinations of glyphosate exposure and sperm concentration. 8 studies were eventually identified and random-effect model was conducted. Heterogeneity among study results was calculated via chi-square tests. Ten independent experimental datasets from these eight studies were acquired to synthesize the random-effect model. A decrease in sperm concentrations was found with mean difference of sperm concentrations(MDsperm)=-2.774×10 6 /sperm/g/testis(95%CI=-0.969 to -4.579) in random-effect model after glyphosate exposure. There was also a significant decrease after fitting the random-effect model: MDsperm=-1.632×10 6 /sperm/g/testis (95%CI=-0.662 to -2.601). The results of meta-analysis support the hypothesis that glyphosate exposure decreased sperm concentration in rodents. Therefore, we conclude that glyphosate is toxic to male rodent's reproductive system. Copyright © 2017. Published by Elsevier B.V.

  2. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  3. Resistência de Bidens subalternans aos herbicidas inibidores da enzima acetolactato sintase utilizados na cultura da soja Resistance of Bidens subalternans to the acetolactate synthase inhibitor herbicides used in soybean crop

    Directory of Open Access Journals (Sweden)

    G.A. Gelmini

    2002-08-01

    Full Text Available O uso contínuo e prolongado de produtos com o mesmo mecanismo de ação pode provocar a manifestação de biótipos resistentes. Para verificar possíveis novos casos de resistência, bem como alternativas para prevenção e manejo, foram coletadas sementes de Bidens subalternans na região de São Gabriel D' Oeste-MS, em plantas que sobreviveram a tratamentos em que inibidores da ALS foram sistematicamente utilizados. Em experimento conduzido em vasos em casa de vegetação, o biótipo com histórico de resistente foi comparado ao suscetível quando submetido aos diversos herbicidas com diferentes mecanismos de ação usados em pós-emergência, os quais foram aplicados nas doses de zero, uma, duas, quatro e oito vezes a recomendada. Decorridos 20 dias, foram avaliadas a porcentagem de controle e a produção da fitomassa verde, visando estabelecimento de curvas de dose-resposta e obtenção dos fatores de resistência. O biótipo oriundo de área com histórico de aplicações repetidas de inibidores da ALS apresentou elevado nível de resistência aos herbicidas chlorimuron-ethyl e imazethapyr, demonstrando ser portador de resistência cruzada aos inibidores da ALS dos grupos das sulfoniluréias e imidazolinonas. Entretanto, esse biótipo foi eficientemente controlado pelos herbicidas fomesafen, lactofen, bentazon, glufosinato de amônio e glyphosate.The continuous and prolonged use of products with the same mechanism of action can provoke the manifestation of resistant biotypes. In horder to verify possible new cases, as well as alternatives for prevention and control, seeds of Bidens subalternans were collected at São Gabriel D' Oeste (MS region at plants that survived continuous treatments which sistematically ALS inhibitors. Through an experiment performed in pots inside a greenhouse, a resistant biotype was compared to a susceptible one when submitted to herbicides with different mechanisms of action and applied at post emergence

  4. Global research production in glyphosate intoxication from 1978 to 2015: A bibliometric analysis.

    Science.gov (United States)

    Zyoud, S H; Waring, W S; Al-Jabi, S W; Sweileh, W M

    2017-10-01

    Glyphosate (N-phosphonomethylglycine) has been used as a broad-spectrum herbicide that has been widely used in the agricultural industry and also available for home use. The main aim of this study is to present a general overview of glyphosate intoxication-related publications from its introducing since the early 1970s using bibliometric technique. On June 23, 2016, a literature search of the Scopus database was performed. We then extracted and analyzed the data using well-established qualitative and quantitative bibliometric indices: Publication year, affiliation, document type, country name, subject category, journal name, publishing language, and collaboration and citation patterns. We recognized a total of 3735 publications on glyphosate published between 1973 and 2015. There were 875 publications related to glyphosate intoxication in the Scopus database published between 1978 and 2015. Articles (757) comprised 86.5% of the total publications, followed by reviews (41; 4.7%). Most publications were published in English (87.9%), followed by Portuguese (6.6%). The number of publications related to glyphosate intoxication increased from 44 in 1978-1987 up to 152 in 1996-2005 and then quadrupled in 2006-2015. The United States was the leading country with 180 documents representing 20.6%, followed by Brazil (120; 13.7%), Canada (78; 8.9%), Argentina (61; 7.0%), and France (57; 6.5%). The 85.6% of the publications was cited, and the average of citation per document was 17.13 with h-index of 55. Furthermore, the United States achieved the highest h-index of 33. Most of the global international collaborations are made with researchers from the United States, who collaborated with 23 countries/territories in 44 publications. The trends in global glyphosate-related research between 1978 and 2015 were evaluated by a bibliometric technique. Results showed that English was the leading publishing language, and the major publication type was original article. Findings showed

  5. Análise multivariada dos componentes da resistência à ferrugem-asiática em genótipos de soja Multivariate analysis of resistance components to Asian rust in soybean genotypes

    Directory of Open Access Journals (Sweden)

    Lucimara Junko Koga

    2008-10-01

    Full Text Available O objetivo deste trabalho foi detalhar os ciclos de infecção da Phakopsora pachyrhizi Syd. & P. Syd. em genótipos de soja, para o estabelecimento de grupos de genótipos mais promissores para o uso como fontes de resistência à ferrugem. Os componentes do ciclo de infecção foram quantificados em 48 genótipos. Foram avaliados: tipo de lesão, intensidade de esporulação, severidade, número de lesões e de urédias e produtividade de urediniósporos. Pela análise de agrupamentos, formaram-se quatro grupos: A - desenvolveu a maior quantidade de doença; B - desenvolveu a menor quantidade de doença; C - baixa resistência inicial e D - alta resistência inicial. Os genótipos dos grupos B, C e D apresentaram lesões RB ("redish-brown" e variaram quanto à resistência inicial, resistência tardia, intensidade de esporulação, estabilidade da resposta qualitativa, produtividade de urediniósporos e número de dias para atingir 50% da severidade máxima. Entre as variáveis analisadas, as que apresentaram importância prática foram as avaliações das respostas qualitativas e as de severidade. Esta última reflete os efeitos combinados de resistência sobre todos os componentes da infecção e apresentam importância prática na diferenciação de genótipos, quanto à resistência à doença. Os genótipos dos grupos B, C e D manifestaram resistência qualitativa e quantitativa, em diferentes graus, e promissores para serem utilizados como fontes de genes de resistência à ferrugem-asiática-da-soja.The objective of this study was to detail the infection cycles of Phakopsora pachyrhizi Syd. & P. Syd. in soybean genotypes, in order to establish a group of the most promising genotypes for use as sources of resistance to Asian soybean rust. The infection cycle components were quantified in 48 genotypes. The assessments consisted of: type of lesion, intensity of sporulation, severity, number of lesions and uredinias, and productivity of

  6. Deriva simulada de formulações comerciais de glyphosate sobre maracujazeiro amarelo Drift simulation of glyphosate commercial formulations on yellow passion fruit growth

    Directory of Open Access Journals (Sweden)

