WorldWideScience

Sample records for glyphosate-resistant canola brassica

  1. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  2. Assessing the risk of Glyphosate to native plants and weedy Brassicaceae species of North Dakota

    Science.gov (United States)

    This study was conducted to determine the ecological risk to native plants and weedy Brassicaceae species which may be growing in areas affected by off target movement of glyphosate applied to glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were ...

  3. Creation of glyphosate-resistant Brassica napus L. plants expressing DesC desaturase of cyanobacterium Synechococcus vulcanus

    Directory of Open Access Journals (Sweden)

    Goldenkova-Pavlova I. V.

    2012-12-01

    Full Text Available Aim. Creation of glyphosate-resistant canola plants expressing bifunctional hybrid desC::licBM3 gene. In the hybrid gene the sequence of DesC desaturase of cyanobacterium S. vulcanus without plastid targeting was fused with the sequence of thermostable lichenase reporter LicBM3 gene. Methods. Agrobacterium tumefaciens-mediated transformation, PCR, quantitative and qualitative determination of lichenase activity, genetic analysis. Results. Transgenic canola plants, carring the enolpyruvat shikimat phosphate syntase gene (epsps, conferring on plants resistance to phosphonomethyl glycine herbicides (Roundup, as well as the desC::licBM3 gene, were selected. The presence of transgenes was confimed by multiplex PCR. The epsps gene expression in canola was shown at the transcription level, during in vitro growth and after greenhouse herbicide treatment. Activity of the licBM3 gene product as a part of hybrid protein allowed quantitative and qualitative estimation of the desaturase gene expression. Inheritance of heterologous genes and their expression in the first generation were investigated. Conclusions. Transgenic canola plants were obtained, the presence of trangenes in plant genome was proved and expression of the target genes was detected.

  4. Resistance of Four Canola Genotypes Against Cabbage Aphid Brevicoryne brassicae (L.

    Directory of Open Access Journals (Sweden)

    S.H. MousaviAnzabi

    2017-12-01

    Full Text Available Introduction: Canola (Brassica napus L. is one of the prominent oil seed plants in Iran. This plant has good agricultural and food nourishment properties, such as resistant to drought, cold and salinity stresses and low level of cholesterol. Cabbage waxy aphid Brevicorynebrassicae (L. is the most important and cosmopolitan pest of cruciferous crops. This aphid is reduced 9 to 77% grain yields and up to 11% oil content. Developing environmental-friendly methods, such as deploying insect-resistant varieties to pest control was advised by scientists. Resistant varieties decrease production costs and can be integrated with other pest control policies in IPM programs. In a greenhouse experiment plants of cabbage, cauliflower wassusceptible host plant and broccoli, turnip, rapeseed, showed resistance to cabbage aphid. With the aim of identifying the existence of resistance resources, a laboratory study was conducted to evaluate the effects of seven canola genotypes on biological parameters of cabbage aphid. Detected resistant variety could be used as a resistance source. Material and Methods: In order to resistancy evaluation of canola, genotypes contain “RGS”,“Hyola-308”,“Hyola-401” and “Sarigol” to cabbage aphid, two experiments was conducted under field and greenhouse conditions in Kahriz region of West Azerbaijan province in 2010.In this study infestation index and tolerance in Field conditions and antibiosis study in greenhouse conditions was evaluated.To study antibiosis, genotypes were planted in pots with 10 replications based on completely random design and cabbage aphid population intrinsic rate of increase (rm was calculated. As followed: (Lotka 1924: 1= other population parameters computed by Carey (1993 method. Field experiment contains10 replications wereperformed based on complete randomized blocks experimental designs that five of them were under natural infestation and five others, free of infestation (control. To

  5. Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina.

    Science.gov (United States)

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2018-03-01

    Brassica rapa L. is an annual Brassicaceae species cultivated for oil and food production, whose wild form is a weed of crops worldwide. In temperate regions of South America and especially in the Argentine Pampas region, this species is widely distributed. During 2014, wild B. rapa populations that escaped control with glyphosate applications by farmers were found in this area. These plants were characterized by morphology and seed acidic profile, and all the characters agreed with B. rapa description. The dose-response assays showed that the biotypes were highly resistant to glyphosate. It was also shown that they had multiple resistance to AHAS-inhibiting herbicides. The transgenic origin of the glyphosate resistance in B. rapa biotypes was verified by an immunological test which confirmed the presence of the CP4 EPSPS protein and by an event-specific GT73 molecular marker. The persistence of the transgene in nature was confirmed for at least 4 years, in ruderal and agrestal habitats. This finding suggests that glyphosate resistance might come from GM oilseed rape crops illegally cultivated in the country or as a seed contaminant, and it implies gene flow and introgression between feral populations of GM B. napus and wild B. rapa. The persistence and spread of the resistance in agricultural environments was promoted by the high selection pressure imposed by intensive herbicide usage in the prevalent no-till farming systems.

  6. EFFECTS OF PLANT NUTRITION ON CANOLA (Brassica napus L. GROWTH

    Directory of Open Access Journals (Sweden)

    Sami Süzer

    2016-03-01

    Full Text Available Canola (Brassica napus L. is an important edible oilseed crop in the World and in Turkey. It has a healthy vegetable oil because of its balance with omega 3-6-9 essential fatty acids, making canola oil a healthy vegetable oil throughout the World for cooking and processed food industry. Canola production of high yield and good quality usually depends on well-balanced plant nutrition and growing conditions. A well-balanced soil condition also affects canola plants responses to stress factors such as disease and bad weather conditions. Nitrogen, phosphorus and potassium (NPK are some of the major nutrients required to significantly increase canola yield. Fertilizer application dosages in canola production vary because of the variable occurrence of NPK in the soil. A high yielding canola production needs a well-balanced fertilization program.

  7. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    Science.gov (United States)

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  8. Glyphosate resistance: state of knowledge

    Science.gov (United States)

    Sammons, Robert Douglas; Gaines, Todd A

    2014-01-01

    Studies of mechanisms of resistance to glyphosate have increased current understanding of herbicide resistance mechanisms. Thus far, single-codon non-synonymous mutations of EPSPS (5-enolypyruvylshikimate-3-phosphate synthase) have been rare and, relative to other herbicide mode of action target-site mutations, unconventionally weak in magnitude for resistance to glyphosate. However, it is possible that weeds will emerge with non-synonymous mutations of two codons of EPSPS to produce an enzyme endowing greater resistance to glyphosate. Today, target-gene duplication is a common glyphosate resistance mechanism and could become a fundamental process for developing any resistance trait. Based on competition and substrate selectivity studies in several species, rapid vacuole sequestration of glyphosate occurs via a transporter mechanism. Conversely, as the chloroplast requires transporters for uptake of important metabolites, transporters associated with the two plastid membranes may separately, or together, successfully block glyphosate delivery. A model based on finite glyphosate dose and limiting time required for chloroplast loading sets the stage for understanding how uniquely different mechanisms can contribute to overall glyphosate resistance. PMID:25180399

  9. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean

    OpenAIRE

    Feng, Paul C. C.; Baley, G. James; Clinton, William P.; Bunkers, Greg J.; Alibhai, Murtaza F.; Paulitz, Timothy C.; Kidwell, Kimberlee K.

    2005-01-01

    Glyphosate is a broad-spectrum herbicide used for the control of weeds in glyphosate-resistant crops. Glyphosate inhibits 5-enolpyruvyl shikimate 3-phosphate synthase, a key enzyme in the synthesis of aromatic amino acids in plants, fungi, and bacteria. Studies with glyphosate-resistant wheat have shown that glyphosate provided both preventive and curative activities against Puccinia striiformis f. sp. tritici and Puccinia triticina, which cause stripe and leaf rusts, respectively, in wheat. ...

  10. Overview of glyphosate-resistant weeds worldwide.

    Science.gov (United States)

    Heap, Ian; Duke, Stephen O

    2018-05-01

    Glyphosate is the most widely used and successful herbicide discovered to date, but its utility is now threatened by the occurrence of several glyphosate-resistant weed species. Glyphosate resistance first appeared in Lolium rigidum in an apple orchard in Australia in 1996, ironically the year that the first glyphosate-resistant crop (soybean) was introduced in the USA. Thirty-eight weed species have now evolved resistance to glyphosate, distributed across 37 countries and in 34 different crops and six non-crop situations. Although glyphosate-resistant weeds have been identified in orchards, vineyards, plantations, cereals, fallow and non-crop situations, it is the glyphosate-resistant weeds in glyphosate-resistant crop systems that dominate the area infested and growing economic impact. Glyphosate-resistant weeds present the greatest threat to sustained weed control in major agronomic crops because this herbicide is used to control weeds with resistance to herbicides with other sites of action, and no new herbicide sites of action have been introduced for over 30 years. Industry has responded by developing herbicide resistance traits in major crops that allow existing herbicides to be used in a new way. However, over reliance on these traits will result in multiple-resistance in weeds. Weed control in major crops is at a precarious point, where we must maintain the utility of the herbicides we have until we can transition to new weed management technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Glyphosate-Resistant Goosegrass from Mississippi

    Directory of Open Access Journals (Sweden)

    Vijay K. Nandula

    2013-05-01

    Full Text Available A suspected glyphosate-resistant goosegrass [Eleusine indica (L. Gaertn.] population, found in Washington County, Mississippi, was studied to determine the level of resistance and whether the resistance was due to a point mutation, as was previously identified in a Malaysian population. Whole plant dose response assays indicated a two- to four-fold increase in resistance to glyphosate. Leaf disc bioassays based on a glyphosate-dependent increase in shikimate levels indicated a five- to eight-fold increase in resistance. Sequence comparisons of messenger RNA for epsps, the gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, from resistant and sensitive goosegrass, revealed a cytosine to thymine nucleotide change at position 319 in the resistant accessions. This single nucleotide polymorphism causes a proline to serine amino acid substitution at position 106 in 5-enolpyruvylshikimate-3-phosphate synthase. A real-time polymerase chain reaction assay using DNA probes specific for the nucleotide change at position 319 was developed to detect this polymorphism. Goosegrass from 42 locations were screened, and the results indicated that glyphosate-resistant goosegrass remained localized to where it was discovered. Pendimethalin, s-metolachlor, clethodim, paraquat and fluazifop controlled resistant goosegrass 93% to 100%, indicating that several control options for glyphosate-resistant goosegrass are available.

  12. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    Science.gov (United States)

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  13. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    International Nuclear Information System (INIS)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G.

    2004-01-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels

  14. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  15. Glyphosate-resistant goosegrass from Mississippi

    Science.gov (United States)

    A glyphosate resistant population of goosegrass (Eleusine indica (L.) Gaertn.) was documented near Stoneville, Mississippi, USA, in an area which had received multiple applications of glyphosate each year for the previous eleven years. Resistance ratios based on dose response growth reduction assays...

  16. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate.

    Science.gov (United States)

    Van Horn, Christopher R; Moretti, Marcelo L; Robertson, Renae R; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Schulz, Burkhard; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Hall, J Christopher; McLean, Michael D; Lawton, Mark B; Sammons, R Douglas; Wang, Dafu; Westra, Philip; Gaines, Todd A

    2018-05-01

    Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Effects of derived meals from juncea (Brassica juncea, yellow and black seeded canola (Brassica napus and multicarbohydrase enzymes supplementation on apparent metabolizable energy in broiler chickens

    Directory of Open Access Journals (Sweden)

    Balachandar Jayaraman

    2016-09-01

    Full Text Available Two experiments were conducted to determine the nitrogen-corrected apparent metabolizable energy (AMEn of differently processed meals from Juncea (Brassica juncea, yellow and black seeded canola (Brassica napus, with or without supplementation of multi-carbohydrase enzymes (Enz in diets for broiler chickens. The first experiment was a 3 × 2 × 2 factorial arrangement with the main factors being seed type (yellow [Yellow] or black [B1] canola seeds and Juncea seeds, processed at two temperatures (high temperature desolventized-toasted [HTDT] at 95°C or low temperature desolventized-toasted [LTDT] at 57°C, with or without Enz. In Exp. 1, a total of 384 one-day-old male broiler chicks were randomly assigned to 64 battery cages, with 6 birds/cage. The second experiment was a 2 × 2 × 2 factorial arrangement with the main factors being seed type (Yellow or black [B2], seed source (Scott, Saskatchewan or Truro, Nova Scotia and Enz (with or without supplementation. A total of 264 one-day-old male broiler chicks were randomly assigned to 44 battery cages, with 6 birds per cage. In Exp. 1 and 2, all birds were fed a common starter diet from 1 to 14 days of age. From d 15 to 21, the birds were fed one of the test treatments, a basal grower diet or the basal grower diet replaced with 30% test ingredient with celite (0.8% added as an inert marker. Excreta was collected on d 20 and 21. In Exp. 1, there were no interactions (P > 0.05 among seed type, processing temperature and Enz. Processing temperature and dietary Enz did not affect (P > 0.05 AMEn of different canola meals. The AMEn of prepress solvent extracted canola and juncea meals (PSEM from Yellow (11.2 MJ/kg was higher (P  0.05 among seed color, location and Enz. Supplementation of dietary Enz did not affect (P > 0.05 AMEn of different cold press canola meals. The AMEn of cold press canola meals (CPM from Yellow (14.7 MJ/kg was higher (P < 0.05 compared with B2 (12.2

  18. Effects of Drought Stress on Canola (Brassica napus L. Genotypes Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    R Khani

    2018-02-01

    Full Text Available Introduction Canola (Brassica napus L. genotypes with wide adaptability to environmental conditions could play a major role in Iran’s oilseed crop production. Selection of high performing genotypes is very important for developing canola cultivation. Water stress can reduce crop yield by affecting both source and sink for assimilation. Canola yield depends on genotype and environmental conditions and response of genotypes to environmental factors. Canola genotypes response to stress depends on the developmental stage and the events occurring prior to and during flowering stage. Resistance to water stress is divided to avoidance and tolerance. Some species are tolerable against water stress. In a while, other species respond ending life cycle, falling leaves and other reactions into water stress. Therefore, investigation of canola genotypes response to water stress in phenological growth stages can be valuable in order to determine resistant or tolerant genotypes. Materials and Methods In order to study the effect of drought stress on canola genotypes yield and its components, an experiment was conducted in 2013-2014 as a split plot based on randomized complete block design with three replications at the research farm, Agricultural and Natural Resources Research Center of East-Azarbaijan, Tabriz-Iran. Three levels of drought stress were considered as main plot (No-stress, stress at the flowering and pod setting growth stages and 18 canola genotypes including HW113, RS12, Karaj1, KR18, L73, L72, HW101, L146, L210, L183, SW101, L5, L201, HW118, KR4, Karaj2, Karaj3 and KS7 as subplots. Flood irrigation was scheduled at 50% field capacity, 30 and 30% field capacity for no-stress, stress at the flowering and pod setting growth stages, respectively; i.e. soil moisture capacity was maintained at 30% by irrigating to 100% field capacity when available moisture reached 30% in drought stress treatments. An ANOVA was conducted using the PROC-GLM procedure

  19. Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil.

    Science.gov (United States)

    Locke, Martin A; Zablotowicz, Robert M; Reddy, Krishna N

    2008-04-01

    Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions. Copyright (c) 2008 by John Wiley & Sons

  20. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site

    International Nuclear Information System (INIS)

    Farwell, Andrea J.; Vesely, Susanne; Nero, Vincent; Rodriguez, Hilda; McCormack, Kimberley; Shah, Saleh; Dixon, D. George; Glick, Bernard R.

    2007-01-01

    The growth of transgenic canola (Brassica napus) expressing a gene for the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase was compared to non-transformed canola exposed to flooding and elevated soil Ni concentration, in situ. In addition, the ability of the plant growth-promoting bacterium Pseudomonas putida UW4, which also expresses ACC deaminase, to facilitate the growth of non-transformed and transgenic canola under the above mentioned conditions was examined. Transgenic canola and/or canola treated with P. putida UW4 had greater shoot biomass compared to non-transformed canola under low flood-stress conditions. Under high flood-stress conditions, shoot biomass was reduced and Ni accumulation was increased in all instances relative to low flood-stress conditions. This is the first field study to document the increase in plant tolerance utilizing transgenic plants and plant growth-promoting bacteria exposed to multiple stressors. - Using transgenic plants and plant growth-promoting bacteria as phytoremediation methods increased plant tolerance at a metal-contaminated field site under low flood conditions

  1. Mechanism of Resistance to Glyphosate in Lolium perenne from Argentina

    Directory of Open Access Journals (Sweden)

    Marcos Yanniccari

    2017-10-01

    Full Text Available In Argentina, glyphosate resistance was reported in a Lolium perenne population after 12 years of successful herbicide use. The aim of the current paper was to put in evidence for the mechanism of glyphosate resistance of this weed. Susceptible leaves treated with different doses of glyphosate and incubated in vitro showed an accumulation of shikimic acid of around three to five times the basal level, while no changes were detected in leaves of glyphosate-resistant plants. The resistance mechanism prevents shikimate accumulation in leaves, even under such tissue-isolation conditions. The activity of the glyphosate target enzyme (EPSPS: 5-enolpyruvylshikimate-3-phosphate synthase was quantified at different herbicide concentrations. EPSPS from resistant plants showed no difference in glyphosate-sensitivity compared to EPSPS from susceptible plants, and, accordingly, no amino acid substitution causing mutations associated with resistance were found. While the glyphosate target enzymes were equally sensitive, the basal EPSPS activity in glyphosate resistant plants was approximately 3-fold higher than the EPSPS activity in susceptible plants. This increased EPSPS activity in glyphosate resistant plants was associated with a 15-fold higher expression of EPSPS compared with susceptible plants. Therefore, the over-expression of EPSPS appears to be the main mechanism responsible for resistance to glyphosate. This mechanism has a constitutive character and has important effects on plant fitness, as recently reported.

  2. Pool of resistance mechanisms to glyphosate in Digitaria insularis.

    Science.gov (United States)

    de Carvalho, Leonardo Bianco; Alves, Pedro Luis da Costa Aguiar; González-Torralva, Fidel; Cruz-Hipolito, Hugo Enrique; Rojano-Delgado, Antonia María; De Prado, Rafael; Gil-Humanes, Javier; Barro, Francisco; de Castro, María Dolores Luque

    2012-01-18

    Digitaria insularis biotypes resistant to glyphosate have been detected in Brazil. Studies were carried out in controlled conditions to determine the role of absorption, translocation, metabolism, and gene mutation as mechanisms of glyphosate resistance in D. insularis. The susceptible biotype absorbed at least 12% more (14)C-glyphosate up to 48 h after treatment (HAT) than resistant biotypes. High differential (14)C-glyphosate translocation was observed at 12 HAT, so that >70% of the absorbed herbicide remained in the treated leaf in resistant biotypes, whereas 42% remained in the susceptible biotype at 96 HAT. Glyphosate was degraded to aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine by >90% in resistant biotypes, whereas a small amount of herbicide (up to 11%) was degraded by the susceptible biotype up to 168 HAT. Two amino acid changes were found at positions 182 and 310 in EPSPS, consisting of a proline to threonine and a tyrosine to cysteine substitution, respectively, in resistant biotypes. Therefore, absorption, translocation, metabolism, and gene mutation play an important role in the D. insularis glyphosate resistance.

  3. The benefits of herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2012-10-01

    Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry.

  4. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Herbicide-resistant weed management: focus on glyphosate.

    Science.gov (United States)

    Beckie, Hugh J

    2011-09-01

    This review focuses on proactive and reactive management of glyphosate-resistant (GR) weeds. Glyphosate resistance in weeds has evolved under recurrent glyphosate usage, with little or no diversity in weed management practices. The main herbicide strategy for proactively or reactively managing GR weeds is to supplement glyphosate with herbicides of alternative modes of action and with soil-residual activity. These herbicides can be applied in sequences or mixtures. Proactive or reactive GR weed management can be aided by crop cultivars with alternative single or stacked herbicide-resistance traits, which will become increasingly available to growers in the future. Many growers with GR weeds continue to use glyphosate because of its economical broad-spectrum weed control. Government farm policies, pesticide regulatory policies and industry actions should encourage growers to adopt a more proactive approach to GR weed management by providing the best information and training on management practices, information on the benefits of proactive management and voluntary incentives, as appropriate. Results from recent surveys in the United States indicate that such a change in grower attitudes may be occurring because of enhanced awareness of the benefits of proactive management and the relative cost of the reactive management of GR weeds. Copyright © 2011 Society of Chemical Industry.

  6. Structural Basis of Glyphosate Resistance Resulting from the Double Mutation Thr97 → Ile and Pro101 → Ser in 5-Enolpyruvylshikimate-3-phosphate Synthase from Escherichia coli*S⃞

    Science.gov (United States)

    Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst

    2009-01-01

    The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (Ki = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (Km = 0.1 mm). The crystal structure at 1.7-Å resolution revealed that the dual mutation causes a shift of residue Gly96 toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile97 points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr97 and Pro101 induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS. PMID:19211556

  7. Conjugated linoleic acid content in milk of Chilean Black Friesian cows under pasture conditions and supplemented with canola seed (Brassica napus concentrate

    Directory of Open Access Journals (Sweden)

    J. P. Avilez Ruiz

    2012-12-01

    Full Text Available At present, there is limited and contradictory information about the effects of the use of canola (Brassica napus seed as supplement on the contents of conjugated linoleic acid (CLA in milk of grazing cows. The objective of this study was to evaluate the effect of a dietary supplement with canola seed on the production and composition of milk, and CLA concentration in Chilean Black Friesian cows under pasture conditions. Three experiments were done. Experiment 1: control group was fed 5 kg d-1 of commercial concentrate without canola (0-TC1 and treatment group that was fed 3.75 kg of commercial concentrate plus 1.16 kg of whole canola seed (1.16-TC1. Experiment 2: Control group was fed 8 kg d-1 commercial concentrate without canola (0-TC2 and treatment group that was fed 6.2 kg of commercial concentrate plus 1.2 kg of ground canola seed (1.2-TC2. Experiment 3: control group was fed 6 kg d-1 commercial concentrate without canola (0-TC3 and treatment group was fed 6 kg of commercial concentrate with 20% of whole canola seed (1.2 kg d-1, 1.2-TC3. The duration of each experiment was 60 days. No differences in milk production and quality were observed among the experimental groups in every assay. The CLA isomers trans-10, cis-12 and cis-10, cis-12 were higher than those normally found in the scientific literature. There was no effect of the inclusion of canola seed on total CLA content or the content of cis-9, trans-11, trans-10, cis-12 and cis-10, cis-12 isomers.

  8. Agricultural impacts of glyphosate-resistant soybean cultivation in South America.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B

    2011-06-08

    In the 2009/2010 growing season, Brazil was the second largest world soybean producer, followed by Argentina. Glyphosate-resistant soybeans (GRS) are being cultivated in most of the soybean area in South America. Overall, the GRS system is beneficial to the environment when compared to conventional soybean. GRS resulted in a significant shift toward no-tillage practices in Brazil and Argentina, but weed resistance may reduce this trend. Probably the highest agricultural risk in adopting GRS in Brazil and South America is related to weed resistance due to use of glyphosate. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. Five weed species, in order of importance, Conyza bonariensis (L.) Cronquist, Conyza canadensis (L.) Cronquist, Lolium multiflorum Lam., Digitaria insularis (L.) Mez ex Ekman, and Euphorbia heterophylla L., have evolved resistance to glyphosate in GRS in Brazil. Conyza spp. are the most difficult to control. A glyphosate-resistant biotype of Sorghum halepense L. has evolved in GRS in Argentina and one of D. insularis in Paraguay. The following actions are proposed to minimize weed resistance problem: (a) rotation of GRS with conventional soybeans in order to rotate herbicide modes of action; (b) avoidance of lower than recommended glyphosate rates; (c) keeping soil covered with a crop or legume at intercrop intervals; (d) keeping machinery free of weed seeds; and (d) use of a preplant nonselective herbicide plus residuals to eliminate early weed interference with the crop and to minimize escapes from later applications of glyphosate due to natural resistance of older weeds and/or incomplete glyphosate coverage.

  9. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus and two Leptosphaeria species.

    Directory of Open Access Journals (Sweden)

    Rohan G T Lowe

    Full Text Available Leptosphaeria maculans 'brassicae' is a damaging fungal pathogen of canola (Brassica napus, causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa 'canadensis', colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa 'canadensis', a necrotroph, expressed more cell wall degrading genes than L. maculans 'brassicae', a hemi-biotroph. L. maculans 'brassicae' expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans 'brassicae' genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa 'canadensis' infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans 'brassicae' triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa 'canadensis' infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa 'canadensis', and the hemibiotrophic life style of L. maculans 'brassicae'.

  10. Manejo de Conyza bonariensis resistente ao herbicida glyphosate Management of Glyphosate-resistant Conyza bonariensis

    Directory of Open Access Journals (Sweden)

    J.M. Paula

    2011-03-01

    Full Text Available C. bonariensis (Conyza bonariensis é uma planta daninha da família Asteraceae, amplamente distribuída no Brasil, com presença marcante nos Estados do Rio Grande do Sul e do Paraná. Biótipos de C. bonariensis resistentes ao glyphosate foram identificados nos Estados do Rio Grande do Sul, Paraná e São Paulo. O objetivo deste trabalho foi avaliar o efeito de diferentes manejos de inverno e na pré-semeadura da soja sobre a população de plantas de C. bonariensis resistente ao herbicida glyphosate. Os resultados evidenciaram que a população de C. bonariensis é maior em áreas mantidas sem cultivo (pousio do que naquelas áreas cultivadas com trigo ou aveia-preta durante o inverno. Observou-se que o trigo e a aveia-preta exercem efeito supressor sobre a população de C. bonariensis, proporcionando maior facilidade de controle com herbicida na pré-semeadura da cultura usada em sucessão. O controle de C. bonariensis resistente ao herbicida glyphosate foi satisfatório quando se utilizaram herbicidas pós-emergentes na cultura do trigo e glyphosate + 2,4-D ou glyphosate + diuron + paraquat na pré-semeadura da soja.Horseweed (Conyza bonariensis, which belongs to the Asteraceae family, is a weed species widely spread in Brazil. Horseweed biotypes resistant to glyphosate, the main herbicide used in Roundup Ready soybean fields, were identified in the states of Rio Grande do Sul and Parana. The aim of this study was to evaluate the effect of different winter and pre-sowing management techniques on soybean plant population of C. bonariensis resistant to glyphosate. The results showed that the population of C. bonariensis is larger in areas maintained fallow than in areas planted with wheat or oats during the winter. Wheat and oats were found to exert a suppressive effect on the population of C. bonariensis, providing greater ease of control with herbicide before seeding in the culture used in succession. The control of glyphosate-resistant C

  11. Germination test as a fast method to detect glyphosate-resistant sourgrass

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2015-01-01

    Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.

  12. Germination test as a fast method to detect glyphosate-resistant sourgrass

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2015-09-01

    Full Text Available The occurrence of weed species with different levels of resistance to glyphosate has increasingly spread in agricultural areas. In Brazil, sourgrass is among the main species presenting issues in this regard. Thus, fast and reliable methods to detect glyphosate resistance are of special interest for this specie, either for research or rational management purposes. This study was carried out to verify the feasibility of using the germination test to detect glyphosate resistance in sourgrass. The experiment was conducted with two sourgrass biotypes, with different levels of susceptibility to glyphosate. The seeds were previously imbibed in solutions composed of 0, 0.1875%, 0.25%, 0.75%, 1.5%, 3% and 6% of glyphosate during two periods, five and ten minutes, and submitted to germination tests. The results indicate the germination test as a feasible and time-saving approach to evaluate glyphosate-resistant sourgrass, with results available in seven days.

  13. Identification of glyphosate resistance in Salsola tragus in north-eastern Oregon.

    Science.gov (United States)

    Barroso, Judit; Gourlie, Jennifer A; Lutcher, Larry K; Liu, Mingyang; Mallory-Smith, Carol A

    2018-05-01

    Farmers in the low-rainfall region of eastern Oregon rely on repeated applications of non-selective herbicides, predominately glyphosate, to control Salsola tragus in no-till fallow systems. Reports of poor glyphosate effectiveness have increased in recent years. Reduced efficacy is often attributed to dust, water stress, or generally poor growing conditions during application. Inadequate control also may be the result of the evolution of glyphosate resistance. Therefore, studies were undertaken to determine if glyphosate-resistant S. tragus populations occur in Oregon. Results from dose-response studies confirmed glyphosate resistance in three of 10 Oregon Salsola tragus populations. The ratio I 50R /I 50S from dose-response curves was, on average, 3.1 for the relative dry biomass per plant and 3.2 for the % of surviving plants per pot in these three populations. Plant mortality at recommended glyphosate doses for the resistant populations was less than 30% 3 weeks after treatment. Glyphosate resistance in S. tragus highlights the imperative need to diversify weed control strategies to preserve the longevity and sustainability of herbicides in semi-arid cropping systems of the Pacific Northwest. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia.

    Science.gov (United States)

    Ngo, The D; Malone, Jenna M; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Five glyphosate-resistant populations of Chloris truncata originally collected from New South Wales were compared with one susceptible (S) population from South Australia to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the amounts of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in five populations of C. truncata (A536, A528, T27, A534 and A535.1). GR plants were 2.4-8.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. There was no difference in glyphosate absorption and translocation between GR and S plants. The EPSPS gene did not contain any point mutation that had previously been associated with resistance to glyphosate. The resistant plants (A528 and A536) contained up to 32-48 more copies of the EPSPS gene than the susceptible plants. This study has identified EPSPS gene amplification contributing to glyphosate resistance in C. truncata. In addition, a Glu-91-Ala mutation within EPSPS was identified that may contribute to glyphosate resistance in this species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Glyphosate-Resistant Parthenium hysterophorus in the Caribbean Islands: Non Target Site Resistance and Target Site Resistance in Relation to Resistance Levels.

    Directory of Open Access Journals (Sweden)

    Enzo Bracamonte

    2016-12-01

    Full Text Available Glyphosate has been the most intensely herbicide used worldwide for decades, and continues to be a single tool for controlling weeds in woody crops. However, the adoption of this herbicide in a wide range of culture systems has led to the emergence of resistant weeds. Glyphosate has been widely used primarily on citrus in the Caribbean area, but a study of resistance in the Caribbean islands of Cuba and the Dominican Republic has never been carried out. Unfortunately, Parthenium hysterophorus has developed glyphosate-resistance in both islands, independently. The resistance level and mechanisms of different P. hysterophorus accessions (three collected in Cuba (Cu-R and four collected in the Dominican Republic (Do-R have been studied under greenhouse and laboratory conditions. In in vivo assays (glyphosate dose causing 50% reduction in above-ground vegetative biomass and survival, the resistance factor levels showed susceptible accessions (Cu-S≥Do-S, low-resistance accessions (Cu-R3Do-R2>Cu-R2>Do-R3>Do-R4>Cu-R3>>Cu-S≥Do-S. Glyphosate was degraded to aminomethylphosphonic acid, glyoxylate and sarcosine by >88% in resistant accessions except in Cu-R3 and Do-R4 resistant accessions (51.12 and 44.21, respectively, whereas a little glyphosate (<9.32% was degraded in both susceptible accessions at 96 h after treatment. There were significant differences between P. hysterophorus accessions in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS activity enzyme with and without different glyphosate rates. The R accessions showed values of between 0.026 and 0.21 µmol µg-1 TSP protein min-1 basal EPSPS activity values with respect to the S (0.024 and 0.025 accessions. The same trend was found in the EPSPS enzyme activity treated with glyphosate, where a higher enzyme activity inhibition (glyphosate µM corresponded to greater resistance levels in P. hysterophorus accessions. One amino acid substitution was found at position 106 in EPSPS, consisting

  16. Glyphosate efficacy on sourgrass biotypes with suspected resistance collected in GR-crop fields

    Directory of Open Access Journals (Sweden)

    Hellen Martins da Silveira

    2017-11-01

    Full Text Available In Brazil, infestations of crop areas with glyphosate-resistant (GR sourgrass (Digitaria insularis (L. Fedde biotypes has risen significantly, increasing crop production costs. Glyphosate efficacy on three biotypes (GO, BA and MT of sourgrass with suspected resistance was evaluated. A susceptible biotype (MG was used as the control. The results confirmed that the MG and GO biotypes were susceptible to glyphosate (control > 90%. The MG biotype exhibited growth reduction and mortality by 50% (GR50 and LD50, respectively with mean glyphosate doses of 243.7 and 431.6 g ae ha-1. The resistance index of the biotypes with suspected resistance ranged from 2.8 to 6.1 in relation to GR50 and between 1.4 to 26.7 in relation to LD50. The glyphosate susceptibility ranking of the sourgrass biotypes was MG < GO < MT < BA. The MT and BA biotypes demonstrated high glyphosate resistance levels, and the GO biotype had a high potential to develop resistance. Farmers should avoid the application of glyphosate overdoses to minimize the selection pressure on weeds.

  17. Identifying Chloris Species from Cuban Citrus Orchards and Determining Their Glyphosate-Resistance Status

    Directory of Open Access Journals (Sweden)

    Enzo R. Bracamonte

    2017-11-01

    Full Text Available The Chloris genus is a C4 photosynthetic species mainly distributed in tropical and subtropical regions. Populations of three Chloris species occurring in citrus orchards from central Cuba, under long history glyphosate-based weed management, were studied for glyphosate-resistant status by characterizing their herbicide resistance/tolerance mechanisms. Morphological and molecular analyses allowed these species to be identified as C. ciliata Sw., Chloris elata Desv., and Chloris barbata Sw. Based on the glyphosate rate that causes 50% mortality of the treated plants, glyphosate resistance (R was confirmed only in C. elata, The R population was 6.1-fold more resistant compared to the susceptible (S population. In addition, R plants of C. elata accumulated 4.6-fold less shikimate after glyphosate application than S plants. Meanwhile, populations of C. barbata and C. ciliata with or without glyphosate application histories showed similar LD50 values and shikimic acid accumulation rates, demonstrating that resistance to glyphosate have not evolved in these species. Plants of R and S populations of C. elata differed in 14C-glyphosate absorption and translocation. The R population exhibited 27.3-fold greater 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS activity than the S population due to a target site mutation corresponding to a Pro-106-Ser substitution found in the EPSPS gene. These reports show the innate tolerance to glyphosate of C. barbata and C. ciliata, and confirm the resistance of C. elata to this herbicide, showing that both non-target site and target-site mechanisms are involved in its resistance to glyphosate. This is the first case of herbicide resistance in Cuba.

  18. Effect of Sugarcane Filter Muds, Chemical and Biological Fertilizers on Absorption of Some Macro- and Micro-Elementsand Heavy Metals by Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    H. Monjezi

    2015-12-01

    Full Text Available In order to evaluate the effect of sugarcane (Sacharum officinarum L. filter muds and chemical and biological fertilizers application on macro- and micronutrient elements and some heavy metals (Pb and Cd absorption by canola (Brassica napus L. grains, a factorial experiment was conducted in 2012 in the Experimental Farm of Ramin (Mollasani Agriculture and Natural Resources University of Khouzestan, Iran. A complete blocks design was used for the experiment with three replications. Different integrated treatments of filter muds and chemical fertilizers (A1: 100% filter muds, A2: 75% filter muds + 25% chemical fertilizers, A3: 50% filter muds + 50% chemical fertilizers, A4: 25% filter muds + 75% chemical fertilizers and A5: 100% chemical fertilizers along with two levels of biological fertilizers application (with and without biological fertilizers were investigated. The biological fertilizers investigated in this study were Nitroxin and Barvar2. Application of filter muds led to decreases in nitrogen, phosphorus and Cd of canola seeds. On the other hand, increase of filter muds application led to increase of Zn, Cu, Fe and Pb content in canola seeds. Biological and chemical fertilizers application resulted in increases of nitrogen, phosphorus and cadmium contents in canola seeds. Biofertilizers also increased phosphorus and cadmium contents in canola seeds.

  19. Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada

    Science.gov (United States)

    Hwang, Sheau-Fang; Strelkov, Stephen E.; Peng, Gary; Ahmed, Hafiz; Zhou, Qixing; Turnbull, George

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L.) in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields. PMID:27447676

  20. Blackleg (Leptosphaeria maculans Severity and Yield Loss in Canola in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Sheau-Fang Hwang

    2016-07-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L. in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields.

  1. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  2. Inheritance of Evolved Glyphosate Resistance in a North Carolina Palmer Amaranth (Amaranthus palmeri Biotype

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2012-01-01

    Full Text Available Inheritance of glyphosate resistance in a Palmer amaranth biotype from North Carolina was studied. Glyphosate rates for 50% survival of glyphosate-resistant (GR and glyphosate-susceptible (GS biotypes were 1288 and 58 g ha−1, respectively. These values for F1 progenies obtained from reciprocal crosses (GR×GS and GS×GR were 794 and 501 g ha−1, respectively. Dose response of F1 progenies indicated that resistance was not fully dominant over susceptibility. Lack of significant differences between dose responses for reciprocal F1 families suggested that genetic control of glyphosate resistance was governed by nuclear genome. Analysis of F1 backcross (BC1F1 families showed that 10 and 8 BC1F1 families out of 15 fitted monogenic inheritance at 2000 and 3000 g ha−1 glyphosate, respectively. These results indicate that inheritance of glyphosate resistance in this biotype is incompletely dominant, nuclear inherited, and might not be consistent with a single gene mechanism of inheritance. Relative 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS copy number varied from 22 to 63 across 10 individuals from resistant biotype. This suggested that variable EPSPS copy number in the parents might be influential in determining if inheritance of glyphosate resistance is monogenic or polygenic in this biotype.

  3. Flowering Without Vernalization in Winter Canola (Brassica napus: use of Virus-Induced Gene Silencing (VIGS to accelerate genetic gain

    Directory of Open Access Journals (Sweden)

    Raúl Álvarez-Venegas

    2010-01-01

    Full Text Available Ciclos de reproducción cortos y la oportunidad de incrementar la ganancia genética, junto con el estudio de las bases moleculares de la vernalización, son áreas esenciales de investigación dentro de la biología de plantas. Varios métodos se han empleado para lograr el silenciamiento génico en plantas, pero ninguno reportado a la fecha para canola (Brassica napus, y en particular para inducir la floración sin vernalización en líneas de invierno a través del uso de secuencias sentido de DNA en vectores diseñados para el silenciamiento génico inducido por virus (VIGS. La presente investigación provee los métodos para transitoriamente regular a la baja, por medio de VIGS, genes de la vernalización en plantas anuales de invierno, específicamente la familia de genes de Flowering Locus C (FLC en canola de invierno (BnFLC1 a BnFLC5. La regulación a la baja de estos genes permite a las plantas anuales de invierno florecer sin vernalización y, consecuentemente, provee los medios para acelerar la ganancia genética. El sistema de silenciamiento propuesto puede ser utilizado para regular a la baja familias de genes, para determinar la función génica, y para inducir la floración sin la vernalización en líneas de invierno tanto del género Brassica como de muchos cultivos importantes de invierno.

  4. Glyphosate resistance in common ragweed (Ambrosia artemisiifolia L.)from Mississippi, USA

    Science.gov (United States)

    Glyphosate is one of the most commonly used broad-spectrum herbicides over the last 40 years. Due to widespread adoption of glyphosate-resistant (GR) crop technology, especially, corn, cotton, and soybean, several weed species in agronomic situations have developed resistance to this herbicide. Rese...

  5. Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) crop

    International Nuclear Information System (INIS)

    Ahmad, S.; Duar, I.; Solaimani, S.G.A.; Mahmood, S.

    2016-01-01

    This study investigated eco-friendly approach of utilizing plant growth promoting rhizobacteria (PGPR) and humic acid (HA) as bio-stimulants to improve the growth, yield and nutrition of canola (Brassica napus L.). In this study, we isolated 20 indigenous rhizobacterial strains that were subsequently screened and characterized for their plant growth promoting traits. After that one promising PGPR strain identified as Acinetobacter pittii by 16S rRNA gene sequencing was selected for field trial. The field experiment was conducted using RCB design with split-plot arrangement that was replicated four times. Three levels of humic acid (0, 10 and 20 kg ha-1) as main plot factor and two treatments of PGPR (with and without PGPR) as sub-plot factor were used. Data was recorded on plant height (cm), root dry matter plant-1, number of lateral root plant-1, number of pods plant-1, number of seeds pod-1, 1000 seed weight (g), seed yield(kg ha-1), oil content (%), nitrogen (N), phosphorus (P) and potassium (K) contents and uptake. For most of the above mentioned parameters, significant enhancement was observed with the increment of humic acid, and also PGPR treatments were better than their respective control treatments. Maximum values of these parameters were recorded for the interaction of 20 kg HA ha-1 with the PGPR strain. It can be concluded that integrated application of HA and PGPR is a better strategy to improve nutrition and yield of canola. (author)

  6. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    Science.gov (United States)

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    Science.gov (United States)

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Makarla, Udayakumar

    2017-07-01

    In recent years, concerns about the use of glyphosate-resistant crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate-detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1- or OsAKRI-expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Effect of Sugarcane Filter Muds, Chemical and Biological Fertilizers on Absorption of Some Macro- and Micro-Elementsand Heavy Metals by Canola (Brassica napus L.)

    OpenAIRE

    H. Monjezi; M. R Moradi-Telavat; S. A. Siadat; A. Koochakzadeh; H. Hamdi

    2015-01-01

    In order to evaluate the effect of sugarcane (Sacharum officinarum L.) filter muds and chemical and biological fertilizers application on macro- and micronutrient elements and some heavy metals (Pb and Cd) absorption by canola (Brassica napus L.) grains, a factorial experiment was conducted in 2012 in the Experimental Farm of Ramin (Mollasani) Agriculture and Natural Resources University of Khouzestan, Iran. A complete blocks design was used for the experiment with three replications. Differe...

  9. Identification and functional analysis of a new glyphosate resistance gene from a fungus cDNA library.

    Science.gov (United States)

    Tao, Bo; Shao, Bai-Hui; Qiao, Yu-Xin; Wang, Xiao-Qin; Chang, Shu-Jun; Qiu, Li-Juan

    2017-08-01

    Glyphosate is a widely used broad spectrum herbicide; however, this limits its use once crops are planted. If glyphosate-resistant crops are grown, glyphosate can be used for weed control in crops. While several glyphosate resistance genes are used in commercial glyphosate tolerant crops, there is interest in identifying additional genes for glyphosate tolerance. This research constructed a high-quality cDNA library form the glyphosate-resistant fungus Aspergillus oryzae RIB40 to identify genes that may confer resistance to glyphosate. Using a medium containing glyphosate (120mM), we screened several clones from the library. Based on a nucleotide sequence analysis, we identified a gene of unknown function (GenBank accession number: XM_001826835.2) that encoded a hypothetical 344-amino acid protein. The gene was named MFS40. Its ORF was amplified to construct an expression vector, pGEX-4T-1-MFS40, to express the protein in Escherichia coli BL21. The gene conferred glyphosate tolerance to E. coli ER2799 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  11. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia.

    Science.gov (United States)

    Ngo, The D; Krishnan, Mahima; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2018-05-01

    Chloris virgata is a warm-season, C 4 , annual grass weed affecting field crops in northern Australia that has become an emerging weed in southern Australia. Four populations with suspected resistance to glyphosate were collected in South Australia, Queensland and New South Wales, Australia, and compared with one susceptible (S) population to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the rate of glyphosate required to kill 50% of treated plants (LD 50 ), glyphosate resistance (GR) was confirmed in four populations of C. virgata (V12, V14.2, V14.16 and V15). GR plants were 2-9.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. GR and S plants did not differ in glyphosate absorption and translocation. Target-site EPSPS mutations corresponding to Pro-106-Leu (V14.2) and Pro-106-Ser (V15, V14.16 and V12) substitutions were found in GR populations. The population with Pro-106-Leu substitution was 2.9-4.9-fold more resistant than the three other populations with Pro-106-Ser substitution. This report confirms glyphosate resistance in C. virgata and shows that target-site EPSPS mutations confer resistance to glyphosate in this species. The evolution of glyphosate resistance in C. virgata highlights the need to identify alternative control tactics. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Isolation of an ascorbate peroxidase in Brassica napus and analysis ...

    African Journals Online (AJOL)

    USER

    2010-04-05

    Apr 5, 2010 ... domain; APX, ascorbate peroxidase; Bn-APX, Brassica napus ascorbate ... Brassica napus, which is widely grown as the oilseed crop of rape or canola, .... grew on the SD-Leu-Trp-His-Ade medium and were verified by PCR.

  13. Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops

    Science.gov (United States)

    2012-01-01

    Claims have been made recently that glyphosate-resistant (GR) crops sometimes have mineral deficiencies and increased plant disease. This review evaluates the literature that is germane to these claims. Our conclusions are: (1) although there is conflicting literature on the effects of glyphosate on mineral nutrition on GR crops, most of the literature indicates that mineral nutrition in GR crops is not affected by either the GR trait or by application of glyphosate; (2) most of the available data support the view that neither the GR transgenes nor glyphosate use in GR crops increases crop disease; and (3) yield data on GR crops do not support the hypotheses that there are substantive mineral nutrition or disease problems that are specific to GR crops. PMID:23013354

  14. Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil.

    Science.gov (United States)

    Cerdeira, Antonio L; Gazziero, Dionsio L P; Duke, Stephen O; Matallo, Marcus B; Spadotto, Claudio A

    2007-01-01

    Transgenic glyphosate-resistant soybeans (GRS) have been commercialized and grown extensively in the Western Hemisphere, including Brazil. Worldwide, several studies have shown that previous and potential effects of glyphosate on contamination of soil, water, and air are minimal, compared to those caused by the herbicides that they replace when GRS are adopted. In the USA and Argentina, the advent of glyphosate-resistant soybeans resulted in a significant shift to reduced- and no-tillage practices, thereby significantly reducing environmental degradation by agriculture. Similar shifts in tillage practiced with GRS might be expected in Brazil. Transgenes encoding glyphosate resistance in soybeans are highly unlikely to be a risk to wild plant species in Brazil. Soybean is almost completely self-pollinated and is a non-native species in Brazil, without wild relatives, making introgression of transgenes from GRS virtually impossible. Probably the highest agricultural risk in adopting GRS in Brazil is related to weed resistance. Weed species in GRS fields have shifted in Brazil to those that can more successfully withstand glyphosate or to those that avoid the time of its application. These include Chamaesyce hirta (erva-de-Santa-Luzia), Commelina benghalensis (trapoeraba), Spermacoce latifolia (erva-quente), Richardia brasiliensis (poaia-branca), and Ipomoea spp. (corda-de-viola). Four weed species, Conyza bonariensis, Conyza Canadensis (buva), Lolium multiflorum (azevem), and Euphorbia heterophylla (amendoim bravo), have evolved resistance to glyphosate in GRS in Brazil and have great potential to become problems.

  15. Mutations and amplification of EPSPS gene confer resistance to glyphosate in goosegrass (Eleusine indica).

    Science.gov (United States)

    Chen, Jingchao; Huang, Hongjuan; Zhang, Chaoxian; Wei, Shouhui; Huang, Zhaofeng; Chen, Jinyi; Wang, Xu

    2015-10-01

    Field-evolved resistance of goosegrass to glyphosate is due to double or single mutation in EPSPS , or amplification of EPSPS leads to increased transcription and protein levels. Glyphosate has been used widely in the south of China. The high selection pressure from glyphosate use has led to the evolution of resistance to glyphosate in weeds. We investigated the molecular mechanisms of three recently discovered glyphosate-resistant Eleusine indica populations (R1, R2 and R3). The results showed that R1 and R2 had double Thr102Ile and Pro106Ser mutation and a single mutation of Pro106Leu in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene, respectively. Escherichia coli containing the mutated EPSPS genes was tolerant to glyphosate. EPSPS activity in R1 and R2 plants was higher than in the sensitive plants. There was no amino acid substitution in EPSPS gene in R3. However, expression of EPSPS in R3 plants was higher than in glyphosate-susceptible (S) population (13.8-fold) after glyphosate treatment. EPSPS enzyme activity in both R3 and S plants was inhibited by glyphosate, while shikimate accumulation in R3 was significantly lower than for the S population. Further analysis revealed that the genome of R3 contained 28.3-fold more copies of the EPSPS gene than that of susceptible population. EPSPS expression was positively correlated with copy number of EPSPS. In conclusion, mutation of the EPSPS gene and increased EPSPS expression are part of the molecular mechanisms of resistance to glyphosate in Eleusine indica.

  16. Contrastive response of Brassica napus L. to exogenous salicylic acid, selenium and silicon supplementation under water stress

    Directory of Open Access Journals (Sweden)

    Habibi Ghader

    2015-01-01

    Full Text Available The present research was designed to determine the effects of exogenous salicylic acid (SA, selenium (Se and silicon (Si on the resistance of canola (Brassica napus L. cv Okapi seedlings to salt stress. Foliar application of SA (0.1 mM in canola plants under drought stress for 25 days exhibited a significantly positive effect on shoot dry mass and raised the levels of total chlorophyll as well as boosting the activity of superoxide dismutase (SOD and catalase (CAT. In addition, soil application of silicon (0.35 g Na2SiO3/kg soil had ameliorative effects on canola root growth under drought. It is concluded that SA and Si enhanced the salt tolerance of canola by protecting the cell membrane against lipid peroxidation. However, the foliar application of Se (10 mg/l had no ameliorative effects on canola growth and antioxidant capacity under drought stress, as could be judged by accumulation of malondialdehyde (MDA.

  17. Canola versus Wheat Rotation Effects on Subsequent Wheat Yield

    Science.gov (United States)

    Winter canola (Brassica napus L.) (WC) is considered the most promising, domestically-produced oilseed feedstock for biodiesel production and for diversifying wheat (Triticum aestivum L.)-based cropping systems in the Inland Pacific Northwest, USA (PNW). A law passed in 2006 requires that at least t...

  18. A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost.

    Science.gov (United States)

    Han, Heping; Vila-Aiub, Martin M; Jalaludin, Adam; Yu, Qin; Powles, Stephen B

    2017-12-01

    A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost. © 2017 John Wiley & Sons Ltd.

  19. Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance.

    Science.gov (United States)

    Mao, Chanjuan; Xie, Hongjie; Chen, Shiguo; Valverde, Bernal E; Qiang, Sheng

    2017-09-01

    Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana. However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore, LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and 422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in recombinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-transformed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thaliana was about 5.4 fold and 2-fold resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. Therefore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resistant crops. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The intensity of non-target site mechanisms influences the level of resistance of sourgrass to glyphosate

    Directory of Open Access Journals (Sweden)

    Flávia Regina da Costa

    2014-02-01

    Full Text Available Non-target site mechanisms are involved in the resistance of sourgrass (Digitaria insularis to glyphosate. Studies on the 14C-glyphosate absorption and translocation as well as the detection of glyphosate and its metabolites in sourgrass plants were carried out under controlled conditions to investigate if the differential response of resistant sourgrass biotypes (R1 and R2 is derived from the intensity of non-target site mechanisms involved in the resistance to glyphosate. Different pattern of absorption was observed between S (susceptible and R2 from 12 up to 48 hours after treatment with glyphosate (HAT, and between S and R1 just at 12 HAT. The initial difference in glyphosate absorption among the biotypes did not maintained at 96 HAT and afterwards. Smaller amount of herbicide left the treated leaf into the rest of shoot and roots in R2 (25% than in S (58% and R1 (52%. In addition, slight difference in glyphosate translocation was observed between S and R1. We found high percentage (81% of glyphosate in the S biotype up to 168 HAT, while just 44% and 2% of glyphosate was recovered from R1 and R2 plant tissues. In addition, high percentage of glyphosate metabolites was found in R2 (98% and R1 (56% biotypes, while a very low percentage (11% was found in the S biotype. As previous studies indicated resistant factors of 3.5 and 5.6 for R1 and R2, respectively, we conclude that the differential response of sourgrass biotypes is derived from the intensity of the non-target site mechanisms involved in the resistance to glyphosate.

  1. Impact of glyphosate resistant corn, glyphosate applications, and tillage on soil nutrient ratios, exoenzyme activities, and nutrient acquisition ratios

    Science.gov (United States)

    We report results of the last two years of a 7-year (2008-2014) field experiment designed to test the null hypothesis that applications of glyphosate on glyphosate resistant corn (Zea mays L.) as a routine weed control practice under both conventional and reduced tillage practices would have no effe...

  2. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine.

    Science.gov (United States)

    Woyengo, T A; Jha, R; Beltranena, E; Zijlstra, R T

    2016-06-01

    Canola co-products are sources of amino acid and energy in pig feeds, but their fermentation characteristics in the pig intestine are unknown. Thus, we determined the in vitro fermentation characteristics of the canola co-products Brassica juncea solvent-extracted canola meal (JSECM), Brassica napus solvent-extracted canola meal (NSECM), B. napus expeller-pressed canola meal (NEPCM) and B. napus cold-pressed canola cake (NCPCC) in comparison with soybean meal (SBM). Samples were hydrolysed in two steps using pepsin and pancreatin. Subsequently, residues were incubated in a buffer solution with fresh pig faeces as inocula for 72 h to measure gas production. Concentration of volatile fatty acids (VFA) per gram of dry matter (DM) of feedstuff was measured in fermented solutions. Apparent ileal digestibility (AID) and apparent hindgut fermentation (AHF) of gross energy (GE) for feedstuffs were obtained from pigs fed the same feedstuffs. On DM basis, SBM, JSECM, NSECM, NEPCM and NCPCC contained 15, 19, 22, 117 and 231 g/kg ether extract; and 85, 223, 306, 208 and 176 g/kg NDF, respectively. In vitro digestibility of DM (IVDDM) of SBM (82.3%) was greater (Pfermentation characteristics of canola co-products and SBM simulated their fermentation in the small and large intestine of pigs, respectively. The 30% greater VFA production for JSECM than NSECM due to lower lignified fibre of JSECM indicates that fermentation characteristics differ between canola species. The NSECM had the highest fermentability followed by NEPCM and then NCPCC, indicating that fat in canola co-products can limit their fermentability in the hindgut.

  3. Investigation of growth indices and yield of canola (Brassica napus L. in competition with wild mustard (Sinapis arvensis L. as influenced by different amount of nitrogen application

    Directory of Open Access Journals (Sweden)

    F. Soleymani

    2016-04-01

    Full Text Available To evaluate the effect of different levels of nitrogen fertilizer on growth indices and competitive ability of canola (Brassica napus L. against wild mustard (Sinapis arvensis L., a split plot trial based on a randomized complete block design with three replications, was carried out at Agricultural Faculty of Bu-Ali Sina University, during 2008-2009. Experimental factors were amounts of nitrogen fertilizer of urea at four levels (100, 150, 200 and 250 kgN.ha-1 and five wild mustard plant densities (0, 4, 8, 16 and 32 plants.m-2. The results showed that wild mustard interference led to reduction of leaf area index (LAI, dry matter accumulation, crop growth rate (CGR, leaf area index duration (LAID, dry matter duration (BMD and seed yield of canola, while these characteristics were increased with more nitrogen fertilizer application. The maximum indices were obtained at 250 kg N.ha-1 and weed-free condition, but generally, the least reduction in maximum LAI, CGR, LAID and BMD of canola affected by wild mustard competition occurred at 200 kg N.ha-1. In conclusion, the results showed that optimum level of fertilizer 200 kg N.ha-1, increased competitive ability of canola against wild mustard and improved yield and growth indices.

  4. VALOR NUTRICIO Y CONTENIDO DE SAPONINAS EN GERMINADOS DE HUAUZONTLE (Chenopodium nuttalliae Saff., CALABACITA (Cucurbita pepo L., CANOLA (Brassica napus L. Y AMARANTO (Amaranthus leucocarpus S. Watson syn. hypochondriacus L.

    Directory of Open Access Journals (Sweden)

    M. R. Barrón-Yánez

    2009-01-01

    (Brassica napus L. y amaranto (Amaranthus leucocarpus S. Watson syn. hypochondriacus L.. Se realizó un análisis proximal y la cuantificación de saponinas en semillas y germinados de las cuatro especies. El contenido de proteína fue más alto en los germinados de canola que en las semillas, pero en huauzontle, calabacita y amaranto no varió. El contenido de lípidos en las semillas de canola, huauzontle y amaranto disminuyó en sus germinados, pero se incrementó en calabacita. El contenido de saponinas en los germinados fue de 2,873.23 en huauzontle, 155.40 en calabacita, 429.81 en canola, y 491.45 mg 100·g-1 de peso seco en amaranto. El contenido de saponinas en semillas fue de 5280.57, 0.00, 35.77 y 42.84 mg 100·g-1 en peso seco, respectivamente. Los niveles del contenido de saponinas en semillas y germinados para las cuatro especies estudiadas no representan toxicidad para humanos. El valor nutricio fue mejor en el germinado de canola que en el de huauzontle, calabaza y amaranto. El sabor de los germinados de huauzontle y amaranto fue mejor que en los de canola y calabacita.

