WorldWideScience

Sample records for glycosylated human alpha

  1. Glycosylation of the N-terminal potential N-glycosylation sites in the human α1,3-fucosyltransferase V and -VI (hFucTV and -VI)

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Bross, Peter Gerd; Ørntoft, Torben Falck

    2000-01-01

    Human alpha1,3-fucosyltransferase V and -VI (hFucTV and -VI) each contain four potential N-glycosylation sites (hFucTV: Asn60, Asn105, Asn167 and Asn198 and hFucTVI: Asn46, Asn91, Asn153 and Asn184). Glycosylation of the two N-terminal potential N-glycosylation sites (hFucTV: Asn60, Asn105 and h......FucTVI: Asn46 and Asn91) have never been studied in detail. In the present study, we have analysed the glycosylation of these potential N-glycosylation sites. Initially, we compared the molecular mass of hFucTV and -VI expressed in COS-7 cells treated with tunicamycin with the mass of the proteins...... in untreated cells. The difference in molecular mass between the proteins in treated and untreated cells corresponded to the presence of at least three N-linked glycans. We then made a series of mutants, in which the asparagine residues in the N-terminal potential N-glycosylation sites were replaced...

  2. Chondrocyte secreted CRTAC1: a glycosylated extracellular matrix molecule of human articular cartilage.

    Science.gov (United States)

    Steck, Eric; Bräun, Jessica; Pelttari, Karoliina; Kadel, Stephanie; Kalbacher, Hubert; Richter, Wiltrud

    2007-01-01

    Cartilage acidic protein 1 (CRTAC1), a novel human marker which allowed discrimination of human chondrocytes from osteoblasts and mesenchymal stem cells in culture was so far studied only on the RNA-level. We here describe its genomic organisation and detect a new brain expressed (CRTAC1-B) isoform resulting from alternate last exon usage which is highly conserved in vertebrates. In humans, we identify an exon sharing process with the neighbouring tail-to-tail orientated gene leading to CRTAC1-A. This isoform is produced by cultured human chondrocytes, localized in the extracellular matrix of articular cartilage and its secretion can be stimulated by BMP4. Of five putative O-glycosylation motifs in the last exon of CRTAC1-A, the most C-terminal one is modified according to exposure of serial C-terminal deletion mutants to the O-glycosylation inhibitor Benzyl-alpha-GalNAc. Both isoforms contain four FG-GAP repeat domains and an RGD integrin binding motif, suggesting cell-cell or cell-matrix interaction potential. In summary, CRTAC1 acquired an alternate last exon from the tail-to-tail oriented neighbouring gene in humans resulting in the glycosylated isoform CRTAC1-A which represents a new extracellular matrix molecule of articular cartilage.

  3. The C-terminal N-glycosylation sites of the human alpha1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V, adn -VI) are necessary for the expression of full enzyme activity.

    Science.gov (United States)

    Christensen, L L; Jensen, U B; Bross, P; Orntoft, T F

    2000-09-01

    The alpha1,3/4-fucosyltransferases are involved in the synthesis of fucosylated cell surface glycoconjugates. Human alpha1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V, and -VI) contain two conserved C-terminal N-glycosylation sites (hFucTIII: Asn154 and Asn185; hFucTV: Asn167 and Asn198; and hFucTVI: Asn153 and Asn184). In the present study, we have analyzed the functional role of these potential N-glycosylation sites, laying the main emphasis on the sites in hFucTIII. Tunicamycin treatment completely abolished hFucTIII enzyme activity while castanospermine treatment diminished hFucTIII enzyme activity to approximately 40% of the activity of the native enzyme. To further analyze the role of the conserved N-glycosylation sites in hFucTIII, -V, and -VI, we made a series of mutant genomic DNAs in which the asparagine residues in the potential C-terminal N-glycosylation sites were replaced by glutamine. Subsequently, the hFucTIII, -V, and -VI wild type and the mutants were expressed in COS-7 cells. All the mutants exhibited lower enzyme activity than the wild type and elimination of individual sites had different effects on the activity. The mutations did not affect the protein level of the mutants in the cells, but reduced the molecular mass as predicted. Kinetic analysis of hFucTIII revealed that lack of glycosylation at Asn185 did not change the Km values for the oligosaccharide acceptor and the nucleotide sugar donor. The present study demonstrates that hFucTIII, -V, and -VI require N-glycosylation at the two conserved C-terminal N-glycosylation sites for expression of full enzyme activity.

  4. General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic alpha-amination of C-glycosylalkyl aldehydes.

    Science.gov (United States)

    Nuzzi, Andrea; Massi, Alessandro; Dondoni, Alessandro

    2008-10-16

    Non-natural axially and equatorially linked C-glycosyl alpha-amino acids (glycines, alanines, and CH2-serine isosteres) with either S or R alpha-configuration were prepared by D- and L-proline-catalyzed (de >95%) alpha-amination of C-glycosylalkyl aldehydes using dibenzyl azodicarboxylate as the electrophilic reagent.

  5. Nonenzymatic glycosylation of human hemoglobin at multiple sites

    International Nuclear Information System (INIS)

    Shapiro, R.; McManus, M.; Garrick, L.; McDonald, M.J.; Bunn, H.F.

    1979-01-01

    The most abundant minor hemoglobin component of human hemolysate is Hb A1c, which has glucose bound to the N-terminus of the beta chain by a ketoamine linkage. Hb A1c is formed slowly and continuously throughout the 120 day lifespan of the red cell. It can be synthesized in vitro by incubating purified hemoglobin with 14C-glucose. Other minor components, Hb A1a1 and Hb A1a2 are adducts of sugar phosphates at the N-terminus of the beta chain. Hb A1b contains an unidentified nonphosphorylated sugar at the beta N-terminus. In addition, a significant portion of the major hemoglobin component (Hb Ao) is also glycosylated by a glucose ketoamine linkage at other sites on the molecule, including the N-terminus of the alpha chain and the epsilon-amino group of several lysine residues on both the alpha and the beta chains. The results indicate that the interaction of glucose and hemoglobin is rather nonspecific and suggests that other proteins are modified in a similar fashion

  6. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...... amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests...

  7. N- and O-glycosylation Analysis of Human C1-inhibitor Reveals Extensive Mucin-type O-Glycosylation.

    Science.gov (United States)

    Stavenhagen, Kathrin; Kayili, H Mehmet; Holst, Stephanie; Koeleman, Carolien A M; Engel, Ruchira; Wouters, Diana; Zeerleder, Sacha; Salih, Bekir; Wuhrer, Manfred

    2018-06-01

    Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N - and O -glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O -glycosylated N-terminal region. Five novel and five known O -glycosylation sites were identified, carrying mainly core1-type O -glycans. In addition, we detected a heavily O -glycosylated portion spanning from Thr 82 -Ser 121 with up to 16 O -glycans attached. Likewise, all known six N -glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N -glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Glycosylation of alpha(2)delta(1) subunit: a sweet talk with Ca(v)1.2 channels

    Czech Academy of Sciences Publication Activity Database

    Lazniewska, Joanna; Weiss, Norbert

    2016-01-01

    Roč. 35, č. 3 (2016), s. 239-242 ISSN 0231-5882 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channel * Ca(v)1.2 channel * ancillary subunit * alpha(2)delta(1) subunit * glycosylation * trafficking Subject RIV: CE - Biochemistry Impact factor: 1.170, year: 2016

  9. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    Science.gov (United States)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. © 2015 Wiley Periodicals, Inc.

  10. Conformation of glycomimetics in the free and protein-bound state: structural and binding features of the C-glycosyl analogue of the core trisaccharide alpha-D-Man-(1 --> 3)-[alpha-D-Man-(1 --> 6)]-D-Man.

    Science.gov (United States)

    Mikkelsen, Lise Munch; Hernáiz, María José; Martín-Pastor, M; Skrydstrup, Troels; Jiménez-Barbero, Jesús

    2002-12-18

    The conformational properties of the C-glycosyl analogue of the core trisaccharide alpha-D-Man-(1 --> 3)-[alpha-D-Man-(1 --> 6)]-D-Man in solution have been carefully analyzed by a combination of NMR spectroscopy and time-averaged restrained molecular dynamics. It has been found that both the alpha-1,3- and the alpha-1,6-glycosidic linkages show a major conformational averaging. Unusual Phi ca. 60 degrees orientations for both Phi torsion angles are found. Moreover, a major conformational distinction between the natural compound and the glycomimetic affects to the behavior of the omega(16) torsion angle around the alpha-1 --> 6-linkage. Despite this increased flexibility, the C-glycosyl analogue is recognized by three mannose binding lectins, as shown by NMR (line broadening, TR-NOE, and STD) and surface plasmon resonance (SPR) methods. Moreover, a process of conformational selection takes place, so that these lectins probably bind the glycomimetic similarly to the way they recognize the natural analogue. Depending upon the architecture and extension of the binding site of the lectin, loss or gain of binding affinity with respect to the natural analogue is found.

  11. Production, purification, and characterization of human alpha1 proteinase inhibitor from Aspergillus niger.

    Science.gov (United States)

    Chill, Liat; Trinh, Loc; Azadi, Parastoo; Ishihara, Mayumi; Sonon, Roberto; Karnaukhova, Elena; Ophir, Yakir; Golding, Basil; Shiloach, Joseph

    2009-02-15

    Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.

  12. [Engineering of a System for the Production of Mutant Human Alpha-Fetoprotein in the Methylotrophic Yeast Pichia pastoris].

    Science.gov (United States)

    Morozkina, E V; Vavilova, E A; Zatsepin, S S; Klyachko, E V; Yagudin, T A; Chulkin, A M; Dudich, I V; Semenkova, L N; Churilova, I V; Benevolenskii, S V

    2016-01-01

    A system for the production of mutant recombinant human alpha-fetoprotein (rhAFPO) lacking the glycosylation site has been engineered in the yeast Pichia pastoris. A strain of the methylotrophic yeast Pichia pastoris GS 115/pPICZ?A/rhAFP0, which produces unglycosylated rhAFPO and secretes it to the culture medium, has been constructed. Optimization and scale-up of the fermentation technology have resulted in an increase in the rhAFP0 yield to 20 mg/L. A scheme of isolation and purification of biologically active rhAFP0 has been developed. The synthesized protein has the antitumor activity, which is analogous to the activity of natural human embryonic alpha-fetoprotein.

  13. Negative feedback regulation of human platelets via autocrine activation of the platelet-derived growth factor alpha-receptor.

    Science.gov (United States)

    Vassbotn, F S; Havnen, O K; Heldin, C H; Holmsen, H

    1994-05-13

    Human platelets contain platelet-derived growth factor (PDGF) in their alpha-granules which is released during platelet exocytosis. We show by immunoprecipitation and 125I-PDGF binding experiments that human platelets have functionally active PDGF alpha-receptors, but not beta-receptors. The PDGF alpha-receptor (PDGFR-alpha) was identified as a 170-kDa glycosylated protein-tyrosine kinase as found in other cell types. Stimulation of platelets with 0.1 unit/ml thrombin resulted in a significant increase (2-5-fold) of the tyrosine phosphorylation of the PDGFR-alpha, as determined by immunoprecipitation with phosphotyrosine antiserum as well as with PDGFR-alpha antiserum. The observed thrombin-induced autophosphorylation of the PDGFR-alpha was inhibited by the addition of a neutralizing monoclonal PDGF antibody. Thus, our results suggest that the platelet PDGFR-alpha is stimulated in an autocrine manner by PDGF secreted during platelet activation. Preincubation of platelets with PDGF inhibited thrombin-induced platelet aggregation and secretion of ATP + ADP and beta-hexosaminidase. Thrombin-induced platelet aggregation was also reversed when PDGF was added 30 s after thrombin stimulation. Inhibition of the autocrine PDGF pathway during platelet activation by the PDGF antibody led to a potentiation of thrombin-induced beta-hexosaminidase secretion. Thus, the PDGFR-alpha takes part in a negative feedback regulation during platelet activation. Our demonstration of PDGF alpha-receptors on human platelets and its inhibitory function during platelet activation identifies a new possible role of PDGF in the regulation of thrombosis.

  14. Crystallization and preliminary crystallographic analysis of human glycosylated haemoglobin

    International Nuclear Information System (INIS)

    Syakhovich, Vitaly E.; Saraswathi, N. T.; Ruff, Marc; Bokut, Sergey B.; Moras, Dino

    2006-01-01

    Non enzymatic modification of haemoglobin by glucose plays an important role in diabetes pathogenesis. Here the purification, characterization and crystallization of human glycosylated haemoglobin are reported. Human glycosylated haemoglobin A 1C is a stable minor variant formed in vivo by post-translational modification of the main form of haemoglobin by glucose. Crystals of oxyHbA 1C were obtained using the hanging-drop vapour-diffusion method and PEG as precipitant. The diffraction pattern of the crystal extends to a resolution of 2.3 Å at 120 K. The crystals belong to space group C2, with unit-cell parameters a = 237.98, b = 59.27, c = 137.02 Å, α = 90.00, β = 125.40, γ = 90.00°. The presence of two and a half molecules per asymmetric unit gives a crystal volume per protein weight (V M ) of 9.70 Å 3 Da −1 and a solvent content of 49%

  15. Crystallization and preliminary crystallographic analysis of human glycosylated haemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Syakhovich, Vitaly E. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Saraswathi, N. T.; Ruff, Marc, E-mail: ruff@igbmc.u-strasbg.fr [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Bokut, Sergey B. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Moras, Dino [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus)

    2006-02-01

    Non enzymatic modification of haemoglobin by glucose plays an important role in diabetes pathogenesis. Here the purification, characterization and crystallization of human glycosylated haemoglobin are reported. Human glycosylated haemoglobin A{sub 1C} is a stable minor variant formed in vivo by post-translational modification of the main form of haemoglobin by glucose. Crystals of oxyHbA{sub 1C} were obtained using the hanging-drop vapour-diffusion method and PEG as precipitant. The diffraction pattern of the crystal extends to a resolution of 2.3 Å at 120 K. The crystals belong to space group C2, with unit-cell parameters a = 237.98, b = 59.27, c = 137.02 Å, α = 90.00, β = 125.40, γ = 90.00°. The presence of two and a half molecules per asymmetric unit gives a crystal volume per protein weight (V{sub M}) of 9.70 Å{sup 3} Da{sup −1} and a solvent content of 49%.

  16. Multidimensional fractionation is a requirement for quantitation of Golgi-resident glycosylation enzymes from cultured human cells.

    Science.gov (United States)

    Lin, Chi-Hung; Chik, Jenny H L; Packer, Nicolle H; Molloy, Mark P

    2015-02-06

    Glycosylation results from the concerted action of glycosylation enzymes in the secretory pathway. In general, gene expression serves as the primary control mechanism, but post-translational fine-tuning of glycosylation enzyme functions is often necessary for efficient synthesis of specific glycan epitopes. While the field of glycomics has rapidly advanced, there lacks routine proteomic methods to measure expression of specific glycosylation enzymes needed to fill the gap between mRNA expression and the glycomic profile in a "reverse genomics" workflow. Toward developing this workflow we enriched Golgi membranes from two human colon cancer cell lines by sucrose density centrifugation and further mass-based fractionation by SDS-PAGE. We then applied mass spectrometry to demonstrate a doubling in the number of Golgi resident proteins identified, compared to the unenriched, low speed centrifuged supernatant of lysed cells. A total of 35 Golgi-resident glycosylation enzymes, of which 23 were glycosyltransferases, were identified making this the largest protein database so far of Golgi resident glycosylation enzymes experimentally identified in cultured human cells. We developed targeted mass spectrometry assays for specific quantitation of many of these glycosylation enzymes. Our results show that alterations in abundance of glycosylation enzymes at the protein level were generally consistent with the resultant glycomic profiles, but not necessarily with the corresponding glycosyltransferase mRNA expression as exemplified by the case of O-glycan core 1 T synthase.

  17. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    important to address. Whenever glycosylation has been found to be an important PTM for function or bioactivity, human therapeutics have generally been produced in mammalian Chinese hamster ovary (CHO) cell line. Oglycosylation is one of the most complex regulated PTMs of proteins but also one of the least...... understood. Currently, mammalian cells are required for human O-glycosylation. Increasing efforts have been devoted to engineering non-mammalian cells for production of recombinant proteins with “human-like” glycosylation. Substantial success has been achieved with designed N-glycosylation in both lower......Recombinant expression of therapeutic proteins is one of the major tasks in modern biomedicine. One of the most important factors with respect to therapeutic use in human is posttranslational modifications (PTMs) of the recombinant proteins, of which protein glycosylation is by far the most...

  18. Systems analysis of singly and multiply O-glycosylated peptides in the human serum glycoproteome via EThcD and HCD mass spectrometry.

    Science.gov (United States)

    Zhang, Yong; Xie, Xinfang; Zhao, Xinyuan; Tian, Fang; Lv, Jicheng; Ying, Wantao; Qian, Xiaohong

    2018-01-06

    Human serum has been intensively studied to identify biomarkers via global proteomic analysis. The altered O-glycoproteome is associated with human pathological state including cancer, inflammatory and degenerative diseases and is an attractive source of disease biomarkers. Because of the microheterogeneity and macroheterogeneity of O-glycosylation, site-specific O-glycosylation analysis in human serum is still challenging. Here, we developed a systematic strategy that combined multiple enzyme digestion, multidimensional separation for sample preparation and high-resolution tandem MS with Byonic software for intact O-glycopeptide characterization. We demonstrated that multiple enzyme digestion or multidimensional separation can make sample preparation more efficient and that EThcD is not only suitable for the identification of singly O-glycosylated peptides (50.3%) but also doubly (21.2%) and triply (28.5%) O-glycosylated peptides. Totally, with the strict scoring criteria, 499 non-redundant intact O-glycopeptides, 173 O-glycosylation sites and 6 types of O-glycans originating from 49 O-glycoprotein groups were identified in human serum, including 121 novel O-glycosylation sites. Currently, this is the largest data set of site-specific native O-glycoproteome from human serum samples. We expect that the strategies developed by this study will facilitate in-depth analyses of native O-glycoproteomes in human serum and provide opportunities to understand the functional roles of protein O-glycosylation in human health and diseases. The altered O-glycoproteome is associated with human pathological state and is an attractive source of disease biomarkers. However, site-specific O-glycosylation analysis is challenging because of the microheterogeneity (different glycoforms attached to one glycosylation site) and macroheterogeneity (site occupancy) of O-glycosylation. In this work, we developed a systematic strategy for intact O-glycopeptide characterization. This study took

  19. DISAL glycosyl donors for the synthesis of a linear hexasaccharide under mild conditions

    DEFF Research Database (Denmark)

    Petersen, Lars; Laursen, Jane B.; Larsen, K.

    2003-01-01

    The new class of glycosyl donors with a methyl 3,5-dinitrosalicylate (DISAL) anomeric leaving group has proved efficient for glycosylation under strictly neutral, mildly basic, or mildly acidic conditions. Here, we report the synthesis of novel DISAL disaccharide glycosyl donors prepared by easy...... nucleophilic aromatic substitution. These DISAL donors proved efficient in the synthesis of a starch-related hexasaccharide under very mild conditions. Glycosylations proceeded with alpha-selectivity and were compatible with Trt protecting groups....

  20. Flagellar glycosylation in Clostridium botulinum.

    Science.gov (United States)

    Twine, Susan M; Paul, Catherine J; Vinogradov, Evgeny; McNally, David J; Brisson, Jean-Robert; Mullen, James A; McMullin, David R; Jarrell, Harold C; Austin, John W; Kelly, John F; Logan, Susan M

    2008-09-01

    Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.

  1. Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts.

    Science.gov (United States)

    Eklund, Erik A; Merbouh, Nabyl; Ichikawa, Mie; Nishikawa, Atsushi; Clima, Jessica M; Dorman, James A; Norberg, Thomas; Freeze, Hudson H

    2005-11-01

    Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have reduced Man-1-P and GDP-Man. To replenish intracellular Man-1-P pools in CDG-Ia cells, we synthesized two hydrophobic, membrane permeable acylated versions of Man-1-P and determined their ability to normalize LLO size and N-glycosylation in CDG-Ia fibroblasts. Both compounds, compound I (diacetoxymethyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate) (C-I) and compound II (diacetoxymethyl 2,3,4,6-tetra-O-ethyloxycarbonyl-alpha-D-mannopyranosyl phosphate) (C-II), contain two acetoxymethyl (CH2OAc) groups O-linked to phosphorous. C-I contains acetyl esters and C-II contains ethylcarbonate (CO2Et) esters on the Man residue. Both C-I and C-II normalized truncated LLO, but C-II was about 2-fold more efficient than C-I. C-II replenished the GDP-Man pool in CDG-Ia cells and was more efficiently incorporated into glycoproteins than exogenous Man at low concentrations (25-75 mM). In a glycosylation assay of DNaseI in CDG-Ia cells, C-II restored glycosylation to control cell levels. C-II also corrected impaired LLO biosynthesis in cells from a Dolichol (Dol)-P-Man deficient patient (CDG-Ie) and partially corrected LLO in cells from an ALG12 mannosyltransferase-deficient patient (CDG-Ig), whereas cells from an ALG3-deficient patient (CDG-Id) and from an MPDU1-deficient patient (CDG-If) were not corrected. These results validate the general concept of using pro-Man-1-P substrates as potential therapeutics for CDG-I patients.

  2. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential.

    Science.gov (United States)

    Hobbs, Cheryl A; Koyanagi, Mihoko; Swartz, Carol; Davis, Jeffrey; Kasamoto, Sawako; Maronpot, Robert; Recio, Leslie; Hayashi, Shim-Mo

    2018-03-01

    Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein.

    Science.gov (United States)

    Lingappa, V R; Lingappa, J R; Prasad, R; Ebner, K E; Blobel, G

    1978-05-01

    mRNA from rat mammary glands 13-15 days post partum was translated in a wheat germ cell-free system either in the absence or in the presence of ribosome-denuded membranes prepared from isolated rough microsomes of dog pancreas. Newly synthesized alpha-lactalbumin was identified by immunoprecipitation with a monospecific rabbit antiserum against rat alpha-lactalbumin and was characterized by partial amino-terminal sequence determination and by lectin affinity chromatography. In the absence of membranes a presumably unglycosylated form of alpha-lactalbumin was synthesized that bound neither to concanavalin A-Sepharose nor to Ricinus communis lectin-agarose and that contained an amino-terminal signal peptide region comprising 19 amino acid residues. In the presence of membranes a processed form was synthesized that lacked the signal peptide portion and that had an amino-terminal sequence identical to that of mature alpha-lactalbumin. Furthermore, this processed form was found to be segregated, presumably within the microsomal vesicles, because it was resistant to post-translational proteolysis. It was also found to be glycosylated, and because it bound to concanavalin A-Sepharose, from which it could be eluted specifically by alpha-methyl mannoside, but not to R. communis lectin-agarose, it was presumably core-glycosylated. Processing, segregation, and core glycosylation were observed to proceed only when membranes were present during translation and not when they were added after translation.

  4. N-glycosylation increases the circulatory half-life of human growth hormone

    DEFF Research Database (Denmark)

    Flintegaard, Thomas V; Thygesen, Peter; Rahbek-Nielsen, Henrik

    2010-01-01

    Therapeutic use of recombinant GH typically involves daily sc injections. We examined the possibilities for prolonging the in vivo circulation of GH by introducing N-glycans. Human GH variants with a single potential N-glycosylation site (N-X-S/T) introduced by site-directed mutagenesis were expr...

  5. Toward stable genetic engineering of human o-glycosylation in plants

    DEFF Research Database (Denmark)

    Yang, Zhang; Bennett, Eric Paul; Jørgensen, Bodil

    2012-01-01

    Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types...... an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating Gal......NAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O...

  6. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers

    NARCIS (Netherlands)

    Lauc, G.; Huffman, J.E.; Pucic, M.; Zgaga, L.; Adamczyk, B.; Muzinic, A.; Novokmet, M.; Polasek, O.; Gornik, O.; Kristic, J.; Keser, T.; Vitart, V.; Scheijen, B.; Uh, H.W.; Molokhia, M.; Patrick, A.L.; McKeigue, P.; Kolcic, I.; Lukic, I.K.; Swann, O.; Leeuwen, F.N. van; Ruhaak, L.R.; Houwing-Duistermaat, J.J.; Slagboom, P.E.; Beekman, M.; Craen, A.J. de; Deelder, A.M.; Zeng, Q.; Wang, W.; Hastie, N.D.; Gyllensten, U.; Wilson, J.F.; Wuhrer, M.; Wright, A.F.; Rudd, P.M.; Hayward, C.; Aulchenko, Y.; Campbell, H.; Rudan, I.

    2013-01-01

    Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative

  7. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    eukaryotes and even prokaryotes. Insect and yeast cells produce O-glycosylation incompatible with use in humans, however recently the yeast Pichia was engineered to perform the first step of human-like O-glycosylation. This review provides an overview of past and current engineering efforts of N...

  8. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla......The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous...... with the glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended...

  9. Novel anti-c-Mpl monoclonal antibodies identified multiple differentially glycosylated human c-Mpl proteins in megakaryocytic cells but not in human solid tumors.

    Science.gov (United States)

    Zhan, Jinghui; Felder, Barbara; Ellison, Aaron R; Winters, Aaron; Salimi-Moosavi, Hossein; Scully, Sheila; Turk, James R; Wei, Ping

    2013-06-01

    Thrombopoietin and its cognate receptor, c-Mpl, are the primary molecular regulators of megakaryocytopoiesis and platelet production. To date the pattern of c-Mpl expression in human solid tumors and the distribution and biochemical properties of c-Mpl proteins in hematopoietic tissues are largely unknown. We have recently developed highly specific mouse monoclonal antibodies (MAb) against human c-Mpl. In this study we used these antibodies to demonstrate the presence of full-length and truncated human c-Mpl proteins in various megakaryocytic cell types, and their absence in over 100 solid tumor cell lines and in the 12 most common primary human tumor types. Quantitative assays showed a cell context-dependent distribution of full-length and truncated c-Mpl proteins. All forms of human c-Mpl protein were found to be modified with extensive N-linked glycosylation but different degrees of sialylation and O-linked glycosylation. Of note, different variants of full-length c-Mpl protein exhibiting differential glycosylation were expressed in erythromegakaryocytic leukemic cell lines and in platelets from healthy human donors. This work provides a comprehensive analysis of human c-Mpl mRNA and protein expression on normal and malignant hematopoietic and non-hematopoietic cells and demonstrates the multiple applications of several novel anti-c-Mpl antibodies.

  10. Optimization of a colorimetric assay for glycosylated human serum albumin

    International Nuclear Information System (INIS)

    Bohney, J.P.; Feldhoff, R.C.

    1986-01-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100 0 C. A NaBH 4 reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with [ 3 H]glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation

  11. Functional importance of PAI-1 glycosylation

    DEFF Research Database (Denmark)

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    susceptible PAI-1 variant was not necessarily the one used when raising the antibody. This and other observations indicated that the carbohydrate moieties or the glycosylation sites are unlikely to be part of the epitopes for these antibodies. The antibody susceptibility characteristic for non......Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-linked glycosylation. Biochemical analysis of PAI-1 variants with substitutions of the Asn residues in each of these sites and expression in human embryonic kidney 293 (HEK293) cells showed that only Asn211 and Asn 267, but not Asn331 are glycosylated, and revealed a differential composition of the carbohydrate...

  12. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins

    DEFF Research Database (Denmark)

    Hägglund, Per; Matthiesen, R.; Elortza, F.

    2007-01-01

    and N-acetyl-β-glucosaminidase) are also included. The two strategies were here applied to identify 103 N-glycosylation sites in the Cohn IV fraction of human plasma. In addition, Endo D/H digestion uniquely enabled identification of 23 fucosylated N-glycosylation sites. Several O-glycosylated peptides......, thereby reducing the complexity and facilitating glycosylation site determinations. Here, we have used two different enzymatic deglycosylation strategies for N-glycosylation site analysis. (1) Removal of entire N-glycan chains by peptide- N-glycosidase (PNGase) digestion, with concomitant deamidation...... of the released asparagine residue. The reaction is carried out in H218O to facilitate identification of the formerly glycosylated peptide by incorporatation of 18O into the formed aspartic acid residue. (2) Digestion with two endo-β- N-acetylglucosaminidases (Endo D and Endo H) that cleave the glycosidic bond...

  13. Optimization of a colorimetric assay for glycosylated human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Bohney, J.P.; Feldhoff, R.C.

    1986-05-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100/sup 0/C. A NaBH/sub 4/ reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with (/sup 3/H)glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation.