    A. Wagner Júnior

    2008-01-01

    Full Text Available Objetivou-se com este trabalho avaliar os efeitos da deriva de formulações comerciais de glyphosate no desenvolvimento de plantas jovens de maracujazeiro amarelo. O trabalho foi realizado em casa de vegetação do Departamento de Fitotecnia da Universidade Federal de Viçosa, durante o período de março a abril de 2007. Foi utilizado o delineamento experimental de blocos casualizados, em esquema fatorial 3 x 4 + 1, em que três foram as formulações de glyphosate e cinco foram as doses utilizadas acrescidas de testemunha sem herbicida. O trabalho foi conduzido com cinco repetições, sendo cada planta considerada como parcela experimental. As formulações comerciais aplicadas foram Roundup Transorb®, Roundup Original® e Zapp QI®, utilizando-se as seguintes doses (g e.a ha-1: 43,2; 86,4; 172,8; e 345,6 g ha-1. Aos 28 dias após a aplicação (DAA, avaliaram-se os comprimentos da parte aérea, da raiz e total (cm; o diâmetro do caule (mm; o número de folhas e de ramificações primárias; a massa seca da parte aérea e da raiz das plantas (g; e a área foliar por planta (cm². Aos 7, 14 e 28 DAA, avaliou-se, visualmente, a porcentagem de intoxicação das plantas. O glyphosate em deriva simulada, independentemente das formulações utilizadas, ocasionou injúrias no maracujazeiro amarelo, acarretando redução no crescimento e desenvolvimento das plantas. As formulações Roundup Transorb® e Roundup Original® foram mais prejudiciais às plantas que o Zapp Qi®. O maracujazeiro amarelo mostrou-se suscetível à deriva, devendo o glyphosate ser usado com cuidado, de maneira a atingir somente as plantas daninhas a serem controladas.The aim of this work was to evaluate the effects of drift simulation of commercial formulations of glyphosate on the growth of young plants of yellow passion fruit. The work was carried out at the Plant Science Department of the Universidade Federal de Viçosa (MG, Brazil, from March to April 2007. The

  7. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    Science.gov (United States)

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  8. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  9. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure.

    Science.gov (United States)

    Li, Ming-Hui; Ruan, Ling-Yu; Zhou, Jin-Wei; Fu, Yong-Hong; Jiang, Lei; Zhao, He; Wang, Jun-Song

    2017-07-01

    Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. SOYBEAN - MOLECULAR ASPECTS OF BREEDING

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2012-12-01

    Full Text Available The book Soybean: Molecular Aspects of Breeding focuses recent progress in our understanding of the genetics and molecular biology of soybean. This book is divided into four parts and contains 22 chapters. Part I, Molecular Biology and Biotechnology focuses advances in molecular biology and laboratory procedures that have been developed recently to manipulate DNA. Part II, Breeding for abiotic stress covers proteomics approaches form as a powerful tool for investigating the molecular mechanisms of the plant responses to various types of abiotic stresses. Part III, Breeding for biotic stress addresses issues related to application of molecular based strategies in order to increase soybean resistance to various biotic factors. Part IV, Recent Technology reviews recent technologies into the realm of soybean monitoring, processing and product use. While the information accumulated in this book is of primary interest for plant breeders, valuable insights are also offered to agronomists, molecular biologists, physiologists, plant pathologists, food scientists and students. The book is a result of efforts made by many experts from different countries (USA, Japan, Croatia, Serbia, China, Canada, Malawi, Iran, Hong Kong, Brasil, Mexico.

  11. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    Science.gov (United States)

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (pretention capacity in soils. Copyright © 2015. Published by Elsevier B.V.

  12. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  13. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  14. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Glyphosate sorption/desorption on biochars – Interactions of physical and chemical processes

    Science.gov (United States)

    BACKGROUND: Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350°C t...

  16. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil

    NARCIS (Netherlands)

    Martins Bento, Celia; Goossens, Dirk; Rezaei, Mahrooz; Riksen, M.J.P.M.; Mol, J.G.J.; Ritsema, C.J.; Geissen, V.

    2017-01-01

    Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural

  17. Adsorção de glifosato sobre solos e minerais Adsorption of glyphosate on soils and minerals

    Directory of Open Access Journals (Sweden)

    Luís R. M. Toni

    2006-07-01

    Full Text Available Glyphosate, an enzyme inhibitor herbicide, has been widely used around the world in agriculture. Dr. John Franz from Monsanto Corporation (USA discovered glyphosate in 1970. It has been showed that glyphosate is strongly adsorbed by inorganic soil components especially aluminium and iron oxides, and the phosphate group is involved in this interaction. The inactivation of glyphosate in soils can last for days or even months depending on soil characteristics. The addition of phosphate from fertilizers can displace glyphosate from the soils and this could be the cause of decreased productivity of some crops.

  18. ASSOCIATION OF PESTICIDES WITH SOYBEAN LEAF MICRONUTRIENTS CONTENTS AND SEEDS YIELD AND PHYSIOLOGIC QUALITY ASSOCIAÇÃO DE AGROTÓXICOS AOS TEORES FOLIARES DE MICRONUTRIENTES E À PRODUTIVIDADE E QUALIDADE FISIOLÓGICA DE SEMENTES DE SOJA

    Directory of Open Access Journals (Sweden)

    André Cabral França

    2011-10-01

    Full Text Available

    Glyphosate effects on leaf micronutrients contents of transgenic soybean have been widely reported, however, little is known about these effects associated with other pesticides. The objective of this study was to evaluate the physiologic quality and yield of soybean seeds, as well as leaf micronutrients contents, according to weed control methods. Ten RBD treatments were arranged in a split-plot scheme with four replications. The application or non-application of endosulphan + tebuconazole was evaluated in the plots, while the weeds control methods were assessed in the subplots (weeded control; non-weeded control; single application of glyphosate (1,080 g ha-1 and fomesafen + fluazifop-?-butil (180 + 225 g ha-1, both at 15 DAE; and sequential application of glyphosate (1,080 g ha-1 at 15, 30, and 45 DAE. After harvesting, the soybean seeds were sampled, in order to evaluate their germination, vigor, and yield. Copper and manganese contents were only influenced by the sequential application of glyphosate, associated with endosulphan + tebuconazole. The cold test germination was reduced in seeds of plants treated with fomesafen + fluazifop-p-butil associated with endosulphan + tebuconazole. Among the treatments without endosulphan + tebuconazole, the sequential application of glyphosate promoted the highest 100-seeds weight, as well as, when associated with endosulphan + tebuconazole, reduced the leaf concentrations of Cu and Mn, however, it improved seeds germination and showed no effects on seeds vigor, when compared with the weeded soybean.

  19. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  20. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

    Directory of Open Access Journals (Sweden)

    Tao Zhan

    Full Text Available Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO, we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg(51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

  1. Enzymatic extractability of soybean meal proteins and carbohydrates : heat and humidity effects

    NARCIS (Netherlands)

    Fischer, M.; Kofod, L.V.; Schols, H.A.; Piersma, S.R.; Gruppen, H.; Voragen, A.G.J.