  5. A mutant Brassica napus (canola population for the identification of new genetic diversity via TILLING and next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Erin J Gilchrist

    Full Text Available We have generated a Brassica napus (canola population of 3,158 EMS-mutagenised lines and used TILLING to demonstrate that the population has a high enough mutation density that it will be useful for identification of mutations in genes of interest in this important crop species. TILLING is a reverse genetics technique that has been successfully used in many plant and animal species. Classical TILLING involves the generation of a mutagenised population, followed by screening of DNA samples using a mismatch-specific endonuclease that cleaves only those PCR products that carry a mutation. Polyacrylamide gel detection is then used to visualise the mutations in any gene of interest. We have used this TILLING technique to identify 432 unique mutations in 26 different genes in B. napus (canola cv. DH12075. This reflects a mutation density ranging from 1/56 kb to 1/308 kb (depending on the locus with an average of 1/109 kb. We have also successfully verified the utility of next generation sequencing technology as a powerful approach for the identification of rare mutations in a population of plants, even in polyploid species such as B. napus. Most of the mutants we have identified are publically available.

  6. Use of Se-enriched mustard and canola seed meals as potential bioherbicides and green fertilizers in strawberry production

    Science.gov (United States)

    New plant-based products can be produced from seed harvested from Brassica species used for phytomanaging selenium (Se) in the westside of central California. We tested Se-enriched seed meals produced from canola (Brassica napus) and mustard (Sinapis alba) plants as potential bio-herbicides and as g...

  7. What do farmers' weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields.

    Science.gov (United States)

    Wechsler, Seth J; McFadden, Jonathan R; Smith, David J

    2018-05-01

    The first case of glyphosate-resistant weeds in the United States was documented in 1998, 2 years after the commercialization of genetically engineered herbicide-resistant (HR) corn and soybeans. Currently, over 15 glyphosate-resistant weed species affect US crop production areas. These weeds have the potential to reduce yields, increase costs, and lower farm profitability. The objective of our study is to develop a behavioral model of farmers' weed management decisions and use it to analyze weed resistance to glyphosate in US corn farms. On average, we find that weed control increased US corn yields by 3700 kg ha -1 (worth approximately $US 255 ha -1 ) in 2005 and 3500 kg ha -1 (worth approximately $US 575 ha -1 ) in 2010. If glyphosate resistant weeds were absent, glyphosate killed approximately 99% of weeds, on average, when applied at the label rate in HR production systems. Average control was dramatically lower in states where glyphosate resistance was widespread. We find that glyphosate resistance had a significant impact on weed control costs and corn yields of US farmers in 2005 and 2010. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. Identification of regulated genes conferring resistance to high concentrations of glyphosate in a new strain of Enterobacter.

    Science.gov (United States)

    Fei, Yun-Yan; Gai, Jun-Yi; Zhao, Tuan-Jie

    2013-12-01

    Glyphosate is a widely used herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity. Most plants and microbes are sensitive to glyphosate. However, transgenic-resistant crops that contain a modified epsps obtained from the resistant microbes have been commercially successful and therefore, new resistance genes and their adaptive regulatory mechanisms are of great interest. In this study, a soil-borne, glyphosate-resistant bacterium was selected and identified as Enterobacter. The EPSPS in this strain was found to have been altered to a resistant one. A total of 42 differentially expressed genes (DEGs) in the glyphosate were screened using microarray techniques. Under treatment, argF, sdhA, ivbL, rrfA-H were downregulated, whereas the transcripts of speA, osmY, pflB, ahpC, fusA, deoA, uxaC, rpoD and a few ribosomal protein genes were upregulated. Data were verified by quantitative real-time PCR on selected genes. All transcriptional changes appeared to protect the bacteria from glyphosate and associated osmotic, acidic and oxidative stresses. Many DEGs may have the potential to confer resistance to glyphosate alone, and some may be closely related to the shikimate pathway, reflecting the complex gene interaction network for glyphosate resistance. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Effects of Intercropping (Canola-Faba Bean on Density and Diversity of Weeds

    Directory of Open Access Journals (Sweden)

    Mohamad Hossain GHARINEH

    2010-03-01

    Full Text Available In order to evaluate the biological effect and interference of crop and weed in canola-faba bean intercropping in comparison with mono culture, an experiment was conducted in randomize completely blocks design with three replication at Ramin Agriculture and Natural Resources, University. In this experiment treatments were different compositions of canola (Brassica napus L. var. haylo and faba bean (local cultivar. Plant densities (0, 20 and 40 plants per m2 for canola and four levels include (0, 20, 40 and 60 plants per m2 for faba bean in accordance with additive form mixed culture system respectively. Weed dry weight was affected by culture system and different levels of plant densities in mixed culture and there were significant difference 1%. Lowest weed dry weight was obtained in 20-60 and 40-60 plants m-2 canola-bean intercropping. In the intercropping parts only two species was observed while in the sole culture more than three species were exist. Results showed that with increasing in bean diversity, weed dry weight declines. According to our results, it is possible to control weed effectively by using intercropping system, but more studied is required. Diversity of weeds had been clearly affected. Results showed that only Beta and Malva species were existed in intercropping comparing to sole cultures that Brassica, Beta, Rumex and Malva were existed.

  10. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    Science.gov (United States)

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  11. Yield of glyphosate-resistant sugar beets and efficiency of weed management systems with glyphosate and conventional herbicides under German and Polish crop production.

    Science.gov (United States)

    Nichterlein, Henrike; Matzk, Anja; Kordas, Leszek; Kraus, Josef; Stibbe, Carsten

    2013-08-01

    In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.

  12. Adjuvants for single droplet application of glyphosate

    DEFF Research Database (Denmark)

    Mathiassen, Solvejg Kopp; Kudsk, Per; Lund, Ivar

    2016-01-01

    Retention and biological activity of droplets of glyphosate deposited onto plant leaves using a Drop on Demand inkjet printer application system, was examined on pot-grown Brassica napus, Solanum nigrum, Chenopodium album, Silene noctiflora and Echinocloa crus-galli plants. Retention was measured...

  13. First confirmation and characterization of target and non-target site resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) from Mexico.

    Science.gov (United States)

    Dominguez-Valenzuela, Jose Alfredo; Gherekhloo, Javid; Fernández-Moreno, Pablo Tomás; Cruz-Hipolito, Hugo Enrique; Alcántara-de la Cruz, Ricardo; Sánchez-González, Eduardo; De Prado, Rafael

    2017-06-01

    Following the introduction of glyphosate-resistant (GR)-cotton crops in Mexico, farmers have relied upon glyphosate as being the only herbicide for in-season weed control. Continuous use of glyphosate within the same year and over multiple successive years has resulted in the selection of glyphosate resistance in Palmer amaranth (Amarantus palmeri). Dose-response assays confirmed resistance in seven different accessions. The resistance ratio based on GR 50 values (50% growth reduction) varied between 12 and 83. At 1000 μM glyphosate, shikimic acid accumulation in the S-accession was 30- to 2-fold higher at compared to R-accessions. At 96 h after treatment, 35-44% and 61% of applied 14 C-glyphosate was taken up by leaves of plants from R- and S-accessions, respectively. At this time, a significantly higher proportion of the glyphosate absorbed remained in the treated leaf of R-plants (55-69%) compared to S-plants (36%). Glyphosate metabolism was low and did not differ between resistant and susceptible plants. Glyphosate was differentially metabolized to AMPA and glyoxylate in plants of R- and S-accessions, although it was low in both accessions (glyphosate collected from GR-cotton crops from Mexico. This is the first study demonstrating glyphosate-resistance in Palmer amaranth from Mexico. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Development of Convenient Screening Method for Resistant Radish to Plasmodiophora brassicae

    Directory of Open Access Journals (Sweden)

    Su-Jung Jo

    2011-08-01

    Full Text Available To establish simple and reliable screening method for resistant radish to Plasmodiophora brassicae Woron. using soil-drenching inoculation, the development of clubroot on radish seedlings inoculated with P. brassicae GN-1 isolate according to several conditions such as inoculum concentration, plant growth stage and incubation period after inoculation was studied. To select resistant radish against clubroot, 10-day-old seedlings were inoculated with P. brassicae by drenching the roots with the spore suspension of the pathogen to give 1×10(9 spores/pot. The inoculated seedlings were incubated in a growth chamber at 20℃ for 3 days then cultivated in a greenhouse (20±5℃ for 6 weeks. Under the optimum conditions, 46 commercial cultivars of radish were tested for resistance to YC-1 (infecting 15 clubroot-resistant cultivars of Chinese cabbage and GN-1 (wild type isolates of P. brassicae. Among them, thirty-five cultivars showed resistance to both isolates and one cultivar represented susceptible response to the pathogens. On the other hand, the other cultivars showed different responses against the tested P. brassicae pathogens. The results suggest that this method is an efficient system for screening radish with resistance to clubroot.

  15. Impact of municipal waste water of Quetta city on biomass, physiology and yield of canola (brassica napus l.)

    International Nuclear Information System (INIS)

    Kakar, S.R.; Tareen, R.B.; Kayani, S.A.; Tariq, M.

    2010-01-01

    The present study was carried out in order to investigate the impact of municipal wastewater effluents of Quetta city on the biomass, physiology, and productivity of two canola (Brassica napus L.) cultivars viz., Oscar and Rainbow. Plants were grown in pots from seed to maturity during 2005-2006 growth season. Different concentrations of effluents (T1: 20% ,T2: 40%, T3: 60% T4: 80; T5: 100%) were supplied to plants as a soil drench compared to control plants (T0) receiving normal tap water. The wastewater effluents were highly alkaline in nature along with very high Electrical Conductivity, Biological Oxygen Demand; Chemical Oxygen Demand; Sodium Adsorption Ratio, Total Suspended Solids and minerals concentrations have found well above threshold limits set for the usage of municipal wastewater for irrigation purposes. Growth performance of both canola cultivars showed statistically significant effects on some physiological attributes. All treated plants showed reductions in growth and yield parameters, but T5 treated plants were most affected compared to control. There were significantly higher reductions in stomatal conductance (49% in Oscar; 53% in Rainbow), transpiration rate (62% Oscar; 67% in Rainbow), and photosynthetic rate (62% in Oscar; 69% in Rainbow) of T5 treatment plants compared with control. Both pigments of chlorophyll (a and b) responded efficiently to the applied stress of wastewater effluents showing reductions in chlorophyll a and b by 68-82% in cv. Oscar and 74-86% in cv. Rainbow. Similarly, fresh and dry biomass also showed reductions in different effluents treated plants (T1 to T5) ranging from 2-78% in both the cultivars of canola. Drastic reductions were recorded in the number of siliqua per plant (70-72%), seeds per plant (84-85%), seed weight per plant (87-90), and in the harvest index (72-74%) in cultivars Oscar and Rainbow, respectively than that of control. The overall result of the municipal wastewater impacts on canola cultivars are

  16. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L. in response to fungal pathogens and hormone treatments

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2009-06-01

    Full Text Available Abstract Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L., no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR. Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h. We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA, and cytokinin (6-benzylaminopurine, BAP and the defense signaling molecules jasmonic acid (JA, salicylic acid (SA, and ethylene (ET. We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in

  17. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    Science.gov (United States)

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    Science.gov (United States)

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-08-12

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.

  19. Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Baerson, Scott R; Rodriguez, Damian J; Tran, Minhtien; Feng, Yongmei; Biest, Nancy A; Dill, Gerald M

    2002-07-01

    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.

  20. Ameliorating influence of sulfur on germination attributes of canola (brassica napus l.) under chromium stress

    International Nuclear Information System (INIS)

    Jahan, S.; Iqbal, S.; Jabeen, K.; Sadaf, S.

    2015-01-01

    An experiment was performed to evaluate the role of sulfur to induce tolerance in Brassica napus L. against chromium stress by estimating the changes in germination parameters. Petriplates were assembled in Randomized Complete Block Design. A total 9 sets of treatments viz., control, chromium treated (40 and 160ppm), sulfur treated (50 and 150ppm) and sulfur (50 and 150ppm) combined with chromium (40 and 160ppm) with three replicates was used. Chromium under both concentrations was responsible for significant decline in germination parameters i.e. germination percentage, germination rate, seedling vigor index, shoot and root length, fresh weight and dry weight of seedlings. Sulfur application under chromium stress resulted in improvement of germination parameters such as germination percentage, germination rate, seedling vigor index, shoot and root length, fresh weight and dry weight of seedlings in contrast to chromium treatment. So, it can be concluded that sulfur in appropriate dose can be used to ameliorate the negative effects of chromium by increasing the germination potential of canola. (author)

  1. Pterostilbene Is a Potential Candidate for Control of Blackleg in Canola.

    Directory of Open Access Journals (Sweden)

    Joshua C O Koh

    Full Text Available Two stilbenes, resveratrol and pterostilbene, exhibit antifungal activity against Leptosphaeria maculans, the fungal pathogen responsible for blackleg (stem canker in canola (Brassica napus. In vitro studies on the effect of these stilbenes on L. maculans mycelial growth and conidia germination showed that pterostilbene is a potent fungicide and sporicide, but resveratrol only exerted minor inhibition on L. maculans. Cell viability of hyphae cultures was markedly reduced by pterostilbene and SYTOX green staining showed that cell membrane integrity was compromised. We demonstrate that pterostilbene exerts fungicidal activity across 10 different L. maculans isolates and the compound confers protection to the blackleg-susceptible canola cv. Westar seedlings. The potential of pterostilbene as a control agent against blackleg in canola is discussed.

  2. Glyphosate resistant weeds - a threat to conservation agriculture

    Science.gov (United States)

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  3. Dinâmica floral e abortamento de flores em híbridos de canola e mostarda castanha Floral dynamics and flower abortion in hybrids of canola and Indian mustard

    Directory of Open Access Journals (Sweden)

    Rafael Battisti

    2013-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a dinâmica floral e determinar o índice de abortamento de flores de híbridos de canola (Brassica napus e de mostarda castanha (Brassica juncea, bem como determinar suas relações com as condições meteorológicas do Sul do Brasil. Durante a floração, dez híbridos de canola e dois de mostarda foram avaliados a cada três dias quanto ao número de flores abertas, de síliquas e de flores abortadas. O número acumulado e relativo de flores foi usado para avaliação da dinâmica floral. A relação desses números com a soma térmica acumulada durante a floração foi determinada por meio de modelo logístico. A partir dos coeficientes desse modelo, identificaram-se grupos de genótipos com diferentes taxas de emissão de flores. O abortamento de flores entre híbridos variou de 10,53 a 45,96% e correlacionou-se com a temperatura e a demanda evaporativa da atmosfera. Genótipos com maiores tempos térmicos entre o período de máxima emissão de flores e o final da floração geralmente apresentam maiores percentagens de abortamento de flores. O ajuste dos dados de emissão de flores aos de soma térmica do período da floração, por meio de modelo logístico, permite simular a dinâmica floral de híbridos de canola e mostarda castanha.The objective of this work was to evaluate the floral dynamics and to determine the index of flower abortion in canola (Brassica napus and Indian mustard (Brassica juncea hybrids, as well as to determine their relation with meteorological conditions of southern Brazil. During flowering, ten hybrids of canola and two of Indian mustard were evaluated every three days as to the number of open flowers, pods, and aborted flowers. The cumulative and the relative number of flowers were used to evaluate floral dynamics. The relation of these numbers with the accumulated thermal sum during flowering was determined with a logistic model. Groups of genotypes with different

  4. of integrated application of farmyard manure, plant growth promoting rhizobacteria and chemical fertilizers on production of canola (Brassica napus L. in saline soil of Qum

    Directory of Open Access Journals (Sweden)

    H. Sabahi

    2016-04-01

    Full Text Available Canola (Brassica napus L. is one of the most important oil seed crops. In order to evaluate the effects of integrated fertilization (chemical, manure and biofertilizers on canola (B. napus variety Hyola 401 yield and uptake of mineral nutrients in saline soil and water, a field experiment was conducted in randomized complete blocks (RCBD arrangement with eight treatments in three replications in Qum Province, Iran. Treatments were: (1 Control, P%100 (Phosphorus %100, (2 P%75B1 (Phosphorus %75+ Barvar biofertilizer, (3 P%75B2 (Phosphorus %75+ Nitroxin biofertilizer, (4 P%75M (Phosphorus %75+ farmyard manure, (5 P%75B1M (Phosphorus %75+ Barvar + Farmyard manure, (6 P%75B2M (Phosphorus %75+ Nitroxin+ Farmyard manure, (7 P%100B1 (Phosphorus %100 + Barvar and (8 P%125B2 (Phosphorus %125+ Nitroxin. The results showed that the highest yield was obtained from P%75B1M. Difference between integrated fertilization of farmyard manure and other treatments was significant. Farmyard manure increased canola yield which was attributed to increase in availability of mineral nutrients, decreasing effects of salinity and toxic ions. Integrated application of 5 t. ha-1 of farmyard manure and %75 recommended chemical P increased yield and decreased fertilizer consumption. The results revealed that integrated applications of farmyard manure and chemical fertilizer and after that integrated use of bio- and chemical fertilizer are the best strategies to increase nutrient availability and improving canola yield in saline soil.

  5. Productivity and nutritive quality of three brassica varieties for use in pasture-based systems

    Science.gov (United States)

    Brassicas are gaining popularity among pasture-based livestock producers to extend grazing during the ‘summer slump’ and throughout the fall. A 2-yr study was conducted to compare biomass production and nutrient composition of ‘Barisca’ rapeseed (RAP; Brassica napus L.), ‘Inspiration’ canola (CAN; B...

  6. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    2016-10-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola. This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 503 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07 and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of A. thaliana and B. napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.

  7. Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance.

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R Douglas; Powles, Stephen B

    2015-04-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Responses of the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae), to seed treatments of canola (Brassica napus L.) with the neonicotinoid compounds clothianidin and imidacloprid.

    Science.gov (United States)

    Dosdall, Lloyd M

    2009-12-01

    The cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham), is a major pest in the production of canola (Brassica napus L.) in North America and Europe, and effective population control is often essential for economical crop production. In North America, neonicotinoid insecticides have been used for several years in canola as seed treatments for reducing herbivory by flea beetles. The neonicotinoids clothianidin and imidacloprid were investigated to determine their effects on preimaginal development and on emergence of new-generation adults of C. obstrictus in comparison with effects of lindane, a chlorinated hydrocarbon seed treatment. Mean numbers of second- and third-instar larvae were significantly higher in plants seed-treated with lindane than in plants treated with the neonicotinoid compounds, even though weevil oviposition was similar for all treatments. Emergence of new-generation adults was reduced by 52 and 39% for plants seed-treated with clothianidin and imidacloprid, respectively, compared with emergence from plants treated with lindane. Seed treatment with both clothianidin and imidacloprid produced systemic insecticidal effects on larvae of C. obstrictus, with clothianidin slightly more effective than imidacloprid. Use of clothianidin or imidacloprid as seed treatments can comprise an important component in the integrated management of cabbage seedpod weevil in canola. (c) 2009 Society of Chemical Industry.

  9. Control of glyphosate resistant hairy fleabane (Conyza bonariensis with dicamba and 2,4-D Controle de buva (Conyza bonariensis resistente ao glyphosate com dicamba e 2,4-D

    Directory of Open Access Journals (Sweden)

    D.J. Soares

    2012-06-01

    Full Text Available Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis. The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.Os herbicidas mimetizadores de auxinas como dicamba e 2,4-D são alternativas para o controle de buva resistente ao glyphosate. Com a possível futura liberação comercial de culturas resistentes ao dicamba e 2,4-D, a aplicação destes herbicidas reguladores de crescimento será uma provável alternativa de controle de buva resistente ao glyphosate. O objetivo desta pesquisa foi modelar por meio de curvas de dose-resposta a efic

  10. Canola Root–Associated Microbiomes in the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Chih-Ying Lay

    2018-06-01

    Full Text Available Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment, and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that

  11. Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance1

    Science.gov (United States)

    Yu, Qin; Jalaludin, Adam; Han, Heping; Chen, Ming; Sammons, R. Douglas; Powles, Stephen B.

    2015-01-01

    Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action. PMID:25717039

  12. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology.

    Science.gov (United States)

    Chen, Jingchao; Huang, Hongjuan; Wei, Shouhui; Huang, Zhaofeng; Wang, Xu; Zhang, Chaoxian

    2017-01-01

    Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK, EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. Are herbicide-resistant crops the answer to controlling Cuscuta?

    Science.gov (United States)

    Nadler-Hassar, Talia; Shaner, Dale L; Nissen, Scott; Westra, Phill; Rubin, Baruch

    2009-07-01

    Herbicide-resistant crop technology could provide new management strategies for the control of parasitic plants. Three herbicide-resistant oilseed rape (Brassica napus L.) genotypes were used to examine the response of attached Cuscuta campestris Yuncker to glyphosate, imazamox and glufosinate. Cuscata campestris was allowed to establish on all oilseed rape genotypes before herbicides were applied. Unattached seedlings of C. campestris, C. subinclusa Durand & Hilg. and C. gronovii Willd. were resistant to imazamox and glyphosate and sensitive to glufosinate, indicating that resistance initially discovered in C. campestris is universal to all Cuscuta species. Glufosinate applied to C. campestris attached to glufosinate-resistant oilseed rape had little impact on the parasite, while imazamox completely inhibited C. campestris growth on the imidazolinone-resistant host. The growth of C. campestris on glyphosate-resistant host was initially inhibited by glyphosate, but the parasite recovered and resumed growth within 3-4 weeks. The ability of C. campestris to recover was related to the quality of interaction between the host and parasite and to the resistance mechanism of the host. The parasite was less likely to recover when it had low compatibility with the host, indicating that parasite-resistant crops coupled with herbicide resistance could be highly effective in controlling Cuscuta. (c) 2009 by John Wiley & Sons, Ltd.

  14. Sensitivity of Canola Seeds Associated Fungi to Gamma Rays During Storage

    International Nuclear Information System (INIS)

    Botros, H.W.

    2011-01-01

    The present study was carried out to investigate the possibility of using the gamma radiation to elongate the storage periods of canola seeds (Brassica naps L.). In this respect, canola seeds were irradiated at doses of 0.5, 1.5, 2.5, 3.5, 5.0 and 7.5 kGy gamma rays and stored at room temperature for periods 0, 3, 6, 9 and 12 months. The isolated fungi from non-irradiated post-harvest canola seeds included different species identified as Aspergillus flavus, A. niger, A. condidus, A. fumigatus, A. ochraceus, A. parasiticus, Fusarium oxysporium, F. moniliforme, Penicillium expansum, P. crysogenum, Alternaria brassicae, A. raphani and Trichoderma spp. It was noticed that the predominant species were A. ochraceus, A. flavus, A. niger and F. oxysporium at percentages 16.18, 14.73, 11.00 and 10.53%, respectively. The effective gamma irradiation on the predominant fungi (the sub-lethal dose) was 3.5 kGy for A. ochraceus and 5.0 kGy for F. oxysporium and F. moniliforme. Increasing the irradiated dose up to 7.5 kGy decreased significantly the growth of most isolated fungi. The data also showed that there was a decrease in the total fungal count in stored seeds under the effect of gamma rays for 12 months storage. Also, mycotoxins at the stored seeds were not detected after 12 months storage

  15. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    Science.gov (United States)

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  16. Alterations in the 5 'untranslated region of the EPSPS gene influence EPSPS overexpression in glyphosate-resistant Eleusine indica.

    Science.gov (United States)

    Zhang, Chun; Feng, Li; Tian, Xing-Shan

    2018-04-26

    The herbicide glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Overexpression of the EPSPS gene is one of the molecular mechanisms conferring glyphosate resistance in weeds, but the transcriptional regulation of this gene is poorly understood. The EPSPS gene was found to be significantly up-regulated following glyphosate treatment in a glyphosate- resistant Eleusine indica population from South China. To further investigate the regulation of EPSPS overexpression, the promoter of the EPSPS gene from this E. indica population was cloned and analyzed. Two upstream regulatory sequences, Epro-S (862 bp) and Epro-R (877 bp) of EPSPS were obtained from glyphosate-susceptible (S) and -resistant (R) E. indica plants respectively by HiTAIL-PCR. The Epro-S and Epro-R sequences were 99% homologous, except for the two insertions (3 bp and12 bp) in the R sequence. The 12-base insertion of the Epro-R sequence was located in the 5'-UTR-Py-rich stretch element. The promoter activity tests showed that the 12-base insertion resulted in significant enhancement of the Epro-R promoter activity, whereas the 3-base insertion had little effect on Epro-R promoter activity. Alterations in the 5'-UTR-Py-rich stretch element of EPSPS are responsible for glyphosate induced EPSPS overexpression. Therefore, EPSPS transcriptional regulation confers glyphosate resistance in this E. indica population. This article is protected by copyright. All rights reserved.

  17. Identification and characterization of RAPD-SCAR markers linked to glyphosate-susceptible and -resistant biotypes of Eleusine indica (L.) Gaertn.

    Science.gov (United States)

    Cha, Thye San; Anne-Marie, Kaben; Chuah, Tse Seng

    2014-02-01

    Eleusine indica is one of the most common weed species found in agricultural land worldwide. Although herbicide-glyphosate provides good control of the weed, its frequent uses has led to abundant reported cases of resistance. Hence, the development of genetic markers for quick detection of glyphosate-resistance in E. indica population is imperative for the control and management of the weed. In this study, a total of 14 specific random amplified polymorphic DNA (RAPD) markers were identified and two of the markers, namely S4R727 and S26R6976 were further sequence characterized. Sequence alignment revealed that marker S4R727 showing a 12-bp nucleotides deletion in resistant biotypes, while marker S26R6976 contained a 167-bp nucleotides insertion in the resistant biotypes. Based on these sequence differences, three pairs of new sequence characterized amplified region (SCAR) primers were developed. The specificity of these primer pairs were further validated with genomic DNA extracted from ten individual plants of one glyphosate-susceptible and five glyphosate-resistant (R2, R4, R6, R8 and R11) populations. The resulting RAPD-SCAR markers provided the basis for assessing genetic diversity between glyphosate-susceptible and -resistant E. indica biotypes, as well for the identification of genetic locus link to glyphosate-resistance event in the species.

  18. Abnormal spindles in second meiosis in canola (Brassica napus and Brassica campestris

    Directory of Open Access Journals (Sweden)

    Alice Maria de Souza

    1999-01-01

    Full Text Available Studies were carried out on the occurrence of abnormal spindles in the second meiotic division in some canola cultivars recently introduced in Brazil. Fusion of spindles was observed in metaphase II rejoining the two sets of chromosomes segregated in anaphase I and also sequential and tripolar spindles were discovered rejoining two sets of chromatids segregated in anaphase II. The frequency of cells with abnormal spindles ranged from 3.18 to 8.10%. The results suggested that this abnormality was caused by environmental stress that affected the plants during the blooming period.O presente estudo descreve a ocorrência de fusos anormais na segunda divisão meiótica em algumas cultivares da canola recentemente introduzidas no Brasil. Fusão de fusos foi observada em metáfase II reunindo os dois conjuntos cromossômicos segregados na anáfase I; fusos sequenciais e tripolares reunindo cromátides segregadas na anáfase II também foram observados. A frequência de células com fusos anormais variou de 3,18 a 8,10% entre as variedades. Os resultados sugerem que estas anormalidades foram causadas por condições climáticas adversas que afetaram as plantas no período de florescimento. As implicações genéticas destas anormalidades são descritas.

  19. Investigation of glyphosate resistance levels and target-site based resistance (TSR) mechanisms in Conyza canadensis (L.) from apple orchards around areas of Bohai seas and Loess Plateau in China.

    Science.gov (United States)

    Mei, Yu; Xu, Yufang; Wang, Shipeng; Qiu, Lihong; Zheng, Mingqi

    2018-04-01

    The resistance levels to glyphosate and target-site based resistance mechanisms in susceptible (S) and resistant (R) Conyza canadensis (L.) populations, which were collected from apple orchards around areas of Bohai seas and Loess Plateau in China, were investigated. Among forty C. canadensis populations, eighteen populations (45%) were still susceptible; fourteen populations (35%) evolved low resistance levels resistance to glyphosate with resistance index (RI) of 2.02 to 3.90. In contrast, eight populations (20%) evolved medium resistance levels with RI of 4.35 to 8.38. The shikimic acid concentrations in R populations were highly negative relative with the glyphosate resistance levels in C. canadensis, the Pearson correlation coefficient was -0.82 treated by glyphosate at 1.8mg/L. Three 5-enoylpyruvylshikimate 3'-phosphate synthase genes (EPSPS1, EPSPS2 and EPSPS3) were cloned in all S and glyphosate-resistant C. canadensis populations. No amino acid substitution was identified at site of 102 and 106 in three EPSPS genes, which were reported to confer glyphosate resistance in other weed species. The relative expression level of EPSPS mRNA in R populations (SD07, LN05, SHX06 and SD09) was 4.5 to 13.2 times higher than in S biotype. The Pearson correlation coefficient between EPSPS expression levels and RI was 0.79, which indicated the over expression of EPSPS mRNA may cause these R populations evolve higher resistance level to glyphosate. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world. Quantitative trait loci (QTLs for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10 were investigated using a BC1F1 population from a cross between two subspecies of Brassica rapa, i.e. Chinese cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor parent. The BC1F2 families were assessed for resistance under controlled conditions. A linkage map constructed with simple sequence repeats (SSR, unigene-derived microsatellite (UGMS markers, and specific markers linked to published clubroot resistance (CR genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in 5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single conserved crucifer blocks (U, F, and R on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A. thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR genes in B. rapa.

  1. Identification of geneticaly modified soybean seeds resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    Tillmann Maria Ângela André

    2004-01-01

    Full Text Available Advances in genetic engineering permit the modification of plants to be tolerant to certain herbicides that are usually not selective. For practical and commercial purposes, it is important to be able to detect the presence or absence of these traits in genotypes. The objective of this research was to develop a procedure for identifying genetically modified soybean (Glycine max L. Merr. with resistance to the herbicide glyphosate. Two studies were conducted based on germination test. In the first study, soybean seeds were pre-imbibed in paper towel with the herbicide solutions, then transferred to moist paper towel for the germination test. In the second study, seeds were placed directly in herbicide solutions in plastic cups and tested for germination using the paper towel method. Eight soybean genotypes were compared: four Roundup Ready, that contained the gene resistant to the herbicide (G99-G725, Prichard RR, G99-G6682, and H7242 RR and four non-transgenic parental cultivars (Boggs, Haskell, Benning, and Prichard. In the first study, the seeds were imbibed for 16 hours at 25°C in herbicide concentrations between 0.0 and 1.5% of the glyphosate active ingredient. In the second, seeds were subjected to concentrations between 0.0 and 0.48%, for one hour, at 30°C. The evaluation parameters were: germination, hypocotyl length, root length and total length of the seedlings. Both methods are efficient in identifying glyphosate-resistant soybean genotypes. It is possible to identify the genetically modified soybean genotypes after three days, by imbibing the seed in 0.12% herbicide solution, and after six days if the substrate is pre-imbibed in a 0.6% herbicide solution. The resistance trait was identified in all cultivars, independent of the initial physiological quality of the seed.

  2. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    Science.gov (United States)

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  3. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Ting Xiang Neik

    2017-11-01

    Full Text Available Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae, Blackleg (Leptosphaeria maculans and L. biglobosa, Sclerotinia Stem Rot (Sclerotinia sclerotiorum, and Downy Mildew (Hyaloperonospora parasitica. We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.

  4. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Science.gov (United States)

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  5. Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance.

    Science.gov (United States)

    Tehranchian, Parsa; Nandula, Vijay; Jugulam, Mithila; Putta, Karthik; Jasieniuk, Marie

    2018-04-01

    Glyphosate, paraquat and acetyl CoA carboxylase (ACCase)-inhibiting herbicides are widely used in California annual and perennial cropping systems. Recently, glyphosate, paraquat, and ACCase- and acetolactate synthase (ALS)-inhibitor resistance was confirmed in several Italian ryegrass populations from the Central Valley of California. This research characterized the possible mechanisms of resistance. Multiple-resistant populations (MR1, MR2) are resistant to several herbicides from at least three modes of action. Dose-response experiments revealed that the MR1 population was 45.9-, 122.7- and 20.5-fold, and the MR2 population was 24.8-, 93.9- and 4.0-fold less susceptible to glyphosate, sethoxydim and paraquat, respectively, than the susceptible (Sus) population. Accumulation of shikimate in Sus plants was significantly greater than in MR plants 32 h after light pretreatments. Glyphosate resistance in MR plants was at least partially due to Pro106-to-Ala and Pro106-to-Thr substitutions at site 106 of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS gene copy number and expression level were similar in plants from the Sus and MR populations. An Ile1781-to-Leu substitution in ACCase gene of MR plants conferred a high level of resistance to sethoxydim and cross-resistance to other ACCase-inhibitors. Radiolabeled herbicide studies and phosphorimaging indicated that MR plants had restricted translocation of 14 C-paraquat to untreated leaves compared to Sus plants. This study shows that multiple herbicide resistance in Italian ryegrass populations in California, USA, is due to both target-site and non-target-site resistance mechanisms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Simulating the evolution of glyphosate resistance in grains farming in northern Australia.

    Science.gov (United States)

    Thornby, David F; Walker, Steve R

    2009-09-01

    The evolution of resistance to herbicides is a substantial problem in contemporary agriculture. Solutions to this problem generally consist of the use of practices to control the resistant population once it evolves, and/or to institute preventative measures before populations become resistant. Herbicide resistance evolves in populations over years or decades, so predicting the effectiveness of preventative strategies in particular relies on computational modelling approaches. While models of herbicide resistance already exist, none deals with the complex regional variability in the northern Australian sub-tropical grains farming region. For this reason, a new computer model was developed. The model consists of an age- and stage-structured population model of weeds, with an existing crop model used to simulate plant growth and competition, and extensions to the crop model added to simulate seed bank ecology and population genetics factors. Using awnless barnyard grass (Echinochloa colona) as a test case, the model was used to investigate the likely rate of evolution under conditions expected to produce high selection pressure. Simulating continuous summer fallows with glyphosate used as the only means of weed control resulted in predicted resistant weed populations after approx. 15 years. Validation of the model against the paddock history for the first real-world glyphosate-resistant awnless barnyard grass population shows that the model predicted resistance evolution to within a few years of the real situation. This validation work shows that empirical validation of herbicide resistance models is problematic. However, the model simulates the complexities of sub-tropical grains farming in Australia well, and can be used to investigate, generate and improve glyphosate resistance prevention strategies.

  7. Effect of Different Salinity levels on some Photosynthetic Characters of Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    F Tahmasbi

    2016-07-01

    Full Text Available Introduction Salinity is one of the most important factors limiting crop production in arid and semiarid regions of the world that affects crop yield. Salt tolerance of Brassica species are very complex due to genetic relationships. Because of low erucic acid (less than 2% of total fatty acids and glucosinolates contents (less than 3 µmol g-1, oil of Canola has many consumers around the world. Because Canola have tolerance potential against toxicity of salinity and its minerals, its growth can be successful in saline condition. According to the recent ongoing drought and the need to use low quality irrigation water for crops such as Canola, aim of this experiment was to evaluate the effect of salinity on changes in carbon fixation process and photosynthetic pigments of three Canola genotypes under salinity as well as determine most salt tolerant genotype for use in saline regions. Materials and Methods An experiment was conducted in the greenhouse of Shahid Chamran University during 2007-2008 growing season in factorial test based on a completely randomized design with four replications. The first factor (genotype included Hayola 401, RGS0003 and Shiraly and the second factor (salinity levels had four levels of salinity (50, 100 and 150 mM NaCl as well as distilled water as a control. Sources of salinity were NaCl and CaCl2 with equal ratio as most resembles to lower water quality resources in the region. Date and time of stress were considered four weeks after planting (four-leaf stage. A Stepped irrigation method using saline water was done every 12 days over three steps period. To perform this study 10 liters volume pots were used. Three pots per each treatment, and totally 144 pots were used. SAS (version 9.1, Excel and MSTAT-C software's was used for statistical analysis. The comparison of means was done by Duncan method. Results and Discussion The results showed that content of chlorophyll a, b and carotenoids in all three genotypes

  8. Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2016-02-01

    Full Text Available Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the B. rapa R500 x IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive glucosinolates are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen.

  9. Tolerance of Glyphosate-Resistant Maize to Glyphosate Plus MCPA Amine Is Influenced by Dose and Timing

    Directory of Open Access Journals (Sweden)

    Nader Soltani

    2015-01-01

    Full Text Available There is little information on tolerance of glyphosate-resistant maize to glyphosate plus MCPA amine as influenced by dose and timing under Ontario environmental conditions. A total of seven field trials were conducted at various locations in Ontario, Canada, in 2011–2013 to evaluate tolerance of field maize to tank mixes of glyphosate (900 g a.e./ha plus MCPA amine (79, 158, 315, 630, 1260, 2520, or 5040 g a.e./ha at either the 4- or 8-leaf stage. The predicted dose of MCPA amine that caused 5, 10, and 20% injury was 339, 751, and 1914 g a.e./ha when applied to 4-leaf maize but only 64, 140, and 344 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% reduction in shoot dry weight of maize was 488, 844, and 1971 g a.e./ha when applied to 4-leaf maize and only 14, 136, and 616 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% yield reduction was 2557, 4247, and >5040 g a.e./ha when applied to 4-leaf maize and 184, 441, and 1245 g a.e./ha when applied to 8-leaf maize, respectively. Based on these results, glyphosate plus MCPA amine applied at the manufacturer’s recommended dose of 630 g a.e./ha applied to 4-leaf maize has potential to cause injury but the injury is transient with no significant reduction in yield. However, when glyphosate plus MCPA amine is applied to 8-leaf maize it has the potential to cause significant injury and yield loss in maize.

  10. Modeling identifies optimal fall planting times and irrigation requirements for canola and camelina at locations across California

    Directory of Open Access Journals (Sweden)

    Nicholas George

    2017-06-01

    Full Text Available In California, Brassica oilseeds may be viable crops for growers to diversify their cool-season crop options, helping them adapt to projected climate change and irrigation water shortages. Field trials have found germination and establishment problems in some late-planted canola, but not camelina at the same locations. We used computer modeling to analyze fall seedbed conditions to better understand this phenomenon. We found seedbeds may be too dry, too cold, or both, to support germination of canola during late fall. Based on seedbed temperatures only, canola should be sown no later than the last week of November in the Central Valley. Camelina has broader temperature and moisture windows for germination and can be sown from October to December with less risk, but yields of camelina are lower than canola yields. In areas without irrigation, growers could plant canola opportunistically when seedbed conditions are favorable and use camelina as a fallback option.

  11. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species.

    Science.gov (United States)

    Fernández, Pablo; Alcántara, Ricardo; Osuna, María D; Vila-Aiub, Martin M; Prado, Rafael De

    2017-05-01

    In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds. Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L. rigidum, L. perenne, L. multiflorum) collected from perennial crops in the Iberian Peninsula have also evolved resistance to glufosinate and oxyfluorfen herbicides, despite their recent introduction. Based on the LD 50 resistance parameter, the resistance factor was similar among Lolium species and ranged from 14- to 21-fold and from ten- to 12-fold for oxyfluorfen and glufosinate respectively. Similarly, about 14-fold resistance to both oxyfluorfen and glufosinate was estimated on average for the three Lolium species when growth reduction (GR 50 ) was assessed. This study identified oxyfluorfen resistance in a grass species for the first time. A major threat to sustainability of perennial crops in the Iberian Peninsula is evident, as multiple resistance to non-selective glyphosate, glufosinate and oxyfluorfen herbicides has evolved in L. rigidum, L. perenne and L. multiflorum weeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Effects of fall and spring seeding date and other agronomic factors on infestations of root maggots, Delia spp. (Diptera: Anthomyiidae), in canola.

    Science.gov (United States)

    Dosdall, L M; Clayton, G W; Harker, K N; O'Donovan, J T; Stevenson, F C

    2006-10-01

    Several agronomic benefits can result from fall seeding of canola (Brassica spp.), but extensive research data are lacking on the potential impact of this practice on infestations of root maggots (Delia spp.) (Diptera: Anthomyiidae), which are major pests of the crop in western Canada. Field experiments making up 13 location by year combinations were conducted in central Alberta, Canada, from 1998 to 2001 to determine the effect of fall versus spring seeding of canola on root maggot damage. Depending on the experiment, interactions with seeding rate, seed treatment, timing of weed removal, and canola species (cultivar) also were investigated. Root maggot damage declined with an increase in seeding rate for plots seeded in May but not in fall or April. Susceptibility to infestation was greater for plants of Brassica rapa L. than Brassica napus L., but seed treatment had no effect on damage by these pests. Combined analysis using data from all experiment by location by year combinations indicated that seeding date had no significant effect on root maggot damage. The extended emergence of Delia spp. adults, which spans the appearance of crop stages vulnerable to oviposition regardless of seeding date, prevented reduced root maggot attack. Covariance analysis demonstrated the importance of increasing seeding rate for reducing root maggot infestations, a practice that can be especially beneficial for May-seeded canola when growing conditions limit the ability of plants to compensate for root maggot damage. Results determined with the small plot studies described here should be validated in larger plots or on a commercial field scale, but both the combined and covariance analyses indicate that seeding canola in fall does not predispose plants to greater damage by larval root maggots than seeding in spring.

  13. Evaluation of glyphosate resistance in Arabidopsis thaliana expressing an altered target site EPSPS.

    Science.gov (United States)

    Sammons, R Douglas; You, Jinsong; Qi, Youlin; Flasinski, Stanislaw; Kavanaugh, Christina; Washam, Jeannie; Ostrander, Elizabeth; Wang, Dafu; Heck, Greg

    2018-05-01

    Glyphosate-resistant goosegrass has recently evolved and is homozygous for the double mutant of EPSPS (T 102 I, P 106 S or TIPS). These same mutations combined with EPSPS overexpression, have been used to create transgenic glyphosate-resistant crops. Arabidopsis thaliana (Wt EPSPS K i ∼ 0.5 μM) was engineered to express a variant AtEPSPS-T 102 I, P 106 A (TIPA K i = 150 μM) to determine the resistance magnitude for a more potent variant EPSPS that might evolve in weeds. Transgenic A. thaliana plants, homozygous for one, two or four copies of AtEPSPS-TIPA, had resistance (IC 50 values, R/S) as measured by seed production ranging from 4.3- to 16-fold. Plants treated in reproductive stage were male sterile with a range of R/S from 10.1- to 40.6-fold. A significant hormesis (∼ 63% gain in fresh weight) was observed for all genotypes when treated at the initiation of reproductive stage with 0.013 kg ha -1 . AtEPSPS-TIPA enzyme activity was proportional to copy number and correlated with resistance magnitude. A. thaliana, as a model weed expressing one copy of AtEPSPS-TIPA (300-fold more resistant), had only 4.3-fold resistance to glyphosate for seed production. Resistance behaved as a single dominant allele. Vegetative tissue resistance was 4.7-fold greater than reproductive tissue resistance and was linear with gene copy number. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    Science.gov (United States)

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  15. Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica).

    Science.gov (United States)

    Gherekhloo, Javid; Fernández-Moreno, Pablo T; Alcántara-de la Cruz, Ricardo; Sánchez-González, Eduardo; Cruz-Hipolito, Hugo E; Domínguez-Valenzuela, José A; De Prado, Rafael

    2017-07-27

    Glyphosate has been used for more than 15 years for weed management in citrus groves in the Gulf of Mexico, at up to 3-4 applications per year. Goosegrass (Eleusine indica (L.) Gaertn.) control has sometimes failed. In this research, the mechanisms governing three goosegrass biotypes (Ein-Or from an orange grove, and Ein-Pl1 and Ein-Pl2 from Persian lime groves) with suspected resistance to glyphosate were characterized and compared to a susceptible biotype (Ein-S). Dose-response and shikimate accumulation assays confirmed resistance of the resistant (R) biotypes. There were no differences in glyphosate absorption, but the R biotypes retained up to 62-78% of the herbicide in the treated leaf at 96 h after treatment (HAT), in comparison to the Ein-S biotype (36%). The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity in the Ein-Or and Ein-S biotypes was over 100-fold lower than the Ein-Pl1 and Ein-Pl2 ones. The latter showed a high EPSPS-basal activity, a mutation at Pro-106-Ser position in the EPSPS gene, and EPSPS overexpression. The EPSPS basal and EPSPS overexpression were positively correlated. The R goosegrass biotypes displayed poor glyphosate translocation. Furthermore, this grassweed showed, for the first time, two mechanisms at the target-site level (Pro-106-Ser mutation + EPSPS overexpression) acting together simultaneously against glyphosate.

  16. Herbicidas alternativos para controle de biótipos de Conyza bonariensis e C. canadensis resistentes ao glyphosate Alternative herbicides to control glyphosate-resistant biotypes of Conyza bonariensis and C. canadensis

    Directory of Open Access Journals (Sweden)

    M.S. Moreira

    2010-01-01

    Full Text Available Após sucessivos anos, aplicações do herbicida glyphosate em pomares de citros no Estado de São Paulo selecionaram biótipos resistentes de Conyza bonariensis e C. canadensis. Na ocorrência de plantas daninhas resistentes em uma área agrícola, tornam-se necessárias mudanças nas práticas de manejo para obtenção de adequado controle das populações resistentes, bem como para a redução da pressão de seleção sobre outras espécies. Assim, este trabalho foi realizado com o objetivo de identificar herbicidas alternativos para controle de biótipos de Conyza spp. resistentes ao herbicida glyphosate, com aplicações em diferentes estádios fenológicos da planta daninha. Três experimentos foram conduzidos em campo, em pomares de citros em formação, sobre plantas de buva em estádio fenológico de dez folhas e no pré-florescimento. Para plantas no estádio de dez folhas, controle satisfatório foi obtido com aplicações de glyphosate + bromacil + diuron (1.440 + 1.200 + 1.200 g ha-1, glyphosate + atrazina (1.440 + 1.500 g ha-1 e glyphosate + diuron (1.440 + 1.500 g ha-1. Quando em estádio de pré-florescimento de Conyza spp., a aplicação do herbicida amônio-glufosinato, na dose de 400 g ha-1, isolado ou associado a MSMA, bromacil+diuron, metsulfuron, carfentrazone e paraquat, foi a alternativa viável para controle dos biótipos resistentes ao glyphosate.After successive years, glyphosate applications on São Paulo-Brazil citrus orchards selected resistant biotypes of Conyza bonariensis and C. canadensis. The occurrence of herbicide-resistant weed biotypes at some agricultural area makes it necessary to change the management practices to reach effective control of the selected resistant populations, as well as to reduce selection pressure on the other species. Thus, this work aimed to identify the alternative herbicides to control glyphosate-resistant biotypes of Conyza spp., with applications at different weed phenological

  17. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  18. Environmental and health effects of the herbicide glyphosate.

    Science.gov (United States)

    Van Bruggen, A H C; He, M M; Shin, K; Mai, V; Jeong, K C; Finckh, M R; Morris, J G

    2018-03-01

    The herbicide glyphosate, N-(phosphonomethyl) glycine, has been used extensively in the past 40years, under the assumption that side effects were minimal. However, in recent years, concerns have increased worldwide about the potential wide ranging direct and indirect health effects of the large scale use of glyphosate. In 2015, the World Health Organization reclassified glyphosate as probably carcinogenic to humans. A detailed overview is given of the scientific literature on the movement and residues of glyphosate and its breakdown product aminomethyl phosphonic acid (AMPA) in soil and water, their toxicity to macro- and microorganisms, their effects on microbial compositions and potential indirect effects on plant, animal and human health. Although the acute toxic effects of glyphosate and AMPA on mammals are low, there are animal data raising the possibility of health effects associated with chronic, ultra-low doses related to accumulation of these compounds in the environment. Intensive glyphosate use has led to the selection of glyphosate-resistant weeds and microorganisms. Shifts in microbial compositions due to selective pressure by glyphosate may have contributed to the proliferation of plant and animal pathogens. Research on a link between glyphosate and antibiotic resistance is still scarce but we hypothesize that the selection pressure for glyphosate-resistance in bacteria could lead to shifts in microbiome composition and increases in antibiotic resistance to clinically important antimicrobial agents. We recommend interdisciplinary research on the associations between low level chronic glyphosate exposure, distortions in microbial communities, expansion of antibiotic resistance and the emergence of animal, human and plant diseases. Independent research is needed to revisit the tolerance thresholds for glyphosate residues in water, food and animal feed taking all possible health risks into account. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. How glyphosate affects plant disease development: it is more than enhanced susceptibility.

    Science.gov (United States)

    Hammerschmidt, Ray

    2018-05-01

    Glyphosate has been shown to affect the development of plant disease in several ways. Plants utilize phenolic and other shikimic acid pathway-derived compounds as part of their defense against pathogens, and glyphosate inhibits the biosynthesis of these compounds via its mode of action. Several studies have shown a correlation between enhanced disease and suppression of phenolic compound production after glyphosate. Glyphosate-resistant crop plants have also been studied for changes in resistance as a result of carrying the glyphosate resistance trait. The evidence indicates that neither the resistance trait nor application of glyphosate to glyphosate-resistant plants increases susceptibility to disease. The only exceptions to this are cases where glyphosate has been shown to reduce rust diseases on glyphosate-resistant crops, supporting a fungicidal role for this chemical. Finally, glyphosate treatment of weeds or volunteer crops can cause a temporary increase in soil-borne pathogens that may result in disease development if crops are planted too soon after glyphosate application. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Secondary effects of glyphosate on plants

    Science.gov (United States)

    Glyphosate is a unique herbicide with interesting secondary effects. Unfortunately, some have assumed that the secondary effects that occur in glyphosate-susceptible plants treated with glyphosate, such as altered mineral nutrition, reduced phenolic compound production and pathogen resistance, also ...

  1. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    Science.gov (United States)

    Sharkhuu, Altanbadralt; Narasimhan, Meena L; Merzaban, Jasmeen S; Bressan, Ray A; Weller, Steve; Gehring, Chris

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide. PMID:24654847

  2. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt; Narasimhan, Meena L.; Merzaban, Jasmeen; Bressan, Ray A.; Weller, Steve; Gehring, Christoph A

    2014-01-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  3. A red and far-red light receptor mutation confers resistance to the herbicide glyphosate

    KAUST Repository

    Sharkhuu, Altanbadralt

    2014-06-01

    Glyphosate is a widely applied broad-spectrum systemic herbicide that inhibits competitively the penultimate enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) from the shikimate pathway, thereby causing deleterious effects. A glyphosate-resistant Arabidopsis mutant (gre1) was isolated and genetic analyses indicated that a dysfunctional red (R) and far-red (FR) light receptor, phytochrome B (phyB), caused this phenotype. This finding is consistent with increased glyphosate sensitivity and glyphosate-induced shikimate accumulation in low R:FR light, and the induction of genes encoding enzymes of the shikimate pathway in high R:FR light. Expression of the shikimate pathway genes exhibited diurnal oscillation and this oscillation was altered in the phyB mutant. Furthermore, transcript analysis suggested that this diurnal oscillation was not only dependent on phyB but was also due to circadian regulatory mechanisms. Our data offer an explanation of the well documented observation that glyphosate treatment at various times throughout the day, with their specific composition of light quality and intensity, results in different efficiencies of the herbicide.

  4. Fitness Outcomes Related to Glyphosate Resistance in Kochia (Kochia scoparia: What Life History Stage to Examine?

    Directory of Open Access Journals (Sweden)

    Omobolanle Adewale Osipitan

    2017-06-01

    Full Text Available A fast-spreading weed, kochia (Kochia scoparia, has developed resistance to the widely-used herbicide, glyphosate. Understanding the relationship between the occurrence of glyphosate resistance caused by multiple EPSPS gene copies and kochia fitness may suggest a more effective way of controlling kochia. A study was conducted to assess fitness cost of glyphosate resistance compared to susceptibility in kochia populations at different life history stages, that is rate of seed germination, increase in plant height, days to flowering, biomass accumulation at maturity, and fecundity. Six kochia populations from Scott, Finney, Thomas, Phillips, Wallace, and Wichita counties in western Kansas were characterized for resistance to field-use rate of glyphosate and with an in vivo shikimate accumulation assay. Seed germination was determined in growth chambers at three constant temperatures (5, 10, and 15 C while vegetative growth and fecundity responses were evaluated in a field study using a target-neighborhood competition design in 2014 and 2015. One target plant from each of the six kochia populations was surrounded by neighboring kochia densities equivalent to 10 (low, 35 (moderate, or 70 (high kochia plants m−2. In 2015, neighboring corn densities equivalent to 10 and 35 plants m−2 were also evaluated. Treatments were arranged in a randomized complete block design with at least 7 replications. Three kochia populations were classified as glyphosate-resistant (GR [Scott (SC-R, Finney (FN-R, and Thomas (TH-R] and three populations were classified as glyphosate-susceptible (GS [Phillips (PH-S, Wallace (WA-S and Wichita (WI-S]. Of the life history stages measured, fitness differences between the GR and GS kochia populations were consistently found in their germination characteristics. The GR kochia showed reduced seed longevity, slower germination rate, and less total germination than the GS kochia. In the field, increases in plant height, biomass

  5. Chemical control of different Digitaria insularis populations and management of a glyphosate-resistant population

    OpenAIRE

    CORREIA,N.M.; ACRA,L.T.; BALIEIRO,G.

    2015-01-01

    This study aimed to control different populations of Digitaria insularisby glyphosate herbicide, isolated and mixed, besides the combination of methods (chemical and mechanical) to manage resistant adult plants. Three experiments were conducted, one in pots which were maintained under non-controlled conditions and two under field conditions. In the experiment in pots, twelve populations of D. insularis were sprayed with isolated glyphosate (1.44 and 2.16 kg a.e. ha-1) and mixed (1.44 and 2.16...

  6. Differential response of two sourgrass populations to glyphosate

    Directory of Open Access Journals (Sweden)

    São Paulo State University, Jaboticabal, SP, Brazil

    2013-02-01

    Full Text Available The repetitive use of glyphosate may cause increase on the resistance of sourgrass (Digitaria insularis through mechanisms of natural selection. The aim of this study was to verify the response of two populations of sourgrass (one collected from nonagricultural area and the other one from area suspected of glyphosate resistance to increasing doses of glyphosate. The experimental design was completely randomized with four repetitions. For both populations, glyphosate was sprayed at 10 doses (0D, D/16, D/8, D/4, D/2, D, 2D, 4D, 8D, and 16D; so that D is the dose of 1.08 kg e.a. ha-1. The treatments were sprayed when the plants had shown 3-5 tillers. The population collected in the nonagricultural area was slightly more sensible to the herbicide glyphosate than the population originated from an area where the herbicide application is common, not indicating glyphosate resistance.

  7. Interactions of tillage and cover crop on water, sediment, and pre-emergence herbicide loss in glyphosate-resistant cotton: implications for the control of glyphosate-resistant weed biotypes.

    Science.gov (United States)

    Krutz, L Jason; Locke, Martin A; Steinriede, R Wade

    2009-01-01

    The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.

  8. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence. PMID:25523176

  9. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence.

  10. Identificação de biótipos de azevém (Lolium multiflorum resistentes ao herbicida glyphosate em pomares de maçã Identification of glyphosate-resistant ryegrass (Lolium multiflorum biotypes in apple orchards

    Directory of Open Access Journals (Sweden)

    L. Vargas

    2004-12-01

    Full Text Available O glyphosate é um herbicida de amplo espectro utilizado há mais de 15 anos em pomares de maçã na região de Vacaria-RS, para manejo da vegetação nas linhas da cultura. São realizadas, em geral, três a quatro aplicações por ciclo e a dose normalmente utilizada é de 720 a 1.080 g e.a. ha-1 de glyphosate (2 a 3 L ha-1 do produto comercial. O azevém (Lolium multiflorum é uma planta daninha comum em pomares e, tradicionalmente, sensível ao glyphosate. Entretanto, nos últimos anos a ocorrência de plantas de azevém que, após receberem o tratamento com glyphosate, não manifestam sintomas significativos de toxicidade sugere que elas adquiriram resistência ao produto. Assim, com o objetivo de avaliar a resposta de uma população de plantas de azevém ao glyphosate, foram realizados três experimentos: um em campo e dois em casa de vegetação. No experimento em campo os tratamentos avaliados constaram de doses crescentes de glyphosate (0, 360, 720, 1.440, 2.880, 5.760 e 11.520 g e.a. ha-1, e os herbicidas paraquat, glufosinate, haloxyfop e diclofop foram empregados como produtos-padrão, aplicados em dois estádios vegetativos do azevém. No experimento em casa de vegetação, os tratamentos constaram de doses crescentes de glyphosate (0, 360, 720, 1.440, 2.880 e 5.760 g e.a. ha-1 mais os herbicidas testemunhas, aplicados sobre plantas do biótipo considerado resistente e de um sensível. No segundo experimento realizado em casa de vegetação foram avaliados tratamentos contendo glyphosate (720, 1.440, 2.880, 720 + 720 e 720 + 1.440 g e.a. ha-1, em aplicações únicas e seqüenciais, mais os herbicidas paraquat, glufosinate, haloxyfop, clethodim, sethoxydim, diclofop, fenoxaprop, fluazifop, paraquat + diuron, atrazine + simazine, trifluralin e metolachlor. A toxicidade dos tratamentos herbicidas foi avaliada aos 15, 30 e 45 DAT (dias após tratamento. Os resultados obtidos nos experimentos em campo e em casa de vegetação, de forma

  11. MATERNAL EFFECTS IN ADVANCED HYBRIDS OF GENETICALLY MODIFIED AND NON-GENETICALLY MODIFIED BRASSICA SPECIES

    Science.gov (United States)

    Identification of fitness traits potentially impacted by gene flow from genetically modified (GM) crops to compatible relatives is of interest in risk assessments for GM crops. Reciprocal crosses were made between GM canola, Brassica napus cv. RaideRR that expresses CP4 EPSPS fo...