  14. Development of on-chip fully automated immunoassay system "μTASWako i30" to measure the changes in glycosylation profiles of alpha-fetoprotein in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Kurosawa, Tatsuo; Watanabe, Mitsuo

    2016-12-01

    Glycosylation profiles significantly change during oncogenesis. Aberrant glycosylation can be used as a cancer biomarker in clinical settings. Different glycoforms can be separately detected using lectin affinity electrophoresis and lectin array-based methods. However, most methodologies and procedures need experienced technique to perform the assays and expertise to interpret the results. To apply glycomarkers for clinical practice, a robust assay system with an easy-to-use workflow is required. Wako's μTASWako i30, a fully automated immunoanalyzer, was developed for in vitro diagnostics based on microfluidic technology. It utilizes the principles of liquid-phase binding assay, where immunoreactions are performed in a liquid phase, and electrokinetic analyte transport assay. Capillary electrophoresis on microfluidic chip has enabled the detection of different glycoform types of alpha-fetoprotein (AFP), a serum biomarker for hepatocellular carcinoma. AFP with altered glycosylation can be separated based on the reactivity to Lens culinaris agglutinin on electrophoresis. The glycoform AFP-L3 was reportedly more specific in hepatocellular carcinoma. This assay system can provide a high sensitivity and rapid results in 9 min. The test results for ratio of AFP-L3 to total AFP using μTASWako i30 are correlated with those of conventional methodology. The μTASWako assay system and the technology can be utilized for glycosylation analysis in the postgenomic era. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Engineering Mammalian Mucin-type O-Glycosylation in Plants

    DEFF Research Database (Denmark)

    Yang, Zhang; Drew, Damian P; Jørgensen, Bodil

    2012-01-01

    -glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity...... was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon a2b. In plants, prolines in certain...... classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host...

  16. Defectively N-glycosylated and non-O-glycosylated aminopeptidase N (CD13) is normally expressed at the cell surface and has full enzymatic activity

    DEFF Research Database (Denmark)

    Norén, K; Hansen, Gert Helge; Clausen, H

    1997-01-01

    In order to study the effects of the absence of O-glycosylation and modifications of N-glycosylation on a class II membrane protein, pig and human aminopeptidase N (CD13) were stably expressed in the ldl(D) cell line. This cell line carries a UDP-Gal/UDP-GalNAc-epimerase deficiency which blocks...... the conversion of glucose into galactose derivatives. Thus it is possible in the ldl(D) cell line to selectively block O-glycosylation by the omission of N-acetylgalactoseamine from the culture medium and to alter N-glycosylation by the omission of galactose. In this way selectively altered glycosylated forms...

  17. Impact of O-glycosylation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43.

    Science.gov (United States)

    Reidl, Sebastian; Lehmann, Annika; Schiller, Roswitha; Salam Khan, A; Dobrindt, Ulrich

    2009-08-01

    Antigen 43 (Ag43) represents an entire family of closely related autotransporter proteins in Escherichia coli and has been described to confer aggregation and fluffing of cells, to promote biofilm formation, uptake and survival in macrophages as well as long-term persistence of uropathogenic E. coli in the murine urinary tract. Furthermore, it has been reported that glycosylation of the Ag43 passenger domain (alpha(43)) stabilizes its conformation and increases adhesion to Hep-2 cells. We characterized the role of Ag43 as an adhesin and the impact of O-glycosylation on the function of Ag43. To analyze whether structural variations in the alpha(43) domain correlate with different functional properties, we cloned 5 different agn43 alleles from different E. coli subtypes and tested them for autoaggregation, biofilm formation, adhesion to different eukaryotic cell lines as well as to purified components of the extracellular matrix. These experiments were performed with nonglycosylated and O-glycosylated Ag43 variants. We show for the first time that Ag43 mediates bacterial adhesion in a cell line-specific manner and that structural variations of the alpha(43) domain correlate with increased adhesive properties to proteins of the extracellular matrix such as collagen and laminin. Whereas O-glycosylation of many alpha(43) domains led to impaired autoaggregation and a significantly reduced adhesion to eukaryotic cell lines, their interaction with collagen was significantly increased. These data demonstrate that O-glycosylation is not a prerequisite for Ag43 function and that the different traits mediated by Ag43, i.e., biofilm formation, autoaggregation, adhesion to eukaryotic cells and extracellular matrix proteins, rely on distinct mechanisms.

  18. N-linked glycosylation of the immunoglobulin variable region

    NARCIS (Netherlands)

    van de Bovenkamp, Fleur S.; Derksen, Ninotska I. L.; Ooijevaar-de Heer, Pleuni; van Schie, Karin A.; Kruithof, Simone; Berkowska, Magdalena A.; van der Schoot, C. Ellen; Ijspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E. M.; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S. Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-01-01

    N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we

  19. N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability

    Directory of Open Access Journals (Sweden)

    Chiung-Fang Chang

    2016-06-01

    Full Text Available R-spondin 1 (Rspo1 plays an essential role in stem cell biology by potentiating Wnt signaling activity. Despite the fact that Rspo1 holds therapeutic potential for a number of diseases, its biogenesis is not fully elucidated. All Rspo proteins feature two amino-terminal furin-like repeats, which are responsible for Wnt signal potentiation, and a thrombospondin type 1 (TSR1 domain that can provide affinity towards heparan sulfate proteoglycans. Using chemical inhibitors, deglycosylase and site-directed mutagenesis, we found that human Rspo1 and Rspo3 are both N-glycosylated at N137, a site near the C-terminus of the furin repeat 2 domain, and Rspo2 is N-glycosylated at N160, a position near the N-terminus of TSR1 domain. Elimination of N-glycosylation at these sites affects their accumulation in media but have no effect on the ability towards heparin. Introduction of the N-glycosylation site to Rspo2 mutant at the position homologous to N137 in Rspo1 restored full glycosylation and rescued the accumulation defect of nonglycosylated Rspo2 mutant in media. Similar effect can be observed in the N137 Rspo1 or Rspo3 mutant engineered with Rspo2 N-glycosylation site. The results highlight the importance of N-glycosylation at these two positions in efficient folding and secretion of Rspo family. Finally, we further showed that human Rspo1 is subjected to endoplasmic reticulum (ER quality control in N-glycan-dependent manner. While N-glycan of Rspo1 plays a role in its intracellular stability, it had little effect on secreted Rspo1. Our findings provide evidence for the critical role of N-glycosylation in the biogenesis of Rspo1.

  20. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  1. Measurement of Glycosylated Alpha-Fetoprotein Improves Diagnostic Power over the Native Form in Hepatocellular Carcinoma

    Science.gov (United States)

    Jin, Jonghwa; Park, Jiyoung; Yu, Su Jong; Yoon, Jung-Hwan; Kim, Youngsoo

    2014-01-01

    Serum alpha-fetoprotein (AFP) has long been used as a diagnostic marker for hepatocellular carcinoma (HCC), albeit controversially. Although it remains widely used in clinics, the value of AFP in HCC diagnosis has recently been challenged due to its significant rates of false positive and false negative findings. To improve the efficacy of AFP as HCC diagnostic marker, we developed a method of measuring total and glycosylated AFP by multiple reaction monitoring (MRM)-MS. In this study, we verified the total amount of AFP (nonglycopeptide levels) and the degree of glycosylated AFP (deglycopeptide levels) in 60 normal (41 men and 19 women; mean age 53 years; range 32–74 years), 35 LC (23 men and 12 women; mean age 56 years; range 43–78 years; HBV-related), and 60 HCC subjects (42 men and 18 women; mean age 58 years; range 38–76 years; HBV-related; 30 stage I, 15 stage II, and 10 stage III). By MRM-MS analysis, the nonglycopeptide had 56.7% sensitivity, 68.3% specificity, and an AUC of 0.687 [cutoff value: ≥0.02 (light/heavy ratio)], comparing the normal and HCC group, whereas the deglycopeptide had 93.3% sensitivity, 68.3% specificity, and an AUC of 0.859 [cutoff value: ≥0.02 (light/heavy ratio)]. In comparing the stage I HCC subgroup with the LC group, the nonglycopeptide had a sensitivity of 66.7%, specificity of 80.0%, and an AUC of 0.712 [cutoff value: ≥0.02 (light/heavy ratio)], whereas the deglycopeptide had a sensitivity of 96.7%, specificity of 80.0%, and an AUC of 0.918 [cutoff value: ≥0.02 (light/heavy ratio)]. These data demonstrate that the discriminatory power of the deglycopeptide is greater than that of the nonglycopeptide. We conclude that deglycopeptide can distinguish cancer status between normal subjects and HCC patients better than nonglycopeptide. PMID:25310463

  2. The 'sweet' spot of cellular pluripotency: protein glycosylation in human pluripotent stem cells and its applications in regenerative medicine.

    Science.gov (United States)

    Wang, Yu-Chieh; Lin, Victor; Loring, Jeanne F; Peterson, Suzanne E

    2015-05-01

    Human pluripotent stem cells (hPSCs) promise for the future of regenerative medicine. The structural and biochemical diversity associated with glycans makes them a unique type of macromolecule modification that is involved in the regulation of a vast array of biochemical events and cellular activities including pluripotency in hPSCs. The primary focus of this review article is to highlight recent advances in stem cell research from a glycobiological perspective. We also discuss how our understanding of glycans and glycosylation may help overcome barriers hindering the clinical application of hPSC-derived cells. A literature survey using NCBI-PubMed and Google Scholar was performed in 2014. Regenerative medicine hopes to provide novel strategies to combat human disease and tissue injury that currently lack effective therapies. Although progress in this field is accelerating, many critical issues remain to be addressed in order for cell-based therapy to become a practical and safe treatment option. Emerging evidence suggests that protein glycosylation may significantly influence the regulation of cellular pluripotency, and that the exploitation of protein glycosylation in hPSCs and their differentiated derivatives may lead to transformative and translational discoveries for regenerative medicine. In addition, hPSCs represent a novel research platform for investigating glycosylation-related disease.

  3. Distribution of alpha3, alpha5 and alpha(v) integrin subunits in mature and immature human oocytes.

    Science.gov (United States)

    Capmany, G; Mart, M; Santaló, J; Bolton, V N

    1998-10-01

    The distribution of three integrin subunits, alpha3, alpha5 and alpha(v), in immature and mature human oocytes has been examined using immunofluorescence and confocal microscopy. The results demonstrate that both alpha5 and alpha(v) are present at the germinal vesicle stage, while alpha3 was only detected in oocytes after germinal vesicle breakdown, in metaphase I and II stage oocytes. The cortical concentration of integrin subunits alpha3 and alpha5 is consistent with their localization in the oolemma. In contrast, the homogeneous distribution of alpha(v) throughout the oocyte suggests the existence of cytoplasmic reservoirs of this protein in the oocyte.

  4. Preparation, crystallization and preliminary X-ray diffraction studies of the glycosylated form of human interleukin-23

    International Nuclear Information System (INIS)

    Shirouzono, Takumi; Chirifu, Mami; Nakamura, Chiharu; Yamagata, Yuriko; Ikemizu, Shinji

    2012-01-01

    Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine composed of p19 and p40 subunits. Human p19 and p40 subunits were cloned and coexpressed in N-acetylglucosaminyltransferase I-negative 293S cells. The glycosylated human IL-23 was purified and crystallized by the hanging-drop vapour-diffusion method. Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine composed of p19 and p40 subunits. IL-23 plays crucial roles in the activation, proliferation and survival of IL-17-producing helper T cells which induce various autoimmune diseases. Human p19 and p40 subunits were cloned and coexpressed in N-acetylglucosaminyltransferase I-negative 293S cells, which produce high-mannose-type glycosylated proteins in order to diminish the heterogeneity of modified N-linked glycans. The glycosylated human IL-23 was purified and crystallized by the hanging-drop vapour-diffusion method. X-ray diffraction data were then collected to 2.6 Å resolution. The crystal belonged to space group P6 1 or P6 5 , with unit-cell parameters a = b = 108.94, c = 83.79 Å, γ = 120°. Assuming that the crystal contains one molecule per asymmetric unit, the calculated Matthews coefficient was 2.69 Å 3 Da −1 , with a solvent content of 54.2%. The structure was determined by the molecular-replacement method, with an initial R factor of 52.6%. After subsequent rigid-body and positional refinement, the R work and R free values decreased to 31.4% and 38.7%, respectively

  5. Multiple forms of the human tyrosine phosphatase RPTP alpha. Isozymes and differences in glycosylation

    DEFF Research Database (Denmark)

    Daum, G; Regenass, S; Sap, J

    1994-01-01

    Among all the receptor-linked protein-tyrosine-phosphatase RPTP alpha clones described from mammalian tissues, one differed in that it encoded a 9-amino-acid insert 3 residues upstream from the transmembrane segment (Kaplan, R., Morse, B., Huebner, K., Croce, C., Howk, R. Ravera, M., Ricca, G...

  6. Evidence for Alpha Receptors in the Human Ureter

    Science.gov (United States)

    Madeb, Ralph; Knopf, Joy; Golijanin, Dragan; Bourne, Patricia; Erturk, Erdal

    2007-04-01

    An immunohistochemical and western blot expression analysis of human ureters was performed in order to characterize the alpha-1-adrenergic receptor distribution along the length of the human ureteral wall. Mapping the distribution will assist in understanding the potential role alpha -1-adrenergic receptors and their subtype density might have in the pathophysiology of ureteral colic and stone passage. Patients diagnosed with renal cancer or bladder cancer undergoing nephrectomy, nephroureterectomy, or cystectomy had ureteral specimens taken from the proximal, mid, distal and tunneled ureter. Tissues were processed for fresh frozen examination and fixed in formalin. None of the ureteral specimens were involved with cancer. Serial histologic sections and immunohistochemical studies were performed using antibodies specific for alpha-1-adrenergic receptor subtypes (alpha 1a, alpha 1b, alpha 1d). The sections were examined under a light microscope and scored as positive or negative. In order to validate and quantify the alpha receptor subtypes along the human ureter. Western blotting techniques were applied. Human ureter stained positively for alpha -1-adrenergic receptors. Immunostaining appeared red, with intense reaction in the smooth muscle of the ureter and endothelium of the neighboring blood vessels. There was differential expression between all the receptors with the highest staining for alpha-1D subtype. The highest protein expression for all three subtypes was in the renal pelvis and decreased with advancement along the ureter to the distal ureter. At the distal ureter, there was marked increase in expression as one progressed towards the ureteral orifice. The same pattern of protein expression was exhibited for all three alpha -1-adrenergic receptor subtypes. We provide preliminary evidence for the ability to detect and quantify the alpha-1-receptor subtypes along the human ureter which to the best of our knowledge has never been done with

  7. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sitesusing neural networks

    DEFF Research Database (Denmark)

    Gupta, Ramneek; Jung, Eva; Gooley, Andrew A

    1999-01-01

    Dictyostelium discoideum has been suggested as a eukaryotic model organism for glycobiology studies. Presently, the characteristics of acceptor sites for the N-acetylglucosaminyl-transferases in Dictyostelium discoideum, which link GlcNAc in an alpha linkage to hydroxyl residues, are largely...... unknown. This motivates the development of a species specific method for prediction of O-linked GlcNAc glycosylation sites in secreted and membrane proteins of D. discoideum. The method presented here employs a jury of artificial neural networks. These networks were trained to recognize the sequence...... context and protein surface accessibility in 39 experimentally determined O-alpha-GlcNAc sites found in D. discoideum glycoproteins expressed in vivo. Cross-validation of the data revealed a correlation in which 97% of the glycosylated and nonglycosylated sites were correctly identified. Based...

  8. Crystallization and preliminary X-ray diffraction of human interleukin-7 bound to unglycosylated and glycosylated forms of its α-receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wickham, Joseph Jr; Walsh, Scott T. R., E-mail: walsh.220@osu.edu [Department of Molecular and Cellular Biochemistry, Comprehensive Cancer Center, Ohio State University, 467 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States)

    2007-10-01

    Bacterial and insect cell expression systems have been developed to produce unglycosylated and glycosylated forms of human interleukin-7 (IL-7) and the extracellular domain of its α receptor, IL-7Rα. We report the crystallization and X-ray diffraction of IL-7 complexes to both unglycosylated and glycosylated forms of the IL-7Rα to 2.7 and 3.0 Å, respectively. The interleukin-7 (IL-7) signaling pathway plays an essential role in the development, proliferation and homeostasis of T and B cells in cell-mediated immunity. Understimulation and overstimulation of the IL-7 signaling pathway leads to severe combined immunodeficiency, autoimmune reactions, heart disease and cancers. Stimulation of the IL-7 pathway begins with IL-7 binding to its α-receptor, IL-7Rα. Protein crystals of unglycosylated and glycosylated complexes of human IL-7–IL-7Rα extracellular domain (ECD) obtained using a surface entropy-reduction approach diffract to 2.7 and 3.0 Å, respectively. Anomalous dispersion methods will be used to solve the unglycosylated IL-7–IL-7Rα ECD complex structure and this unglycosylated structure will then serve as a model in molecular-replacement attempts to solve the structure of the glycosylated IL-7–α-receptor complex.

  9. Crystallization and preliminary X-ray diffraction of human interleukin-7 bound to unglycosylated and glycosylated forms of its α-receptor

    International Nuclear Information System (INIS)

    Wickham, Joseph Jr; Walsh, Scott T. R.

    2007-01-01

    Bacterial and insect cell expression systems have been developed to produce unglycosylated and glycosylated forms of human interleukin-7 (IL-7) and the extracellular domain of its α receptor, IL-7Rα. We report the crystallization and X-ray diffraction of IL-7 complexes to both unglycosylated and glycosylated forms of the IL-7Rα to 2.7 and 3.0 Å, respectively. The interleukin-7 (IL-7) signaling pathway plays an essential role in the development, proliferation and homeostasis of T and B cells in cell-mediated immunity. Understimulation and overstimulation of the IL-7 signaling pathway leads to severe combined immunodeficiency, autoimmune reactions, heart disease and cancers. Stimulation of the IL-7 pathway begins with IL-7 binding to its α-receptor, IL-7Rα. Protein crystals of unglycosylated and glycosylated complexes of human IL-7–IL-7Rα extracellular domain (ECD) obtained using a surface entropy-reduction approach diffract to 2.7 and 3.0 Å, respectively. Anomalous dispersion methods will be used to solve the unglycosylated IL-7–IL-7Rα ECD complex structure and this unglycosylated structure will then serve as a model in molecular-replacement attempts to solve the structure of the glycosylated IL-7–α-receptor complex

  10. Ultrastructural studies of human and rabbit alpha-M-globulins.

    Science.gov (United States)

    Bloth, B; Chesebro, B; Svehag, S E

    1968-04-01

    Electron micrographs of isolated human alpha(2)M-molecules, obtained by the negative contrast technique, revealed morphologically homogenous structures resembling a graceful monogram of the two letters H and I. The modal values for the length and width of the alpha(2)M particles were 170 A and 100 A, respectively. Purified rabbit alphamacroglobulins contained about 80% alpha(1)M- and 20% alpha(2)M-globulins. The isolated rabbit alpha(1)M- and alpha(2)M-molecules were morphologically indistinguishable from one another and from human alpha(2)M-molecules. Preliminary immunoprecipitation studies demonstrated that the two rabbit alphaM-globulins were antigenically different. Sedimentation constant determinations gave s(20, w) values of 18.8 and 18.2 for rabbit alpha(1)M and alpha(2)M, respectively.

  11. Model-based analysis of N-glycosylation in Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Krambeck, Frederick J.; Bennun, Sandra V; Andersen, Mikael Rørdam

    2017-01-01

    The Chinese hamster ovary (CHO) cell is the gold standard for manufacturing of glycosylated recombinant proteins for production of biotherapeutics. The similarity of its glycosylation patterns to the human versions enable the products of this cell line favorable pharmacokinetic properties and lower...

  12. Chemoenzymatic synthesis of alpha-L-rhamnosides using recombinant alpha-L-rhamnosidase from Aspergillus terreus

    Czech Academy of Sciences Publication Activity Database

    De Winter, K.; Šimčíková, Daniela; Schlack, B.; Weignerová, Lenka; Pelantová, Helena; Soetaert, W.; Desmet, T.; Křen, Vladimír

    2013-01-01

    Roč. 147, NOV 2013 (2013), s. 640-644 ISSN 0960-8524 R&D Projects: GA MŠk(CZ) LD13042; GA MŠk(CZ) 7E11011 Institutional support: RVO:61388971 Keywords : alpha-L-Rhamnosidase * Aspergillus terreus * Glycosylation Subject RIV: CE - Biochemistry Impact factor: 5.039, year: 2013

  13. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus*

    Science.gov (United States)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2016-01-01

    Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252

  14. Characterization of the oligosaccharide structure of human glycosylated prolactin (G-hPRL) native and recombinant

    International Nuclear Information System (INIS)

    Marcos Vinicius Nucci Capone

    2013-01-01

    Human prolactin (hPRL) is a polypeptide hormone secreted by the anterior pituitary under the regulation of the hypothalamus, involved in a variety of biological processes such as mammary gland development and lactation. The recombinant product is important in medical diagnosis and treatment of failure of lactation. This hormone may occur in the form of non-glycosylated protein (NGhPRL) and glycosylated (G-hPRL) with molecular weights of approximately 23 and 25 kilodalton (kDa), respectively; has a single N-glycosylation site located at asparagine (Asn) position 31, which is partially occupied, thus being a particularly interesting model of glycosylation. The biological activity of G-hPRL is lower compared to NG-hPRL (~4 times) and its physiological function is not well defined: the portion of carbohydrate appears to have an important role in the hormone biosynthesis, secretion, biological activity, and plasma survival of the hormone. The main objective of this study was to compare the structures of N-glycans present in glycosylated pituitary prolactin (G-hPRL-NHPP) with those present in the recombinant. To obtain the recombinant G-hPRL the production was performed in laboratory scale from Chinese hamster ovary cells (CHO), genetically modified and adapted to growth in suspension. Cycloheximide (CHX), whose main effect was to increase the ratio G-hPRL/NG-hPRL from 5% to 38% was added to the culture medium, thereby facilitating the purification of G-hPRL. The G-hPRL was purified in two steps, a cation exchanger followed by a purification by reversed-phase high performance liquid chromatography (RP-HPLC) which demonstrated the efficient separation of the two isoforms of hPRL. Recombinant G-hPRL-IPEN was well characterized by several techniques confirming its purity and biological activity, including comparisons with other reference preparation of pituitary origin purchased from the N ational Hormone & Peptide Program (NHPPU. S.) . The composition of N-glycans present

  15. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Michelle; Sharma, Shashank [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McDevitt, Niamh; O' Leary, Claire [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland); Joshi, Lokesh [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McMahon, Siobhan S., E-mail: siobhan.mcmahon@nuigalway.ie [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment

  16. Characterization and charge distribution of the asparagine-linked oligosaccharides on secreted mouse thyrotropin and free alpha-subunits

    International Nuclear Information System (INIS)

    Gesundheit, N.; Gyves, P.W.; DeCherney, G.S.; Stannard, B.S.; Winston, R.L.; Weintraub, B.D.

    1989-01-01

    Mouse hemipituitaries in vitro secrete TSH, composed of an alpha-beta heterodimer, as well as excess (free) alpha-subunits. By dual metabolic labeling with [35S]sulfate and [3H]mannose, we have characterized oligosaccharides from secreted TSH alpha, TSH beta, and free alpha-subunits released from the apoprotein by enzymatic deglycosylation. Oligosaccharides from each subunit displayed a distinct anion exchange HPLC profile due to a specific pattern of sialylation and sulfation. Six species were obtained from TSH alpha (with two glycosylation sites), including neutral oligosaccharides as well as those with one or two negative charges. For TSH beta (with one glycosylation site) at least eight oligosaccharide species were noted, representing nearly every permutation of sialylation and sulfation; approximately 30% contained three or more negative charges. Analysis of [3H]mannose-labeled oligosaccharides on Concanavalin-A-agarose showed 85% binding for those from TSH alpha, 70% for free alpha, and 50% for those from TSH beta. These data demonstrate that oligosaccharides from secreted TSH beta were more sialylated and sulfated, consistent with a more complex branching pattern, than those from TSH alpha. Oligosaccharides from free alpha-subunit were more sialylated than those from TSH alpha, and the net negative charge was intermediate between those of TSH alpha and TSH beta. Although great microheterogeneity is present even at the single glycosylation site on the beta-subunit of secreted TSH, a pattern of sialylation and sulfation could be discerned

  17. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    International Nuclear Information System (INIS)

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-01-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with [ 3 H]yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK ampersand F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells

  18. N-Linked Glycosylation is an Important Parameter for Optimal Selection of Cell Lines Producing Biopharmaceutical Human IgG

    NARCIS (Netherlands)

    van Berkel, Patrick H. C.; Gerritsen, Jolanda; Perdok, Gerrard; Valbjorn, Jesper; Vink, Tom; van de Winkel, Jan G. J.; Parren, Paul W. H. I.

    2009-01-01

    We studied the variations in N-linked glycosylation of human IgG molecules derived from 105 different stable cell lines each expressing one of the six different antibodies. Antibody expression was based on glutamine synthetase selection technology in suspension growing CHO-KISV cells. The glycans

  19. N-Glycosylation of Lipocalin 2 Is Not Required for Secretion or Exosome Targeting

    Directory of Open Access Journals (Sweden)

    Erawan Borkham-Kamphorst

    2018-04-01

    Full Text Available Lipocalin 2 (LCN2 is a highly conserved secreted adipokine acting as a serum transport protein for small hydrophobic molecules such as fatty acids and steroids. In addition, LCN2 limits bacterial growth by sequestering iron-containing siderophores and further protects against intestinal inflammation and tumorigenesis associated with alterations in the microbiota. Human LCN2 contains one N-glycosylation site conserved in other species. It was postulated that this post-translational modification could facilitate protein folding, protects from proteolysis, is required for proper trafficking from the Golgi apparatus to the cell surface, and might be relevant for effective secretion. We here show that the homologous nucleoside antibiotic tunicamycin blocks N-linked glycosylation but not secretion of LCN2 in primary murine hepatocytes, derivatives thereof, human lung carcinoma cell line A549, and human prostate cancer cell line PC-3. Moreover, both the glycosylated and the non-glycosylated LCN2 variants are equally targeted to exosomes, demonstrating that this post-translational modification is not necessary for proper trafficking of LCN2 into these membranous extracellular vesicles. Furthermore, a hydrophobic cluster analysis revealed that the N-glycosylation site is embedded in a highly hydrophobic evolutionarily conserved surrounding. In sum, our data indicate that the N-glycosylation of LCN2 is not required for proper secretion and exosome cargo recruitment in different cell types, but might be relevant to increase overall solubility.

  20. The Emerging Importance of IgG Fab Glycosylation in Immunity.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Hafkenscheid, Lise; Rispens, Theo; Rombouts, Yoann

    2016-02-15

    Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Structure-function analysis of the human sialyltransferase ST3Gal I - Role of N-glycosylation and a novel conserved sialylmotif

    DEFF Research Database (Denmark)

    Jeanneau, C.; Chazalet, V.; Auge, C.

    2004-01-01

    of these residues and of the conserved residues of motif VS (HX4E) was assessed using as a template the human ST3Gal I. Mutational analysis showed that residues His(299) and Tyr(300) of the new motif, and His(316) of the VS motif, are essential for activity since their substitution by alanine yielded inactive...... showed that none of the mutants tested had any significant effect in nucleotide donor binding. Instead the mutant proteins were affected in their binding to the acceptor and/or demonstrated lower catalytic efficiency. Although the human ST3Gal I has four N-glycan attachment sites in its catalytic domain...... that are potentially glycosylated, none of them was shown to be necessary for enzyme activity. However, N-glycosylation appears to contribute to the proper folding and trafficking of the enzyme....

  2. Induction of human airway hyperresponsiveness by tumour necrosis factor-alpha.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1995-09-15

    Tumour necrosis factor-alpha (TNF alpha) is implicated in the pathogenesis of asthma; however, little is known of its direct effect on smooth muscle reactivity. We investigated the effect of TNF alpha on the responsiveness of human bronchial tissue to electrical field stimulation in vitro. Incubation of non-sensitized tissue with 1 nM, 3 nM and 10 nM TNF alpha significantly increased responsiveness to electrical field stimulation (113 +/- 8, 110 +/- 4 and 112 +/- 2% respectively) compared to control (99 +/- 2%) (P 0.05) nor were responses to exogenous acetylcholine (93 +/- 4% versus 73 +/- 7%, n = 3, P = 0.38). These results show that TNF alpha causes an increase in responsiveness of human bronchial tissue and that this occurs prejunctionally on the parasympathetic nerve pathway. This is the first report of a cytokine increasing human airway tissue responsiveness.

  3. Kinetics of alpha-amylase secretion in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Henriksen, Anne Laurence Santerre; Carlsen, Morten; Bang de, H.

    1999-01-01

    -chase experiments were carried out to investigate the alpha-amylase secretion kinetics in A. oryzae. No unglycosylated alpha-amylase was detected neither intracellularly nor extracellularly demonstrating that glycosylation was not the rate controlling step in the secretory pathway. The pulse chase experiments...... indicated that there are two pools of intracellular alpha-amylase: a fast secreted and a slow secreted. The secretion of those two pools were described with a kinetic model, which was fitted to the pulse chase experiments. (C) 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 65: 76-82, 1999....