    2001-01-01

    To study the incomplete enzymatic extractability of proteins and carbohydrates of thermally treated soybean meals, one unheated and three heat-treated soybean meals were produced. To obtain truly enzyme-resistant material, the meals were extracted by a repeated hydrolysis procedure using excessive

  2. Glyphosate rodent carcinogenicity bioassay expert panel review.

    Science.gov (United States)

    Williams, Gary M; Berry, Colin; Burns, Michele; de Camargo, Joao Lauro Viana; Greim, Helmut

    2016-09-01

    Glyphosate has been rigorously and extensively tested for carcinogenicity by administration to mice (five studies) and to rats (nine studies). Most authorities have concluded that the evidence does not indicate a cancer risk to humans. The International Agency for Research on Cancer (IARC), however, evaluated some of the available data and concluded that glyphosate probably is carcinogenic to humans. The expert panel convened by Intertek assessed the findings used by IARC, as well as the full body of evidence and found the following: (1) the renal neoplastic effects in males of one mouse study are not associated with glyphosate exposure, because they lack statistical significance, strength, consistency, specificity, lack a dose-response pattern, plausibility, and coherence; (2) the strength of association of liver hemangiosarcomas in a different mouse study is absent, lacking consistency, and a dose-response effect and having in high dose males only a significant incidence increase which is within the historical control range; (3) pancreatic islet-cell adenomas (non-significant incidence increase), in two studies of male SD rats did not progress to carcinomas and lacked a dose-response pattern (the highest incidence is in the low dose followed by the high dose); (4) in one of two studies, a non-significant positive trend in the incidence of hepatocellular adenomas in male rats did not lead to progression to carcinomas; (5) in one of two studies, the non-significant positive trend in the incidence of thyroid C-cell adenomas in female rats was not present and there was no progression of adenomas to carcinomas at the end of the study. Application of criteria for causality considerations to the above mentioned tumor types and given the overall weight-of-evidence (WoE), the expert panel concluded that glyphosate is not a carcinogen in laboratory animals.

  3. Carfentrazone-ethyl, isolado e associado a duas formulações de glyphosate no controle de duas espécies de trapoeraba Carfentrazone-ethyl isolated and in mixture with two glyphosate formulations on the control of two dayflower species

    Directory of Open Access Journals (Sweden)

    C.P. Ronchi

    2002-04-01

    Full Text Available Esta pesquisa teve como objetivo avaliar a eficácia do herbicida carfentrazone-ethyl, isolado ou associado ao glyphosate e ao glyphosate potássico, no controle de duas espécies de plantas daninhas conhecidas como trapoeraba: Commelina diffusa e Commelina benghalensis. Para isso, segmentos de caule dessas plantas foram transplantados e submetidos a crescimento em vasos que continham 12 L de substrato, durante 120 dias. Os experimentos (um por espécie de trapoeraba foram conduzidos no delineamento experimental em blocos casualizados, com quatro repetições, sendo constituídos de carfentrazone-ethyl nas doses de 0, 10, 20, 30, 40 e 50 g ha¹, isoladas ou aplicadas em mistura com o glyphosate e o glyphosate potássico, ambos na dose de 720 g ha-1. Foram feitas avaliações de controle e da biomassa fresca da parte aérea (BFPA. C. diffusa foi mais tolerante ao carfentrazone-ethyl e à sua mistura ao glyphosate e ao glyphosate potássico do que C. benghalensis. Tanto o glyphosate quanto o glyphosate potássico, isolados, promoveram controle considerado ruim (inferior a 30% de ambas as espécies de trapoeraba, na dose de 720 g ha-1. A eficiência de controle pelas misturas de herbicidas foi superior à das suas aplicações isoladas, com exceção do carfentrazone-ethyl em doses acima de 30 g ha-1, as quais proporcionaram controles de C. benghalensis semelhantes às misturas. Apesar do razoável controle (de 71 a 80% para C. diffusa e do bom a excelente controle (acima de 81% para C. benghalensis, proporcionados pelas misturas de carfentrazone-ethyl com glyphosate e/ou glyphosate potássico, apenas uma aplicação não foi suficiente para o controle definitivo da Commelina spp., pois verificou-se para ambas as espécies, por meio da avaliação da BFPA, a reinfestação da área devido à recuperação das plantas, ou mesmo, no caso de C. benghalensis, a reinfestação a partir de sementes subterrâneas, que se tornaram viáveis após a morte da

  4. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas, Mississippi, and Missouri.

    Science.gov (United States)

    Tush, Daniel; Meyer, Michael T

    2016-06-07

    Polyoxyethylene tallow amine (POEA) is an inert ingredient added to formulations of glyphosate, the most widely applied agricultural herbicide. POEA has been shown to have toxic effects to some aquatic organisms making the potential transport of POEA from the application site into the environment an important concern. This study characterized the adsorption of POEA to soils and assessed its occurrence and homologue distribution in agricultural soils from six states. Adsorption experiments of POEA to selected soils showed that POEA adsorbed much stronger than glyphosate; calcium chloride increased the binding of POEA; and the binding of POEA was stronger in low pH conditions. POEA was detected on a soil sample from an agricultural field near Lawrence, Kansas, but with a loss of homologues that contain alkenes. POEA was also detected on soil samples collected between February and early March from corn and soybean fields from ten different sites in five other states (Iowa, Illinois, Indiana, Missouri, Mississippi). This is the first study to characterize the adsorption of POEA to soil, the potential widespread occurrence of POEA on agricultural soils, and the persistence of the POEA homologues on agricultural soils into the following growing season.

  5. Methyl jasmonate induced resistance in cheniere rice and soybean plants

    Science.gov (United States)

    Taplin, C.

    2017-12-01

    Methyl jasmonate (MJ) is a compound naturally occurring in certain plants that aids in plant defense. In this study, we examined the difference in herbivory of fall armyworm (FAW) on control plants (treated without MJ) and MJ-treated plants. Seeds of cheniere rice and soybean were soaked in MJ overnight and planted in the greenhouse, although the soybean never grew. Therefore, only the mature plant leaves of cheniere rice were fed to FAW and the difference in herbivory was looked at. Our results show there is no statistical difference in the herbivory of the cheniere rice plant leaves.

  6. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    Science.gov (United States)

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 7: Effects of weed management strategy (grower practices versus academic recommendations) on the weed soil seedbank over 6 years.

    Science.gov (United States)

    Gibson, David J; Young, Bryan G; Owen, Micheal D K; Gage, Karla L; Matthews, Joseph L; Jordan, David L; Shaw, David R; Weller, Stephen C; Wilson, Robert G

    2016-04-01

    Shifts in weed species composition and richness resulting from near-exclusive reliance on herbicides in glyphosate-resistant (GR) cropping systems has necessitated the implementation of alternative weed management tactics to reduce selection pressures of herbicides. We contrasted the response of the weed soil seedbank to effects of weed management strategy, comparing grower practices with academic recommendations for best management practices (BMPs) over 6 years and across five weed hardiness zones in the US Midwest at sites subject to GR cropping systems. Total weed population density and species richness varied according to cropping system, location and prior year's crop, but less so to weed management strategy. The seedbank population density for 11 of the 14 most frequent weed species was affected by weed management strategy either alone or in an interaction with hardiness zone or year, or both. In only 29% of comparisons was weed population density lower following academic recommendations, and this depended upon prior crop and cropping system. The population density of high-risk weed species was reduced by academic recommendations, but only in two of six years and under continuous GR maize. Overall, the weed population density was decreasing in field halves subject to the BMPs in the academic recommendations relative to grower practices. The soil seedbank is slow to respond to academic recommendations to mitigate glyphosate-resistant weeds, but represents a biological legacy that growers need to keep in mind even when management practices reduce emerged field weed population densities. © 2015 Society of Chemical Industry.