  12. The history and current status of glyphosate.

    Science.gov (United States)

    Duke, Stephen O

    2018-05-01

    Glyphosate is the only herbicide to target the enzyme 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS). It is a high use rate, non-selective herbicide that translocates primarily to metabolic sinks, killing meristematic tissues away from the application site. Its phloem-mobile properties and slow action in killing weeds allow the herbicide to move throughout the plant to kill all meristems, making it effective for perennial weed control. Since commercialization in 1974, its use has grown to dominate the herbicide market. Much of its use is on transgenic, glyphosate-resistant crops (GRCs), which have been the dominant transgenic crops worldwide. GRCs with glyphosate provided the most effective and inexpensive weed management technology in history for a decade or more. However, as a consequence of the rapid increase in glyphosate-resistant (GR) weeds, the effectiveness of glyphosate use in GRCs is declining. Critics have claimed that glyphosate-treated GRCs have altered mineral nutrition and increased susceptibility to plant pathogens because of glyphosate's ability to chelate divalent metal cations, but the complete resistance of GRCs to glyphosate indicates that chelating metal cations do not contribute to the herbicidal activity or significantly affect mineral nutrition. The rates of increases in yields of maize, soybean, and cotton in the USA have been unchanged after high adoption rates of GRCs. Glyphosate is toxic to some plant pathogens, and thereby can act as a fungicide in GRCs. Ultra-low doses of glyphosate stimulate plant growth in glyphosate-susceptible plants by unknown mechanisms. Despite rapid and widespread increases in GR weeds, glyphosate use has not decreased. However, as GR weeds increase, adoption of alternative technologies will eventually lead to decreased use. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in

  13. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  14. Enteric methane production and ruminal fermentation of forage brassica diets fed in continuous culture

    Science.gov (United States)

    The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (B. rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous...

  15. Wastewater impact on physiology, biomass and yield of canola (brassica napus L.)

    International Nuclear Information System (INIS)

    Khan, I.U.; Khan, M.J.

    2012-01-01

    The impact of domestic/municipal wastewater (mww) of Dera Ismail Khan, Pakistan was assessed through its effects on biomass, physiology and yield of canola (Brassica napus L.). The pot experiments were conducted in a completely randomized design with three replications in net house during winter season 2006-07 and 2007-08 at Gomal University, Dera Ismail Khan, Pakistan. Treatments included were T0 (tube well/tap water), T/sub 1/ (20% mww), T/sub 2/ (40% mww), T/sub 3/ (80% mww) and T/sub 4/ (100% mww/raw-form municipal wastewater). The quality and chemical composition of wastewater was deviating from international (Anon., 1985) as well as NEQS (2005) standard. Analysis of wastewater showed that biochemical oxygen demand (BOD), chemical oxygen demand (COD), sodium adsorption ratio (SAR) and total suspended solids (TSS) were above the permissible limit of irrigation. In pods per plant, the reduction was 61.55% by recording 110 pods per plant with T/sub 4/ (100% mww) as compared to control T0 (286.1 pods per plant). Similarly pod length (reduced by 59.72%), seeds per pod (reduced by 42.53%), Seeds per plant (reduced by 82%), seed weight per plant (reduced by 88%), 100-seed weight (reduced by 19.54%) and straw yield (reduced by 54.23%) were significantly reduced by applying 100% wastewater. The most affected yield contributing traits were seeds per plant and seed weight per plant with 82% and 88% reduction, respectively due to T/sub 4/ (100% mww). On average, the decrease was 60% in the first stage and a further decrement of 4.83% was observed when the obtained seeds were re-sown in 2007-08. Results revealed that utilizing municipal wastewater of the area under investigation for irrigation purpose of food and feed crops might not be safe. The major reason seems to be the high salinity and sodium adsorption ratio that restricted crop growth and yield. (author)

  16. Development of glyphosate-resistant alfalfa (Medicago sativa L.) upon transformation with the GR79Ms gene encoding 5-enolpyruvylshikimate-3-phosphate synthase.

    Science.gov (United States)

    Yi, Dengxia; Ma, Lin; Lin, Min; Li, Cong

    2018-07-01

    The glyphosate-resistant gene, GR79Ms, was successfully introduced into the genome of alfalfa. The transgenic events may serve as novel germplasm resources in alfalfa breeding. Weed competition can reduce the alfalfa yield, generating new alfalfa germplasm with herbicide resistance is essential. To obtain transgenic alfalfa lines with glyphosate resistance, a new synthetic glyphosate-resistant gene GR79Ms encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) was introduced into alfalfa germplasm by Agrobacterium tumefaciens-mediated transformation. In total, 67 transformants were obtained. PCR and Southern blot analyses confirmed that GR79Ms was successfully inserted into the genome of alfalfa. Reverse transcription-PCR and western blot analyses further demonstrated the expression of GR79Ms and its product, GR79Ms EPSPS. Moreover, two homozygous transgenic lines were developed in the T 2 generation by means of molecular-assisted selection. Herbicide tolerance spray tests showed that the transgenic plants T 0 -GR1, T 0 -GR2, T 0 -GR3 and two homozygous lines were able to tolerate fourfold higher commercial usage of glyphosate than non-transgenic plants.

  17. Structural Properties of Cruciferin and Napin of Brassica napus (Canola Show Distinct Responses to Changes in pH and Temperature

    Directory of Open Access Journals (Sweden)

    Suneru P. Perera

    2016-09-01

    Full Text Available The two major storage proteins identified in Brassica napus (canola were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly β-sheet-containing secondary structure. This protein showed low pH unstable tertiary structure, and distinctly different solubility behaviour with pH when intact in the seed cellular matrix. Cruciferin structure unfolds at pH 3 even at ambient temperature. Temperature-induced structure unfolding was observed above the maximum denaturation temperature of cruciferin. Napin was soluble in a wider pH range than cruciferin and has α-helices dominating secondary structure. Structural features of napin showed less sensitivity to the changes in medium pH and temperature. The surface hydrophobicity (S0 and intrinsic fluorescence of tryptophan residue appear to be good indicators of cruciferin unfolding, however they were not the best to demonstrate structural changes of napin. These two storage proteins of B. napus have distinct molecular characteristics, therefore properties and functionalities they provide are contrasting rather than complementary.

  18. Herbicide Glyphosate Impact to Earthworm (E. fetida

    Directory of Open Access Journals (Sweden)

    Greta Dajoraitė

    2016-10-01

    Full Text Available Glyphosate is a broad spectrum weed resistant herbicide. Glyphosate may pose negative impact on land ecosystems because of wide broad usage and hydrofilic characteristic. The aim of this study was to investigate negative effects of glyphosate on soil invertebrate organisms (earthworm Eisenia fetida. The duration of experiment was 8 weeks. The range of the test concentrations of glyphosate were: 0,1, 1, 5, 10, 20 mg/kg. To investigate the glyphosate impact on earthworm Eisenia fetida the following endpoints were measured: survival, reproduction and weight. The exposure to 20 mg/kg glyphosate has led to the 100% mortality of earthworms. Glyphosate has led to decreased E. fetida reproduction, the cocoons were observed only in the lowest concentration (0,1 mg/kg. In general: long-term glyphosate toxicity to earthworms (E. fetida may be significant.

  19. Manejo de Conyza bonariensis resistente ao glyphosate: coberturas de inverno e herbicidas em pré-semeadura da soja Management of glyphosate resistant Conyza bonariensis: winter cover crops and herbicides in soybean pre-seeding

    Directory of Open Access Journals (Sweden)

    F.P. Lamego

    2013-06-01

    Full Text Available Conyza bonariensis tornou-se a principal planta daninha da cultura da soja no Sul do Brasil, em decorrência da evolução para resistência ao herbicida glyphosate. O objetivo deste trabalho foi avaliar o efeito de diferentes coberturas de inverno e da associação de manejo de dessecação pré-semeadura da soja, visando ao controle de C. bonariensis resistente ao glyphosate. Um experimento foi conduzido em campo, na safra 2010/2011. Os tratamentos foram conduzidos em esquema de parcelas subdivididas, em que as coberturas de inverno foram alocadas nas parcelas principais: aveia-preta, nabo, ervilhaca, azevém, trigo e pousio. Nas subparcelas, foram alocados os tratamentos de manejo de dessecação pré-semeadura da soja: glyphosate (720 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1, glyphosate (720 g e.a ha-1 + 2,4-D (1.050 g e.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1, glyphosate (720 g e.a ha-1 + chlorimuron-ethyl (80 g i.a ha-1/paraquat (200 g i.a ha-1 + diuron (100 g i.a ha‑1 e roçada. O nabo foi a espécie de cobertura que produziu o maior volume de massa seca durante o inverno, enquanto a ervilhaca foi a que apresentou maior efeito supressor sobre a germinação e o desenvolvimento inicial de C. bonariensis. Associações de glyphosate com 2,4-D ou chlorimuron-ethyl, seguidas da aplicação sequencial de paraquat + diuron, causaram maior redução na infestação de C. bonariensis.Conyza bonariensis became the main weed in soybean crop in Southern Brazil, as a consequence of the evolution of resistance to the herbicide glyphosate. The objective of this work was to evaluate the effect of different winter cover crops and the association of burn-down herbicides on the control of glyphosate-resistant C. bonariensis. A field experiment was conducted in the 2010/2011 season. The treatments were arranged in a split-plot scheme, with the winter

  20. Glyphosate drift promotes changes in fitness and transgene flow in canola (Brassica napus) and hybrids

    Science.gov (United States)

    1. With the advent of transgenic crops, genetically modified, herbicide resistant B. napus has become a model system for examining the risks of escape of transgenes from cultivation and for evaluating potential ecological consequences of novel genes in wild species. 2. We exam...

  1. Thallium and potassium uptake kinetics and competition differ between durum wheat and canola.

    Science.gov (United States)

    Renkema, Heidi; Koopmans, Amy; Hale, Beverley; Berkelaar, Edward

    2015-02-01

    Thallium (Tl) is very toxic to mammals but little is known about its accumulation by plants, and it would be useful if prediction of Tl accumulation could be done using potassium (K) accumulation models. The objectives of this study were to compare the uptake kinetics of Tl(+) and K(+), and to determine how readily K(+) can inhibit Tl(+) uptake. Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were grown hydroponically and exposed to 0-75 μM Tl or 0-250 μM K for up to 150 min (kinetics experiment), or to 0.1 or 10 μM Tl with Tl to K ratios of 1:1 to 1:10,000 for up to 300 min (competition experiment). The rate of uptake of Tl(+) by canola was about three to five times faster than by wheat, while the rate of Tl(+) uptake in wheat was the same as the rate of K(+) uptake by either species. Uptake of Tl(+) was more readily suppressed by K(+) in wheat than in canola. When exposed to 0.1 uM Tl for 300 min with 100 or 1,000 uM K(+), Tl(+) uptake by wheat was reduced by 20 % and 50 %, respectively, while Tl(+) uptake by canola was not reduced. Our results suggest that predicting Tl accumulation using a K accumulation model with a correction factor may be possible for canola, but would be much more difficult for wheat, since uptake of Tl(+) is very sensitive to levels of K(.)

  2. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.

    Science.gov (United States)

    Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri

    2017-04-01

    Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

  3. Nutritional evaluation of canola meals produced from new varieties of canola seeds for poultry.

    Science.gov (United States)

    Chen, X; Parr, C; Utterback, P; Parsons, C M

    2015-05-01

    This study evaluated the nutritional value of 14 canola meals from new varieties of canola and compared them to conventional canola meal samples and soybean meals in chickens. Five experiments that included different sources of canola meals or soybean meals were conducted. For each experiment, a precision-fed rooster assay with conventional or cecectomized roosters was conducted to determine TMEn or amino acid digestibility. Analyzed nutritional composition of the canola meal samples indicated increases in crude protein and amino acids for all test canola meals (49.41 to 50.58% crude protein on a dry matter basis) compared to conventional canola meals (40.73 to 43.01%). All test canola meals also contained lower amounts of neutral detergent fiber and acid detergent fiber. Most test canola meals had significantly higher TMEn values than the conventional canola meals (P nutritional value of the canola meal from new varieties of canola was greater than conventional canola meal for poultry. © 2015 Poultry Science Association Inc.

  4. Controle químico de biótipos de buva (Conyza canadensis e Conyza bonariensis resistentes ao glyphosate Chemical Control of glyphosate-resistant horseweed (Conyza Canadensis and hairy fleabane (Conyza bonariensis biotypes

    Directory of Open Access Journals (Sweden)

    Micheli Satomi Yamauti

    2010-09-01

    Full Text Available Estudos foram conduzidos na Estação Experimental de Citricultura de Bebedouro, SP para avaliar a resposta de biótipos de buva resistentes aos herbicidas glyphosate, bromacil + diuron, diuron e paraquat isolados e em mistura, e o efeito de uma aplicação seqüencial com glyphosate. O delineamento foi o de blocos casualizados com quatro repetições e sete tratamentos.. Os herbicidas foram aplicados com pulverizador costal, à pressão constante (mantido por CO2 comprimido, munido com barra com três bicos do tipo TT110015 com um consumo de calda equivalente a 150 L ha-1. O controle foi avaliado visualmente, através de escala percentual de notas. Para o controle geral das plantas daninhas os melhores resultados foram obtidos com diuron isolado e com glyphosate em mistura com bromacil + diuron, enquanto para o controle da buva não houve diferença entre os tratamentos. Depois da aplicação seqüencial, o melhor tratamento para o controle de buva foi com diuron e bromacil+diuron.Studies were conducted at Estação Experimental de Citricultura de Bebedouro, SP to evaluate the response of glyphosate-resistant horseweed and hairy fleabane biotypes to herbicides glyphosate, bromacil + diuron, diuron e paraquat isolated and in mixture and effect of a sequential application of glyphosate. The experimental design was of complete randomized blocks with four replication and seven treatments. The herbicides were applied with costal sprayer, constant pressure with three nozzles TT110015, the equivalent spray volume was 150 L ha-1. The control was visually evaluated, trough percentile note scale. The best results were obtained to general control of weed with diuron isolated and glyphosate in mixture with bromacil + diuron while to glyphosate-resistant horseweed and hairy fleabane there was no difference between the treatments. After sequential application to Conyza sp control, the best treatment was obtained associated with diuron and bromacil+diuron.

  5. Glyphosate tolerance of soybean mutant gained after boarding on satellite

    International Nuclear Information System (INIS)

    Jiang Lingxue; Ren Honglei; Zhang Hongyan; Liu Zhangxiong; Jin Longguo; Guo Yong; Qiu Lijuan; Tao Bo

    2011-01-01

    Glyphosate-tolerant germplasm and genetic variation characteristics of SP 2 and SP 3 soybean varieties boarded on Shijian No.8 satellite were analyzed after treated by herbicide glyphosate in the field. Abundant variations of traits were produced, and the resistance within and among cultivars were different in their offspring of space mutagenesis. Plant height and maturity were used as index to screen glyphosate tolerant materials. Space mutation increased of soybean 661 SP 3 of Zhongpin, and one glyphosate-resistance variant was screened from Zhongpin 661 SP 3 . It showed that glyphosate tolerance was different among offspring of different space mutagenesis soybean materials. It is feasible to systemically screen elite traits soybean by applying space mutation breeding. (authors)

  6. Exposure to clothianidin seed-treated canola has no long-term impact on honey bees.

    Science.gov (United States)

    Cutler, G Christopher; Scott-Dupree, Cynthia D

    2007-06-01

    We conducted a long-term investigation to ascertain effects on honey bee, Apis mellifera L., colonies during and after exposure to flowering canola, Brassica napus variety Hyola 420, grown from clothianidin-treated seed. Colonies were placed in the middle of 1-ha clothianidin seed-treated or control canola fields for 3 wk during bloom, and thereafter they were moved to a fall apiary. There were four treated and four control fields, and four colonies per field, giving 32 colonies total. Bee mortality, worker longevity, and brood development were regularly assessed in each colony for 130 d from initial exposure to canola. Samples of honey, beeswax, pollen, and nectar were regularly collected for 130 d, and the samples were analyzed for clothianidin residues by using high-performance liquid chromatography with tandem mass spectrometry detection. Overall, no differences in bee mortality, worker longevity, or brood development occurred between control and treatment groups throughout the study. Weight gains of and honey yields from colonies in treated fields were not significantly different from those in control fields. Although clothianidin residues were detected in honey, nectar, and pollen from colonies in clothianidin-treated fields, maximum concentrations detected were 8- to 22-fold below the reported no observable adverse effects concentration. Clothianidin residues were not detected in any beeswax sample. Assessment of overwintered colonies in spring found no differences in those originally exposed to treated or control canola. The results show that honey bee colonies will, in the long-term, be unaffected by exposure to clothianidin seed-treated canola.

  7. Omics Approach to Identify Factors Involved in Brassica Disease Resistance.

    Science.gov (United States)

    Francisco, Marta; Soengas, Pilar; Velasco, Pablo; Bhadauria, Vijai; Cartea, Maria E; Rodríguez, Victor M

    2016-01-01

    Understanding plant's defense mechanisms and their response to biotic stresses is of fundamental meaning for the development of resistant crop varieties and more productive agriculture. The Brassica genus involves a large variety of economically important species and cultivars used as vegetable source, oilseeds, forage and ornamental. Damage caused by pathogens attack affects negatively various aspects of plant growth, development, and crop productivity. Over the last few decades, advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to biotic stress conditions. In this regard, various 'omics' technologies enable qualitative and quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, and thus allow determination of their variation between different biological states on a genomic scale. In this review, we have described advances in 'omic' tools (genomics, transcriptomics, proteomics and metabolomics) in the view of conventional and modern approaches being used to elucidate the molecular mechanisms that underlie Brassica disease resistance.

  8. Alternaria resistance of Brassicae campestris L. improved by induced mutations

    International Nuclear Information System (INIS)

    Das, M.L.; Rahman, A.

    1989-01-01

    Full text: Seeds of 'YS 52', a cultivar susceptible to Alternaria brassicae (Berk.) Sacc., were exposed to gamma rays (30-90 kR). Eight more resistant mutants were selected in M3 and subjected to further field evaluation. The best mutant '17-5-83' appeared resistant and gave 44% higher yield than the parent, mutant '70-7-82' was found to be moderately resistant and gave a yield 21% higher than the parent. The yield increases seem to be connected with plant architecture changes. (author)

  9. Identification of isolates of the plant pathogen Leptosphaeria maculans with resistance to the triazole fungicide fluquinconazole using a novel In Planta assay.

    Directory of Open Access Journals (Sweden)

    Angela P Van de Wouw

    Full Text Available Leptosphaeria maculans is the major pathogen of canola (oilseed rape, Brassica napus worldwide. In Australia, the use of azole fungicides has contributed to the 50-fold increase in canola production in the last 25 years. However, extensive application of fungicides sets the stage for the selection of fungal populations with resistance. A high-throughput in planta assay was developed to allow screening of thousands of isolates from multiple populations. Using this screen, isolates were identified with decreased sensitivity to the fungicide fluquinconazole when applied at field rates as a protective seed dressing: these isolates cause significantly larger lesions on cotyledons and true leaves and increased disease severity at plant maturity. This increased in planta resistance was specific to fluquinconazole, with no cross resistance to flutriafol or tebuconazole/prothioconazole. In a limited set of 22 progeny from a cross between resistant and susceptible parents, resistance segregated in a 1:1 ratio, suggesting a single gene is responsible. A survey of 200 populations from across canola growing regions of Australia revealed fungicide resistance was present in 15% of the populations. Although in vitro analysis of the fungicide resistant isolates showed a significant shift in the average EC50 compared to the sensitive isolates, this was not as evident as the in planta assays. The development of this novel, high-throughput in planta assay has led to the identification of the first fungicide resistant L. maculans isolates, which may pose a threat to the productivity of the Australian canola industry.

  10. Evaluation of Growth Indices and Estimation Seed Yield Loss Threshold of Canola in Response to Various Densities of Crop and Wild Mustard

    Directory of Open Access Journals (Sweden)

    Z Anafjeh

    2012-02-01

    Full Text Available ABSTRACT In order to study the effect of various densities of wild mustard (Sinapis arvensis L. on growth indices of Canola (Brassica napus L. in climate of Molathani, Ahvaz, an experiment was conducted in the experimental field of Ramin Agricultural and Natural Resources University, in 2006-2007. The split-plot set of treatments was arranged within randomized complete block design with four replications. Treatments included of wild mustard at five levels (0, 7, 14, 21 and 35 plants m2 and Canola at three densities (60, 80 and 100 plants m2. The results showed that the increase in mustard density rates lead to decreasing total dry matter, leaf area index, crop growth rate, relative growth rate and mean pod dry matter in three canola densities (60, 80 and 100 plants m2. Somewhat the lowest growth indices was obtained in 35 plants mustard (that is the highest mustard density. In addition damage rate of mustard decreased canola seed yield for 7, 14, 21 and 35 plants mustard up to 61, 71, 76 and 91%, respectively. Keywords: Plant density, Competition, Yield loss threshold, Growth indices, Canola, Mustard

  11. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa.

    Science.gov (United States)

    Ueno, Hiroki; Matsumoto, Etsuo; Aruga, Daisuke; Kitagawa, Satoshi; Matsumura, Hideo; Hayashida, Nobuaki

    2012-12-01

    Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.

  12. Modeling the yield potential of dryland canola under current and future climates in California

    Science.gov (United States)

    George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.

    2012-12-01

    Models predict that the climate of California will become hotter, drier and more variable under future climate change scenarios. This will lead to both increased irrigation demand and reduced irrigation water availability. In addition, it is predicted that most common Californian crops will suffer a concomitant decline in productivity. To remain productive and economically viable, future agricultural systems will need to have greater water use efficiency, tolerance of high temperatures, and tolerance of more erratic temperature and rainfall patterns. Canola (Brassica napus) is the third most important oilseed globally, supporting large and well-established agricultural industries in Canada, Europe and Australia. It is an agronomically useful and economically valuable crop, with multiple end markets, that can be grown in California as a dryland winter rotation with little to no irrigation demand. This gives canola great potential as a new crop for Californian farmers both now and as the climate changes. Given practical and financial limitations it is not always possible to immediately or widely evaluate a crop in a new region. Crop production models are therefore valuable tools for assessing the potential of new crops, better targeting further field research, and refining research questions. APSIM is a modular modeling framework developed by the Agricultural Production Systems Research Unit in Australia, it combines biophysical and management modules to simulate cropping systems. This study was undertaken to examine the yield potential of Australian canola varieties having different water requirements and maturity classes in California using APSIM. The objective of the work was to identify the agricultural regions of California most ideally suited to the production of Australian cultivars of canola and to simulate the production of canola in these regions to estimate yield-potential. This will establish whether the introduction and in-field evaluation of better

  13. The use of environmental metabolomics to determine glyphosate level of exposure in rapeseed (Brassica napus L.) seedlings

    International Nuclear Information System (INIS)

    Petersen, Iben Lykke; Tomasi, Giorgio; Sorensen, Hilmer; Boll, Esther S.; Hansen, Hans Christian Bruun; Christensen, Jan H.

    2011-01-01

    Metabolic profiling in plants can be used to differentiate between treatments and to search for biomarkers for exposure. A methodology for processing Ultra-High-Performance Liquid Chromatography-Diode-Array-Detection data is devised. This methodology includes a scheme for selecting informative wavelengths, baseline removal, retention time alignment, selection of relevant retention times, and principal component analysis (PCA). Plant crude extracts from rapeseed seedling exposed to sublethal concentrations of glyphosate are used as a study case. Through this approach, plants exposed to concentrations down to 5 μM could be distinguished from the controls. The compounds responsible for this differentiation were partially identified and were different from those specific for high exposure samples, which suggests that two different responses to glyphosate are elicited in rapeseed depending on the level of exposure. The PCA loadings indicate that a combination of other metabolites could be more sensitive than the response of shikimate to detect glyphosate exposure. - Highlights: → A method for processing UHPLC-DAD data for plant metabolic profiling is devised. → The metabolic profiling approach is more sensitive to glyphosate exposure than shikimate. → Plants exposed to concentrations down to 5 μM can be distinguished from the controls. → Two different responses to glyphosate may be elicited in rapeseed depending on the level of exposure. - A novel untargeted environmental metabololomic approach is used to detect low-level glyphosate exposure of rapeseed seedlings.

  14. The use of environmental metabolomics to determine glyphosate level of exposure in rapeseed (Brassica napus L.) seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Iben Lykke; Tomasi, Giorgio; Sorensen, Hilmer; Boll, Esther S.; Hansen, Hans Christian Bruun [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Christensen, Jan H., E-mail: jch@life.ku.dk [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2011-10-15

    Metabolic profiling in plants can be used to differentiate between treatments and to search for biomarkers for exposure. A methodology for processing Ultra-High-Performance Liquid Chromatography-Diode-Array-Detection data is devised. This methodology includes a scheme for selecting informative wavelengths, baseline removal, retention time alignment, selection of relevant retention times, and principal component analysis (PCA). Plant crude extracts from rapeseed seedling exposed to sublethal concentrations of glyphosate are used as a study case. Through this approach, plants exposed to concentrations down to 5 {mu}M could be distinguished from the controls. The compounds responsible for this differentiation were partially identified and were different from those specific for high exposure samples, which suggests that two different responses to glyphosate are elicited in rapeseed depending on the level of exposure. The PCA loadings indicate that a combination of other metabolites could be more sensitive than the response of shikimate to detect glyphosate exposure. - Highlights: > A method for processing UHPLC-DAD data for plant metabolic profiling is devised. > The metabolic profiling approach is more sensitive to glyphosate exposure than shikimate. > Plants exposed to concentrations down to 5 {mu}M can be distinguished from the controls. > Two different responses to glyphosate may be elicited in rapeseed depending on the level of exposure. - A novel untargeted environmental metabololomic approach is used to detect low-level glyphosate exposure of rapeseed seedlings.

  15. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement.

    Science.gov (United States)

    Myers, John Peterson; Antoniou, Michael N; Blumberg, Bruce; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vandenberg, Laura N; Vom Saal, Frederick S; Welshons, Wade V; Benbrook, Charles M

    2016-02-17

    The broad-spectrum herbicide glyphosate (common trade name "Roundup") was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization's International Agency for Research on Cancer recently concluded that glyphosate is "probably carcinogenic to humans." In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air

  16. Impact of planting dates and insecticide strategies for managing crucifer flea beetles (Coleoptera: Chrysomelidae) in spring-planted canola.

    Science.gov (United States)

    Knodel, Janet J; Olson, Denise L; Hanson, Bryan K; Henson, Robert A

    2008-06-01

    Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by fleabeetles in North Dakota during 2002-2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.

  17. Production of transgenic brassica juncea with the synthetic chitinase gene (nic) conferring resistance to alternaria brassicicola

    International Nuclear Information System (INIS)

    Munir, I.; Hussan, W.; Kazi, M.; Mian, A.

    2016-01-01

    Brassica juncea is an important oil seed crop throughout the world. The demand and cultivation of oil seed crops has gained importance due to rapid increase in world population and industrialization. Fungal diseases pose a great threat to Brassica productivity worldwide. Absence of resistance genes against fungal infection within crossable germplasms of this crop necessitates deployment of genetic engineering approaches to produce transgenic plants with resistance against fungal infections. In the current study, hypocotyls and cotyledons of Brassica juncea, used as explants, were transformed with Agrobacterium tumefacien strain EHA101 harboring binary vector pEKB/NIC containing synthetic chitinase gene (NIC), an antifungal gene under the control of cauliflower mosaic virus promoter (CaMV35S). Bar genes and nptII gene were used as selectable markers. Presence of chitinase gene in trangenic lines was confirmed by PCR and southern blotting analysis. Effect of the extracted proteins from non-transgenic and transgenic lines was observed on the growth of Alternaria brassicicola, a common disease causing pathogen in brassica crop. In comparison to non-transgenic control lines, the leaf tissue extracts of the transgenic lines showed considerable resistance and antifungal activity against A. brassicicola. The antifungal activity in transgenic lines was observed as corresponding to the transgene copy number. (author)

  18. Glyphosate sustainability in South American cropping systems.

    Science.gov (United States)

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it. Copyright (c) 2008 Society of Chemical Industry.

  19. Response of Pennsylvania native plant species to dicamba and/or glyphosate

    Science.gov (United States)

    Weeds may become resistant to intensive and extensive use of specific herbicides associated with the growth of herbicide tolerant crops, e.g., the use of glyphosate for weed control with glyphosate tolerant soybeans. To counter this resistance, crops modified to contain genes for...

  20. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue.

    Science.gov (United States)

    Sharma, Brij B; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris ( Xcc ) is a very important disease of cauliflower ( Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B 1 ) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F 1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2 n = 18, CC) × B. carinata (2 n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2 n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F 1 hybrid and BC 1 plants. The F 1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC 1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC 1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  1. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue

    Science.gov (United States)

    Sharma, Brij B.; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R.

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides. PMID:28769959

  2. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group through Embryo Rescue

    Directory of Open Access Journals (Sweden)

    Brij B. Sharma

    2017-07-01

    Full Text Available Black rot caused by Xanthomonas campestris pv. campestris (Xcc is a very important disease of cauliflower (Brassica oleracea botrytis group resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome, therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1 were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC primers. Meiosis in the di-genomic (BCC interspecific hybrid of B. oleracea botrytis group (2n = 18, CC × B. carinata (2n = 4x = 34, BBCC was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  3. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp.

    Science.gov (United States)

    Rolfe, Stephen A; Strelkov, Stephen E; Links, Matthew G; Clarke, Wayne E; Robinson, Stephen J; Djavaheri, Mohammad; Malinowski, Robert; Haddadi, Parham; Kagale, Sateesh; Parkin, Isobel A P; Taheri, Ali; Borhan, M Hossein

    2016-03-31

    The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some

  4. How Different Genetically Manipulated Brassica Genotypes Affect Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae).

    Science.gov (United States)

    Nikooei, Mehrnoosh; Fathipour, Yaghoub; Jalali Javaran, Mokhtar; Soufbaf, Mahmoud

    2015-04-01

    The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day(-1) (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    Science.gov (United States)

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  6. Occurrence of Diaretiella rapae (Mc´Intosh, 1855 (Hymenoptera: Aphidiidae Parasitising Lipaphis erysimi (Kaltenbach, 1843 and Brevicoryne brassicae (L. 1758 (Homoptera: Aphididae in Brassica napus in Mato Grosso do Sul

    Directory of Open Access Journals (Sweden)

    Mussury Rosilda Mara

    2002-01-01

    Full Text Available The occurrence of Diaretiella rapae parasitising Lipaphis erysimi and Brevicoryne brassicae in canola field (Brassica napus was evaluated through two sample methods in Dourados-MS. The methods, used weekly, were: entomologic sweep net and plants sacking. The aphids population was observed from initial to the senescence plant development. Aphids were more abundant during the flowering phase, and they were usually located in the stems of the inflorescence and development fruits. In this phase the largest parasitism level for D. rapae (89,7% occurred. The sample method with a sweep net captured significantly (t=4,484, P <= 0,01 more D. rapae while sacking method captured more parasitise aphids (t=2,199 with P <= 0,05 and active aphids (t=3,513, P <= 0,01.

  7. Effect of Different Levels of Sulphur Bentonite on Yield and Yield Components of Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    B Rahimi

    2013-04-01

    Full Text Available In order to determine the effect of different levels of sulfur bentonite on yield and yield components of canola a factorial experiment was conducted on the basis of randomized complete block design with three replications in Mashhad in 2009-2010 growing season. Factors included four levels of sulfur bentonite (0, 300, 400 and 500 kg.h-1 and two varieties of canola (Modena and Zarfam. The result showed that the increase in sulfur increased some vegetative traits such as leaf area index and plant height. Using sulfur caused increased pod number, seed weight, in addition of oil and protein content and seed yield. Grain yield increase was due to seed weight and LAI. Two varieties were different to responses the sulfur. While in no sulfur application there was no significant difference in seed yield, in 500 Kg sulfur application yield of Zarfam compared to Modena increased about 29.63. According to the results there are significant differences between cultivars in terms of response to the sulfur fertilizer. Therefore it is necessary to evaluate effect of sulfur application of canola productivity in different climate conditions of Iran.

  8. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    Directory of Open Access Journals (Sweden)

    Rosy Raman

    2017-11-01

    Full Text Available Seed lost due to easy pod dehiscence at maturity (pod shatter is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata and identified quantitative trait loci (QTL for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE. In comparison to B. napus (RE = 2.16 mJ, B. carinata accessions had higher RE values (2.53 to 20.82 mJ. A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE and BC73524 (shatter prone with low RE comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3 that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools.

  9. Resistance of canola cultivars affect life table parameters of Nysius cymoides (Spinola (Hemiptera: Lygaeidae

    Directory of Open Access Journals (Sweden)

    Mollashahi Mehdi

    2016-01-01

    Full Text Available A life table can be used as an important and appropriate tool to evaluate the susceptibility or resistance level of different host plant cultivars to insect pests. In the current study, we determined the suitability or inferiority of five different canola cultivars (Hayula420, Hayula401, Hayula50, Hayula60, RGS to Nysius cymoides, under laboratory conditions. Data were analysed based on the age-stage, two-sex life table theory. Nysius cymoides which fed on Hayula420 had the longest nymphal period, while those which fed on Hayula50 had the shortest nymphal period. Developmental times (sum of incubation and nymphal periods was longest for those which fe d on Hayula420 and the shortest for those which fed on Hayula50. The adult pre-oviposition period (APOP, total pre-oviposition period (TPOP, mean fecundity, and adult longevity of adults reared on different canola cultivars showed significant differences. The highest and lowest net reproductive rates (R0 were obtained for those which fed on Hayula420 (11.40 offspring per individual and Hayula401 (5.47 offspring per individual, respectively. The highest value (0.0395 d-1 for the intrinsic rate of increase (r was obtained for those which fed on Hayula 60 cultivar and the lowest value (0.0261 d-1 for those which fed on Hayula401 cultivar. The shortest and longest mean generation times (T were obtained for those which fed on RGS and H401 cultivars, respectively. The lowest and highest values of life expectancy (exj were obtained for those which fed on RGS and Hayula420 cultivars, respectively. The results showed that Hayula401 and RGS were not susceptible cultivars to N. cymoides. These cultivars showed higher resistance to N. cymoides, while Hayula60, Hayula420, and Hayula50 were found to be suitable cultivars but with lower resistance to N. cymoides, respectively.

  10. Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion

    Science.gov (United States)

    Early detection of crop injury from glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resist...

  11. Glyphosate and dicamba herbicide tank mixture effects on native plant and non-genetically engineered soybean seedlings

    Science.gov (United States)

    Weed species are becoming resistant to intensive and extensive use of specific herbicides associated with the production of herbicide resistant crops, e.g., the use of glyphosate for weed management with glyphosate resistant soybeans. To counter this resistance, crops engineered ...

  12. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages.

    Science.gov (United States)

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae . However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca 2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

  13. Qualidade e produtividade de sementes de canola (Brassica napus após aplicação de dessecantes em pré-colheita Quality and yield of canola (Brassica napus seeds after pre-harvest desiccant application

    Directory of Open Access Journals (Sweden)

    O. Marchiori Jr.

    2002-08-01

    Full Text Available A cultura de canola é indicada nos esquemas de rotação de culturas, bem como para diversificação agrícola e cobertura vegetal do solo no período de inverno na Região Sul do Brasil. Contudo, a colheita mecanizada é uma das operações mais críticas do sistema de produção, uma vez que os frutos do tipo síliqua apresentam maturação desuniforme, gerando grandes perdas de produtividade devido à deiscência natural. O uso de dessecantes químicos permite uma colheita com as síliquas em maturação mais uniforme, porém é importante a manutenção da qualidade do produto obtido. O presente trabalho teve por objetivo avaliar o efeito da aplicação de herbicidas dessecantes na produtividade e na qualidade fisiológica e sanitária das sementes de canola cultivar Hyola 401. Os herbicidas utilizados foram o glufosinato de amônio (0,5 kg ha-1, carfentrazone-ethyl (0,03 kg ha-1, paraquat (0,4 kg ha-1 e diquat (0,3 kg ha-1, mais a testemunha sem aplicação. A qualidade das sementes foi avaliada por meio dos testes de germinação, de envelhecimento acelerado, de condutividade elétrica, de emergência em areia, de velocidade de emergência e de sanidade. A aplicação dos produtos dessecantes permitiu uma antecipação de sete dias na colheita das sementes de canola. A produtividade de sementes não foi afetada pela dessecação. A aplicação do glufosinato de amônio e carfentrazone-ethyl reduziu (PCanola crop is indicated to integrate crop rotation systems, as well as for agricultural diversification and vegetal ground cover during winter in southern Brazil. However, mechanical harvest is critical to crop production, since pods present a non-uniform ripening, leading to great yield losses, due to natural dehiscence. Desiccants are usually applied to provide a more uniform harvest, maintaining the quality of the product. This work aimed to evaluate the effect of desiccant application on productivity and physiological/sanitary quality of

  14. Characterization of Eleusine indica with gene mutation or amplification in EPSPS to glyphosate.

    Science.gov (United States)

    Chen, Jingchao; Jiang, Cuilan; Huang, Hongjuan; Wei, Shouhui; Huang, Zhaofeng; Wang, Huimin; Zhao, Dandan; Zhang, Chaoxian

    2017-11-01

    The evolution of weed-resistant species threatens the sustainable use of glyphosate, which is the most important herbicide widely used in agriculture worldwide. Moreover, the high glyphosate resistance (>180-fold based on LD 50 ) of Eleusine indica found in Malaysia, which carries a double mutation in its 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), made the control of this species more difficult. By contrast, the same species carrying the same double mutation in EPSPS (T102I+P106S) but found in China only shows a resistance level of not more than 14-fold based on GR 50 . The resistance level of this population is four times higher than that of the population carrying a single mutation (P106L). Although the members of this population survive under a high glyphosate dosage of 10,080gaeha -1 , their growth was significantly inhibited by glyphosate under the recommend dose (840gaeha -1 ), where in the fresh weight was 85.4% of the control. EPSPS expression, relative copy number, and EPSPS activity in this population were similar to those of the susceptible population. In addition, the expression of two glutathione transferase (GST) genes (GST-U8 and GST-23) and the enzyme activity of the GST in this population did not significantly differ from those of the susceptible population. This finding is important in elucidating the resistance of the naturally evolved glyphosate-resistant (GR) weed species carrying a double mutation in EPSPS to glyphosate. Copyright © 2017. Published by Elsevier Inc.

  15. Effects of inoculum potential on screening for resistance to Plasmodiophora brassicae in greenhouse trials

    Directory of Open Access Journals (Sweden)

    Józef Robak

    2013-12-01

    Full Text Available Several factors, including growth medium, inoculum density, and inoculum storage affected the reaction of resistant and susceptible Brassicas to Plasmodiophora brassicae in the greenhouse. A high level of disease was achieved using Peat-litte mix R and a commercial greenhouse mix. There was litte difference in disease incidence when spore suspensions were pipeted into planting holes or when seedlings were dipped into spore suspensions. Seedlings transplanted from sand or Petri dishes gave higher levels of disease than direct seeding. Two-year frozen storage of clubs reduced the inoculum potential to a level unable to define resistance. Inoculum levels of 103-7 spores per ml from fresh clubs, or 105-7 spores per ml from clubs frozen for 2 or 4 years, produced 90% club incidence of susceptible cauliflower and Chinese cabbage, A concentration of only 106-8 spores per ml from fresh clubs was required for maximum disease expression in a cauliflower line partially resistant to clubroot.

  16. Genetically transformed tobacco plants expressing synthetic EPSPS gene confer tolerance against glyphosate herbicide.

    Science.gov (United States)

    Imran, Muhammad; Asad, Shaheen; Barboza, Andre Luiz; Galeano, Esteban; Carrer, Helaine; Mukhtar, Zahid

    2017-04-01

    Glyphosate quashes the synthesis of 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) enzyme which intercedes the functioning of shikimate pathway for the production of aromatic amino acids. Herbicide resistant crops are developed using glyphosate insensitive EPSPS gene isolated from Agrobacterium sp. strain CP4, which give farmers a sustainable weed control option. Intentions behind this study were to design and characterize the synthetic herbicide resistant CP4 - EPSPS gene in a model plant system and check the effectiveness of transformed tobacco against application of glyphosate. Putative transgenic plants were obtained from independent transformation events, and stable plant transformation, transgene expression and integration were demonstrated respectively by PCR, qRT-PCR and Southern hybridization. Gene transcript level and gene copy number (1-4) varied among the tested transgenic tobacco lines. Herbicide assays showed that transgenic plants were resistant to glyphosate after 12 days of spraying with glyphosate, and EPSPS activity remained at sufficient level to withstand the spray at 1000 ppm of the chemical. T 1 plants analyzed through immunoblot strips and PCR showed that the gene was being translated into protein and transmitted to the next generation successfully. This codon optimized synthetic CP4 - EPSPS gene is functionally equivalent to the gene for glyphosate resistance available in the commercial crops and hence we recommend this gene for transformation into commercial crops.

  17. Manejo de capim pé-de-galinha em lavouras de soja transgênica resistente ao glifosato Management of goose grass on transgenic soybean, resistant to glyphosate

    Directory of Open Access Journals (Sweden)

    André da Rosa Ulguim

    2013-01-01

    Full Text Available O objetivo deste trabalho foi avaliar a resistência de capim pé-de-galinha (Eleusine indica ao glifosato, em lavouras de soja transgênica; avaliar o efeito de aplicações de glifosato em diferentes estádios de desenvolvimento; identificar práticas agronômicas associadas à seleção de biótipos resistentes; e avaliar a eficiência dos herbicidas cletodim, fluazifope-P-butílico, clomazona, glufosinato de amônio e glifosato nas plantas resistentes. Plantas escapes ao tratamento com glifosato foram coletadas em 24 propriedades, no Rio Grande do Sul. As plantas foram cultivadas em casa de vegetação, tendo-se avaliado a sua resistência ao glifosato. Os acessos resistentes foram selecionados e avaliados quanto ao efeito da aplicação do glifosato em diferentes estádios de crescimento e quanto à sensibilidade aos herbicidas. Foi aplicado um questionário aos produtores para identificação das práticas agronômicas associadas às falhas no controle. O controle de E. indica pelo glifosato é mais efetivo com a aplicação em estádios iniciais de desenvolvimento. Práticas agronômicas, como uso contínuo de baixas doses do herbicida, aplicação em estádios de desenvolvimento avançados das plantas daninhas (mais de um afilho e a ausência de rotação de culturas foram relacionadas às falhas de controle observadas. Os herbicidas cletodim, fluazifope-P-butílico e glufosinato de amônio são alternativas eficientes para o controle de E. indica.The objective of this work was to evaluate the resistance of goose grass (Eleusine indica to glyphosate application in transgenic soybean crops; evaluate the effect of glyphosate applications in different growth stages; identify the main agronomic practices associated with the selection of resistant biotypes; and evaluate the effect of the herbicides clethodim, fluazifop-p-butyl, clomazone, glufosinate ammonium, and glyphosate on resistant plants. Plants that survived glyphosate application

  18. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    Science.gov (United States)

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  19. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels

    International Nuclear Information System (INIS)

    Fore, Seth R.; Porter, Paul; Jordan, Nicholas; Lazarus, William

    2011-01-01

    While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L -1 of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 L -1 and SVO from 0.64 to 0.83 L -1 depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 L -1 and from 0.14 to 0.33 L -1 , respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 L -1 for soybean and 0.44 L -1 for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 L -1 . (author)

  20. Stacked -gene hybrids were not found to be superior to glyphosate resistant or Non-GMO corn hybrids

    Science.gov (United States)

    Seed costs of modern corn hybrids genetically modified with multiple traits for insect and herbicide resistance “stacked-gene” are in excess of $100.00 US per acre. Yields and net returns per acre along with yield component data were determined for ten hybrids, four stacked-gene, four glyphosate re...

  1. Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa

    Directory of Open Access Journals (Sweden)

    Delourme Régine

    2011-02-01

    Full Text Available Abstract Background The large number of genetic linkage maps representing Brassica chromosomes constitute a potential platform for studying crop traits and genome evolution within Brassicaceae. However, the alignment of existing maps remains a major challenge. The integration of these genetic maps will enhance genetic resolution, and provide a means to navigate between sequence-tagged loci, and with contiguous genome sequences as these become available. Results We report the first genome-wide integration of Brassica maps based on an automated pipeline which involved collation of genome-wide genotype data for sequence-tagged markers scored on three extensively used amphidiploid Brassica napus (2n = 38 populations. Representative markers were selected from consolidated maps for each population, and skeleton bin maps were generated. The skeleton maps for the three populations were then combined to generate an integrated map for each LG, comparing two different approaches, one encapsulated in JoinMap and the other in MergeMap. The BnaWAIT_01_2010a integrated genetic map was generated using JoinMap, and includes 5,162 genetic markers mapped onto 2,196 loci, with a total genetic length of 1,792 cM. The map density of one locus every 0.82 cM, corresponding to 515 Kbp, increases by at least three-fold the locus and marker density within the original maps. Within the B. napus integrated map we identified 103 conserved collinearity blocks relative to Arabidopsis, including five previously unreported blocks. The BnaWAIT_01_2010a map was used to investigate the integrity and conservation of order proposed for genome sequence scaffolds generated from the constituent A genome of Brassica rapa. Conclusions Our results provide a comprehensive genetic integration of the B. napus genome from a range of sources, which we anticipate will provide valuable information for rapeseed and Canola research.

  2. Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought

    Energy Technology Data Exchange (ETDEWEB)

    Qaderi, M.M.; Kurepin, L.V.; Reid, D.M. [Univ. of Calgary, Dept. of Biological Sciences, Calgary, Alberta (Canada)

    2006-12-15

    Elevated CO{sub 2} appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO{sub 2}, temperature and drought on plant growth and physiology. We grew canola (Brassica napus cv. 45H72) plants under lower (22/18 deg. C) and higher (28/24 deg. C) temperature regimes in controlled-environment chambers at ambient (370 {mu}mol mol-1) and elevated (740 {mu}mol mol-1) CO{sub 2} levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO{sub 2} had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO{sub 2} assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO{sub 2} generally had the opposite effect. and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO{sub 2} partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought. (au)

  3. Overlapping Residual Herbicides for Control of Photosystem (PS) II- and 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibitor-Resistant Palmer amaranth (Amaranthus palmeri S. Watson) in Glyphosate-Resistant Maize

    Science.gov (United States)

    Chahal, Parminder S.; Ganie, Zahoor A.; Jhala, Amit J.

    2018-01-01

    A Palmer amaranth (Amaranthus palmeri S. Watson) biotype has evolved resistance to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize seed production field in Nebraska, USA. The objectives of this study were to determine the effect of soil residual pre-emergence (PRE) herbicides followed by (fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net economic returns. Field experiments were conducted in a grower's field infested with PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County, Nebraska, USA in 2015 and 2016. The contrast analysis suggested that saflufenacil plus dimethenamid-P or pyroxasulfone plus saflufenacil applied PRE provided 80–82% Palmer amaranth control compared to 65 and 39% control with saflufenacil and pyroxasulfone applied alone at 3 weeks after PRE (WAPRE), respectively. Among the PRE fb POST herbicide programs, 95–98% Palmer amaranth control was achieved with pyroxasulfone plus safluefenacil, or saflufenacil plus dimethenamid-P applied PRE, fb glyphosate plus topramezone plus dimethenamid-P plus atrazine, glyphosate plus diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate plus diflufenzopyr plus pendimethalin, or glyphosate plus diflufenzopyr plus dicamba plus atrazine applied POST at 3 weeks after POST (WAPOST) through maize harvest. Based on contrast analysis, PRE fb POST programs provided 77–83% Palmer amaranth control at 3 WAPOST through maize harvest compared to 12–15% control with PRE-only and 66–84% control with POST-only programs. Similarly, PRE fb POST programs provided 99% biomass reduction at 6 WAPOST compared to PRE-only (28%) and POST-only (87%) programs. PRE fb POST programs provided higher maize yield (13,617 kg ha−1) and net return (US $1,724 ha−1) compared to the PRE

  4. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis weeds and plant community composition.

    Directory of Open Access Journals (Sweden)

    Collin W Ahrens

    Full Text Available Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB and redtop (RT, where the glyphosate resistance (GR trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  5. Transcriptome analysis of Brassica juncea var. tumida Tsen responses to Plasmodiophora brassicae primed by the biocontrol strain Zhihengliuella aestuarii.

    Science.gov (United States)

    Luo, Yuanli; Dong, Daiwen; Su, Yu; Wang, Xuyi; Peng, Yumei; Peng, Jiang; Zhou, Changyong

    2018-05-01

    Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in Chongqing, China. In our laboratory, we screened the antagonistic bacteria Zhihengliuella aestuarii against P. brassicae. To better understand the biocontrol mechanism, three transcriptome analyses of B. juncea var. tumida Tsen were conducted using Illumina HiSeq 4000, one from B. juncea only inoculated with P. brassicae (P), one inoculated with P. brassica and the biocontrol agent Z. aestuarii at the same time (P + B), and the other was the control (H), in which P. brassicae was replaced by sterile water. A total of 19.94 Gb was generated by Illumina HiSeq sequencing. The sequence data were de novo assembled, and 107,617 unigenes were obtained. In total, 5629 differentially expressed genes between biocontrol-treated (P + B) and infected (P) samples were assigned to 126 KEGG pathways. Using multiple testing corrections, 20 pathways were significantly enriched with Qvalue ≤ 0.05. The resistance-related genes, involved in the production of pathogenesis-related proteins, pathogen-associated molecular pattern-triggered immunity, and effector-triggered immunity signaling pathways, calcium influx, salicylic acid pathway, reactive oxygen intermediates, and mitogen-activated protein kinase cascades, and cell wall modification, were obtained. The various defense responses induced by the biocontrol strain combatted the P. brassicae infection. The genes and pathways involved in plant resistance were induced by a biocontrol strain. The transcriptome data explained the molecular mechanism of the potential biocontrol strain against P. brassicae. The data will also serve as an important public information platform to study B. juncea var. tumida Tsen and will be useful for breeding mustard plants resistant to P. brassicae.

  6. Glyphosate, a chelating agent-relevant for ecological risk assessment?

    Science.gov (United States)

    Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram

    2018-02-01

    Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.

  7. Lack of glyphosate resistance gene transfer from Roundup Ready soybean to Bradyrhizobium japonicum under field and laboratory conditions.

    Science.gov (United States)

    Isaza, Laura Arango; Opelt, Katja; Wagner, Tobias; Mattes, Elke; Bieber, Evi; Hatley, Elwood O; Roth, Greg; Sanjuán, Juan; Fischer, Hans-Martin; Sandermann, Heinrich; Hartmann, Anton; Ernst, Dieter

    2011-01-01

    A field study was conducted at the Russell E. Larson Agricultural Research Center to determine the effect of transgenic glyphosate-resistant soybean in combination with herbicide (Roundup) application on its endosymbiont Bradyrhizobium japonicum. DNA of bacteroids from isolated nodules was analysed for the presence of the transgenic 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSPS) DNA sequence using polymerase chain reaction (PCR). To further assess the likelihood that the EPSPS gene may be transferred from the Roundup Ready (RR) soybean to B. japonicum, we have examined the natural transformation efficiency of B. japonicum strain 110spc4. Analyses of nodules showed the presence of the transgenic EPSPS DNA sequence. In bacteroids that were isolated from nodules of transgenic soybean plants and then cultivated in the presence of glyphosate this sequence could not be detected. This indicates that no stable horizontal gene transfer (HGT) of the EPSPS gene had occurred under field conditions. Under laboratory conditions, no natural transformation was detected in B. japonicum strain 110spc4 in the presence of various amounts of recombinant plasmid DNA. Our results indicate that no natural competence state exists in B. japonicum 110spc4. Results from field and laboratory studies indicate the lack of functional transfer of the CP4-EPSPS gene from glyphosate-tolerant soybean treated with glyphosate to root-associated B. japonicum.

  8. Light response of sunflower and canola as affected by plant density, plant genotype and N fertilization.

    Science.gov (United States)

    Soleymani, A

    2017-08-01

    Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Fore, Seth R.; Porter, Paul; Jordan, Nicholas [Department of Agronomy and Plant Genetics, 1991 Upper Buford Circle, Borlaug 411, The University of Minnesota, Saint Paul, Minnesota 55108 (United States); Lazarus, William [Department of Applied Economics, 231 Classroom Office Building, 1994 Buford Avenue, The University of Minnesota, Saint Paul, Minnesota 55108 (United States)

    2011-01-15

    While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L{sup -1} of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 L{sup -1} and SVO from 0.64 to 0.83 L{sup -1} depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 L{sup -1} and from 0.14 to 0.33 L{sup -1}, respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 L{sup -1} for soybean and 0.44 L{sup -1} for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 L{sup -1}. (author)

  10. Uses of glyphosate in German arable farming – operational aspects

    Directory of Open Access Journals (Sweden)

    Wiese, Armin

    2016-02-01

    Full Text Available Glyphosate is the most frequently used herbicide active ingredient in Germany. Studies regarding its usage in non-GMO arable farming are still rare even though it plays an important role in several agronomic situations. Therefore, we conducted a comprehensive survey, which was carried out among conventional German farms in Winter 2014/2015. Based on the results of this survey we analyzed via cluster analysis how types of farms differ in terms of glyphosate usage. An illustration of seven clusters allows deep insights into arable farm structures. The farm types can be distinguished regarding their tillage system and similar to this differentiation also concerning their intensity of glyphosate application. Furthermore, it becomes obvious that farm clusters with a higher level of glyphosate usage are characterized by a lower number of labourers per hectare, more arable land and/or enhanced cover cropping. Moreover, groups of farmers who rely more on glyphosate are more likely to state that they need glyphosate for herbicide resistance management. Farmers’ assessments of the economic importance of glyphosate usage vary depending on the type of farm. By means of the farm clusters, the most important situations of glyphosate usage can be further analyzed economically and scenarios for impact assessments can be made.

  11. Influence of a Vertical Cutting Device on Brassica Napus Seed Loss in Direct Combining

    Energy Technology Data Exchange (ETDEWEB)

    Pari, L.; Fedrizzi, M.; Assirelli, A. (Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unita di Ricerca per l' Ingegneria Agraria, Monterotondo, RM (Italy))

    2008-10-15

    EU requires that by 2010 5.65% of diesel fuel must be of vegetable origin. To reduce Italian dependence from imported palm oil, it is necessary to increase national production of vegetable oils: together with sunflower and soybean, canola (Brassica napus or Brassica napus oleifera) is an interesting possibility to satisfy vegetable oil demand, that is rapidly increasing for its use in biodiesel production. In Italy potential areas are available for the cultivation in relation to adequate rainfall and mild winters, that are very promising factors for canola production. However, the long period of seed maturity, non uniform growth, natural dehiscent process and variable weather conditions, such as wind and rain, are some of the factors which can lead to large seed losses: this is the main problem limiting this specie diffusion. Amongst available harvesting techniques, direct harvest of canola is an hazardous practice because there are several important questions related to it. The success of canola may depend on research initiatives to reduce some of the obstacles associated with its growing. The objective of this study is to determine if different cropping heads in direct combining can reduce seed losses. In Northern Italy (Piedmont) the trials were conducted in a 16 ha canola cultivation, in which was seeded the -Lion variety of canola. In order to realize direct harvest, the combine cylinder speed was regulated as slow as possible (500 rpm), the concave was opened at 3/4 of the way (about 25 mm clearance) and the fan speed was set at 2/3 of small grain settings (800 rpm). Only one combine was used for the trials, a New Holland CX 9080, in order to avoid any influence on seed losses. The combine was equipped with two different cutting heads: a common wheat type (type 1) and another, similar to the first, but equipped with vertical cutting devices on both ends of the head (type 2), because the plants are very dense and entangled. The losses of seeds were measured

  12. Effects of Salinity on Yield and Component Characters in Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available Cultivars �Okapi�, �SLM046�, �Elite�, �Fornax� and �Licord� Brassica napus were tested for yield and component characters under different levels of salinity. The variations due to salinity levels, cultivars and cultivarxsalinity (interaction were significant for different characters. The variable degrees of increase and decrease of regression coefficient estimate mates (curve estimation showed the performance as influenced by different salinity levels. The performance of Brassica napus variety in plant height and days to first flowering was the best for �SLM046�, �Okapi� �SLM046� and �Okapi� cultivars. �SLM046� showed the best performance in days to maturity, followed by �Licord� and �Elite�. �Okapi� performed better than others regarding the increased number of seeds per plant and seed yield per plant, followed by �Fornax�. Considering all characters, the most tolerance ability was found in �SLM046� and �Okapi�, against different levels of salinity.

  13. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    Science.gov (United States)

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  14. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  15. The effect of Saccharomyces cerevisiae on the stability of the herbicide glyphosate during bread leavening.