  4. PANP is a novel O-glycosylated PILR{alpha} ligand expressed in neural tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, Amane [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Shiratori, Ikuo [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Wang, Jing [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Lanier, Lewis L. [Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143 (United States); Arase, Hisashi, E-mail: arase@biken.osaka-u.ac.jp [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); JST CREST, Saitama 332-0012 (Japan)

    2011-02-18

    Research highlights: {yields} A Novel molecule, PANP, was identified to be a PILR{alpha} ligand. {yields} Sialylated O-glycan structures on PANP were required for PILR{alpha} recognition. {yields} Transcription of PANP was mainly observed in neural tissues. {yields} PANP seems to be involved in immune regulation as a ligand for PILR{alpha}. -- Abstract: PILR{alpha} is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILR{alpha} to its ligand CD99 is involved in immune regulation; however, whether there are other PILR{alpha} ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILR{alpha}. Transcription of PANP was mainly observed in neural tissues. PILR{alpha}-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILR{alpha} reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILR{alpha}.

  5. Functional importance of PAI-1 glycosylation

    DEFF Research Database (Denmark)

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    2001-01-01

    Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-glycosylated PAI-1 could be conferred upon PAI-1 expressed in HEK293 cells by mutational inactivation of one or the other glycosylation site. These findings reveal a novel functional role for glycosylation of a serpin. The glycosylation sites are localised between a-helix H and b-strand 2C and b-strand 3C and a...

  6. Application of four anti-human interferon-alpha monoclonal antibodies for immunoassay and comparative analysis of natural interferon-alpha mixtures

    International Nuclear Information System (INIS)

    Andersson, G.; Lundgren, E.; Ekre, H.P.

    1991-01-01

    Four different mouse monoclonal antibodies to human interferon-alpha (IFN-alpha) were evaluated for application in quantitative and comparative analysis of natural IFN-alpha mixtures. Binding to IFN-alpha subtypes in solution revealed individual reactivity patterns. These patterns changed if the IFN-alpha molecules were immobilized either passively to a surface or bound by another antibody. Also, substitution of a single amino acid in IFN-alpha 2 affected the binding, apparently by altering the conformation. Isoelectric focusing of three natural IFN-alpha preparations from different sources, followed by immunoblotting, resulted in individual patterns with each of the four mAbs and also demonstrated variation in the composition of the IFN-alpha preparations. None of the mAbs was subtype specific, but by combining the different mAbs, and also applying polyclonal anti-human IFN-alpha antibodies, it was possible to design sensitive sandwich ELISAs with broad or more limited IFN-alpha subtype specificity

  7. Characterization of receptors for recombinant human tumor necrosis factor-alpha from human placental membranes

    International Nuclear Information System (INIS)

    Aiyer, R.A.; Aggarwal, B.B.

    1990-01-01

    High affinity receptors for recombinant human tumor necrosis factor-alpha (rhTNF-alpha) were identified on membranes prepared from full term human placenta. Highly purified rhTNF-alpha iodinated by the iodogen method was found to bind placental membranes in a displaceable manner with an approximate dissociation constant (KD) of 1.9 nM. The membrane bound TNF-alpha receptor could be solubilized by several detergents with optimum extraction being obtained with 1% Triton X-100. The binding of 125I-rhTNF-alpha to the solubilized receptor was found to be time and temperature dependent, yielding maximum binding within 1 h, 24 h and 48 h at 37 degrees C, 24 degrees C and 4 degrees C, respectively. However, the maximum binding obtainable at 4 degrees C was only 40% of that at 37 degrees C. The binding 125I-rhTNF-alpha to solubilized placental membrane extracts was displaceable by unlabeled rhTNF-alpha, but not by a related protein recombinant human tumor necrosis factor-beta (rhTNF-beta; previously called lymphotoxin). This is similar to the behavior of TNF-alpha receptors derived from detergent-solubilized cell extracts, although on intact cells, both rhTNF-alpha and rhTNF-beta bind with equal affinity to TNF receptors. The Scatchard analysis of the binding data of the solubilized receptor revealed high affinity binding sites with a KD of approximately 0.5 nM and a receptor concentration of about 1 pmole/mg protein. Gel filtration of the solubilized receptor-ligand complexes on Sephacryl S-300 revealed two different peaks of radioactivity at approximate molecular masses of 50,000 Da and 400,000 Da. The 400,000 dalton peak corresponded to the receptor-ligand complex. Overall, our results suggest that high affinity receptors for TNF-alpha are present on human placental membranes and provide evidence that these receptors may be different from that of rhTNF-beta

  8. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  9. Assignment of casein kinase 2 alpha sequences to two different human chromosomes

    DEFF Research Database (Denmark)

    Boldyreff, B; Klett, C; Göttert, E

    1992-01-01

    Human casein kinase 2 alpha gene (CK-2-alpha) sequences have been localized within the human genome by in situ hybridization and somatic cell hybrid analysis using a CK-2 alpha cDNA as a probe. By in situ hybridization, the CK-2 alpha cDNA could be assigned to two different loci, one on 11p15.1-ter...

  10. Efficient synthesis of glycosylated phenazine natural products and analogs with DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors

    DEFF Research Database (Denmark)

    Laursen, Jane B.; Petersen, Lars; Jensen, K.J.

    2003-01-01

    Inspired by the occurrence and function of phenazines in natural products, new glycosylated analogs were designed and synthesized. DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors were used in an efficient and easily-handled glycosylation protocol compatible with combinatorial chemistry....... Benzoylated D-glucose, D-galactose and L-quinovose DISAL glycosyl donors were synthesized in high yields and used under mild conditions to glycosylate methyl saphenate and 2-hydroxyphenazine. The glycosides were screened for biological activity and one compound showed inhibitory activity towards topoisomerase...

  11. Immunostimulatory effects of natural human interferon-alpha (huIFN-alpha) on carps Cyprinus carpio L.

    Science.gov (United States)

    Watanuki, Hironobu; Chakraborty, Gunimala; Korenaga, Hiroki; Kono, Tomoya; Shivappa, R B; Sakai, Masahiro

    2009-10-15

    Human interferon-alpha (huIFN-alpha) is an important immunomodulatory substance used in the treatment and prevention of numerous infectious and immune-related diseases in animals. However, the immunostimulatory effects of huIFN-alpha in fish remain to be investigated. In the current study, the immune responses of the carp species Cyprinus carpio L. to treatment with huIFN-alpha were analyzed via measurement of superoxide anion production, phagocytic activity and the expression of cytokine genes including interleukin-1beta, tumor necrosis factor-alpha and interleukin 10. Low doses of huIFN-alpha were administered orally once a day for 3 days, and sampling was carried out at 1, 3 and 5 days post-treatment. Our results indicate that a low dose of huIFN-alpha significantly increased phagocytic activity and superoxide anion production in the carp kidney. The huIFN-alpha-treated fish also displayed a significant upregulation in cytokine gene expression. The current study demonstrates the stimulatory effects of huIFN-alpha on the carp immune system and highlights the immunomodulatory role of huIFN-alpha in fish.

  12. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glycosylated hemoglobin assay. 864.7470 Section 864.7470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7470...

  13. Structural analysis and tissue localization of human C4.4A

    DEFF Research Database (Denmark)

    Hansen, Line V.; Gårdsvoll, Henrik; Nielsen, Boye S

    2004-01-01

    recombinant human C4.4A is extensively modified by post-translational glycosylation, which include 5-6 N-linked carbohydrates primarily located in or close to its second Ly-6/uPAR/alpha-neurotoxin module and approximately 15 O-linked carbohydrates clustered in a Ser/Thr/Pro-rich region at the C...

  14. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  15. Reverse-phase HPLC analysis of human alpha crystallin.

    Science.gov (United States)

    Swamy, M S; Abraham, E C

    1991-03-01

    A rapid and highly sensitive reverse-phase HPLC (RP-HPLC) method was used to separate crystallin subunits from human alpha crystallin. Three distinct peaks were separated; by electrophoretic and immunological analyses the first and second peaks were identified as alpha B and alpha A respectively. On the other hand, peak 3 appeared to be a modified form of alpha crystallin. The ratio of alpha A and alpha B proteins was 3:1 in 1 day old lenses which gradually changed to 2:1 in 17 year old lenses and to 1:1 in the 50 and 82 year old whole lenses and 82 year old lens cortex, with a concomitant increase in the modified alpha, suggesting that alpha A subunits are relatively more involved in aggregation. Analysis of the 82 year old lens nucleus also supported this conclusion. The RP-HPLC analysis of the HMW aggregate fraction showed substantial enrichment of the modified alpha. The alpha A and alpha B subunits independently reassociated to form polymeric alpha crystallin whereas the modified alpha reassociated to form HMW aggregates as shown by molecular sieve HPLC. Hence it appears that the HMW aggregate peak was constituted by modified alpha crystallin. Only in the peak 3 material the 280 nm absorbance was about 2-fold higher than what was expected from the actual protein content. The data suggest that the changes induced by post-translational modifications may have some role in the formation of modified alpha. The present RP-HPLC method is useful in separating these modified alpha from the unmodified alpha A and alpha B subunits.

  16. Control of mucin-type O-glycosylation

    DEFF Research Database (Denmark)

    Bennett, Eric P; Mandel, Ulla; Clausen, Henrik

    2012-01-01

    residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue...... in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The Gal...

  17. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Directory of Open Access Journals (Sweden)

    Paul Kim

    2018-04-01

    Full Text Available Glycosylation of the hemagglutinin (HA and neuraminidase (NA of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness.

  18. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Science.gov (United States)

    Kim, Paul; Jang, Yo Han; Kwon, Soon Bin; Lee, Chung Min; Han, Gyoonhee; Seong, Baik Lin

    2018-01-01

    Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness. PMID:29642453

  19. Prediction of glycosylation sites using random forests

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2008-11-01

    Full Text Available Abstract Background Post translational modifications (PTMs occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transport and function. Results We use the random forest algorithm and pairwise patterns to predict glycosylation sites. We identify pairwise patterns surrounding glycosylation sites and use an odds ratio to weight their propensity of association with modified residues. Our prediction program, GPP (glycosylation prediction program, predicts glycosylation sites with an accuracy of 90.8% for Ser sites, 92.0% for Thr sites and 92.8% for Asn sites. This is significantly better than current glycosylation predictors. We use the trepan algorithm to extract a set of comprehensible rules from GPP, which provide biological insight into all three major glycosylation types. Conclusion We have created an accurate predictor of glycosylation sites and used this to extract comprehensible rules about the glycosylation process. GPP is available online at http://comp.chem.nottingham.ac.uk/glyco/.

  20. Hallmarks of glycosylation in cancer.

    Science.gov (United States)

    Munkley, Jennifer; Elliott, David J

    2016-06-07

    Aberrant glycosylation plays a fundamental role in key pathological steps of tumour development and progression. Glycans have roles in cancer cell signalling, tumour cell dissociation and invasion, cell-matrix interactions, angiogenesis, metastasis and immune modulation. Aberrant glycosylation is often cited as a 'hallmark of cancer' but is notably absent from both the original hallmarks of cancer and from the next generation of emerging hallmarks. This review discusses how glycosylation is clearly an enabling characteristic that is causally associated with the acquisition of all the hallmark capabilities. Rather than aberrant glycosylation being itself a hallmark of cancer, another perspective is that glycans play a role in every recognised cancer hallmark.

  1. Structure/functional aspects of the human riboflavin transporter-3 (SLC52A3): role of the predicted glycosylation and substrate-interacting sites.

    Science.gov (United States)

    Subramanian, Veedamali S; Sabui, Subrata; Teafatiller, Trevor; Bohl, Jennifer A; Said, Hamid M

    2017-08-01

    The human riboflavin (RF) transporter-3 (hRFVT-3; product of the SLC52A3 gene) plays an essential role in the intestinal RF absorption process and is expressed exclusively at the apical membrane domain of polarized enterocytes. Previous studies have characterized different physiological/biological aspects of this transporter, but nothing is known about the glycosylation status of the hRFVT-3 protein and role of this modification in its physiology/biology. Additionally, little is known about the residues in the hRFVT-3 protein that interact with the ligand, RF. We addressed these issues using appropriate biochemical/molecular approaches, a protein-docking model, and established intestinal/renal epithelial cells. Our results showed that the hRFVT-3 protein is glycosylated and that glycosylation is important for its function. Mutating the predicted N -glycosylation sites at Asn 94 and Asn 168 led to a significant decrease in RF uptake; it also led to a marked intracellular (in the endoplasmic reticulum, ER) retention of the mutated proteins as shown by live-cell confocal imaging studies. The protein-docking model used in this study has identified a number of putative substrate-interacting sites: Ser 16 , Ile 20 , Trp 24 , Phe 142 , Thr 314 , and Asn 315 Mutating these potential interacting sites was indeed found to lead to a significant inhibition in RF uptake and to intracellular (ER) retention of the mutated proteins (except for the Phe 142 mutant). These results demonstrate that the hRFVT-3 protein is glycosylated and this glycosylation is important for its function and cell surface expression. This study also identified a number of residues in the hRFVT-3 polypeptide that are important for its function/cell surface expression.

  2. 25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation

    Directory of Open Access Journals (Sweden)

    Punya Shrivastava-Ranjan

    2016-12-01

    Full Text Available Lassa virus (LASV infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC. 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N-glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy.

  3. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Elodie eMathieu-Rivet

    2014-07-01

    Full Text Available Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodelling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.

  4. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    -PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid......, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported...

  5. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding.

    Science.gov (United States)

    Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B

    2018-03-01

    Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 13 native human interferon-alpha species assessed for immunoregulatory properties

    DEFF Research Database (Denmark)

    Heron, I; Hokland, M; Berg, K

    1983-01-01

    Human leukocytes treated with Sendai virus yield interferon predominantly of the alpha-type (HuIFN-alpha). Successful attempts to purify these "native" species have been performed and the final analysis, which included an SDS-PAGE disclosed 13 stained and separated IFN-proteins in the molecular...... by IFN titration on human cells, the "immunological efficacies" of the 13 different HuIFN-alpha species were determined in three different immunological systems with the following results: (1) Augmentation of the NK function was a property of all species, although the two lower species (16.6 kD, 16.9 k...

  7. Complex rearrangements within the human J delta-C delta/J alpha-C alpha locus and aberrant recombination between J alpha segments

    NARCIS (Netherlands)

    Baer, R.; Boehm, T.; Yssel, H.; Spits, H.; Rabbitts, T. H.

    1988-01-01

    We have examined DNA rearrangements within a 120 kb cloned region of the human T cell receptor J delta-C delta/J alpha-C alpha locus. Three types of pattern emerge from an analysis of T cell lines and clones. Firstly, cells with two rearrangements within J delta-C delta; secondly, cells with one

  8. Fc-Glycosylation in Human IgG1 and IgG3 Is Similar for Both Total and Anti-Red-Blood Cell Anti-K Antibodies

    Directory of Open Access Journals (Sweden)

    Myrthe E. Sonneveld

    2018-01-01

    Full Text Available After albumin, immunoglobulin G (IgG are the most abundant proteins in human serum, with IgG1 and IgG3 being the most abundant subclasses directed against protein antigens. The quality of the IgG-Fc-glycosylation has important functional consequences, which have been found to be skewed toward low fucosylation in some antigen-specific immune responses. This increases the affinity to IgG1-Fc-receptor (FcγRIIIa/b and thereby directly affects downstream effector functions and disease severity. To date, antigen-specific IgG-glycosylation have not been analyzed for IgG3. Here, we analyzed 30 pregnant women with anti-K alloantibodies from a prospective screening cohort and compared the type of Fc-tail glycosylation of total serum- and antigen-specific IgG1 and IgG3 using mass spectrometry. Total serum IgG1 and IgG3 Fc-glycoprofiles were highly similar. Fc glycosylation of antigen-specific IgG varied greatly between individuals, but correlated significantly with each other for IgG1 and IgG3, except for bisection. However, although the magnitude of changes in fucosylation and galactosylation were similar for both subclasses, this was not the case for sialylation levels, which were significantly higher for both total and anti-K IgG3. We found that the combination of relative IgG1 and IgG3 Fc-glycosylation levels did not improve the prediction of anti-K mediated disease over IgG1 alone. In conclusion, Fc-glycosylation profiles of serum- and antigen-specific IgG1 and IgG3 are highly similar.

  9. Sensitive radioimmunoassay for detection of antibodies to recombinant human interferon-alpha A

    International Nuclear Information System (INIS)

    Palleroni, A.V.; Trown, P.W.

    1986-01-01

    A radioimmunoassay (RIA) for the detection of antibodies to recombinant human leukocyte interferon A (rHuIFN-alpha A) in human serum has been developed and validated against the standard antiviral neutralization bioassay (ANB). The assay measures the binding of 125 I-labeled rHuIFN-alpha A to immunoglobulins in serum. Aliquots of patients' sera are incubated with 125 I-rHuIFN-alpha A and the complexes formed between antibodies in the sera and the 125 I-rHuIFN-alpha A are precipitated with goat anti-human IgG serum. The radioactivity in the immune precipitate is a measure of the quantity of antibody (if present) in the serum. The sensitivity of this RIA is 5 ng of IgG/ml of serum

  10. Tumor necrosis factor-alpha modulates human in vivo lipolysis

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Fischer, Christian P; Ibfelt, Tobias

    2008-01-01

    CONTEXT: Low-grade systemic inflammation is a feature of most lifestyle-related chronic diseases. Enhanced TNF-alpha concentrations have been implicated in the development of hyperlipidemia. OBJECTIVE: We hypothesized that an acute elevation of TNF-alpha in plasma would cause an increase...... in lipolysis, increasing circulatory free fatty acid (FFA) levels. SUBJECTS AND METHODS: Using a randomized controlled, crossover design, healthy young male individuals (n = 10) received recombinant human (rh) TNF-alpha (700 ng/m(-2).h(-1)) for 4 h, and energy metabolism was evaluated using a combination...... of tracer dilution methodology and arterial-venous differences over the leg. RESULTS: Plasma TNF-alpha levels increased from 0.7 +/- 0.04 to 16.7 +/- 1.8 pg/ml, and plasma IL-6 increased from 1.0 +/- 0.2 to 9.2 +/- 1.0 pg/ml (P alpha infusion. Here, we demonstrate that 4-h rhTNF-alpha...

  11. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jiho; Mashalidis, Ellene H.; Kuk, Alvin C. Y.; Yamamoto, Kazuki; Kaeser, Benjamin; Ichikawa, Satoshi; Lee, Seok-Yong

    2018-02-19

    N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. In conclusion, structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.

  12. The role of the active site Zn in the catalytic mechanism of the GH38 Golgi alpha-mannosidase II: Implications from noeuromycin inhibition

    DEFF Research Database (Denmark)

    Bols, Mikael; Kuntz, Douglas A.; Rose, David R.

    2006-01-01

    Golgi alpha-mannosidase II (GMII) is a Family 38 glycosyl hydrolase involved in the eukaryotic N-glycosylation pathway in protein synthesis. Understanding of its catalytic mechanism has been of interest for the development of specific inhibitors that could lead to novel anti-metastatic or anti-in...

  13. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Takeuchi, Kentaro; Inada, Hirohiko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamasaki, Daisuke [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Doi, Takefumi [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-11-20

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial {beta}-oxidation. The peroxisome proliferator-activated receptor alpha (PPAR{alpha}) is a ligand-activated transcription factor that plays an important role in the regulation of {beta}-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPAR{alpha} and found that PPAR{alpha} induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPAR{alpha} regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  14. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter Durand

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla...

  15. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

    Science.gov (United States)

    Strasser, Richard; Stadlmann, Johannes; Schähs, Matthias; Stiegler, Gabriela; Quendler, Heribert; Mach, Lukas; Glössl, Josef; Weterings, Koen; Pabst, Martin; Steinkellner, Herta

    2008-05-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

  16. Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood Samples

    DEFF Research Database (Denmark)

    Boersema, P.J.; Geiger, T.; Wiśniewski, J.R.

    2013-01-01

    Cells secrete a large number of proteins to communicate with their surroundings. Furthermore, plasma membrane proteins and intracellular proteins can be released into the extracellular space by regulated or non-regulated processes. Here, we profiled the supernatant of 11 cell lines....... In total, 1398 unique N-glycosylation sites were identified and quantified. Enriching for N-glycosylated peptides focused the analysis on classically secreted and membrane proteins. N-glycosylated secretome profiles correctly clustered the different cell lines to their respective cancer stage, suggesting...

  17. Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function

    DEFF Research Database (Denmark)

    Hansen, Sara K; Párrizas, Marcelina; Jensen, Maria L

    2002-01-01

    Mutations in the genes encoding hepatocyte nuclear factor 4alpha (HNF-4alpha) and HNF-1alpha impair insulin secretion and cause maturity onset diabetes of the young (MODY). HNF-4alpha is known to be an essential positive regulator of HNF-1alpha. More recent data demonstrates that HNF-4alpha...... in human islets and exocrine cells is primarily mediated by the P2 promoter. Furthermore, we describe a G --> A mutation in a conserved nucleotide position of the HNF-1alpha binding site of the P2 promoter, which cosegregates with MODY. The mutation results in decreased affinity for HNF-1alpha...

  18. Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase.

    Science.gov (United States)

    Becerra-Arteaga, Alejandro; Shuler, Michael L

    2007-08-15

    We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.

  19. Saw palmetto extracts potently and noncompetitively inhibit human alpha1-adrenoceptors in vitro.

    Science.gov (United States)

    Goepel, M; Hecker, U; Krege, S; Rübben, H; Michel, M C

    1999-02-15

    We wanted to test whether phytotherapeutic agents used in the treatment of lower urinary tract symptoms have alpha1-adrenoceptor antagonistic properties in vitro. Preparations of beta-sitosterol and extracts of stinging nettle, medicinal pumpkin, and saw palmetto were obtained from several pharmaceutical companies. They were tested for their ability to inhibit [3H]tamsulosin binding to human prostatic alpha1-adrenoceptors and [3H]prazosin binding to cloned human alpha1A- and alpha1B-adrenoceptors. Inhibition of phenylephrine-stimulated [3H]inositol phosphate formation by cloned receptors was also investigated. Up to the highest concentration which could be tested, preparations of beta-sitosterol, stinging nettle, and medicinal pumpkin were without consistent inhibitory effect in all assays. In contrast, all tested saw palmetto extracts inhibited radioligand binding to human alpha1-adrenoceptors and agonist-induced [3H]inositol phosphate formation. Saturation binding experiments in the presence of a single saw palmetto extract concentration indicated a noncompetitive antagonism. The relationship between active concentrations in vitro and recommended therapeutic doses for the saw palmetto extracts was slightly lower than that for several chemically defined alpha1-adrenoceptor antagonists. Saw palmetto extracts have alpha1-adrenoceptor-inhibitory properties. If bioavailability and other pharmacokinetic properties of these ingredients are similar to those of the chemically defined alpha1-adrenoceptor antagonists, alpha1-adrenoceptor antagonism might be involved in the therapeutic effects of these extracts in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction.

  20. Immunoregulatory and antioxidant performance of alpha-tocopherol and selenium on human lymphocytes.

    Science.gov (United States)

    Lee, Chung-Yung Jetty; Wan, Jennifer Man-Fan

    2002-05-01

    The role of alpha-tocopherol (alpha-toco) and selenium (Se) on human lymphocyte oxidative stress and T-cells proliferation were studied by flow cytometry. We measured the hydrogen peroxide and glutathione levels in cultured human T-lymphocytes and the proliferation of their subsets: T-helper/inducer, T-suppressor/cytotoxic, and natural killer and interleukin-2 receptors upon stimulation by the mitogens phytohemaglutinin (PHA) and lipopolysaccharide (LPS). The results indicate that early stimulation by mitogens is affected by the glutathione and hydrogen peroxide status of the T-lymphocytes. The addition of 100 microM or 500 microM alpha-toco or 0.5 microM Se alone shows weak antioxidant and immunostimulant properties. When combined, an enhanced antioxidant and immunoregulatory effect was observed. The present findings indicate that alpha-toco and Se have interactive effects as oxygen radical scavengers, thus promoting human lymphocyte response to antigens. This suggests that micronutrient status is an important factor in considering when interpreting the results of in vitro assays of lymphocyte function.

  1. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  2. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments.

    Science.gov (United States)

    Yamakoshi, Yasuo; Nagano, Takatoshi; Hu, Jan Cc; Yamakoshi, Fumiko; Simmer, James P

    2011-02-03

    Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr

  3. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments

    Directory of Open Access Journals (Sweden)

    Yamakoshi Fumiko

    2011-02-01

    Full Text Available Abstract Background Dentin sialophosphoprotein (Dspp is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp, the N-terminal domain of dentin sialophosphoprotein (Dspp, is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were

  4. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    Science.gov (United States)

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  5. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    International Nuclear Information System (INIS)

    Vita, N.; Magazin, M.; Marchese, E.; Lupker, J.; Ferrara, P.

    1990-01-01

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with [35S]-methionine, or with [3H]-glucosamine and [3H]-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the [35S]-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and the structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2

  6. Glycosylation: a hallmark of cancer?

    Science.gov (United States)

    Vajaria, Bhairavi N; Patel, Prabhudas S

    2017-04-01

    The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.

  7. Charge and Polarity Preferences for N-Glycosylation: A Genome-Wide In Silico Study and Its Implications Regarding Constitutive Proliferation and Adhesion of Carcinoma Cells.

    Science.gov (United States)

    Manwar Hussain, Muhammad Ramzan; Iqbal, Zeeshan; Qazi, Wajahat M; Hoessli, Daniel C

    2018-01-01

    The structural and functional diversity of the human proteome is mediated by N - and O- linked glycosylations that define the individual properties of extracellular and membrane-associated proteins. In this study, we utilized different computational tools to perform in silico based genome-wide mapping of 1,117 human proteins and unravel the contribution of both penultimate and vicinal amino acids for the asparagine-based, site-specific N -glycosylation. Our results correlate the non-canonical involvement of charge and polarity environment of classified amino acids (designated as L, O, A, P, and N groups) in the N -glycosylation process, as validated by NetNGlyc predictions, and 130 literature-reported human proteins. From our results, particular charge and polarity combinations of non-polar aliphatic, acidic, basic, and aromatic polar side chain environment of both penultimate and vicinal amino acids were found to promote the N -glycosylation process. However, the alteration in side-chain charge and polarity environment of genetic variants, particularly in the vicinity of Asn-containing epitope, may induce constitutive glycosylation (e.g., aberrant glycosylation at preferred and non-preferred sites) of membrane proteins causing constitutive proliferation and triggering epithelial-to-mesenchymal transition. The current genome-wide mapping of 1,117 proteins (2,909 asparagine residues) was used to explore charge- and polarity-based mechanistic constraints in N -glycosylation, and discuss alterations of the neoplastic phenotype that can be ascribed to N -glycosylation at preferred and non-preferred sites.

  8. Identification of the human ApoAV gene as a novel ROR{alpha} target gene

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Ulrika [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Nilsson, Tina [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); McPheat, Jane [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Stroemstedt, Per-Erik [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Bamberg, Krister [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Balendran, Clare [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden); Kang, Daiwu [Department of Molecular Pharmacology, AstraZeneca R and D Moelndal (Sweden)

    2005-04-29

    Retinoic acid receptor-related orphan receptor-{alpha} (ROR{alpha}) (NR1F1) is an orphan nuclear receptor with a potential role in metabolism. Previous studies have shown that ROR{alpha} regulates transcription of the murine Apolipoprotein AI gene and human Apolipoprotein CIII genes. In the present study, we present evidence that ROR{alpha} also induces transcription of the human Apolipoprotein AV gene, a recently identified apolipoprotein associated with triglyceride levels. Adenovirus-mediated overexpression of ROR{alpha} increased the endogenous expression of ApoAV in HepG2 cells and ROR{alpha} also enhanced the activity of an ApoAV promoter construct in transiently transfected HepG2 cells. Deletion and mutation studies identified three AGGTCA motifs in the ApoAV promoter that mediate ROR{alpha} transactivation, one of which overlaps with a previously identified binding site for PPAR{alpha}. Together, these results suggest a novel mechanism whereby ROR{alpha} modulates lipid metabolism and implies ROR{alpha} as a potential target for the treatment of dyslipidemia and atherosclerosis.

  9. Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein.

    Science.gov (United States)

    Kim, Unyong; Oh, Myung Jin; Seo, Youngsuk; Jeon, Yinae; Eom, Joon-Ho; An, Hyun Joo

    2017-09-01

    Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.

  10. Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Matzuk, M.M.; Krieger, M.; Corless, C.L.; Boime, I.

    1987-01-01

    Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common α subunit but differ in their hormone-specific β-subunits. The β subunit of hCG (hCGβ) is unique among the β subunits in that it contains four mucin-like O-linked oligosaccharides attached to a carboxyl-terminal extension. To study the effects of O-glycosylation on the secretion and assembly of hCG, expression vectors containing either hCGβ gene alone or together with the hCGα gene were transfected into a mutant Chinese hamster ovary cell line, 1d1D, which exhibits a reversible defect in O-glycosylation. The results reveal that hCGβ can be secreted normally in the absence of its O-linked oligosaccharides. hCGβ devoid of O-linked carbohydrate can also combine efficiently with hCGα and be secreted as an intact dimer. The authors conclude that in Chinese hamster ovary cells, the hCGβ O-linked chains play no role in the assembly and secretion of hCG. The normal and O-linked oligosaccharide-deficient forms of hCG secreted by these cells should prove useful in examining the role of O-linked chains on the biological function of hCG

  11. Competition between folding and glycosylation in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Bruun, A W; Kielland-Brandt, Morten

    1996-01-01

    Using carboxypeptidase Y in Saccharomyces cerevisiae as a model system, the in vivo relationship between protein folding and N-glycosylation was studied. Seven new sites for N-glycosylation were introduced at positions buried in the folded protein structure. The level of glycosylation of such new...... acceptor sites. In some cases, all the newly synthesized mutant protein was modified at the novel site while in others no modification took place. In the most interesting category of mutants, the level of glycosylation was dependent on the conditions for folding. This shows that folding and glycosylation...