  8. Tolerância do Tifton 85 (Cynodon spp. e da Brachiaria brizantha ao glyphosate Tifton 85 (Cynodon spp. and Brachiaria brizantha tolerance to glyphosate

    Directory of Open Access Journals (Sweden)

    M.V. Santos

    2008-06-01

    Full Text Available Objetivou-se avaliar a tolerância de Tifton 85 e Brachiaria brizantha ao glyphosate e verificar o controle de B. brizantha em área de pastagem de Tifton 85 já estabelecida. O delineamento experimental foi em blocos casualizados, com quatro repetições, em que se testaram as doses: 0, 720, 1.440, 2.160 e 2.880 g ha-1 de glyphosate. Cada parcela possuía dimensões de 3,5 m de comprimento por 3,0 m de largura, totalizando 10,5 m², com área útil de 7,5 m ². A eficiência do herbicida no controle de B. brizantha e o nível de intoxicação nas plantas de Tifton 85 foram avaliados 15, 30 e 60 dias após aplicação (DAA, mediante escala de 0 a 100, em que 0 é ausência de controle e/ou intoxicação e 100, controle total ou morte das plantas. Para avaliação da produção e do potencial de rebrota das forrageiras, as plantas de ambas as espécies foram colhidas aos 300 DAA e secas em estufa. Observou-se controle acima de 90% das plantas de B. brizantha a partir das doses de 1.473,75 e 1.721,25 g ha-1 de glyphosate, aos 30 e 60 DAA, respectivamente. As porcentagens de intoxicação das plantas de Tifton 85, referente a estas doses de controle de B. brizantha, foram, respectivamente, de 24,90 e 4,13% aos 30 e 60 DAA. Além disso, aos 60 DAA, para a maior dose avaliada (2.880 g ha-1 de glyphosate foi observada intoxicação das plantas de Tifton 85 de apenas 18,22%. Aos 300 DAA, observou-se ausência de produção de massa seca de B. brizantha a partir da dose de 2.160 g ha-1 do herbicida, devido ao eficiente controle. Os resultados evidenciam maior tolerância das plantas de Tifton 85 ao glyphosate em relação às plantas de B. brizantha, possibilitando o controle desta espécie em pastagem estabelecida de Tifton 85, sem causar danos à forrageira cultivada.This study aimed to evaluate Tifton 85 and Brachiaria brizantha tolerance glyphosate and verity Brachiaria brizantha control in an established Tifton 85 pasture area. Rates of 0; 720; 1

  9. Plant growth responses of apple and pear trees to doses of glyphosate

    Science.gov (United States)

    Glyphosate is commonly used for intra-row weed management in perennial plantations, where unintended crop exposure to this herbicide can cause growth reduction. The objective of this research was to analyze the initial plant growth behavior of young apple and pear plants exposed to glyphosate. Glyph...

  10. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    Science.gov (United States)

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  11. Efeitos de diferentes formulações comerciais de glyphosate sobre estirpes de Bradyrhizobium Effects of different glyphosate commercial formulations on Bradyrhizobium strains

    Directory of Open Access Journals (Sweden)

    J.B. Santos

    2004-06-01

    Full Text Available O objetivo deste trabalho foi avaliar efeitos de formulações comerciais de glyphosate sobre estirpes de Bradyrhizobium, em condições de laboratório. As formulações foram aplicadas na concentração de 43,2 µg L-1 do equivalente ácido. As bactérias foram inoculadas em meio de cultura à base de manitol e extrato de levedura (YM. O efeito do herbicida no crescimento das estirpes de Bradyrhizobium foi avaliado mediante leitura da densidade ótica em espectrofotômetro. Avaliou-se o crescimento das estirpes de B. japonicum SEMIA 5079 e de B. elkanii SEMIA 5019 e SEMIA 587 sob efeito de nove formulações de glyphosate: Zapp Qi®, Roundup®, Roundup Multiação®, Roundup Transorb®, Roundup WG®, Trop®, Agrisato®, glyphosate técnico [padrão de N-(phosphonomethyl glycina] e controle sem adição de herbicida (testemunha para as estirpes. Foram utilizadas seis repetições. Confeccionaram-se curvas de crescimento para cada estirpe. Pelos resultados, pôde-se observar que todas as formulações de glyphosate causaram efeitos diferenciados sobre as estirpes de Bradyrhizobium SEMIA 5019, SEMIA 5079 e SEMIA 587. Constatou-se que a formulação Zapp Qi foi a menos tóxica às estirpes de Bradyrhizobium avaliadas. A maior toxicidade foi observada para Roundup Transorb, que provocou reduções no crescimento acima de 94% para todas as estirpes de Bradyrhizobium estudadas. Não se observou correlação entre o tipo de sal - isopropilamina, amônio ou potássico, presentes na formulação herbicida - e o grau de inibição no crescimento das estirpes. SEMIA 587 foi a estirpe menos tolerante à maioria das formulações testadas, porém SEMIA 5019 foi a mais sensível ao glyphosate padrão, sem adição de sais ou de outros aditivos.This work aimed to evaluate the effects of glyphosate commercial formulations on Bradyrhizobium strains under laboratory conditions. The formulations were applied in the concentration of 43.2 µg L-1 of the a.e. and

  12. Suscetibilidade de duas Gramas-boiadeiras a diferentes formulações de glyphosate

    Directory of Open Access Journals (Sweden)

    Ananda Scherner

    2014-03-01

    Full Text Available A utilização do herbicida glyphosate para o controle químico das espécies de gramas-boiadeiras nas lavouras orizícolas não tem se mostrado eficiente. Nesse contexto, a investigação do controle dessas espécies com o glyphosate torna-se de fundamental importância, uma vez que não estão disponíveis no mercado herbicidas seletivos para o controle dessas em pós-emergência na cultura do arroz irrigado. Em vista do exposto, o objetivo do presente estudo foi avaliar a suscetibilidade das gramas-boiadeiras a diferentes formulações de glyphosate. Foram conduzidos dois experimentos em casa de vegetação em esquema fatorial. No primeiro experimento, o fator A constituiu-se de duas formulações de glyphosate (sal potássico e isopropilamina e o fator B de nove doses dos herbicidas (zero; 175; 350; 700; 1400; 2800; 5600; 11200; 22400g e.a. ha-1. No segundo experimento, o fator A constituiu-se de duas espécies de gramas-boiadeiras (Leersia hexandra e Luziola peruviana, o fator B de três formulações do glyphosate (sal amônio, potássico e isopropilamina e o fator C de nove doses dos herbicidas (zero; 87,5; 175; 350; 700; 1400; 2800; 5600; 11200g e.a. ha-1. Com base nos resultados obtidos, foi possível observar que as espécies apresentaram diferença de suscetibilidade ao herbicida glyphosate. Além disso, Leersia hexandra foi mais sensível em comparação a Luziola peruviana. As formulações de glyphosate influenciaram na suscetibilidade das espécies ao controle, sendo que, Roundup Transorb R® e Roundup Ultra® proporcionam melhor controle das espécies de gramas-boiadeiras.

  13. Coca and poppy eradication in Colombia: environmental and human health assessment of aerially applied glyphosate.

    Science.gov (United States)

    Solomon, Keith R; Anadón, Arturo; Carrasquilla, Gabriel; Cerdeira, Antonio L; Marshall, Jon; Sanin, Luz-Helena

    2007-01-01

    The production of coca and poppy as well as the processing and production of cocaine and heroin involve significant environmental impacts. Both coca and poppy are grown intensively in a process that involves the clearing of land in remote areas, the planting of the crop, and protection against pests such as weeds, insects, and pathogens. The aerial spray program to control coca and poppy production in Colombia with the herbicide glyphosate is conducted with modern state-of-the-art aircraft and spray equipment. As a result of the use of best available spray and navigation technology, the likelihood of accidental off-target spraying is small and is estimated to be less than 1% of the total area sprayed. Estimated exposures in humans resulting from direct overspray, contact with treated foliage after reentry to fields, inhalation, diet, and drinking water were small and infrequent. Analyses of surface waters in five watersheds showed that, on most occasions, glyphosate was not present at measurable concentrations; only two samples had residues just above the method detection limit of 25 microg/L. Concentrations of glyphosate in air were predicted to be very small because of negligible volatility. Glyphosate in soils that are directly sprayed will be tightly bound and biologically unavailable and have no residual activity. Concentrations of glyphosate plus Cosmo-Flux will be relatively large in shallow surface waters that are directly oversprayed (maximum instantaneous concentration of 1,229microgAE/L in water 30cm deep); however, no information was available on the number of fields in close proximity to surface waters, and thus it was not possible to estimate the likelihood of such contamination. The formulation used in Colombia, a mixture of glyphosate and Cosmo-Flux, has low toxicity to mammals by all routes of exposure, although some temporary eye irritation may occur. Published epidemiological studies have not suggested a strong or consistent linkage between

  14. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  15. Influence of Maize Rotations on the Yield of Soybean Grown in Meloidogyne incognita Infested Soil

    OpenAIRE

    Kinloch, Robert A.