    Science.gov (United States)

    Low, F L; Shaw, I C; Gerrard, J A

    2005-01-01

    To investigate the ability of baker's yeast (Saccharomyces cerevisiae) to degrade the herbicide glyphosate during the fermentation cycle of the breadmaking process. Aqueous glyphosate was added to bread ingredients and kneaded by commercially available breadmaking equipment into dough cultures. Cultures were incubated in the breadmaker throughout the fermentation cycle. The recovery of glyphosate levels following fermentation was determined, thus allowing an estimation of glyphosate degradation by yeast. It was shown, for the first time, that S. cerevisiae plays a role in metabolizing glyphosate during the fermentation stages of breadmaking. Approximately 21% was degraded within 1 h. As a result of projected increases in the glyphosate use on wheat and the role of bread as a dietary staple, this may contribute to more informed decisions being made relating to the use of glyphosate on glyphosate-resistant wheat, from a public health/regulatory perspective.

  16. Canola/rapeseed protein-functionality and nutrition

    Directory of Open Access Journals (Sweden)

    Wanasundara Janitha P.D.

    2016-07-01

    Full Text Available Protein rich meal is a valuable co-product of canola/rapeseed oil extraction. Seed storage proteins that include cruciferin (11S and napin (2S dominate the protein complement of canola while oleosins, lipid transfer proteins and other minor proteins of non-storage nature are also found. Although oil-free canola meal contains 36–40% protein on a dry weight basis, non-protein components including fibre, polymeric phenolics, phytates and sinapine, etc. of the seed coat and cellular components make protein less suitable for food use. Separation of canola protein from non-protein components is a technical challenge but necessary to obtain full nutritional and functional potential of protein. Process conditions of raw material and protein preparation are critical of nutritional and functional value of the final protein product. The storage proteins of canola can satisfy many nutritional and functional requirements for food applications. Protein macromolecules of canola also provide functionalities required in applications beyond edible uses; there exists substantial potential as a source of plant protein and a renewable biopolymer. Available information at present is mostly based on the protein products that can be obtained as mixtures of storage protein types and other chemical constituents of the seed; therefore, full potential of canola storage proteins is yet to be revealed.

  17. Comparison of herbicide regimes and the associated potential enviromental effects of glyphosate-resistant crops versus what they replace in Europe

    NARCIS (Netherlands)

    Kleter, G.A.; Harris, C.; Stephenson, G.R.; Unsworth, J.

    2008-01-01

    While cultivation of transgenic crops takes place in seven of the EU member states, this constitutes a relatively limited part of the total acreage planted to these crops worldwide. The only glyphosate-resistant (GR) crop grown commercially until recently has been soybean in Romania. In addition,

  18. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    Science.gov (United States)

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. CO2 Dynamics in winter wheat and canola under different management practices in the Southern Great Plains

    Science.gov (United States)

    Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.

    2017-12-01

    Rising atmospheric carbon dioxide (CO2) concentration and increased air temperature and climatic variability concerns have prompted considerable interest regarding CO2 dynamics of terrestrial ecosystems in response to major climatic and biophysical factors. However, detailed information on CO2 dynamics in winter wheat (Triticum aestivum L.) and canola (Brassica napus L.) under different agricultural management practices is lacking. As a part of the GRL-FLUXNET, a cluster of eight eddy covariance (EC) systems was deployed on the 420-ha Grazinglands Research on agroEcosystems and the ENvironment (GREEN) Farm at the United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Grazinglands Research Laboratory (GRL), El Reno, OK. The GRL is also one of 18 USDA-ARS Long-Term Agroecosystem Research (LTAR) network sites in the United States. A 4-year crop rotation plan at the farm includes winter wheat for grain only, graze-grain, and graze-out, and canola under conventional till and no-till management conditions. Biometric measurements such as biomass, leaf area index (LAI), canopy cover %, canopy height, and chlorophyll content were collected approximately every 16 days to coincide with Landsat satellite overpass dates. As expected, biomass and LAI were highest in the grain only wheat fields followed by graze-grain and graze-out wheat fields, but they were similar for till and no-till wheat fields within the same grazing practice. Biomass and LAI were similar in till and no-till canola in fall 2016, but both were substantially lower in no-till compared to tilled canola during spring 2017 due to more severe winter damage. Because net ecosystem CO2 exchange (NEE) is strongly regulated by vegetation cover, the magnitudes of NEE were highest in the grain only wheat fields due to more biomass and LAI, followed by graze-grain and graze-out wheat fields. Similarly, the magnitudes of NEE were also higher in tilled canola (i.e., higher biomass and LAI) than

  20. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress.

    Science.gov (United States)

    Metwally, Ashraf M; Radi, Abeer A; El-Shazoly, Rasha M; Hamada, Afaf M

    2018-01-22

    Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil -1 ). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.

  1. Glyphosate

    NARCIS (Netherlands)

    A. Arcuri (Alessandra)

    2017-01-01

    markdownabstractGlyphosate is the rock star of pesticides, albeit a controversial one. With 6.1 billion kilograms applied globally in the last decade alone, it is the most widely used herbicide compound in the world. Glyphosate, is at the centre of an acrimonious controversy relating to whether the

  2. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity.

    Directory of Open Access Journals (Sweden)

    Ri-He Peng

    Full Text Available The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19 is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroA(R. aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroA(E. coli, while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroA(R. aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroA(E. coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R. aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R. aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P and phosphoenolpyruvate (PEP. The effect of the residues on subdomain 5 on glyphosate resistance was more obvious.

  3. Recent advances in glyphosate biodegradation.

    Science.gov (United States)

    Zhan, Hui; Feng, Yanmei; Fan, Xinghui; Chen, Shaohua

    2018-06-01

    Glyphosate has emerged as the most widespread herbicide to control annual and perennial weeds. Massive use of glyphosate for decades has resulted in its ubiquitous presence in the environment, and poses a threat to humans and ecosystem. Different approaches such as adsorption, photocatalytic degradation, and microbial degradation have been studied to break down glyphosate in the environment. Among these, microbial degradation is the most effective and eco-friendly method. During its degradation, various microorganisms can use glyphosate as a sole source of phosphorus, carbon, and nitrogen. Major glyphosate degradation pathways and its metabolites have been frequently investigated, but the related enzymes and genes have been rarely studied. There are many reviews about the toxicity and fate of glyphosate and its major metabolite, aminomethylphosphonic acid. However, there is lack of reviews on biodegradation and bioremediation of glyphosate. The aims of this review are to summarize the microbial degradation of glyphosate and discuss the potential of glyphosate-degrading microorganisms to bioremediate glyphosate-contaminated environments. This review will provide an instructive direction to apply glyphosate-degrading microorganisms in the environment for bioremediation.

  4. Water and temperature stresses impact canola (Brassica napus L.) fatty acid, protein and yield over nitrogen and sulfur

    Science.gov (United States)

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of N and S fertilizer rate, soil water, and atmospheric temperature on canola fatty acid (FA), total oil, protein and grain yield. Nitrogen and S were assessed in...

  5. Improving hybrid seed production in corn with glyphosate-mediated male sterility.

    Science.gov (United States)

    Feng, Paul C C; Qi, Youlin; Chiu, Tommy; Stoecker, Martin A; Schuster, Christopher L; Johnson, Scott C; Fonseca, Augustine E; Huang, Jintai

    2014-02-01

    Hybrid corn varieties exhibit benefits associated with heterosis and account for most of the corn acreage in the USA. Hybrid seed corn is produced by crossing a female parent which is male-sterile and therefore incapable of self-pollination with a male parent as the pollen donor. The majority of hybrid seed corn is produced by mechanical detasseling which involves physically removing the tassel, a process that is laborious and costly. Glyphosate-resistant corn was developed via expression of a glyphosate insensitive 5-enolpyruvyl-shikimate 3-phosphate synthase enzyme (CP4-EPSPS). Experimentation with molecular expression elements resulted in selective reduction of CP4-EPSPS expression in male reproductive tissues. The resulting plant demonstrated sterile tassel following glyphosate application with little to no injury to the rest of the plant. Using (14)C-glyphosate as a marker, we also examined the translocation of glyphosate to the tassel via spray application in a track sprayer to simulate field application. The results allowed optimization of spray parameters such as dose, spray timing and target to maximize tassel delivery of glyphosate for efficient sterilization. The Roundup hybridization system (RHS) is a novel process for hybrid seed production based on glyphosate-mediated male sterility. RHS replaces mechanical detasseling with glyphosate spray and greatly simplifies the process of hybrid seed corn production. © 2013 Society of Chemical Industry.

  6. Interação de glyphosate com carfentrazone-ethyl Glyphosate - carfentrazone-ethyl interaction

    Directory of Open Access Journals (Sweden)

    R.C. Werlang

    2002-04-01

    Full Text Available Foi conduzido um experimento em condições controladas para determinar a interação do carfentrazone-ethyl em mistura no tanque com o herbicida glyphosate, no controle de seis espécies de plantas daninhas. Glyphosate aplicado isoladamente na dose de 720 g ha-1 foi eficaz no controle de Amaranthus hybridus (100%, Desmodium tortuosum (100%, Bidens pilosa (99%, Eleusine indica (96%, Digitaria horizontalis (100% e Commelina benghalensis (93% aos 21 DAA. Carfentrazone-ethyl aplicado isoladamente controlou eficazmente C. benghalensis. As misturas de glyphosate nas doses de 252 e 720 g ha-1 com carfentrazone-ethyl nas doses de 15 e 30 g ha¹ demonstraram efeito aditivo no controle de A. hybridus, D. tortuosum e Bidens pilosa, à exceção das misturas de glyphosate na dose de 252 g ha-1 com as doses de 15 e 30 g ha-1 de carfentrazone-ethyl, que proporcionam efeito sinergístico no controle de D. tortuosum. A adição das duas doses de carfentrazone-ethyl antagonizou o efeito de glyphosate na menor dose (252 g ha-1 no controle de E. indica, apresentando, no entanto, efeito aditivo com o glyphosate na maior dose (720 g ha-1. Já para D. horizontalis, as misturas de carfentrazone-ethyl com glyphosate na menor dose (252 g ha-1 apresentaram efeito sinergístico no controle dessa espécie, demonstrando, ainda, efeito aditivo na mistura com glyphosate na dose de 720 g ha-1. A mistura de carfentrazone-ethyl com glyphosate proporcionou efeito aditivo no controle de C. benghalensis, independentemente das combinações de doses avaliadas. Os resultados deste experimento indicam que carfentrazone-ethyl apresenta comportamento diferenciado quanto à interação com glyphosate, dependendo da espécie de planta daninha e da dose dos herbicidas utilizados na mistura em tanque, sendo complementar na mistura em tanque com glyphosate, pois demonstrou efeito antagônico em poucas das combinações estudadas, prevalecendo seu efeito aditivo na mistura com glyphosate, no

  7. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  8. DEVELOPMENT OF MOLECULAR MONITORING TECHNOLOGIES TO MEASURE TRANSGENE FLOW AND INTROGRESSION IN CROP AND NON-CROP PLANT SPECIES

    Science.gov (United States)

    The Gene Flow Project at the US Environmental Protection Agency, Western Ecology Division is developing methodologies for ecological risk assessments of transgene flow using Agrostis and Brassica engineered with CP4 EPSPS genes that confer resistance to glyphosate herbicide. In ...

  9. Interactions of glyphosate use with farm characteristics and cropping patterns in Central Europe.

    Science.gov (United States)

    Wiese, Armin; Schulte, Michael; Theuvsen, Ludwig; Steinmann, Horst-Henning

    2018-05-01

    Although glyphosate is the most widely used herbicide in the European Union, little is known about the patterns of its usage in arable farming. Therefore, a nationwide survey of 2026 German farmers was analysed to obtain further knowledge about glyphosate applications in conventional European arable farming. Given its broad range of agri-environmental and farm-type conditions, Germany can be regarded as a suitable study region to represent Central European farming. The growing season 2013/2014 was set as a reference. Farmers who participated in the survey employ diverse patterns of glyphosate use. While 23% stated that they did not use glyphosate in the season in question, others applied glyphosate to their total arable area. However, most applications occurred on specific parts of the farm. Application patterns of oilseed rape, winter wheat, maize and sugar beet were studied in detail, and U-shaped distributions of glyphosate use intensity were observed. The effects of farm type and management practices on glyphosate use patterns were mixed in the various crops. Motivation for glyphosate use differs widely within the farming community. Agricultural researchers, extension services and policy makers are recommended to mitigate vulnerabilities associated with glyphosate use, such as routine spraying and practices that increase selection pressure for the evolution of glyphosate-resistant weeds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. On glyphosate

    Directory of Open Access Journals (Sweden)

    Tamas Komives

    2016-11-01

    Full Text Available This Editorial briefly discusses the current issues surrounding glyphosate - the most controversial pesticide active ingredient of our time. The paper pays special attention to the effects of glyphosate on plant-pathogen interactions.

  11. Goss’s wilt incidence in sweet corn is independent of transgenic traits and glyphosate

    Science.gov (United States)

    Recently claims have been made that the use of glyphosate and transgenic crop traits increases the risk of plant diseases. Transgenic traits used widely for years in dent corn are now available in commercial sweet corn cultivars, specifically, the combination of glyphosate resistance (GR) and Lepid...

  12. Bermudagrass (Cynodon spp) dose-response relationships with clethodim, glufosinate and glyphosate.

    Science.gov (United States)

    Webster, Theodore M; Hanna, Wayne W; Mullinix, Benjamin G

    2004-12-01

    Greenhouse studies were conducted to evaluate the sensitivity of three commercial cultivars, eight experimental cultivars and common bermudagrass to clethodim, glufosinate and glyphosate. Each herbicide was applied at eight doses. Data were regressed on herbicide dose using a log-logistic curve (R2 = 0.56-0.95 for clethodim, R2 = 0.60-0.94 for glufosinate, and R2 = 0.70-0.96 for glyphosate). The herbicide rate that elicited a 50% plant response (I50) in the bermudagrass cultivars ranged from 0.04 to 0.19 kg ha(-1) clethodim, 0.19 to 1.33 kg ha(-1) glufosinate and 0.34 to 1.14 kg ha(-1) glyphosate. Relative to other cultivars, common bermudagrass was intermediate in its response to clethodim and among the most tolerant cultivars to glufosinate and glyphosate. TifSport was relatively tolerant to clethodim and glufosinate compared with other cultivars, but relatively sensitive to glyphosate. One cultivar, 94-437, was consistently among the most sensitive cultivars to each of the herbicides. While there were differential herbicide tolerances among the tested bermudagrass cultivars, there did not appear to be any naturally occurring herbicide resistance that could be commercially utilized. However, research indicated that breeding efforts should target herbicide resistance that is at least four times the registered use rate. Also, TifSport and Tifway have been identified as suitable representatives of triploid hybrid bermudagrass cultivars to be used to evaluate the success of turfgrass renovation programs. 2004 Society of Chemical Industry.

  13. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    International Nuclear Information System (INIS)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S.R.; Azizi, S.; Shawrang, P.

    2010-01-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  15. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Taghinejad-Roudbaneh, M., E-mail: mtaghinejad@iaut.ac.i [Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, P.O. Box 51589, Tabriz (Iran, Islamic Republic of); Ebrahimi, S.R. [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Azizi, S. [Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, P.O. Box 57155-1177, Urmia (Iran, Islamic Republic of); Shawrang, P. [Nuclear Science and Technology Research Institute, Agricultural, Medical and Industrial Research School, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2010-12-15

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  16. Canola meal on starting pigs feeding

    Directory of Open Access Journals (Sweden)

    Lina Maria Peñuela-Sierra

    2015-12-01

    Full Text Available Three experiments were carried out to determine the nutritional values and evaluate the performance of piglets fed on canola meal. In experiment I, a digestibility assay was conducted using fourteen barrow pigs, with an initial body weight of 20.62±3.30 kg. The evaluated feedstuff was canola meal, with a level of 250 g/kg in the basal diet (corn + soybean meal-based. The experimental unit consisted of one pig, with a total of seven experimental units per diet. The values as (fed basis of digestible (DE and metabolizable (ME energy of canola meal were 2,995 kcal/kg and 2,796 kcal/kg, respectively. In experiment II, ileal digestibility assays were carried out to determine the apparent and true ileal digestibility coefficient and digestible amino acids. Three crossbred pigs were used, with a BW of 38.6±1.98 kg. The treatments consisted of two diets, with a single source of protein (canola meal and one protein-free diet (OFD. The values of digestible amino acids in canola meal were as follows: lysine: 11.8 g/kg; methionine+cystine: 9.1 g/kg; threonine: 7.9 g/kg; tryptophan: 2.4 g/kg; leucine: 15.7 g/kg; and isoleucine: 8.7 g/kg. In experiment III, 60 piglets (BW= 15.08±0.72 kg to 30.26±2.78 kg were allotted in a completely randomized design. The treatments consisted of four diets with increasing levels of canola meal (50, 100, 150 and 200 g/kg, six replicates and experimental unit consisted of two pigs. Additionally, a control diet was formulated containing 0.0 g/kg CM. Regression analysis indicates that there was no effect (P?0.05 of the level of canola meal inclusion on pigs performance. The performance results suggest that it is feasible to use up to 200 g/kg of canola meal in starting pigs diet, without impairing performance and the feeding cost.

  17. Effects of glyphosate and endosulfan on soil microorganisms in soybean crop Efeitos do endosulfan e glyphosate sobre microrganismos do solo na cultura da soja

    Directory of Open Access Journals (Sweden)

    J.L. Pereira

    2008-01-01

    Full Text Available Transgenic soybean, resistant to glyphosate, is the most dominant transgenic crop grown commercially in the world. Research works on herbicide and insecticide mixtures and their effects on microorganisms are rarely reported. This work aimed to study the impact of glyphosate, endosulfan and their mixtures on the microbial soil activity in soybean crop. The experiment was carried out in a complete randomized block design with four treatments and five replications. The treatments were glyphosate 480 SL [540 g of active ingredient (a.i. ha-1], endosulfan 350 EC (525 g a.i. ha-1, the glyphosate 480 SL [540 g of active ingredient (a.i. ha-1] mixed with endosulfan 350 EC (525 g a.i. ha-1 and the control. Microbial activity was evaluated five days after treatment application. Glyphosate application was not an impacting factor for soil CO2 production. Endosulfan application (alone or mixed with glyphosate suppressed CO2 production by microorganisms in the soil. Microbial biomass and microbial quotient were lower in the treatments using endosulfan alone and in those using endosulfan mixed with glyphosate than in the treatments using glyphosate alone and control.A soja resistente ao glyphosate é a cultura transgênica mais cultivada em todo o mundo. Pesquisas envolvendo o impacto de mistura de herbicidas e inseticidas e seus efeitos sobre microrganismos do solo são raramente reportadas. Este trabalho teve por objetivo avaliar o impacto do herbicida (glyphosate, do inseticida (endosulfan e da mistura de ambos sobre a atividade microbiana do solo na cultura da soja. O delineamento experimental foi em blocos casualizados, com quatro tratamentos e cinco repetições. Os tratamentos foram o herbicida glyphosate 480 SL [540 g de ingrediente ativo (i.a. ha-1], endosulfan 350 EC (525 g i.a. ha-1, a mistura de glyphosate 480 SL (540 g de i.a. ha-1 com endosulfan 350 EC (525 g i.a. ha-1 e a testemunha onde se aplicou água. A atividade microbiana foi avaliada aos

  18. Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas.

    Science.gov (United States)

    Nayidu, Naghabushana K; Tan, Yifang; Taheri, Ali; Li, Xiang; Bjorndahl, Trent C; Nowak, Jacek; Wishart, David S; Hegedus, Dwayne; Gruber, Margaret Y

    2014-07-01

    Brassica villosa is a wild Brassica C genome species with very dense trichome coverage and strong resistance to many insect pests of Brassica oilseeds and vegetables. Transcriptome analysis of hairy B. villosa leaves indicated higher expression of several important trichome initiation genes compared with glabrous B. napus leaves and consistent with the Arabidopsis model of trichome development. However, transcripts of the TRY inhibitory gene in hairy B. villosa were surprisingly high relative to B. napus and relative transcript levels of SAD2, EGL3, and several XIX genes were low, suggesting potential ancillary or less important trichome-related roles for these genes in Brassica species compared with Arabidopsis. Several antioxidant, calcium, non-calcium metal and secondary metabolite genes also showed differential expression between these two species. These coincided with accumulation of two alkaloid-like compounds, high levels of calcium, and other metals in B. villosa trichomes that are correlated with the known tolerance of B. villosa to high salt and the calcium-rich natural habitat of this wild species. This first time report on the isolation of large amounts of pure B. villosa trichomes, on trichome content, and on relative gene expression differences in an exceptionally hairy Brassica species compared with a glabrous species opens doors for the scientific community to understand trichome gene function in the Brassicas and highlights the potential of B. villosa as a trichome research platform.

  19. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    Directory of Open Access Journals (Sweden)

    Mari Narusaka

    Full Text Available Housaku Monogatari (HM is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods.

  20. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC

    OpenAIRE

    Tarazona, Jose V.; Court-Marques, Daniele; Tiramani, Manuela; Reich, Hermine; Pfeil, Rudolf; Istace, Frederique; Crivellente, Federica

    2017-01-01

    Glyphosate is the most widely used herbicide worldwide. It is a broad spectrum herbicide and its agricultural uses increased considerably after the development of glyphosate-resistant genetically modified (GM) varieties. Since glyphosate was introduced in 1974, all regulatory assessments have established that glyphosate has low hazard potential to mammals, however, the International Agency for Research on Cancer (IARC) concluded in March 2015 that it is probably carcinogenic. The IARC conclus...

  1. Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea Roots.

    Directory of Open Access Journals (Sweden)

    Miaomiao Xing

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp. Among them, 49,959 (79.92% genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%, Gene Ontology (GO (33,767, 54.02%, Clusters of Orthologous Groups (KOG (14,721, 23.55% and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG (12,974, 20.76% searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR, ethylene (ET- and jasmonic (JA-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR proteins, UDP-glycosyltransferase (UDPG, pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters, myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying

  2. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    OpenAIRE

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-...

  3. The fate of chromosomes and alleles in an allohexaploid Brassica population.

    Science.gov (United States)

    Mason, Annaliese S; Nelson, Matthew N; Takahira, Junko; Cowling, Wallace A; Alves, Gustavo Moreira; Chaudhuri, Arkaprava; Chen, Ning; Ragu, Mohana E; Dalton-Morgan, Jessica; Coriton, Olivier; Huteau, Virginie; Eber, Frédérique; Chèvre, Anne-Marie; Batley, Jacqueline

    2014-05-01

    Production of allohexaploid Brassica (2n = AABBCC) is a promising goal for plant breeders due to the potential for hybrid heterosis and useful allelic contributions from all three of the Brassica genomes present in the cultivated diploid (2n = AA, 2n = BB, 2n = CC) and allotetraploid (2n = AABB, 2n = AACC, and 2n = BBCC) crop species (canola, cabbages, mustards). We used high-throughput SNP molecular marker assays, flow cytometry, and fluorescent in situ hybridization (FISH) to characterize a population of putative allohexaploids derived from self-pollination of a hybrid from the novel cross (B. napus × B. carinata) × B. juncea to investigate whether fertile, stable allohexaploid Brassica can be produced. Allelic segregation in the A and C genomes generally followed Mendelian expectations for an F2 population, with minimal nonhomologous chromosome pairing. However, we detected no strong selection for complete 2n = AABBCC chromosome complements, with weak correlations between DNA content and fertility (r(2) = 0.11) and no correlation between missing chromosomes or chromosome segments and fertility. Investigation of next-generation progeny resulting from one highly fertile F2 plant using FISH revealed general maintenance of high chromosome numbers but severe distortions in karyotype, as evidenced by recombinant chromosomes and putative loss/duplication of A- and C-genome chromosome pairs. Our results show promise for the development of meiotically stable allohexaploid lines, but highlight the necessity of selection for 2n = AABBCC karyotypes.

  4. Genome-wide identification and role of MKK and MPK gene families in clubroot resistance of Brassica rapa.

    Science.gov (United States)

    Piao, Yinglan; Jin, Kaining; He, Ying; Liu, Jiaxiu; Liu, Shuang; Li, Xiaonan; Piao, Zhongyun

    2018-01-01

    Mitogen-activated protein kinase (MAPK or MPK) cascades play key roles in responses to various biotic stresses, as well as in plant growth and development. However, the responses of MPK and MPK kinase (MKK) in Chinese cabbage (Brassica rapa ssp. pekinensis) to Plasmodiophora brassicae, a causal agent of clubroot disease in Brassica crops, are still not clear. In the present study, a total of 11 B. rapa MKK (BraMKK) and 30 BraMPK genes were identified and unevenly distributed in 6 and 10 chromosomes, respectively. The synteny analysis indicated that these genes experienced whole-genome triplication and segmental and tandem duplication during or after the divergence of B. rapa, accompanied by the loss of three MKK and two MPK orthologs of Arabidopsis. The BraMKK and BraMPK genes were classified into four groups with similar intron/exon structures and conserved motifs in each group. A quantitative PCR analysis showed that the majority of BraMKK and BraMPK genes were natively expressed in roots, hypocotyls, and leaves, whereas 5 BraMKK and 16 BraMPK genes up-regulated in the roots upon P. brassicae infection. Additionally, these 5 BraMKK and 16 BraMPK genes exhibited a significantly different expression pattern between a pair of clubroot-resistant/susceptible near-isogenic lines (NILs). Furthermore, the possible modules of MKK-MPK involved in B. rapa-P. brassicae interaction are also discussed. The present study will provide functional clues for further characterization of the MAPK cascades in B. rapa.

  5. Is it time to reassess current safety standards for glyphosate-based herbicides?

    Science.gov (United States)

    Vandenberg, Laura N; Blumberg, Bruce; Antoniou, Michael N; Benbrook, Charles M; Carroll, Lynn; Colborn, Theo; Everett, Lorne G; Hansen, Michael; Landrigan, Philip J; Lanphear, Bruce P; Mesnage, Robin; Vom Saal, Frederick S; Welshons, Wade V; Myers, John Peterson

    2017-06-01

    Use of glyphosate-based herbicides (GBHs) increased ∼100-fold from 1974 to 2014. Additional increases are expected due to widespread emergence of glyphosate-resistant weeds, increased application of GBHs, and preharvest uses of GBHs as desiccants. Current safety assessments rely heavily on studies conducted over 30 years ago. We have considered information on GBH use, exposures, mechanisms of action, toxicity and epidemiology. Human exposures to glyphosate are rising, and a number of in vitro and in vivo studies challenge the basis for the current safety assessment of glyphosate and GBHs. We conclude that current safety standards for GBHs are outdated and may fail to protect public health or the environment. To improve safety standards, the following are urgently needed: (1) human biomonitoring for glyphosate and its metabolites; (2) prioritisation of glyphosate and GBHs for hazard assessments, including toxicological studies that use state-of-the-art approaches; (3) epidemiological studies, especially of occupationally exposed agricultural workers, pregnant women and their children and (4) evaluations of GBHs in commercially used formulations, recognising that herbicide mixtures likely have effects that are not predicted by studying glyphosate alone. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    Directory of Open Access Journals (Sweden)

    Bingfu eGuo

    2015-10-01

    Full Text Available Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at four-fold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  7. Varietal improvement of Brassica species through introduction, hybridization and mutation breeding techniques

    International Nuclear Information System (INIS)

    Rhaman, A.

    1988-11-01

    Germplasm of Brassica campestris and Brassica juncea was collected from various parts of Bangladesh and evaluated for yield, oil content etc. prior to the breeding programme. Seeds of the B. campestris variety YS-52, possessing good agronomic characteristics, were treated with mutagens (gamma rays and sodium azide) to widen the genetic variation. Mutants were selected for higher yield and resistance against Alternaria brassicae. The two mutant lines BINA 1 and BINA 2 were selected exceeding the parent variety considerably in yield and disease resistance. They are candidates for recommended varieties. Brassica juncea variety RCM 625 was treated with gamma rays and EMS. Four higher yielding and earlier maturing mutants are being evaluated further. 6 tabs

  8. Non Target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis

    Directory of Open Access Journals (Sweden)

    Pablo Tomas Fernandez-Moreno

    2016-08-01

    Full Text Available Sterile wild oat (Avena sterilis L. is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage before the beginning of summer period (due to the possibility of intense drought stress. In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha-1 for exposed (E and un-exposed (UE glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of 14C- glyphosate absorption was the same in the two accessions (E and UE, while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica and Lolium rigidum.

  9. Non-target Site Tolerance Mechanisms Describe Tolerance to Glyphosate in Avena sterilis.

    Science.gov (United States)

    Fernández-Moreno, Pablo T; Alcantara-de la Cruz, Ricardo; Cruz-Hipólito, Hugo E; Rojano-Delgado, Antonia M; Travlos, Ilias; De Prado, Rafael

    2016-01-01

    Sterile wild oat (Avena sterilis L.) is an autogamous grass established in warm climate regions. This species has been used as a cover crop in Mediterranean perennial crops during the spring period prior to initiating competition with the main crop for water and nutrients. However, such cover crops need to be controlled (by glyphosate or tillage) before the beginning of summer period (due to the possibility of intense drought stress). In 2011, the olive grove farmers of southern Spain expressed dissatisfaction because of the ineffective control with glyphosate on A. sterilis. Experiments were conducted to determine whether the continued use of glyphosate over a 5 year period had selected a new resistant or tolerant species. The GR50 values obtained for A. sterilis were 297.12 and 245.23 g ae ha(-1) for exposed (E) and un-exposed (UE) glyphosate accessions, respectively. The spray retention and shikimic acid accumulation exhibited a non-significant difference between the two accessions. The results of (14)C- glyphosate absorption was the same in the two accessions (E and UE), while the translocation from the treated leaf to the rest of the shoots and roots was similar in A. sterilis accessions. Glyphosate metabolism to aminomethylphosphonic acid (AMPA) and glyoxylate was similar in both accessions, but increased after treatment with glyphosate, indicating that metabolism plays an important role in tolerance. Both A. sterilis accessions, present similarity in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity enzyme with different glyphosate concentrations and without glyphosate, confirming that both accessions present the same genomic characteristics. The above-mentioned results indicate that innate tolerance to glyphosate in A. sterilis is probably and partly due to reduced herbicide absorption and translocation and metabolism compared to the susceptibility of other grasses weeds like Chloris inflata, Eleusine indica, and Lolium rigidum.

  10. Formulants of glyphosate-based herbicides have more deleterious impact than glyphosate on TM4 Sertoli cells.

    Science.gov (United States)

    Vanlaeys, Alison; Dubuisson, Florine; Seralini, Gilles-Eric; Travert, Carine

    2018-05-15

    Roundup and Glyphogan are glyphosate-based herbicides containing the same concentration of glyphosate and confidential formulants. Formulants are declared as inert diluents but some are more toxic than glyphosate, such as the family of polyethoxylated alkylamines (POEA). We tested glyphosate alone, glyphosate-based herbicide formulations and POEA on the immature mouse Sertoli cell line (TM4), at concentrations ranging from environmental to agricultural-use levels. Our results show that formulations of glyphosate-based herbicides induce TM4 mitochondrial dysfunction (like glyphosate, but to a lesser extent), disruption of cell detoxification systems, lipid droplet accumulation and mortality at sub-agricultural doses. Formulants, especially those present in Glyphogan, are more deleterious than glyphosate and thus should be considered as active principles of these pesticides. Lipid droplet accumulation after acute exposure to POEA suggests the rapid penetration and accumulation of formulants, leading to mortality after 24 h. As Sertoli cells are essential for testicular development and normal onset of spermatogenesis, disturbance of their function by glyphosate-based herbicides could contribute to disruption of reproductive function demonstrated in mammals exposed to these pesticides at a prepubertal stage of development. Copyright © 2017. Published by Elsevier Ltd.

  11. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    The results show that organic matter digestibility (OMD) and metabolizable energy (ME) for treated canola straw were significantly higher than that of untreated canola straw (control) (p<0.001). Gas productions at 24 h for untreated canola straw (control) and treated canola straw were 20.03 and 27.07 ml, respectively.

  12. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup ® . This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup ® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup ® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup ® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup ® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup ® -treated adult zebrafish demonstrated a significant

  13. Glyphosate

    OpenAIRE

    Arcuri, Alessandra

    2017-01-01

    markdownabstractGlyphosate is the rock star of pesticides, albeit a controversial one. With 6.1 billion kilograms applied globally in the last decade alone, it is the most widely used herbicide compound in the world. Glyphosate, is at the centre of an acrimonious controversy relating to whether the substance is carcinogenic to humans and toxic for the environment. The controversy took a sharp legal turn when, in March 2015, the International Agency for Research on Cancer (IARC), which is the ...

  14. Relative degree of susceptibility and resistance of different brassica campestris l. genotypes against aphid myzus persicae- a field investigation

    International Nuclear Information System (INIS)

    Sarwar, M.

    2013-01-01

    Field evaluation of twenty three Brassica campestris L. genotypes was conducted for aphid (Homoptera: Aphididae) resistance during 2008 crop season. The parameters used to assess tolerance of germplasm lines included pest population during growth season and grain yield at crop maturity. Aphids showed obvious preferences for all of the germplasm investigated; however, the evaluation for resistance to pest identified several genotypes with variable potential for tolerance and sensitivity. Estimated grain yield also varied significantly due to variable pest intensity noted, and seemed to be more appropriately dependent on the pest population conditions at the experimental site. Among the germplasm, the estimation obtained regarding both the parameters sorted out MM-II/02-3 and MM-I285 genotypes as most tolerant due to less pest infestation and damage. Peak infestations by aphid caused severe crop fatalities on S-9-S-97-0.75+75/55 and S-9-1006/95 genotypes, affecting the seed weight and resulting an immense reduction in grain Brassica genotypes appeared to be governed by means of varietals characteristics of diverse germplasms. The result of resistance test conducted under field environment is an effective and consistent approach in the practical selection of crop lines resistant or partially resistant to pests for use in future breeding programs. (author)

  15. Impacts of Repeated Glyphosate Use on Wheat-Associated Bacteria Are Small and Depend on Glyphosate Use History.

    Science.gov (United States)

    Schlatter, Daniel C; Yin, Chuntao; Hulbert, Scot; Burke, Ian; Paulitz, Timothy

    2017-11-15

    Glyphosate is the most widely used herbicide worldwide and a critical tool for weed control in no-till cropping systems. However, there are concerns about the nontarget impacts of long-term glyphosate use on soil microbial communities. We investigated the impacts of repeated glyphosate treatments on bacterial communities in the soil and rhizosphere of wheat in soils with and without long-term history of glyphosate use. We cycled wheat in the greenhouse using soils from 4 paired fields under no-till (20+-year history of glyphosate) or no history of use. At each cycle, we terminated plants with glyphosate (2× the field rate) or by removing the crowns, and soil and rhizosphere bacterial communities were characterized. Location, cropping history, year, and proximity to the roots had much stronger effects on bacterial communities than did glyphosate, which only explained 2 to 5% of the variation. Less than 1% of all taxa were impacted by glyphosate, more in soils with a long history of use, and more increased than decreased in relative abundance. Glyphosate had minimal impacts on soil and rhizosphere bacteria of wheat, although dying roots after glyphosate application may provide a "greenbridge" favoring some copiotrophic taxa. IMPORTANCE Glyphosate (Roundup) is the most widely used herbicide in the world and the foundation of Roundup Ready soybeans, corn, and the no-till cropping system. However, there have been recent concerns about nontarget impacts of glyphosate on soil microbes. Using next-generation sequencing methods and glyphosate treatments of wheat plants, we described the bacterial communities in the soil and rhizosphere of wheat grown in Pacific Northwest soils across multiple years, different locations, and soils with different histories of glyphosate use. The effects of glyphosate were subtle and much less than those of drivers such as location and cropping systems. Only a small percentage of the bacterial groups were influenced by glyphosate, and most of

  16. Honey bee contribution to canola pollination in Southern Brazil Abelhas melíferas na polinização de canola no Sul do Brasil

    Directory of Open Access Journals (Sweden)

    Annelise de Souza Rosa

    2011-04-01

    Full Text Available Although canola, (Brassica napus L., is considered a self-pollinating crop, researchers have indicated that crop productivity increases as a result of honey bee Apis mellifera L. pollination. Given this crop's growing importance in Rio Grande do Sul State, Brazil, this work evaluated the increase in pod and seed productivity with respect to interactions with anthophilous insects and manual pollination tests. The visiting frequency of A. mellifera was correlated with the crop's blooming progression, and productivity comparisons were made between plants visited by insects, manually pollinated plants (geitonogamy and xenogamy and plants without pollination induction. Pod set and seed production per plant were determined for each treatment. Among the 8,624 recorded flower-visiting insects, Hymenoptera representatives were the most prevalent (92.3%, among which 99.8% were A. mellifera. The correlation between these bees and blooming progression was positive (r = 0.87; p = 0.002. Pollination induction increased seed productivity from 28.4% (autogamy to 50.4% with insect visitations, as well as to 48.7 (geitonogamy and to 55.1% (xenogamy through manual pollination.A canola (Brassica napus L. é considerada autocompatível, embora pesquisadores indiquem aumento na produtividade da cultura resultante da polinização efetuada por Apis mellifera L.. Considerando-se a crescente importância dessa cultura no Rio Grande do Sul, avaliou-se o incremento da produtividade de síliquas e sementes a partir de interações com insetos antófilos e com testes de polinização manual. A freqüência de visitas de A. mellifera foi relacionada com o desenvolvimento da floração da cultura e a produtividade foi comparada entre plantas visitadas por insetos, polinizadas manualmente (geitonogamia e xenogamia e com ausência de indução de polinização. Em cada tratamento avaliou-se a produtividade de síliquas e de sementes formadas por planta. Dentre os 8.624 insetos

  17. [Poisonings with the herbicides glyphosate and glyphosate-trimesium].

    Science.gov (United States)

    Mortensen, O S; Sørensen, F W; Gregersen, M; Jensen, K

    2000-08-28

    Generally the herbicide glyphosate is considered harmless to humans. Glyphosate-trimesium is labelled harmful (Xn), whereas glyphosate-isopropylamine carries no warning sign. As cases of serious poisoning have emerged contacts to the Poison Information Centre have been reviewed. The persons exposed were mainly smaller children and adults 20 to 59 years of age. Oral exposure was recorded in 47 persons, inhalation exposure in 24 and topical contact in 42. About one fourth of the exposed persons were asymptomatic. Most of the symptomatic poisonings demonstrated complaints from the mouth, the gastrointestinal tract and the airways. Eleven patients were admitted to hospital. Two died, one of them having ingested the isopropylamine salt, the other the trimesium salt. Death ensued quickly in the latter patient. A similar fate was observed in a child--not included in the present material--who had also ingested the trimesium compound.

  18. Overexpression of NPR1 in Brassica juncea Confers Broad Spectrum Resistance to Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Sajad Ali

    2017-10-01

    Full Text Available Brassica juncea (Indian mustard is a commercially important oil seed crop, which is highly affected by many biotic stresses. Among them, Alternaria leaf blight and powdery mildew are the most devastating diseases leading to huge yield losses in B. juncea around the world. In this regard, genetic engineering is a promising tool that may possibly allow us to enhance the B. juncea disease resistance against these pathogens. NPR1 (non-expressor of pathogen-related gene 1 is a bonafide receptor of salicylic acid (SA which modulates multiple immune responses in plants especially activation of induced and systemic acquired resistance (SAR. Here, we report the isolation and characterization of new NPR1 homolog (BjNPR1 from B. juncea. The phylogenetic tree constructed based on the deduced sequence of BjNPR1 with homologs from other species revealed that BjNPR1 grouped together with other known NPR1 proteins of Cruciferae family, and was nearest to B. napus. Furthermore, expression analysis showed that BjNPR1 was upregulated after SA treatment and fungal infection but not by jasmonic acid or abscisic acid. To understand the defensive role of this gene, we generated B. juncea transgenic lines overexpressing BjNPR1, and further confirmed by PCR and Southern blotting. The transgenic lines showed no phenotypic abnormalities, and constitutive expression of BjNPR1 activates defense signaling pathways by priming the expression of antifungal PR genes. Moreover, BjNPR1 transgenic lines showed enhanced resistance to Alternaria brassicae and Erysiphe cruciferarum as there was delay in symptoms and reduced disease severity than non-transgenic plants. In addition, the rate of disease spreading to uninfected or distal parts was also delayed in transgenic plants thus suggesting the activation of SAR. Altogether, the present study suggests that BjNPR1 is involved in broad spectrum of disease resistance against fungal pathogens.

  19. Mutagenesis and haploid culture for disease resistance in Brassica napus

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M V; Ahmad, I; Ingram, D S [Botany School, University of Cambridge, Cambridge (United Kingdom)

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M{sub 1} and M{sub 2} progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  20. Mutagenesis and haploid culture for disease resistance in Brassica napus

    International Nuclear Information System (INIS)

    MacDonald, M.V.; Ahmad, I.; Ingram, D.S.

    1990-01-01

    Full text: Most winter oilseed rape cultivars share parentage and therefore show little genetic diversity. There is no known resistance to Alternaria spp. in oilseed rape or in any related Brassica species. Experiments with tissue culture yielded only transient, non-genetic resistance. Therefore, mutagenesis may be used to generate heritable resistance to Alternaria spp. Gamma irradiation was applied to seeds of 'Bienvenue', secondary embryoids of cvs 'Primor' and 'Rapora', and buds of cvs 'Primor' and 'Ariana'. Isolated microspores from cv 'Ariana' and rapid cycling B. napus were also treated. The doses used ranged from 0-100 Gy for isolated microspores and buds, up to 600 Gy for seeds and 960 Gy for secondary embryoids. EMS was used to treat seeds of line WRG-42 (supplied by Nickersons RPB) and microspores of cv 'Bienvenue' and rapid cycling B. napus. Seeds were treated with up to 2.0% EMS for 0.2 h. before plating them on the culture medium. Seed irradiation up to 600 Gy did not reduce germination. M 1 and M 2 progenies were tested both in the laboratory and in field trials, and none of these were found to be resistant to Alternaria. However, considerable variation for other characters was observed. Haploid cultures from these plants were extremely difficult to regenerate, and for this reason no regenerant plants have been tested for resistance. For irradiated secondary embryoids the regeneration capacity decreased with increasing dose. Regenerated plants have been tested for resistance to Alternaria, but stable resistance was not observed. Haploid cultures were obtained from irradiated buds, using both anther and microspore culture. Low irradiation treatment was beneficial to developing embryoids. Some regenerants have been obtained from EMS treated microspores and seeds. Four plants have repeatedly given increased levels of resistance to A. brassicicola, and progenies are being tested to determine the genetic nature of the resistance. (author)

  1. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available Members of the plant NUCLEAR FACTOR Y (NF-Y family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola, each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14 were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12 and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14 were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12 and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14 and two NF-YC members (BnNF-YC2 and BnNF-YC3 were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides

  2. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    Science.gov (United States)

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into

  3. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial123

    Science.gov (United States)

    Jones, Peter JH; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David JA; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Charest, Amélie; Baril-Gravel, Lisa; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; McCrea, Cindy E; Kris-Etherton, Penny M

    2014-01-01

    Background: It is well recognized that amounts of trans and saturated fats should be minimized in Western diets; however, considerable debate remains regarding optimal amounts of dietary n−9, n−6, and n−3 fatty acids. Objective: The objective was to examine the effects of varying n−9, n−6, and longer-chain n−3 fatty acid composition on markers of coronary heart disease (CHD) risk. Design: A randomized, double-blind, 5-period, crossover design was used. Each 4-wk treatment period was separated by 4-wk washout intervals. Volunteers with abdominal obesity consumed each of 5 identical weight-maintaining, fixed-composition diets with one of the following treatment oils (60 g/3000 kcal) in beverages: 1) conventional canola oil (Canola; n−9 rich), 2) high–oleic acid canola oil with docosahexaenoic acid (CanolaDHA; n−9 and n−3 rich), 3) a blend of corn and safflower oil (25:75) (CornSaff; n−6 rich), 4) a blend of flax and safflower oils (60:40) (FlaxSaff; n−6 and short-chain n−3 rich), or 5) high–oleic acid canola oil (CanolaOleic; highest in n−9). Results: One hundred thirty individuals completed the trial. At endpoint, total cholesterol (TC) was lowest after the FlaxSaff phase (P < 0.05 compared with Canola and CanolaDHA) and highest after the CanolaDHA phase (P < 0.05 compared with CornSaff, FlaxSaff, and CanolaOleic). Low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol were highest, and triglycerides were lowest, after CanolaDHA (P < 0.05 compared with the other diets). All diets decreased TC and LDL cholesterol from baseline to treatment endpoint (P < 0.05). CanolaDHA was the only diet that increased HDL cholesterol from baseline (3.5 ± 1.8%; P < 0.05) and produced the greatest reduction in triglycerides (−20.7 ± 3.8%; P < 0.001) and in systolic blood pressure (−3.3 ± 0.8%; P < 0.001) compared with the other diets (P < 0.05). Percentage reductions in Framingham 10-y CHD risk scores (FRS) from

  4. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina.

    Science.gov (United States)

    Castro Berman, M; Marino, D J G; Quiroga, María Victoria; Zagarese, Horacio

    2018-06-01

    Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide used to kill weeds that compete with commercial crops. In Argentina, the use of glyphosate-based herbicides increased dramatically (up to ∼200,000 tons on 2012) since the introduction of glyphosate-resistant crops, such as transgenic soy and resistant corn, and the adoption of non-till practices in the 1990's. Sallow lakes within the Pampa region may be potentially impacted by continuous herbicide usage. We surveyed 52 shallow lakes from the Pampa region (Buenos Aires Province, Argentina) to assess the occurrence and concentrations of glyphosate and its main degradation product (AMPA). For comparison, we also sampled 24 shallow lakes from an area with no agricultural use of glyphosate (Northern Patagonia). Glyphosate and AMPA were analyzed by UPLC-MS/MS ESI (±) in lake water, suspended particulate matter (SPM), and sediment samples. Within the Pampa region, glyphosate residues were detected in >40% of samples. Glyphosate residues were detected more frequently in sediment and surface water than in SPM samples. The mean (maximum) concentrations of glyphosate were 2.11 (4.52) μg l -1 for surface water; 0.10 (0.13) μg l -1 for SPM and 10.47 (20.34) μg kg -1 for sediment samples, respectively. Whereas, mean (maximum) concentrations of AMPA were 0.84 and (0.90) μg l -1 for surface water; 0.07 (0.07) μg l -1 for SPM; and 22.53 (32.89) μg kg -1 for sediment samples. The herbicide was not detected in samples from the Patagonian region. To our knowledge, this is the first study reporting the occurrence and concentrations of the herbicide in freshwater lakes of Argentina. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Analysis of cold resistance and identification of SSR markers linked to cold resistance genes in Brassica rapa L.

    Science.gov (United States)

    Huang, Zhen; Zhang, Xuexian; Jiang, Shouhua; Qin, Mengfan; Zhao, Na; Lang, Lina; Liu, Yaping; Tian, Zhengshu; Liu, Xia; Wang, Yang; Zhang, Binbin; Xu, Aixia

    2017-06-01

    Currently, cold temperatures are one of the main factors threatening rapeseed production worldwide; thus, it is imperative to identify cold-resistant germplasm and to cultivate cold-resistant rapeseed varieties. In this study, the cold resistance of four Brassica rapa varieties was analyzed. The cold resistance of Longyou6 and Longyou7 was better than that of Tianyou2 and Tianyou4. Thus, an F 2 population derived from Longyou6 and Tianyou4 was used to study the correlation of cold resistance and physiological indexes. Our results showed that the degree of frost damage was related to the relative conductivity and MDA content (r1 = 0.558 and r2 = 0.447, respectively). In order to identify the markers related to cold resistance, 504 pairs of SSR (simple sequence repeats) primers were used to screen the two parents and F 2 population. Four and five SSR markers had highly significant positive correlation to relative conductivity and MDA, respectively. In addition, three of these SSR markers had a highly significant positive correlation to both of these two indexes. These three SSR markers were subsequently confirmed to be used to distinguish between cold-resistant and non-cold-resistant varieties. The results of this study will lay a solid foundation for the mapping of cold-resistant genes and molecular markers assisted selection for the cold-resistance.

  6. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L.

    Science.gov (United States)

    Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi

    2017-12-01

    Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.

  7. Transcriptomic basis for drought-resistance in Brassica napus L.

    Science.gov (United States)

    Wang, Pei; Yang, Cuiling; Chen, Hao; Song, Chunpeng; Zhang, Xiao; Wang, Daojie

    2017-01-01

    Based on transcriptomic data from four experimental settings with drought-resistant and drought-sensitive cultivars under drought and well-watered conditions, statistical analysis revealed three categories encompassing 169 highly differentially expressed genes (DEGs) in response to drought in Brassica napus L., including 37 drought-resistant cultivar-related genes, 35 drought-sensitive cultivar-related genes and 97 cultivar non-specific ones. We provide evidence that the identified DEGs were fairly uniformly distributed on different chromosomes and their expression patterns are variety specific. Except commonly enriched in response to various stimuli or stresses, different categories of DEGs show specific enrichment in certain biological processes or pathways, which indicated the possibility of functional differences among the three categories. Network analysis revealed relationships among the 169 DEGs, annotated biological processes and pathways. The 169 DEGs can be classified into different functional categories via preferred pathways or biological processes. Some pathways might simultaneously involve a large number of shared DEGs, and these pathways are likely to cross-talk and have overlapping biological functions. Several members of the identified DEGs fit to drought stress signal transduction pathway in Arabidopsis thaliana. Finally, quantitative real-time PCR validations confirmed the reproducibility of the RNA-seq data. These investigations are profitable for the improvement of crop varieties through transgenic engineering.

  8. Crescimento diferencial de biótipos de Conyza SPP. resistente e suscetível ao herbicida glifosato Differential growth of glyphosate-resistant and susceptible biotypes of Conyza SPP

    Directory of Open Access Journals (Sweden)

    Murilo Sala Moreira

    2010-01-01

    Full Text Available Este trabalho foi realizado com o objetivo de comparar, em condição controlada e não-competitiva, o crescimento de biótipos de Conyza canadensis e C. bonariensis resistente e suscetível ao herbicida glifosato, a fim de quantificar os efeitos da pressão de seleção para resistência nos biótipos. Dois experimentos foram desenvolvidos com tratamentos organizados em esquema fatorial 9 x 2, com nove avaliações periódicas de crescimento e dois biótipos de cada espécie. As variáveis avaliadas por planta foram: área foliar; massa seca da parte aérea, das raízes e total, obtendo-se, a partir desta última, a taxa de crescimento absoluto. O biótipo de C. canadensis resistente ao glifosato possui crescimento mais lento, menor acúmulo de área foliar e de massa seca que o biótipo suscetível. Menores áreas foliar e massa seca também foram registradas para o biótipo de C. bonariensis resistente ao glifosato quando comparado ao suscetível, porém com diferenças mais sutis que aquelas constatadas para C. canadensis. O crescimento absoluto do biótipo suscetível foi superior ao do resistente em ambas as espécies. A pressão de seleção para resistência ao glifosato teve impactos negativos na habilidade de crescimento dos biótipos.This work was carried out with the objective of comparing, under controlled and non-competitive condition, the growth of glyphosate-resistant and susceptible biotypes of Conyza canadensis and C. bonariensis; to quantify the effects of resistance selection pressure on the biotypes. Two trials were developed with treatments organized according to a factorial scheme 9 x 2, where nine were periodical growth evaluations and two were biotypes of each species. The variables evaluated per plant were: leaf area and dry mass (shoot, root and total; to determine absolute growth rate from the total dry mass. The glyphosate-resistant biotype of C. canadensis exhibits slower growth and smaller accumulation of leaf area

  9. Improvement of Canola (Brassica napus L.) Inoculated with Rhizobium, Azospirillum and/or Mycorrhizal Fungi Under Salinity Stress

    International Nuclear Information System (INIS)

    El-Ghandour, I. A.; Galal, Y.G; Ebraheem, Rabab M.M.; Yousef, Khayria A.

    2004-01-01

    Bio fertilization technology was applied for improving canola plant growth and nutrient acquisition in sandy saline soil ,as a biological mean used to develop plant growth and nutrient uptake under salinity stress. Canola was cultivated in pots packed at rate of 7 kg saline sandy soil pot -1 , and inoculated with Rhizobium leguminosarum biovar viceae, Azospirillum brasilense strain no. 40 and arbuscular mycorrhizal fungi either solely or in combinations of them. Nitrogen fertilizer was added in form ( 15 NH 4 ) 2 SO 4 with 5% 15 N atom excess at rate of 0.99 g N pot -1 . Maximum dry matter accumulation induced by composite inoculation (Rh + Azo + AM). Na concentrations were frequently affected by Rhizobium and /or mycorrhizae while K was affected by Azospirillum and /or mycorrhizae. Azospirillum enhanced Ca uptake whereas Mg content was responded well to composite inoculants of Rh + Azo + AM. Dual inoculation with Rh + Azo resulted in the highest values of N uptake by plant. Similar effect was noticed with P uptake when dual inoculums of Azo + AM were applied. Data of 15 N isotope showed that the highest portion and value of N 2 -fixed was recorded with composite inoculums followed by dual inoculations. On the other hand, the infection with AM fungi gave the highest proportion of N derived from fertilizer as compared to other inoculants or uninoculated control. In the same trend, the fertilizer use efficiency (FUE%) was enhanced by AM infection. Dual inoculums of Rh + Azo induced highest content of proline in leaves. (Authors)

  10. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    Science.gov (United States)

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  11. Introduction of beet cyst nematode resistance from Sinapis alba L. and Raphanus sativus L. into Brassica napus L. (oil-seed rape) through sexual and somatic hybridization

    NARCIS (Netherlands)

    Lelivelt, C.L.C.

    1993-01-01

    Experiments were performed to select for beet cyst nematode (Heterodera schachtii Schm., abbrev. BCN) resistant genotypes of Brassica napus L. (oilseed rape), and to introduce BCN-resistance from the related species Raphanus

  12. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  13. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils.

    Science.gov (United States)

    Wang, Wenfeng; Deng, Zujun; Tan, Hongming; Cao, Lixiang

    2013-01-01

    To survey the effects of endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 resistant to Cd2+, Pb2+, Zn2+, and Cu2+ on the growth and phytoextraction of Brassica, the endophytes were isolated by surface- sterilized methods and characterized. The CBSB1 significantly increased 44.2% of the dry weight of Brassica napus in the multimetal contaminated soil (P Rhodotorula sp CBSB79 showed higher potentials to improve extraction efficacy of Cd, Pb, Zn, and Cu by Brassica seedlings in the field.

  14. The response of transgenic Brassica species to salt stress: a review.

    Science.gov (United States)

    Shah, Nadil; Anwar, Sumera; Xu, Jingjing; Hou, Zhaoke; Salah, Akram; Khan, Shahbaz; Gong, Jianfang; Shang, Zhengwei; Qian, Li; Zhang, Chunyu

    2018-06-01

    Salt stress is considered one of the main abiotic factors to limit crop growth and productivity by affecting morpho-physiological and biochemical processes. Genetically, a number of salt tolerant Brassica varieties have been developed and introduced, but breeding of such varieties is time consuming. Therefore, current focus is on transgenic technology, which plays an important role in the development of salt tolerant varieties. Various salt tolerant genes have been characterized and incorporated into Brassica. Therefore, such genetic transformation of Brassica species is a significant step for improvement of crops, as well as conferring salt stress resistance qualities to Brassica species. Complete genome sequencing has made the task of genetically transforming Brassica species easier, by identifying desired candidate genes. The present review discusses relevant information about the principles which should be employed to develop transgenic Brassica species, and also will recommend tools for improved tolerance to salinity.

  15. Glyphosate-Degrading Microorganisms from Industrial Activated Sludge

    OpenAIRE

    Balthazor, Terry M.; Hallas, Laurence E.

    1986-01-01

    A plating medium was developed to isolate N-phosphonomethylglycine (glyphosate)-degrading microorganisms, with glyphosate as the sole phosphorus source. Two industrial biosystems treating glyphosate wastes contained elevated microbial counts on the medium. One purified isolate metabolized glyphosate to aminomethylphosphonic acid, mineralizing this accumulating intermediate during log growth. This microorganism has been identified as a Flavobacterium species.

  16. 76 FR 27268 - Glyphosate; Pesticide Tolerance

    Science.gov (United States)

    2011-05-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2010-0938; FRL-8872-6] Glyphosate... regulation increases the established tolerance for residues of glyphosate in or on corn, field, forage... tolerance for residues of the herbicide glyphosate, N-(phosphonomethyl) glycine, in or on corn, field...