  12. Detection of site specific glycosylation in proteins using flow cytometry†

    Science.gov (United States)

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  13. Role of Human Na,K-ATPase alpha 4 in Sperm Function, Derived from Studies in Transgenic Mice

    Science.gov (United States)

    McDermott, Jeffrey; Sánchez, Gladis; Nangia, Ajay K.; Blanco, Gustavo

    2014-01-01

    SUMMARY Most of our knowledge on the biological role of the testis-specific Na,K-ATPase alpha 4 isoform derives from studies performed in non-human species. Here, we studied the function of human Na,K-ATPase alpha 4 after its expression in transgenic mice. Using a bacterial artificial chromosome (BAC) construct, containing the human ATP1A4 gene locus, we obtained expression of the human α4 transgene specifically in mouse sperm, enriched in the sperm flagellum. The expressed, human alpha 4 was active, and compared to wild-type sperm, those from transgenic mice displayed higher Na,K-ATPase alpha 4 activity and greater binding of fluorescently labeled ouabain, which is typical of the alpha 4 isoform. The expression and activity of endogenous alpha 4 and the other Na,K-ATPase alpha isoform present in sperm, alpha 1, remained unchanged. Male mice expressing the human ATP1A4 transgene exhibited similar testis size and morphology, normal sperm number and shape, and no changes in overall fertility compared to wild-type mice. Sperm carrying the human transgene exhibited enhanced total motility and an increase in multiple parameters of sperm movement, including higher sperm hyperactive motility. In contrast, no statistically significant changes in sperm membrane potential, protein tyrosine phosphorylation, or spontaneous acrosome reaction were found between wild-type and transgenic mice. Altogether, these results provide new genetic evidence for an important role of human Na,K-ATPase alpha 4 in sperm motility and hyperactivation, and establishes a new animal model for future studies of this isoform. PMID:25640246

  14. alpha isoforms of soluble and membrane-linked folate-binding protein in human blood

    DEFF Research Database (Denmark)

    Hoier-Madsen, M.; Holm, J.; Hansen, S.I.

    2008-01-01

    supported the hypothesis that serum FBP (29 kDa) mainly originates from neutrophils. The presence of FBP/FR alpha isoforms were established for the first time in human blood using antibodies specifically directed against human milk FBP alpha. The alpha isoforms identified on erythrocyte membranes......, and in granulocytes and serum, only constituted an almost undetectable fraction of the functional FBP The FBP alpha in neutrophil granulocytes was identified as a cytoplasmic component by indirect immunofluorescence. Gel filtration of serum revealed a peak of FBP alpha (>120 kDa), which could represent receptor...... fragments from decomposed erythrocytes and granulocytes. The soluble FBPs may exert bacteriostatic effects and protect folates in plasma from biological degradation, whereas FRs on the surface of blood cells could be involved in intracellular folate uptake or serve as signal proteins. The latter receptors...

  15. Conformational landscape and pathway of disulfide bond reduction of human alpha defensin

    NARCIS (Netherlands)

    Snijder, Joost; Van De Waterbeemd, Michiel; Glover, Matthew S.; Shi, Liuqing; Clemmer, David E.; Heck, Albert J R

    2015-01-01

    Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions.

  16. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    Full text: Mucins are high molecular-weight heavily glycosylated glycoproteins with many oligosaccharide side-chains, linked to a protein backbone called apomucin. A total of 19 different mucin genes (MUC1-MUC4, MUC5B, MUC5AC, MUC6-MUC18) have been identified to date. Mucins are present on the surface of most epithelial cells and play a role in their protection and lubrication. In cancer cells the mucin molecule becomes altered, thus representing an important target for diagnosis and therapy. Urinary epithelial mucin1 (MUC1) is found to be frequently up-regulated and abnormally glycosylated in a number of common malignancies, including breast, bladder, colon, ovarian and gastric cancer. The monoclonal antibody C595 is an IgG3 murine MAb raised against the protein core of human MUC1. Epitope mapping has shown that C595 recognizes a tetrapeptide motif (RPAP) within the protein core of MUC1 mucin that contains a large domain of multiples of a highly conserved 20-amino-acid-repeat sequence (PDTRPAPGSTAPPAHGVTSA). This antibody has previously been radiolabelled with 99m Tc and 111 In and used for imaging a range of tumour types including ovary, breast and bladder. The antibody has also been radiolabelled with 67 Cu and 188 Re for the therapy of superficial bladder cancer. More recently we have investigated the pre-clinical use of the C595 antibody for targeted alpha therapy using 213 Bi which emits alpha particles with high linear energy transfer (LET), short range (80 m) radiation and has a short physical half-life of 45.6 minutes. Alpha particles are some 7300 times heavier than beta particles and in theory, following binding of an alpha immunocongugates to the target, a large fraction of the alpha particle energy is delivered to cancer cells, with minimal concomitant radiation of normal tissues. 213 Bi was produced from the 225 Ac/ 213 Bi generator. For antibody conjugation the chelator, cyclic diethylenetriaminepentacetic acid anhydride (DTPA) was used. Initial

  17. Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation.

    Science.gov (United States)

    Razaghi, Ali; Owens, Leigh; Heimann, Kirsten

    2016-12-20

    Human interferon gamma is a cytokine belonging to a diverse group of interferons which have a crucial immunological function against mycobacteria and a wide variety of viral infections. To date, it has been approved for treatment of chronic granulomatous disease and malignant osteopetrosis, and its application as an immunotherapeutic agent against cancer is an increasing prospect. Recombinant human interferon gamma, as a lucrative biopharmaceutical, has been engineered in different expression systems including prokaryotic, protozoan, fungal (yeasts), plant, insect and mammalian cells. Human interferon gamma is commonly expressed in Escherichia coli, marketed as ACTIMMUNE ® , however, the resulting product of the prokaryotic expression system is unglycosylated with a short half-life in the bloodstream; the purification process is tedious and makes the product costlier. Other expression systems also did not show satisfactory results in terms of yields, the biological activity of the protein or economic viability. Thus, the review aims to synthesise available information from previous studies on the production of human interferon gamma and its glycosylation patterns in different expression systems, to provide direction to future research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Expression of human lymphotoxin alpha in Aspergillus niger

    NARCIS (Netherlands)

    Krasevec, N.; Hondel, C.A.M.J.J. van de; Komel, R.

    2000-01-01

    A gene-fusion expression strategy was applied for heterologous expression of human lymphotoxin alpha (LTα) in the Aspergillus niger AB1.13 protease-deficient strain. The LTα gene was fused with the A. niger glucoamylase GII-form as a carrier-gene, behind its transcription control and secretion

  19. N-glycosylation in sugarcane

    Directory of Open Access Journals (Sweden)

    Maia Ivan G.

    2001-01-01

    Full Text Available The N-linked glycosylation of secretory and membrane proteins is the most complex posttranslational modification known to occur in eukaryotic cells. It has been shown to play critical roles in modulating protein function. Although this important biological process has been extensively studied in mammals, much less is known about this biosynthetic pathway in plants. The enzymes involved in plant N-glycan biosynthesis and processing are still not well defined and the mechanism of their genetic regulation is almost completely unknown. In this paper we describe our first attempt to understand the N-linked glycosylation mechanism in a plant species by using the data generated by the Sugarcane Expressed Sequence Tag (SUCEST project. The SUCEST database was mined for sugarcane gene products potentially involved in the N-glycosylation pathway. This approach has led to the identification and functional assignment of 90 expressed sequence tag (EST clusters sharing significant sequence similarity with the enzymes involved in N-glycan biosynthesis and processing. The ESTs identified were also analyzed to establish their relative abundance.

  20. Characterization of binding of human alpha 2-macroglobulin to group G streptococci

    International Nuclear Information System (INIS)

    Chhatwal, G.S.; Mueller, H.P.; Blobel, H.

    1983-01-01

    An interaction was observed between human alpha 2-macroglobulin (alpha 2M) and streptococci belonging to group A, C, and G. Of 27 group C and 19 group G streptococcal cultures, 13 and 14, respectively, bound 125 I-labeled alpha 2M. Some group A streptococci also interacted with alpha 2M. A number of other bacterial species tested did not react with alpha 2M. The binding of 125 I-labeled alpha 2M to group G streptococci was time dependent, saturable, and could be inhibited by unlabeled alpha 2M. Inhibition experiments indicated that the streptococcal binding site for alpha 2M differed from the receptors for immunoglobulin G, fibrinogen, aggregated beta 2-microglobulin, albumin, and fibronectin. The alpha 2M binding activity was remarkably sensitive to trypsin and heat treatment indicating its protein nature. Kinetic analysis indicated a homogenous population of binding sites. The number of binding sites per bacterial cell was estimated to be approximately 20,000

  1. Human myometrial adrenergic receptors during pregnancy: identification of the alpha-adrenergic receptor by [3H] dihydroergocryptine binding

    International Nuclear Information System (INIS)

    Jacobs, M.M.; Hayashida, D.; Roberts, J.M.

    1985-01-01

    The radioactive alpha-adrenergic antagonist [ 3 H] dihydroergocryptine binds to particulate preparations of term pregnant human myometrium in a manner compatible with binding to the alpha-adrenergic receptor (alpha-receptor). [ 3 H] Dihydroergocryptine binds with high affinity (KD = 2 nmol/L and low capacity (receptor concentration = 100 fmol/mg of protein). Adrenergic agonists compete for [ 3 H] dihydroergocryptine binding sites stereo-selectively ([-]-norepinephrine is 100 times as potent as [+]-norepinephrine) and in a manner compatible with alpha-adrenergic potencies (epinephrine approximately equal to norepinephrine much greater than isoproterenol). Studies in which prazosin, an alpha 1-antagonist, and yohimbine, and alpha 2-antagonist, competed for [ 3 H] dihydroergocryptine binding sites in human myometrium indicated that approximately 70% are alpha 2-receptors and that 30% are alpha 1-receptors. [ 3 H] dihydroergocryptine binding to human myometrial membrane particulate provides an important tool with which to study the molecular mechanisms of uterine alpha-adrenergic response

  2. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  3. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity.

    Science.gov (United States)

    Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko

    2014-01-01

    A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    -alpha infusion (rhTNF-alpha). We hypothesize that TNF-alpha increases human muscle protein breakdown and/or inhibit synthesis. Subjects and Methods: Using a randomized controlled, crossover design post-absorptive healthy young males (n=8) were studied 2 hours under basal conditions followed by 4 hours infusion...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when......Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...

  5. Nutritional Therapies in Congenital Disorders of Glycosylation (CDG

    Directory of Open Access Journals (Sweden)

    Peter Witters

    2017-11-01

    Full Text Available Congenital disorders of glycosylation (CDG are a group of more than 130 inborn errors of metabolism affecting N-linked, O-linked protein and lipid-linked glycosylation. The phenotype in CDG patients includes frequent liver involvement, especially the disorders belonging to the N-linked protein glycosylation group. There are only a few treatable CDG. Mannose-Phosphate Isomerase (MPI-CDG was the first treatable CDG by high dose mannose supplements. Recently, with the successful use of d-galactose in Phosphoglucomutase 1 (PGM1-CDG, other CDG types have been trialed on galactose and with an increasing number of potential nutritional therapies. Current mini review focuses on therapies in glycosylation disorders affecting liver function and dietary intervention in general in N-linked glycosylation disorders. We also emphasize now the importance of early screening for CDG in patients with mild hepatopathy but also in cholestasis.

  6. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    2007-06-01

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  7. Glycosylation of type II collagen is of major importance for T cell tolerance and pathology in collagen-induced arthritis

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Bockermann, Robert

    2002-01-01

    Type II collagen (CII) is a candidate cartilage-specific autoantigen, which can become post-translationally modified by hydroxylation and glycosylation. T cell recognition of CII is essential for the development of murine collagen-induced arthritis (CIA) and also occurs in rheumatoid arthritis (RA......). The common denominator of murine CIA and human RA is the presentation of an immunodominant CII-derived glycosylated peptide on murine Aq and human DR4 molecules, respectively. To investigate the importance of T cell recognition of glycosylated CII in CIA development after immunization with heterologous CII......, we treated neonatal mice with different heterologous CII-peptides (non-modified, hydroxylated and galactosylated). Treatment with the galactosylated peptide (galactose at position 264) was superior in protecting mice from CIA. Protection was accompanied by a reduced antibody response to CII...

  8. Human skeletal uptake of natural alpha radioactivity from 210Pb-supported 210Po

    International Nuclear Information System (INIS)

    Oyedepo, A.C.

    1998-06-01

    This thesis contributes to increasing knowledge on the dosimetry of natural alpha-particle radiation in skeletal tissues, particularly in utero, and associated risks of malignancy. Alpha-particle radiation is an established aetiological factor of cancer. In the human body, polonium-210 decayed from skeletal lead-210 ( 210 Pb/ 210 Po) is the predominant natural alpha-emitter. 210 Pb displaces calcium (Ca) in mineral hydroxyapatite, especially during periods of rapid bone growth and remodelling when Ca is laid down. It was therefore necessary to study alpha activity uptake and calcification concurrently within bone. Human studies were undertaken on: fetal vertebrae, 17 - 42 weeks of gestation, 74 samples; adult vertebrae, 40 - 95 years, 40 samples; and adult ribs, 20 - 95 years, 51 samples. Specimens were unconcentrated and weighed 210 Pb/ 210 Po. Alpha track data were resolved by specially written software named SPATS (Selection Program for Analysing Track Structures). Ca and phosphorus (P) were biochemically determined. Results were examined for trends in bone type, gender and chronological ageing in humans. The main research findings were: 1) The Ca content of fetal vertebrae increased linearly at a weekly rate of 0.2g Ca 100 g -1 wet bone (typical values of 2, 4, 6 g 100 g -1 at 16, 26 and 36 weeks). 2) The P concentration also increased with advancing fetal age. 3) The Ca:P bone weight ratio rose from 1.7 to 2.2 by 32 gestational weeks. 4) The overall range in bone 210 Pb/ 210 Po alpha activity was 0.25 - 1.1 Bq kg -1 with correlation between activity concentration and fetal age (0.47 ± 0.05 Bq kg -1 for 17 - 26 weeks, 0.67 ± 0.04 Bq kg -1 for 32 - 42 weeks). 5) The correlation between increased alpha radioactivity and increased Ca concentration approximating to 0.0046 Bq g -1 of Ca. 6) A decreasing Ca content of adult vertebrae with increasing age from 40 - 95 years, from ∼ 14 to 5 g 100 g-1, but no correlation with age for adult rib Ca content of 10 - 30 g

  9. Measurement of gross alpha and gross beta activity concentrations in human tooth

    International Nuclear Information System (INIS)

    Soeguet, Omer; Aydin, Mehmet Fatih; Kuecuekoender, Erdal; Zorer, Ozlem Selcuk; Dogru, Mahmut

    2010-01-01

    The gross alpha and gross beta activity concentrations were measured in human tooth taken from 3 to 6 age-groups to 40 and over ones. Accumulated teeth samples are investigated in two groups as under and above 18 years. The gross alpha and beta radioactivity of human tooth samples was measured by using a gas-flow proportional counter (PIC-MPC 9604-α/β counter). In tooth samples, for female age-groups, the obtained results show that the mean gross alpha and gross beta activity concentrations varied between 0.534-0.203 and 0.010-0.453 Bq g -1 and the same concentrations for male age-groups varied between 0.009-1.168 and 0.071-0.204 Bq g -1 , respectively.

  10. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus

    DEFF Research Database (Denmark)

    Röttger, S; White, J; Wandall, H H

    1998-01-01

    O-glycosylation of proteins is initiated by a family of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactos-aminyltransferases (GalNAc-T). In this study, we have localized endogenous and epitope-tagged human GalNAc-T1, -T2 and -T3 to the Golgi apparatus in HeLa cells by subcellular fractionation......, immunofluorescence and immunoelectron microscopy. We show that all three GalNAc-transferases are concentrated about tenfold in Golgi stacks over Golgi associated tubular-vesicular membrane structures. Surprisingly, we find that GalNAc-T1, -T2 and -T3 are present throughout the Golgi stack suggesting that initiation...... of O-glycosylation may not be restricted to the cis Golgi, but occur at multiple sites within the Golgi apparatus. GalNAc-T1 distributes evenly across the Golgi stack whereas GalNAc-T2 and -T3 reside preferentially on the trans side and in the medial part of the Golgi stack, respectively. Moreover, we...

  11. Glycosylation analysis and protein structure determination of murine fetal antigen 1 (mFA1)--the circulating gene product of the delta-like protein (dlk), preadipocyte factor 1 (Pref-1) and stromal-cell-derived protein 1 (SCP-1) cDNAs

    DEFF Research Database (Denmark)

    Krogh, T N; Bachmann, E; Teisner, B

    1997-01-01

    By means of sequence analysis, murine fetal antigen 1 (mFA1) isolated from Mus musculus amniotic fluid was shown to be the circulating protein of the delta-like protein, stromal-cell-derived protein 1 (SCP-1) and preadipocyte factor 1 (Pref-1) gene products. The protein contains 36 cysteine...... residues arranged in six epidermal-growth-factor-like domains. The purification of several C-terminal peptides of varying lengths showed mFA1 to be C-terminal heterogeneous. O-linked glycosylations of the NeuNAc alpha2-3Gal beta1-3(NeuNAc alpha2-6)GalNAc type were present on all C-terminal peptides...... at residues Thr235, Thr244 and Thr248, although glycosylation on Thr244 was only partial. Three N-linked glycosylations were localized in mFA1 (Asn77, Asn142 and Asn151), two of which (Asn142 and Asn151) were in the unusual Asn-Xaa-Cys motif. Fucosylated biantennary complex-type and small amounts (less than 5...

  12. Choosing an alpha radiation weighting factor for doses to non-human biota

    International Nuclear Information System (INIS)

    Chambers, Douglas B.; Osborne, Richard V.; Garva, Amy L.

    2006-01-01

    The risk to non-human biota from exposure to ionizing radiation is of current international interest. In calculating radiation doses to humans, it is common to multiply the absorbed dose by a factor to account for the relative biological effectiveness (RBE) of the radiation type. However, there is no international consensus on the appropriate value of such a factor for weighting doses to non-human biota. This paper summarizes our review of the literature on experimentally determined RBEs for internally deposited alpha-emitting radionuclides. The relevancy of each experimental result in selecting a radiation weighting factor for doses from alpha particles in biota was judged on the basis of criteria established a priori. We recommend a nominal alpha radiation weighting factor of 5 for population-relevant deterministic and stochastic endpoints, but to reflect the limitations in the experimental data, uncertainty ranges of 1-10 and 1-20 were selected for population-relevant deterministic and stochastic endpoints, respectively

  13. 15 beta-hydroxysteroids (Part IV). Steroids of the human perinatal period: the synthesis of 3 alpha,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one and its A/B-ring configurational isomers.

    Science.gov (United States)

    Reeder, A Y; Joannou, G E

    1995-12-01

    In recent years several 15 beta-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3 alpha,15 beta,17 alpha-trihydroxy-5 beta-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3 xi,5 xi-isomers, namely 3 alpha,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one (3), 3 beta,15 beta,17 alpha-trihydroxy-5 alpha-pregnan-20-one (7) and 3 beta,15 beta,17 alpha-trihydroxy-5 beta-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3 beta,15 beta-Diacetoxy-17 alpha-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15 beta,17 alpha-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15 beta-acetoxy-3 beta,17 alpha-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15 beta-acetoxy-3 beta,17 alpha-dihydroxy-5 alpha-pregnan-20-one (13) a common intermediate for the synthesis of the 3 beta(and alpha),5 alpha-isomers. Hydrolysis of the 15 beta-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15 beta-acetoxy-17 alpha-hydroxy-5 alpha-pregnan-3,20-dione (14) which on reduction with L-Selectride and hydrolysis of the 15 beta-acetate gave 3. Finally, hydrogenation of 4 gave 15 beta, 17 alpha-dihydroxy-5 beta-pregnan-3,20-dione (10) which on reduction with L-Selectride gave 8.

  14. Site-specific protein O-glycosylation modulates proprotein processing - Deciphering specific functions of the large polypeptide GalNAc-transferase gene family

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Clausen, Henrik

    2012-01-01

    Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis...... and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3...

  15. Linkage specific fucosylation of alpha-1-antitrypsin in liver cirrhosis and cancer patients: implications for a biomarker of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Mary Ann Comunale

    2010-08-01

    Full Text Available We previously reported increased levels of protein-linked fucosylation with the development of liver cancer and identified many of the proteins containing the altered glycan structures. One such protein is alpha-1-antitrypsin (A1AT. To advance these studies, we performed N-linked glycan analysis on the five major isoforms of A1AT and completed a comprehensive study of the glycosylation of A1AT found in healthy controls, patients with hepatitis C- (HCV induced liver cirrhosis, and in patients infected with HCV with a diagnosis of hepatocellular carcinoma (HCC.Patients with liver cirrhosis and liver cancer had increased levels of triantennary glycan-containing outer arm (alpha-1,3 fucosylation. Increases in core (alpha-1,6 fucosylation were observed only on A1AT from patients with cancer. We performed a lectin fluorophore-linked immunosorbent assay using Aleuria Aurantia lectin (AAL, specific for core and outer arm fucosylation in over 400 patients with liver disease. AAL-reactive A1AT was able to detect HCC with a sensitivity of 70% and a specificity of 86%, which was greater than that observed with the current marker of HCC, alpha-fetoprotein. Glycosylation analysis of the false positives was performed; results indicated that these patients had increases in outer arm fucosylation but not in core fucosylation, suggesting that core fucosylation is cancer specific.This report details the stepwise change in the glycosylation of A1AT with the progression from liver cirrhosis to cancer and identifies core fucosylation on A1AT as an HCC specific modification.

  16. Halide-mediated regioselective 6-O-glycosylation of unprotected hexopyranosides with perbenzylated glycosyl bromide donors

    DEFF Research Database (Denmark)

    Niedbal, Dominika Alina; Madsen, Robert

    2016-01-01

    The regio- and stereoselective glycosylation at the 6-position in 2,3,4,6-unprotected hexopyranosides has been investigated with dibutyltin oxide as the directing agent. Perbenzylated hexopyranosyl bromides were employed as the donors and the glycosylations were promoted by tetrabutylammonium...... bromide. The couplings were completely selective for both glucose and galactose donors and acceptors as long as the stannylene acetal of the acceptor was soluble in dichloromethane. This gave rise to a number of 1,2-cis-linked disaccharides in reasonable yields. Mannose donors and acceptors, on the other...

  17. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein

    DEFF Research Database (Denmark)

    Sherlock, O.; Dobrindt, U.; Jensen, J.B.

    2006-01-01

    a novel member to this exclusive group, namely, antigen 43 (Ag43), a self-recognizing autotransporter protein. By mass spectrometry Ag43 was demonstrated to be glycosylated by addition of heptose residues at several positions in the passenger domain. Glycosylation of Ag43 by the action of the Aah and Tib......C glycosyltransferases was observed in laboratory strains. Importantly, Ag43 was also found to be glycosylated in a wild-type strain, suggesting that Ag43-glycosylation may be a widespread phenomenon. Glycosylation of Ag43 does not seem to interfere with its self-associating properties. However, the glycosylated form...

  18. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Science.gov (United States)

    de Jongh, Harmen H. J.; Robles, Carlos López; Nordlee, Julie A.; Lee, Poi-Wah; Baumert, Joseph L.; Hamilton, Robert G.; Taylor, Steve L.; Koppelman, Stef J.

    2013-01-01

    Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa), the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein's digestibility is not affected by such processing. PMID:23878817

  19. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Directory of Open Access Journals (Sweden)

    Harmen H. J. de Jongh

    2013-01-01

    Full Text Available Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa, the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein’s digestibility is not affected by such processing.

  20. Functional Analysis of Glycosylation of Zika Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Camila R. Fontes-Garfias

    2017-10-01

    Full Text Available Summary: Zika virus (ZIKV infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. : Zika virus (ZIKV causes devastating congenital abnormities and Guillain-Barré syndrome. Fontes-Garfias et al. showed that the glycosylation of ZIKV envelope protein plays an important role in infecting mosquito vectors and pathogenesis in mouse. Keywords: Zika virus, glycosylation, flavivirus entry, mosquito transmission, vaccine

  1. Role of structure and glycosylation of adsorbed protein films in biolubrication.

    Directory of Open Access Journals (Sweden)

    Deepak H Veeregowda

    Full Text Available Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy, we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation

  2. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-04

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  3. Influences of AMY1 gene copy number and protein expression on salivary alpha-amylase activity before and after citric acid stimulation in splenic asthenia children.

    Science.gov (United States)

    Yang, Zemin; Lin, Jing; Chen, Longhui; Zhang, Min; Yang, Xiaorong; Chen, Weiwen

    2015-06-01

    To compare the correlations between salivary alpha-amylase (sAA) activity and amylase, alpha 1 (salivary) gene (AMYl) copy number or its gene expression between splenic asthenia and healthy children, and investigate the reasons of attenuated sAA activity ratio before and after citric acid stimulation in splenic asthenia children. Saliva samples from 20 splenic asthenia children and 29 healthy children were collected before and after citric acid stimulation. AMYl copy number, sAA activity, and total sAA and glycosylated sAA contents were determined, and their correlations were analyzed. Although splenic asthenia and healthy children had no differences in AMY1 copy number, splenic asthenia children had positive correlations between AMY1 copy number and sAA activity before or after citric acid stimulation. Splenic asthenia children had a higher sAA glycosylated proportion ratio and glycosylated sAA content ratio, while their total sAA content ratio and sAA activity ratio were lower compared with healthy children. The glycosylated sAA content ratio was higher than the total sAA content ratio in both groups. Splenic asthenia and healthy children had positive correlations between total sAA or glycosylated sAA content and sAA activity. However, the role played by glycosylated sAA content in sAA activity in healthy children increased after citric acid stimulation, while it decreased in splenic asthenia children. Genetic factors like AMY1 copy number variations, and more importantly, sAA glycosylation abnormalities leading to attenuated sAA activity after citric acid stimulation, which were the main reasons of the attenuated sAA activity ratio in splenic asthenia children compared with healthy children.

  4. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  5. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Lennon, V A; Lambert, E H; Leiby, K R; Okarma, T B; Talib, S

    1991-04-01

    A synthetic gene encoding the 210 N-terminal residues of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle was cloned into an inducible expression plasmid to produce a fusion protein in high yield in Escherichia coli. Like native human AChR, the recombinant human alpha 1-210 protein induced AChR-binding, AChR-modulating, and AChR-blocking autoantibodies in rats when injected once intradermally as an emulsion in CFA, with Bordetella pertussis vaccine as supplementary adjuvant. The minimum dose of recombinant protein required to induce biochemical signs of experimental autoimmune myasthenia gravis (EAMG) with 100% incidence was 2.2 micrograms. With 6.6 to 22 micrograms, serum levels of autoantibodies were persistent, and clinically apparent EAMG lasted more than a month. Clinical, electrophysiological, and biochemical indices of EAMG induced by doses of 66 micrograms or more were more uniformly severe and persistent, with 33% fatality. Rats receiving a control extract of E. coli containing plasmid without the alpha 1-210 codon insert, with adjuvants, did not develop autoantibodies or signs of EAMG. This highly reproducible new model of EAMG induced by a recombinant human autoantigen should be valuable for testing Ag-specific immunotherapeutic strategies that might be applicable to treating acquired myasthenia gravis in humans.

  6. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Derksen, Ninotska I L; Ooijevaar-de Heer, Pleuni; van Schie, Karin A; Kruithof, Simone; Berkowska, Magdalena A; van der Schoot, C Ellen; IJspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E M; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-02-20

    A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N -linked glycans, a process conditional on the introduction of consensus amino acid motifs ( N -glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N -glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.

  7. Glycosylation status of vitamin D binding protein in cancer patients.

    Science.gov (United States)

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.

  8. Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Anne Dell

    2010-01-01

    Full Text Available Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i oligosaccharyltransferase (OST-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.

  9. Human ADAM 12 (meltrin alpha) is an active metalloprotease

    DEFF Research Database (Denmark)

    Loechel, F; Gilpin, B J; Engvall, E

    1998-01-01

    The ADAMs (a disintegrin and metalloprotease) are a family of multidomain proteins with structural homology to snake venom metalloproteases. We recently described the cloning and sequencing of human ADAM 12 (meltrin alpha). In this report we provide evidence that the metalloprotease domain of ADAM...

  10. Identification of a new defective SERPINA1 allele (PI*Zla palma) encoding an alpha-1-antitrypsin with altered glycosylation pattern.