    1983-01-01

    A replicated field study was conducted from 1972 to 1980 involving soybeans grown in 2-, 3-, and 4-year rotations with maize in soil infested with Meloidogyne incognita. Monocultured soybeans were maintained as controls. Cropping regimes involved root-knot nematode susceptible and resistant soybean cultivars and soybeans treated and not treated with nematicides. Yields of susceptible cultivars declined with reduced length of rotation. Nematicide treatment significantly increased yields of sus...

  16. Adição simultânea de sulfato de amônio e ureia à calda de pulverização do herbicida glyphosate Simultaneous addition of ammonium sulfate and urea to glyphosate spray solution

    Directory of Open Access Journals (Sweden)

    S.J.P. Carvalho

    2010-01-01

    Full Text Available Dois experimentos foram desenvolvidos em casa de vegetação, com o objetivo de avaliar a eficácia do herbicida glyphosate sobre plantas de Digitaria insularis quando soluções de ureia (U; 5 g L-1, sulfato de amônio (SA; 15 g L-1 ou U+SA (2,5 + 7,5 g L-1 foram utilizadas como veículo de pulverização. Aos 28 dias após aplicação, de acordo com as curvas de dose-resposta (primeiro experimento, foram necessários 409 g ha-1 de glyphosate para atingir 50% de controle da planta daninha (C50 quando água sem adjuvantes foi usada como veículo de pulverização. Para obtenção dos mesmos 50% de controle, as doses de glyphosate foram reduzidas para 373, 208 e 189 g ha-1; quando o herbicida foi pulverizado utilizando solução de U, SA ou U+SA, respectivamente. A redução na dose oriunda da combinação de glyphosate e U+SA também foi observada para controles de 80% (C80. No segundo experimento, a adição de U+SA à calda elevou o controle obtido com a menor dose de glyphosate (360 g ha-1, igualando-o à aplicação da maior dose (720 g ha-1 sem adjuvantes. Esses resultados evidenciam efeito complementar de U e SA em elevar a eficácia do glyphosate para controle de D. insularis.Two trials were carried out under greenhouse conditions to evaluate the efficacy of glyphosate on Digitaria insularis plants when urea (U; 5 g L-1; ammonium sulfate (AMS; 15 g L-1 or U+AMS (2.5 + 7.5 g L-1 were used as spray solutions. At 28 days after application, according to dose-response curves (first trial, 409 g ha-1 of glyphosate application were necessary to obtain 50% of weed control (C50 when water without adjuvants was used as spray solution. To reach the same 50% of weed control, glyphosate rates were reduced to 373, 208 and 189 g ha-1, when the herbicide was sprayed using a solution of U, AMS or U+AMS, respectively. Reduction in the dose of glyphosate combined with U+AMS was also observed for controls of 80% (C80. In the second trial, the addition of U

  17. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.

    Science.gov (United States)

    Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P

    2009-01-01

    end of the spray boom as recorded electronically +/-5%) for protection of sensitive plants were 50-120 m for coca spray scenarios and considerably lower for poppy spray scenarios. The equivalent buffer zone for amphibia was 5 m. The low toxicity of glyphosate to humans suggests that these aerial applications are not a concern for human health.

  18. ANALYSIS IMPORT POLICY OF SOYBEAN ON ECONOMICS PERFORMANCE OF INDONESIAN SOYBEAN

    Directory of Open Access Journals (Sweden)

    Muthiah Abda Azizah

    2015-11-01

    Full Text Available Trade liberalization is closely related to the opening of market access for Indonesian products to the world and vice versa. Since the soybean trade out of BULOG control began in 1998, soybean imports increased very rapidly (Sudaryanto and Swastika, 2007. This research aims to determine the general picture of soybean economy, factors analyses that influence the economic performance of Indonesian soybean and findings the alternative of policies that can reduce soybean imports in Indonesia. Methods of data analysis are descriptive analysis, 2SLS simultaneous equations, and simulation of policy alternatives. Results of the analysis of the factors that affect the economic performance of Indonesian soybean, consists of 1 The area of soybean harvest is influenced significantly by the price of domestic soybean and domestic prices of corn, 2 Productivity soybean influenced significantly by the domestic prices of soybean and fertilizer prices, 3 soybean demand influenced significantly by population, domestic prices of soybean, 4 domestic prices of soybean significantly affected by world prices of soybean, exchange rates, and soybean supply, 5 Imports of soybean influenced significantly by the domestic demand of soybean and soybean production. Therefore, policy scenarios should be made to reduce soybean imports, including by carrying out the expansion of soybean harvest policy, the policy of increasing the productivity of soybean, the policy of subsidizing the price of fertilizer.

  19. Misturas em tanque com glyphosate para o controle de trapoeraba, erva-de-touro e capim-carrapicho em soja RR®

    Directory of Open Access Journals (Sweden)

    Cleber Daniel de Goes Maciel

    2011-02-01

    Full Text Available O uso de misturas de glyphosate, em tanque, para manejo de espécies de plantas daninhas de difícil controle tem sido prática comum entre os agricultores brasileiros. Desta forma, este trabalho teve como objetivo avaliar a eficácia e seletividade de misturas, em tanque, de herbicidas com glyphosate para o controle de trapoeraba (Commelina benghalensis L., erva-de-touro (Tridax procumbens L. e capim-carrapicho (Cenchrus echinatus L. na cultura da soja RR®. O experimento foi conduzido em Maracaí, São Paulo, no período de novembro de 2006 a março de 2007, utilizando-se o cultivar CD-214RR® e delineamento experimental de blocos ao acaso, com 21 tratamentos e quatro repetições. Os tratamentos foram constituídos da aplicação de: glyphosate (180; 360; 540 e 720 g ha-1; glyphosate em sequencial (180/360; 360/360 e 540/360 g ha-1; glyphosate + chlorimuron-ethyl 360+10; 540+10; 360+5/ 360+5 g ha-1; glyphosate + lactofen (360+120; 540+120; 360+60/ 360+60 g ha-1; glyphosate + cloransulam-methyl (360+30; 540+30; 360+16,9/ 360+12,9 g ha-1; glyphosate + carfentrazone (360+4 g ha-1; glyphosate + imazethapyr (360+50 g ha-1; glyphosate + imazethapyr (177,8+30 g ha-1 e testemunhas capinada e sem capina. Apesar da similaridade de produtividade de grãos entre os tratamentos com glyphosate isolado e sequencial, nas doses 540, 720 e 540/ 360 g ha-1, as misturas em tanque com chlorimuron-ethyl, cloransulam-methyl, lactofen e imazethapyr favoreceram o controle de espécies de plantas daninhas tolerantes ao glyphosate como C. benghalensis e T. procumbens.

  20. Antioxidant properties of soybean seedlings inoculated with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Manojlović Ana S.