  17. Tolerance of Brassica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, M.; Loon, van J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  18. Glyphosate em mistura com herbicidas alternativos para o manejo de plantas daninhas Glyphosate combined with alternative herbicides for vegetation management

    Directory of Open Access Journals (Sweden)

    P.A. Monquero

    2001-12-01

    Full Text Available O uso intensivo de glyphosate como herbicida não-seletivo tem selecionado espécies de plantas daninhas tolerantes. Dessa forma, é importante que sejam estudadas misturas de tanque com herbicidas de mecanismos de ação alternativos e que apresentem efeitos sinergísticos ou aditivos. Por essa razão, foi instalado um experimento inteiramente casualizado, composto por 13 tratamentos e 4 repetições, em casa de vegetação da Universidade de São Paulo - ESALQ/USP, Piracicaba-SP, com as plantas daninhas Richardia brasiliensis, Commelina benghalensis, Amaranthus hybridus, Galinsoga parviflora e Ipomoea grandifolia em misturas de tanque dos herbicidas chlorimuron-ethyl, sulfentrazone, carfentrazone, bentazon ou flumioxazin com glyphosate. As interações foram aditivas para as plantas daninhas I. grandifolia e C. benghalensis, e os herbicidas flumioxazin, sulfentrazone e carfentrazone aplicados isoladamente e em mistura com glyphosate foram os que proporcionaram os melhores níveis de controle. A interação de glyphosate com sulfentrazone foi antagônica em R. brasiliensis; a mistura de glyphosate com os demais herbicidas estudados foi aditiva, sendo os tratamentos com mistura de glyphosate e chlorimuron-ethyl ou flumioxazin os mais eficazes. Em A. hybridus, os tratamentos que apresentaram melhores níveis de controle foram o glyphosate e carfentrazone, aplicados isoladamente, e a mistura de glyphosate com flumioxazin, sulfentrazone, chlorimuron-ethyl e bentazon, sendo estes interações aditivas. No caso de G. parviflora, os tratamentos com flumioxazin e sulfentrazone apresentaram controle total, o mesmo acontecendo com as misturas de glyphosate com carfentrazone, flumioxazin, sulfentrazone, chlorimuron-ethyl ou bentazon.The intensive use of glyphosate as a non-selective herbicide for weed vegetation management has selected some tolerant weed species. Thus, it is important to study the synergistic or antagonic or additive effects of tank

  19. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge.

    Science.gov (United States)

    Shen, Jiangnan; Huang, Jie; Liu, Lifen; Ye, Wenyuan; Lin, Jiuyang; Van der Bruggen, Bart

    2013-09-15

    Alkaline glyphosate neutralization liquors containing a high salinity pose a severe environmental pollution problem by the pesticide industry. However, there is a high potential for glyphosate recovery due to the high concentration of glyphosate in the neutralization liquors. In the study, a three-compartment bipolar membrane electrodialysis (BMED) process was applied on pilot scale for the recovery of glyphosate and the production of base/acid with high concentration in view of zero discharge of wastewater. The experimental results demonstrate that BMED can remove 99.0% of NaCl from the feed solution and transform this fraction into HCl and NaOH with high concentration and purity. This is recycled for the hydrolysis reaction of the intermediate product generated by the means of the Mannich reaction of paraformaldehyde, glycine and dimethylphosphite catalyzed by triethylamine in the presence of HCl and reclamation of the triethylamine catalyst during the production process of glyphosate. The recovery of glyphosate in the feed solution was over 96%, which is acceptable for industrial production. The current efficiency for producing NaOH with a concentration of 2.0 mol L(-1) is above 67% and the corresponding energy consumption is 2.97 kWh kg(-1) at a current density of 60 mA cm(-2). The current efficiency increases and energy consumption decreases as the current density decreases, to 87.13% and 2.37 kWh kg(-1), respectively, at a current density of 30 mA cm(-2). Thus, BMED has a high potential for desalination of glyphosate neutralization liquor and glyphosate recovery, aiming at zero discharge and resource recycling in industrial application. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Glyphosate: too much of a good thing?

    Directory of Open Access Journals (Sweden)

    Marek eCuhra

    2016-04-01

    Full Text Available Although previously accepted as the less toxic alternative, with low impact on animals, farmers as well as consumers who are exposed to residues in food, glyphosate chemicals are now increasingly controversial as new evidence from research is emerging. We argue that specific aspects of the history, chemistry and safety of glyphosate and glyphosate-based herbicides should be thoroughly considered in present and future re-evaluations of these dominant agrochemicals:· Glyphosate is not a single chemical, it is a family of compounds with different chemical, physical and toxicological properties.· Glyphosate is increasingly recognized as having more profound toxicological effects than assumed from previous assessments.· Global use of glyphosate is continuously increasing and residues are detected in food, feed and drinking water. Thus, consumers are increasingly exposed to higher levels of glyphosate residues, and from an increasing number of sources.· Glyphosate regulation is predominantly still based on primary safety-assessment testing in various indicator organisms. However, archive studies indicate fraud and misbehavior committed by the commercial laboratories providing such research.We see emerging evidences from studies in test-animals, ecosystems indicators and studies in human health, which justify stricter regulatory measures. This implies revising glyphosate residue definitions and lowering Maximum Residue Limits (MRLs permissible in biological material intended for food and feed, as well as strengthening environmental criteria such as accepted residue concentrations in surface waters.It seems that although recent research indicates that glyphosates are less harmless than previously assumed and have complex toxicological potential, still regulatory authorities accept industry demands for approving higher levels of these residues in food and feed.

  1. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    International Nuclear Information System (INIS)

    Mamy, Laure; Gabrielle, Benoit; Barriuso, Enrique

    2010-01-01

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  2. Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops

    Energy Technology Data Exchange (ETDEWEB)

    Mamy, Laure, E-mail: laure.mamy@versailles.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Gabrielle, Benoit, E-mail: benoit.gabrielle@agroparistech.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France); Barriuso, Enrique, E-mail: barriuso@grignon.inra.f [INRA-AgroParisTech, UMR 1091 Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)

    2010-10-15

    The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops. - The impacts of herbicide applications on glyphosate-tolerant crops could be higher than expected due to the accumulation of a metabolite of glyphosate in soils.

  3. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    Science.gov (United States)

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  4. Effects of EPSPS Copy Number Variation (CNV and Glyphosate Application on the Aromatic and Branched Chain Amino Acid Synthesis Pathways in Amaranthus palmeri

    Directory of Open Access Journals (Sweden)

    Manuel Fernández-Escalada

    2017-11-01

    Full Text Available A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19, is the known target of the widely used herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the most troublesome weeds in agriculture, has evolved through increased EPSPS gene copy number. The aim of this work was to study the pleiotropic effects of (i EPSPS increased transcript abundance due to gene copy number variation (CNV and of (ii glyphosate application on the aromatic amino acid (AAA and branched chain amino acid (BCAA synthesis pathways. Hydroponically grown glyphosate sensitive (GS and glyphosate resistant (GR plants were treated with glyphosate 3 days after treatment. In absence of glyphosate treatment, high EPSPS gene copy number had only a subtle effect on transcriptional regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment provoked a general accumulation of the transcripts corresponding to genes of the AAA pathway leading to synthesis of chorismate in both GS and GR. After chorismate, anthranilate synthase transcript abundance was higher while chorismate mutase transcription showed a small decrease in GR and remained stable in GS, suggesting a regulatory branch point in the pathway that favors synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate treatment. This was confirmed by studying enzyme activities in vitro and amino acid analysis. Importantly, this upregulation was glyphosate dose dependent and was observed similarly in both GS and GR populations. Glyphosate treatment also had a slight effect on the expression of BCAA genes but no general effect on the pathway could be observed. Taken together, our observations suggest that the high CNV of EPSPS in A. palmeri GR populations has no major pleiotropic effect on the expression of AAA biosynthetic genes, even in response to glyphosate treatment. This finding supports the idea that the fitness cost associated

  5. Location, Root Proximity, and Glyphosate-use History Modulate the Effects of Glyphosate on Fungal Community Networks of Wheat

    Science.gov (United States)

    Glyphosate is the most-used herbicide worldwide and an essential tool for weed control in no-till cropping systems. However, concerns have been raised regarding the long-term effects of glyphosate on soil microbial communities. We examined the impact of repeated glyphosate application on bulk and rh...

  6. Processing and characteristics of canola protein-based biodegradable packaging: A review.

    Science.gov (United States)

    Zhang, Yachuan; Liu, Qiang; Rempel, Curtis

    2018-02-11

    Interest increased recently in manufacturing food packaging, such as films and coatings, from protein-based biopolymers. Among various protein sources, canola protein is a novel source for manufacturing polymer films. It can be concentrated or isolated by aqueous extraction technology followed by protein precipitation. Using this procedure, it was claimed that more than 99% of protein was extracted from the defatted canola meal, and protein recovery was 87.5%. Canola protein exhibits thermoplastic properties when plasticizers are present, including water, glycerol, polyethylene glycol, and sorbitol. Addition of these plasticizers allows the canola protein to undergo glass transition and facilitates deformation and processability. Normally, canola protein-based bioplastics showed low mechanical properties, which had tensile strength (TS) of 1.19 to 4.31 MPa. So, various factors were explored to improve it, including blending with synthetic polymers, modifying protein functionality through controlled denaturation, and adding cross-linking agents. Canola protein-based bioplastics were reported to have glass transition temperature, T g , below -50°C but it highly depends on the plasticizer content. Canola protein-based bioplastics have demonstrated comparable mechanical and moisture barrier properties compared with other plant protein-based bioplastics. They have great potential in food packaging applications, including their use as wraps, sacks, sachets, or pouches.

  7. Occurrence of metaxenia and false hybrids in Brassica juncea L. cv. Kikarashina × B. napus

    Science.gov (United States)

    Tsuda, Mai; Konagaya, Ken-ichi; Okuzaki, Ayako; Kaneko, Yukio; Tabei, Yutaka

    2011-01-01

    Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids. PMID:23136472

  8. Glyphosate-based herbicides toxicity on life history parameters of zoophytophagous Podisus nigrispinus (Heteroptera: Pentatomidae).

    Science.gov (United States)

    C Zanuncio, José; C Lacerda, Mabio; Alcántara-de la Cruz, Ricardo; P Brügger, Bruno; Pereira, Alexandre I A; F Wilcken, Carlos; E Serrão, José; S Sediyama, Carlos

    2018-01-01

    The increase of agricultural areas with glyphosate-resistant (GR) crops, and use of this herbicide in Brazil, makes necessary to assess its impacts on non-target organisms. The objective was to evaluate the development, reproduction and life table parameters of Podisus nigrispinus (Heteroptera: Pentatomidae) reared on GR-soybean plants treated with glyphosate formulations (Zapp-Qi, Roundup-Transorb-R and Roundup-Original) at the recommended field dose (720g acid equivalent ha -1 ). Glyphosate formulations had no affect on nymph and adult weight of this predator. Fourth instar stage was shortest with Zapp Qi. Egg-adult period was similar between treatments (26 days) with a survival over 90%. Zapp-Qi and Roundup-Transorb-R (potassium-salt: K-salt) reduced the egg, posture and nymph number per female, and the longevity and oviposition periods of this predator. Podisus nigrispinus net reproductive rate was highest in GR-soybean plants treated with Roundup-Original (isopropylamine-salt: IPA-salt). However, the duration of one generation, intrinsic and finite increase rates, and time to duplicate the population, were similar between treatments. Glyphosate toxicity on P. nigrispinus depends of the glyphosate salt type. IPA-salt was least harmless to this predator. Formulations based on K-salt altered its reproductive parameters, however, the development and population dynamic were not affect. Therefore, these glyphosate formulations are compatible with the predator P. nigrispinus with GR-soybean crop. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Consumo e digestibilidade em ovinos alimentados com grãos e subprodutos da canola Intake and digestibility of sheep fed grains and by-products of canola

    Directory of Open Access Journals (Sweden)

    Priscila Silva Neubern de Oliveira

    2009-03-01

    Full Text Available Objetivou-se avaliar a inclusão de 8% de grãos e subprodutos da canola (farelo ou torta nas dietas sobre o consumo e a digestibilidade. Seis ovinos machos não-castrados da raça Santa Inês (210 e 240 dias de idade e peso corporal de 44,8 + 4,2kg receberam dietas contendo 40% de feno de capim Tifton e 60% de concentrado composto por milho em grão, farelo de soja, mistura mineral, além de canola em grão integral, farelo de canola e torta de canola, que constituíram os três tratamentos. Não houve diferença (P>0,05 para o consumo de matéria seca (MS, matéria orgânica (MO, extrato etéreo (EE, energia bruta (EB, fibra em detergente neutro (FDN, carboidratos totais (CT e carboidratos não-fibrosos (CNF entre as dietas experimentais, no ensaio de digestibilidade. Não houve efeito (P>0,05 de tratamento para a digestibilidade de MS, MO, EE, PB, EB, FDN, CT e CNF. Recomenda-se incluir até 8% de grãos e subprodutos da canola (farelo ou torta na dieta de ovinos.The effect of feeding 8% of grains and byproducts (meal or cake of canola on intake and digestibility was evaluated. Six non castrated Santa Ines sheep (from 210 to 240 days old and body weight of 44.8 + 4.2kg were fed diets composed by 40% of Tifton hay and 60% of concentrate based on corn grain, soybean meal, whole grain canola, canola meal, canola cake and mineral mixture. No differences on the intakes of dry matter (DM, organic matter (OM, ether extract (EE, gross energy (GE, neutral detergent fiber (NDF, total carbohydrates (TC and non fiber carbohydrate (NFC were observed among treatments, in the digestibility trial. No treatment effect on the digestibilities of DM, OM, EE, CP, GE, NDF, TC and NFC was observed. It is recommended to include up to 8% of grains and byproducts (meal or cake of canola in the sheep diet.

  10. Evaluation of the Effect of Sulfur Application and Thiobacillus on Some Soil Chemical Characteristics and Yield of Canola in Wheat-Canola Rotation System

    Directory of Open Access Journals (Sweden)

    H. Besharati

    2016-09-01

    Full Text Available Introduction: After soybean and palm oil, canola is third important oil seed in the world which belongs to the genus Brassicaceae, that its seeds contain about 40% oil. The per capita consumption of oil in Iran is about 14 kg, so approximately 900 thousand tons of oil will be required for each year. However, only less than 10% of this oil is produced in the country. In recent years, special attention has been paid to canola cultivation in order to increase oil production, so during recent years an apparent increase in canola cultivated lands is significant. In most of these canola cultivated lands, the soil is calcareous therefore; some available nutrients such as phosphorus, iron and zinc are less than the amounts required by plants. Increasing qualitative and quantitative yield of canola in calcareous soils is a priority to canola cultivation improvement. Sulfur plays an important role in oil content of oily seed crops. On the other hands sulfur oxidation in calcareous soils can improve some nutrients availability. The present study was designed to investigate the effect of sulfur on yield, oil content and nutrients uptake and also its impact on soil chemical properties with 8 treatments, in 3 replications. Materials and Methods: This study was conducted in Ekbatan research station in Hamedan province for 2 years as completely randomized block design with 8 treatments and 3 repetitions. The treatments were: T1: Control (Without sulfur and Thiobacillus, T2: Application of 150 kg sulfur per ha, T3: T2+ Thiobacillus inoculums (2% of applied sulfur, T4: Application of 300 kg sulfur per ha, T5: T4+ Thiobacillus inoculums (2% of applied sulfur, T6: Application of 600 kg sulfur per ha, T7: T6+ Thiobacillus inoculums (2% of applied sulfur T8: Fertilizing based on soil test without sulfur and Thiobacillus. Thiobacillus inoculant containing about 107 cells of Thiobacillus bacteria which belonged to neutrophile Thiobacilli were prepared at soil biology

  11. Some rape/canola seed oils: fatty acid composition and tocopherols.

    Science.gov (United States)

    Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2016-03-01

    Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (ptocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (ptocopherol contents differ significantly among the cultivars.

  12. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens.

    Science.gov (United States)

    Rustagi, Anjana; Kumar, Deepak; Shekhar, Shashi; Yusuf, Mohd Aslam; Misra, Santosh; Sarin, Neera Bhalla

    2014-06-01

    Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.

  13. Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

    Science.gov (United States)

    Green, Jerry M; Owen, Micheal D K

    2011-06-08

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds.

  14. Effects of glyphosate acid and the glyphosate-commercial formulation (Roundup) on Dimorphandra wilsonii seed germination: Interference of seed respiratory metabolism.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Borges, Felipe Viègas; Fonseca, Marcia Bacelar; Juneau, Philippe; Garcia, Queila Souza

    2017-01-01

    Glyphosate-formulations are widely used in the Brazilian Cerrado (neotropical savanna) with little or no control, threatening population of the endangered species Dimorphandra wilsonii. We investigated the toxicity of different concentrations (0, 5, 25 and 50 mg l -1 ) of glyphosate acid and one of its formulations (Roundup ® ) on seed germination in D. wilsonii. Glyphosate acid and Roundup drastically decreased seed germination by decreasing seed respiration rates. The activation of antioxidant enzymes, ascorbate peroxidase and catalase assure no hydrogen peroxide accumulation in exposed seeds. Glyphosate acid and the Roundup-formulation negatively affected the activities of enzymes associated with the mitochondrial electron transport chain (ETC), with Complex III as its precise target. The toxicity of Roundup-formulation was greater than that of glyphosate acid due to its greater effects on respiration. The herbicide glyphosate must impair D. wilsonii seed germination by disrupting the mitochondrial ETC, resulting in decreased energy (ATP) production. Our results therefore indicate the importance of avoiding (or closely regulating) the use of glyphosate-based herbicides in natural Cerrado habitats of D. wilsonni as they are toxic to seed germination and therefore threaten conservation efforts. It will likewise be important to investigate the effects of glyphosate on the seeds of other species and to investigate the impacts of these pesticides elsewhere in the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Aclimatação ao frio e dano por geada em canola Acclimatization to cold and frost-injury in canola

    Directory of Open Access Journals (Sweden)

    Genei Antonio Dalmago

    2010-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência da aclimatação ao frio sobre o dano causado pela geada em diferentes estádios fenológicos de genótipos de canola. Foram realizados cinco experimentos em ambiente controlado, em 2006, 2007 e 2008. Os fatores avaliados foram: genótipos, aclimatação (com; sem, intensidades de geada, estádios de desenvolvimento de plantas, regimes de aclimatação e regimes de geada. As variáveis avaliadas foram: queima de folhas, massa de matéria seca, estatura de plantas, duração de subperíodo, componentes de rendimento e rendimento de grãos. A aclimatação ao frio, antes da geada, resultou em menor queima de folhas e maior massa de matéria seca, em comparação a plantas não aclimatadas. As geadas foram prejudiciais a partir de -6°C no início do ciclo de desenvolvimento, principalmente em plantas não aclimatadas, e a partir de -4ºC na floração, com redução do número de síliquas e do número de grãos por síliqua. A aclimatação após as geadas não contribuiu para a tolerância da canola a esse evento. Geadas consecutivas não acarretaram maior prejuízo à canola. A aclimatação de plantas de canola antes da geada reduz os danos, principalmente quando a geada ocorre no início do desenvolvimento das plantas.The objective of this work was to evaluate the influence of cold acclimatization on frost damage at different phenological stages of canola genotypes. Five experiments were carried out under controlled conditions, in 2006, 2007, and 2008. The evaluated factors were: genotypes, acclimatization (with; without, frost gradient, plant developmental stages, acclimatization regimes and frost regimes. The evaluated variables were: leaf scorching symptoms, dry weight, plant height, length of subperiod, yield components and grain yield. The acclimatization before frost resulted in lesser leaf scorching symptoms and higher dry matter in comparison to plants not acclimated. Frosts were

  16. Características de carcaça de cordeiros alimentados com grãos e subprodutos da canola = Carcass characteristics in lambs fed with grains and by-products of canola

    Directory of Open Access Journals (Sweden)

    José Carlos Barbosa

    2009-10-01

    Full Text Available O objetivo foi estudar a introdução de 8% de grãos e subprodutos (farelo ou torta da canola em dietas para cordeiros. Para a avaliação das características quantitativas da carcaça, foram utilizadas 24 carcaças de cordeiros, utilizando delineamento inteiramente casualizado. As dietas com média de 15,4% de PB na MS e 80,2% de NDT foram compostas por 40% de feno de capim-Tifton e 60% de concentrado composto por milho em grão, farelo de soja, canola em grão integral, farelo de canola, torta de canola e mistura mineral. A utilização de grãos e subprodutos da canola na dieta de borregos terminados em confinamento não influenciou (p > 0,05 as características quantitativas da carcaça. Em relação aos rendimentos dos cortes, não houve efeito dos tratamentos para nenhuma das variáveis analisadas. Assim, a introdução de 8% de grãos e subprodutos (farelo ou torta da canola possibilitaram bons resultados podendo ser recomendados nas formulações de dietas para cordeiros.The aim of this work was to evaluate the introduction of 8% grains and by-products (meal or cake of canola in the diets of lambs. To evaluate quantitative carcass characteristics, 24 Santa Ines lambs were used in a completely randomized design. Diets with averages of 15.4% of CP in DM and 80.2% of TDN were composed for 40% Tifton hay and 60% concentrate based on corn grain, soybean meal, whole grain canola, canola meal, canola cake and mineral mixture. The use of whole grains and by-products of canola in the diet of lambs finished in feedlot did not influence (p > 0.05 quantitative carcass characteristics. For cut dressing in relation to the CCW, no effect was observed for the analyzed variables among treatments. It was concluded that the introduction of grains and by-products of canola allow for satisfactory results, and could be recommended in the formulations of lamb diets.

  17. [Glyphosate--a non-toxic pesticide?].

    Science.gov (United States)

    Pieniazek, Danuta; Bukowska, Bozena; Duda, Wirgiliusz

    2003-01-01

    Glyphosate is currently the most commonly applied herbicide and its use is still growing. Nowadays, over 50 commercial preparations containing this compound are used, and these formulations are much more toxic than their active compound, glyphosate, owing to the presence of many surfactants and carrier compounds. Toxicological investigations provide evidence that glyphosate is an extremely "safe" herbicide for animals. This is why its use in agriculture is universal. In June 1991, the Environmental Protection Agency (EPA) categorized this compound into class E (according to EPA there are five categories of carcinogenicity), which means that it is probably not carcinogenic to humans. Unfortunately, the study carried out by Swedish oncologists in 2001 showed that glyphosate may induce cancer of the lymphatic system. The results of the Swedish study have changed our opinion about "safety" of this herbicide. Investigations concerning both its accumulation and toxic effect in animals and plants are now under way in many laboratories.

  18. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  19. Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid.

    Science.gov (United States)

    Brusick, David; Aardema, Marilyn; Kier, Larry; Kirkland, David; Williams, Gary

    2016-09-01

    In 2015, the International Agency for Research on Cancer (IARC) published a monograph concluding there was strong evidence for genotoxicity of glyphosate and glyphosate formulations and moderate evidence for genotoxicity of the metabolite aminomethylphosphonic acid (AMPA). These conclusions contradicted earlier extensive reviews supporting the lack of genotoxicity of glyphosate and glyphosate formulations. The IARC Monograph concluded there was strong evidence of induction of oxidative stress by glyphosate, glyphosate formulations, and AMPA. The Expert Panel reviewed the genotoxicity and oxidative stress data considered in the IARC Monograph, together with other available data not considered by IARC. The Expert Panel defined and used a weight of evidence (WoE) approach that included ranking of studies and endpoints by the strength of their linkage to events associated with carcinogenic mechanisms. Importantly, the Expert Panel concluded that there was sufficient information available from a very large number of regulatory genotoxicity studies that should have been considered by IARC. The WoE approach, the inclusion of all relevant regulatory studies, and some differences in interpretation of individual studies led to significantly different conclusions by the Expert Panel compared with the IARC Monograph. The Expert Panel concluded that glyphosate, glyphosate formulations, and AMPA do not pose a genotoxic hazard and the data do not support the IARC Monograph genotoxicity evaluation. With respect to carcinogenicity classification and mechanism, the Expert Panel concluded that evidence relating to an oxidative stress mechanism of carcinogenicity was largely unconvincing and that the data profiles were not consistent with the characteristics of genotoxic carcinogens.

  20. Glyphosate catabolism by Pseudomonas sp

    International Nuclear Information System (INIS)

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3- 14 C] glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO 2 . Fractionation of stationary phase cells labeled with [3- 14 C]glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with [3- 14 C]glyphosate revealed that [3- 14 C]sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates

  1. Study on Replacement Probability of Organic with Chemical Fertilizers in Canola (Brassica napus under Two Deficit and Full Irrigation Conditions

    Directory of Open Access Journals (Sweden)

    S. J. Azimzadeh

    2017-03-01

    Full Text Available Introduction In agricultural ecosystems, organic fertilizers play an important role in producing sustainable agricultural production. Considering this Sajjadi Nik et al (2011 reported that with increasing of vermicompost inoculation with nitroxin biofertilizer, capsule number per sesame plant increased, so that the most of capsule number per plant (124.7 was observed in 10 t/h vermicompost with nitroxin inoculation. Seyyedi and Rezvani Moghaddam (2011 reported that seed number per plant and the thousand kernel weight in treatment of 80 t/h mushroom compost in comparison with control were increased by 2.98 and 1.56 fold. In another experiment, Kato and Yamagishi (2011 reported that seed yield of wheat in application of manures equal to 80 t/h/ year more than 10 years in comparison with application of nitrogen fertilizer at the rate of 204 kg/h, showed significant increasing from 725 to 885 gr/m2. In another study, Rezvani Moghaddam et al (2010 reported that the most (74.08 and the least (60.94 seed number per capsule in sesame was obtained in the treatments of cow manure and control treatments respectively. The aim of this experiment was evaluation the effects of municipal waste compost, vermicompost and cow manure fertilizers in comparison with chemical fertilizer on yield and yield components of canola under two levels of deficit and full irrigation. Materials and Methods In order to evaluate the replacement probability of organic fertilizer with chemical fertilizers in canola cultivation, an experiment was conducted at research farm of Mashhad Faculty of Agriculture in year of 2013. Treatments were fertilizer and irrigation. Irrigation treatments included full and deficit irrigation. Fertilizer treatments included municipal waste compost, vermicompost, manure and chemical fertilizer. Chemical fertilizer included Nitrogen and Phosphorus. Experiment was conducted as split plot in randomized complete block design with three replications. Organic

  2. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  3. Glyphosate: cancerous or not? Perspectives from both ends of the debate

    Directory of Open Access Journals (Sweden)

    Syeda Aamna Hassan

    2017-08-01

    Full Text Available Glyphosate is non-selective herbicide. Studies published in the last decade, point towards glyphosate toxicity. Shikimic acid pathway for the biosynthesis of folates and aromatic amino acids is inhibited by glyphosate. Glyphosate carcinogenicity is still considered to be a controversial issue. The World Health Organizations’ International Agency recently concluded that glyphosate is “probably carcinogenic to humans.” Some researchers believed that glyphosate is not linked with carcinogenicity.

  4. 75 FR 24969 - Glyphosate From China

    Science.gov (United States)

    2010-05-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1178 (Preliminary)] Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Notice of withdrawal of petition in... investigation concerning glyphosate from China (investigation No. 731-TA-1178 (Preliminary)) is discontinued...

  5. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate.

    Directory of Open Access Journals (Sweden)

    Cong Wang

    Full Text Available Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta. Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina regardless of DIP condition. Group V (Amphidinium carterae exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine

  6. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    Science.gov (United States)

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  7. 75 FR 17768 - Glyphosate From China

    Science.gov (United States)

    2010-04-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1178 (Preliminary)] Glyphosate From China AGENCY: United States International Trade Commission. ACTION: Institution of antidumping investigation... States is materially retarded, by reason of imports from China of glyphosate, provided for in subheadings...

  8. Brassica ASTRA: an integrated database for Brassica genomic research.

    Science.gov (United States)

    Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-01-01

    Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.

  9. Glyphosate in Irish adults - A pilot study in 2017.

    Science.gov (United States)

    Connolly, Alison; Leahy, Michelle; Jones, Kate; Kenny, Laura; Coggins, Marie A

    2018-05-02

    Glyphosate is the highest volume herbicide used globally and has recently been classified as a 2 A 'probably carcinogenic to humans' by the International Agency for Research on Cancer (IARC). There is limited data to evaluate the public health impacts from glyphosate exposure. The objective of this study is to conduct an exploratory glyphosate exposure assessment study among Irish adults, who were non-occupational users of glyphosate. A convenient sampling method was used, collecting one first morning void spot urine sample from each participant. A biomonitoring survey involving the collection and analysis of 20 ml spot urine samples from 50 Irish adults was conducted in June 2017. Participants completed a short questionnaire to collect information on demographics, dietary habits and lifestyle. Glyphosate was extracted using solid phase extraction (SPE) and analysed by liquid chromatography tandem mass spectrometry (LC-MC/MS). Of the 50 urine samples analysed, 10 (20%) contained detectable levels of glyphosate (0.80-1.35 µg L -1 ). Exposure concentrations are higher than those reported in comparable studies of European and American adults. Glyphosate was detectable in 20% of the samples collected from Irish adults. The low proportion of detectable glyphosate levels could be due to lower localised use of pesticides, having a small sample size or the higher analytical detection limit used in this study (0.5 µg L -1 ), which could underestimate the true exposure and warrants further investigation. Given the widespread use of glyphosate, further information on population exposure is required to advance our understanding of the relationship between chronic low dose exposure to glyphosate and human health risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Resposta de cultivares de algodoeiro a subdoses de glyphosate Response of cotton cultivars to reduced rates of glyphosate

    Directory of Open Access Journals (Sweden)

    O.M. Yamashita

    2005-12-01

    Full Text Available Avaliou-se a resposta de nove cultivares de algodoeiro, de importância econômica no Estado do Mato Grosso, quanto à intoxicação causada por subdoses de glyphosate. Os cultivares de algodoeiro utilizados foram Fabrika, Makina, ITA-90, FM 986, FM 966, Delta Opal, BRS Facual, Antares e Coodetec 407. As plantas foram cultivadas em tubetes preenchidos com substrato de solo e mantidas em casa telada, tendo recebido a aplicação do glyphosate aos 20 dias após a emergência, época em que apresentavam quatro folhas verdadeiras. As subdoses de glyphosate, simulando deriva, foram de 270 e 540 g ha-1. Também foi utilizada testemunha, sem aplicação do herbicida, para efeito de comparação. Foram realizadas avaliações semanais até 42 dias após a aplicação dos tratamentos (DAA, período em que também foi tomada a altura das plantas. Os sintomas visuais de intoxicação iniciaram-se aos 3 DAA, caracterizados pelo amarelecimento das pontas das folhas mais novas, seguido de murchamento do ápice das plantas. Na dose de 270 g ha-1 esses sintomas foram de baixa intensidade, mas a 540 g ha-1 causaram, na maioria dos casos, toxidez "preocupante" a "muito alta". Os cultivares BRS Facual e FM 986 mostraram-se os mais suscetíveis. A altura das plantas foi mais afetada quando se aplicou a menor dose de glyphosate. Houve recuperação de todos os cultivares tratados com 270 g ha-1 de glyphosate até os 42 DAA. Quando tratados com 540 g ha-1 de glyphosate, os cultivares Fabrika, Coodetec 407, BRS-Facual e ITA-90 foram mais sensíveis, apresentando redução de altura entre 84 e 90% aos 42 DAA. Os cultivares menos sensíveis na dose de 270 g ha-1 de glyphosate não foram os mesmos para a dose de 540 g ha-1.The response of nine cotton cultivars economically important in the state of Mato Grosso was evaluated in relation to the toxicity caused by reduced rates of glyphosate. The cotton cultivars used were Fabrika, Makina, ITA-90, FM 986, FM 966, Delta Opal

  12. 78 FR 60707 - Glyphosate; Pesticide Tolerances

    Science.gov (United States)

    2013-10-02

    ... chromatography/mass spectrometry/mass spectrometry Method 15444) is available to enforce the tolerance expression...) 566-1744, and the telephone number for the OPP Docket is (703) 305- 5805. Please review the visitor...-acetyl-glyphosate (expressed as glyphosate equivalents). VI. Statutory and Executive Order Reviews This...

  13. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ...: Canola and Rapeseed Crop Provisions If a conflict exists among the policy provisions, the order of... application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure... injurious to human or animal health. (3) Quality will be a factor in determining your loss in canola...

  14. Elisa development for detection of glyphosat resistant gm soybean

    Directory of Open Access Journals (Sweden)

    Владислав Геннадійович Спиридонов

    2015-11-01

    Full Text Available During research we have utilized recombinant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS, conferring resistance to glyphosate for GM soybean, for the hen immunization and obtaining specific yolk antibodies IgY. Stages of ELISA development that can detect at least 0,1 % of GM-soybean resistant to glyphosate were present

  15. Apis mellifera (Hymenoptera: Apidae as a potential Brassica napus pollinator (cv. Hyola 432 (Brassicaceae, in Southern Brazil Apis mellifera (Hymenoptera: Apidae como potencial polinizador de Brassica napus (cv. Hyola 432 (Brassicaceae, no Sul do Brasil

    Directory of Open Access Journals (Sweden)

    AS. Rosa

    2010-11-01

    Full Text Available Brassica napus Linnaeus is considered a self-compatible crop; however, studies show that bee foraging elevates their seed production. Considering bee food shortages during the winter season and that the canola is a winter crop, this study aimed to evaluate the foraging behaviour of Apis mellifera Linnaeus, 1758 regarding those flowers, and to verify if it presents adequate behaviour for successfully pollinating this crop in Rio Grande do Sul State. The study was carried out in a canola field, in Southern Brazil. The anthesis stages were morphologically characterised and then related to stigma receptivity and pollen grain viability. Similarly, the behaviour of A. mellifera individuals on flowers was followed, considering the number of flowers visited per plant, the amount of time spent on the flowers, touched structures, and collected resources. Floral fidelity was inferred by analysing the pollen load of bees collected on flowers. The bees visited from 1-7 flowers/plant (x = 2.02; sd = 1.16, the time spent on the flowers varied between 1-43 seconds (x = 3.29; sd = 2.36 and, when seeking nectar and pollen, they invariably touched anthers and stigmas. The pollen load presented 100% of B. napus pollen. The bees' attendance to a small number of flowers/plants, their short permanence on flowers, their contact with anthers and stigma and the integral floral constancy allows their consideration as potential B. napus pollinators.Brassica napus Linnaeus é considerada uma cultura autocompatível, entretanto, estudos indicam que o forrageio de abelhas eleva sua produtividade de sementes. Considerando-se a escassez de alimento para abelhas no inverno e a canola sendo uma cultura desse período, objetivou-se avaliar o comportamento de forrageio de Apis mellifera Linnaeus, 1758 nas suas flores e verificar se apresenta comportamento propício ao sucesso de polinização dessa cultura no Rio Grande do Sul. O estudo foi desenvolvido em lavoura de canola, no Sul

  16. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis.

    Science.gov (United States)

    Lemarié, Séverine; Robert-Seilaniantz, Alexandre; Lariagon, Christine; Lemoine, Jocelyne; Marnet, Nathalie; Jubault, Mélanie; Manzanares-Dauleux, Maria J; Gravot, Antoine

    2015-11-01

    The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    International Nuclear Information System (INIS)

    Akandeh, M.; Kocheili, F.; Rasekh, A.; Soufbaf, M.

    2017-01-01

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  18. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Akandeh, M.; Kocheili, F.; Rasekh, A. [Dept. of Entomology, Shahid Chamran Univ of Ahvaz (Iran, Islamic Republic of); Soufbaf, M., E-mail: msoufbaf@nrcam.org [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2017-06-15

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  19. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    Science.gov (United States)

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  20. Anti-nutritional factors in canola produced in the Western and ...

    African Journals Online (AJOL)

    The development of low erucic acid, low glucosinolate cultivars of canola seed has led to the availability of a feed ingredient with considerable potential to replace soyabean meal in diets for all classes of farm animals. The sinapine and glucosinolate content of various canola cultivars cultivated in two areas of the Western ...

  1. Facilitated transport of diuron and glyphosate in high copper vineyard soils.

    Science.gov (United States)

    Dousset, Sylvie; Jacobson, Astrid R; Dessogne, Jean-Baptiste; Guichard, Nathalie; Baveye, Philippe C; Andreux, Francis

    2007-12-01

    The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.

  2. Degradation of 14C-glyphosate in compost amended soils.

    Science.gov (United States)

    Alexa, E; Bragea, M; Sumalan, R; Negrea, M; Lazureanu, A

    2009-01-01

    Glyphosate (N-phosphonomethyl-glycine), the active ingredient in several herbicide formulations, is a non-selective, post-emergent herbicide used in a variety of crop and non-crop situations. Glyphosate is a non-volatile herbicide that is relatively immobile in soil. Its degradation is due to microbiological processes and most laboratory studies have been conducted with 14C-glyphosate with the rate of 14CO2 evolution being used as an indication of herbicide breakdown. In this paper we have studied the glyphosate degradation in compost amendment soils using Scientilator Liquid TRIATHLER and Glyphosate-phosphonomethyl-14C-labeled with specific activity 2,2mCi/mmol. Four types of soils have been taken under study: Black Chernozem, Vertisol, Gleysol and Phaeozem with different characteristics. For the each type of soil have been realized four experimental variants (glyphosate blind sample with 1,5 ppm, concentration, autoclaved soil, soil with glyphosate and addition of compost in field concentration of 40 t/ha, respectively 60 t/ha. The mineralization curves of 14CO2 accumulated were compared during of 40 days. All the mineralization curves for the soils exhibited same patterns, with only two phases, the initial rapid phase of degradation, for about 20 days, attributed to microbial action on the free glyphosate and the second slow phase, when the curves attained plateaus. Compost applied with different concentrations to Vertisol and Black Chernozem did not appear to stimulate the microbial degradation of glyphosate. In Gleysol and Phaeozem with lower humus content, the mineralization curve of 14C indicate the increase degradation capacity, expressed as accumulated 14CO2 as % total 14C, with the increase of compost concentration.

  3. Randomized controlled trial to evaluate the effect of canola oil on blood vessel function in peripheral arterial disease: rationale and design of the Canola-PAD Study

    Directory of Open Access Journals (Sweden)

    Enns JE

    2014-10-01

    Full Text Available Jennifer E Enns,1,2 Peter Zahradka,1–3 Randolph P Guzman,4,5 Alanna Baldwin,1 Brendon Foot,1 Carla G Taylor1–31Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Canada; 2Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; 3Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; 4IH Asper Clinical Research Institute, St Boniface Hospital, Winnipeg, Canada; 5Section of Vascular Surgery, Department of Surgery, St Boniface Hospital, Winnipeg, CanadaBackground: Individuals with peripheral arterial disease (PAD are at high risk for cardiac events due to atherosclerosis. Dietary fatty acid composition has been shown to modulate blood vessel properties, but whether a diet enriched in conventional canola oil can improve clinical endpoints in PAD is not known.Purpose: To describe the rationale and design of a clinical trial testing the effect of canola oil consumption on vascular function and cardiovascular risk factors in an 8-week dietary intervention in individuals with PAD.Methods: The Canola-PAD Study was a single center, prospective, double-blind, randomized controlled trial in 50 patients over 40 years old with PAD. Participants were randomized into two groups and consumed food items containing either conventional canola oil (25 g/day or an oil mixture representing the Western diet (25 g/day for 8 weeks as part of their usual diet. The primary outcome was vascular function (ankle-brachial index, arterial stiffness, endothelial dysfunction, walking capacity, and cognitive function. Secondary measurements included anthropometrics, serum lipid profile and fatty acid composition, markers of inflammation and glycemic control, and serum metabolite profile.Discussion: The Canola-PAD Study uses an innovative and noninvasive approach to evaluate the effect of canola oil on clinically relevant outcomes in individuals with PAD, including

  4. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  5. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola.

    Science.gov (United States)

    Evenden, M L; Gries, R

    2010-06-01

    Sex pheromone monitoring lures from five different commercial sources were compared for their attractiveness to male diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) in canola, Brassica napus L., fields in western Canada. Lures that had the highest pheromone release rate, as determined by aeration analyses in the laboratory, were the least attractive in field tests. Lures from all the commercial sources tested released more (Z)-11-hexadecenal than (Z)-11-hexadecenyl acetate and the most attractive lures released a significantly higher aldehyde to acetate ratio than less attractive lures. Traps baited with sex pheromone lures from APTIV Inc. (Portland, OR) and ConTech Enterprises Inc. (Delta, BC, Canada) consistently captured more male diamondback moths than traps baited with lures from the other sources tested. In two different lure longevity field trapping experiments, older lures were more attractive to male diamondback moths than fresh lures. Pheromone release from aged lures was constant at very low release rates. The most attractive commercially available sex pheromone lures tested attracted fewer diamondback moth males than calling virgin female moths suggesting that research on the development of a more attractive synthetic sex pheromone lure is warranted.

  6. Dissipation of glyphosate from grapevine soils in Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Norma J. Salazar López

    2016-10-01

    Full Text Available Grapevine is one of the important crops in Sonora, due to revenue generation from its export to foreign countries. Among the most widely used herbicides for this crop is glyphosate, which is considered moderately toxic and persistent. The present research evaluates the dissipation of glyphosate in grapevine planted soil at three depths (5, 30 and 60 cm. Sampling was carried out before glyphosate application, and 5, 10, 18, 27, and 65 days after. Glyphosate was extracted from soil samples using ammonium hydroxide. The derivate extracts were partitioned with dichloromethane and analyzed using gas chromatography with pulsed flame photometric detector (PFPD. The results showed that average glyphosate residues are significantly greater at 5 cm (0.09 mg kg-1 than the other depths (30 and 60 cm, having a difference of 0.078 mg kg-1 between them (P < 0.03. Glyphosate concentration time profiles were similar; it reached maximum soil concentration in a range of 10 to 18 days after application. The half-life of glyphosate in soil has an average of 39 days at all depths. Our data suggests that the release in soil of glyphosate applied to weeds delays its transference to soil by 14 days, and extends residue half life to 55 days after application. These results could be the basis for further research, including more environmental parameters that could affect the dissipation or degradation process in soil.

  7. A glyphosate-based pesticide impinges on transcription

    International Nuclear Information System (INIS)

    Marc, Julie; Le Breton, Magali; Cormier, Patrick; Morales, Julia; Belle, Robert; Mulner-Lorillon, Odile

    2005-01-01

    Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate. Glyphosate, the active herbicide ingredient of Roundup, by itself delayed hatching as judged from the comparable effect of different commercial glyphosate-based pesticides and from the effect of pure glyphosate addition to a threshold concentration of Roundup. The surfactant polyoxyethylene amine (POEA), the major component of commercial Roundup, was found to be highly toxic to the embryos when tested alone and therefore could contribute to the inhibition of hatching. Hatching, a landmark of early development, is a transcription-dependent process. Correlatively, the herbicide inhibited the global transcription, which follows fertilization at the 16-cell stage. Transcription inhibition was dose-dependent in the millimolar glyphosate range concentration. A 1257-bp fragment of the hatching enzyme transcript from Sphaerechinus granularis was cloned and sequenced; its transcription was delayed by 2 h in the pesticide-treated embryos. Because transcription is a fundamental basic biological process, the pesticide may be of health concern by inhalation near herbicide spraying at a concentration 25 times the adverse transcription concentration in the sprayed microdroplets

  8. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, fermentation pattern, omasal nutrient flow, and performance in lactating dairy cows

    Science.gov (United States)

    Extrusion-treated canola meal (TCM) was produced in an attempt to increase the rumen undegradable protein (RUP) fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, fermentation pattern, omasal nutr...

  9. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    Science.gov (United States)

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  10. Removal of glyphosate herbicide from water using biopolymer membranes.

    Science.gov (United States)

    Carneiro, Rafael T A; Taketa, Thiago B; Gomes Neto, Reginaldo J; Oliveira, Jhones L; Campos, Estefânia V R; de Moraes, Mariana A; da Silva, Camila M G; Beppu, Marisa M; Fraceto, Leonardo F

    2015-03-15

    Enormous amounts of pesticides are manufactured and used worldwide, some of which reach soils and aquatic systems. Glyphosate is a non-selective herbicide that is effective against all types of weeds and has been used for many years. It can therefore be found as a contaminant in water, and procedures are required for its removal. This work investigates the use of biopolymeric membranes prepared with chitosan (CS), alginate (AG), and a chitosan/alginate combination (CS/AG) for the adsorption of glyphosate present in water samples. The adsorption of glyphosate by the different membranes was investigated using the pseudo-first order and pseudo-second order kinetic models, as well as the Langmuir and Freundlich isotherm models. The membranes were characterized regarding membrane solubility, swelling, mechanical, chemical and morphological properties. The results of kinetics experiments showed that adsorption equilibrium was reached within 4 h and that the CS membrane presented the best adsorption (10.88 mg of glyphosate/g of membrane), followed by the CS/AG bilayer (8.70 mg of glyphosate/g of membrane). The AG membrane did not show any adsorption capacity for this herbicide. The pseudo-second order model provided good fits to the glyphosate adsorption data on CS and CS/AG membranes, with high correlation coefficient values. Glyphosate adsorption by the membranes could be fitted by the Freundlich isotherm model. There was a high affinity between glyphosate and the CS membrane and moderate affinity in the case of the CS/AG membrane. Physico-chemical characterization of the membranes showed low values of solubility in water, indicating that the membranes are stable and not soluble in water. The SEM and AFM analysis showed evidence of the presence of glyphosate on CS membranes and on chitosan face on CS/AG membranes. The results showed that the glyphosate herbicide can be adsorbed by chitosan membranes and the proposed membrane-based methodology was successfully used to

  11. Physico-chemical characteristics and sensory acceptance of Italiantype salami with canola oil addition

    Directory of Open Access Journals (Sweden)

    Nelcindo Nascimento Terra

    2014-02-01

    Full Text Available The aim of this study was to evaluate the effects of partial pork fat replacement with emulsified canola oil in Italian-type salami. Three treatments were done: Control (100% pork fat, without fat replacement, T1 (15% pork fat was replaced by emulsified canola oil and T2 (30% pork fat was replaced by emulsified oil canola. There were evaluated the salamis’ physicochemical characteristics (pH, water activity, weight loss, color and lipid oxidation during the manufacture and storage period, and sensory evaluation after the manufacture process. The emulsified canola oil addition at different levels did not change the pH and color during the manufacture process, even though significant differences were found in these parameters during the storage period. The water activity did not differ significantly among the treatments. However, the treatments with emulsified canola oil added have a lower weight loss than the control. It was possible to observe an elevation on lipid oxidation values in the T2 during manufacture and storage periods, while in the T1, the values did not differ from the control at the end of manufactures and remained lower than the control during the storage period. Even more, the partial replacement of pork fat by emulsified canola oil did not affect the acceptance of the product for aroma, flavor, color, texture and visual appearance. Thus, the 15% pork fat replacement by emulsified canola oil in Italian-type salami is a viable alternative for the product diversification.

  12. Effects of additives on glyphosate activity in purple nutsedge

    International Nuclear Information System (INIS)

    Rungsit Suwanketnikom

    1998-01-01

    Effects of additives on 14 C-glyphosate penetration into purple nutsedge leaves were examined in the laboratory and efficacy of glyphosate for purple nutsedge control was studied in the greenhouse and field. The addition of (NH 4 ) 2 SO 4 at 1.0% (v/v) + diesel oil at 1,0% (v/v) + Tendal at 1.0% (v/v) increased 14 C-glyphosate penetration into nutsedge leaves more than the addition of either one alone. (NH 4 ) 2 SO 4 at 1.0% + diesel oil at 1.0% + Tendal at 0.12 or 0.25% increased the phytotoxicity of glyphosate at 0.5 and 0.75 kg, a.e./ha on nutsedge plants in the greenhouse but not in the field. Additives did not enhance glyphosate activity by reducing the number of nutsedae tubers. (author)

  13. Epidemiologic studies of glyphosate and cancer: a review.

    Science.gov (United States)

    Mink, Pamela J; Mandel, Jack S; Sceurman, Bonnielin K; Lundin, Jessica I

    2012-08-01

    The United States Environmental Protection Agency and other regulatory agencies around the world have registered glyphosate as a broad-spectrum herbicide for use on multiple food and non-food use crops. Glyphosate is widely considered by regulatory authorities and scientific bodies to have no carcinogenic potential, based primarily on results of carcinogenicity studies of rats and mice. To examine potential cancer risks in humans, we reviewed the epidemiologic literature to evaluate whether exposure to glyphosate is associated causally with cancer risk in humans. We also reviewed relevant methodological and biomonitoring studies of glyphosate. Seven cohort studies and fourteen case-control studies examined the association between glyphosate and one or more cancer outcomes. Our review found no consistent pattern of positive associations indicating a causal relationship between total cancer (in adults or children) or any site-specific cancer and exposure to glyphosate. Data from biomonitoring studies underscore the importance of exposure assessment in epidemiologic studies, and indicate that studies should incorporate not only duration and frequency of pesticide use, but also type of pesticide formulation. Because generic exposure assessments likely lead to exposure misclassification, it is recommended that exposure algorithms be validated with biomonitoring data. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Root growth and lignification of glyphosate susceptible and resistant soybean at low temperaturesCrescimento e lignificação de raízes de soja convencional e resistente ao glifosato, em baixa temperatura

    Directory of Open Access Journals (Sweden)

    Patricia da Costa Zonetti

    2013-05-01

    Full Text Available Low temperature stress affects plant growth, including primary and secondary metabolism. Glyphosateresistant soybean contains a modified DNA, which encodes a different type of secondary metabolism enzyme related to lignin synthesis compared to conventional glyphosate-susceptible cultivars. Thus, this soybean cultivar might respond differently to low temperatures, compared to glyphosate-susceptible cultivars. This work aimed to investigate how decreasing temperatures influence the growth and lignin content of the glyphosate-resistant soybean compared to its susceptible parental cultivars. Three-day-old seedlings were cultivated in nutrient solution at 10, 15, 20, and 25°C (±2°C, using a 12-h photoperiod. After 96 h, taproot growth, fresh and dry biomass, and lignin levels were determined. The results indicate that lower temperatures decreased seedling and root growth in both types of cultivars; however, glyphosate-resistant soybean exhibited greater root length, biomass, and lignin content compared to the glyphosate-susceptible parental cultivar. O estresse causado pela baixa temperatura, dentre outras implicações, afeta o crescimento do vegetal assim como o seu metabolismo secundário. Pelo fato da soja RR apresentar variante enzimática de uma das principais vias do metabolismo secundário, ligada à síntese de lignina, pode apresentar comportamento diferenciado, sob baixa temperatura, se comparada com sua linhagem parental. O objetivo deste trabalho foi investigar possíveis diferenças no crescimento e nos conteúdos de lignina nas raízes de soja cultivar transgênica resistente ao glifosato e cultivar parental em resposta a redução de temperatura. Após três dias de germinação das sementes, as plântulas foram mantidas em solução nutritiva, a 10, 15, 20 e 25°C (±2°C, com fotoperíodo de 12 horas. Após 96 horas, foi avaliado o comprimento relativo da raiz primária, biomassa fresca e seca das raízes e os teores de lignina

  15. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Impact of endogenous canola phenolics on the oxidative stability of oil‐in‐water emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Winkler‐Moser, Jill K.

    2013-01-01

    The aim of this study was to evaluate the antioxidative effect of phenolics naturally present in canola seeds and meal. Individual phenolics were extracted from ground, defatted canola seeds, and meal. Fractionated extracts rich in sinapic acid, sinapine, or canolol as well as a non......‐fractionated extract were used. These extracts (100 and 350 µM) were evaluated as antioxidants in stripped canola oil‐in‐water (o/w) emulsion. For comparison, the antioxidative effect of phenolic standards for sinapic acid and sinapine (as sinapine thiocyanate) and butylated hydroxytoluene (BTH) as a positive control....... Therefore, these canola extracts can be used for protecting canola oil emulsion or other emulsions against lipid oxidation. However, the results indicate that the antioxidant activity of the extracts rich in sinapine and canolol had a concentration‐sensitive effect. In order to get the best antioxidative...

  17. Subtle impacts of repeated glyphosate use on wheat-associated bacteria are small and depend on glyphosate use history

    Science.gov (United States)

    Glyphosate (Roundup) is the most widely used herbicide in the world and a critical tool for weed control in no-till wheat cropping systems. However, there are persistent concerns about non-target impacts of long-term glyphosate use on soil communities. We investigated the impacts of repeated glyphos...

  18. Glyphosate accumulation, translocation, and biological effects in Coffea arabica after single and multiple exposures

    DEFF Research Database (Denmark)

    Schrübbers, Lars Christoph; Valverde, Bernal E.; Strobel, Bjarne W.

    2016-01-01

    In perennial crops like coffee, glyphosate drift exposure can occur multiple times during its commercial life span. Due to limited glyphosate degradation in higher plants, a potential accumulation of glyphosate could lead to increased biological effects with increased exposure frequency....... In this study, we investigated glyphosate translocation over time, and its concentration and biological effects after single and multiple simulated spray-drift exposures. Additionally, shikimic acid/glyphosate ratios were used as biomarkers for glyphosate binding to its target enzyme.Four weeks after...... the exposure, glyphosate was continuously translocated. Shikimic acid levels were lin-ear correlated with glyphosate levels. After two months, however, glyphosate appeared to have reduced activity. In the greenhouse, multiple applications resulted in higher internal glyphosate concentrations.The time...

  19. Natural glyphosate tolerance in sweetvetch Hedysarum boreale

    Science.gov (United States)

    Sweetvetch (Hedysarum boreale Nutt.) a legume native to the western USA and Canada, is purported to have tolerance to glyphosate {N-(phosphonomethyl) glycine} herbide. Eight rates of glyphosate were tested for their effect on biomass yield (BMY) and survival of seedlings and mature plants. Treatme...

  20. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC.

    Science.gov (United States)

    Tarazona, Jose V; Court-Marques, Daniele; Tiramani, Manuela; Reich, Hermine; Pfeil, Rudolf; Istace, Frederique; Crivellente, Federica

    2017-08-01

    Glyphosate is the most widely used herbicide worldwide. It is a broad spectrum herbicide and its agricultural uses increased considerably after the development of glyphosate-resistant genetically modified (GM) varieties. Since glyphosate was introduced in 1974, all regulatory assessments have established that glyphosate has low hazard potential to mammals, however, the International Agency for Research on Cancer (IARC) concluded in March 2015 that it is probably carcinogenic. The IARC conclusion was not confirmed by the EU assessment or the recent joint WHO/FAO evaluation, both using additional evidence. Glyphosate is not the first topic of disagreement between IARC and regulatory evaluations, but has received greater attention. This review presents the scientific basis of the glyphosate health assessment conducted within the European Union (EU) renewal process, and explains the differences in the carcinogenicity assessment with IARC. Use of different data sets, particularly on long-term toxicity/carcinogenicity in rodents, could partially explain the divergent views; but methodological differences in the evaluation of the available evidence have been identified. The EU assessment did not identify a carcinogenicity hazard, revised the toxicological profile proposing new toxicological reference values, and conducted a risk assessment for some representatives uses. Two complementary exposure assessments, human-biomonitoring and food-residues-monitoring, suggests that actual exposure levels are below these reference values and do not represent a public concern.

  1. Determination of glyphosate by high performance liquid ...

    African Journals Online (AJOL)

    The aim of this study was to design a glyphosate analysis method. This molecule is an organic pollutant from water and soil. We have developed a chromatographic method with phenylisothiocyanate. This molecule has allowed obtaining an intermediate molecule with the glyphosate being easily detectable in ...

  2. 150 ACUTE TOXICITY OF GLYPHOSATE ON CLARIAS ...

    African Journals Online (AJOL)

    The effects of glyphosate on mortality rate and behavioural responses of Clarias gariepinus fingerlings were investigated under laboratory conditions for 96 hours exposure period. The lethal concentration (LC50) value of glyphosate on fingerlings of Clarias gariepinus was 0.0018 ml/l for 96 hours of exposure.

  3. Response of Pennsylvania native plant species, corn and soybean to tank mixes of dicamba and glyphosate

    Science.gov (United States)

    Crops such as soybean are being genetically modified to be tolerant to multiple herbicides, such as dicamba and glyphosate, in order to allow treatment with several herbicides to control the development of herbicide resistance in weeds. However, with increased use of multiple-he...

  4. Selection and characterization of glyphosate tolerance in birdsfoot trefoil (Lotus corniculatus)

    International Nuclear Information System (INIS)

    Boerboom, C.M.

    1989-01-01

    If birdsfoot trefoil (Lotus corniculatus L.) was tolerant to glyphosate [N-(phosphonomethyl)glycine], Canada thistle [Cirsium arvense (L.) Scop.] and other dicot weeds could be selectively controlled in certified seed production fields. Glyphosate tolerance in birdsfoot trefoil was identified in plants from the cultivar Leo, plants regenerated from tolerant callus, and selfed progeny of plants regenerated from callus. Plants from the three sources were evaluated in field studies for tolerance to glyphosate at rates up to 1.6 kg ae/ha. Plants of Leo selected for tolerance exhibited a twofold range in the rate required to reduce shoot weight 50% (I 50 s from 0.6 to 1.2 kg/ha glyphosate). Plants regenerated from tolerant callus had tolerance up to 66% greater than plants regenerated from unselected callus. Transgressive segregation for glyphosate tolerance was observed in the selfed progeny of two regenerated plants that both had I 50 s of 0.7 kg/ha glyphosate. The selfed progeny ranged from highly tolerant (I 50 of 1.5 kg/ha) to susceptible (I 50 of 0.5 kg/ha). Spray retention, 14 C-glyphosate absorption and translocation did not account for the differential tolerance of nine plants that were evaluated from the three sources. The specific activity of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase ranged from 1.3 to 3.5 nmol/min sm-bullet mg among the nine plants and was positively correlated with glyphosate tolerance. Leo birdsfoot trefoil was found to have significant variation in glyphosate tolerance which made it possible to initiate a recurrent selection program to select for glyphosate tolerance in birdsfoot trefoil. Two cycles of selection for glyphosate tolerance were practiced in three birdsfoot trefoil populations, Leo, Norcen, and MU-81

  5. Effect of glyphosate on wheat quality characteristics

    Science.gov (United States)

    Glyphosate is the most widely used herbicide in the world. It is a non-selective, broad spectrum, post-emergence herbicide, and therefore controls a wide range of different species. Although glyphosate is effective in weed control, side effects of this herbicide on the crop itself, micro and macro o...