    Science.gov (United States)

    Hernández-Pérez, José M; Ramos-Díaz, Ruth; Pérez, José A

    2017-10-01

    Alpha-1-antitrypsin (AAT) deficiency is a genetic condition that arises from mutations in the SERPINA1 gene and predisposes to develop pulmonary emphysema and, less frequently, liver disease. Occasionally, new defective SERPINA1 alleles are detected as an outcome of targeted-screening programs or case-findings. This study began with a female patient showing bronchial hyperreactivity. Serum level and phenotype for AAT was analysed by immunonephelometry and isoelectric focusing electrophoresis. The SERPINA1 gene of the proband was genotyped by PCR amplification and DNA sequencing. Analysis of AAT deficiency was extended to the proband's family. An abnormal AAT variant that migrated to a more cathodal position than PiZ AAT was detected in the proband's serum. Genetic analysis demonstrated that proband is heterozygous for a new defective SERPINA1 allele (PI*Z la palma ) characterized by the c.321C > A (p.Asn83Lys) mutation in the M1Val213 background. This mutation abolishes the N-glycosylation site in position 83 of the mature AAT. Eight relatives of the proband are carriers of the PI*Z la palma allele and four of them have shown symptoms of bronchial asthma or bronchial hyperreactivity. The mean α1AT level in the serum of PI*MZ la palma individuals was 87.1 mg/dl. The reduction in circulating AAT levels associated to the PI*Z la palma allele was similar to that of PI*Z allele, representing a risk of impairment in lung function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evidence for alpha-MSH binding sites on human scalp hair follicles: preliminary results

    NARCIS (Netherlands)

    Nanninga, P. B.; Ghanem, G. E.; Lejeune, F. J.; Bos, J. D.; Westerhof, W.

    1991-01-01

    Alpha-MSH, considered an important pigmentation hormone, binds to melanocytes and is thought to stimulate melanogenesis through a cyclic-AMP-dependent mechanism. The binding of alpha-MSH to follicular melanocytes has been investigated in human hair of different colors, ranging from black to blond

  13. In vitro cytotoxicity of human recombinant tumor necrosis factor alpha in association with radiotherapy in a human ovarian carcinoma cell line

    International Nuclear Information System (INIS)

    Manetta, A.; Lucci, J.; Soopikian, J.; Granger, G.; Berman, M.L.; DiSaia, P.J.

    1990-01-01

    It has been speculated that tumor necrosis factor alpha (TNF-alpha) may decrease the cytotoxicity of radiotherapy by increasing the scavenging of toxic superoxide radicals. Because of the possible clinical implications, the cytotoxicity of TNF-alpha in combination with radiotherapy (RT) was compared with that of RT alone in a human ovarian cancer cell line. NIH:OVCAR-3 cells were incubated with TNF-alpha at 10.0, 1.0, 0.1, and 0.01 microgram/ml. Plates were divided into two groups; one received 150 cGy of radiotherapy and the other received no further therapy. Seventy-two hours later, supernatants were aspirated and viable cells were stained with a 1% solution of crystal violet. Survival of cells treated with RT plus TNF-alpha was expressed as a percentage of surviving irradiated controls. Analysis of results revealed minimal additive cell killing effect between TNF-alpha and radiotherapy at all concentrations of tumor necrosis factor, with the greatest difference noted in the group treated with 10 micrograms/ml TNF-alpha. A continued radiotherapy dose-response study with TNF-alpha showed a similar additive, not radioprotective, effect. This may have implication as a potentiator of RT in some human tumors

  14. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  15. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    Science.gov (United States)

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  16. The T alpha 2 nuclear protein binding site from the human T cell receptor alpha enhancer functions as both a T cell-specific transcriptional activator and repressor

    OpenAIRE

    1990-01-01

    T cell-specific expression of the human T cell receptor alpha (TCR- alpha) gene is regulated by the interaction of variable region promoter elements with a transcriptional enhancer that is located 4.5 kb 3' of the TCR-alpha constant region (C alpha) gene segment. The minimal TCR- alpha enhancer is composed of two nuclear protein binding sites, T alpha 1 and T alpha 2, that are both required for the T cell-specific activity of the enhancer. The T alpha 1 binding site contains a consensus cAMP ...

  17. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen

    2013-08-01

    Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as \\'self\\' to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis. © 2013 Future Medicine Ltd.

  18. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  19. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN.

    Science.gov (United States)

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-04-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  20. On studying protein phosphorylation patterns using bottom-up LC-MS/MS: the case of human alpha-casein

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Savitski, Mikhail M; Nielsen, Michael L

    2007-01-01

    -LC-MS/MS. The occupancy rates of phosphosites in proteins may differ by orders of magnitude, and thus the occupancy rate must be reported for each occupied phosphosite. To highlight potential pitfalls in quantifying the occupancy rates, alpha(s1)-casein from human milk was selected as a model molecule representing...... moderately phosphorylated proteins. For this purpose, human milk from one Caucasian woman in the eighth month of lactation was used. The phosphorylation level of caseins is believed to have major implications for the formation of micelles that are involved in delivering valuable calcium phosphate and other...... minerals to the new-born. Human alpha(s1)-casein has been reported to be much less phosphorylated than ruminant caseins, which may indicate a different function of caseins in humans. Revealing the phosphorylation pattern in human casein can thus shed light on its function. The current study found...

  1. Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

    Science.gov (United States)

    Fontes-Garfias, Camila R; Shan, Chao; Luo, Huanle; Muruato, Antonio E; Medeiros, Daniele B A; Mays, Elizabeth; Xie, Xuping; Zou, Jing; Roundy, Christopher M; Wakamiya, Maki; Rossi, Shannan L; Wang, Tian; Weaver, Scott C; Shi, Pei-Yong

    2017-10-31

    Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Interaction of C-terminal truncated human alphaA-crystallins with target proteins.

    Directory of Open Access Journals (Sweden)

    Anbarasu Kumarasamy

    2008-09-01

    Full Text Available Significant portion of alphaA-crystallin in human lenses exists as C-terminal residues cleaved at residues 172, 168, and 162. Chaperone activity, determined with alcohol dehydrogenase (ADH and betaL-crystallin as target proteins, was increased in alphaA(1-172 and decreased in alphaA(1-168 and alphaA(1-162. The purpose of this study was to show whether the absence of the C-terminal residues influences protein-protein interactions with target proteins.Our hypothesis is that the chaperone-target protein binding kinetics, otherwise termed subunit exchange rates, are expected to reflect the changes in chaperone activity. To study this, we have relied on fluorescence resonance energy transfer (FRET utilizing amine specific and cysteine specific fluorescent probes. The subunit exchange rate (k for ADH and alphaA(1-172 was nearly the same as that of ADH and alphaA-wt, alphaA(1-168 had lower and alphaA(1-162 had the lowest k values. When betaL-crystallin was used as the target protein, alphaA(1-172 had slightly higher k value than alphaA-wt and alphaA(1-168 and alphaA(1-162 had lower k values. As expected from earlier studies, the chaperone activity of alphaA(1-172 was slightly better than that of alphaA-wt, the chaperone activity of alphaA(1-168 was similar to that of alphaA-wt and alphaA(1-162 had substantially decreased chaperone activity.Cleavage of eleven C-terminal residues including Arg-163 and the C-terminal flexible arm significantly affects the interaction with target proteins. The predominantly hydrophilic flexible arm appears to be needed to keep the chaperone-target protein complex soluble.

  3. The effects of marine carbohydrates and glycosylated compounds on human health.

    Science.gov (United States)

    Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-03-16

    Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed.

  4. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation.

    Science.gov (United States)

    Park, Julien H; Hogrebe, Max; Grüneberg, Marianne; DuChesne, Ingrid; von der Heiden, Ava L; Reunert, Janine; Schlingmann, Karl P; Boycott, Kym M; Beaulieu, Chandree L; Mhanni, Aziz A; Innes, A Micheil; Hörtnagel, Konstanze; Biskup, Saskia; Gleixner, Eva M; Kurlemann, Gerhard; Fiedler, Barbara; Omran, Heymut; Rutsch, Frank; Wada, Yoshinao; Tsiakas, Konstantinos; Santer, René; Nebert, Daniel W; Rust, Stephan; Marquardt, Thorsten

    2015-12-03

    SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Glycosylation profiles of therapeutic antibody pharmaceuticals.

    Science.gov (United States)

    Wacker, Christoph; Berger, Christoph N; Girard, Philippe; Meier, Roger

    2011-11-01

    Recombinant antibodies specific for human targets are often used as therapeutics and represent a major class of drug products. Their therapeutic efficacy depends on the formation of antibody complexes resulting in the elimination of a target molecule or the modulation of specific signalling pathways. The physiological effects of antibody therapeutics are known to depend on the structural characteristics of the antibody molecule, specifically on the glycosylation which is the result of posttranslational modifications. Hence, production of therapeutic antibodies with a defined and consistent glycoform profile is needed which still remains a considerable challenge to the biopharmaceutical industry. To provide an insight into the industries capability to control their manufacturing process and to provide antibodies of highest quality, we conducted a market surveillance study and compared major oligosaccharide profiles of a number of monoclonal antibody pharmaceuticals sampled on the Swiss market. Product lot-to-lot variability was found to be generally low, suggesting that a majority of manufacturers have implemented high quality standards in their production processes. However, proportions of G0, G1 and G2 core-fucosylated chains derived from different products varied considerably and showed a bias towards the immature agalactosidated G0 form. Interestingly, differences in glycosylation caused by the production cell type seem to be of less importance compared with process related parameters such as cell growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1)*

    Science.gov (United States)

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.

    2016-01-01

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271

  7. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Science.gov (United States)

    Bai, Yang; Huang, Wan; Ma, Li-Tian; Jiang, Jian-Li; Chen, Zhi-Nan

    2014-01-01

    Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation. PMID:24739808

  8. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2014-04-01

    Full Text Available Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation.

  9. Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila.

    Science.gov (United States)

    Frenkel-Pinter, Moran; Stempler, Shiri; Tal-Mazaki, Sharon; Losev, Yelena; Singh-Anand, Avnika; Escobar-Álvarez, Daniela; Lezmy, Jonathan; Gazit, Ehud; Ruppin, Eytan; Segal, Daniel

    2017-08-01

    The pathological hallmarks of Alzheimer's disease (AD) are pathogenic oligomers and fibrils of misfolded amyloidogenic proteins (e.g., β-amyloid and hyper-phosphorylated tau in AD), which cause progressive loss of neurons in the brain and nervous system. Although deviations from normal protein glycosylation have been documented in AD, their role in disease pathology has been barely explored. Here our analysis of available expression data sets indicates that many glycosylation-related genes are differentially expressed in brains of AD patients compared with healthy controls. The robust differences found enabled us to predict the occurrence of AD with remarkable accuracy in a test cohort and identify a set of key genes whose expression determines this classification. We then studied in vivo the effect of reducing expression of homologs of 6 of these genes in transgenic Drosophila overexpressing human tau, a well-established invertebrate AD model. These experiments have led to the identification of glycosylation genes that may augment or ameliorate tauopathy phenotypes. Our results indicate that OstDelta, l(2)not and beta4GalT7 are tauopathy suppressors, whereas pgnat5 and CG33303 are enhancers, of tauopathy. These results suggest that specific alterations in protein glycosylation may play a causal role in AD etiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    Science.gov (United States)

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  11. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    Science.gov (United States)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits

    NARCIS (Netherlands)

    Massoud, M.; Bischoff, Rainer; Dalemans, W.; Pointu, H.; Attal, J.; Schultz, H.; Clesse, D.; Stinnakre, M.G.; Pavirani, A.; Houdebine, L.M.

    1991-01-01

    A DNA construct containing the human alpha 1-antitrypsin gene including 1.5 and 4 kb of 5' and 3' flanking sequences, was microinjected into the pronucleus of rabbit embryos. The recombinant human protein was (a) expressed in the blood circulation of F0 and F1 transgenic rabbits at an average

  13. Links between CD147 Function, Glycosylation, and Caveolin-1

    OpenAIRE

    Tang, Wei; Chang, Sharon B.; Hemler, Martin E.

    2004-01-01

    Cell surface CD147 shows remarkable variations in size (31-65 kDa) because of heterogeneous N-glycosylation, with the most highly glycosylated forms functioning to induce matrix metalloproteinase (MMP) production. Here we show that all three CD147 N-glycosylation sites make similar contributions to both high and low glycoforms (HG- and LG-CD147). l-Phytohemagglutinin lectin binding and swainsonine inhibition experiments indicated that HG-CD147 contains N-acetylglucosaminyltransferase V-cataly...

  14. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  15. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Science.gov (United States)

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  16. Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.

    Science.gov (United States)

    Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H

    1997-08-01

    A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.

  17. Human alpha-fetoprotein and prostaglandins suppress human lymphocyte transformation by different mechanisms

    International Nuclear Information System (INIS)

    Yachnin, S.; Lester, E.P.

    1979-01-01

    The capacity of human alpha-fetoprotein (HAFP) to suppress human lymphocyte transformation is well established, although some investigators have reported negative results in their efforts to demonstrate this phenomenon. This discrepancy may reside in the fact that not all isolates of HAFP are potent inhibitors of lymphocyte transformation and that the immunosuppressive potency of various HAFP isolates may be correlated with the proportion of certain negatively charged HAFP isomers which they contain. The possibility was considered that noncovalent binding of low-molecular-weight, negatively charged molecules might be partially responsible. Since fatty acids, including certain prostaglandins (PG), are capable of binding to a partly related serum protein, namely, human serum albumin, and since certain prostaglandins are known to be potent suppressors of human lymphocyte transformation, a study was undertaken of the role which prostaglandins might play in HAFP-induced suppression of human lymphocyte transformation

  18. [The role of protein glycosylation in immune system].

    Science.gov (United States)

    Ząbczyńska, Marta; Pocheć, Ewa

    2015-01-01

    Glycosylation is one of the most frequent post-translational modifications of proteins. The majority of cell surface and secreted proteins involved in immune response is glycosylated. The structural diversity of glycans depends on monosaccharide composition, type of glycosidic linkage and branching. These structural modifications determine a great variability of glycoproteins. The oligosaccharide components of proteins are regulated mostly by expression of glycosyltransferases and glycosidases and many environmental factors. Glycosylation influences the function of all immune cells. Glycans play a crucial role in intercellular contacts and leukocytes migration. These interactions are important in activation and proliferation of leukocytes and during immune response. The key immune proteins, such as TCR, MHC, TLR and antibodies are glycosylated. Sugars on the surface of pathogens and self-surface glycoproteins are recognized by special carbohydrate binding proteins called lectins. Changes of glycan structure are common in many pathological processes occurring in immune system, therefore they are used as molecular markers of different diseases.

  19. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    International Nuclear Information System (INIS)

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V.

    1991-01-01

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation

  20. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

    Science.gov (United States)

    Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-11-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP

  1. Prion propagation in cells expressing PrP glycosylation mutants.

    Science.gov (United States)

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  2. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids.

    Science.gov (United States)

    Dutta, Devawati; Mandal, Chhabinath; Mandal, Chitra

    2017-12-01

    Glycosylation of proteins is the most common, multifaceted co- and post-translational modification responsible for many biological processes and cellular functions. Significant alterations and aberrations of these processes are related to various pathological conditions, and often turn out to be disease biomarkers. Conventional N-glycosylation occurs through the recognition of the consensus sequon, asparagine (Asn)-X-serine (Ser)/threonine (Thr), where X is any amino acid except for proline, with N-acetylglucosamine (GlcNAc) as the first glycosidic linkage. Usually, O-glycosylation adds a glycan to the hydroxyl group of Ser or Thr beginning with N-acetylgalactosamine (GalNAc). Protein glycosylation is further governed by additional diversifications in sequon and structure, which are yet to be fully explored. This review mainly focuses on the occurrence of N-glycosylation in non-consensus motifs, where Ser/Thr at the +2 position is substituted by other amino acids. Additionally, N-glycosylation is also observed in other amide/amine group-containing amino acids. Similarly, O-glycosylation occurs at hydroxyl group-containing amino acids other than serine/threonine. The neighbouring amino acids and local structural features around the potential glycosylation site also play a significant role in determining the extent of glycosylation. All of these phenomena that yield glycosylation at the atypical sites are reported in a variety of biological systems, including different pathological conditions. Therefore, the discovery of more novel sequence patterns for N- and O-glycosylation may help in understanding the functions of complex biological processes and cellular functions. Taken together, all these information provided in this review would be helpful for the biological readers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Endocytosis of GPI-linked membrane folate receptor-alpha.

    Science.gov (United States)

    Rijnboutt, S; Jansen, G; Posthuma, G; Hynes, J B; Schornagel, J H; Strous, G J

    1996-01-01

    GPI-linked membrane folate receptors (MFRs) have been implicated in the receptor-mediated uptake of reduced folate cofactors and folate-based chemotherapeutic drugs. We have studied the biosynthetic transport to and internalization of MFR isoform alpha in KB-cells. MFR-alpha was synthesized as a 32-kD protein and converted in a maturely glycosylated 36-38-kD protein 1 h after synthesis. 32-kD MFR-alpha was completely soluble in Triton X-100 at 0 degree C. In contrast, only 33% of the 36-38-kD species could be solubilized at these conditions whereas complete solubilization was obtained in Triton X-100 at 37 degrees C or in the presence of saponin at 0 degree C. Similar solubilization characteristics were found when MFR-alpha at the plasma membrane was labeled with a crosslinkable 125I-labeled photoaffinity-analog of folic acid as a ligand. Triton X-100-insoluble membrane domains containing MFR-alpha could be separated from soluble MFR-alpha on sucrose flotation gradients. Only Triton X-100 soluble MFR-alpha was internalized from the plasma membrane. The reduced-folate-carrier, an integral membrane protein capable of translocating (anti-)folates across membranes, was completely excluded from the Triton X-100-resistant membrane domains. Internalized MFR-alpha recycled slowly to the cell surface during which it remained soluble in Triton X-100 at 0 degree C. Using immunoelectron microscopy, we found MFR-alpha along the entire endocytic pathway: in clathrin-coated buds and vesicles, and in small and large endosomal vacuoles. In conclusion, our data indicate that a large fraction, if not all, of internalizing MFR-alpha bypasses caveolae.

  4. The role of glycosylation in breast cancer metastasis and cancer control

    Directory of Open Access Journals (Sweden)

    Alexandra eKölbl

    2015-10-01

    Full Text Available AbstractGlycosylation and its correlation to the formation of remote metastasis in breast cancer had been an important scientific topic in the last 25 years. With the development of new analytical techniques new insights were gained on the mechanisms underlying metastasis formation and the role of aberrant glycosylation within. Mucin-1 and Galectin were recognized as key players in glycosylation. Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood-brain barrier. Changes in the gene expression of glycosyltransferases are the leading cause for a modification of carbohydrate chains, so that also altered gene expression plays a role for glycosylation. In consequence, glycosylation and changes within can be useful for cancer diagnosis, determination of tumour stage and prognosis, but can as well be targets for therapeutic strategies. Thus, further research on this topic would worth wile for cancer combating.

  5. Human skeletal uptake of natural alpha radioactivity from {sup 210}Pb-supported {sup 210}Po

    Energy Technology Data Exchange (ETDEWEB)

    Oyedepo, A.C

    1998-06-01

    This thesis contributes to increasing knowledge on the dosimetry of natural alpha-particle radiation in skeletal tissues, particularly in utero, and associated risks of malignancy. Alpha-particle radiation is an established aetiological factor of cancer. In the human body, polonium-210 decayed from skeletal lead-210 ({sup 210}Pb/{sup 210}Po) is the predominant natural alpha-emitter. {sup 210}Pb displaces calcium (Ca) in mineral hydroxyapatite, especially during periods of rapid bone growth and remodelling when Ca is laid down. It was therefore necessary to study alpha activity uptake and calcification concurrently within bone. Human studies were undertaken on: fetal vertebrae, 17 - 42 weeks of gestation, 74 samples; adult vertebrae, 40 - 95 years, 40 samples; and adult ribs, 20 - 95 years, 51 samples. Specimens were unconcentrated and weighed <5 g each. TASTRAK alpha-particle autoradiography was used to assess the bone activity concentration and spatial microdistribution of {sup 210}Pb/{sup 210}Po. Alpha track data were resolved by specially written software named SPATS (Selection Program for Analysing Track Structures). Ca and phosphorus (P) were biochemically determined. Results were examined for trends in bone type, gender and chronological ageing in humans. The main research findings were: 1) The Ca content of fetal vertebrae increased linearly at a weekly rate of 0.2g Ca 100 g{sup -1} wet bone (typical values of 2, 4, 6 g 100 g{sup -1} at 16, 26 and 36 weeks). 2) The P concentration also increased with advancing fetal age. 3) The Ca:P bone weight ratio rose from 1.7 to 2.2 by 32 gestational weeks. 4) The overall range in bone {sup 210}Pb/{sup 210}Po alpha activity was 0.25 - 1.1 Bq kg{sup -1} with correlation between activity concentration and fetal age (0.47 {+-} 0.05 Bq kg{sup -1} for 17 - 26 weeks, 0.67 {+-} 0.04 Bq kg{sup -1} for 32 - 42 weeks). 5) The correlation between increased alpha radioactivity and increased Ca concentration approximating to 0

  6. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin.

    Science.gov (United States)

    Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K

    1989-06-01

    A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.

  7. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  8. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8.

    Directory of Open Access Journals (Sweden)

    Sarah Friebe

    Full Text Available ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.

  9. In vitro cytotoxicity of alpha conjugates for human pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Qu, C.; Li, Y.; Rizvi, M.A.; Allen, B.; Samra, J.; Smith, R.

    2003-01-01

    Targeted Alpha therapy (TAT) can inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The aim of this study is to demonstrate the cytotoxicity of different alpha conjugates in vitro to human metastatic pancreatic cancer cell lines (CAPAN-1, CFPAN-1 and PANC-1). We are labeling the C595 and J591 (non-specific controls) monoclonal antibodies (Mabs) with 213 Bi were performed according to the standard methods in our laboratory. 213 Bi-C595 is specifically cytotoxic to CAPAN-1, CFPAN-1 and PANC-1cell lines in a concentration-dependent fashion. While non-specific alpha conjugates only killed very small fractions of pancreatic cancer cells. These alpha conjugates might be useful agents for the treatment of micro-metastases in pancreatic cancer patients with over-expression of the targeted receptors

  10. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  11. Quantifying risk of penile prosthesis infection with elevated glycosylated hemoglobin.

    Science.gov (United States)

    Wilson, S K; Carson, C C; Cleves, M A; Delk, J R

    1998-05-01

    Elevation of glycosylated hemoglobin above levels of 11.5 mg.% has been considered a contraindication to penile prosthesis implantation in diabetic patients. We determine the predictive value of glycosylated hemoglobin A1C in penile prosthesis infections in diabetic and nondiabetic patients to confirm or deny this prevalent opinion. We conducted a 2-year prospective study of 389 patients, including 114 diabetics, who underwent 3-piece penile prosthesis implantation. All patients had similar preoperative preparation without regard to diabetic status, control or glycosylated hemoglobin A1C level. Risk of infection was statistically analyzed for diabetics versus nondiabetics, glycosylated hemoglobin A1C values above and below 11.5 mg.%, insulin dependent versus oral medication diabetics, and fasting blood sugars above and below 180 mg.%. Prosthesis infections developed in 10 diabetics (8.7%) and 11 nondiabetics (4.0%). No increased infection rate was observed in diabetics with high fasting sugars or diabetics on insulin. There was no statistically significant increased infection risk with increased levels of glycosylated hemoglobin A1C among all patients or among only the diabetics. In fact, there was no meaningful difference in the median or mean level of glycosylated hemoglobin A1C in the infected and noninfected patients regardless of diabetes. Use of glycosylated hemoglobin A1C values to identify and exclude surgical candidates with increased risk of infections is not proved by this study. Elevation of fasting sugar or insulin dependence also does not increase risk of infection in diabetics undergoing prosthesis implantation.

  12. Method Development in the Regioselective Glycosylation of Unprotected Carbohydrates

    DEFF Research Database (Denmark)

    Niedbal, Dominika Alina

    and the glycosylations were promoted by tetrabutylammonium bromide. The couplings were completely selective and gave rise to a number of 1,6-linked disaccharides with 1,2- cis-linked orientation. Project 2: Boron-mediated glycosylation of unprotected carbohydrates Boron-mediated regioselective Koenigs...

  13. Characterization of the binding of radioiodinated hybrid recombinant IFN-alpha A/D to murine and human lymphoid cell lines

    International Nuclear Information System (INIS)

    Faltynek, C.R.; Princler, G.L.; Schwabe, M.; Shata, M.T.; Lewis, G.K.; Kamin-Lewis, R.M.

    1990-01-01

    The hybrid recombinant human interferon (IFN) rIFN-alpha A/D was radioiodinated. Specific binding of [125I]rIFN-alpha A/D was observed with both human and murine cell lines. The binding of [125I]rIFN-alpha A/D to human Daudi cells had similar characteristics to the previously described binding of [125I]rIFN-alpha A or -alpha 2. The following lines of evidence demonstrated that [125I]rIFN-alpha A/D bound with high affinity to the same receptor on murine cells as murine IFN-alpha and -beta: (i) the binding of [125I]rIFN-alpha A/D to murine LBRM cells was inhibited to a similar extent by natural murine IFN-alpha, natural murine IFN-beta, and rIFN-A/D; (ii) the Kd (approximately 2 X 10(-10) M) obtained from both competition experiments and saturation binding experiments with [125I]rIFN-alpha A/D was comparable to the previously reported Kd for the binding of natural murine IFN-alpha and -beta to other murine cell lines; (iii) the size of the cross-linked [125I]rIFN-alpha A/D receptor complex formed on murine LBRM cells was similar to the previously reported cross-linked complex formed after binding radioiodinated natural murine IFN-beta to other murine cell lines. Due to the current lack of readily available recombinant murine IFN-alpha or -beta for radiolabeling and the previously demonstrated biological activity of rIFN-alpha A/D on murine cells, [125I]rIFN-alpha A/D should prove to be a useful reagent for further studies of murine IFN receptors

  14. Do saw palmetto extracts block human alpha1-adrenoceptor subtypes in vivo?

    Science.gov (United States)

    Goepel, M; Dinh, L; Mitchell, A; Schäfers, R F; Rübben, H; Michel, M C

    2001-02-15

    To test whether saw palmetto extracts, which act as alpha1-adrenoceptor antagonists in vitro, also do so in vivo in man. In a placebo-controlled, double-blind, four-way cross-over study 12 healthy young men were treated with three different saw palmetto extract preparations (320 mg o.d.) for 8 days each. On the last day, before and 2, 4 and 6 hr after drug intake blood pressure and heart rate were determined and blood samples obtained, which were used in an ex vivo radioreceptor assay with cloned human alpha1-adrenoceptor subtypes. Saw palmetto extract treatment did not result in alpha1-adrenoceptor subtype occupancy in the radioreceptor assay. Although the saw palmetto extracts caused minor reductions of supine blood pressure, they did not affect blood pressure during orthostatic stress testing and did not alter heart rate under either condition. Moreover, plasma catecholamines remained largely unaltered. Despite their alpha1-adrenoceptor antagonist effects in vitro, therapeutically used doses of saw palmetto extracts do not cause alpha1-adrenoceptor antagonism in man in vivo. Copyright 2001 Wiley-Liss, Inc.

  15. Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina

    2003-12-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.

  16. Distribution of N-glycosylation sequons in proteins: how apart are they?

    DEFF Research Database (Denmark)

    Rao, Shyama Prasad; Buus, Ole Thomsen; Wollenweber, Bernd

    2011-01-01

    of experimentally confirmed eukaryotic N-glycoproteins we analyzed the relative position and distribution of sequons. N-Glycosylation probability was found to be lower in the termini of protein sequences compared to the mid region. N-glycosylated sequons were found much farther from C terminus compared to the N......N-glycosylation is a common protein modification process, which affects a number of properties of proteins. Little is known about the distribution of N-glycosylation sequons, for example, the distance between glycosylated sites and their position in the protein primary sequence. Using a large set......-terminus of the protein sequence and this effect was more pronounced for NXS sequons. The distribution of sequons, modeled based on balls-in-boxes classical occupancy, showed a near-maximum probability. Considerable proportion of sequons was found within a distance of ten amino acids, indicating that the steric hindrance...

  17. Topological studies of hSVCT1, the human sodium-dependent vitamin C transporter and the influence of N-glycosylation on its intracellular targeting

    Energy Technology Data Exchange (ETDEWEB)

    Velho, Albertina M. [Department of Biosciences University of Kent, CT2 7NJ (United Kingdom); Jarvis, Simon M., E-mail: S.M.Jarvis@westminster.ac.uk [Department of Biosciences University of Kent, CT2 7NJ (United Kingdom); University of Westminster, School of Biosciences, London W1W 6UW (United Kingdom)

    2009-08-01

    The Na{sup +}-dependent transporters, hSVCT1 and hSVCT2, were assessed in COS-1 cells for their membrane topology. Antibodies to N- and C-termini of hSVCT1 and C-terminus of hSVCT2 identified positive immunofluorescence only after permeabilisation, suggesting these regions are intracellular. PNGase F treatment confirmed that WT hSVCT1 ({approx} 70-100 kDa) is glycosylated and site-directed mutagenesis of the three putative N-glycosylation sites, Asn138, Asn144, Asn230, demonstrated that mutants N138Q and N144Q were glycosylated ({approx} 68-90 kDa) with only 31-65% of WT L-ascorbic acid (AA) uptake while the glycosylation profile of N230Q remained unaltered ({approx} 98% of WT activity). However, the N138Q/N144Q double mutant displayed barely detectable membrane expression at {approx} 65 kDa, no apparent glycosylation and minimal AA uptake (< 10%) with no discernible improvement in expression or activity when cultured at 28 {sup o}C or 37 {sup o}C. Marker protein immunocytochemistry with N138Q/N144Q identified intracellular aggregates with hSVCT1 localised at the nuclear membrane but absent at the plasma membrane thus implicating its role as a possible intracellular transporter and suggesting N-glycosylation is required for hSVCT1 membrane targeting. Also, Lys242 on the same putative hydrophilic loop as Asn230 after biotinylation was inaccessible from the extracellular side when analysed by MALDI-TOF MS. A new hSVCT1 secondary structure model supporting these findings is proposed.