    2017-01-01

    Full Text Available This study was conducted in order to assess the effect of inoculation of soybean (Glycine max L. seeds with Trichoderma asperellum, followed by mites (Tetranychus urticae exposure on lipid peroxidation (LP process and the activity of antioxidant enzymes. T. urticae is an occasional pest of soybean that causes biotic stress. Biotic stress leads to overproduction of reactive oxygen species (ROS which may cause damage to vital biomolecules. Enzymatic antioxidant defense systems protect plants against oxidative stress. T. asperellum is commonly used as biocontrol agent against plant pathogens. It has been suggested that previous inoculation of seeds with T. asperellum may cause induced resistance against biotic stress. The aim of this study was to determine LP intensity and antioxidant enzymes activity in inoculated and non-inoculated soybean seedlings with and without exposure to mites. Noticeably higher LP intensity was detected in non-inoculated group treated with mites compared to control group. Inoculated soybean seedlings treated with mites had lower LP intensity compared to noninoculated group. Also, it has been noticed that inoculation with Trichoderma asperellum itself, produced mild stress in plants. In addition, positive correlation between enzymes activity and LP was noticed. The level of oxidative stress in plants was followed by the change of LP intensity. According to results obtained, it was concluded that the greatest oxidative stress occurred in non-inoculated group treated with mites and that inoculation successfully reduced oxidative stress. The results indicate that inoculation of soybean seeds with T. asperellum improves resistance of soybean seedlings against mites attack. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31022

  1. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Contardo-Jara, Valeska [Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Inland Fisheries, Biochemical Regulation, Mueggelseedamm 301, 12587 Berlin (Germany)], E-mail: contardo@igb-berlin.de; Klingelmann, Eva [Technische Universitaet Berlin/Berlin Institute of Technology, Department of Ecology, Chair of Soil Protection, Salzufer 12, 10587 Berlin (Germany)], E-mail: eva.klingelmann@TU-Berlin.de; Wiegand, Claudia [Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Inland Fisheries, Biochemical Regulation, Mueggelseedamm 301, 12587 Berlin (Germany); Humboldt University Berlin, Faculty of Biology, Unter den Linden 6, 10099 Berlin (Germany)], E-mail: cwiegand@igb-berlin.de

    2009-01-15

    The bioaccumulation potential of glyphosate and the formulation Roundup Ultra, as well as possible effects on biotransformation and antioxidant enzymes in Lumbriculus variegatus were compared by four days exposure to concentrations between 0.05 and 5 mg L{sup -1} pure glyphosate and its formulation. Bioaccumulation was determined using {sup 14}C labeled glyphosate. The bioaccumulation factor (BCF) varied between 1.4 and 5.9 for the different concentrations, and was higher than estimated from log P{sub ow}. Glyphosate and its surfactant POEA caused elevation of biotransformation enzyme soluble glutathione S-transferase at non-toxic concentrations. Membrane bound glutathione S-transferase activity was significantly elevated in Roundup Ultra exposed worms, compared to treatment with equal glyphosate concentrations, but did not significantly differ from the control. Antioxidant enzyme superoxide dismutase was significantly increased by glyphosate but in particular by Roundup Ultra exposure indicating oxidative stress. The results show that the formulation Roundup Ultra is of more ecotoxicological relevance than the glyphosate itself. - Roundup Ultra is of more ecotoxicological relevance than the active ingredient, glyphosate, to Lumbriculus variegatus regarding accumulation potential and enzymatic responses.

  2. Bioaccumulation of glyphosate and its formulation Roundup Ultra in Lumbriculus variegatus and its effects on biotransformation and antioxidant enzymes

    International Nuclear Information System (INIS)

    Contardo-Jara, Valeska; Klingelmann, Eva; Wiegand, Claudia

    2009-01-01

    The bioaccumulation potential of glyphosate and the formulation Roundup Ultra, as well as possible effects on biotransformation and antioxidant enzymes in Lumbriculus variegatus were compared by four days exposure to concentrations between 0.05 and 5 mg L -1 pure glyphosate and its formulation. Bioaccumulation was determined using 14 C labeled glyphosate. The bioaccumulation factor (BCF) varied between 1.4 and 5.9 for the different concentrations, and was higher than estimated from log P ow . Glyphosate and its surfactant POEA caused elevation of biotransformation enzyme soluble glutathione S-transferase at non-toxic concentrations. Membrane bound glutathione S-transferase activity was significantly elevated in Roundup Ultra exposed worms, compared to treatment with equal glyphosate concentrations, but did not significantly differ from the control. Antioxidant enzyme superoxide dismutase was significantly increased by glyphosate but in particular by Roundup Ultra exposure indicating oxidative stress. The results show that the formulation Roundup Ultra is of more ecotoxicological relevance than the glyphosate itself. - Roundup Ultra is of more ecotoxicological relevance than the active ingredient, glyphosate, to Lumbriculus variegatus regarding accumulation potential and enzymatic responses

  3. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available BACKGROUND: Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control. PRINCIPAL FINDINGS: In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum. The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro. CONCLUSIONS: To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.

  4. Eficácia de glyphosate em plantas de cobertura Efficacy of glyphosate in cover crops

    Directory of Open Access Journals (Sweden)

    P.C. Timossi

    2006-09-01

    Full Text Available Objetivou-se comparar a eficácia de três dosagens do herbicida glyphosate para a dessecação de Brachiaria decumbens, B. brizantha cv. Marandu e vegetação espontânea, visando a adoção do sistema plantio direto. Utilizou-se delineamento experimental de blocos ao acaso, num esquema fatorial 3 x 3, com quatro repetições. Testaram-se três tipos de cobertura vegetal e três dosagens de glyphosate (1,44, 2,16 e 2,88 kg ha-1. Aos 7, 14, 21 e 28 dias após a aplicação (DAA, foram feitas avaliações visuais da porcentagem de controle das coberturas vegetais e, aos 45 DAA, avaliações visuais da porcentagem de reinfestação da área. Conclui-se que, para as espécies que compunham a vegetação espontânea, o uso de 1,44 kg ha-1 proporcionou bom controle, sem no entanto evitar rebrotes de Digitaria insularis. Para as braquiárias, a mesma taxa de controle foi observada a partir de 2,16 kg ha-1. A camada de palha das braquiárias sobre o solo não foi capaz de suprimir a emergência de Cyperus rotundus, Alternanthera tenella, Raphanus raphanistrum, Bidens pilosa e Euphorbia heterophylla.This work aimed to compare rates of glyphosate to desiccate Brachiaria decumbens, B. brizantha cv. Marandu and spontaneous plants (weeds, aiming to adopt the no-tillage system. A randomized block experimental design in a factorial scheme was used (3x3, with four replications. The factors consisted of three species of cover crops and three rates of glyphosate (1.44, 2.16 and 2.88 kg ha-1. At 7, 14, 21 and 28 days after application of the herbicide, visual evaluations of the percentage of cover crop control were carried out and at 45 days of the reinfestation percentage of the area. It was concluded that the spontaneous plants presented a good control at 1.44 kg ha-1, without, however, preventing Digitaria insularis sprouts. The same control rate starting at 2.16 kg ha-1 was observed for the Brachiaria species. The straw layer of these cover crops on the soil

  5. 75 FR 20862 - Glyphosate From China

    Science.gov (United States)

    2010-04-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1178 (Preliminary)] Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject investigation. DATES: Effective Date: April 16, 2010. FOR FURTHER INFORMATION CONTACT: Amy Sherman (202-205-3289...

  6. Diurnal photosynthesis and stomatal resistance in field-grown soybeans

    International Nuclear Information System (INIS)

    Miller, J.E.; Muller, R.N.; Seegers, P.