  6. Glyphosate biodegradation and potential soil bioremediation by Bacillus subtilis strain Bs-15.

    Science.gov (United States)

    Yu, X M; Yu, T; Yin, G H; Dong, Q L; An, M; Wang, H R; Ai, C X

    2015-11-23

    Glyphosate and glyphosate-containing herbicides have an adverse effect on mammals, humans, and soil microbial ecosystems. Therefore, it is important to develop methods for enhancing glyphosate degradation in soil through bioremediation. We investigated the potential of glyphosate degradation and bioremediation in soil by Bacillus subtilis Bs-15. Bs-15 grew well at high concentrations of glyphosate; the maximum concentration tolerated by Bs-15 reached 40,000 mg/L. The optimal conditions for bacterial growth and glyphosate degradation were less than 10,000 mg/L glyphosate, with a temperature of 35°C and a pH of 8.0. Optimal fermentation occurred at 180 rpm for 60 h with an inoculum ratio of 4%. Bs-15 degraded 17.65% (12 h) to 66.97% (96 h) of glyphosate in sterile soil and 19.01% (12 h) to 71.57% (96 h) in unsterilized soil. Using a BIOLOG ECO plate test, we observed no significant difference in average well color development values between the soil inoculated with Bs-15 and the control soil before 72 h, although there was a significant difference (P bioremediation of glyphosate-contaminated soils.

  7. Resposta de diferentes populações de Digitaria insularis ao herbicida glyphosate Response of different Digitaria insularis populations to glyphosate

    Directory of Open Access Journals (Sweden)

    N.M Correia

    2010-12-01

    Full Text Available Objetivou-se com estse trabalho avaliar o controle químico de diferentes populações de capim-amargoso (Digitaria insularis pelo herbicida glyphosate por meio de curva de dose-resposta, além de propor tratamentos alternativos para as populações mais tolerantes. O delineamento experimental foi o de blocos ao acaso, com quatro repetições, em esquema fatorial 5 x 9. As sementes de capim-amargoso foram coletadas em cinco locais: área de produção de grãos da Fazenda de Ensino, Pesquisa e Produção da UNESP, Jaboticabal (SP; área de produção comercial de grãos, localizada nos municípios de Campo Florido-MG e Rio Verde-GO; pomar de laranja, localizado no município de Matão (SP; e área não agrícola sem histórico da aplicação de glyphosate (Jaboticabal-SP. O glyphosate (0D, 1/4D, 1/2D, D, 2D, 4D e 8D, em que D é a dose recomendada de 1,5 kg ha-1 de equivalente ácido e as suas associações [glyphosate + fluazifop-p-butil (1,5 + 0,25 kg ha-1 e glyphosate (1,5 kg ha-1 com sequencial de diuron + paraquat (0,20 + 0,40 kg ha-1 + 0,2% de surfatante] foram pulverizados em plantas de sete a oito perfilhos e altura média de 20 cm. As populações de capim-amargoso de Campo Florido e Rio Verde foram consideradas suscetíveis; as de Jaboticabal e Matão, tolerantes; e a da área não agrícola, de sensibilidade intermediária. A associação de glyphosate ao fluazifop ou a sua aplicação com sequencial de diuron + paraquat foram eficazes no controle das populações mais tolerantes de capim-amargoso.The objective of this study was to evaluate the chemical control of different sourgrass (Digitaria insularis populations by the herbicide glyphosate through dose-response curves, besides considering alternative treatments to control tolerant populations. A randomized block design was used with four replications, in a factorial scheme (5 x 9. Sourgrass seeds were colleted from five locations: a grain production area located at the educational

  8. Impact of Endogenous Phenolics in Canola Oil on the Oxidative Stability of Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Moser, Jill

    canola seeds. Fractionated extracts of Sinapic acid, Sinapine and Canolol was used as well as a non fractionated extract. These extracts was added (100 and 350 μM) to 10% o/w emulsion with stripped canola oil in order to evaluate their effect on lipid oxidation in emulsions. For comparison......Canola oil is low in saturated fat, high in monounsaturated fat and has a favourable omega-6:omega-3 ratio . Therefore, Canola oil has a healthier fatty acid profile compared to other plant oils such as soy oil. Therefore, canola oil is also an ingredient in many food products. However, the content...... of unsaturated lipid makes canola oil susceptible towards lipid oxidation. Many food products are lipid containing emulsions and a lot of efforts have been put into developing methods to protect the lipids against oxidation. Since lipid oxidation has a negative influence on the shelf life of the foods, efficient...

  9. The herbicide Glyphosate affects nitrification in the Elbe estuary, Germany

    Science.gov (United States)

    Sanders, Tina; Lassen, Stephan

    2015-04-01

    The Elbe River is one of the biggest European rivers discharging into the North Sea. It also transports high amounts of nutrients and pollutants like pesticides. Important source regions of both nutrients and pollutants are located within the river catchment, which is dominated by agricultural land-use. From these agricultural soils, pesticides can be carried via the river and estuary into the North Sea. Glyphosate (N-(phosphonomethyl) glycine) is the most commonly used herbicide worldwide and mainly used to regulate unwanted plant growth and for the expedition of crop ripening. In Germany, ~ 6000 tons of glyphosate are applied yearly in agriculture and private use. Glyphosate is degradable by microorganisms and has a half-life in water of 35 to 60 days. This herbicide specifically inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an enzyme that catalyzes the biosynthesis of essential aromatic amino acids in plants, fungi, and bacteria. Nitrifying bacteria, which play an important role in the internal nitrogen cycling in the Elbe estuary, also possess this enzyme. The aim of our study was to quantify the concentration of glyphosate in water and sediment samples of the Elbe to get an overview about relevant environmental levels and to assess the impact of glyphosate on inhibition of nitrifying activities. To quantify the effect of glyphosate on nitrification activity, natural samples as well as pure cultures of Nitrosomonas europea (strain Nm50) were incubated with different concentrations of glyphosate over a period of some weeks. The nitrifying activity was determined according to changes of the nitrite and nitrate concentration as well as the cell number. Glyphosate was detectable in water and sediment samples in the Elbe estuary with up to 5 ppb mainly in the Port of Hamburg region. In both incubation experiments an inhibiting effect of glyphosate on nitrification could be shown. The incubated natural water sample was affected by a glyphosate

  10. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation

    Directory of Open Access Journals (Sweden)

    George Anifandis

    2018-05-01

    Full Text Available Glyphosate is the active ingredient of Roundup®, which is one of the most popular herbicides worldwide. Although many studies have focused on the reproductive toxicity of glyphosate or glyphosate-based herbicides, the majority of them have concluded that the effect of the specific herbicide is negligible, while only a few studies indicate the male reproductive toxicity of glyphosate alone. The aim of the present study was to investigate the effect of 0.36 mg/L glyphosate on sperm motility and sperm DNA fragmentation (SDF. Thirty healthy men volunteered to undergo semen analysis for the purpose of the study. Sperm motility was calculated according to WHO 2010 guidelines at collection time (zero time and 1 h post-treatment with glyphosate. Sperm DNA fragmentation was evaluated with Halosperm® G2 kit for both the control and glyphosate-treated sperm samples. Sperm progressive motility of glyphosate-treated samples was significantly reduced after 1 h post-treatment in comparison to the respective controls, in contrast to the SDF of glyphosate-treated samples, which was comparable to the respective controls. Conclusively, under these in vitro conditions, at high concentrations that greatly exceed environmental exposures, glyphosate exerts toxic effects on sperm progressive motility but not on sperm DNA integrity, meaning that the toxic effect is limited only to motility, at least in the first hour.

  11. Degradation of the Phosphonate Herbicide Glyphosate by Arthrobacter atrocyaneus ATCC 13752

    OpenAIRE

    Pipke, Rüdiger; Amrhein, Nikolaus

    1988-01-01

    Of nine authentic Arthrobacter strains tested, only A. atrocyaneus ATCC 13752 was capable of using the herbicide glyphosate [N-(phosphonomethyl)glycine] as its sole source of phosphorus. Contrary to the previously isolated Arthrobacter sp. strain GLP-1, which degrades glyphosate via sarcosine, A. atrocyaneus metabolized glyphosate to aminomethylphosphonic acid. The carbon of aminomethylphosphonic acid was entirely converted to CO2. This is the first report on glyphosate degradation by a bacte...

  12. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents.

    Science.gov (United States)

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J Christopher; Ugarte, Ricardo; Antoniou, Michael N

    2017-10-01

    The safety, including the endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased the expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBluc cells, which was blocked by the estrogen antagonist ICI 182,780. Commercial GBH formulations or their adjuvants alone did not exhibit estrogenic effects in either assay. Transcriptomics analysis of MCF-7 cells treated with glyphosate revealed changes in gene expression reflective of hormone-induced cell proliferation but did not overlap with an ERα gene expression biomarker. Calculation of glyphosate binding energy to ERα predicts a weak and unstable interaction (-4.10 kcal mol -1 ) compared to estradiol (-25.79 kcal mol -1 ), which suggests that activation of this receptor by glyphosate is via a ligand-independent mechanism. Induction of ERE-luc expression by the PKA signalling activator IBMX shows that ERE-luc is responsive to ligand-independent activation, suggesting a possible mechanism of glyphosate-mediated activation. Our study reveals that glyphosate, but not other components present in GBHs, can activate ERα in vitro, albeit at relatively high concentrations. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Phytotoxicity of glyphosate in the germination of and its effect on germinated seedlings

    Directory of Open Access Journals (Sweden)

    Subinoy Mondal

    2017-08-01

    Full Text Available The present study evaluated the effects of glyphosate on Pisum sativum germination as well as its effect on the physiology and biochemistry of germinated seedlings. Different physico-chemical biomarkers, viz., chlorophyll, root and shoot length, total protein and soluble sugar, along with sodium and potassium concentration, were investigated in germinated seedlings at different glyphosate concentrations. This study reports the influence of different concentrations of glyphosate on pea seeds and seedlings. Physicochemical biomarkers were significantly changed by glyphosate exposure after 15 days. The germination of seedlings under control conditions (0 mg/L was 100% after 3 days of treatment but at 3 and 4 mg/L glyphosate, germination was reduced to 55 and 40%, respectively. Physiological parameters like root and shoot length decreased monotonically with increasing glyphosate concentration, at 14 days of observation. Average root and shoot length (n=30 in three replicates were reduced to 14.7 and 17.6%, respectively, at 4 mg/L glyphosate. Leaf chlorophyll content also decreased, with a similar trend to root and shoot length, but the protein content initially decreased and then increased with an increase in glyphosate concentration to 3 mg/L. The study suggests that glyphosate reduces the soluble sugar content significantly, by 21.6% (v/v. But internal sodium and potassium tissue concentrations were significantly altered by glyphosate exposure with increasing concentrations of glyphosate. Biochemical and physiological analysis also supports the inhibitory effect of glyphosate on seed germination and biochemical effects on seedlings.

  14. EPA's evaluation of the carcinogenic potential of glyphosate

    Science.gov (United States)

    Recently, several international agencies have evaluated the carcinogenic potential of glyphosate. In March 2015, the International Agency for Research on Cancer (IARC), a subdivision of the World Health Organization (WHO), determined that glyphosate was a probable carcinogen (gro...

  15. [Mutual Effect on Determination of Gibberellins and Glyphosate in Groundwater by Spectrophotometry].

    Science.gov (United States)

    Zhang, Li; Chen, Liang; Liu, Fei

    2015-04-01

    In the present study, a spectrophotometry method for the simultaneous determination of gibberellins (GA3) and glyphosate in groundwater was established and optimized. In addition, the mutual effect on simultaneous determination of GA3 and glyphosate was studied. Based on the experiment, good linearity (R2 > 0.99) was obtained for GA3 in the range of 0-20 and 0-100 µg and for glyphosate in the range of 0-8 and 5-15 µg. The method's detection limit (MDL) of GA3 and glyphosate was 0.48 and 0.82 µg, respectively; and the recovery rates of 15 to 150 µg GA3 and 3 to 10 µg glyphosate in all samples at a spiked level were 71.3% ± 1.9% and 98.4% ± 8.1%, respectively. No obvious influence of glyphosate (0-100 mg · L(-1)) on the recovery rates of GA3 was observed, but the presence of glyphosate could cause slight determination precision decrease of GA3. Meanwhile, adding 2 mg · L(-1) GA3 can increase the recovery rate of glyphosate.

  16. Glyphosate and aminomethylphosphonic acid are not detectable in human milk.

    Science.gov (United States)

    McGuire, Michelle K; McGuire, Mark A; Price, William J; Shafii, Bahman; Carrothers, Janae M; Lackey, Kimberly A; Goldstein, Daniel A; Jensen, Pamela K; Vicini, John L

    2016-05-01

    Although animal studies have shown that exposure to glyphosate (a commonly used herbicide) does not result in glyphosate bioaccumulation in tissues, to our knowledge there are no published data on whether it is detectable in human milk and therefore consumed by breastfed infants. We sought to determine whether glyphosate and its metabolite aminomethylphosphonic acid (AMPA) could be detected in milk and urine produced by lactating women and, if so, to quantify typical consumption by breastfed infants. We collected milk (n = 41) and urine (n = 40) samples from healthy lactating women living in and around Moscow, Idaho and Pullman, Washington. Milk and urine samples were analyzed for glyphosate and AMPA with the use of highly sensitive liquid chromatography-tandem mass spectrometry methods validated for and optimized to each sample matrix. Our milk assay, which was sensitive down to 1 μg/L for both analytes, detected neither glyphosate nor AMPA in any milk sample. Mean ± SD glyphosate and AMPA concentrations in urine were 0.28 ± 0.38 and 0.30 ± 0.33 μg/L, respectively. Because of the complex nature of milk matrixes, these samples required more dilution before analysis than did urine, thus decreasing the sensitivity of the assay in milk compared with urine. No difference was found in urine glyphosate and AMPA concentrations between subjects consuming organic compared with conventionally grown foods or between women living on or near a farm/ranch and those living in an urban or suburban nonfarming area. Our data provide evidence that glyphosate and AMPA are not detectable in milk produced by women living in this region of the US Pacific Northwest. By extension, our results therefore suggest that dietary glyphosate exposure is not a health concern for breastfed infants. This study was registered at clinicaltrials.gov as NCT02670278. © 2016 American Society for Nutrition.

  17. Root-Zone Glyphosate Exposure Adversely Affects Two Ditch Species

    Directory of Open Access Journals (Sweden)

    Lyndsay E. Saunders

    2013-12-01

    Full Text Available Glyphosate, one of the most applied herbicides globally, has been extensively studied for its effects on non-target organisms. In the field, following precipitation, glyphosate runs off into agricultural ditches where it infiltrates into the soil and thus may encounter the roots of vegetation. These edge-of-field ditches share many characteristics with wetlands, including the ability to reduce loads of anthropogenic chemicals through uptake, transformation, and retention. Different species within the ditches may have a differential sensitivity to exposure of the root zone to glyphosate, contributing to patterns of abundance of ruderal species. The present laboratory experiment investigated whether two species commonly found in agricultural ditches in southcentral United States were affected by root zone glyphosate in a dose-dependent manner, with the objective of identifying a sublethal concentration threshold. The root zone of individuals of Polygonum hydropiperoides and Panicum hemitomon were exposed to four concentrations of glyphosate. Leaf chlorophyll content was measured, and the ratio of aboveground biomass to belowground biomass and survival were quantified. The findings from this study showed that root zone glyphosate exposure negatively affected both species including dose-dependent reductions in chlorophyll content. P. hydropiperdoides showed the greatest negative response, with decreased belowground biomass allocation and total mortality at the highest concentrations tested.

  18. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  19. Biotechnology: herbicide-resistant crops

    Science.gov (United States)

    Transgenic, herbicide-resistant (HR) crops are planted on about 80% of the land covered by transgenic crops. More than 90% of HR crios are glyphosate-resistant (GR) crops, the others being resistant to glufosinate. The wide-scale adoption of HR crops, largely for economic reasons, has been the mos...

  20. Circular RNA expression profiles in hippocampus from mice with perinatal glyphosate exposure.

    Science.gov (United States)

    Yu, Ning; Tong, Yun; Zhang, Danni; Zhao, Shanshan; Fan, Xinli; Wu, Lihui; Ji, Hua

    2018-05-19

    Glyphosate is the active ingredient in numerous herbicide formulations. The roles of glyphosate in embryo-toxicity and neurotoxicity have been reported in human and animal models. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. However, the role of glyphosate in neuronal development is still not fully understood. Our previous study found that perinatal glyphosate exposure resulted in differential microRNA expression in the prefrontal cortex of mouse offspring. However, the mechanism of glyphosate-induced neurotoxicity in the developing brain is still not fully understood. Considering the pivotal role of Circular RNAs (circRNAs) in the regulation of gene expression, a circRNA microarray method was used in this study to investigate circRNA expression changes in the hippocampus of mice with perinatal glyphosate exposure. The circRNA microarrays revealed that 663 circRNAs were significantly altered in the perinatal glyphosate exposure group compared with the control group. Among them, 330 were significantly upregulated, and the other 333 were downregulated. Furthermore, the relative expression levels of mmu-circRNA-014015, mmu-circRNA-28128 and mmu-circRNA-29837 were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that stress-associated steroid metabolism pathways, such as aldosterone synthesis and secretion pathways, may be involved in the neurotoxicity of glyphosate. These results showed that circRNAs are aberrantly expressed in the hippocampus of mice with perinatal glyphosate exposure and play potential roles in glyphosate-induced neurotoxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance

    Science.gov (United States)

    Samsel, Anthony

    2013-01-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup®, is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of “ripening” sugar cane with glyphosate may explain the recent

  2. Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance.

    Science.gov (United States)

    Samsel, Anthony; Seneff, Stephanie

    2013-12-01

    Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup(®), is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent

  3. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents

    OpenAIRE

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J. Christopher; Ugarte, Ricardo; Antoniou, Michael N.

    2017-01-01

    The safety, including endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBl...

  4. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea

    NARCIS (Netherlands)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R.; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-01-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea

  5. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2014-01-01

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  6. Anaerobic Co-Digestion of Canola Straw and Buffalo Dung: Optimization of Methane Production in Batch Experiments

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2014-01-01

    Full Text Available In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops' residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability. The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO3 / gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size.

  7. PVP capped silver nanocubes assisted removal of glyphosate from water-A photoluminescence study.

    Science.gov (United States)

    Sarkar, Sumit; Das, Ratan

    2017-10-05

    Glyphosate [N-phosphono-methylglycine (PMG)] is the most used herbicide worldwide and it has been reported very recently that Glyphosate is very harmful and can produce lots of diseases such as alzheimer and parkinson's disease, depression, cancer, infertility including genotoxic effects. As it is mostly present in stable water body and ground water system, its detection and removal is very important. Here, we have shown a fluorescence technique for the removal of glyphosate from water using chemically synthesized polyvinylpyrrolidone (PVP) silver nanocrystals. Transmission Electron Microscopy (TEM) study shows the average size of silver nanocrystals of 100nm approximately with a morphology of cubic shape. Glyphosate does not show absorption in the visible region. But both glyphosate and silver nanocrystals show strong fluorescence in the visible region. So, photoluminescence study has been successfully utilized to detect the glyphosate in water samples and on treating the glyphosate contaminated water sample with silver nanocrystals, the sample shows no emission peak of glyphosate at 458nm. Thus, this approach is a promising and very rapid method for the detection and removal of glyphosate from water samples on treatment with silver nanocubes. NMR spectra further confirms that the silver nanocrystals treated contaminated water samples are glyphosate free. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The different behaviors of glyphosate and AMPA in compost-amended soil.

    Science.gov (United States)

    Erban, Tomas; Stehlik, Martin; Sopko, Bruno; Markovic, Martin; Seifrtova, Marcela; Halesova, Tatana; Kovaricek, Pavel

    2018-05-04

    The broad-spectrum herbicide glyphosate is one of the most widely used pesticides. Both glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), persist in waters; thus, their environmental fates are of interest. We investigated the influence of compost dose, sampling depth, moisture and saturated hydraulic conductivity (K s ) on the persistence of these substances. The amounts of AMPA quantified by triple quadrupole liquid chromatography-mass spectrometry (LC-QqQ-MS/MS) using isotopically labeled extraction standards were higher than those of glyphosate and differed among the samples. Both glyphosate and AMPA showed gradually decreasing concentrations with soil depth, and bootstrapped ANOVA showed significant differences between the contents of glyphosate and AMPA and their behavior related to different compost dosages and sampling depths. However, the compost dose alone did not cause significant differences among samples. Bayesian statistics revealed that the amounts of glyphosate and AMPA were both dependent on the sampling depth and compost dose, but differences were found when considering the physical factors of K s and moisture. Glyphosate was influenced by moisture but not K s , whereas AMPA was influenced by K s but not moisture. Importantly, we found behavioral differences between glyphosate and its major metabolite, AMPA, related to the physical properties of K s and moisture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    Science.gov (United States)

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Copyright © 2013 SETAC.

  10. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    Science.gov (United States)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  11. Micromorfologia foliar na análise da fitotoxidez por glyphosate em Eucalyptus grandis Leaf micromorphology in the analysis of glyphosate toxicity in Eucalyptus grandis

    Directory of Open Access Journals (Sweden)

    L.D. Tuffi Santos

    2009-01-01

    Full Text Available Foram avaliados os efeitos da deriva de formulações comerciais de glyphosate sobre a superfície foliar e o crescimento de clones de eucalipto. Mudas de seis clones foram submetidas a 129,6 g ha-1 de glyphosate das formulações comerciais Scout®, Roundup NA®, Roundup transorb® e Zapp QI®. Entre os clones não foram identificadas diferenças quanto à tolerância ao glyphosate. Plantas expostas à deriva simulada de Roundup transorb® e Zapp QI® apresentaram, respectivamente, a maior e menor porcentagem de intoxicação. Observou-se menor massa seca em plantas expostas ao glyphosate, independentemente da formulação, e menor altura naquelas expostas ao Scout® e ao Roundup transorb®. As características quantitativas da superfície foliar não foram afetadas pelo glyphosate. As alterações micromorfológicas ocorreram na ausência de danos visíveis e foram observadas em ambas as faces da epiderme, em todos os clones avaliados. Danos como erosão e aspecto amorfo das ceras epicuticulares e infestação por hifas fúngicas ocorreram, independentemente da formulação utilizada. A avaliação anatômica da superfície foliar foi relevante para descrição e interpretação dos danos causados pelo glyphosate. Os dados de crescimento e de intoxicação indicam o Zapp QI® como a formulação de menor risco para a cultura do eucalipto quanto aos efeitos indesejáveis da deriva.The effects of commercial glyphosate drift on the leaf surface and growth of eucalypt clones were evaluated. Seedlings of six clones were submitted to 129.6 g ha-1 sub-rate of commercial glyphosate formulations Scout®, Roundup NA®, Roundup transorb® and Zapp QI®. No differences in tolerance to glyphosate were observed among the clones. Plants exposed to simulated drift of Roundup transorb® and Zapp QI® presented the highest and lowest intoxication percentages, respectively. Plants exposed to glyphosate reduced dry biomass, regardless of the formulation, and also

  12. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1, respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  13. Feeding behaviour of generalist pests on Brassica juncea: implication for manipulation of glucosinolate biosynthesis pathway for enhanced resistance.

    Science.gov (United States)

    Kumar, Pawan; Augustine, Rehna; Singh, Amarjeet Kumar; Bisht, Naveen C

    2017-10-01

    Differential accumulation of plant defence metabolites has been suggested to have important ecological consequence in the context of plant-insect interactions. Feeding of generalist pests on Brassica juncea showed a distinct pattern with selective exclusion of leaf margins which are high in glucosinolates. Molecular basis of this differential accumulation of glucosinolates could be explained based on differential expression profile of BjuMYB28 homologues, the major biosynthetic regulators of aliphatic glucosinolates, as evident from quantitative real-time PCR and promoter:GUS fusion studies in allotetraploid B. juncea. Constitutive overexpression of selected BjuMYB28 homologues enhanced accumulation of aliphatic glucosinolates in B. juncea. Performance of two generalist pests, Helicoverpa armigera and Spodoptera litura larvae, on transgenic B. juncea plants were poor compared to wild-type plants in a no-choice experiment. Correlation coefficient analysis suggested that weight gain of H. armigera larvae was negatively correlated with gluconapin (GNA) and glucobrassicanapin (GBN), whereas that of S. litura larvae was negatively correlated with GNA, GBN and sinigrin (SIN). Our study explains the significance and possible molecular basis of differential distribution of glucosinolates in B. juncea leaves and shows the potential of overexpressing BjuMYB28 for enhanced resistance of Brassica crops against the tested generalist pests. © 2017 John Wiley & Sons Ltd.

  14. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean; Efeito de formulacoes na absorcao e translocacao do glyphosate em soja transgenica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.B. [UNIVALE, Governador Valadares, MG (Brazil). FAAG. Agronomia]. E-mail: jbarbosa@univale.br; Ferreira, E.A.; Silva, A.A. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia]. E-mail: evanderalves@yahoo.com.br; aasilva@ufv.br; Oliveira, J.A. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Geral]. E-mail: jalves@ufv.br; Fialho, C.M.T. [Universidade Federal de Vicosa (UFV), MG (Brazil). Agronomia]. E-mail: cintiamtfialho@yahoo.com.br

    2007-07-01

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  15. A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis.

    Science.gov (United States)

    Bonfanti, Patrizia; Saibene, M; Bacchetta, R; Mantecca, P; Colombo, A

    2018-02-01

    Glyphosate is the active ingredient in broad-spectrum herbicide formulations used in agriculture, domestic area and aquatic weed control worldwide. Its market is growing steadily concurrently with the cultivation of glyphosate-tolerant transgenic crops and emergence of weeds less sensitive to glyphosate. Ephemeral and lentic waters near to agricultural lands, representing favorite habitats for amphibian reproduction and early life-stage development, may thus be contaminated by glyphosate based herbicides (GBHs) residues. Previous studies on larval anuran species highlighted increased mortality and growth effects after exposure to different GBHs in comparison to glyphosate itself, mainly because of the surfactants such as polyethoxylated tallow amine present in the formulations. Nevertheless, these conclusions are not completely fulfilled when the early development, characterized by primary organogenesis events, is considered. In this study, we compare the embryotoxicity of Roundup ® Power 2.0, a new GBH formulation currently authorized in Italy, with that of technical grade glyphosate using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Our results evidenced that glyphosate was not embryolethal and only at the highest concentration (50 mg a.e./L) caused edemas. Conversely, Roundup ® Power 2.0 exhibited a 96 h LC50 of 24.78 mg a.e./L and a 96 h EC50 of 7.8 mg a.e./L. A Teratogenic Index of 3.4 was derived, pointing out the high teratogenic potential of the Roundup ® Power 2.0. Specific concentration-dependent abnormal phenotypes, such as craniofacial alterations, microphthalmia, narrow eyes and forebrain regionalization defects were evidenced by gross malformation screening and histopathological analysis. These phenotypes are coherent with those evidenced in Xenopus laevis embryos injected with glyphosate, allowing us to hypothesize that the teratogenicity observed for Roundup ® Power 2.0 may be related to the improved efficacy in delivering

  16. Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.).

    Science.gov (United States)

    Tong, Mengmeng; Gao, Wanjun; Jiao, Weiting; Zhou, Jie; Li, Yeyun; He, Lili; Hou, Ruyan

    2017-09-06

    The uptake, translocation, metabolism, and distribution behavior of glyphosate in nontarget tea plant were investigated. The negative effects appeared to grown tea saplings when the nutrient solution contained glyphosate above 200 mg L -1 . Glyphosate was highest in the roots of the tea plant, where it was also metabolized to aminomethyl phosphonic acid (AMPA). The glyphosate and AMPA in the roots were transported through the xylem or phloem to the stems and leaves. The amount of AMPA in the entire tea plant was less than 6.0% of the amount of glyphosate. The glyphosate level in fresh tea shoots was less than that in mature leaves at each day. These results indicated that free glyphosate in the soil can be continuously absorbed by, metabolized in, and transported from the roots of the tea tree into edible leaves, and therefore, free glyphosate residues in the soil should be controlled to produce teas free of glyphosate.

  17. Facts and Fallacies in the Debate on Glyphosate Toxicity

    Directory of Open Access Journals (Sweden)

    Robin Mesnage

    2017-11-01

    Full Text Available The safety profile of the herbicide glyphosate and its commercial formulations is controversial. Reviews have been published by individuals who are consultants and employees of companies commercializing glyphosate-based herbicides in support of glyphosate’s reapproval by regulatory agencies. These authors conclude that glyphosate is safe at levels below regulatory permissible limits. In contrast, reviews conducted by academic scientists independent of industry report toxic effects below regulatory limits, as well as shortcomings of the current regulatory evaluation of risks associated with glyphosate exposures. Two authors in particular (Samsel and Seneff have published a series of commentaries proposing that long-term exposure to glyphosate is responsible for many chronic diseases (including cancers, diabetes, neuropathies, obesity, asthma, infections, osteoporosis, infertility, and birth defects. The aim of this review is to examine the evidential basis for these claimed negative health effects and the mechanisms that are alleged to be at their basis. We found that these authors inappropriately employ a deductive reasoning approach based on syllogism. We found that their conclusions are not supported by the available scientific evidence. Thus, the mechanisms and vast range of conditions proposed to result from glyphosate toxicity presented by Samsel and Seneff in their commentaries are at best unsubstantiated theories, speculations, or simply incorrect. This misrepresentation of glyphosate’s toxicity misleads the public, the scientific community, and regulators. Although evidence exists that glyphosate-based herbicides are toxic below regulatory set safety limits, the arguments of Samsel and Seneff largely serve to distract rather than to give a rational direction to much needed future research investigating the toxicity of these pesticides, especially at levels of ingestion that are typical for human populations.

  18. Facts and Fallacies in the Debate on Glyphosate Toxicity

    Science.gov (United States)

    Mesnage, Robin; Antoniou, Michael N.

    2017-01-01

    The safety profile of the herbicide glyphosate and its commercial formulations is controversial. Reviews have been published by individuals who are consultants and employees of companies commercializing glyphosate-based herbicides in support of glyphosate’s reapproval by regulatory agencies. These authors conclude that glyphosate is safe at levels below regulatory permissible limits. In contrast, reviews conducted by academic scientists independent of industry report toxic effects below regulatory limits, as well as shortcomings of the current regulatory evaluation of risks associated with glyphosate exposures. Two authors in particular (Samsel and Seneff) have published a series of commentaries proposing that long-term exposure to glyphosate is responsible for many chronic diseases (including cancers, diabetes, neuropathies, obesity, asthma, infections, osteoporosis, infertility, and birth defects). The aim of this review is to examine the evidential basis for these claimed negative health effects and the mechanisms that are alleged to be at their basis. We found that these authors inappropriately employ a deductive reasoning approach based on syllogism. We found that their conclusions are not supported by the available scientific evidence. Thus, the mechanisms and vast range of conditions proposed to result from glyphosate toxicity presented by Samsel and Seneff in their commentaries are at best unsubstantiated theories, speculations, or simply incorrect. This misrepresentation of glyphosate’s toxicity misleads the public, the scientific community, and regulators. Although evidence exists that glyphosate-based herbicides are toxic below regulatory set safety limits, the arguments of Samsel and Seneff largely serve to distract rather than to give a rational direction to much needed future research investigating the toxicity of these pesticides, especially at levels of ingestion that are typical for human populations. PMID:29226121

  19. Effects of canola meal on growth and digestion of rainbow trout (Oncorhynchus mykiss) fry

    OpenAIRE

    YİĞİT, Nalan Özgür; KOCA, Seval BAHADIR; BAYRAK, Halit; DULLUÇ, Arife; DİLER, İbrahim

    2012-01-01

    A 12-week feeding trial was conducted with rainbow trout fry (initial weight of 1.57 ± 0.01 g) to examine the effects of partial substitution of canola meal in prepared diets on growth, feed conversion ratio (FCR), nutrient digestibility, somatic indices, and survival rate. Five isonitrogenous (44% crude protein) and isocaloric (4000 kcal/kg digestible energy) diets were formulated to contain 8%, 16%, 24%, and 32% canola meal against no canola meal (control group). A total of 375 rainbow trou...

  20. Safety assessment and feeding value for pigs, poultry and ruminant animals of pest protected (Bt plants and herbicide tolerant (glyphosate, glufosinate plants: interpretation of experimental results observed worldwide on GM plants

    Directory of Open Access Journals (Sweden)

    Aimé Aumaitre

    2010-01-01

    Full Text Available New varieties of plants resistant to pests and/or tolerant to specific herbicides such as maize, soybean, cotton, sugarbeets, canola, have been recently developed by using genetic transformation (GT. These plants contain detectable specificactive recombinant DNA (rDNA and their derived protein. Since they have not been selected for a modification oftheir chemical composition, they can be considered as substantially equivalent to their parents or to commercial varietiesfor their content in nutrients and anti-nutritional factors. However, insect protected maize is less contaminated by mycotoxinsthan its parental counterpart conferring a higher degree of safety to animal feeds. The new feeds, grain and derivatives,and whole plants have been intensively tested in vivo up to 216 days for their safety and their nutritional equivalencefor monogastric farm animals (pig, poultry and ruminants (dairy cows, steers, lambs. The present article is basedon the interpretation and the summary of the scientific results published in original reviewed journals either as full papers(33 or as abstracts (33 available through September 2003. For the duration of the experiments adapted to the species,feed intake, weight gain, milk yield and nutritional equivalence expressed as feed conversion and/or digestibility of nutrientshave never been affected by feeding animals diets containing GT plants. In addition, in all the experimental animals,the body and carcass composition, the composition of milk and animal tissues, as well as the sensory properties of meatare not modified by the use of feeds derived from GT plants. Furthermore, the health of animals, their physiological characteristicsand the survival rate are also not affected.The presence of rDNA and derived proteins can be recognized and quantified in feeds in the case of glyphosate resistant soybeanand canola and in the case of insect protected maize. However, rDNA has never been recovered either in milk, or in

  1. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids.

    Science.gov (United States)

    Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj

    2018-01-01

    Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa , while lowest cross-transferability (91.93%) was obtained for Eruca sativa . The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea / B. nigra/B. rapa and B. carinata/B. napus/B. oleracea . C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.

  2. Glyphosate and AMPA in U.S. streams, groundwater, precipitation and soils

    Science.gov (United States)

    Battaglin, William A.; Meyer, Michael T.; Kuivila, Kathryn; Dietze, Julie E.

    2014-01-01

    Herbicides containing glyphosate are used in more than 130 countries on more than 100 crops. In the United States (U.S.), agricultural use of glyphosate [N-(phosphonomethyl)glycine] has increased from less than 10,000 metric tons per year (active ingredient) in 1993 to more than 70,000 metric tons per year in 2006. In 2006, glyphosate accounted for about 20 percent of all herbicide use (by weight of active ingredient). Glyphosate formulations such as Roundup® are used in homes and in agriculture. Part of the reason for the popularity of glyphosate is the perception that it is an “environmentally benign” herbicide that has low toxicity and little mobility or persistence in the environment. The U.S. Geological Survey developed an analytical method using liquid chromatography/tandem mass spectrometry that can detect small amounts of glyphosate and its primary degradation product aminomethylphosphonic acid (AMPA) in water and sediment. Results from more than 2,000 samples collected from locations distributed across the U.S. indicate that glyphosate is more mobile and occurs more widely in the environment than was previously thought. Glyphosate and AMPA were detected (reporting limits between 0.1 and 0.02 micrograms per liter) in samples collected from surface water, groundwater, rainfall, soil water, and soil, at concentrations from less than 0.1 to more than 100 micrograms per liter. Glyphosate was detected more frequently in rain (86%), ditches and drains (71%), and soil (63%); and less frequently in groundwater (3%) and large rivers (18%). AMPA was detected more frequently in rain (86%), soil (82%), and large rivers (78%); and less frequently in groundwater (8%) and wetlands or vernal pools (37%). Most observed concentrations of glyphosate were well below levels of concern for humans or wildlife, and none exceeded the U.S. Environmental Protection Agency’s Maximum Contaminant Level of 700 micrograms per liter. However, the ecosystem effects of chronic low

  3. Varietals resistance and susceptibility in mustard (brassica campestris l.) genotypes against aphid myzus persicae (sulzer) (homoptera: aphididae)

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Khan, G.Z.; Tofique, M.

    2009-01-01

    The exploitation of resistant cultivars is an imperative, simple, practical and flexible way to cope with insect pests incidence. Thirty genotypes of mustard (Brassica campestris L.) were tested for their resistance and susceptibility to aphid Myzus persicae (Sulzer) exposed under natural field conditions. Data on pest tolerance of genotypes were judged by quantitative traits such as number of aphids on each infested plant and mean dry weight of seeds per genotype. Studies observed the discrepancy in overall rates of pest invasion and seed yield contained by trailed mustard genotypes. Agati sarson (P), S-9-S-97-100/45 and S-9-S-97-100/45 were the least damaged genotypes showing their moderate resistance. Amongst other genotypes, MM-I/01-5, MM-I285 and MM-I/01-6 were the most damaged showing oversensitive response. Although the majority of genotypes were found vulnerable to pest, Agati sarson (P) and S-9-S-97-100/45 due to their lowest hypersensitive response toward aphid contamination and increased pods yield could be used for the development of essential resistance in mustard plant. A marked mode of damage inflicted by aphid on the crop was noticed and the abiotic factors contributing variations in aphid infestation levels during both growing seasons were determined. Knowledge about the host plant resistance investigated can facilitate growers to choose the most appropriate cultivars as pest control strategy. (author)

  4. [Study of the effect of occupational exposure to glyphosate on hepatorenal function].

    Science.gov (United States)

    Zhang, F; Pan, L P; Ding, E M; Ge, Q J; Zhang, Z H; Xu, J N; Zhang, L; Zhu, B L

    2017-07-06

    Objective: To explore the effect of occupational exposure to glyphosate on hepatorenal function. Methods: 526 workers who were occupationally exposed to glyphosate from 5 glyphosate-producing factories were selected as cases; and another 442 administrative staffs who were not exposed to glyphosate were selected as controls from April to November, 2014. All the subjects accepted occupational health examination. The concentration level of glyphosate in the air of workshop was detected and the time weighted average concentration (TWA) was calculated. And analyze the difference of hepatorenal fuction between case group and control group. Result: The age of the subjects in the case and control groups were separately (35.6±10.3), (34.3±9.7) years old, with the length of working for (6.5±5.7), (7.7±6.8) years. The TWA of glyphosate in the case group was between Glyphosate can affect the hepatic and renal function among occupational exposure population, and there was an association between the effect and the exposure dose.

  5. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    Science.gov (United States)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  6. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  7. 40 CFR 180.482 - Tebufenozide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... stem, subgroup 5A 5.0 Brassica, leafy greens, subgroup 5B 10.0 Canola, refined oil 4.0 Canola, seed 2.0..., forage, fodder and hay, group 17 1.0 Vegetable, foliage of legume, group 7 0.20 [60 FR 29347, May 31... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Tebufenozide; tolerances for residues...

  8. Effect of glyphosate on the microbial activity of two Romanian soils.

    Science.gov (United States)

    Sumalan, R M; Alexa, E; Negrea, M; Sumalan, R L; Doncean, A; Pop, G

    2010-01-01

    Glyphosate applied to soils potentially affect microbial activity. A series of field and laboratory experiments assessed the effect of this herbicide on soil microorganisms. The aim of experiments was to evaluate the effect of glyphosate application on the soil microbial community structure, function and their activity. We studied "in vitro", changes in the microbial activity of typical Chernozem and Gleysol soils, with and without applied glyphosate. The herbicide was applied at a rate of 2, respectively 4 mg kg(-1) of soil and microbial activity were measured by fluorescein diacetate (FDA) hydrolysis. We found an increase of 9 to 13% in FDA hydrolyses in the presence of glyphosate in rate of 2 mg kg (-1) compared with the same type of soil which had never received herbicide. The double quantity of glyphosate decrease soil microbial activity; the amount of hydrolyzed fluorescein is lower than the addition of 2 ppm. The greater decrease was observed in the Gleysol type where the fluorescein hydrolyzed is with 4, 85% lower than version control without glyphosate. Chemical characters of soil, influence soil biological activity when herbicide is added. In Chemozem case, rich in humus, whose predominant micro flora is represented by actinomycetes through glyphosate treatment these organisms growths of as major producers of antibiotics actinomycetes determine an inhibitory effect on eubacteria and micromycetes growth, which is highlighted by estimating a relatively small number of them. After 10 days, once with decreasing of glyphosate content in soil, decreases the number of active actinomycetes, therefore we are witnessing to a numerical growth of bacterial population. In Gleysol type the indigenous micro flora is represented by eubacteria, so when the glyphosate is added it was registered a high growth of these organisms fraction.

  9. Evaluation of competitive and economic indices in canola and pea intercropping at different rates of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    Seyfollah fallah

    2016-05-01

    Full Text Available The experiment was conducted in order to evaluate of competitive and economic indices in canola and pea intercropping at different rates of nitrogen fertilizer at Shahrekord University research farm during 1390 - 1391. Intercropping and sole cropping treatments (100% canola; 66% canola + 33% pea, 50% canola + 50% pea; 33% canola + 66% pea; 100% pea were evaluated as the first factor and nitrogen rates (100% need; 75% need and 50% need as the second factor in a randomized complete block design with three replications. The calculated competitive indices were included land equivalent ratio (LER, relative crowding coefficient (K, aggressively (A, the system production index (SPI, actual yield loss (AYL, competitive ratio (CR and economy indices included monetary advantage index (MAI, and the intercropping advantage (IA. Results showed that all the competitive and economic indices had the highest amount in 50 and 75% of nitrogen requirement. The amounts of AYLt and SPI and economic indices (MAI and IA were positive for all intercropping ratios. Also, LERt and Kt for all intercropping ratio were greater than one, that indicating the superiority of intercropping over sole cropping any of the two plants. The positive values aggressively index and the greater than one values competitive ratio for canola, indicated canola was superior competitor in compared to pea. In conclusion, the evaluation of competitive and economic indices appropriately describes intercropping advantage of canola with pea in reduced nitrogen fertilizer conditions.

  10. In vitro activity of glucosinolates and their degradation products against brassica-pathogenic bacteria and fungi.

    Science.gov (United States)

    Sotelo, T; Lema, M; Soengas, P; Cartea, M E; Velasco, P

    2015-01-01

    Glucosinolates (GSLs) are secondary metabolites found in Brassica vegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about their in vitro biocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enriched Brassica crops on suppressing in vitro growth of two bacterial (Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. maculicola) and two fungal (Alternaria brassicae and Sclerotinia scletoriorum) Brassica pathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of different Brassica species, have potential to inhibit pathogen growth and offer new opportunities to study the use of Brassica crops in biofumigation for the control of multiple diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. DIFFERENTIAL RESPONSE OF CLONES OF EUCALYPT TO GLYPHOSATE1

    Directory of Open Access Journals (Sweden)

    Leonardo Bianco de Carvalho

    2015-02-01

    Full Text Available Weed control is commonly performed by the inter-row mechanical weeding associated to intrarow glyphosate directed spraying, causing a risk for drift or accidental herbicide application, that can affect the crop of interest. The objective was to evaluate the response of clones C219, GG100, I144, and I224 of eucalypt (Eucalyptus grandis x E. urophylla to glyphosate doses of 0, 18, 36, 72, 180, 360, and 720 g of acid equivalent per hectare. The clones showed different growth patterns with regard to height, leaf number, stem dry weight, relative growth rate, net assimilation rate, and relative leaf growth rate. The clones I144 and GG100 were more susceptible to glyphosate, showing the doses required to reduce dry weight by 50% of 113.4 and 119.6 g acid equivalent per hectare, respectively. The clones C219 and I224 were less susceptible to glyphosate, showing the doses required to reduce dry weight by 50% of 237.5 and 313.5 g acid equivalent per hectare, respectively. Eucalyptus clones respond differently to glyphosate exposure, so that among I224, C219, GG100, and I144, the susceptibility to the herbicide is increasing.

  12. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    OpenAIRE

    Younes Tahmazi; Akbar Taghizadeh; Yousef Mehmannavaz; Mehdi Moghaddam

    2015-01-01

    This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A), canola meal treated with 0.5% urea (B) and canola...

  13. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    International Nuclear Information System (INIS)

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H.; Holopainen, Jarmo K.; Albrectsen, Benedicte R.; Blande, James D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. - Highlights: • We examined the effects of ozone on Pieris brassicae performance and preference. • We studied ozone and herbivore induced changes in the metabolome of Brassica nigra. • The performance of P. brassicae did not correlate with preference of ozonated plants. • Ozone and herbivore-feeding stress changes the phytochemical pools of B. nigra. - Ozone indirectly reduces herbivore performance, which is associated with change in phytochemical pools, but does not correlate with host plant preference

  14. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study.

    Science.gov (United States)

    De Roos, Anneclaire J; Blair, Aaron; Rusiecki, Jennifer A; Hoppin, Jane A; Svec, Megan; Dosemeci, Mustafa; Sandler, Dale P; Alavanja, Michael C

    2005-01-01

    Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993-1997). Among private and commercial applicators, 75.5% reported having ever used glyphosate, of which > 97% were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; b) cumulative lifetime days of use, or "cumulative exposure days" (years of use times days/year); and c) intensity-weighted cumulative exposure days (years of use times days/year times estimated intensity level). Poisson regression was used to estimate exposure-response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers.

  15. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  16. Avaliação do uso de glyphosate em soja geneticamente modificada e sua relação com o ácido chiquímico Evaluation of glyphosate application on transgenic soybean and its relationship with shikimic acid

    Directory of Open Access Journals (Sweden)

    D.A.S. Franco

    2012-09-01

    plantas de soja transgênica no campo quando tratadas de forma isolada com glyphosate. Os resultados também mostraram exsudação radicular do glyphosate por soja transgênica, com posterior absorção por soja convencional. Foram detectados resíduos de glyphosate e ácido aminometilfosfônico na solução nutritiva.Glyphosate [N-(phosphonomethyl glycine]-resistant crops (GRC are the transgenic crops most extensively grown worldwide, with soybean being the major GRC. It is important to evaluate the impact of glyphosate on transgenic soybean and its relationship with shikimic acid. A field experiment was conducted at Engenheiro Coelho-SP, Brazil, during the agricultural year 2007/2008 to evaluate the effect of glyphosate on the growth, development, and seed quality of GRC soybean variety BRS Valiosa RR. A randomized block design was used with four replications. Glyphosate was applied at 720 and 960 g a.e. ha-1 (acid equivalent and in sequence at the doses 720/720, 960/720, and 960/720/720 g a.e. ha-1 (acid equivalent. To evaluate transfer from GRC soybean to non GRC soybean cultivated in nutrient solution, a pot experiment was conducted at Instituto Biológico, SP, Brazil. Glyphosate was applied on the GRC soybean (M8045RR at 2,400 g a.e. ha-1. Both GRC soybean and non GRC soybean were sown in the same box with nutrient solution. At 0, 1, 3, 7, and 10 days after application, shikimic acid was measured by HPLC and the glyphosate and aminomethylphosphonic acid (AMPA levels in nutrient solution were determined by GC-MS. The results showed that yield, plant height, seed oil, and protein contents were not affected by glyphosate application. GRC soybean accumulated shikimic acid in the field. Glyphosate and AMPA were released through the roots of GRC soybean, and subsequently taken up by non-GRC soybean, exerting inhibitory effects on their shikimic pathway.

  17. Sensibilidade de estirpes de Bradyrhizobium ao glyphosate

    Directory of Open Access Journals (Sweden)

    Rodrigo Josemar Seminoti Jacques

    2010-02-01

    Full Text Available A aplicação do glyphosate sobre a soja resistente a este herbicida pode causar prejuízos à simbiose com o rizóbio. O objetivo deste trabalho foi avaliar a sensibilidade ao herbicida glyphosate de três estirpes de Bradyrhizobium recomendadas para a produção de inoculantes de sementes de soja no Brasil. Avaliou-se o efeito das concentrações de 0,0; 5,4; 10,8; 21,6 e 43,2 µg L-1 do ingrediente ativo do glyphosate [N-(fosfonometil glicina] no meio YM líquido sobre o crescimento de B. japonicum (estirpe SEMIA 5079 e de B. elkanii (estirpe SEMIA 5019 e estirpe SEMIA 587, por meio de leituras das densidades óticas e geração de curvas de crescimento. As reduções de crescimento na presença da menor concentração do glyphosate foram de 18% para SEMIA 5079, 29% para SEMIA 5019 e de 35% para SEMIA 587, sendo, de modo geral, quanto maior a concentração do herbicida no meio de cultura maior a inibição do crescimen­to. As estirpes apresentaram sensibilidade diferencial somente às concentrações mais baixas do glyphosate; nesse caso, foi possível determinar a seguinte ordem de sensibilidade: SEMIA 587 > SEMIA 5019 > SEMIA 5079. Essa sensibilidade diferencial é dependente da concentração do herbicida, pois na presença de 43,2 µg L-1 todas as estirpes tiveram seu crescimento severamente reduzido, não havendo diferença entre elas.

  18. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  19. Implication of Legal References on Technological Dissemination: A Study on Transgenic Soybeans Resistant to Glyphosate Herbicide in Brazil

    Directory of Open Access Journals (Sweden)

    Roberta Rodrigues

    2013-04-01

    Full Text Available The following paper aims at establishing a connection between the evolution of legal landmarks related to soybeans tolerant to glyphosate-based herbicide in Brazil and the planting growth of this transgenic soybean in Brazil, in order to determine the role that such soybeans play in today's domestic agricultural scenario. To do so, a study of Brazilian laws that protect intellectual creations was carried out (Industrial Property Law - Law number 9.279/96 and the Plant Protection Law – Law number 9.456/97, the Law on Biosafety – Law number 11105 / 05 – and the Law on Brazilian Seeds and Seedlings - Law number 10.711/03, in order to delimit the matter protected by each of those laws while establishing its interfaces. Regarding planting, the Biosafety Law of 2005 corresponds to the fourth law which deals with soybeans tolerant to glyphosate-based herbicide and ensures that those previously registered may be marketed without limitation per crop. In order to estimate the space that soybean seeds tolerant to glyphosate-based herbicide began to occupy in the Brazilian market, in the 2008/2009 harvest, compared to the other not genetically modified soybeans, a search in the Ministry of Agriculture´s database was done (http://www.agricultura.gov.br through the available records of certified, non-certified and basic seeds.

  20. Bee assemblage in habitats associated with Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Rosana Halinski

    2015-09-01

    Full Text Available ABSTRACTAssessments in agricultural crops indicate that alterations in the landscape adjacent to the crops can result in reduced productivity due to loss or low abundance of pollinating agents. In the canola crop, production is partially dependent on insect pollination. Therefore, knowledge of the faunal diversity within and near crop fields is key for the management of these insects and consequently for the increase in productivity. This study aimed to determine and compare the diversity of bees in habitats associated with canola fields in southern Brazil. Bees were captured in four agricultural areas using pan traps in three habitat classes: (1 flowering canola crop, (2 forest remnant, and (3 grassland vegetation. The highest abundance of bees was observed in the grassland vegetation (50% and in the flowering canola field (47%. Eight species common to the three habitat classes were recorded, four of which are represented by native social bees. In addition, a single or a few individuals represented species that were exclusive to a specific habitat class; eight species were collected exclusively in the interior of the canola field, 51 in the grassland vegetation, and six in the forest remnant. The majority of the rare species recorded exhibits subsocial or solitary behaviour and inhabit open places. The composition of bee groups differed between the habitats showing the importance of maintaining habitat mosaics with friendly areas for pollinators, which promote the pollination service for canola flowers.

  1. Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae

    OpenAIRE

    Liu, C.-M.; McLean, P. A.; Sookdeo, C. C.; Cannon, F. C.

    1991-01-01

    Several strains of the family Rhizobiaceae were tested for their ability to degrade the phosphonate herbicide glyphosate (isopropylamine salt of N-phosphonomethylglycine). All organisms tested (seven Rhizobium meliloti strains, Rhizobium leguminosarum, Rhizobium galega, Rhizobium trifolii, Agrobacterium rhizogenes, and Agrobacterium tumefaciens) were able to grow on glyphosate as the sole source of phosphorus in the presence of the aromatic amino acids, although growth on glyphosate was not a...

  2. Glyphosate Use and Cancer Incidence in the Agricultural Health Study.

    Science.gov (United States)

    Andreotti, Gabriella; Koutros, Stella; Hofmann, Jonathan N; Sandler, Dale P; Lubin, Jay H; Lynch, Charles F; Lerro, Catherine C; De Roos, Anneclaire J; Parks, Christine G; Alavanja, Michael C; Silverman, Debra T; Beane Freeman, Laura E

    2018-05-01

    Glyphosate is the most commonly used herbicide worldwide, with both residential and agricultural uses. In 2015, the International Agency for Research on Cancer classified glyphosate as "probably carcinogenic to humans," noting strong mechanistic evidence and positive associations for non-Hodgkin lymphoma (NHL) in some epidemiologic studies. A previous evaluation in the Agricultural Health Study (AHS) with follow-up through 2001 found no statistically significant associations with glyphosate use and cancer at any site. The AHS is a prospective cohort of licensed pesticide applicators from North Carolina and Iowa. Here, we updated the previous evaluation of glyphosate with cancer incidence from registry linkages through 2012 (North Carolina)/2013 (Iowa). Lifetime days and intensity-weighted lifetime days of glyphosate use were based on self-reported information from enrollment (1993-1997) and follow-up questionnaires (1999-2005). We estimated incidence rate ratios (RRs) and 95% confidence intervals (CIs) using Poisson regression, controlling for potential confounders, including use of other pesticides. All statistical tests were two-sided. Among 54 251 applicators, 44 932 (82.8%) used glyphosate, including 5779 incident cancer cases (79.3% of all cases). In unlagged analyses, glyphosate was not statistically significantly associated with cancer at any site. However, among applicators in the highest exposure quartile, there was an increased risk of acute myeloid leukemia (AML) compared with never users (RR = 2.44, 95% CI = 0.94 to 6.32, Ptrend = .11), though this association was not statistically significant. Results for AML were similar with a five-year (RRQuartile 4 = 2.32, 95% CI = 0.98 to 5.51, Ptrend = .07) and 20-year exposure lag (RRTertile 3 = 2.04, 95% CI = 1.05 to 3.97, Ptrend = .04). In this large, prospective cohort study, no association was apparent between glyphosate and any solid tumors or lymphoid malignancies overall, including NHL and

  3. Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Ilana Schneider Lima

    2014-09-01

    Full Text Available This study evaluated the impact of different concentrations of glyphosate (Rondup® on planktonic and biofilm growth of P. aeruginosa. Aerobic and anaerobic cultures of P. aeruginosa ATCC®15442 inoculated in MHB + glyphosate (0.845 ppm, 1.690 ppm, 8.45 ppm, 16.90 ppm, 84.50 ppm, 169 ppm, 845 ppm, and 1690 ppm and cultured in normoxia and anoxia, following their OD560nm every hour for 24 h. Biofilms of adapted cells were formed in the presence of glyphosate (0.845 to 1690 ppm in normoxia and anoxia for 36 h. Glyphosate at concentrations higher than 84.5 ppm reduces the cell density of planktonic aerobic cultures (p 0.05, and more pronounced over 169 ppm. Anaerobic biofilms have their growth more readily favored (p < 0.05, regardless of concentration. In a concentration-dependent manner, glyphosate interferes with the growth ability of P. aeruginosa ATCC®15442.

  4. Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus.

    Science.gov (United States)

    Uloth, Margaret B; Clode, Peta L; You, Ming Pei; Barbetti, Martin J

    2016-01-01

    Sclerotinia stem rot (SSR, Sclerotinia sclerotiorum) is a damaging disease of oilseed brassicas world-wide. Host resistance is urgently needed to achieve control, yet the factors that contribute to stem resistance are not well understood. This study investigated the mechanisms of resistance to SSR. Stems of 5-week-old Brassica carinata, B. juncea and B. napus of known resistance were infected via filter paper discs impregnated with S. sclerotiorum mycelium under controlled conditions. Transverse sections of the stem and portions of the stem surface were examined using optical and scanning electron microscopy. The association of anatomical features with the severity of disease (measured by mean lesion length) was determined. Several distinct resistance mechanisms were recorded for the first time in these Brassica-pathogen interactions, including hypersensitive reactions and lignification within the stem cortex, endodermis and in tissues surrounding the lesions. Genotypes showing a strong lignification response 72 h post-infection (hpi) tended to have smaller lesions. Extensive vascular invasion by S. sclerotiorum was observed only in susceptible genotypes, especially in the vascular fibres and xylem. Mean lesion length was negatively correlated with the number of cell layers in the cortex, suggesting progress of S. sclerotiorum is impeded by more cell layers. Hyphae in the centre of lesions became highly vacuolate 72 hpi, reflecting an ageing process in S. sclerotiorum hyphal networks that was independent of host resistance. The infection process of S. sclerotiorum was analogous in B. carinata and B. napus. Infection cushions of the highly virulent isolate of S. sclerotiorum MBRS-1 were grouped together in dense parallel bundles, while hyphae in the infection cushions of a less aggressive isolate WW-3 were more diffuse, and this was unaffected by host genotype. A variety of mechanisms contribute to host resistance against S. sclerotiorum across the three

  5. High permeation rates in liposome systems explain rapid glyphosate biodegradation associated with strong isotope fractionation.