  18. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  19. Analysis of Alpha-2 Macroglobulin from the Long-Lived and Cancer-Resistant Naked Mole-Rat and Human Plasma.

    Science.gov (United States)

    Thieme, René; Kurz, Susanne; Kolb, Marlen; Debebe, Tewodros; Holtze, Susanne; Morhart, Michaela; Huse, Klaus; Szafranski, Karol; Platzer, Matthias; Hildebrandt, Thomas B; Birkenmeier, Gerd

    2015-01-01

    The naked mole-rat (NMR) is a long-lived and cancer resistant species. Identification of potential anti-cancer and age related mechanisms is of great interest and makes this species eminent to investigate anti-cancer strategies and understand aging mechanisms. Since it is known that the NMR expresses higher liver mRNA-levels of alpha 2-macroglobulin than mice, nothing is known about its structure, functionality or expression level in the NMR compared to the human A2M. Here we show a comprehensive analysis of NMR- and human plasma-A2M, showing a different prediction in glycosylation of NMR-A2M, which results in a higher molecular weight compared to human A2M. Additionally, we found a higher concentration of A2M (8.3±0.44 mg/mL vs. and 4.4±0.20 mg/mL) and a lower total plasma protein content (38.7±1.79 mg/mL vs. 61.7±3.20 mg/mL) in NMR compared to human. NMR-A2M can be transformed by methylamine and trypsin resulting in a conformational change similar to human A2M. NMR-A2M is detectable by a polyclonal antibody against human A2M. Determination of tryptic and anti-tryptic activity of NMR and human plasma revealed a higher anti-tryptic activity of the NMR plasma. On the other hand, less proteolytic activity was found in NMR plasma compared to human plasma. We found transformed NMR-A2M binding to its specific receptor LRP1. We could demonstrate lower protein expression of LRP1 in the NMR liver tissue compared to human but higher expression of A2M. This was accompanied by a higher EpCAM protein expression as central adhesion molecule in cancer progression. NMR-plasma was capable to increase the adhesion in human fibroblast in vitro most probably by increasing CD29 protein expression. This is the first report, demonstrating similarities as well as distinct differences between A2M in NMR and human plasma. This might be directly linked to the intriguing phenotype of the NMR and suggests that A2M might probably play an important role in anti-cancer and the anti

  20. Analysis of Alpha-2 Macroglobulin from the Long-Lived and Cancer-Resistant Naked Mole-Rat and Human Plasma.

    Directory of Open Access Journals (Sweden)

    René Thieme

    Full Text Available The naked mole-rat (NMR is a long-lived and cancer resistant species. Identification of potential anti-cancer and age related mechanisms is of great interest and makes this species eminent to investigate anti-cancer strategies and understand aging mechanisms. Since it is known that the NMR expresses higher liver mRNA-levels of alpha 2-macroglobulin than mice, nothing is known about its structure, functionality or expression level in the NMR compared to the human A2M.Here we show a comprehensive analysis of NMR- and human plasma-A2M, showing a different prediction in glycosylation of NMR-A2M, which results in a higher molecular weight compared to human A2M. Additionally, we found a higher concentration of A2M (8.3±0.44 mg/mL vs. and 4.4±0.20 mg/mL and a lower total plasma protein content (38.7±1.79 mg/mL vs. 61.7±3.20 mg/mL in NMR compared to human. NMR-A2M can be transformed by methylamine and trypsin resulting in a conformational change similar to human A2M. NMR-A2M is detectable by a polyclonal antibody against human A2M. Determination of tryptic and anti-tryptic activity of NMR and human plasma revealed a higher anti-tryptic activity of the NMR plasma. On the other hand, less proteolytic activity was found in NMR plasma compared to human plasma.We found transformed NMR-A2M binding to its specific receptor LRP1. We could demonstrate lower protein expression of LRP1 in the NMR liver tissue compared to human but higher expression of A2M. This was accompanied by a higher EpCAM protein expression as central adhesion molecule in cancer progression. NMR-plasma was capable to increase the adhesion in human fibroblast in vitro most probably by increasing CD29 protein expression. This is the first report, demonstrating similarities as well as distinct differences between A2M in NMR and human plasma. This might be directly linked to the intriguing phenotype of the NMR and suggests that A2M might probably play an important role in anti-cancer and the

  1. Primary structure of human alpha 2-macroglobulin. V. The complete structure

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Stepanik, Terrence M; Kristensen, Torsten

    1984-01-01

    The primary structure of the tetrameric plasma glycoprotein human alpha 2-macroglobulin has been determined. The identical subunits contain 1451 amino acid residues. Glucosamine-based oligosaccharide groups are attached to asparagine residues 32, 47, 224, 373, 387, 846, 968, and 1401. Eleven......-SH group of Cys-949 is thiol esterified to the gamma-carbonyl group of Glx-952, thus forming an activatable reactive site which can mediate covalent binding of nucleophiles. A putative transglutaminase cross-linking site is constituted by Gln-670 and Gln-671. The primary sites of proteolytic cleavage......-macroglobulin subunit is discussed. A comparison of stretches of sequences from alpha 2-macroglobulin with partial sequence data for complement components C3 and C4 indicates that these proteins are evolutionary related. The properties of alpha 2-macroglobulin are discussed within the context of proteolytically...

  2. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.

    Science.gov (United States)

    Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong

    2017-09-15

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prion Propagation in Cells Expressing PrP Glycosylation Mutants ▿

    Science.gov (United States)

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  4. Localization of alpha-uterine protein in human endometrium.

    Science.gov (United States)

    Horne, C H; Paterson, W F; Sutcliffe, R G

    1982-07-01

    Immunoperoxidase staining was used to investigate the origin of human alpha-uterine protein (AUP). Specific staining was observed in the glandular epithelium of the endometrium during the secretory phase of the menstrual cycle and during pregnancy, and in a patient on an oestrogen-progestagen contraceptive pill. The pattern of staining strongly suggests that AUP is secreted into the uterine lumen. The location and concentration of AUP in the uterus may explain the relative concentrations of AUP in amniotic fluid and maternal serum.

  5. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2

    Directory of Open Access Journals (Sweden)

    De Pourcq Karen

    2012-05-01

    Full Text Available Abstract Background Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS. Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. Results We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi α-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the α-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained α-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. Conclusions We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a

  6. Effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1

    International Nuclear Information System (INIS)

    Watanabe, Ayahisa; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara; Kuge, Yuji; Tanaka, Yoshikazu; Itoh, Takeshi; Takemoto, Hiroshi

    2012-01-01

    Glycosylation is generally applicable as a strategy for increasing the activity of bioactive proteins. In this study, we examined the effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1 (GLP-1) as a bioactive peptide for type 2 diabetes. Noninvasive imaging studies were performed using a gamma camera after the intravenous administration of 123 I-GLP-1 or 123 I-α2, 6-sialyl N-acetyllactosamine (glycosylated) GLP-1 in rats. In ex vivo biodistribution studies using 125 I-GLP-1 or 125 I-glycosylated GLP-1, organ samples were measured for radioactivity. Plasma samples were added to 15% trichloroacetic acid (TCA) to obtain TCA-insoluble and TCA-soluble fractions. The radioactivity in the TCA-insoluble and TCA-soluble fractions was measured. In the noninvasive imaging studies, a relatively high accumulation level of 123 I-GLP-1 was found in the liver, which is the major organ to eliminate exogenous GLP-1. The area under the time-activity curve (AUC) of 123 I-glycosylated GLP-1 in the liver was significantly lower (89%) than that of 123 I-GLP-1. These results were consistent with those of ex vivo biodistribution studies using 125 I-labeled peptides. The AUC of 125 I-glycosylated GLP-1 in the TCA-insoluble fraction was significantly higher (1.7-fold) than that of GLP-1. This study demonstrated that glycosylation significantly decreased the distribution of radiolabeled GLP-1 into the liver and increased the concentration of radiolabeled GLP-1 in plasma. These results suggested that glycosylation is a useful strategy for decreasing the distribution into the liver of bioactive peptides as desirable pharmaceuticals. (author)

  7. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  8. Human cancers converge at the HIF-2alpha oncogenic axis.

    Science.gov (United States)

    Franovic, Aleksandra; Holterman, Chet E; Payette, Josianne; Lee, Stephen

    2009-12-15

    Cancer development is a multistep process, driven by a series of genetic and environmental alterations, that endows cells with a set of hallmark traits required for tumorigenesis. It is broadly accepted that growth signal autonomy, the first hallmark of malignancies, can be acquired through multiple genetic mutations that activate an array of complex, cancer-specific growth circuits [Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70; Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789-799]. The superfluous nature of these pathways is thought to severely limit therapeutic approaches targeting tumor proliferation, and it has been suggested that this strategy be abandoned in favor of inhibiting more systemic hallmarks, including angiogenesis (Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: Mechanisms of anti-tumor activity. Nat Rev Cancer 8:579-591; Stommel JM, et al. (2007) Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287-290; Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727-739; Kaiser J (2008) Cancer genetics: A detailed genetic portrait of the deadliest human cancers. Science 321:1280-1281]. Here, we report the unexpected observation that genetically diverse cancers converge at a common and obligatory growth axis instigated by HIF-2alpha, an element of the oxygen-sensing machinery. Inhibition of HIF-2alpha prevents the in vivo growth and tumorigenesis of highly aggressive glioblastoma, colorectal, and non-small-cell lung carcinomas and the in vitro autonomous proliferation of several others, regardless of their mutational status and tissue of origin. The concomitant deactivation of select receptor tyrosine kinases, including the EGFR and IGF1R, as well as downstream ERK/Akt signaling, suggests that HIF-2alpha exerts its proliferative effects by endorsing these major pathways. Consistently

  9. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Toyo; Inagaki, Kenjiro [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji [Genomic Science Laboratories, DainipponSumitomo Pharma Co. Ltd., 4-2-1 Takatsukasa, Takarazuka 665-8555 (Japan); Kasuga, Masato [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan)

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.

  10. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions

    DEFF Research Database (Denmark)

    Lundby, Carsten; Gassmann, Max; Pilegaard, Henriette

    2005-01-01

    and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended alpha-subunit and a constitutive beta-subunit. With hypoxic exposure, HIF-1alpha and HIF-2alpha protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes......Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1...... including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1alpha and HIF-2alpha subunits increases...

  11. Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis.

    Science.gov (United States)

    Vermassen, Tijl; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Decaestecker, Karel; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2015-01-01

    Although prostatitis is a common male urinary tract infection, clinical diagnosis of prostatitis is difficult. The developmental mechanism of prostatitis is not yet unraveled which led to the elaboration of various biomarkers. As changes in asparagine-linked-(N-)-glycosylation were observed between healthy volunteers (HV), patients with benign prostate hyperplasia and prostate cancer patients, a difference could exist in biochemical parameters and urinary N-glycosylation between HV and prostatitis patients. We therefore investigated if prostatic protein glycosylation could improve the diagnosis of prostatitis. Differences in serum and urine biochemical markers and in total urine N-glycosylation profile of prostatic proteins were determined between HV (N=66) and prostatitis patients (N=36). Additionally, diagnostic accuracy of significant biochemical markers and changes in N-glycosylation was assessed. Urinary white blood cell (WBC) count enabled discrimination of HV from prostatitis patients (Pprostatitis patients from HV (Pprostatitis patients compared to HV (Pprostatitis. Further research is required to unravel the developmental course of prostatic inflammation.

  12. Human cytogenetic dosimetry: a dose-response relationship for alpha particle radiation from 241Am

    International Nuclear Information System (INIS)

    DuFrain, R.J.; Littlefield, L.G.; Joiner, E.E.; Frome, E.L.

    1979-01-01

    Cytogenetic dosimetry estimates to guide treatment of persons internally contaminated with transuranic elements have not previously been possible because appropriate in vitro dose-response curves specifically for alpha particle irradiation of human lymphocytes do not exist. Using well-controlled cytogenetic methods for human lymphocyte culture, an experimentally derived dose-response curve for 241 Am alpha particle (5.49 and 5.44 MeV) radiation of G 0 lymphocytes was generated. Cells were exposed to 43.8, 87.7, 175.3 or 350.6 nCi/ml 241 Am for 1.7 hr giving doses of 0.85, 1.71, 3.42 or 6.84 rad. Based on dicentric chromosome yield, the linear dose-response equation is Y = 4.90(+-0.42) x 10 -2 X, with Y given as dicentrics per cell and X as dose in rads. The study also shows that the two-break asymmetrical exchanges in cells damaged by alpha particle radiation are overdispersed when compared to a Poisson distribution. An example is presented to show how the derived dose-response equation can be used to estimate the radiation dose for a person internally contaminated with an actinide. An experimentally derived RBE value of 118 at 0.85 rad is calculated for the efficiency of 241 Am alpha particle induction of dicentric chromosomes in human G 0 lymphocytes as compared with the efficiency of 60 Co gamma radiation. The maximum theoretical value for the RBE for cytogenetic damage from alpha irradiation was determined to be 278 at 0.1 rad or less which is in marked contrast to previously reported RBE values of approx. 20. (author)

  13. Temporal expression of HIV-1 envelope proteins in baculovirus-infected insect cells: Implications for glycosylation and CD4 binding

    International Nuclear Information System (INIS)

    Murphy, C.I.; Lennick, M.; Lehar, S.M.; Beltz, G.A.; Young, E.

    1990-01-01

    Three different human immunodeficiency virus type I (HIV-1) envelope derived recombinant proteins and the full length human CD4 polypeptide were expressed in Spodoptera frugiperda (Sf9) cells. DNA constructs encoding CD4, gp120, gp160, and gp160 delta were cloned into the baculovirus expression vector pVL941 or a derivative and used to generate recombinant viruses in a cotransfection with DNA from Autographa californica nuclear polyhedrosis virus (AcMNPV). Western blotting of cell extracts of the recombinant HIV-1 proteins showed that for each construct two major bands specifically reacted with anti-HIV-1 envelope antiserum. These bands corresponded to glycosylated and nonglycosylated versions of the HIV proteins as determined by 3H-mannose labeling and tunicamycin treatment of infected cells. A time course of HIV envelope expression revealed that at early times post-infection (24 hours) the proteins were fully glycosylated and soluble in nonionic detergents. However, at later times postinfection (48 hours), expression levels of recombinant protein reached a maximum but most of the increase was due to a rise in the level of the nonglycosylated species, which was largely insoluble in nonionic detergents. Thus, it appears that Sf9 cells cannot process large amounts of glycosylated recombinant proteins efficiently. As a measure of biological activity, the CD4 binding ability of both glycosylated and nonglycosylated recombinant HIV envelope proteins was tested in a coimmunoprecipitation assay. The results showed that CD4 and the glycosylated versions of recombinant gp120 or gp160 delta specifically associated with one another in this analysis. Nonglycosylated gp120 or gp160 delta proteins from tunicamycin-treated cultures did immunoprecipitate with anti-HIV-1 antiserum but did not interact with CD4

  14. Human keratinocytes are a source for tumor necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light

    International Nuclear Information System (INIS)

    Koeck, A.S.; Schwarz, T.; Kirnbauer, R.; Urbanski, A.; Perry, P.; Ansel, J.C.; Luger, T.A.

    1990-01-01

    Tumor necrosis factor alpha (TNF-alpha), in addition to being cytotoxic for certain tumor cells, has turned out as a multifunctional cytokine that is involved in the regulation of immunity and inflammation. Since human keratinocytes have been demonstrated to be a potent source of various cytokines, it was investigated whether epidermal cells synthesize and release TNF-alpha. Supernatants derived from normal human keratinocytes (HNK) and human epidermoid carcinoma cell lines (KB, A431) were tested both in a TNF-alpha-specific ELISA and a bioassay. In supernatants of untreated epidermal cells, no or minimal TNF-alpha activity was found, while after stimulation with lipopolysaccharide (LPS) or ultraviolet (UV) light, significant amounts were detected. Western blot analysis using an antibody directed against human TNF-alpha revealed a molecular mass of 17 kD for keratinocyte-derived TNF-alpha. These biological and biochemical data were also confirmed by Northern blot analysis revealing mRNA specific for TNF-alpha in LPS- or ultraviolet B (UVB)-treated HNK and KB cells. In addition, increased TNF-alpha levels were detected in the serum obtained from human volunteers 12 and 24 h after a single total body UVB exposure, which caused a severe sunburn reaction. These findings indicate that keratinocytes upon stimulation are able to synthesize and release TNF-alpha, which may gain access to the circulation. Thus, TNF-alpha in concert with other epidermal cell-derived cytokines may mediate local and systemic inflammatory reactions during host defense against injurious events caused by microbial agents or UV irradiation

  15. Human Artificial Chromosomes with Alpha Satellite-Based De Novo Centromeres Show Increased Frequency of Nondisjunction and Anaphase Lag

    OpenAIRE

    Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.

    2003-01-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fu...

  16. Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens.

    Science.gov (United States)

    Stenner, Max-Philipp; Dürschmid, Stefan; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J; Schoenfeld, Mircea Ariel

    2016-10-01

    The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10-30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. Copyright © 2016 the American Physiological Society.

  17. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell.

    Science.gov (United States)

    Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin

    2014-01-01

    Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.

  18. Deciphering a pathway of Halobacterium salinarum N-glycosylation

    Science.gov (United States)

    Kandiba, Lina; Eichler, Jerry

    2015-01-01

    Genomic analysis points to N-glycosylation as being a common posttranslational modification in Archaea. To date, however, pathways of archaeal N-glycosylation have only been described for few species. With this in mind, the similarities of N-linked glycans decorating glycoproteins in the haloarchaea Haloferax volcanii and Halobacterium salinarum directed a series of bioinformatics, genetic, and biochemical experiments designed to describe that Hbt. salinarum pathway responsible for biogenesis of one of the two N-linked oligosaccharides described in this species. As in Hfx. volcanii, where agl (archaeal glycosylation) genes that encode proteins responsible for the assembly and attachment of a pentasaccharide to target protein Asn residues are clustered in the genome, Hbt. salinarum also contains a group of clustered homologous genes (VNG1048G-VNG1068G). Introduction of these Hbt. salinarum genes into Hfx. volcanii mutant strains deleted of the homologous sequence restored the lost activity. Moreover, transcription of the Hbt. salinarum genes in the native host, as well as in vitro biochemical confirmation of the predicted functions of several of the products of these genes provided further support for assignments made following bioinformatics and genetic experiments. Based on the results obtained in this study, the first description of an N-glycosylation pathway in Hbt. salinarum is offered. PMID:25461760

  19. Decreased levels of genuine large free hCG alpha in men presenting with abnormal semen analysis

    Directory of Open Access Journals (Sweden)

    Plas Eugen

    2011-08-01

    Full Text Available Abstract Background The pregnancy hormone human chorionic gonadotropin (hCG and its free subunits (hCG alpha, hCG beta are produced in the male reproductive tract and found in high concentrations in seminal fluid, in particular hCG alpha. This study aimed to elucidate changes in peptide hormone profiles in patients showing abnormal semen analyses and to determine the genuineness of the highly abundant hCG alpha. Methods Seminal plasma was obtained from 45 male patients undergoing semen analysis during infertility workups. Comprehensive peptide hormone profiles were established by a panel of immunofluorometric assays for hCG, hCG alpha, hCG beta and its metabolite hCG beta core fragment, placental lactogen, growth hormone and prolactin in seminal plasma of patients with abnormal semen analysis results (n = 29 versus normozoospermic men (n = 16. The molecular identity of large hyperglycosylated hCG alpha was analyzed by mass-spectrometry and selective deglycosylation. Results hCG alpha levels were found to be significantly lower in men with impaired semen quality (1346 +/- 191 vs. 2753 +/- 533 ng/ml, P = 0.022. Moreover, patients with reduced sperm count had reduced intact hCG levels compared with normozoospermic men (0.097 +/- 0.022 vs. 0.203 +/- 0.040 ng/ml, P = 0.028. Using mass-spectrometry, the biochemical identity of hCG alpha purified from seminal plasma was verified. Under non-reducing conditions in SDS-PAGE, hCG alpha isolated from seminal plasma migrated in a manner comparable with large free hCG alpha with an apparent molecular mass (Mr, app of 24 kDa, while hCG alpha dissociated from pregnancy-derived holo-hCG migrated at approximately 22 kDa. After deglycosylation with PNGase F under denaturing conditions, all hCG alpha variants showed an Mr, app of 15 kDa, indicating identical amino acid backbones. Conclusions The findings indicate a pathophysiological relevance of hCG, particularly its free alpha subunit, in spermatogenesis. The

  20. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    International Nuclear Information System (INIS)

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh; O’Leary, Claire; Joshi, Lokesh; McMahon, Siobhán S.

    2012-01-01

    Highlights: ► Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. ► Neuronal glycosylation in injury and after ChABC treatment is unknown. ► In silico mining verified that glyco-related genes were differentially regulated after SCI. ► In vitro model system revealed abnormal sialylation in an injured environment. ► The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining

  1. Human alpha2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3.

    Science.gov (United States)

    Doan, Ninh; Gettins, Peter G W

    2007-10-01

    Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.

  2. Purification of human alpha uterine protein.

    Science.gov (United States)

    Sutcliffe, R G; Bolton, A E; Sharp, F; Nicholson, L V; MacKinnon, R

    1980-03-01

    Human alpha uterine protein (AUP) has been prepared from extracts of decudua by antibody affinity chromatography, DEAE Sepharose chromatography and by filtration through Sephadex G-150. This procedure yielded a protein fraction containing AUP, which was labelled with 125I by chloramine T. When analysed by SDS gel electrophoresis this radioiodinated protein fraction was found to contain predominantly a single species of protein which was precipitated by antibodies against AUP in antibody-antigen crossed electrophoresis. Rabbit anti-AUP precipitated 55-65% of the tracer in a double-antibody system. Sephadex G150 gel filtration of AUP obtained before and after affinity chromatography provided a molecular weight estimate of 50000. Since SDS gel electrophoresis revealed a polypeptide molecular weight of 23000-25000, it is suggested that AUP is a dimer.

  3. Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan.

    Science.gov (United States)

    Bozzi, Manuela; Bianchi, Marzia; Sciandra, Francesca; Paci, Maurizio; Giardina, Bruno; Brancaccio, Andrea; Cicero, Daniel O

    2003-11-25

    Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during both early embriogenesis and adulthood and is composed by two tightly interacting subunits: alpha-DG, membrane-associated and highly glycosylated, and the transmembrane beta-DG. Recently, by solid-phase binding assays and NMR experiments, we have shown that the C-terminal domain of alpha-DG interacts with a recombinant extracellular fragment of beta-DG (positions 654-750) independently from glycosylation and that the linear binding epitope is located between residues 550 and 565 of alpha-DG. In order to elucidate which moieties of beta-DG are specifically involved in the complex with alpha-DG, the ectodomain has been recombinantly expressed and purified in a labeled ((13)C,(15)N) form and studied by multidimensional NMR. Although it represents a natively unfolded protein domain, we obtained an almost complete backbone assignment. Chemical shift index, (1)H-(15)N heteronuclear single-quantum coherence and nuclear Overhauser effect (HSQC-NOESY) spectra and (3)J(HN,H)(alpha) coupling constant values confirm that this protein is highly disordered, but (1)H-(15)N steady-state NOE experiments indicate that the protein presents two regions of different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding of beta-DG(654-750) to the C-terminal region of the alpha subunit, alpha-DG(485-620), has been investigated, showing that the region of beta-DG(654-750) between residues 691 and 719 is involved in the interaction.

  4. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules.

    Science.gov (United States)

    Kersten, Roland D; Ziemert, Nadine; Gonzalez, David J; Duggan, Brendan M; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S

    2013-11-19

    Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated natural products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the anticancer agent cinerubin B from Streptomyces sp. SPB74 and an antibiotic, arenimycin B, from Salinispora arenicola CNB-527.

  5. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States); Mougey, E.H. [Walter Reed Army Institute of Research, Washington, DC (United States)

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  6. Characterization of the oligosaccharide structure of human glycosylated prolactin (G-hPRL) native and recombinant; Caracterizacao da estrutura oligossacaridica de prolactina glicosilada humana (G-hPRL) nativa e recombinante

    Energy Technology Data Exchange (ETDEWEB)

    Marcos Vinicius Nucci Capone

    2013-07-01

    Human prolactin (hPRL) is a polypeptide hormone secreted by the anterior pituitary under the regulation of the hypothalamus, involved in a variety of biological processes such as mammary gland development and lactation. The recombinant product is important in medical diagnosis and treatment of failure of lactation. This hormone may occur in the form of non-glycosylated protein (NGhPRL) and glycosylated (G-hPRL) with molecular weights of approximately 23 and 25 kilodalton (kDa), respectively; has a single N-glycosylation site located at asparagine (Asn) position 31, which is partially occupied, thus being a particularly interesting model of glycosylation. The biological activity of G-hPRL is lower compared to NG-hPRL (~4 times) and its physiological function is not well defined: the portion of carbohydrate appears to have an important role in the hormone biosynthesis, secretion, biological activity, and plasma survival of the hormone. The main objective of this study was to compare the structures of N-glycans present in glycosylated pituitary prolactin (G-hPRL-NHPP) with those present in the recombinant. To obtain the recombinant G-hPRL the production was performed in laboratory scale from Chinese hamster ovary cells (CHO), genetically modified and adapted to growth in suspension. Cycloheximide (CHX), whose main effect was to increase the ratio G-hPRL/NG-hPRL from 5% to 38% was added to the culture medium, thereby facilitating the purification of G-hPRL. The G-hPRL was purified in two steps, a cation exchanger followed by a purification by reversed-phase high performance liquid chromatography (RP-HPLC) which demonstrated the efficient separation of the two isoforms of hPRL. Recombinant G-hPRL-IPEN was well characterized by several techniques confirming its purity and biological activity, including comparisons with other reference preparation of pituitary origin purchased from the {sup N}ational Hormone & Peptide Program (NHPPU. S.){sup .} The composition of N

  7. Nonenzymatic glycosylation of bovine myelin basic protein

    International Nuclear Information System (INIS)

    Hitz, J.B.

    1987-01-01

    In the CNS myelin sheath the nonenzymatic glycosylation reaction (at the early stage of the Amadori product) occurs only with the myelin basic protein and not with the other myelin proteins. This was observed in isolated bovine myelin by in vitro incubation with [ 14 C]-galactose and [ 14 C]-glucose. The respective in-vitro incorporation rates for purified bovine myelin basic protein with D-galactose, D-glucose and D-mannose were 7.2, 2.4 and 2.4 mmoles/mole myelin basic protein per day at 37 0 C. A more rapid, HPLC method was devised and characterized to specifically analyze for the Amadori product. The HPLC method was correlated to the [ 14 C]-sugar incorporation method for myelin basic protein under a set of standard reaction conditions using [ 14 C]-glucose and [ 14 C]-mannose with HPLC values at 1/6 and 1/5 of the [ 14 C]-sugar incorporation method. A novel myelin basic protein purification step has been developed that yields a relativity proteolytic free preparation that is easy to work with, being totally soluble at a neutral pH. Nine new spots appear for a trypsinized glycosylated MBP in the paper peptide map of which eight correspond to positions of the [ 3 H]-labeled Amadori product in affinity isolated peptides. These studies provide a general characterization of and a structural basis for investigations on nonenzymatically glycosylated MBP as well as identifying MBP as the only nonenzymatically glycosylated protein in the CNS myelin sheath which may accumulate during aging, diabetes, and demyelinating diseases in general

  8. Alpha-, gamma- and delta-tocopherols reduce inflammatory angiogenesis in human microvascular endothelial cells.

    Science.gov (United States)

    Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S

    2010-07-01

    Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta

  9. Increased humoral immunity by DNA vaccination using an alpha-tocopherol-based adjuvant

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Nielsen, Jens

    2017-01-01

    approaches. We tested whether the emulsion-based and alpha-tocopherol containing adjuvant Diluvac Forte® has the ability to enhance the immunogenicity of a naked DNA vaccine (i.e., plasmid DNA). As a model vaccine, we used plasmids encoding both a surface-exposed viral glycoprotein (hemagglutinin......) and an internal non-glycosylated nucleoprotein in the Th1/Th2 balanced CB6F1 mouse model. The naked DNA (50 µg) was premixed at a 1:1 volume/volume ratio with Diluvac Forte®, an emulsion containing different concentrations of alpha-tocopherol, the emulsion alone or endotoxin-free phosphate-buffered saline (PBS......). The animals received two intracutaneous immunizations spaced 3 weeks apart. When combined with Diluvac Forte® or the emulsion containing alpha-tocopherol, the DNA vaccine induced a more potent and balanced immunoglobulin G (IgG)1 and IgG2c response, and both IgG subclass responses were significantly enhanced...