    1976-01-01

    The process of photosynthesis in green plants is the major determinant of crop yield. Although the effects of air pollutants, such as sulfur dioxide, on photosynthesis has been studied, many unsolved questions remain. This is especially true with regard to reduction of photosynthetic rate under conditions of chronic exposure causing little or no visible injury. It was the purpose of these studies to develop techniques suitable for measuring photosynthetic rates of field-grown plants without dramatically altering the microenvironment of the plants. Gross photosynthetic rates of soybeans (Glycine max. cv. Wayne) in the field were measured by exposing a small section of representative leaves for 30 seconds to 14 CO 2 in a normal atmospheric mixture by a technique similar to that of Incoll and Wright. A 1-cm 2 section of the area exposed to 14 CO 2 is punched from the leaf and processed for liquid scintillation counting. Since the treatment period is of such short duration, there is little photorespiratory loss of 14 CO 2 , and thus, the amount of 14 C fixed in the leaf can be related to the gross photosynthetic rate. Other parameters measured during the course of these experiments were stomatal resistance, light intensity, leaf water potential, and air temperature

  7. Phytotoxicity of glyphosate in the germination of Pisum sativum and its effect on germinated seedlings

    OpenAIRE

    Mondal, Subinoy; Kumar, Mousumi; Haque, Smaranya; Kundu, Debajyoti

    2017-01-01

    The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds a...

  8. Effect of space mutation of photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiao'nan; Liu Qi

    2012-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photo synthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soy bean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 >SP 3 >SP 4 >CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  9. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater?

    International Nuclear Information System (INIS)

    Struger, J.; Van Stempvoort, D.R.; Brown, S.J.

    2015-01-01

    Correlation analysis suggests that occurrences of AMPA in streams of southern Ontario are linked mainly to glyphosate in both urban and rural settings, rather than to wastewater sources, as some previous studies have suggested. For this analysis the artificial sweetener acesulfame was analyzed as a wastewater indicator in surface water samples collected from urban and rural settings in southern Ontario, Canada. This interpretation is supported by the concurrence of seasonal fluctuations of glyphosate and AMPA concentrations. Herbicide applications in larger urban centres and along major transportation corridors appear to be important sources of glyphosate and AMPA in surface water, in addition to uses of this herbicide in rural and mixed use areas. Fluctuations in concentrations of acesulfame and glyphosate residues were found to be related to hydrologic events. - Highlights: • Widespread occurrence of glyphosate and AMPA in surface waters of southern Ontario. • Linked to applications of glyphosate in urban and rural settings. • Supported by lack of correlation between AMPA and the wastewater tracer acesulfame. • Contrasts with view that AMPA found in the environment is derived from wastewater. • AMPA more persistent than glyphosate and both fluctuated with hydrological cycles. - The occurrence of AMPA in streams in southern Ontario is linked mainly to glyphosate rather than wastewater sources

  10. Disposition and metabolism of glyphosate in the Sprague Dawley rat following oral administration

    International Nuclear Information System (INIS)

    Brewster, D.W.; Warren, J.A.; Hopkins, W.E.

    1991-01-01

    Five groups of male SD rats were administered 14 C-labelled glyphosate, (N-[(phosphonomethyl)glycine]) by gavage at a dose level of 10 mg/kg. Animals were killed 2, 6.3, 28, 96 and 168 hours after dosing and the amount of glyphosate-derived material in various organs and excreta were determined. In addition, the metabolic profile in tissues containing > 1% of the administered dose was evaluated. Approximately 93% of the body burden 2 hours after administration was associated with the GI contents and small intestinal tissue. The total body burden 7 days after administration was ∼1% of the dose. Only the kidneys, small intestine, colon, bone, GI contents, residual carcass contained > 1% of the dose 6 hours after administration and the metabolic profiles of these tissues indicated that ∼100% of the body burden was present as unmetabolized parent material. Glyphosate was rapidly eliminated from these tissues with halflives ranging from 20 to 90 hours. A minor metabolite comprising < 0.1% of the dose was detected in the GI contents and colon tissue of 3 animals. Less than 40% of the administered dose was absorbed from the gut and glyphosate was rapidly eliminated from the body with urine and feces being equally important routes of elimination. The whole body halflife was approximately 52 hours. The results from this study indicate that no toxic metabolites of glyphosate were produced, as there was little evidence of metabolism, and essentially 100% of the body burden was parent glyphosate with no significant persistence of accumulated material

  11. Influence of glyphosate and its formulation (Roundup[reg]) on the toxicity and bioavailability of metals to Ceriodaphnia dubia

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Martin T.K. [Department of Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China); Wang Wenxiong [Department of Biology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong (China); Chu, L.M. [Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)]. E-mail: leemanchu@cuhk.edu.hk

    2005-11-15

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup[reg]) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup[reg] and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited 'less than additive' mixture toxicity, with 48-h LC50 toxic unit>1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur. - Glyphosate can control the toxicity and bioavailability of many heavy metals in the aquatic environment.

  12. Influence of glyphosate and its formulation (Roundup[reg]) on the toxicity and bioavailability of metals to Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Tsui, Martin T.K.; Wang Wenxiong; Chu, L.M.

    2005-01-01

    This study examined the toxicological interaction between glyphosate (or its formulation, Roundup[reg]) and several heavy metals to a freshwater cladoceran, Ceriodaphnia dubia. We demonstrated that all binary combinations of Roundup[reg] and metals (Cd, Cu, Cr, Ni, Pb, Se and Zn) exhibited 'less than additive' mixture toxicity, with 48-h LC50 toxic unit>1. Addition of glyphosate alone could significantly reduce the acute toxicity of Ag, Cd, Cr, Cu, Ni, Pb and Zn (but not Hg and Se). The ratio between glyphosate and metal ions was important in determining the mitigation of metal toxicity by glyphosate. A bioaccumulation study showed that in the presence of glyphosate the uptake of some metals (e.g. Ag) was halted but that of others (e.g. Hg) was increased significantly. Therefore, our study strongly suggests that glyphosate and its commercial formulations can control the toxicity as well as the bioavailability of heavy metals in aquatic ecosystems where both groups of chemicals can co-occur. - Glyphosate can control the toxicity and bioavailability of many heavy metals in the aquatic environment

  13. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars.

    Science.gov (United States)

    Hussain, Reem M; Ali, Mohammed; Feng, Xing; Li, Xia

    2017-02-28

    The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such

  14. Glyphosate and adverse pregnancy outcomes, a systematic review of observational studies

    Directory of Open Access Journals (Sweden)

    Jessica S. A. de Araujo

    2016-06-01

    Full Text Available Abstract Background A study in frog and chicken embryos, and reports of a high incidence of birth defects in regions of intensive GM-soy planting have raised concerns on the teratogenic potential of glyphosate-based herbicides. These public concerns prompted us to conduct a systematic review of the epidemiological studies testing hypotheses of associations between glyphosate exposure and adverse pregnancy outcomes including birth defects. Methods A systematic and comprehensive literature search was performed in MEDLINE, TOXLINE, Bireme-BVS and SCOPUS databases using different combinations of exposure and outcome terms. A case–control study on the association between pesticides and congenital malformations in areas of extensive GM soy crops in South America, and reports on the occurrence of birth defects in these regions were reviewed as well. Results The search found ten studies testing associations between glyphosate and birth defects, abortions, pre-term deliveries, small for gestational date births, childhood diseases or altered sex ratios. Two additional studies examined changes of time-to-pregnancy in glyphosate-exposed populations. Except for an excess of Attention Deficit Hyperactivity Disorder - ADHD (OR = 3.6, 1.3-9.6 among children born to glyphosate appliers, no significant associations between this herbicide and adverse pregnancy outcomes were described. Evidence that in South American regions of intensive GM-soy planting incidence of birth defects is high remains elusive. Conclusions Current epidemiological evidence, albeit limited to a few studies using non-quantitative and indirect estimates and dichotomous analysis of exposures, does not lend support to public concerns that glyphosate-based pesticides might pose developmental risks to the unborn child. Nonetheless, owing to methodological limitations of existing analytical observational studies, and particularly to a lack of a direct measurement (urine and/or blood levels

  15. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots.