    Science.gov (United States)

    Ehrl, Benno; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-05-23

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, pH-dependent membrane permeation coefficients (Papp) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from Papp(pH 7.0) = 3.7 (+/-0.3) × 10-7 m∙s-1 to Papp(pH 4.1) = 4.2 (+/-0.1) × 10-6 m∙s-1. This surprisingly rapid membrane permeation depended on glyphosate speciation and was, at physiological pH, in the range of polar, non-charged molecules suggesting that passive membrane permeation is a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, two orders of magnitudes higher than glyphosate degradation rates. Moreover, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect of AKIEcarbon= 1.014 ± 0.003. This value is consistent with unmasked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was little mass transfer-limited and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  6. Lipid composition and emulsifying properties of canola lecithin from enzymatic degumming.

    Science.gov (United States)

    Xie, Meizhen; Dunford, Nurhan Turgut

    2017-03-01

    This study investigated the polar lipid composition and emulsifying properties of canola lecithin from enzymatic degumming (CLED). Phospholipase A 1 was used for enzymatic degumming of crude canola oil to collect lecithin sample. Canola lecithin from water degumming (CLWD) was also collected and served as the control. The results showed that the contents of phosphatidylethanolamine (PE) (2.99%) and phosphatidylcholine (PC) (6.59%) in CLED were significantly lower than that in CLWD (PE 15.55% and PC 21.93%); while the content of lysophosphatidylcholine (LPC) (19.45%) in CLED was significantly higher than that in CLWD (3.27%). Unsaturated fatty acids accounted for a higher percentage of the total fatty acids in CLED than in CLWD. CLED promoted more stable o/w emulsions than CLWD. This study provides a better understanding of the chemical nature of CLED, and important information for utilization of CLED as o/w emulsifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Qualitative analysis of pure and adulterated canola oil via SIMCA

    Science.gov (United States)

    Basri, Katrul Nadia; Khir, Mohd Fared Abdul; Rani, Rozina Abdul; Sharif, Zaiton; Rusop, M.; Zoolfakar, Ahmad Sabirin

    2018-05-01

    This paper demonstrates the utilization of near infrared (NIR) spectroscopy to classify pure and adulterated sample of canola oil. Soft Independent Modeling Class Analogies (SIMCA) algorithm was implemented to discriminate the samples to its classes. Spectral data obtained was divided using Kennard Stone algorithm into training and validation dataset by a fixed ratio of 7:3. The model accuracy obtained based on the model built is 0.99 whereas the sensitivity and precision are 0.92 and 1.00. The result showed the classification model is robust to perform qualitative analysis of canola oil for future application.

  8. Biodegradation of glyphosate herbicide by Salinicoccus spp isolated from Qom Hoze-soltan lake, Iran

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-01-01

    Full Text Available Background: Glyphosate (N-phosphonomethyl Glycine is an organophosphorus pesticide with dangerous effects on the environment. In this study, the biodegradation of glyphosate herbicide by halophilic bacteria isolated from Qom Hoze-Soltan Lake has been investigated. Methods: After sampling and bacterial isolation, native halophilic strains grown in the presence of glyphosate at a wavelength of 660 nm and also the disappearance of the glyphosate in the plates at a wavelength of 220 nm were determined and the dominant bacteria were isolated. Biochemical, molecular (according to the 16S rRNA sequence, antibiotic, and the Minimum Inhibitory Concentration (MIC test was performed for the dominant bacteria. Analysis of the remaining glyphosate herbicide was performed by HPLC analysis after derivation with FMOC-Cl. Results: According to the results of the biochemical, antibiotic and molecular 16S rRNA tests, the native halophilic isolates with the ability to biodegrade glyphosate were gram positive cocci very similar to Salinicoccusspp. The results of HPLC showed that Salinicoccusspp is able to biodegrade glyphosate herbicide. Conclusion: The native bacteria in Qom Hoze-soltanlake, Iran can be used for biodegradation of glyphosate herbicide.

  9. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    Science.gov (United States)

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination.

    Science.gov (United States)

    Bai, Shahla Hosseini; Ogbourne, Steven M

    2016-10-01

    Glyphosate has been the most widely used herbicide during the past three decades. The US Environmental Protection Agency (EPA) classifies glyphosate as 'practically non-toxic and not an irritant' under the acute toxicity classification system. This classification is based primarily on toxicity data and due to its unique mode of action via a biochemical pathway that only exists in a small number of organisms that utilise the shikimic acid pathway to produce amino acids, most of which are green plants. This classification is supported by the majority of scientific literature on the toxic effects of glyphosate. However, in 2005, the Food and Agriculture Organisation (FAO) reported that glyphosate and its major metabolite, aminomethylphosphonic acid (AMPA), are of potential toxicological concern, mainly as a result of accumulation of residues in the food chain. The FAO further states that the dietary risk of glyphosate and AMPA is unlikely if the maximum daily intake of 1 mg kg(-1) body weight (bw) is not exceeded. Research has now established that glyphosate can persist in the environment, and therefore, assessments of the health risks associated with glyphosate are more complicated than suggested by acute toxicity data that relate primarily to accidental high-rate exposure. We have used recent literature to assess the possible risks associated with the presence of glyphosate residues in food and the environment.

  11. Consequences of phosphate application on glyphosate uptake by roots: Impacts for environmental management practices.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Maccario, Sophie; Lucotte, Marc; Labrecque, Michel; Juneau, Philippe

    2015-12-15

    Phosphate (PO4(3-)) fertilization is a common practice in agricultural fields also targets for glyphosate application. Due to their chemical similarities, PO4(3-) and glyphosate compete for soil adsorbing sites, with PO4(3-) fertilization increasing glyphosate bioavailability in the soil solution. After PO4(3-) fertilization, its concentration will be elevated in the soil solution and both PO4(3-) and glyphosate will be readily available for runoff into aquatic ecosystems. In this context, man-made riparian buffer strips (RBS) at the interface of agricultural lands and waterways can be used as a green technology to mitigate water contamination. The plants used in RBS form a barrier to agricultural wastes that can limit runoff, and the ability of these plants to take up these compounds through their roots plays an important role in RBS efficacy. However, the implications of PO4(3-) for glyphosate uptake by roots are not yet clearly demonstrated. Here, we addressed this problem by hydroponically cultivating willow plants in nutrient solutions amended with glyphosate and different concentrations of PO4(3-), assuring full availability of both chemicals to the roots. Using a phosphate carrier inhibitor (phosphonophormic acid-PFA), we found that part of the glyphosate uptake is mediated by PO4(3-) transporters. We observed, however, that PO4(3-) increased glyphosate uptake by roots, an effect that was related to increased root cell membrane stability. Our results indicate that PO4(3-) has an important role in glyphosate physiological effects. Under agricultural conditions, PO4(3-) fertilization can amplify glyphosate efficiency by increasing its uptake by the roots of undesired plants. On the other hand, since simultaneous phosphate and glyphosate runoffs are common, non-target species found near agricultural fields can be affected. Copyright © 2015. Published by Elsevier B.V.

  12. Is the growth stimulation by low doses of glyphosate sustained over time?

    International Nuclear Information System (INIS)

    Cedergreen, Nina

    2008-01-01

    The herbicide, glyphosate, has been shown to stimulate growth in a range of species when applied at doses of 5-60 g a.e. ha -1 , corresponding to realistic spray drift events. This study investigates growth of shoot parameters over time to detect whether the glyphosate induced growth increase was sustained and had a final effect on reproduction. The results showed that an actual biomass growth rate increase took place within the first week after spraying with glyphosate doses -1 . This initial growth boost kept treated plants larger than untreated plants for up to six weeks, but at harvest there was no significant difference between control plants and treated plants. Possible effects of glyphosate hormesis on the competitive ability of spray drift affected plants are discussed. - Glyphosate induced hormesis in barley is not sustained over time

  13. Is the growth stimulation by low doses of glyphosate sustained over time?

    Energy Technology Data Exchange (ETDEWEB)

    Cedergreen, Nina [Department of Agricultural Sciences, Faculty of Life Science, University of Copenhagen, Hojbakkegard Alle 13, 2630 Tastrup (Denmark)], E-mail: ncf@life.ku.dk

    2008-12-15

    The herbicide, glyphosate, has been shown to stimulate growth in a range of species when applied at doses of 5-60 g a.e. ha{sup -1}, corresponding to realistic spray drift events. This study investigates growth of shoot parameters over time to detect whether the glyphosate induced growth increase was sustained and had a final effect on reproduction. The results showed that an actual biomass growth rate increase took place within the first week after spraying with glyphosate doses <60 g a.e. ha{sup -1}. This initial growth boost kept treated plants larger than untreated plants for up to six weeks, but at harvest there was no significant difference between control plants and treated plants. Possible effects of glyphosate hormesis on the competitive ability of spray drift affected plants are discussed. - Glyphosate induced hormesis in barley is not sustained over time.

  14. Water use efficiency by coffee arabica after glyphosate application

    Directory of Open Access Journals (Sweden)

    Felipe Paolinelli de Carvalho

    2014-07-01

    Full Text Available Many coffee growers apply glyphosate in directed applications, but some phytotoxicity has been noted. It is believed some herbicides can exert a direct or indirect negative effect on photosynthesis by reducing the metabolic rate in a way that can affect the water use efficiency. The objective of this study was to investigate the variables related to water use among coffee cultivars subjected to the application of glyphosate and the effects of each dose. The experiment was conducted in a greenhouse using three varieties of coffee (Coffea arabica, Acaiá (MG-6851, Catucaí Amarelo (2SL and Topázio (MG-1190, and three doses of glyphosate (0.0, 115.2 and 460.8 g acid equivalent ha-1, in a factorial 3 x 3 design. At 15 days after application, a reduction in stomatal conductance was observed, and smaller transpiration rate and water use efficiency were found in the fourth leaf at 15 days after application. There was a decrease in the transpiration rate at 45 DAA, with the Acaiá cultivar showing reductions with 115.2 g ha-1. There was transitory reduction in water use efficiency with glyphosate application, but can affect the growth and production. The Acaiá cultivar showed the highest tolerance to glyphosate because the water use efficiency after herbicide application.

  15. Adsorption-desorption, mobility and degradation of 14C-Glyphosate in two soil series

    International Nuclear Information System (INIS)

    Ismail, B. S.; Zaifah Abdul Kadir; Khairiah Jusoh; Nashriyah Mat

    2002-01-01

    The adsorption desorption and degradation of glyphosate (Roundup) have been studied using 14 C glyphosate in two soils, namely Serdang Series and Sungai Buloh Series. The percentage of adsorption was not significantly different (p 14 C- glyphosate was detected in 0-10 cm zone of the two soils studied. However, in Sungai Buloh Series, a significant amount of 14 C-glyphosate was detected in the 10-20 cm zone. A small amount of 14 C radioactivity was also detected in the leachate of the two soils. The percentage of degradation in the Sungai Buloh and Serdang Series soils was higher at 10 μg/ml and 50 μg/ml, concentration, respectively. At 50 μg/ml concentration the Sungai Buloh Series soil showed higher glyphosate residue (83%) as compared to Serdang Series (48%). In contrast, the glyphosate residue was found to be higher in the Serdang Series (73916) as compared to the Sungai Buloh Series (30%) at 10 μg/ml concentration. (Author)

  16. Effect of a 6-month intervention with cooking oils containing a high concentration of monounsaturated fatty acids (olive and canola oils) compared with control oil in male Asian Indians with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nigam, Priyanka; Bhatt, Suryaprakash; Misra, Anoop; Chadha, Davinder S; Vaidya, Meera; Dasgupta, Jharna; Pasha, Qadar M A

    2014-04-01

    We investigated the effects of dietary intervention with canola or olive oil in comparison with commonly used refined oil in Asian Indians with nonalcoholic fatty liver disease (NAFLD). This was a 6-month intervention study including 93 males with NAFLD, matched for age and body mass index (BMI). Subjects were randomized into three groups to receive olive oil (n=30), canola oil (n=33), and commonly used soyabean/safflower oil (control; n=30) as cooking medium (not exceeding 20 g/day) along with counseling for therapeutic lifestyle changes. The BMI, fasting blood glucose (FBG) and insulin levels, lipids, homeostasis model of assessment for insulin resistance (HOMA-IR), HOMA denoting β-cell function (HOMA-βCF), and disposition index (DI) were measured at pre- and post-intervention. Data were analyzed with one-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference multiple comparison test procedures. Olive oil intervention led to a significant decrease in weight and BMI (ANOVA, P=0.01) compared with the control oil group. In a comparison of olive and canola oil, a significant decrease in fasting insulin level, HOMA-IR, HOMA-βCF, and DI (Poil group. Pre- and post-intervention analysis revealed a significant increase in high-density lipoprotein level (P=0.004) in the olive oil group and a significant decrease in FBG (P=0.03) and triglyceride (P=0.02) levels in the canola oil group. The pre- and post-intervention difference in liver span was significant only in the olive (1.14 ± 2 cm; Poil groups. In the olive and canola oil groups, post-intervention grading of fatty liver was reduced significantly (grade I, from 73.3% to 23.3% and from 60.5% to 20%, respectively [Poil group no significant change was observed. Results suggest significant improvements in grading of fatty liver, liver span, measures of insulin resistance, and lipids with use of canola and olive oil compared with control oils in Asian Indians with NAFLD.

  17. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina.

    Science.gov (United States)

    Pérez, Débora J; Okada, Elena; De Gerónimo, Eduardo; Menone, Mirta L; Aparicio, Virginia C; Costa, José L

    2017-12-01

    In the present study, we evaluated the spatial and temporal trends of current-use pesticides in surface water and sediments as well as their relationship with hydrological stream dynamics within the agricultural watershed of El Crespo stream (Buenos Aires Province, Argentina). We sampled 2 contrasting sites: site 1 (upstream), surrounded by agricultural lands, and site 2 (downstream), surrounded by natural grasslands. Most of the applied pesticides (glyphosate, 2,4-D, atrazine, tebuconazole, and imidacloprid) were detected at high frequencies in surface water samples at both sites. However, only glyphosate and aminomethylphosphonic acid (AMPA) were present at high concentrations and had a significant spatial-temporal trend. The highest concentrations were found during spring 2014 at site 1, in association with the intense rains that occurred in that season. The fact that glyphosate and AMPA concentrations were higher than the rest of the studied compounds is closely related to the land use within the watershed, as glyphosate was the most applied herbicide during the fallow period of glyphosate-resistant crops (soybean, maize). The pesticide mixture had a significant spatial-temporal trend, reaching the highest levels during storm flow events in spring 2014. The intensive rains in spring 2014 could be the main factor influencing stream hydrology and pesticide behavior at El Crespo watershed. The estimated annual pesticide losses were 3.11 g/ha at site 1 and 0.72 g/ha at site 2. This result indicates that an attenuation process could be decreasing pesticide loads during downstream transport from site 1 to site 2. Environ Toxicol Chem 2017;36:3206-3216. © 2017 SETAC. © 2017 SETAC.

  18. Research on the weed control degree and glyphosate soil biodegradation in apple plantations (Pioneer variety

    Directory of Open Access Journals (Sweden)

    Ersilia ALEXA

    2010-05-01

    Full Text Available In this study we follow control degree of glyphosate herbicide on weeds in apple plantations (Pioneer variety of the Research Station Timisoara. It was also followed glyphosate biodegradation capacity in the soil by determining the amount of CO2 released by the action of microorganisms on C14 glyphosate marked isotope. Laboratory analysis of glyphosate residues in soil was made using a Liquid Scintillation TRIATHLER. Glyphosate biodegradation ability in the presence of soil microorganisms is high, so glyphosate residues remaining in soil, in terms of its use in weed combating, are minimal. Study of glyphosate biodegradation capacity in the experimental field indicates that the CO2 fraction accumulated after 50 days is 28.02% for samples exposed in the experimental field. Weather conditions, especially temperature variations between day and night, influences the activity of soilmicroorganisms and affect biodegraded glyphosate percentage.Chemical method of weed control consisted in: herbicide used was Roundup 3 l/ha (glyphosate isopropyl amine salt 360 g/l and are based on chemical application on weeds, on the rows of trees, on their uptake and translocation in their organs having as principal scope the total destruction of weeds. The experimental results obtained reveal a weed combat degree of 82.98% , in the case of chemical variant, compared with control variant. The species combated mainly due to glyphosate herbicide, which is no longer found in the final mapping are: Capsella bursa-pastoris, Chenopodium album, Echinochloa crus-galli, Plantago major, Polygonum aviculare. Total combated weeds /m2 with glyphosate is 126.67.

  19. Glyphosate Shapes a Dinoflagellate-Associated Bacterial Community While Supporting Algal Growth as Sole Phosphorus Source

    Directory of Open Access Journals (Sweden)

    Cong Wang

    2017-12-01

    Full Text Available Glyphosate is a widely used herbicide that can potentially be a phosphorus (P source for phytoplankton and microbes when discharged into the coastal ocean. In contrast to bacteria, few eukaryotic phytoplankton species appear capable of directly utilizing glyphosate. In this study, we observed, after a long delay (>60 days, Prorocentrum donghaiense, a dinoflagellate known to cause major harmful algal blooms in the East China Sea, could grow in a medium with glyphosate as the sole P source; suggesting that P. donghaiense growth was through bacterial mediation. To understand how the bacteria community might respond to glyphosate, we analyzed the 16S rRNA genes of the microbial community present in P. donghaiense cultures when grown under lower (36 μM and higher (360 μM glyphosate concentrations. Based on both Sanger and Illumina high throughput sequencing, we obtained more than 55,323 good-quality sequences, which were classified into six phyla. As the concentration of glyphosate rose, our results showed a significant increase in the phyla Proteobacteria and Firmicutes and a decrease in the phylum Bacteroidetes. Further qPCR (Quantitative PCR analysis showed higher abundances of two specific phylotypes in the higher-glyphosate P. donghaiense cultures when compared to the lower-glyphosate and no-glyphosate cultures. Correspondingly, qPCR displayed the same trend for the abundance of a gammaproteobacterial type of phnJ, a gene encoding Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase, which is responsible for phosphonate degradation. In addition, Tax4Fun analysis based on our 16S rRNA gene sequences results in higher predicted abundances of phosphonate metabolizing genes in glyphosate-treated cultures. This study demonstrates that glyphosate could selectively promote the growth of particular groups of bacteria within an algal culture and in glyphosate enriched coastal waters, this interaction may potentially further facilitate the growth of

  20. Effect of Pre-culture Irradiation and Explant Types on Efficiency of Brassica napus Genetic Transformation

    International Nuclear Information System (INIS)

    Amer, I.M.; Moustafa, H.A.M.; Azzam, C.R.

    2008-01-01

    The irradiated seeds of canola cv. Drakkar ( Brassica napus l. ) were germinated under aspect conditions, cotyledonary petioles and hypocotyl of 6 days old seedlings were used for Agrobacterium-mediated transformation. Agrobacterium tumefaciens has construct with the selectable marker gene (NPT II) and the desirable gene (HPPD). Direct and indirect shoot organogenesis were obtained from the both explants. Cotyledonary petioles was higher responded than hypocotyl with respective 26% and 14% of the explants producing NPT II-positive shoots after the selection on 50mg/l kanamycin. Calli might develop on and not in the agar medium were un transformation. This explains the higher number of escapes detected in hypocotyl explants than in experiments with cotyledons. The frequency of transformation plants as a function of indirect organogenesis was more than direct shoot regeneration from explants. The pre- irradiation with 75 Gy of gamma rays enhanced the genetic transformation frequencies by about 10 % as compared to that of the un-irradiated material. The obtained shoots were rooted and regenerated mature plants

  1. Mapping the Distribution and Flora of the Weeds in Canola Fields of Gorgan Township by Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    sahar jannati ataie

    2018-02-01

    Full Text Available Introduction: Oil seeds are the second world’s food supply after cereals. These crops are grown primarily for the oil contained in the seeds. The major world sources of edible seed oils are soybeans, sunflowers, canola, cotton and peanuts. Canola is one of the most important plants in the world that has great importance. The plant belongs to the Brassica genus, the botanical family that includes cauliflower and cabbages. Weeds are one of the major problems in canola production that reduce yield and its quality. In general, one of the most important factors in development of management plans is information about the weed’s flora and geographic distribution. Knowledge of weed flora enables one to use the required herbicide and formulate other suitable management strategies. It is also useful in exploiting abundant weeds as a cover crop or pasture and for other economic uses. The geographic information system has the proper use in weed science and management of agricultural information and their analysis. In this study, distribution and flora of the weeds in canola fields of Gorgan Township investigated by Geographic Information System. Material and Methods: Crop sampling was conducted during May and June 2014, in 58 canola fields in Gorgan Township (Golestan province and the weed species were sampled and detected using a W method and by specific formula of density, frequency, uniformity, and abundance of each weed species was calculated. Also, geographic coordinates of fields (latitude, altitude and elevation were determined by using GPS model Garmin map 60. After collecting data, in order to create a database of weed distribution, the data was transferred from GPS to ArcGIS 9/3.1 software. From all information obtained, consistently a database with location was created and after separation of data based on present or absence of weeds on fields, distribution maps were produced. Results and Discussion: The results showed that there are 35 weed

  2. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  3. Correlation of leaf damage with uptake and translocation of glyphosate in velvetleaf (Abutilon theophrasti)

    International Nuclear Information System (INIS)

    Feng, P.C.C.; Ryerse, J.S.; Sammons, R.D.

    1998-01-01

    Uptake and translocation of glyphosate in three commercial formulations were examined in velvetleaf, a dicotyledonous weed that is commonly treated with glyphosate. The formulations included Roundup(R) (MON35085), Roundup Ultra, and Touchdown(R) as sold in Canada. A minimal amount of 14C-glyphosate was spiked into a lethal rate of each formulation, and the short-term (3 to 72 h) uptake into the treated leaf and subsequent translocation into the plant were measured. Time-course studies showed very rapid uptake and translocation of glyphosate in the Ultra formulation. In comparison, the uptake and translocation of glyphosate in Touchdown was much slower but continued throughout the 72-h period. Glyphosate in the Roundup formulation showed intermediate uptake and translocation. Tissue necrosis at the application sites of Ultra and Roundup was visible within 24 h after treatment. Examinations using stereo and fluorescence microscopy revealed extensive cell death and tissue disruption. Tissue necrosis from Ultra and Roundup was also observed in blank formulations containing no glyphosate and therefore was likely caused by the surfactants. In contrast, the application sites of Touchdown produced little to no leaf damage. Our results demonstrated a direct correlation between tissue necrosis and rapid rates of glyphosate uptake and translocation. (author)

  4. Desempenho e qualidade dos ovos de poedeiras semipesadas alimentadas com dietas contendo óleos de soja e canola Performance and eggs quality in laying hens fed diets with soybean and canola oils

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2008-08-01

    Full Text Available Objetivou-se analisar a influência da adição de níveis crescentes de óleo de soja e canola sobre os índices de desempenho e qualidade interna e externa dos ovos de poedeiras comerciais semipesadas da linhagem Bovans Goldline durante cinco períodos de 28 dias. Foram utilizadas 280 aves com 18 semanas de idade, em um delineamento inteiramente casualizado, com sete tratamentos em um esquema fatorial 2 × 3 + 1 (dois tipos de óleo e três níveis de óleo mais um testemunha adicional com cinco repetições e oito aves por unidade experimental. Os níveis de óleo de soja e de canola não alteraram o consumo de ração, os pesos dos ovos, de albúmen, de gema e de casca, as porcentagens de albúmen, de gema e de casca e a gravidade específica dos ovos. Houve influência significativa da interação tipo × nível de óleo sobre a produção de ovos e a conversão por massa e por dúzia de ovos. Com o aumento do nível de óleo de soja, os resultados obtidos para estas variáveis melhoraram, entretanto, a conversão por massa de ovo piorou com o aumento dos níveis de óleo de canola. A adição de óleo de soja promoveu desempenho melhor que o obtido com óleo de canola.The objective of this study was to evaluate the influence of soybean and canola oil added in crescent levels on production performance indexes and internal and external egg quality of brown commercial layers of the strain Bovans Goldline during five periods of 28 days. Two hundred and eighty hens with 18 weeks old were distributed in a completely randomized design, with seven diets in a 2 × 3 + 1 factorial arrangement (oil type and oil level, and an additional control, with 5 replicates of 8 hens per experimental unit. The soybean and canola oil levels did not affect the feed consumption; egg, albumen, yolk and shell weights; albumen, yolk and shell percentages, neither the specific gravity. There was an interaction between type and oils levels on egg production and mass

  5. Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Ludmilla Aristilde

    2017-06-01

    Full Text Available Previous studies have reported adverse effects of glyphosate on crop-beneficial soil bacterial species, including several soil Pseudomonas species. Of particular interest is the elucidation of the metabolic consequences of glyphosate toxicity in these species. Here we investigated the growth and metabolic responses of soil Pseudomonas species grown on succinate, a common root exudate, and glyphosate at different concentrations. We conducted our experiments with one agricultural soil isolate, P. fluorescens RA12, and three model species, P. putida KT2440, P. putida S12, and P. protegens Pf-5. Our results demonstrated both species- and strain-dependent growth responses to glyphosate. Following exposure to a range of glyphosate concentrations (up to 5 mM, the growth rate of both P. protegens Pf-5 and P. fluorescens RA12 remained unchanged whereas the two P. putida strains exhibited from 0 to 100% growth inhibition. We employed a 13C-assisted metabolomics approach using liquid chromatography-mass spectrometry to monitor disruptions in metabolic homeostasis and fluxes. Profiling of the whole-cell metabolome captured deviations in metabolite levels involved in the tricarboxylic acid cycle, ribonucleotide biosynthesis, and protein biosynthesis. Altered metabolite levels specifically in the biosynthetic pathway of aromatic amino acids (AAs, the target of toxicity for glyphosate in plants, implied the same toxicity target in the soil bacterium. Kinetic flux experiments with 13C-labeled succinate revealed that biosynthetic fluxes of the aromatic AAs were not inhibited in P. fluorescens Pf-5 in the presence of low and high glyphosate doses but these fluxes were inhibited by up to 60% in P. putida KT2440, even at sub-lethal glyphosate exposure. Notably, the greatest inhibition was found for the aromatic AA tryptophan, an important precursor to secondary metabolites. When the growth medium was supplemented with aromatic AAs, P. putida S12 exposed to a lethal

  6. Characterization of bacterial functional groups and microbial activity in microcosms with glyphosate application

    Science.gov (United States)

    Moyano, Sofia; Bonetto, Mariana; Baigorria, Tomas; Pegoraro, Vanesa; Ortiz, Jimena; Faggioli, Valeria; Conde, Belen; Cazorla, Cristian; Boccolini, Monica

    2017-04-01

    Glyphosate is a worldwide used herbicide as c. 90% of transgenic crops are tolerant to it. Microbial degradation of glyphosate molecule in soil is considered the most important process that determines its persistence in the environment. However, the impact of this herbicide on target groups of soil biota remains poorly understood. Our objective was to characterize the abundance of bacterial groups and global microbial activity, under controlled conditions with application of increasing doses of glyphosate. A bioassay was carried out in microcosms using an agricultural soil (Typic Argiudoll) with registered history of glyphosate application from National Institute of Agricultural Technology (INTA, EEA Marcos Juarez, Argentina). Glyphosate of commercial formulation (74.7%) was used and the following treatments were evaluated: Soil without glyphosate (control), and Soil with doses equivalent to 1.12 and 11.2 kg ai ha-1. Microbiological parameters were estimated at 3, 7, 14 and 21 days after herbicide application by counting heterotrophic, cellulolytic, nitrogen fixing (N), and nitrifying bacteria; and fluorescein diacetate hydrolysis (FDA), microbial respiration (MR) and microbial biomass (C-BM). The N cycle related bacteria showed greater sensitivity to glyphosate with significant increases in abundance. On the other hand the C cycle parameters were strongly conditioned by the time elapsed since the application of the herbicide, as did the MR. The FDA declined with the highest dose, while the C-BM was not affected. Therefore, we conclude that in the studied experimental conditions glyphosate stimulated bacterial growth (i.e. target abundances) representing a source of N, C and nutrients. On the other hand, enzymatic activity (FDA) decreased when glyphosate was applied in the highest dose, whereas, it had no effect on the MR nor C-BM, which could be attributable to the organic matter content of the soil. However, future research in field conditions is necessary, for

  7. Glyphosate Accumulation and Detrimental Effects on Coffea Arabica

    DEFF Research Database (Denmark)

    Schrübbers, Lars Christoph

    and the MS/MS system provided a limit of quantification (LOQ) below 0.1 mg/kg; the commonly used maximum residue limit (MRL) for glyphosate in plant derived food products. Glyphosate was found in all samples analyzed from different coffee fields, regardless of management practices. AMPA was not detected......Coffee is one of the most popular beverages worldwide and a highly traded commodity. In order to maintain a high yield of the perennial crop, weed competition for resources needs to be reduced. For this purpose herbicides are commonly applied, with glyphosate being one of the most prominent...

  8. User Guidelines for the Brassica Database: BRAD.

    Science.gov (United States)

    Wang, Xiaobo; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    The genome sequence of Brassica rapa was first released in 2011. Since then, further Brassica genomes have been sequenced or are undergoing sequencing. It is therefore necessary to develop tools that help users to mine information from genomic data efficiently. This will greatly aid scientific exploration and breeding application, especially for those with low levels of bioinformatic training. Therefore, the Brassica database (BRAD) was built to collect, integrate, illustrate, and visualize Brassica genomic datasets. BRAD provides useful searching and data mining tools, and facilitates the search of gene annotation datasets, syntenic or non-syntenic orthologs, and flanking regions of functional genomic elements. It also includes genome-analysis tools such as BLAST and GBrowse. One of the important aims of BRAD is to build a bridge between Brassica crop genomes with the genome of the model species Arabidopsis thaliana, thus transferring the bulk of A. thaliana gene study information for use with newly sequenced Brassica crops.

  9. Digestibilidade aparente da energia e nutrientes do farelo de canola pela tilápia do Nilo (Oreochromis niloticus Apparent nutrient and energy digestibility of canola meal for Nile tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Wilson Massamitu Furuya

    2001-06-01

    Full Text Available Este estudo foi realizado para determinar a energia digestível e a digestibilidade aparente de nutrientes do farelo de canola pela tilápia do Nilo (Oreochromis niloticus. O óxido de crômio (0,1% foi utilizado como indicador inerte em dieta semi-purificada, com coleta de fezes pelo sistema Guelph. Os peixes foram alimentados até saciedade aparente. O farelo de canola apresentou valores de energia e nutrientes digestíveis de: 77,84; 71,99; 86,92; 88,19; 67,16 e 29,86% para a matéria seca, energia, proteína, lipídios, cálcio e fósforo, respectivamente, correspondendo a 2969,98 (kcal/kg; 69,97; 32,6; 1,2; 0,41 e 0,28%, de energia digestível, matéria seca, proteína e lipídios digestíveis e cálcio e fósforo disponíveis, respectivamente. Os resultados obtidos neste trabalho evidenciam que a tilápia do Nilo pode utilizar eficientemente o farelo de canola.This study was carried out to determine the digestible energy and apparent nutrient digestibility of canola meal for Nile tilapia (Oreochromis niloticus. The chromic oxide (0.1% was used as an inert indicador in the semi-purified diet and faeces were collected by Guelph system. Fish were fed to apparent satiation. The apparent nutrient and energy digestibility of canola meal were: 77.84, 71.99, 86.92, 88.19, 67.16, and 29.86% for dry matter, energy, protein, lipids, calcium and phosphorus, respectively, corresponding to 2969,98 (kcal/kg; 69.97, 32.6, 1.2, 0.41, and 0.28% of, digestible energy, dry matter, protein and lipids and available calcium and phosphorus, respectively. The results obtained in this experiment evidence that Nile tilapia may be able to utilize canola meal eficiently.

  10. Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley

    DEFF Research Database (Denmark)

    Imparato, Valentina; Santos, Susana; Johansen, Anders

    2016-01-01

    and protist communities to foliar application of glyphosate, we measured bacterial and protist abundance, diversity and physiological status, as well as soil organic carbon. Foliar application of glyphosate doubled bacterial abundance of the culturable fraction present in the rhizosphere compared to the other...... treatments with no effect on total abundance. Also the abundance of culturable protists increased as an effect of glyphosate and the bacterial genetic diversity as revealed by 16S rDNA DGGE analysis was affected. Overall, the results indicate that when barley leaves are treated with glyphosate......, the availability of organic carbon in the rhizosphere of the dying roots is altered, which in turn may alter the bacterial and protist communities and their interactions. This can have implications for general soil carbon turnover processes and CO2 release in arable systems....

  11. Effects of glyphosate herbicide on the gastrointestinal microflora of Hawaiian green turtles (Chelonia mydas) Linnaeus.

    Science.gov (United States)

    Kittle, Ronald P; McDermid, Karla J; Muehlstein, Lisa; Balazs, George H

    2018-02-01

    In Hawaii, glyphosate-based herbicides frequently sprayed near shorelines may be affecting non-target marine species. Glyphosate inhibits aromatic amino acid biosynthesis (shikimate pathway), and is toxic to beneficial gut bacteria in cattle and chickens. Effects of glyphosate on gut bacteria in marine herbivorous turtles were assessed in vitro. When cultures of mixed bacterial communities from gastrointestinal tracts of freshly euthanized green turtles (Chelonia mydas), were exposed for 24h to six glyphosate concentrations (plus deionized water control), bacterial density was significantly lower at glyphosate concentrations≥2.2×10 -4 gL -1 (absorbance measured at 600nm wavelength). Using a modified Kirby-Bauer disk diffusion assay, the growth of four bacterial isolates (Pantoea, Proteus, Shigella, and Staphylococcus) was significantly inhibited by glyphosate concentrations≥1.76×10 -3 gL -1 . Reduced growth or lower survival of gut bacteria in green turtles exposed to glyphosate could have adverse effects on turtle digestion and overall health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Cassigneul, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Benoit, P.; Bergheaud, V.; Dumeny, V.; Etiévant, V. [INRA, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Goubard, Y. [AgroParisTech, UMR 1402 ECOSYS, 78850 Thiverval-Grignon (France); Maylin, A. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France); Justes, E. [INRA, UMR 1248 AGIR Auzeville — BP 52 627, 31 326, Castanet-Tolosan cedex (France); Alletto, L. [Université de Toulouse — École d' ingénieurs de Purpan, UMR 1248 AGIR — 75, Voie du TOEC BP 57 611, 31 076, Toulouse cedex 3 (France)

    2016-03-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of {sup 14}C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. {sup 14}C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH{sub 4}OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends {sup 14}C-glyphosate degradation half-life from 7 to 28 days depending on the CC. {sup 14}C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. - Highlights: • Glyphosate sorption on cover crop residues increases with their decomposition degree. • Glyphosate degradation and mineralization are lower in mulch than in soil. • Nonextractable residue formation is one of the main dissipation pathways of glyphosate in cover crop mulch.

  13. Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study

    International Nuclear Information System (INIS)

    Cassigneul, A.; Benoit, P.; Bergheaud, V.; Dumeny, V.; Etiévant, V.; Goubard, Y.; Maylin, A.; Justes, E.; Alletto, L.

    2016-01-01

    The increasing use of cover crops (CC) may lead to an increase in glyphosate application for their destruction. Sorption and degradation of "1"4C-glyphosate on and within 4 decaying CC-amended soils were compared to its fate in a bare soil. "1"4C-Glyphosate and its metabolites distribution between mineralized, water-soluble, NH_4OH-soluble and non-extractable fractions was determined at 5 dates during a 20 °C/84-d period. The presence of CC extends "1"4C-glyphosate degradation half-life from 7 to 28 days depending on the CC. "1"4C-Glyphosate dissipation occurred mainly through mineralization in soils and through mineralization and bound residue formation in decaying CC. Differences in sorption and degradation levels were attributed to differences in composition and availability to microorganisms. CC- and soil-specific dissipation patterns were established with the help of explicit relationships between extractability and microbial activity. - Highlights: • Glyphosate sorption on cover crop residues increases with their decomposition degree. • Glyphosate degradation and mineralization are lower in mulch than in soil. • Nonextractable residue formation is one of the main dissipation pathways of glyphosate in cover crop mulch.

  14. Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina.

    Science.gov (United States)

    Okada, Elena; Pérez, Débora; De Gerónimo, Eduardo; Aparicio, Virginia; Massone, Héctor; Costa, José Luis

    2018-05-01

    We measured the occurrence and seasonal variations of glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), in different environmental compartments within the limits of an agricultural basin. This topic is of high relevance since glyphosate is the most applied pesticide in agricultural systems worldwide. We were able to quantify the seasonal variations of glyphosate that result mainly from endo-drift inputs, that is, from direct spraying either onto genetically modified (GM) crops (i.e., soybean and maize) or onto weeds in no-till practices. We found that both glyphosate and AMPA accumulate in soil, but the metabolite accumulates to a greater extent due to its higher persistence. Knowing that glyphosate and AMPA were present in soils (> 93% of detection for both compounds), we aimed to study the dispersion to other environmental compartments (surface water, stream sediments, and groundwater), in order to establish the degree of non-point source pollution. Also, we assessed the relationship between the water-table depth and glyphosate and AMPA levels in groundwater. All of the studied compartments had variable levels of glyphosate and AMPA. The highest frequency of detections was found in the stream sediments samples (glyphosate 95%, AMPA 100%), followed by surface water (glyphosate 28%, AMPA 50%) and then groundwater (glyphosate 24%, AMPA 33%). Despite glyphosate being considered a molecule with low vertical mobility in soils, we found that its detection in groundwater was strongly associated with the month where glyphosate concentration in soil was the highest. However, we did not find a direct relation between groundwater table depth and glyphosate or AMPA detections. This is the first simultaneous study of glyphosate and AMPA seasonal variations in soil, groundwater, surface water, and sediments within a rural basin.

  15. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    Science.gov (United States)

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  16. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    Science.gov (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  17. Resposta de varjão (Parkia multijuga a subdoses de glyphosate Response of varjão (Parkia multijuga seedlings to reduced glyphosate rates

    Directory of Open Access Journals (Sweden)

    O.M. Yamashita

    2006-09-01

    Full Text Available O consumo de madeira no Brasil e no mundo apresenta demanda crescente. Em confronto com a pressão ambientalista de manutenção das florestas nativas, há necessidade de se estabelecerem áreas de reflorestamento para suprir o aumento da demanda de madeira, com a utilização de formas de manejo e tratos culturais que permitam o pleno crescimento das essências florestais. Um dos principais problemas do manejo de reflorestamento é a interferência das plantas daninhas após o plantio das mudas no campo, sendo o uso de herbicidas a principal forma de manejo. Este trabalho teve o objetivo de avaliar a eficiência de doses crescentes de glyphosate em mudas de varjão em condições de ambiente protegido. Foram avaliadas as doses de 0, 90, 180, 360 e 720 g ha-1 de glyphosate em plantas com quatro meses de idade, observando a intoxicação das plantas, altura, diâmetro do caule e número de folhas. O varjão, nas condições do experimento, apresentou tolerância e recuperação ao glyphosate até a dose de 360 g ha-1. Doses superiores a esta retardaram o crescimento da planta. O prejuízo causado pela deriva de glyphosate nessas plantas foi diretamente proporcional ao aumento da dose. Os sintomas evoluíram para queda de folhas, comprometendo o crescimento das plantas.Wood consumption has significantly increased in Brazil and worldwide.The environmental pressure to preserve native forest led to the need to establish reforestation areas to meet the increasing wood demand by applying cultural practices and management allowing a total growth of forest trees. One of the main problems in reforestation management is weed competition after seedling planting, with herbicide use being the main form of management. The objective of this work was to evaluate the phytotoxic effect of increasing rates of glyphosate on Varjão seedlings, under greenhouse conditions. Concentrations of 90, 180, 360 and 720 g ha-1 of glyphosate were evaluated in four

  18. Possible effects of glyphosate on Mucorales abundance in the rumen of dairy cows in Germany.

    Science.gov (United States)

    Schrödl, Wieland; Krüger, Susanne; Konstantinova-Müller, Theodora; Shehata, Awad A; Rulff, Ramon; Krüger, Monika

    2014-12-01

    Glyphosate (N-phosphonomethyl glycine) is registered as a herbicide for many food and non-food crops, as well as non-crop areas where total vegetation control is desired. Glyphosate influences the soil mycobiota; however, the possible effect of glyphosate residues in animal feed (soybean, corn, etc.) on animal mycobiota is almost unknown. Accordingly, the present study was initiated to investigate the mycological characteristics of dairy cows in relationship to glyphosate concentrations in urine. A total of 258 dairy cows on 14 dairy farms in Germany were examined. Glyphosate was detected in urine using ELISA. The fungal profile was analyzed in rumen fluid samples using conventional microbiological culture techniques and differentiated by MALDI-TOF mass spectrometry. LPS-binding protein (LBP) and antibodies (IgG1, IgG2, IgA, and IgM) against fungi were determined in blood using ELISA. Different populations of Lichtheimia corymbifera, Lichtheimia ramosa, Mucor, and Rhizopus were detected. L. corymbifera and L. ramosa were significantly more abundant in animals containing high glyphosate (>40 ng/ml) concentrations in urine. There were no significant changes in IgG1 and IgG2 antibodies toward isolated fungi that were related to glyphosate concentration in urine; however, IgA antibodies against L. corymbifera and L. ramosa were significantly lower in the higher glyphosate groups. Moreover, a negative correlation between IgM antibodies against L. corymbifera, L. ramosa, and Rhizopus relative to glyphosate concentration in urine was observed. LBP also was significantly decreased in animals with higher concentrations of glyphosate in their urine. In conclusion, glyphosate appears to modulate the fungal community. The reduction of IgM antibodies and LBP indicates an influence on the innate immune system of animals.

  19. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    Science.gov (United States)

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity

    Directory of Open Access Journals (Sweden)

    Lisong eMa

    2015-10-01

    Full Text Available AbstractThe fungus Leptosphaeria maculans (L. maculans is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localised cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR. However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1. Silencing of NbSOBIR1 or NbSERK3 (BAK1 compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signalling complex and were able to define the AvrLm1 effector domain.

  1. The economic and environmental cost of delayed GM crop adoption: The case of Australia's GM canola moratorium.

    Science.gov (United States)

    Biden, Scott; Smyth, Stuart J; Hudson, David

    2018-01-02

    Incorporating socio-economic considerations (SECs) into national biosafety regulations regarding genetically modified (GM) crops have opportunity costs. Australia approved the cultivation of GM canola through a science-based risk assessment in 2003, but allowed state moratoria to be instituted based on potential trade impacts over the period 2004 to 2008 and 2010 in the main canola growing states. This analysis constructs a counterfactual assessment using Canadian GM canola adoption data to create an S-Curve of adoption in Australia to measure the environmental and economic opportunity costs of Australia's SEC-based moratoria between 2004 and 2014. The environmental impacts are measured through the amount of chemical active ingredients applied during pest management, the Environmental Impact Quotient indicator, and greenhouse gas emissions. The economic impacts are measured through the variable costs of the weed control programs, yield and the contribution margin. The environmental opportunity costs from delaying the adoption of GM canola in Australia include an additional 6.5 million kilograms of active ingredients applied to canola land; a 14.3% increase in environmental impact to farmers, consumers and the ecology; 8.7 million litres of diesel fuel burned; and an additional 24.2 million kilograms of greenhouse gas (GHG) and compound emissions released. The economic opportunity costs of the SEC-based moratoria resulted in foregone output of 1.1 million metric tonnes of canola and a net economic loss to canola farmers' of AU$485.6 million. The paper provides some of the first quantified, post-adoption evidence on the opportunity cost and environmental impacts of incorporating SECs into GM crop regulation.

  2. Clastogenic Effects of Glyphosate in Bone Marrow Cells of Swiss Albino Mice

    International Nuclear Information System (INIS)

    Prasad, S.; Srivastava, S.; Singh, M.; Shukla, Y.

    2009-01-01

    Glyphosate (N-(phosphonomethyl) glycine, C 3 H 8 NO 5 P), a herbicide, used to control unwanted annual and perennial plants all over the world. Nevertheless, occupational and environmental exposure to pesticides can pose a threat to nontarget species including human beings. Therefore, in the present study, genotoxic effects of the herbicide glyphosate were analyzed by measuring chromosomal aberrations (CAs) and micronuclei (MN) in bone marrow cells of Swiss albino mice. A single dose of glyphosate was given intraperitoneally (i.p) to the animals at a concentration of 25 and 50 mg/kg b.wt. Animals of positive control group were injected i.p. benzo(a)pyrene (100 mg/kg b.wt., once only), whereas, animals of control (vehicle) group were injected i.p. dimethyl sulfoxide (0.2 mL). Animals from all the groups were sacrificed at sampling times of 24, 48, and 72 hours and their bone marrow was analyzed for cytogenetic and chromosomal damage. Glyphosate treatment significantly increases CAs and MN induction at both treatments and time compared with the vehicle control (P<.05). The cytotoxic effects of glyphosate were also evident, as observed by significant decrease in mitotic index (MI). The present results indicate that glyphosate is clastogenic and cytotoxic to mouse bone marrow.

  3. Glyphosate Utilization as the Source of Carbon: Isolation and Identification of new Bacteria

    Directory of Open Access Journals (Sweden)

    M. Mohsen Nourouzi

    2011-01-01

    Full Text Available Mixed bacteria from oil palm plantation soil (OPS were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA (99.5%. It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strains i.e. Stenotrophomonas maltophilia and Providencia alcalifaciens were obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.

  4. Physiological responses to glyphosate are dependent on Eucalyptus urograndis genotype

    Science.gov (United States)

    Two experiments were conducted to evaluate the response of Eucalyptus urograndis genotypes (C219 and GG100) to glyphosate in growth chambers. As glyphosate dose increased (18 up to 720 g ae ha-1), CO2 assimilation rate, transpiration rate, and stomatal conductance decreased fastest and strongest in ...

  5. DISPERSION OF GLYPHOSATE IN SOILS UNDERGOING EROSION

    Directory of Open Access Journals (Sweden)

    Gorana Todorovic Rampazzo

    2010-08-01

    Full Text Available Different physical, chemical and biological processes influence the behaviour of organic contaminants in soils. A better understanding of the organic pollutant behaviour in soils would improve the environmental protection. One possible way for better attenuation of the risk of pollution in agriculture can be achieved through ta better-specified pesticide management based on the adaptation of the pesticide type and application rates to the specific environmental characteristics of the area of application. Nowadays, one of the actually most applied herbicide world wide is glyphosate. Glyphosate is highly water soluble and traces have been found in surface and groundwater systems. For a better understanding of the natural influence of erosion processes on glyphosate behaviour and dispersion under heavy rain conditions after application in the field, two erosion simulation experiments were conducted on two different locations in Austria with completely different soil types in September 2008. The results of the experiments showed that under normal practical conditions (e.g. no rainfall is expected immediatly after application, the potential adsorption capacity of the Kirchberg soil (Stagnic Cambisol, with about 16.000 ppm Fe-oxides is confirmed compared to the low adsorption Chernosem soil (about 8.000 ppm pedogenic Fe-oxides.  Considering the enormous difference in the run-off amounts between the two sites Pixendorf and Kirchberg soils it can be concluded how important the soil structural conditions and vegetation type and cover are for the risks of erosion and, as a consequence, pollution of neighbouring waters. In the rainfall experiments under comparable simulation conditions, the amount of run-off was about 10 times higher at Kirchberg, owing to its better infiltration rate, than at the Pixendorf site. Moreover, the total loss of glyphosate (NT+CT through run-off at the Kirchberg site was more than double that at Pixendorf, which confirms the

  6. Effects of interactions between Collembola and soil microbial community on the degradation of glyphosate-based herbicide

    Science.gov (United States)

    Wee, J.; Lee, Y. S.; Son, J.; Kim, Y.; Nam, T. H.; Cho, K.

    2017-12-01

    Glyphosate is the most widely used herbicide because of its broad spectrum activity and effectiveness, however, little is known about adverse effects on non-target species and their interactions. Therefore, in this study, we investigated the effects of glyphosate on interactions between Collembola and soil microbial community and the effect of Collembola on degradation of glyphosate. The experiment carried out in PS container filled with 30g of soil according to OECD 232 guidelines. Investigating the effects of soil microbial community and Collembola on degradation of glyphosate, we prepared defaunated field soil (only maintaining soil microbial community, sampling in May and September, 2016.) and autoclaved soil with 0, 10, 30 adults of Paronychiurus kimi (Collembola) respectively. Survived adults and hatched juveniles of P. kimi were counted after 28-day exposures in both soils spiked with 100 mg/kg of glyphosate. Glyphosate in soil of 7, 14, 21, 28 days after spiking of glyphosate based herbicide was analyzed by spectrophotometer (Jan et al., 2009). Also soil microbial community structure was investigated using phospholipid fatty acids (PLFAs) composition analysis of soils following the procedures given by the Sherlock Microbial Identification System (MIDI Inc., Newark, DE). Glyphosate (100mg/kg soil) has no effects on reproduction and survival of P. kimi in any soils. Also, glyphosate in soils with Collembola was more rapidly degraded. Rapid increase of soil microbial biomass(PLFAs) was shown in soil with Collembola addition. This result showed that glyphosate affected interactions between Collembola and soil microorganisms, and also soil microbial community affected by Collembola changed degradation of glyphosate.

  7. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorous lyase

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Zechel, David L; Jochimsen, Bjarne

    2014-01-01

    After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a l...

  8. Cancer Incidence among Glyphosate-Exposed Pesticide Applicators in the Agricultural Health Study

    OpenAIRE

    De Roos, Anneclaire J.; Blair, Aaron; Rusiecki, Jennifer A.; Hoppin, Jane A.; Svec, Megan; Dosemeci, Mustafa; Sandler, Dale P.; Alavanja, Michael C.

    2004-01-01

    Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in...

  9. Epidemiologic studies of glyphosate and non-cancer health outcomes: a review.

    Science.gov (United States)

    Mink, Pamela J; Mandel, Jack S; Lundin, Jessica I; Sceurman, Bonnielin K

    2011-11-01

    The United States (US) Environmental Protection Agency (EPA) and other regulatory agencies around the world have registered glyphosate as a broad-spectrum herbicide for use on multiple food and non-food use crops. To examine potential health risks in humans, we searched and reviewed the literature to evaluate whether exposure to glyphosate is associated causally with non-cancer health risks in humans. We also reviewed biomonitoring studies of glyphosate to allow for a more comprehensive discussion of issues related to exposure assessment and misclassification. Cohort, case-control and cross-sectional studies on glyphosate and non-cancer outcomes evaluated a variety of endpoints, including non-cancer respiratory conditions, diabetes, myocardial infarction, reproductive and developmental outcomes, rheumatoid arthritis, thyroid disease, and Parkinson's disease. Our review found no evidence of a consistent pattern of positive associations indicating a causal relationship between any disease and exposure to glyphosate. Most reported associations were weak and not significantly different from 1.0. Because accurate exposure measurement is crucial for valid results, it is recommended that pesticide-specific exposure algorithms be developed and validated. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The need for independent research on the health effects of glyphosate-based herbicides.

    Science.gov (United States)

    Landrigan, Philip J; Belpoggi, Fiorella

    2018-05-29

    Glyphosate, formulated as Roundup, is the world's most widely used herbicide. Glyphosate is used extensively on genetically modified (GM) food crops designed to tolerate the herbicide, and global use is increasing rapidly. Two recent reviews of glyphosate's health hazards report conflicting results. An independent review by the International Agency for Research on Cancer (IARC) found that glyphosate is a "probable human carcinogen". A review by the European Food Safety Agency (EFSA) found no evidence of carcinogenic hazard. These differing findings have produced regulatory uncertainty. Reflecting this regulatory uncertainty, the European Commission on November 27 2017, extended authorization for glyphosate for another 5 years, while the European Parliament opposed this decision and issued a call that pesticide approvals be based on peer-reviewed studies by independent scientists rather than on the current system that relies on proprietary industry studies. The Ramazzini Institute has initiated a pilot study of glyphosate's health hazards that will be followed by an integrated experimental research project. This evaluation will be independent of industry support and entirely sponsored by worldwide crowdfunding. The aim of the Ramazzini Institute project is to explore comprehensively the effects of exposures to glyphosate-based herbicides at current real-world levels on several toxicological endpoints, including carcinogenicity, long-term toxicity, neurotoxicity, endocrine disrupting effects, prenatal developmental toxicity, the microbiome and multi-generational effects.

  11. Glyphosate (Ab)sorption by Shoots and Rhizomes of Native versus Hybrid Cattail (Typha).

    Science.gov (United States)

    Zheng, Tianye; Sutton, Nora B; de Jager, Pim; Grosshans, Richard; Munira, Sirajum; Farenhorst, Annemieke

    2017-11-01

    Wetlands in the Prairie Pothole Region of North America are integrated with farmland and contain mixtures of herbicide contaminants. Passive nonfacilitated diffusion is how most herbicides can move across plant membranes, making this perhaps an important process by which herbicide contaminants are absorbed by wetland vegetation. Prairie wetlands are dominated by native cattail (Typha latifolia) and hybrid cattail (Typha x glauca). The objective of this batch equilibrium study was to compare glyphosate absorption by the shoots and rhizomes of native versus hybrid cattails. Although it has been previously reported for some pesticides that passive diffusion is greater for rhizome than shoot components, this is the first study to demonstrate that the absorption capacity of rhizomes is species dependent, with the glyphosate absorption being significantly greater for rhizomes than shoots in case of native cattails, but with no significant differences in glyphosate absorption between rhizomes and shoots in case of hybrid cattails. Most importantly, glyphosate absorption by native rhizomes far exceeded that of the absorption occurring for hybrid rhizomes, native shoots and hybrid shoots. Glyphosate has long been used to manage invasive hybrid cattails in wetlands in North America, but hybrid cattail expansions continue to occur. Since our results showed limited glyphosate absorption by hybrid shoots and rhizomes, this lack of sorption may partially explain the poorer ability of glyphosate to control hybrid cattails in wetlands.

  12. Effect of formulations on the absorption and translocation of glyphosate in transgenic soybean

    International Nuclear Information System (INIS)

    Santos, J.B.; Ferreira, E.A.; Silva, A.A.; Oliveira, J.A.; Fialho, C.M.T.

    2007-01-01

    This study was carried out to evaluate the absorption and translocation of glyphosate formulations in genetically modified (GM) soybean by applying 14C-glyphosate mixed to three glyphosate formulations (Roundup Ready and R. Transorb - both with +isopropylamine salt, and Zapp Qi, formulated from potassic salt ), using a precision micro syringe. Plant samples were collected after herbicide application (4, 16, 40 and 64 hours) and then divided into leaf (trifolium), aerial part, roots and root nodes for radiation reading. 14C-glyphosate that was not absorbed was recovered and counted by washing the leaf with methanol. Penetration and translocation of 14C-glyphosate to the different parts evaluated was found to vary. However, the highest absorption was verified at intervals after 16 hours of application. The highest herbicide percentage in the aerial part of the soybean plants was found when Zapp (potassic salt) was applied on the aerial part and when isopropylamin salt was applied on the roots; 14C-glyphosate was found in the plant root nodules in all treatments, with the highest percentage being observed with R. Transorb, 40 hours after application (0.13% of the total measured or 0.4%, considering only the plant total). Results highlight the hypothesis that glyphosate could harm symbiosis between rhizobium and soybean, since the former also shows in its metabolism EPSPS, which is susceptible to this herbicide. (author)

  13. Elevated Urinary Glyphosate and Clostridia Metabolites With Altered Dopamine Metabolism in Triplets With Autistic Spectrum Disorder or Suspected Seizure Disorder: A Case Study.