  10. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    Science.gov (United States)

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  11. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels

    2010-01-01

    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  12. Expression of biologically active human interferon alpha 2 in aloe vera

    Science.gov (United States)

    We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...

  13. N-Glycosylation of Carnosinase Influences Protein Secretion and Enzyme Activity Implications for Hyperglycemia

    NARCIS (Netherlands)

    Riedl, Eva; Koeppel, Hannes; Pfister, Frederick; Peters, Verena; Sauerhoefer, Sibylle; Sternik, Paula; Brinkkoetter, Paul; Zentgraf, Hanswalter; Navis, Gerjan; Henning, Robert H.; Van Den Born, Jacob; Bakker, Stephan J. L.; Janssen, Bart; van der Woude, Fokko J.; Yard, Benito A.

    OBJECTIVE-The (CTG)(n) polymorphism in the serum carnosinase (CN-1) gene affects CN-1 secretion Since CN-1 is heavily glycosylated and glycosylation might influence protein secretion as well, we tested the role of N-glycosylation for CN-1 secretion and enzyme activity. We also tested whether CN-1

  14. A glycosylated form of the human cardiac hormone pro B-type natriuretic peptide is an intrinsically unstructured monomeric protein.

    Science.gov (United States)

    Crimmins, Dan L; Kao, Jeffrey L-F

    2008-07-01

    The N-terminal fragment of pro B-type natriuretic peptide (NT-proBNP) and proBNP are used as gold standard clinical markers of myocardial dysfunction such as cardiac hypertrophy and left ventricle heart failure. The actual circulating molecular forms of these peptides have been the subject of intense investigation particularly since these analytes are measured in clinical assays. Conflicting data has been reported and no firm consensus on the exact nature of the molecular species exists. Because these clinical assays are immunoassay-based, specific epitopes are detected. It is conceivable then that certain epitopes may be masked and therefore unavailable for antibody binding, thus the importance of determining the nature of the circulating molecular forms of these analytes. This situation is an unavoidable Achilles' heel of immunoassays in general. A recombinant O-linked glycosylated form of proBNP has been show to mimic some of the properties of extracted plasma from a heart failure patient. In particular the recombinant and native material co-migrated as diffuse Western-immunostained bands on SDS-PAGE and each band collapsed to an apparent homogeneous band following deglycosylation. Thus, glycosylated-proBNP may be one such circulating form. Here we provide extensive physiochemical characterization for this O-linked protein and compare these results to other described circulating species, non-glycosylated-proBNP and NT-proBNP. It will be shown that glycosylation has no influence on the secondary and quaternary structure of proBNP. In fact, at moderate concentration in benign physiological neutral pH buffer, all three likely circulating species are essentially devoid of major secondary structure, i.e., are intrinsically unstructured proteins (IUPs). Furthermore, all three proteins exist as monomers in solution. These results may have important implications in the design of NT-proBNP/BNP immunoassays.

  15. [Effect of citric acid stimulation on salivary alpha-amylase, total protein, salivary flow rate and pH value in Pi deficiency children].

    Science.gov (United States)

    Yang, Ze-min; Chen, Long-hui; Lin, Jing; Zhang, Min; Yang, Xiao-rong; Chen, Wei-wen

    2015-02-01

    To compare the effect of citric acid stimulation on salivary alpha-amylase (sAA), total protein (TP), salivary flow rate, and pH value between Pi deficiency (PD) children and healthy children, thereby providing evidence for Pi controlling saliva theory. Twenty PD children were recruited, and 29 healthy children were also recruited at the same time. Saliva samples from all subjects were collected before and after citric acid stimulation. The sAA activity and amount, TP contents, salivary flow rate, and pH value were determined and compared. (1) Citric acid stimulation was able to significantly increase salivary flow rate, pH value, sAA activities, sAA specific activity and sAA amount (including glycosylated and non-glycosylated sAA amount) in healthy children (Psalivary flow rate, pH value, and glycosylated sAA levels in PD children (Psalivary indices between the two groups (P>0.05), salivary indices except salivary flow rate and glycosylated sAA levels decreased more in PD children. There was statistical difference in sAA activity ratio, sAA specific activity ratio, and the ratio of glycosylated sAA levels between PD children and healthy children (P<0.05). PD children had decreased response to citric acid stimulation.

  16. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine

    2012-01-01

    Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing......, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/- glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo...

  17. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent

    Science.gov (United States)

    Wadzinski, Tyler J.; Steinauer, Angela; Hie, Liana; Pelletier, Guillaume; Schepartz, Alanna; Miller, Scott J.

    2018-06-01

    Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.

  18. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    Science.gov (United States)

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  19. Development of rabbit monoclonal antibodies for detection of alpha-dystroglycan in normal and dystrophic tissue.

    Directory of Open Access Journals (Sweden)

    Marisa J Fortunato

    Full Text Available Alpha-dystroglycan requires a rare O-mannose glycan modification to form its binding epitope for extracellular matrix proteins such as laminin. This functional glycan is disrupted in a cohort of muscular dystrophies, the secondary dystroglycanopathies, and is abnormal in some metastatic cancers. The most commonly used reagent for detection of alpha-dystroglycan is mouse monoclonal antibody IIH6, but it requires the functional O-mannose structure for recognition. Therefore, the ability to detect alpha-dystroglycan protein in disease states where it lacks the full O-mannose glycan has been limited. To overcome this hurdle, rabbit monoclonal antibodies against the alpha-dystroglycan C-terminus were generated. The new antibodies, named 5-2, 29-5, and 45-3, detect alpha-dystroglycan from mouse, rat and pig skeletal muscle by Western blot and immunofluorescence. In a mouse model of fukutin-deficient dystroglycanopathy, all antibodies detected low molecular weight alpha-dystroglycan in disease samples demonstrating a loss of functional glycosylation. Alternately, in a porcine model of Becker muscular dystrophy, relative abundance of alpha-dystroglycan was decreased, consistent with a reduction in expression of the dystrophin-glycoprotein complex in affected muscle. Therefore, these new rabbit monoclonal antibodies are suitable reagents for alpha-dystroglycan core protein detection and will enhance dystroglycan-related studies.

  20. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  1. [Conformation analysis of the N-glycosylation site Asn-X-Thr/Ser in glycoproteins].

    Science.gov (United States)

    Avanov, A Ia; Lipkind, G M

    1990-03-01

    Theoretical conformational analysis of oligopeptides CH3CO-Asn-X-Thr-NHCH3 (X = Gly, Ala, Pro), modelling N-glycosylation site, and their glycosylated derivatives CH3CO-(GlcNAc beta 1-4GlcNAc beta 1) Asn-X-Thr-NHCH3 has been carried out. Active conformations of the site are found, corresponding to structural prerequisities of N-glycosylation: Asn residue's position in beta-turn and hydrogen bond formation between side chains of Asn and Thr/Ser residues. In this case the L conformation of the central residue X is most probable. Since Pro residue does not possess this conformation, sequences with X = Pro are not glycosylated. It is shown that glycosylation of the above-mentioned sites is accompanied by reorientation of the Asn residue's side chains.

  2. A computational framework for the automated construction of glycosylation reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  3. A computational framework for the automated construction of glycosylation reaction networks.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS data. The features described above are illustrated using three case studies that examine: i O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii automated N-linked glycosylation pathway construction; and iii the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme

  4. Cell Surface Glycosylation Is Required for Efficient Mating of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Yarden Shalev

    2017-07-01

    Full Text Available Halophilic archaea use a fusion-based mating system for lateral gene transfer across cells, yet the molecular mechanisms involved remain unknown. Previous work implied that cell fusion involves cell–cell recognition since fusion occurs more efficiently between cells from the same species. Long believed to be restricted only to Eukarya, it is now known that cells of all three domains of life perform N-glycosylation, the covalent attachment of glycans to select target asparagine residues in proteins, and that this post-translational modification is common for archaeal cell surface proteins. Here, we show that differences in glycosylation of the Haloferax volcanii surface-layer glycoprotein, brought about either by changing medium salinity or by knocking out key glycosylation genes, reduced mating success. Thus, different glycosylation patterns are likely to underlie mating preference in halophilic archaea, contributing to speciation processes.

  5. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults.

    Science.gov (United States)

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults.

  6. Age differences of salivary alpha-amylase levels of basal and acute responses to citric acid stimulation between Chinese children and adults

    Directory of Open Access Journals (Sweden)

    Zemin eYang

    2015-11-01

    Full Text Available It remains unclear how salivary alpha-amylase (sAA levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1 copy number and protein expression (glycosylated and non-glycosylated in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number×total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number×total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults.

  7. Suppression of TNF-alpha production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines

    DEFF Research Database (Denmark)

    Yu, J.; Parlesak, Alexandr; Sauter, S.

    2006-01-01

    precursors or metabolites [phosphatidylcholine, choline, betaine, S-adenosylmethionine (SAM)] have a modulating effect on tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated human mononuclear leukocytes and whether SAM-dependent polyamines (spermidine, spermine) are mediators of SAM......-induced inhibition of TNF-alpha synthesis. Methionine and betaine had a moderate stimulatory effect on TNF-alpha production, whereas phosphatidylcholine (ID(50) 5.4 mM), SAM (ID(50) 131 microM), spermidine (ID(50) 4.5 microM) and spermine (ID(50) 3.9 microM) had a predominantly inhibitory effect. Putrescine did...

  8. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  9. ECM Proteins Glycosylation and Relation to Diabetes

    Science.gov (United States)

    Pernodet, Nadine; Bloomberg, Ayla; Sood, Vandana; Slutsky, Lenny; Ge, Shouren; Clark, Richard; Rafailovich, Miriam

    2004-03-01

    The chemical modification and crosslinking of proteins by sugar glycosylation contribute to the aging of tissue proteins, and acceleration of this reaction during hyperglycemia is implicated in the pathogenesis of diabetic complications, such as disorder of the wound healing. Advanced glycation endproducts (AGEs) formation and protein crosslinking are irreversible processes that alter the structural and functional properties of proteins, lipid components and nucleic acids. And the mechanism, by which it happens, is not clear. Fibrinogen and fibronectin are plasma proteins, which play a major role in human wound healing. Fibrinogen converts to an insoluble fibrin "gel" following a cut, which eventually forms a clot to prevent blood loss, to direct cell adhesion and migration for forming scars. Fibronectin is a critical protein for cell adhesion and migration in wound healing. The effects of glucose on the binding of these plasma proteins from the extra cellular matrix (ECM) were followed at different concentrations by atomic force microscopy and lateral force modulation to measure the mechanical response of the samples. Glucose solutions (1, 2, and 3mg/mL) were incubated with the protein (100 mg/ml) and silicon (Si) substrates spun with sulfonated polystyrene (SPS) 28% for five days. Data showed that not only the organization of the protein on the surface was affected but also its mechanical properties. At 3 mg/mL glucose, Fn fibers were observed to be harder than those of the control, in good agreement with our hypothesis that glycosylation hardens tissues by crosslinking of proteins in the ECM and might cause fibers to break more easily.

  10. A Novel Strategy for Characterization of Glycosylated Proteins Separated by Gel Electrophoresis

    DEFF Research Database (Denmark)

    Larsen, Martin; Skottrup, Peter; Enghild, Jan Johannes

    Protein glycosylation can be vital for changing the function or physiochemical properties of a protein. Abnormal glycosylation can lead to protein malfunction, resulting in severe diseases. Therefore, it is important to develop techniques for characterization of such modifications in proteins...... graphite powder micro-columns in combination with mass spectrometry. The method is faster and more sensitive than previous approaches and would be ideal for proteomics studies and verification of correct glycosylation of recombinant glycoproteins....

  11. Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy?

    NARCIS (Netherlands)

    Bakker, H. D.; de Sonnaville, M. L.; Vreken, P.; Abeling, N. G.; Groener, J. E.; Keulemans, J. L.; van Diggelen, O. P.

    2001-01-01

    Two new individuals with alpha-NAGA deficiency are presented. The index patient, 3 years old, has congenital cataract, slight motor retardation and secondary demyelinisation. Screening of his sibs revealed an alpha-NAGA deficiency in his 7-year-old healthy brother who had no clinical or neurological

  12. Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli.

    Science.gov (United States)

    Srichaisupakit, Akkaraphol; Ohashi, Takao; Fujiyama, Kazuhito

    2014-09-01

    Campylobacter jejuni is a human enteropathogenic bacterium possessing an N-glycosylation system. In this work, a protein glycosylation (pgl) operon conferring prokaryotic N-glycosylation in C. jejuni JCM 2013 was cloned and identified. Fourteen open reading frames (ORFs) were found in the pgl operon. The operon organization was similar to that of C. jejuni NCTC 11168, with 98% and 99% identities in overall nucleotide sequence and amino acid sequence, respectively. The pgl operon was heterologously co-expressed with model protein CmeA in the Escherichia coli BL21 ΔwaaL mutant. The immuno- and lectin-blotting analysis indicated the protein glycosylation on the recombinant CmeA. In addition, to analyze the glycan composition, the recombinant CmeA was purified and subjected to in-gel trypsin digestion followed by mass spectrometry analysis. The mass spectrometry analysis showed the presence of the N-acetylhexosamine residue at the reducing end but not the predicted di-N-acetylbacillosamine (diNAcBac) residue. Further glycan structural study using the conventional fluorophore-labeling method revealed the GalNAcα-GalNAcα-(Hex-)HexNAc-HexNAc-HexNAc-HexNAc structure. Transcriptional analysis showed that UDP-diNAcBac synthases and diNAcBac transferase are transcribed but might not function in the constructed system. In conclusion, a pgl operon from C. jejuni JCM 2013 successfully functioned in E. coli, resulting in the observed prokaryotic glycosylation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. HEK293T cell lines defective for O-linked glycosylation.

    Directory of Open Access Journals (Sweden)

    James M Termini

    Full Text Available Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE, galactokinase 1 (GALK1, and galactokinase 2 (GALK2 genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2, O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.

  14. 99MTC Alpha-Fetoprotein: A Novel, Specific Agent for the Detection of Human Breast Cancer

    National Research Council Canada - National Science Library

    Line, Bruce

    1998-01-01

    .... We have demonstrated that technetium-99m radiolabeled human alpha-fetoprotein (99mTc AFP) localizes in human breast cancer cells in-vivo, most likely concentrating in breast cancer cells due to a specific receptor not found in normal adult breast tissue...

  15. 99MTC Alpha-Fetoprotein: A Novel, Specific Agent for the Detection of Human Breast Cancer

    National Research Council Canada - National Science Library

    Line, Bruce

    1999-01-01

    .... We have demonstrated that technetium-99m radiolabeled human alpha-fetoprotein (99mTc AFP) localizes in human breast cancer cells in-vivo, most likely concentrating in breast cancer cells due to a specific receptor not found in normal adult breast tissue...

  16. Darbepoetin alpha for the treatment of anaemia in low-intermediate risk myelodysplastic syndromes

    DEFF Research Database (Denmark)

    Musto, Pellegrino; Lanza, Francesco; Balleari, Enrico

    2005-01-01

    Thirty-seven anaemic subjects with low-to-intermediate risk myelodysplastic syndrome (MDS) received the highly glycosylated, long-acting erythropoiesis-stimulating molecule darbepoetin-alpha (DPO) at the single, weekly dose of 150 microg s.c. for at least 12 weeks. Fifteen patients (40.5%) achieved......, no excess of blasts and hypoplastic bone marrow. This study suggests that DPO, at the dose and schedule used, can be safely given in low-intermediate risk MDS and may be effective in a significant proportion of these patients....

  17. Glycosylation patterns of kidney proteins differ in rat diabetic nephropathy.

    Science.gov (United States)

    Ravidà, Alessandra; Musante, Luca; Kreivi, Marjut; Miinalainen, Ilkka; Byrne, Barry; Saraswat, Mayank; Henry, Michael; Meleady, Paula; Clynes, Martin; Holthofer, Harry

    2015-05-01

    Diabetic nephropathy often progresses to end-stage kidney disease and, ultimately, to renal replacement therapy. Hyperglycemia per se is expected to have a direct impact on the biosynthesis of N- and O-linked glycoproteins. This study aims to establish the link between protein glycosylation and progression of experimental diabetic kidney disease using orthogonal methods. Kidneys of streptozotocin-diabetic and control rats were harvested at three different time points post streptozotocin injection. A panel of 12 plant lectins was used in the screening of lectin blots. The lectins UEAI, PHA-E, GSI, PNA, and RCA identified remarkable disease-associated differences in glycoprotein expression. Lectin affinity chromatography followed by mass spectrometric analyses led to the identification of several glycoproteins involved in salt-handling, angiogenesis, and extracellular matrix degradation. Our data confirm a substantial link between glycosylation signature and diabetes progression. Furthermore, as suggested by our findings on dipeptidyl peptidase-IV, altered protein glycosylation may reflect changes in biochemical properties such as enzymatic activity. Thus, our study demonstrates the unexplored potential of protein glycosylation analysis in the discovery of molecules linked to diabetic kidney disease.

  18. Oxytocin analogues with O-glycosylated serine and threonine in position 4

    Czech Academy of Sciences Publication Activity Database

    Marcinkowska, A.; Borovičková, Lenka; Slaninová, Jiřina; Grzonka, Z.

    2007-01-01

    Roč. 81, č. 7 (2007), s. 1335-1344 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z90210515 Keywords : oxytocin * glycosylated serin * glycosylated threonin * position 4 Subject RIV: CE - Biochemistry Impact factor: 0.483, year: 2007

  19. Production of glycosylated physiologically normal human α1-antitrypsin by mouse fibroblasts modified by insertion of a human α1-antitrypsin cDNA using a retroviral vector

    International Nuclear Information System (INIS)

    Garver, R.I. Jr.; Chytil, A.; Karlsson, S.

    1987-01-01

    α 2 -Antitrypsin (α 1 AT) deficiency is a hereditary disorder characterized by reduced serum levels of α 1 AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment α 1 AT levels in this disorder with physiologically normal human α 1 AT, the authors have integrated a full-length normal human α 1 AT cDNA into the genome of mouse fibroblasts. To accomplish this, the retroviral vector N2 was modified by inserting the simian virus 40 early promoter followed by the α 1 AT cDNA. Southern analysis demonstrated that the intact cDNA was present in the genome of selected clones of the transfected murine fibroblasts psi2 and infected NIH 3T3. The clones produced three mRNA transcripts containing human α 1 AT sequences, secreted an α 1 AT molecule recognized by an anti-human α 1 AT antibody, with the same molecular mass as normal human α 1 AT and that complexed with and inhibited human neutrophil elastase. The psi2 produced α 1 AT was glycosylated, and when infused intravenously into mice, it had a serum half-life similar to normal α 1 AT purified from human plasma and markedly longer than that of nonglycosylated human α 1 AT cDNA-directed yeast-produced α 1 AT. These studies demonstrate the feasibility of using a retroviral vector to insert the normal human α 1 AT cDNA into non-α 1 AT-producing cells, resulting in the synthesis and secretion of physiologically normal α 1 AT

  20. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy.

    OpenAIRE

    Williams, S K; Devenny, J J; Bitensky, M W

    1981-01-01

    Microvessels isolated from rat epididymal fat exhibit differential vesicular ingestion rates for unmodified and non-enzymatically glycosylated rat albumin. While unmodified rat albumin is excluded from ingestion by endothelial micropinocytic vesicles, glycosylated albumin is avidly taken up by endocytosis. Interaction of albumin and glycosylated albumin with endothelium was studied with a double-label fluorescence assay of micropinocytosis. When glycosylated albumin was present at a concentra...

  1. N-glycosylated catalytic unit meets O-glycosylated propeptide: complex protein architecture in a fungal hexosaminidase

    Czech Academy of Sciences Publication Activity Database

    Plíhal, Ondřej; Sklenář, Jan; Kmoníčková, J.; Man, Petr; Pompach, Petr; Havlíček, Vladimír; Křen, Vladimír; Bezouška, Karel

    2004-01-01

    Roč. 32, č. 5 (2004), s. 764-765 ISSN 0300-5127 R&D Projects: GA ČR GA203/04/1045 Institutional research plan: CEZ:AV0Z5020903 Keywords : asperillus oryzoe * glycosyl hydrolase * preproprotein Subject RIV: EE - Microbiology, Virology Impact factor: 2.267, year: 2004

  2. Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag.

    Science.gov (United States)

    Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F

    2003-11-01

    Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.

  3. Alpha1-acid glycoprotein post-translational modifications: a comparative two dimensional electrophoresis based analysis

    Directory of Open Access Journals (Sweden)

    P. Roncada

    2010-04-01

    Full Text Available Alpha1-acid glycoprotein (AGP is an immunomodulatory protein expressed by hepatocytes in response to the systemic reaction that follows tissue damage caused by inflammation, infection or trauma. A proteomic approach based on two dimensional electrophoresis, immunoblotting and staining of 2DE gels with dyes specific for post-translational modifications (PTMs such as glycosylation and phosphorylation has been used to evaluate the differential interspecific protein expression of AGP purified from human, bovine and ovine sera. By means of these techniques, several isoforms have been identified in the investigated species: they have been found to change both with regard to the number of isoforms expressed under physiological condition and with regard to the quality of PTMs (i.e. different oligosaccharidic chains, presence/absence of phosphorilations. In particular, it is suggested that bovine serum AGP may have one of the most complex pattern of PTMs among serum proteins of mammals studied so far.

  4. Intermethod discordance for alpha-fetoprotein measurements in Fanconi anemia.

    Science.gov (United States)

    Cassinat, B; Darsin, D; Guardiola, P; Toubert, M E; Rain, J D; Gluckman, E; Schlageter, M H

    2001-08-01

    The significantly higher serum alpha-fetoprotein (AFP) in patients with Fanconi anemia (FA) than in non-FA aplastic patients has potential diagnostic utility, but the increase is method-dependent. The aim of this study was to compare five AFP assays on FA and non-FA samples and to investigate possible explanations for FA-specific discrepancies. Two methods available in our laboratory (Kryptor and IMx) were compared on 59 FA and 27 non-FA patient samples. Kryptor, Immulite, Elecsys, Immuno-I, and Elsa-2 methods were then compared on 14 FA and 14 non-FA patient samples. The AFP glycosylation profile was analyzed by electrophoretic separation in a lectin-containing gel. With all six methods, AFP values were significantly higher in FA than in non-FA patients, but the diagnostic precision and optimal cutoff values varied. Indeed, two methods reached 100% sensitivity and specificity, but in other methods, one or both of these parameters were significantly <100%. Neither heterophilic antibodies nor a specific glycosylation profile was detected in FA samples. AFP results are method-dependent in FA. New methods must be evaluated before use in differential diagnosis of aplastic patients.

  5. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  6. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes.

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H J; Hensbergen, Paul J; Reiding, Karli R; Hazes, Johanna M W; Dolhain, Radboud J E M; Wuhrer, Manfred

    2014-11-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼ 20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes*

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H. J.; Hensbergen, Paul J.; Reiding, Karli R.; Hazes, Johanna M. W.; Dolhain, Radboud J. E. M.; Wuhrer, Manfred

    2014-01-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. PMID:25004930

  8. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins.

    Science.gov (United States)

    Fang, Pan; Wang, Xin-Jian; Xue, Yu; Liu, Ming-Qi; Zeng, Wen-Feng; Zhang, Yang; Zhang, Lei; Gao, Xing; Yan, Guo-Quan; Yao, Jun; Shen, Hua-Li; Yang, Peng-Yuan

    2016-06-21

    N-glycosylation is one of the most prominent and abundant posttranslational modifications of proteins. It is estimated that over 50% of mammalian proteins undergo glycosylation. However, the analysis of N-glycoproteins has been limited by the available analytical technology. In this study, we comprehensively mapped the N-glycosylation sites in the mouse brain proteome by combining complementary methods, which included seven protease treatments, four enrichment techniques and two fractionation strategies. Altogether, 13492 N-glycopeptides containing 8386 N-glycosylation sites on 3982 proteins were identified. After evaluating the performance of the above methods, we proposed a simple and efficient workflow for large-scale N-glycosylation site mapping. The optimized workflow yielded 80% of the initially identified N-glycosylation sites with considerably less effort. Analysis of the identified N-glycoproteins revealed that many of the mouse brain proteins are N-glycosylated, including those proteins in critical pathways for nervous system development and neurological disease. Additionally, several important biomarkers of various diseases were found to be N-glycosylated. These data confirm that N-glycosylation is important in both physiological and pathological processes in the brain, and provide useful details about numerous N-glycosylation sites in brain proteins.

  9. Effects of alpha-2 agonists on renal function in hypertensive humans.

    Science.gov (United States)

    Goldberg, M; Gehr, M

    1985-01-01

    Centrally acting adrenergic agonists, by decreasing peripheral adrenergic activity, are effective antihypertensive agents. The older agents, however, especially methyldopa, have been associated with weight gain, clinical edema, and antihypertensive tolerance when used as monotherapy. While acute studies in humans have demonstrated weight gain and sodium retention with clonidine and guanabenz, chronic administration results in a decrease in weight and plasma volume. The absence of chronic weight gain and of sodium retention could be the result of a counterbalance between hypotension-related antinatriuresis, secondary to a decrease in glomerular filtration rate and renal blood flow, and natriuretic activity, as a result of a decrease in renal sympathetic tone. Whereas natriuresis and water diuresis have been demonstrated in animals with acute clonidine or guanabenz administration, this has not been demonstrated in humans. Recent studies in which saline administration was used to precondition humans to a subsequent natriuretic stimulus (i.e., guanabenz-induced decreased renal adrenergic activity) resulted in stabilization of renal blood flow and natriuresis. Selective reduction renal sympathetic activity affecting salt and water transport may explain why guanabenz and probably also clonidine seem to be devoid of the sodium/fluid-retaining properties that are common with other antihypertensive agents. Because agents of this class have effects other than pure central alpha-2 agonism (such as alpha-1 activity), they might have confounding and counterbalancing side effects leading to sodium and water retention.

  10. Chorionic gonadotropin regulates the transcript level of VHL, p53, and HIF-2alpha in human granulosa lutein cells.

    Science.gov (United States)

    Herr, D; Keck, C; Tempfer, C; Pietrowski, Detlef

    2004-12-01

    The ovarian corpus luteum plays a critical role in reproduction being the primary source of circulating progesterone. After ovulation the corpus luteum is build by avascular granulosa lutein cells through rapid vascularization regulated by gonadotropic hormones. The present study was performed to investigate whether this process might be influenced by the human chorionic gonadotropin (hCG)-dependent expression of different tumor suppressor genes and hypoxia dependent transcription factors. RNA was isolated from cultured granulosa lutein cells, transcribed into cDNA, and the transcript level of following genes were determined: RB-1, VHL, NF-1, NF-2, Wt-1, p53, APC, and hypoxia inducible factor-1 (HIF-1), -2, and -3alpha. Additionally, the influence of hCG on the expression of VHL, p53, and HIf2alpha were investigated. We demonstrate that in human granulosa lutein cells the tumor suppressor genes RB-1, VHL, NF-1, NF-2, Wt-1, p53, and APC and the hypoxia dependent transcription factors HIF-1alpha, -2alpha, and -3alpha are expressed. In addition, we showed that hCG regulates the expression of p53, VHL, and HIF-2alpha. Our results indicate that hCG may determine the growth and development of the corpus luteum by mediating hypoxic and apoptotic pathways in human granulosa lutein cells. Copyright 2004 Wiley-Liss, Inc.

  11. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy.

    Science.gov (United States)

    Bondt, Albert; Wuhrer, Manfred; Kuijper, T Martijn; Hazes, Johanna M W; Dolhain, Radboud J E M

    2016-11-25

    Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. IgGs were captured from RA and control sera obtained before (RA only), during and after pregnancy, followed by Fc and Fab separation, glycan release, and mass spectrometric detection. In parallel, glycans from intact IgG were analysed. The data was used to calculate glycosylation traits, and to estimate the level of Fab glycosylation. The overall level of Fab glycosylation was increased in RA patients compared to controls, while no differences in Fab glycosylation patterns were found. For the Fc and intact IgG (Total) previously observed differences in galactosylation and bisection were confirmed. Furthermore, increased galactosylation of Fc and Total were associated with lower disease activity and autoantibody positivity. In addition, the change in Fc galactosylation associated with the change in disease activity during pregnancy and after delivery, while this was not the case for Fab. In contrast to changes in Fc glycosylation, changes in Fab glycosylation are not associated with improvement of RA during pregnancy and arthritis flare after delivery.

  12. Analysis of expression and glycosylation of avian metapneumovirus attachment glycoprotein from recombinant baculoviruses.