    Science.gov (United States)

    Zabalza, Ana; Orcaray, Luis; Fernández-Escalada, Manuel; Zulet-González, Ainhoa; Royuela, Mercedes

    2017-09-01

    The shikimate pathway is a metabolic route for the biosynthesis of aromatic amino acids (AAAs) (i.e. phenylalanine, tyrosine, and tryptophan). A key enzyme of shikimate pathway (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) is the target of the widely used herbicide glyphosate. Quinate is a compound synthesized in plants through a side branch of the shikimate pathway. Glyphosate provokes quinate accumulation and exogenous quinate application to plants shows a potential role of quinate in the toxicity of the herbicide glyphosate. Based on this, we hypothesized that the role of quinate accumulation in the toxicity of the glyphosate would be mediated by a deregulation of the shikimate pathway. In this study the effect of the glyphosate and of the exogenous quinate was evaluated in roots of pea plants by analyzing the time course of a full metabolic map of several metabolites of shikimate and phenylpropanoid pathways. Glyphosate application induced an increase of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS, first enzyme of the shikimate pathway) protein and accumulation of metabolites upstream of the enzyme EPSPS. No common effects on the metabolites and regulation of shikimate pathway were detected between quinate and glyphosate treatments, supporting that the importance of quinate in the mode of action of glyphosate is not mediated by a common alteration of the regulation of the shikimate pathway. Contrary to glyphosate, the exogenous quinate supplied was probably incorporated into the main trunk from the branch pathway and accumulated in the final products, such as lignin, concomitant with a decrease in the amount of DAHPS protein. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. UV-Vis Spectrophotometric Analysis and Quantification of Glyphosate for an Interdisciplinary Undergraduate Laboratory

    Science.gov (United States)

    Felton, Daniel E.; Ederer, Martina; Steffens, Timothy; Hartzell, Patricia L.; Waynant, Kristopher V.

    2018-01-01

    Glyphosate (N-(phosphonomethyl)glycine) is the most widely used herbicide on earth. A simple assay to quantify glyphosate concentrations in environmental samples was developed as part of an interdisciplinary effort linking introductory laboratory courses in chemistry, biology, and microbiology. In this 3 h laboratory experiment, students used…

  17. The effect of glyphosate on import into a sink leaf of sugar beet

    International Nuclear Information System (INIS)

    Shieh, Wenjang; Geiger, D.R.

    1990-01-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying 14 CO 2 to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying 14 C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves

  18. Effect of light conditions and chemical characteristics of water on dissipation of glyphosate in aqueous medium.

    Science.gov (United States)

    Yadav, Veena; Kaur, Pervinder; Kaur, Paawan

    2017-11-06

    The present study was conducted to determine the effect of light conditions and chemical properties of water on dissipation of glyphosate. The residues of glyphosate and aminomethylphosphonic acid (AMPA) were quantified using fluorescence spectrophotometer after derivatization with 9-fluoroenylmethoxycarbonyl chloride (FMOC-Cl) and orthopthaldehyde (OPA). Average percent recoveries of glyphosate and AMPA from distilled, tap, and ground water ranged from 87.5 to 94.9, 87.3 to 93.7, and 80.6 to 92.0, respectively, with relative standard deviation less than 10%. The limit of detection and limit of quantification of glyphosate and AMPA from different water matrices ranged from 0.001 to 0.03 μg mL -1 and 0.003 to 0.01 μg mL -1 , respectively. The dissipation of glyphosate followed the first-order kinetics, and half-life varied from 1.56 to 14.47 and 13.14 to 42.38 days under UV and sunlight, respectively. The pH and electrical conductivity (EC) of water has differential influence on dissipation of glyphosate, and it increased with increase in pH and EC.

  19. RNAi-mediated resistance to SMV and BYMV in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Lo Thi Mai Thu

    2016-09-01

    Full Text Available Soybean mosaic virus (SMV and bean yellow mosaic virus (BYMV are two typical types of viruses that cause mosaic in soybean plants. Multiple viral infections at the same site can lead to 66% to 80% yield reduction. We have aimed to improve SMV and BYMV resistance in Vietnamese soybeans using gene transfer techniques under the mechanism of RNAi. In this study, we present newly generated transgenic tobacco plants carrying RNAi [CPi (SMV-BYMV] resistance to the two types of viruses; 73.08% of transgenic tobacco lines proved to be fully resistant to SMV and BYMV. In addition, the number of virus copies in transgenic tobacco plants was reduced on average by more than 51% compared to the control plants (wild type. This promising result shows the potential of transerring the CPi (SMV-BYMV structure in soybean to increase resistance of soybean to SMV and BYMV and advance the aims of antiviral soybean breeding in Vietnam.

  20. Análisis de la sensibilidad de biotipos de Lolium multiflorum a herbicidas inhibidores de la enzima ALS, ACCasa y Glifosato Sensitivity analysis of Lolium multiflorum biotypes to Glyphosate, ACCase and ALS-inhibiting herbicides

    Directory of Open Access Journals (Sweden)

    P. Diez De Ulzurrun

    2012-09-01

    Full Text Available A pesar de los avances logrados en el control de las malezas con el uso de herbicidas, el manejo de las mismas no se simplificó, sino que, al contrario, surgieron nuevos desafíos, como la aparición de resistencia a herbicidas. En 2007, se reportó en Lolium multiflorum el segundo caso de resistencia a glifosato detectado en Argentina. En el sudeste de la provincia de Buenos Aires se registraron fallas de control a campo en poblaciones de Lolium multiflorum debido a su resistencia a distintos herbicidas de las familias de los inhibidores de ALS y de ACCasa y al herbicida glifosato. El objetivo de este estudio fue caracterizar el nivel de resistencia a ciertos herbicidas inhibidores de la ALS y de la ACCasa y al glifosato en una población de L. multiflorum de Lobería (Bs As, Argentina supuestamente resistente (LmR. Se realizaron bioensayos en cajas de Petri y se determinó la GR50 mediante la variación en la longitud de coleoptile. Las curvas de dosis-respuesta se obtuvieron por medio de la ecuación log-logística. El biotipo LmR presentó resistencia múltiple a herbicidas con tres modos de acción diferentes: glifosato, inhibidores de ALS y de ACCasa. Dicho ensayo demostró la aparición de un biotipo de L. multiflorum con resistencia a múltiples principios activos.Despite progress in weed control using herbicides, management has not been simplified, but new challenges such as herbicides resistance have arisen. In 2007, a Lolium multiflorum population resistant to glyphosate was reported, as the second case of glyphosate resistant weeds in Argentina. In the southeast of Buenos Aires province, control failures in populations of L. multiflorum to different families of herbicide such as ALS and ACCase inhibitors and to glyphosate at field level have been registered. The aim of this study was to characterize the level of resistance to certain herbicides inhibitors of ALS, ACCase and glyphosate in a putatively resistant (LmR population of L