    Science.gov (United States)

    Shaw, William

    2017-02-01

    Autism is a neurodevelopmental disorder for which a number of genetic, environmental, and nutritional causes have been proposed. Glyphosate is used widely as a crop desiccant and as an herbicide in fields of genetically modified foods that are glyphosate resistant. Several researchers have proposed that it may be a cause of autism, based on epidemiological data that correlates increased usage of glyphosate with an increased autism rate. The current study was intended to determine if excessive glyphosate was present in the triplets and their parents and to evaluate biochemical findings for the family to determine the potential effects of its presence. The author performed a case study with the cooperation of the parents and the attending physician. The study took place at The Great Plains Laboratory, Inc (Lenexa, KS, USA). Participants were triplets, 2 male children and 1 female, and their parents. The 2 male children had autism, whereas the female had a possible seizure disorder. All 3 had elevated urinary glyphosate, and all of the triplets and their mother had elevated values of succinic acid or tiglylglycine, which are indicators of mitochondrial dysfunction. The participants received a diet of organic food only. The study performed organic acids, glyphosate, toxic chemicals and tiglylglycine, and creatinine testing of the participants' urine. The 2 male triplets with autism had abnormalities on at least 1 organic acids test, including elevated phenolic compounds such as 4-cresol, 3-[3-hydroxyphenyl]-3-hydroxypropionic acid and 4-hydroxyphenylacetic acid, which have been previously associated with Clostridia bacteria and autism. The female, who was suspected of having a seizure disorder but not autism, did not have elevated phenolic compounds but did have a significantly elevated value of the metabolite tiglylglycine, a marker for mitochondrial dysfunction and/or mutations. One male triplet was retested postintervention and was found to have a markedly lower

  14. 40 CFR 180.431 - Clopyralid; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ....0 Milk 0.2 Mustard greens 5.0 Mustard, seed 3.0 Oat, forage 9.0 Oat, grain 3.0 Oat, groats/rolled... Brassica, head and stem, subgroup 5A 2.0 Bushberry subgroup 13-07B 0.50 Canola, meal 6.0 Canola, seed 3.0... 1.0 Corn, sweet, stover 10.0 Crambe, seed 3.0 Cranberry 4.0 Egg 0.1 Flax, meal 6.0 Flax, seed 3.0...

  15. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation.

    Science.gov (United States)

    Wang, Tiecheng; Ren, Jingyu; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2016-12-15

    Glyphosate was one of the most widely used herbicides in the world. Remediation of glyphosate-contaminated soil was conducted using atmospheric pressure dielectric barrier discharge (DBD) plasma. The feasibility of glyphosate degradation in soil was explored, and the soil leachate toxicity after remediation was assessed via a seed germination test. The experimental results showed that approximately 93.9% of glyphosate was degraded within 45min of DBD plasma treatment with an energy yield of 0.47gkWh -1 , and the degradation process fitted the first-order kinetic model. Increasing the discharge voltage and decreasing the organic matter content of the soil were both found to facilitate glyphosate degradation. There existed appropriate soil moisture to realize high glyphosate degradation efficiency. Glyphosate mineralization was confirmed by changes of total organic carbon (TOC), chemical oxygen demand (COD), PO 4 3- and NO 3 - . The degradation intermediates including glycine, aminomethylphosphonic acid, acetic acid, formic acid, PO 4 3- and NO 3 - , CO 2 and CO were observed. A possible pathway for glyphosate degradation in the soil using this system was proposed. Based on the soil leachate toxicity test using wheat seed germination, the soil did not exhibit any hazardous effects following high-efficiency glyphosate degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of foliar treatments on distribution of 14C-glyphosate in Convolvulus arvensis L

    International Nuclear Information System (INIS)

    Lauridson, T.C.

    1986-01-01

    Field bindweed is a perennial weed which produces shoots from buds on its roots. Herbicides, such as glyphosate [N-(phosphonomethyl)glycine] used for control of field bindweed usually do not kill all shoot buds on the roots, thus field bindweed often reinfests areas within 3 to 6 weeks of treatment. This dissertation deals with the development of a technique to change glyphosate distribution in field bindweed roots and could result in less shoot regrowth after glyphosate application. In field studies eight plant growth regulators were applied in September, 3 days before 2.24 kg/ha of 2.4-D[(2,4-dichlorophenoxy) acetic acid] or 1.68 kg/ha of glyphosate. Eight months later, regrowth of shoots was least where glyphosate was applied at 0.028 kg/ha as a pretreatment, followed by a standard rate of 1.68 kg/ha. In subsequent greenhouse studies, typical patterns of shoot growth and 14 C-glyphosate distribution in isolated root sections taken from 15-week-old intact plants were determined. In subsequent growth chamber studies, plants were decapitated to observe the effect of shoot apical dominance on 14 C-glyphosate translocation. After 14 C-glyphosate was applied, intact plants had about twice as much 14 C in distal root sections as in proximal or middle root sections. Decapitated plants had more 14 C in proximal and middle root sections than in distal sections, and about twice as much 14 C was translocated to roots of decapitated plants than intact plants. Eight concentrations of 2,4,-D or glyphosate from 1 to 5000 ppm were applied in logarithmic series to 6-week old plants

  17. Características da epiderme foliar de eucalipto e seu envolvimento com a tolerância ao glyphosate Characteristics of eucalypt leaf epidermis and its role in glyphosate tolerance

    Directory of Open Access Journals (Sweden)

    L.D. Tuffi Santos

    2006-09-01

    Full Text Available Em áreas de reflorestamento, a deriva do glyphosate causa injúrias nas plantas de eucalipto. Trabalhos preliminares de pesquisa e observações de campo apontam para uma tolerância diferencial ao glyphosate entre os genótipos cultivados. Nesse contexto, objetivou-se estudar as estruturas anatômicas da epiderme foliar de cinco espécies de eucalipto, correlacionando com a tolerância ao glyphosate em deriva simulada. Utilizou-se o esquema fatorial, sendo cinco espécies (Eucalyptus urophylla, E. grandis, E. pellita, E. resinifera e E. saligna e cinco subdoses (0; 43,2; 86,4; 172,8 e 345,6 g e.a. ha-1 de glyphosate, simulando uma deriva. Imediatamente antes da aplicação do herbicida, coletaram-se folhas, totalmente expandidas, para análise anatômica da superfície epidérmica segundo metodologia de dissociação. Entre as espécies estudadas, E. resinifera mostrou-se mais tolerante à deriva de glyphosate, apresentando os menores valores de porcentagem de intoxicação aos 45 dias após aplicação, não sendo encontrada diferença entre as demais espécies. As cinco espécies apresentam folhas glabras, anfiestomáticas, com estômatos do tipo anomocítico e cutícula proeminente. Apesar de presentes em ambas as faces, os estômatos são raros na face adaxial, apresentando baixo índice e densidade estomática. Os maiores valores para índice estomático foram observados em E. resinifera, enquanto E. saligna apresentou a maior densidade estomática. Cavidades subepidérmicas evidenciadas na superfície pelas células de cobertura estão presentes nas cinco espécies, com maior densidade em E. pellita. Houve alta correlação entre a porcentagem de intoxicação por glyphosate e o número de células epidérmicas da superfície adaxial, indicando envolvimento desta característica com a tolerância diferencial ao herbicida. Estudos sobre absorção, translocação e metabolismo do glyphosate em eucalipto devem ser realizados para elucidar

  18. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail (Pomacea canaliculata).

    Science.gov (United States)

    Xu, Yanggui; Li, Adela Jing; Li, Kaibin; Qin, Junhao; Li, Huashou

    2017-12-01

    This study tests the hypotheses that whether environmental relevance of glyphosate would help control spread of the invasive snail Pomacea canaliculata, or benefit its population growth worldwide. Our results showed that glyphosate induced acute toxicity to the snail only at high concentrations (96h LC50 at 175mg/L) unlikely to occur in the environment. Long-term exposures to glyphosate at sublethal levels (20 and 120mg/L) caused inhibition of food intake, limitation of growth performance and alterations in metabolic profiles of the snail. It is worth noting that glyphosate at 2mg/L benefited growth performance in P. canaliculata. Chronic exposures of glyphosate significantly enhanced overall metabolic rate and altered catabolism from protein to carbohydrate/lipid mode. Cellular responses in enzyme activities showed that the exposed snails could increase tolerance by their defense system against glyphosate-induced oxidative stress, and adjustment of metabolism to mitigate energy crisis. Our study displayed that sublethal concentrations of glyphosate might be helpful in control of the invasive species by food intake, growth performance and metabolic interruption; whether environmental relevance of glyphosate (≤2mg/L) benefits population growth of P. canaliculata is still inconclusive, which requires further field study. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Anaerobic soil disinfestation and Brassica seed meal amendment alter soil microbiology and system resistance

    Science.gov (United States)

    Brassica seed meal amendments and anaerobic soil disinfestation control a spectrum of soil-borne plant pathogens via a diversity of mechanisms. Transformations in microbial community structure and function in certain instances were determinants of disease control and enhanced plant performance. Fo...

  20. The effect of glyphosate application on soil microbial activities in ...

    African Journals Online (AJOL)

    In this study, glyphosate effects as N, P and C nutrient sources on microbial population and the effect of different concentration of it on dehydrogenease activity and soil respiration were investigated. The results show that in a soil with a long historical use of glyphosate (soil 1), the hetrotrophic bacterial population was ...

  1. Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate.

    Science.gov (United States)

    Schönherr, Jörg; Schreiber, Lukas

    2004-10-20

    Potassium and calcium salts of glyphosate were obtained by titrating glyphosate acid with the respective bases to pH 4.0, and rates of penetration of these salts across isolated astomatous cuticular membranes (CMs) were measured at 20 degrees C and 70, 80, 90, and 100% humidity. K-glyphosate exhibited first-order penetration kinetics, and rate constants (k) increased with increasing humidity. Ca-glyphosate penetrated only when the humidity above the salt residue was 100%. At 90% humidity and below, Ca-glyphosate formed a solid residue on the CMs and penetration was not measurable. With Ca-glyphosate, the k value at 100% humidity decreased with time and the initial rates were lower than for K-glyphosate by a factor of 3.68. After equimolar concentrations of ammonium oxalate were added to Ca-glyphosate, high penetration rates close to those measured with K-glyphosate were measured at all humidities. Adding ammonium sulfate or potassium carbonate also increased rates between 70 and 100% humidity, but they were not as high as with ammonium oxalate. The data indicate that at pH 4.0 one Ca2+ ion is bound to two glyphosate anions. This salt has its deliquescence point near 100% humidity. Therefore, it is a solid at lower humidity and does not penetrate. Its molecular weight is 1.82 times larger than that of K-glyphosate, and this greatly slows down rates of penetration, even at 100% humidity. The additives tested have low solubility products and form insoluble precipitates with Ca2+ ions, but only ammonium oxalate binds Ca2+ quantitatively. The resulting ammonium salt of glyphosate penetrates at 70-100% humidity and at rates comparable to K-glyphosate. The results contribute to a better understanding of the hard water antagonism observed with glyphosate. It is argued that other pesticides and hormones with carboxyl functions are likely to respond to Ca2+ ions in a similar fashion. In all of these cases, ammonium oxalate is expected to overcome hard water antagonism

  2. Controle de plantas daninhas na cultura de soja resistente ao glyphosate

    Directory of Open Access Journals (Sweden)

    Núbia Maria Correia

    2010-01-01

    Full Text Available O objetivo da pesquisa foi avaliar o controle de plantas daninhas em área cultivada com soja resistente ao herbicida glyphosate, sem a utilização de práticas complementares de manejo de plantas daninhas. Foram desenvolvidos experimentos, em condições de campo, nos anos agrícolas 2005/2006 e 2006/2007 em Jaboticabal (SP. Foram avaliadas duas cultivares de soja resistentes ao glyphosate (CD 214 RR e M-SOY 8008 RR, oito tratamentos de herbicidas (glyphosate, em aplicação única, nas doses de 0,48; 0,72; 0,96 e 1,20 kg ha-1 de equivalente ácido, associadas ou não a aplicação sequencial na dose de 0,48 kg ha-1, além de duas testemunhas, uma capinada e outra mantida infestada. As cultivares de soja influenciaram na infestação das espécies de plantas daninhas na área. Sem a aplicação de glyphosate, houve o predomínio de X. strumarium na área, desfavorecendo a ocorrência de outras espécies. Quando utilizado glyphosate, independentemente da dose, a infestação contabilizada aos 35 e 40 dias após a primeira aplicação, no primeiro e segundo ano, respectivamente, foi baixa. O controle de plantas daninhas na cultura da soja transgênica é diretamente influenciado pela dose de glyphosate, havendo controle satisfatório com a aplicação única de 0,96 kg ha-1 ou a sequencial de 0,48 + 0,48 kg ha-1 de glyphosate. Em situação de menor infestação (2006/2007, a aplicação única de 0,48 kg ha-1 de glyphosate é suficiente para o controle das plantas daninhas. As cultivares de soja transgênica CD 214 RR e M-SOY 8008 RR influenciam diferencialmente a dinâmica das espécies de plantas daninhas, sendo o controle químico mais efetivo na situação de cultivo de M-SOY 8008 RR, em que houve menor diversidade e desenvolvimento das plantas daninhas.

  3. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Science.gov (United States)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( Pruminal degradation and reducing antinutritional factors of irradiated canola meal.

  4. Assessment of the levels of N- (Phosphonomethyl) glycine glyphosate in selected glyphosate-based herbicides on the Ghanaian market

    International Nuclear Information System (INIS)

    Iddrisu, Adisatu

    2016-07-01

    Sixty one (61) samples of Glyphosate based herbicides were collected from the central commercial hub of Kumasi (Kejetia) and ware houses of importers in Ashanti and Greater Accra regions of Ghana and analyzed using high performance liquid chromatography (HPLC). Information about the efficacy of the numerous Glyphosate herbicides on the market was also collected by way of questionnaire. Results of the analysis indicated that only ten (16.4 %) out of the sixty one samples met the Environmental Protection Agency’s requirement of ±5 % of the stated active ingredient concentration and 51 samples representing 83.6 % were all out of the acceptable range. Active ingredient was either understated or overstated. About 21.6 % of the samples that failed to meet requirements were overstated and 78.4 % were understated. Apart from a few of the samples that had concentrations higher than stated label claims with 69 g/L (19.2 %) highest, most samples were generally lower than stated label claims. Some (G09, G18 and G44) samples contained virtually no active ingredient with shortfalls as high as 98.6%. Some of these shortfalls explained findings from the field investigations where some respondents complained of Glyphosate not being efficacious. Farmers may follow the application and safety instructions but this only holds true as long as the herbicides provide efficient control of weed. This can only be achieved with products of consistently high quality. This study also discovered that, there was no possibility of adulteration of the herbicide along the value chain as results for products picked from ware houses of importers did not differ much from those picked from the open market. Results from the other method employed in Glyphosate determination was UV/VIV spectroscopy, this method is simpler and faster and readily available in most laboratories in Ghana. Results from UV/VIS were comparable to that of the HPLC with generally lower values for UV/VIS readings. It is therefore

  5. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    Science.gov (United States)

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  7. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Gaoyi Cao

    Full Text Available A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evaluated in the E. coli aroA-defective strain ER2799 and in transgenic tobacco plants. All five aroA genes could complement the aroA-defective strain ER2799, and AM79 aroA showed the highest glyphosate tolerance. Although glyphosate treatment inhibited the growth of both WT and transgenic tobacco plants, transgenic plants expressing AM79 aroA tolerated higher concentration of glyphosate and had a higher fresh weight and survival rate than plants expressing other aroA genes. When treated with high concentration of glyphosate, lower shikimate content was detected in the leaves of transgenic plants expressing AM79 aroA than transgenic plants expressing other aroA genes. These results suggest that AM79 aroA could be a good candidate for the development of transgenic glyphosate-tolerant crops.

  8. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  9. The rise of glyphosate and new opportunities for biosentinel early-warning studies.

    Science.gov (United States)

    Kissane, Zoe; Shephard, Jill M

    2017-12-01

    Glyphosate has become the most commonly used herbicide worldwide and is reputedly environmentally benign, nontoxic, and safe for use near wildlife and humans. However, studies indicate its toxicity is underestimated and its persistence in the environment is greater than once thought. Its actions as a neurotoxin and endocrine disruptor indicate its potential to act in similar ways to persistent organic pollutants such as the organochlorines dichlorodiphenyltrichloroethane (DDT) and dioxin. Exposure to glyphosate and glyphosate-based herbicides for both wildlife and people is likely to be chronic and at sublethal levels, with multiple and ongoing exposure events occurring in urban and agricultural landscapes. Despite this, there has been little research on the impact of glyphosate on wildlife populations, and existing studies appear in the agricultural, toxicology, and water-chemistry literature that may have limited visibility among wildlife biologists. These studies clearly demonstrate a link between chronic exposure and neurotoxicity, endocrine disruption, cell damage, and immune suppression. There is a strong case for the recognition of glyphosate as an emerging organic contaminant and substantial potential exists for collaborative research among ecologists, toxicologists, and chemists to quantify the impact of glyphosate on wildlife and to evaluate the role of biosentinel species in a preemptive move to mitigate downstream impacts on people. There is scope to develop a decision framework to aid the choice of species to biomonitor and analysis methods based on the target contaminant, spatial and temporal extent of contamination, and perceived risk. Birds in particular offer considerable potential in this role because they span agricultural and urban environments, coastal, inland, and wetland ecosystems where glyphosate residues are known to be present. © 2017 Society for Conservation Biology.

  10. Volatile Organic Compounds Induced by Herbivory of the Soybean Looper Chrysodeixis includens in Transgenic Glyphosate-Resistant Soybean and the Behavioral Effect on the Parasitoid, Meteorus rubens.

    Science.gov (United States)

    Strapasson, Priscila; Pinto-Zevallos, Delia M; Da Silva Gomes, Sandra M; Zarbin, Paulo H G

    2016-08-01

    Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.

  11. The effect of nitrogen and sulphur on the agronomical and water use ...

    African Journals Online (AJOL)

    The effect of nitrogen and sulphur on the agronomical and water use efficiencies of canola (Brassica napus L.) grown in selected localities of the Western Cape province, South Africa. Wonder Ngezimana, Gert A. Agenbag ...

  12. Phytoplankton growth and PSII efficiency sensitivity to a glyphosate-based herbicide (Factor 540®).

    Science.gov (United States)

    Smedbol, Élise; Lucotte, Marc; Labrecque, Michel; Lepage, Laurent; Juneau, Philippe

    2017-11-01

    The use of glyphosate-based herbicides in agriculture has increased steadily since the mid 90's and there is now evidence of glyphosate leaching and contamination of aquatic ecosystems. The aim of this study was to evaluate the effects of a glyphosate-based herbicide (Factor 540 ® ) on growth and photosynthetic capacity of algae and cyanobacteria. Six algal and three cyanobacterial species/strains, of three different taxonomic groups, were exposed to five glyphosate concentrations (10, 50, 100, 500 and 1000μgl -1 ) during 48h. All species have significant growth inhibition at concentrations varying between 50 and 500μgl -1 . The photosynthetic response, after glyphosate exposure, varied among species, but a general pattern has emerged. There was an increase in the amount of photons absorbed (ABS/RC), in dissipated (DI O /RC) and trapped (TR O /RC) energy in the photosystem II reaction centers, along with a decreased of the maximum photosystem II quantum yield (F V /F M ) and electron transport per reaction center (ET O /RC). The EC 50 and LOEC values for growth and photosynthesis were calculated and established that growth was the most affected parameter by glyphosate-based herbicide, while parameter TR O /RC was the least affected. All species showed reduced growth at glyphosate concentrations lower than the Canadian standard for the protection of aquatic life, set at 800μgl -1 or the American aquatic life benchmark for acute toxicity in non vascular plants of 12 100μgl -1 questioning the validity of these thresholds in assessing the risks related to the presence of glyphosate and glyphosate-based herbicides in aquatic systems. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  15. Analysis of glyphosate residues in cereals using liquid chromatography-mass spectrometry (LC-MS/MS)

    DEFF Research Database (Denmark)

    Granby, Kit; Johannesen, S.; Gabrielsen, Martin Vahl

    2003-01-01

    A fast and specific method for the determination of glyphosate in cereals is described. The method is based on extraction with water by ultrasonication. The samples are cleaned up and separated by high-performance liquid chromatography on a polystyrene-based reverse-phase column (clean-up) in ser......A fast and specific method for the determination of glyphosate in cereals is described. The method is based on extraction with water by ultrasonication. The samples are cleaned up and separated by high-performance liquid chromatography on a polystyrene-based reverse-phase column (clean...... monitored m/z 168--> 150 (glyphosate) and 170-->152 (internal standard 2- 13 (CN)-N-15-glyphosate) for quantification. The mean recovery was 85% ( n =32) at spiking levels from 0.03 to 0.33 mg kg(-1) . From 1998 to 2001, from the analysis of about 50 samples per annum, a reduction in the glyphosate residues...... was observed owing to a Danish trade decision not to use grain with glyphosate residues for milling or bread production....

  16. GLYPHOSATE REMOVAL FROM DRINKING WATER

    Science.gov (United States)

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  17. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Xu, Meng-Lei; Gao, Yu; Li, Yali; Li, Xueliang; Zhang, Huanjie; Han, Xiao Xia; Zhao, Bing; Su, Liang

    2018-05-01

    Glyphosate is one of the most commonly-used and non-selective herbicides in agriculture, which may directly pollute the environment and threaten human health. A simple and effective approach to assessment of its damage to the natural environment is thus quite necessary. However, traditional chromatography-based detection methods usually suffer from complex pretreatment procedures. Herein, we propose a simple and sensitive method for the determination of glyphosate by combining ninhydrin reaction and surface-enhanced Raman scattering (SERS) spectroscopy. The product (purple color dye, PD) of the ninhydrin reaction is found to SERS-active and directly correlate with the glyphosate concentration. The limit of detection of the proposed method for glyphosate is as low as 1.43 × 10- 8 mol·L- 1 with a relatively wider linear concentration range (1.0 × 10- 7-1.0 × 10- 4 mol·L- 1), which demonstrates its great potential in rapid, highly sensitive concentration determination of glyphosate in practical applications for safety assessment of food and environment.

  18. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate.

    Science.gov (United States)

    Dosnon-Olette, Rachel; Couderchet, Michel; Oturan, Mehmet A; Oturan, Nihal; Eullaffroy, Philippe

    2011-07-01

    Pesticides are being detected in water bodies on an increasingly frequent basis. The present study focused on toxicity and phytoremediation potential of aquatic plants to remove phytosanitary products from contaminated water. We investigated the capacity of Lemna minor (L. minor) to eliminate two herbicides isoproturon and glyphosate from their medium. Since phytoremediation relies on healthy plants, pesticide toxicity was evaluated by exposing plants to 5 concentrations (0-20 microg L(-1) for isoproturon and 0-120 microg L(-1) for glyphosate) in culture media for 4 d using growth rate and chlorophyll a fluorescence as endpoints. At exposure concentrations of 10 microg x L(-1) for isoproturon and 80 microg x L(-1) for glyphosate, effects on growth rate and chlorophyll fluorescence were minor (isoproturon and glyphosate, respectively.

  19. The fate of glyphosate in water hyacinth and its physiological and biochemical influences on growth of algae

    International Nuclear Information System (INIS)

    Tsai, Baolong.

    1989-01-01

    Absorption, translocation, distribution, exudation, and guttation of 14 C-glyphosate in water hyacinth (Eichhornia crassipes) were studied. Glyphosphate entered the plant by foliage and solution treatment. Plants were harvested and separated into the following parts: treated leaf blade, treated leaf petiole, young leaf blade, young leaf petiole, old leak blade, old leaf petiole, and root. Each part was extracted with methanol. Treated leaves, which exist only in foliage treatment, were washed with water and chloroform to remove the glyphosate residues. All 14 C counting was made by liquid scintillation spectrometry. Autoradiography was used to locate 14 C-glyphosate after foliage treatment. Results indicated that glyphosate can be absorbed from the leaf surface and translocated rapidly through phloem tissues into the whole plant body. The roots of water hyacinth absorbed glyphosate without vertical transport. Guttation of glyphosate occurred in treated leaf tips. Exudation of glyphosate from roots of water hyacinth occurred within 8 hr after foliage treatment. Chlorella vulgaris, Chlamydomonas reihardii, Anabaena cylindrica, and Chroococcus turgidus were used to explore the physiological and biochemical effects of glyphosate on algae. Spectrophotometric assays were performed for algal growth, chlorophyll, carotenoids, phycobiliprotein, carbohydrate, and protein. TLC procedures and an image analyzer were used to detect the metabolites of glyphosate inside algal cells. The common visible symptom of glyphosate toxicity in all algal cells were bleaching effect and reduction of contents of carbohydrate, protein, and pigments. The results highly suggested that glyphosate injured the algal cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate and protein in algal cells

  20. Effect of different doses of urea on the uptake of cadmium from soil ...

    African Journals Online (AJOL)

    Yomi

    2012-01-19

    Jan 19, 2012 ... uptake by canola (Brassica napus L.) applied in full and split doses. Nine different ... production of ruminants being reared on the pasture. Key words: ... combined nitrogen fertilizer used in today's agricultural practices ...

  1. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Christian N., E-mail: calbers@ruc.d [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark); Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Banta, Gary T. [Dept. of Environmental, Social and Spatial Change, Roskilde University, DK-4000 Roskilde (Denmark); Hansen, Poul Erik [Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Jacobsen, Ole S. [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark)

    2009-10-15

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, approx40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only approx10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  2. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    International Nuclear Information System (INIS)

    Albers, Christian N.; Banta, Gary T.; Hansen, Poul Erik; Jacobsen, Ole S.

    2009-01-01

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, ∼40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only ∼10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  3. Differential content of glyphosate and its metabolites in Digitaria insularis biotypes

    Directory of Open Access Journals (Sweden)

    Leonardo Bianco de Carvalho

    2013-07-01

    Full Text Available Experiments were carried out in controlled conditions to analyze the role of metabolism of glyphosate in Digitaria insularis (sourgrass biotypes with differential response to the herbicide. Contents of glyphosate, aminomethylphosphonic acid (AMPA, glyoxylate, and sarcosine was detected in leaf tissues by using reversed-polarity capillarity electrophoresis. Glyphosate content in the A biotype increased from 19.7 up to 65.5 µg g fresh weight-1, whereas decreasing from 19.9 down to 5.0 µg g fresh weight-1 in the B biotype, from 48 up to 168 hours after treatment. At 168 hours after treatment, percentage of the sum of AMPA, glyoxylate, and sarcosine was > 56% in the B biotype, whereas a small percentage of metabolites (< 10% was found in the A biotype. Thus, the faster herbicide degradation in the B biotype is evidence that a differential metabolism of glyphosate can be conferring its lesser susceptibility to the herbicide.

  4. Monitoring glyphosate and AMPA concentrations in wells and drains using the sorbicell passive sampler

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; de Jonge, Hubert; Møldrup, Per

    2012-01-01

    Glyphosate is one of the world’s most extensively used weed control agents. Glyphosate, and its metabolite aminomethylphosphonic acid (AMPA), are suspected to be hazardous to human health and the aquatic environment. In Denmark, the extensive use has resulted in an increasing number of occurrences......Cell, will decrease the workload and number of samples freeing up funds for larger monitoring programs. When installed in a well the SorbiCell will continuously sample the water giving either a flux-weighed or time-weighted average measurement of the glyphosate/AMPA concentration throughout the sampling period....... It may therefore be possible to measure lower concentrations as the glyphosate/AMPA sorbed in the SorbiCell is an accumulated measurement. Also, glyphosate/AMPA associated with sudden flush events will be detected by the SorbiCells, while such events may pass between two consecutive grab samples...

  5. Glyphosate e adubação foliar com manganês na cultura da soja transgênica Glyphosate and foliar fertilization using manganese in transgenic soybean crop

    Directory of Open Access Journals (Sweden)

    N.M. Correia

    2009-01-01

    Full Text Available Com base na hipótese de que a soja transgênica tolerante ao glyphosate necessitaria da adição complementar de manganês devido a alterações na absorção e no metabolismo do elemento pelas plantas, objetivou-se estudar a interação da soja transgênica pulverizada com glyphosate e a adubação foliar com manganês. Foi desenvolvido experimento em campo, no ano agrícola 2007/2008, na Fazenda de Ensino, Pesquisa e Produção da UNESP, campus de Jaboticabal, SP. O delineamento experimental foi o de blocos ao acaso, no esquema fatorial 4 x 4, com quatro repetições. Foram avaliados quatro manejos de plantas daninhas [glyphosate (p.c. Roundup Ready a 0,72 e 1,20 kg ha-1 de equivalente ácido, fluazifop-p-butyl + fomesafen (p.c. Fusiflex a 0,25 + 0,25 kg ha-1 e testemunha capinada, sem herbicida] e quatro doses (0, 42, 84 e 126 g ha-1 de manganês em aplicação foliar na soja. Os tratamentos estudados não alteraram significativamente a produtividade de grãos, os teores de manganês no solo, a altura e a matéria seca das plantas de soja. Apenas a mistura fluazifop-p-butyl mais fomesafen ocasionou injúrias visuais nas plantas, porém os sintomas ficaram restritos às folhas que interceptaram o jato de pulverização. Para massa de 100 grãos, os herbicidas estudados não diferiram da testemunha; no entanto, as plantas tratadas com 0,72 kg ha-1 de glyphosate apresentaram menor massa de grãos. A aplicação de manganês não influenciou os teores do elemento nas plantas tratadas com glyphosate e naquelas sem herbicida. Portanto, o glyphosate não prejudicou a absorção ou o metabolismo do manganês pela planta, e o crescimento e desenvolvimento das plantas tratadas foram estatisticamente similares aos das não tratadas com herbicidas.Based on the hypothesis that glyphosate-tolerant transgenic soybean would need a manganese complementation due to alterations in the absorption and metabolism of this element by the plants, this work aimed to

  6. Tolerence of Braccica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, D.; van Loon, J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  7. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    Science.gov (United States)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded

  8. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Science.gov (United States)

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  9. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    Science.gov (United States)

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  10. Effect of Tocotrienols enriched canola oil on glycemic control and oxidative status in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Mohammadreza Vafa

    2015-01-01

    Full Text Available Background: Tocotrienols have been shown to improve glycemic control and redox balance in an animal study, but their effects on patients with diabetes are unknown. The study aimed to investigate whether tocotrienols improves glycemic control, insulin sensitivity, and oxidative stress in individuals with type 2 diabetes mellitus (T2DM. Materials and Methods: This study was a double-blinded, placebo-controlled, randomized trial. A total of 50 patients, aged 35-60 years, with T2DM treated by noninsulin hypoglycemic drugs were randomly assigned to receive either 15 mL/day tocotrienols (200 mg enriched canola oil (n = 25 or pure canola oil (n = 25 for 8 weeks. Fasting blood sugar (FBS, fasting insulin, total antioxidant capacity (TAC, malondialdehyde (MDA, and homeostatic model assessment for insulin resistance (HOMA-IR were determined before and after the intervention. The data were compared between and within groups, before and after the intervention. Results: Baseline characteristics of participants including age, sex, physical activity, disease duration, and type of drug consumption were not significantly different between the two groups. In tocotrienol enriched canola oil, FBS (mean percent change: -15.4% vs. 3.9%; P = 0.006 and MDA (median percent change: -35.6% vs. 16.3%; P = 0.003 were significantly reduced while TAC was significantly increased (median percent change: 21.4% vs. 2.3%; P = 0.001 compared to pure canola oil. At the end of the study, patients who treated with tocotrienols had lower FBS (P = 0.023 and MDA (P = 0.044 compared to the pure canola oil group. However, tocotrienols had no effect on insulin concentrations and HOMA-IR. Conclusion: Tocotrienols can improve FBS concentrations and modifies redox balance in T2DM patients with poor glycemic control and can be considered in combination with hypoglycemic drugs to better control of T2DM.

  11. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Dessecação de plantas daninhas com glyphosate em mistura com ureia ou sulfato de amônio Weed desiccation with glyphosate mixed with urea or ammonium sulfate

    Directory of Open Access Journals (Sweden)

    S.J.P. Carvalho

    2009-06-01

    Full Text Available O glyphosate é um herbicida não-seletivo, sistêmico, usado para controle de plantas daninhas anuais e perenes em todo o mundo. A absorção da molécula do glyphosate ocorre pelos tecidos fotossinteticamente ativos das plantas, porém alguns fatores podem reduzir sua eficácia, como a morfologia e diversidade de espécies, chuva após aplicação, qualidade da água e misturas em tanque com outros defensivos, entre outros. Objetivou-se com este trabalho avaliar a influência da adição de sulfato de amônio ou ureia em calda na eficácia do herbicida glyphosate para dessecação de plantas daninhas. Dois experimentos foram desenvolvidos em Piracicaba - SP, com aplicações de glyphosate (720 e 1.440 g ha-1 isolado ou combinado com duas doses de sulfato de amônio (7,5 e 15,0 g L-1 ou ureia (2,5 e 5,0 g L-1 sobre as plantas daninhas: apaga-fogo (Alternanthera tenella e capim-massambará (Sorghum halepense. Para a espécie menos suscetível ao herbicida (capim-massambará, a adição de fontes nitrogenadas à menor dose de glyphosate acelerou a morte das plantas, elevando os níveis de controle em até 7,3% na avaliação de 21 dias após aplicação (DAA dos tratamentos. Contudo, os efeitos não foram observados nas avaliações de controle, massa fresca e seca, conduzidas aos 28 DAA. A dose recomendada de glyphosate para cada espécie proporcionou controle satisfatório, sem a necessidade de adição de sulfato de amônio ou ureia.Glyphosate is a non-selective systemic herbicide used to control annual and perennial weeds worldwide. Molecule absorption occurs through the plant's photosynthetically-active tissues; however, some factors might reduce its efficacy, such as morphology and specific diversity, rain after application, water quality and tank mixtures with other chemicals. Thus, this work aimed to evaluate the influence of ammonium sulfate or urea addiction to spray tank on glyphosate efficacy for weed desiccation. Two trials were

  13. Temporal Patterns of Glyphosate Leaching at a Loamy Agricultural Field in Denmark

    DEFF Research Database (Denmark)

    Nørgaard, Trine; Møldrup, Per; Olsen, Preben

    2013-01-01

    applications in combination with the effect of precipitation events, drain water runoff, soil water content at 25 cm soil depth, management, and particle leaching patterns, and compares this with monitored field-scale glyphosate and AMPA leaching to a tile drainage system. Preliminary findings indicate...... that there is an accumulation of glyphosate and AMPA in the soil after the successive applications of glyphosate, as the level of the peaking concentrations right after applications increases. Furthermore, large precipitation events with subsequent high drain water runoff together with management, especially plowing...

  14. Effects of glyphosate exposure on sperm concentration in rodents: A systematic review and meta-analysis.

    Science.gov (United States)

    Cai, Wenyan; Ji, Ying; Song, Xianping; Guo, Haoran; Han, Lei; Zhang, Feng; Liu, Xin; Zhang, Hengdong; Zhu, Baoli; Xu, Ming

    2017-10-01

    Correlation between exposure to glyphosate and sperm concentrations is important in reproductive toxicity risk assessment for male reproductive functions. Many studies have focused on reproductive toxicity on glyphosate, however, results are still controversial. We conducted a systematic review of epidemiological studies on the association between glyphosate exposure and sperm concentrations of rodents. The aim of this study is to explore the potential adverse effects of glyphosate on reproductive function of male rodents. Systematic and comprehensive literature search was performed in MEDLINE, TOXLINE, Embase, WANFANG and CNKI databases with different combinations of glyphosate exposure and sperm concentration. 8 studies were eventually identified and random-effect model was conducted. Heterogeneity among study results was calculated via chi-square tests. Ten independent experimental datasets from these eight studies were acquired to synthesize the random-effect model. A decrease in sperm concentrations was found with mean difference of sperm concentrations(MDsperm)=-2.774×10 6 /sperm/g/testis(95%CI=-0.969 to -4.579) in random-effect model after glyphosate exposure. There was also a significant decrease after fitting the random-effect model: MDsperm=-1.632×10 6 /sperm/g/testis (95%CI=-0.662 to -2.601). The results of meta-analysis support the hypothesis that glyphosate exposure decreased sperm concentration in rodents. Therefore, we conclude that glyphosate is toxic to male rodent's reproductive system. Copyright © 2017. Published by Elsevier B.V.

  15. RAPD markers associated with resistance to blackleg disease in ...

    African Journals Online (AJOL)

    Blackleg, caused by Leptosphaeria maculans, is a serious disease of Brassica species. Genetic analysis of resistance to L. maculans was carried out with 15 accessions from the USDA Brassica germplasm collections, representing diploids (A, C), and tetraploid (AC) genomes, respectively; and 9 cultivars from the National ...

  16. Adaptability and stability of canola hybrids in different sowing dates

    Directory of Open Access Journals (Sweden)

    Luiz Henrique da Silva Lima

    Full Text Available ABSTRACT Canola is an important crop in the world market, mainly for its oil being used for human consumption and biodiesel production, being a great economical option for the farmer, which are the reasons to the increase in its cultivation in Brazil. This study aimed to evaluate the adaptability and stability of canola hybrids, depending on the sowing dates. The canola hybrids (Hyola 61, Hyola 76, Hyola 411 and Hyola 433 were evaluated in three sowing dates (04/10, 04/25 and 05/10 in the agricultural years of 2013 and 2014, under a randomized complete block design with five replications. The response variables analyzed were seed yield and oil content. Adaptability and stability of the hybrids were evaluated by three methods: Wricke's ecovalence (1962; confidence index (ANNICCHIARICO, 1992 and method of maximum ideal deviation (LIN; BINNS, 1988. The methodology proposed by Wricke (1962 highlighted as stable the hybrids Hyola 61 for seed yield and Hyola 411 for oil content. In the methodology proposed by Lin and Binns (1988 and Annicchiarico (1992, the hybrids with higher general adaptability and stability were Hyola 411 and 433. These hybrids presented the highest means for seed yield and oil content with predictable and responsive behavior to changes in sowing dates tested in the region of Maringá-PR.

  17. Global research production in glyphosate intoxication from 1978 to 2015: A bibliometric analysis.

    Science.gov (United States)

    Zyoud, S H; Waring, W S; Al-Jabi, S W; Sweileh, W M

    2017-10-01

    Glyphosate (N-phosphonomethylglycine) has been used as a broad-spectrum herbicide that has been widely used in the agricultural industry and also available for home use. The main aim of this study is to present a general overview of glyphosate intoxication-related publications from its introducing since the early 1970s using bibliometric technique. On June 23, 2016, a literature search of the Scopus database was performed. We then extracted and analyzed the data using well-established qualitative and quantitative bibliometric indices: Publication year, affiliation, document type, country name, subject category, journal name, publishing language, and collaboration and citation patterns. We recognized a total of 3735 publications on glyphosate published between 1973 and 2015. There were 875 publications related to glyphosate intoxication in the Scopus database published between 1978 and 2015. Articles (757) comprised 86.5% of the total publications, followed by reviews (41; 4.7%). Most publications were published in English (87.9%), followed by Portuguese (6.6%). The number of publications related to glyphosate intoxication increased from 44 in 1978-1987 up to 152 in 1996-2005 and then quadrupled in 2006-2015. The United States was the leading country with 180 documents representing 20.6%, followed by Brazil (120; 13.7%), Canada (78; 8.9%), Argentina (61; 7.0%), and France (57; 6.5%). The 85.6% of the publications was cited, and the average of citation per document was 17.13 with h-index of 55. Furthermore, the United States achieved the highest h-index of 33. Most of the global international collaborations are made with researchers from the United States, who collaborated with 23 countries/territories in 44 publications. The trends in global glyphosate-related research between 1978 and 2015 were evaluated by a bibliometric technique. Results showed that English was the leading publishing language, and the major publication type was original article. Findings showed

  18. Deriva simulada de formulações comerciais de glyphosate sobre maracujazeiro amarelo Drift simulation of glyphosate commercial formulations on yellow passion fruit growth

    Directory of Open Access Journals (Sweden)

    A. Wagner Júnior

    2008-01-01

    Full Text Available Objetivou-se com este trabalho avaliar os efeitos da deriva de formulações comerciais de glyphosate no desenvolvimento de plantas jovens de maracujazeiro amarelo. O trabalho foi realizado em casa de vegetação do Departamento de Fitotecnia da Universidade Federal de Viçosa, durante o período de março a abril de 2007. Foi utilizado o delineamento experimental de blocos casualizados, em esquema fatorial 3 x 4 + 1, em que três foram as formulações de glyphosate e cinco foram as doses utilizadas acrescidas de testemunha sem herbicida. O trabalho foi conduzido com cinco repetições, sendo cada planta considerada como parcela experimental. As formulações comerciais aplicadas foram Roundup Transorb®, Roundup Original® e Zapp QI®, utilizando-se as seguintes doses (g e.a ha-1: 43,2; 86,4; 172,8; e 345,6 g ha-1. Aos 28 dias após a aplicação (DAA, avaliaram-se os comprimentos da parte aérea, da raiz e total (cm; o diâmetro do caule (mm; o número de folhas e de ramificações primárias; a massa seca da parte aérea e da raiz das plantas (g; e a área foliar por planta (cm². Aos 7, 14 e 28 DAA, avaliou-se, visualmente, a porcentagem de intoxicação das plantas. O glyphosate em deriva simulada, independentemente das formulações utilizadas, ocasionou injúrias no maracujazeiro amarelo, acarretando redução no crescimento e desenvolvimento das plantas. As formulações Roundup Transorb® e Roundup Original® foram mais prejudiciais às plantas que o Zapp Qi®. O maracujazeiro amarelo mostrou-se suscetível à deriva, devendo o glyphosate ser usado com cuidado, de maneira a atingir somente as plantas daninhas a serem controladas.The aim of this work was to evaluate the effects of drift simulation of commercial formulations of glyphosate on the growth of young plants of yellow passion fruit. The work was carried out at the Plant Science Department of the Universidade Federal de Viçosa (MG, Brazil, from March to April 2007. The

  19. Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere

    Science.gov (United States)

    Chang, Feng-Chih; Simcik, M.F.; Capel, P.D.

    2011-01-01

    This is the first report on the ambient levels of glyphosate, the most widely used herbicide in the United States, and its major degradation product, aminomethylphosphonic acid (AMPA), in air and rain. Concurrent, weekly integrated air particle and rain samples were collected during two growing seasons in agricultural areas in Mississippi and Iowa. Rain was also collected in Indiana in a preliminary phase of the study. The frequency of glyphosate detection ranged from 60 to 100% in both air and rain. The concentrations of glyphosate ranged from 3 and from <0.1 to 2.5 µg/L in air and rain samples, respectively. The frequency of detection and median and maximum concentrations of glyphosate in air were similar or greater to those of the other high-use herbicides observed in the Mississippi River basin, whereas its concentration in rain was greater than the other herbicides. It is not known what percentage of the applied glyphosate is introduced into the air, but it was estimated that up to 0.7% of application is removed from the air in rainfall. Glyphosate is efficiently removed from the air; it is estimated that an average of 97% of the glyphosate in the air is removed by a weekly rainfall ≥30 mm.

  20. Nutritional and histopathological studies on Black Cutworm Agrotis Ipsilon (HUFN.) fed on irradiated Canola and bean plants

    International Nuclear Information System (INIS)

    Rizk, S.A.; Mansour, W.; Abdel-Hamid, I.A.

    2006-01-01

    The black cutworm (fifth instar) were fed on leaves of canola and bean plants irradiated as seeds at the dose levels 10, 20 and 30 Gy. Their effects on food utilization, consumption, digestion and on the mid gut were detected. It was noticed that using irradiated bean and canola plants leads to decrease in values of consumption index and growth rate than control. Also, approximate digest ability (A.D), efficiency of conversion of digested food (E.C.D) and efficiency of conversion of ingested food (E.C.I) were also less than control in most treatments. A. ipsilon larvae fed on bean and canola plants gamma irradiated at the dose levels 10 and 30 Gy in both bean and canola plants, respectively, caused some histopathological changes such as separation of muscle layers, breakdown of epithelium with the appearance of some gaps as well as disintegration of epithelial cells and appearance of vacuoles

  1. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure.

    Science.gov (United States)

    Li, Ming-Hui; Ruan, Ling-Yu; Zhou, Jin-Wei; Fu, Yong-Hong; Jiang, Lei; Zhao, He; Wang, Jun-Song

    2017-07-01

    Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biology and harmfulness of Brassica pod midge (Dasineura brassicae Winn. in winter oilseed rape

    Directory of Open Access Journals (Sweden)

    Draga Graora

    2015-04-01

    Full Text Available The Brassica pod midge (Dasineura brassicae Winn. is an important pest in oilseed rape (Brasica napus L.. It develops two generations per year and overwinters in the larval stage in cocoons in soil. Immigration of the first generation adults lasted from the beginning of April until the end of May. Larvae developed in pods from mid-April to mid-June, causing pod deformation and cracking, which resulted in premature falling out of seeds and yield reduction. Pod damage amounted to 11.6%. The emergence of the second generation adults was detected at the end of May and in the first ten days of June. D. brassicae was found to lay eggs in healthy pods and no correlation was found with the cabbage seed weevil, Ceutorhynchus assimilis Paykull.

  3. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    Science.gov (United States)

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (pretention capacity in soils. Copyright © 2015. Published by Elsevier B.V.

  4. Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae.

    Science.gov (United States)

    Onkokesung, Nawaporn; Reichelt, Michael; van Doorn, Arjen; Schuurink, Robert C; van Loon, Joop J A; Dicke, Marcel

    2014-05-01

    Anthocyanins and flavonols are secondary metabolites that can function in plant defence against herbivores. In Arabidopsis thaliana, anthocyanin and flavonol biosynthesis are regulated by MYB transcription factors. Overexpression of MYB75 (oxMYB75) in Arabidopsis results in increasing anthocyanin and flavonol levels which enhances plant resistance to generalist caterpillars. However, how these metabolites affect specialist herbivores has remained unknown. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant. An increase in anthocyanin and total flavonol glycoside levels correlated negatively with the body mass of caterpillars fed on oxMYB75 plants. However, a significant reduction of kaempferol-3,7-dirhamnoside (KRR) corresponded to an increased susceptibility of oxMYB75 plants to caterpillar feeding. Pieris brassicae caterpillars also grew less on an artificial diet containing KRR or on oxMYB75 plants that were exogenously treated with KRR, supporting KRR's function in direct defence against this specialist caterpillar. The results show that enhancing the activity of the anthocyanin pathway in oxMYB75 plants results in re-channelling of quercetin/kaempferol metabolites which has a negative effect on the accumulation of KRR, a novel defensive metabolite against a specialist caterpillar.

  5. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  6. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  7. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Glyphosate sorption/desorption on biochars – Interactions of physical and chemical processes

    Science.gov (United States)

    BACKGROUND: Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350°C t...

  9. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil

    NARCIS (Netherlands)

    Martins Bento, Celia; Goossens, Dirk; Rezaei, Mahrooz; Riksen, M.J.P.M.; Mol, J.G.J.; Ritsema, C.J.; Geissen, V.

    2017-01-01

    Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural

  10. Adsorção de glifosato sobre solos e minerais Adsorption of glyphosate on soils and minerals

    Directory of Open Access Journals (Sweden)

    Luís R. M. Toni

    2006-07-01

    Full Text Available Glyphosate, an enzyme inhibitor herbicide, has been widely used around the world in agriculture. Dr. John Franz from Monsanto Corporation (USA discovered glyphosate in 1970. It has been showed that glyphosate is strongly adsorbed by inorganic soil components especially aluminium and iron oxides, and the phosphate group is involved in this interaction. The inactivation of glyphosate in soils can last for days or even months depending on soil characteristics. The addition of phosphate from fertilizers can displace glyphosate from the soils and this could be the cause of decreased productivity of some crops.

  11. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    Science.gov (United States)

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  12. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

    Directory of Open Access Journals (Sweden)

    Tao Zhan

    Full Text Available Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO, we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg(51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.

  13. Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside

    Science.gov (United States)

    Nishizawa, Toru; Nakajima, Nobuyoshi; Tamaoki, Masanori; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru

    2016-01-01

    ABSTRACT Previously, we conducted a roadside survey to reveal the occurrence of genetically modified (GM) oilseed rape along a Japanese roadside (Route 51). In this study, we performed successive and thorough fixed-route monitoring in 5 sections along another road (Route 23). Oilseed rape plants were detected on both sides of the road in each section between autumn 2009 and winter 2013, which included 3 flowering seasons. In four sections, more plants were found on the side of the road leading from the Yokkaichi port than on the opposite side. In the fifth section, the presence of clogged drains on the roadside, where juvenile plants concentrated, caused the opposite distribution: oilseed rape predominantly occurred along the inbound lanes (leading to the Yokkaichi port) in 2010 and 2012. Unlike in our previous survey, glyphosate- or glufosinate-resistant oilseed rape plants were abundant (>75% of analyzed plants over 3 years). Moreover, a few individuals bearing both herbicide resistance traits were also detected in some sections. The spillage of imported seeds may explain the occurrence of oilseed rape on the roadside. The abundance of herbicide-resistant oilseed rape plants may reflect the extent of contamination with GM oilseed rape seed within imports. PMID:26838503

  14. Efeitos da dessecação com glyphosate e chlorimuron-ethyl na comunidade infestante e na produtividade da soja Effects of dissection with glyphosate and chlorimuron-ethyl on weed community and soybean yield

    Directory of Open Access Journals (Sweden)

    L.B Carvalho

    2009-12-01

    Full Text Available O efeito de dessecantes sobre o período anterior à interferência (PAI pode auxiliar na tomada de decisão para o manejo das plantas daninhas. O objetivo desta pesquisa foi verificar se a adição de chlorimuron-ethyl ao glyphosate, para dessecação em pré-semeadura, altera a extensão do PAI na soja. O experimento foi realizado em Jaboticabal-SP, Brasil, submetendo-se o cultivar Monsoy 7908RR a oito períodos de convivência com plantas daninhas, além de testemunhas no mato e no limpo, nos quais foram aplicados dois grupos de tratamentos: glyphosate e glyphosate + chlorimuron-ethyl. Em cada período, foram calculados o índice de importância relativa e os índices de diversidade e equitabilidade; por meio da análise de regressão dos dados de produtividade de grãos, determinou-se o PAI. Digitaria insularis, Acanthospermum hispidum, Raphanus raphanistrum e Commelina benghalensis apresentaram maior importância relativa. Os índices de diversidade e equitabilidade oscilaram durante os períodos, e a diferença entre as plantas daninhas fundamentou-se no acúmulo de massa seca. O PAI na soja no tratamento com glyphosate foi de 37 dias após a semeadura (DAS e de 51 DAS naquele com glyphosate + chlorimuron-ethyl. A adição de chlorimuron-ethyl ao glyphosate permite que a cultura conviva mais tempo com as plantas daninhas sem que ocorra redução significativa na produtividade.The effects of burndown herbicides on the period before weed interference (PBI may provide support to weed management decision-making. The objective of this research was to verify whether the PBI is affected by the application of glyphosate plus chlorimuron-ethyl to pre-sowing burndown in soybean. The experiment was carried out in Jaboticabal-SP, Brazil, submitting the cultivar Monsoy 7908RR to eight coexistence periods with weeds, maintaining weedy and-weed-free checks, which were applied to two groups of treatments: glyphosate and glyphosate + chlorimuron-ethyl. At

  15. Glucosinolates and other anti-nutritive compounds in canola meals ...

    African Journals Online (AJOL)

    Canola meals from six varieties cultivated in Egypt (Seru4 and Pactol) and Japan (Kirariboshi, Tohoku95, Oominantane and Kizakinonatane) were investigated regarding anti-nutritive compounds, namely glucosinolates, phytic acid, sinapine and total phenols. All varieties except Kirariboshi contained a high level of total ...

  16. Glyphosate rodent carcinogenicity bioassay expert panel review.

    Science.gov (United States)

    Williams, Gary M; Berry, Colin; Burns, Michele; de Camargo, Joao Lauro Viana; Greim, Helmut

    2016-09-01

    Glyphosate has been rigorously and extensively tested for carcinogenicity by administration to mice (five studies) and to rats (nine studies). Most authorities have concluded that the evidence does not indicate a cancer risk to humans. The International Agency for Research on Cancer (IARC), however, evaluated some of the available data and concluded that glyphosate probably is carcinogenic to humans. The expert panel convened by Intertek assessed the findings used by IARC, as well as the full body of evidence and found the following: (1) the renal neoplastic effects in males of one mouse study are not associated with glyphosate exposure, because they lack statistical significance, strength, consistency, specificity, lack a dose-response pattern, plausibility, and coherence; (2) the strength of association of liver hemangiosarcomas in a different mouse study is absent, lacking consistency, and a dose-response effect and having in high dose males only a significant incidence increase which is within the historical control range; (3) pancreatic islet-cell adenomas (non-significant incidence increase), in two studies of male SD rats did not progress to carcinomas and lacked a dose-response pattern (the highest incidence is in the low dose followed by the high dose); (4) in one of two studies, a non-significant positive trend in the incidence of hepatocellular adenomas in male rats did not lead to progression to carcinomas; (5) in one of two studies, the non-significant positive trend in the incidence of thyroid C-cell adenomas in female rats was not present and there was no progression of adenomas to carcinomas at the end of the study. Application of criteria for causality considerations to the above mentioned tumor types and given the overall weight-of-evidence (WoE), the expert panel concluded that glyphosate is not a carcinogen in laboratory animals.

  17. Carfentrazone-ethyl, isolado e associado a duas formulações de glyphosate no controle de duas espécies de trapoeraba Carfentrazone-ethyl isolated and in mixture with two glyphosate formulations on the control of two dayflower species

    Directory of Open Access Journals (Sweden)

    C.P. Ronchi

    2002-04-01

    Full Text Available Esta pesquisa teve como objetivo avaliar a eficácia do herbicida carfentrazone-ethyl, isolado ou associado ao glyphosate e ao glyphosate potássico, no controle de duas espécies de plantas daninhas conhecidas como trapoeraba: Commelina diffusa e Commelina benghalensis. Para isso, segmentos de caule dessas plantas foram transplantados e submetidos a crescimento em vasos que continham 12 L de substrato, durante 120 dias. Os experimentos (um por espécie de trapoeraba foram conduzidos no delineamento experimental em blocos casualizados, com quatro repetições, sendo constituídos de carfentrazone-ethyl nas doses de 0, 10, 20, 30, 40 e 50 g ha¹, isoladas ou aplicadas em mistura com o glyphosate e o glyphosate potássico, ambos na dose de 720 g ha-1. Foram feitas avaliações de controle e da biomassa fresca da parte aérea (BFPA. C. diffusa foi mais tolerante ao carfentrazone-ethyl e à sua mistura ao glyphosate e ao glyphosate potássico do que C. benghalensis. Tanto o glyphosate quanto o glyphosate potássico, isolados, promoveram controle considerado ruim (inferior a 30% de ambas as espécies de trapoeraba, na dose de 720 g ha-1. A eficiência de controle pelas misturas de herbicidas foi superior à das suas aplicações isoladas, com exceção do carfentrazone-ethyl em doses acima de 30 g ha-1, as quais proporcionaram controles de C. benghalensis semelhantes às misturas. Apesar do razoável controle (de 71 a 80% para C. diffusa e do bom a excelente controle (acima de 81% para C. benghalensis, proporcionados pelas misturas de carfentrazone-ethyl com glyphosate e/ou glyphosate potássico, apenas uma aplicação não foi suficiente para o controle definitivo da Commelina spp., pois verificou-se para ambas as espécies, por meio da avaliação da BFPA, a reinfestação da área devido à recuperação das plantas, ou mesmo, no caso de C. benghalensis, a reinfestação a partir de sementes subterrâneas, que se tornaram viáveis após a morte da

  18. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  19. UTILIZAÇÃO DO FARELO DE CANOLA EM RAÇÕES PARA POEDEIRAS COMERCIAIS FORMULADAS COM BASE EM AMINOÁCIDOS TOTAIS E DIGESTÍVEIS CANOLA MEAL IN LAYING HENS DIETS FORMULATED ACCORDING TO TOTAL AND DIGESTIBLE AMINO ACID BASIS

    Directory of Open Access Journals (Sweden)

    Vinícius Assuena

    2007-04-01

    Full Text Available O experimento teve por objetivo avaliar o efeito da inclusão do farelo de canola em rações para poedeiras comerciais, formuladas com diferentes recomendações de aminoácidos. Foram utilizadas 144 poedeiras comerciais, distribuídas em um delineamento inteiramente casualizado com três repetições de seis aves cada, em esquema fatorial 2 x 4, constituído da combinação de duas recomendações de aminoácidos (totais e digestíveis e quatro níveis de inclusão do farelo de canola (0%, 4%, 8% e 12%. Durante quatro ciclos de 21 dias, avaliaram-se o desempenho e nos dois últimos dias de cada ciclo a qualidade dos ovos. As aves que receberam a ração formulada com aminoácidos digestíveis apresentaram menor massa de ovos e pior conversão alimentar (P<0,05. O farelo de canola pode ser incluído em até 8% da ração sem prejuízo ao desempenho e qualidade da casca dos ovos. Na região de condução da pesquisa o custo do farelo de canola onerou o custo da ração. PALAVRAS-CHAVE: Alimento alternativo, desempenho, nutrição, qualidade de ovos This experiment was conducted to evaluated increasing levels of canola meal in laying hens diets formulated based in different amino acid recommendations. 144 commercial laying hens was allotted in laying cages during 4 periods of 21 days. Performance and egg quality parameters were evaluated In the last two days of each period. Hens were distributed in a complete randomized design, in factorial arrangement 2x4, with eight treatments and three replicates of six hens each. The factors were diets formulated based on total and digestible aminoacids and increasing levels of canola meal on these diets (0; 4; 8 and 12%. Recommendations of digestible amino acid promoted worst feed conversion and lower egg mass output. Canola meal can be included in laying hens diets until 8% without decrease performance and egg shell quality. However, canola meal increased feed cost on the region where the experiment was

  20. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    Science.gov (United States)

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.