    Science.gov (United States)

    Luo, Lizhong; Nishi, Krista; MacLeod, Erin; Sabara, Marta I; Li, Yan

    2010-11-01

    Recently, we reported the expression and glycosylation of avian metapneumovirus attachment glycoprotein (AMPV/C G protein) in eukaryotic cell lines by a transient-expression method. In the present study, we investigated the biosynthesis and O-linked glycosylation of the AMPV/C G protein in a baculovirus expression system. The results showed that the insect cell-produced G protein migrated more rapidly in SDS-PAGE as compared to LLC-MK2 cell-derived G proteins owing to glycosylation differences. The fully processed, mature form of G protein migrated between 78 and 86 kDa, which is smaller than the 110 kDa mature form of G expressed in LLC-MK2 cells. In addition, several immature G gene products migrating at 40-48 and 60-70 kDa were also detected by SDS-PAGE and represented glycosylated intermediates. The addition of the antibiotic tunicamycin, which blocks early steps of glycosylation, to insect cell culture resulted in the disappearance of two glycosylated forms of the G protein and identified a 38 kDa unglycosylated precursor. The maturation of the G protein was completely blocked by monensin, suggesting that the O-linked glycosylation of G initiated in the trans-Golgi compartment. The presence of O-linked sugars on the mature protein was further confirmed by lectin Arachis hypogaea binding assay. Furthermore, antigenic features of the G protein expressed in insect cells were evaluated by ELISA. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  13. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  14. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianquan; Guo Haixun [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Miao Yubin, E-mail: ymiao@salud.unm.ed [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Department of Dermatology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-11-15

    Introduction: The purpose of this study was to examine whether {sup 99m}Tc-labeled Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone ({alpha}-MSH) hybrid peptide targeting both melanocortin-1 (MC1) and {alpha}{sub v{beta}3} integrin receptors was superior in melanoma targeting to {sup 99m}Tc-labeled {alpha}-MSH or RGD peptide targeting only the MC1 or {alpha}{sub v{beta}3} integrin receptor. Methods: RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were designed to target both MC1 and {alpha}{sub v{beta}3} integrin receptors, MC1 receptor only and {alpha}{sub v{beta}3} integrin receptor only, respectively. The MC1 or {alpha}{sub v{beta}3} integrin receptor binding affinities of three peptides were determined in M21 human melanoma cells. The melanoma targeting properties of {sup 99m}Tc-labeled RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were determined in M21 human melanoma-xenografted nude mice. Meanwhile, the melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was blocked with various non-radiolabeled peptides in M21 melanoma xenografts. Results: RGD-Lys-(Arg{sup 11})CCMSH displayed 2.0 and 403 nM binding affinities to both MC1 and {alpha}{sub v{beta}3} integrin receptors, whereas RAD-Lys-(Arg{sup 11})CCMSH or RGD-Lys-(Arg{sup 11})CCMSHscramble lost their {alpha}{sub v{beta}3} integrin receptor binding affinity by greater than 248-fold or MC1 receptor binding affinity by more than 100-fold, respectively. The melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was 2.49 and 2.24 times (P < .05) the melanoma uptakes of {sup 99m}Tc-RAD-Lys-(Arg{sup 11})CCMSH and {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSHscramble at 2 h post-injection, respectively. Either RGD or (Arg{sup 11})CCMSH peptide co-injection could block 42% and 57% of the tumor uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH, whereas the coinjection of RGD+(Arg{sup 11})CCMSH peptide mixture

  15. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.

    Science.gov (United States)

    Muro, Silvia; Schuchman, Edward H; Muzykantov, Vladimir R

    2006-01-01

    Enzyme replacement therapy, a state-of-the-art treatment for many lysosomal storage disorders, relies on carbohydrate-mediated binding of recombinant enzymes to receptors that mediate lysosomal delivery via clathrin-dependent endocytosis. Suboptimal glycosylation of recombinant enzymes and deficiency of clathrin-mediated endocytosis in some lysosomal enzyme-deficient cells limit delivery and efficacy of enzyme replacement therapy for lysosomal disorders. We explored a novel delivery strategy utilizing nanocarriers targeted to a glycosylation- and clathrin-independent receptor, intercellular adhesion molecule (ICAM)-1, a glycoprotein expressed on diverse cell types, up-regulated and functionally involved in inflammation, a hallmark of many lysosomal disorders. We targeted recombinant human acid sphingomyelinase (ASM), deficient in types A and B Niemann-Pick disease, to ICAM-1 by loading this enzyme to nanocarriers coated with anti-ICAM. Anti-ICAM/ASM nanocarriers, but not control ASM or ASM nanocarriers, bound to ICAM-1-positive cells (activated endothelial cells and Niemann-Pick disease patient fibroblasts) via ICAM-1, in a glycosylation-independent manner. Anti-ICAM/ASM nanocarriers entered cells via CAM-mediated endocytosis, bypassing the clathrin-dependent pathway, and trafficked to lysosomes, where delivered ASM displayed stable activity and alleviated lysosomal lipid accumulation. Therefore, lysosomal enzyme targeting using nanocarriers targeted to ICAM-1 bypasses defunct pathways and may improve the efficacy of enzyme replacement therapy for lysosomal disorders, such as Niemann-Pick disease.

  16. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    , analysis, control and optimization of N-glycosylation were thoroughly reviewed. In particular, how to control and optimize N-glycosylation in CHO cells was exclusively studied. The main focus of this PhD project is to find effective approaches of modulating N-glycosylation of CHO-derived recombinant...... galactose as feed additives, changing process parameters such as seeding density and cultivation duration are all demonstrated to be effective. The causal explanation of their impact on glycosylation can be various, including product, metabolism, proteome and physiology-associated mechanism. In the middle...... part of the thesis, both literature reviews and experimental applications were provided to demonstrate how to use omics data and implement systems biology to understand biological activities, especially N-glycosylation in CHO cells. In the last part of the thesis, the second strategy that apply genetic...

  17. BstXI RFLP in the human inter-alpha-trypsin inhibitor light chain gene

    Energy Technology Data Exchange (ETDEWEB)

    Leveillard, T; Bourguignon, J; Sesbouee, R; Hanauer, A; Salier, J P; Diarra-Mehrpour, M; Martin, J P

    1988-03-25

    The 1.2 kb EcoRI/SmaI fragment of lambdaHuLITI2 was used as probe. lambdaHuLITI2 is a full length cDNA clone coding for human inter-alpha-trypsin inhibitor light chain isolated from immunochemical screening of a lambdagt11 library. Its sequence coding for HI-30 and alpha-1-microglobulin is in agreement. BstXI identifies five invariant bands at 5.0 kb, 2.3 kb, 1.5 kb, 1.1 kb, and 0.7 kb and a diallelic polymorphism with DNA fragments at 2.0 kb or 1.7 kb.

  18. Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro.

    Science.gov (United States)

    Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo

    2012-10-01

    This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.

  19. The antagonistic effect of antipsychotic drugs on a HEK293 cell line stably expressing human alpha(1A1)-adrenoceptors

    DEFF Research Database (Denmark)

    Nourian, Zahra; Mulvany, Michael J; Nielsen, Karsten Bork

    2008-01-01

    challenged with phenylephrine (EC(50)=1.61x10(-8) M). From Schild analysis, prazosin, sertindole, risperidone, and haloperidol caused a concentration-dependent, rightward shift of the cumulative concentration-response curves for phenylephrine in cells expressing human recombinant alpha(1A1)-adrenoceptors...... human alpha(1A1)-adrenoceptors in competition binding studies confirmed much higher antagonist affinity of sertindole and risperidone than haloperidol for these receptors. In summary, it can be concluded that there is an approximately 10-fold higher adrenoceptor affinity of risperidone and sertindole...... for human alpha(1A1)-adrenoceptors compared to haloperidol. These findings are consistent with the observation that risperidone and sertindole have a higher incidence of orthostatic hypotension than haloperidol....

  20. Enzymatic glycosylation of multivalent scaffolds

    Czech Academy of Sciences Publication Activity Database

    Bojarová, Pavla; Rosencrantz, R. R.; Elling, L.; Křen, Vladimír

    2013-01-01

    Roč. 42, č. 11 (2013), s. 4774-4797 ISSN 0306-0012 R&D Projects: GA MŠk(CZ) LD13042; GA ČR GAP207/10/0321 Institutional support: RVO:61388971 Keywords : N-ACETYLGLUCOSAMINYLTRANSFERASE-III * MUCIN TANDEM REPEAT * NEIGHBORING RESIDUE GLYCOSYLATION Subject RIV: CC - Organic Chemistry Impact factor: 30.425, year: 2013

  1. Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behçet's disease.

    Science.gov (United States)

    Lee, Kwang Hoon; Chung, Hae-Shin; Kim, Hyoung Sup; Oh, Sang-Ho; Ha, Moon-Kyung; Baik, Ja-Hyun; Lee, Sungnack; Bang, Dongsik

    2003-07-01

    To identify and recombine a protein of the human dermal microvascular endothelial cell (HDMEC) that specifically reacts with anti-endothelial cell antibody (AECA) in the serum of patients with Behçet's disease (BD), and to evaluate the usefulness of this protein in BD. The proteomics technique, with 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry, was used to identify and recombine HDMEC antigen. Western blotting and enzyme-linked immunosorbent assay (ELISA) of recombinant protein isolated by gene cloning were performed on serum from healthy controls, patients with BD, and patients with other rheumatic diseases (rheumatoid arthritis, systemic lupus erythematosus, and Wegener's granulomatosis). Eighteen of 40 BD patients had serum IgM antibody to HDMEC antigen. The purified protein that reacted with AECA in BD patient sera was found to be alpha-enolase by 2-dimensional gel electrophoresis followed by immunoblotting and MALDI-TOF mass spectrometry. Recombinant alpha-enolase protein was isolated and refined by gene cloning. On Western blots, AECA-positive IgM from the sera of patients with active BD reacted strongly with recombinant human alpha-enolase. BD patient sera positive for anti-alpha-enolase did not react with human gamma-enolase. On dot-blotting, reactivity to human alpha-enolase was detected only in the IgM-positive group. Fifteen of the 18 AECA-positive sera that were positive for the HDMEC antigen showed reactivity to recombinant alpha-enolase IgM antibody by ELISA. The alpha-enolase protein is the target protein of serum AECA in BD patients. This is the first report of the presence of IgM antibodies to alpha-enolase in endothelial cells from the serum of BD patients. Although further studies relating this protein to the pathogenesis of BD will be necessary, alpha-enolase and its antibody may prove useful in the development of new diagnostic and treatment modalities in BD.

  2. COMPARISON OF FRUCTOSAMINE AND GLYCOSYLATED HEMOGLOBIN IN A NON-INSULIN DEPENDENT DIABETIC POPULATION

    Directory of Open Access Journals (Sweden)

    M. Amini

    1999-08-01

    Full Text Available In an attempt to determine the clinical value of frnctosamine assay for monitoring type II diabetic patients, correlation of frnctosamine with glycosylated hemoglobin was studied. 100 patients with type II diabetes mcllitus were compared with 100 normal subjects. Fasting blood glucose, glycosylated hemoglobin, albumin and frnctosamine were measured in alt subjects. In the diabetic patients, a significant correlation was observed between fasting blood glucose and glycosylated hemoglobin (r = 0.64, p < 0.01 and scrum frnctosamine (r = 0.7, P < 0.01. Tlicrc was also a significant correlation between glycosylated hemoglobin and scrum frtictosmine (r = .94, I'<0.01. Frnctosamine, assay can be used as an index of diabetes control.

  3. Maternal and fetal mechanisms of B cell regulation during pregnancy: human Chorionic Gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis

    Directory of Open Access Journals (Sweden)

    Franziska Fettke

    2016-12-01

    Full Text Available Maternal immune tolerance towards the fetus is an essential requisite for pregnancy. While T cell functions are well documented, little is known about the participation of B cells. We have previously suggested that IL-10 producing B cells are involved in pregnancy tolerance in mice and humans. By employing murine and human systems, we report now that fetal trophoblasts positively regulate the generation of IL-10 producing B cells. We next studied the participation of hormones produced by the placenta as well as the fetal protein alpha-fetoprotein (AFP in B cell modulation. Human Chorionic Gonadotropin (hCG, but not progesterone, estrogen or a combination of both, was able to promote changes in B cell phenotype and boost their IL-10 production, which was abolished after blocking hCG. The hCG-induced B cell phenotype was not associated with augmented galactosylation, sialylation or fucosylation of IgG subclasses in their Fc. In vitro, hCG induced the synthesis of asymmetrically glycosylated antibodies in their Fab region. Interestingly, AFP had dual effects depending on the concentration. At concentrations corresponding to maternal serum levels, it did not modify the phenotype or IL-10 secretion of B cells. At fetal concentrations, however, AFP was able to drive B cells into apoptosis, which may indicate a protective mechanism to avoid maternal B cells to reach the fetus.Our data suggests that the fetus secrete factors that promote a pregnancy-friendly B cell phenotype, unraveling interesting aspects of B cell function and modulation by pregnancy hormones and fetal proteins.

  4. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    Science.gov (United States)

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene.

  5. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  6. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.

    Science.gov (United States)

    Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2018-05-09

    Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Functional characterisation of the human alpha1 glycine receptor in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Kristiansen, Uffe

    2004-01-01

    In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput scr...... not be suited for sophisticated studies of GlyR pharmacology and kinetics. However, the assay offers several advantages in studies of ligand-receptor interactions. Furthermore, the assay could be highly useful in the search for structurally novel ligands acting at GlyRs.......In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput...... ion did not appear to potentiate GlyR function at lower concentrations. Analogously, whereas pregnenolone sulphate inhibited alpha1 GlyR function, the potentiation of alpha1 GlyR by pregnenolone in electrophysiological studies could not be reproduced in the assay. In conclusion, the FMP assay may...

  8. Xanthophylls and alpha-tocopherol decrease UVB-induced lipid peroxidation and stress signaling in human lens epithelial cells.

    Science.gov (United States)

    Chitchumroonchokchai, Chureeporn; Bomser, Joshua A; Glamm, Jayme E; Failla, Mark L

    2004-12-01

    Epidemiological studies suggest that consumption of vegetables rich in the xanthophylls lutein (LUT) and zeaxanthin (ZEA) reduces the risk for developing age-related cataract, a leading cause of vision loss. Although LUT and ZEA are the only dietary carotenoids present in the lens, direct evidence for their photoprotective effect in this organ is not available. The present study examined the effects of xanthophylls and alpha-tocopherol (alpha-TC) on lipid peroxidation and the mitogen-activated stress signaling pathways in human lens epithelial (HLE) cells following ultraviolet B light (UVB) irradiation. When presented with LUT, ZEA, astaxanthin (AST), and alpha-TC as methyl-beta-cyclodextrin complexes, HLE cells accumulated the lipophiles in a concentration- and time-dependent manner with uptake of LUT exceeding that of ZEA and AST. Pretreatment of cultures with either 2 micromol/L xanthophyll or 10 micromol/L alpha-TC for 4 h before exposure to 300 J/m(2) UVB radiation decreased lipid peroxidation by 47-57% compared with UVB-treated control HLE cells. Pretreatment with the xanthophylls and alpha-TC also inhibited UVB-induced activation of c-JUN NH(2)-terminal kinase (JNK) and p38 by 50-60 and 25-32%, respectively. There was substantial inhibition of UVB-induced JNK and p38 activation for cells containing xanthophylls/mg, respectively, whereas >2.3 nmol alpha-TC/mg protein was required to significantly decrease UVB-induced stress signaling. These data suggest that xanthophylls are more potent than alpha-TC for protecting human lens epithelial cells against UVB insult.

  9. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  10. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins

    DEFF Research Database (Denmark)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J.; Shojaosadati, Seyed Abbas

    2016-01-01

    prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required...... for using these models to understand and optimize protein production processes....

  11. O-GLYCOBASE version 4.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Gupta, Ramneek; Birch, Hanne; Rapacki, Krzysztof

    1999-01-01

    O-GLYCBASE is a database of glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally verified O-glycosylation site have been complied from protein sequence databases and literature. Each entry contains information about the glycan involved, the species, sequence, ...

  12. SEM visualization of glycosylated surface molecules using lectin-coated microspheres

    Science.gov (United States)

    Duke, J.; Janer, L.; Campbell, M.

    1985-01-01

    There are several techniques currently used to localize glycosylated surface molecules by scanning electron microscopy (Grinnell, 1980; Molday, 1976; Linthicum and Sell, 1975; Nicolson, 1974; Lo Buglio, et al, 1972). A simple and rapid method, using a modification of Grinnell's technique is reported here. Essentially, microspheres coated with Concavalin A are used to bind to glycosylated regions of the palatal shelf epithelium and are visualized in the scanning electron microscope (SEM).

  13. Glycosylation of KSHV Encoded vGPCR Functions in Its Signaling and Tumorigenicity

    Directory of Open Access Journals (Sweden)

    Hui Wu

    2015-03-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV is a tumor virus and the etiologic agent of Kaposi’s Sarcoma (KS. KSHV G protein-coupled receptor (vGPCR is an oncogene that is implicated in malignancies associated with KHSV infection. In this study, we show that vGPCR undergoes extensive N-linked glycosylation within the extracellular domains, specifically asparagines 18, 22, 31 and 202. An immunofluorescence assay demonstrates that N-linked glycosylation are necessary for vGPCR trafficking to the cellular membrane. Employing vGPCR mutants whose glycosylation sites were ablated, we show that these vGPCR mutants failed to activate downstream signaling in cultured cells and were severely impaired to induce tumor formation in the xenograph nude mouse model. These findings support the conclusion that glycosylation is critical for vGPCR tumorigenesis and imply that chemokine regulation at the plasma membrane is crucial for vGPCR mediated signaling.

  14. Demonstration of specific binding sites for 3H-RRR-alpha-tocopherol on human erythrocytes

    International Nuclear Information System (INIS)

    Kitabchi, A.E.; Wimalasena, J.

    1982-01-01

    Previous work from our laboratory demonstrated specific binding sites for 3 H-RRR-alpha-tocopherol ( 3 H-d alpha T) in membranes of rat adrenal cells. As tocopherol deficiency is associated with increased susceptibility of red blood cells to hemolysis, we investigated tocopherol binding sites in human RBCs. Erythrocytes were found to have specific binding sites for 3 H-d alpha T that exhibited saturability and time and cell-concentration dependence as well as reversibility of binding. Kinetic studies of binding demonstrated two binding sites--one with high affinity (Ka of 2.6 x 10(7) M-1), low capacity (7,600 sites per cell) and the other with low affinity (1.2 x 10(6) M-1), high capacity (150,000 sites per cell). In order to localize the binding sites further, RBCs were fractionated and greater than 90% of the tocopherol binding was located in the membranes. Similar to the findings in intact RBCs, the membranes exhibited two binding sites with a respective Ka of 3.3 x 10(7) M-1 and 1.5 x 10(6) M-1. Specificity data for binding demonstrated 10% binding for RRR-gamma-tocopherol, but not other tocopherol analog exhibited competition for 3 H-d alpha T binding sites. Instability data suggested a protein nature for these binding sites. Preliminary studies on Triton X-100 solubilized fractions resolved the binding sites to a major component with an Mr of 65,000 and a minor component with an Mr of 125,000. We conclude that human erythrocyte membranes contain specific binding sites for RRR-alpha-tocopherol. These sites may be of physiologic significance in the function of tocopherol on the red blood cell membrane

  15. O-GLYCBASE: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nielsen, Jens O.

    1996-01-01

    O-GLYCBASE is a comprehensive database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the SWISS-PROT and PIR databases as well as directly from recently published reports. Nineteen percent of the entries extracted from the databases n...... of mucin type O-glycosylation sites in mammalian glycoproteins exclusively from the primary sequence is made available by E-mail or WWW. The O-GLYCBASE database is also available electronically through our WWW server or by anonymous FTP....

  16. Structural and Functional Consequences of Increased Tubulin Glycosylation in Diabetes Mellitus

    Science.gov (United States)

    Williams, Stuart K.; Howarth, Nancy L.; Devenny, James J.; Bitensky, Mark W.

    1982-11-01

    The extent of in vitro nonenzymatic glycosylation of purified rat brain tubulin was dependent on time and glucose concentration. Tubulin glycosylation profoundly inhibited GTP-dependent tubulin polymerization. Electron microscopy and NaDodSO4/polyacrylamide gel electrophoresis showed that glycosylated tubulin forms high molecular weight amorphous aggregates that are not disrupted by detergents or reducing agents. The amount of covalently bound NaB3H4-reducible sugars in tubulin recovered from brain of streptozotocin-induced diabetic rats was dramatically increased as compared with tubulin recovered from normal rat brain. Moreover, tubulin recovered from diabetic rat brain exhibited less GTP-induced polymerization than tubulin from nondiabetic controls. The possible implications of these data for diabetic neuropathy are discussed.

  17. O-GLYCBASE version 3.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nilsson, Jette

    1998-01-01

    O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include informations about species, sequence, glycosylation sites and glycan type and is fully cr...

  18. Patterns of glycemic control using glycosylated hemoglobin in diabetics.

    Science.gov (United States)

    Kahlon, Arunpreet Singh; Pathak, Rambha

    2011-07-01

    Till now estimation of blood glucose is the highly effective method for diagnosing diabetes mellitus but it provides a short-term picture of control. More evidence is required to prove that plasma glucose and glycosylated hemoglobin levels together gives a better estimate of glycemic control and compliance with treatment. Indian diabetes risk score (IDRS) is a simplified screening tool for identifying undiagnosed diabetic subjects, requires minimum time, and effort and can help to considerably reduce the costs of screening. To study patterns of glycemic control using glycosylated hemoglobin in diabetic patients. To find out correlation between levels of plasma glucose and glycosylated hemoglobin in diabetics and to calculate IDRS of the study population. A cross sectional study was conducted among 300 known diabetic patients attending outpatient department of a rural medical college in Haryana, India. Following standard procedures and protocols FPG and glycosylated hemoglobin were measured to find out a pattern of glycemic control in them after taking their written and informed consent. A correlation between the levels of glycosylated hemoglobin and fasting blood glucose was also calculated. These patients were made to fill a performa and their demographic and clinical risk factors were noted and based on this, their IDRS was calculated. This was done to validate the IDRS in Indian rural population. Fifty-two percent of the population had fasting plasma glucose level between 125-150 mg/dl, 21% had this level between 151-175 mg/dl. Thirteen percent of the study subjects had HbA1C between 6.5-7.5, more than half (57.3%) had this value between 7.5-8.5, 12% and 18% had values between 8.5-9.5 and 9.5-10.5, respectively. Twelve percent of the participants had HbA1C level higher than 10.5. Correlation of fasting plasma glucose level and HbA1C was also studied and found that correlation coefficient came out to be .311. This correlation was found to be statistically

  19. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation.

    Science.gov (United States)

    Jansen, Jos C; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A W; Holleboom, Adriaan G; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P H; Huynen, Martijn A; Veltman, Joris A; Wevers, Ron A; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J

    2016-02-04

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal

  20. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency

    DEFF Research Database (Denmark)

    Van Scherpenzeel, Monique; Timal, Sharita; Rymen, Daisy

    2014-01-01

    Congenital disorders of glycosylation comprise a group of genetic defects with a high frequency of intellectual disability, caused by deficient glycosylation of proteins and lipids. The molecular basis of the majority of the congenital disorders of glycosylation type I subtypes, localized...... in the cytosol and endoplasmic reticulum, has been solved. However, elucidation of causative genes for defective Golgi glycosylation (congenital disorders of glycosylation type II) remains challenging because of a lack of sufficiently specific diagnostic serum methods. In a single patient with intellectual...... disability, whole-exome sequencing revealed MAN1B1 as congenital disorder of glycosylation type II candidate gene. A novel mass spectrometry method was applied for high-resolution glycoprofiling of intact plasma transferrin. A highly characteristic glycosylation signature was observed with hybrid type N...

  1. Carbohydrates on Proteins: Site-Specific Glycosylation Analysis by Mass Spectrometry

    Science.gov (United States)

    Zhu, Zhikai; Desaire, Heather

    2015-07-01

    Glycosylation on proteins adds complexity and versatility to these biologically vital macromolecules. To unveil the structure-function relationship of glycoproteins, glycopeptide-centric analysis using mass spectrometry (MS) has become a method of choice because the glycan is preserved on the glycosylation site and site-specific glycosylation profiles of proteins can be readily determined. However, glycopeptide analysis is still challenging given that glycopeptides are usually low in abundance and relatively difficult to detect and the resulting data require expertise to analyze. Viewing the urgent need to address these challenges, emerging methods and techniques are being developed with the goal of analyzing glycopeptides in a sensitive, comprehensive, and high-throughput manner. In this review, we discuss recent advances in glycoprotein and glycopeptide analysis, with topics covering sample preparation, analytical separation, MS and tandem MS techniques, as well as data interpretation and automation.

  2. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, D. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Valli, M.; Viglio, S. [Department of Biochemistry, University of Pavia (Italy); Ferrari, N. [Istituto Nazionale per la ricerca sul Cancro, Genova (Italy); Ledda, B.; Volta, C. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Manduca, P., E-mail: man-via@unige.it [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy)

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  3. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    International Nuclear Information System (INIS)

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-01-01

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  4. Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha.

    Science.gov (United States)

    Lurton, J; Soto, H; Narayanan, A S; Raghu, G

    1999-03-01

    Transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) are two polypeptide mediators which are believed to play a role in the evolution of idiopathic pulmonary fibrosis (IPF). We have evaluated the effect of these two substances on the expression of receptors for collagen (cC1q-R) and globular (gC1q-R) domains of C1q and on type I collagen in human lung fibroblasts. Two fibroblast subpopulations differing in C1q receptor expression were obtained by culturing human lung explants in medium containing fresh human serum and heated plasma-derived serum and separating them based on C1q binding [Narayanan, Lurton and Raghu: Am J Resp Cell Mol Biol. 1998; 17:84]. The cells, referred to as HH and NL cells, respectively, were exposed to TGF-beta and TNF-alpha in serum-free conditions. The levels of mRNA were assessed by in situ hybridization and Northern analysis, and protein levels compared after SDS-polyacrylamide gel electrophoresis and Western blotting. NL cells exposed to TGF-beta and TNF-alpha contained 1.4 and 1.6 times as much cC1q-R mRNA, respectively, whereas in HH cells cC1q-R mRNA increased 2.0- and 2.4-fold. The gC1q-R mRNA levels increased to a lesser extent in both cells. These increases were not reflected in protein levels of CC1q-R and gC1q-R, which were similar to or less than controls. Both TGF-beta and TNF-alpha also increased procollagen [I] mRNA levels in both cells. Overall, TNF-alpha caused a greater increase and the degree of response by HH fibroblasts to both TGF-beta and TNF-alpha was higher than NL cells. These results indicated that TGF-beta and TNF-alpha upregulate the mRNA levels for cC1q-R and collagen and that they do not affect gC1q-R mRNA levels significantly. They also indicated different subsets of human lung fibroblasts respond differently to inflammatory mediators.

  5. Muscarinic cholinergic and alpha 2-adrenergic receptors in the epithelium and muscularis of the human ileum

    International Nuclear Information System (INIS)

    Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W.

    1990-01-01

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greater in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments

  6. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  7. Characterization of a chromosome-specific chimpanzee alpha satellite subset: Evolutionary relationship to subsets on human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, P.E.; Gosden, J.; Lawson, D. [Western General Hospital, Edinburgh (United Kingdom)] [and others

    1996-04-15

    Alpha satellite DNA is a tandemly repeated DNA family found at the centromeres of all primate chromosomes examined. The fundamental repeat units of alpha satellite DNA are diverged 169- to 172-bp monomers, often found to be organized in chromosome-specific higher-order repeat units. The chromosomes of human (Homo sapiens (HSA)), chimpanzee (Pan troglodytes (PTR) and Pan paniscus), and gorilla (Gorilla gorilla) share a remarkable similarity and synteny. It is of interest to ask if alpha satellite arrays at centromeres of homologous chromosomes between these species are closely related (evolving in an orthologous manner) or if the evolutionary processes that homogenize and spread these arrays within and between chromosomes result in nonorthologous evolution of arrays. By using PCR primers specific for human chromosome 17-specific alpha satellite DNA, we have amplified, cloned, and characterized a chromosome-specific subset from the PTR chimpanzee genome. Hybridization both on Southern blots and in situ as well as sequence analysis show that this subset is most closely related, as expected, to sequences on HSA 17. However, in situ hybridization reveals that this subset is not found on the homologous chromosome in chimpanzee (PTR 19), but instead on PTR 12, which is homologous to HSA 2p. 40 refs., 3 figs.

  8. Fasting serum glucose and glycosylated hemoglobin level in obesity.

    Science.gov (United States)

    Das, R K; Nessa, A; Hossain, M A; Siddiqui, N I; Hussain, M A

    2014-04-01

    Obesity is a condition in which the body fat stores are increased to an extent which impairs health and leads to serious health consequences. The amount of body fat is difficult to measure directly, and is usually determined from an indirect measure - the body mass index (BMI). Increased BMI in obese persons is directly associated with an increase in metabolic disease, such as type 2 diabetes mellitus. This Analytical cross sectional study was undertaken to assess the relation between obesity and glycemic control of body by measuring fasting serum glucose and glycosylated hemoglobin. This study was carried out in the Department of Physiology, Mymensingh Medical College, Mymensingh from 1st July 2011 to 30th June 2012 on 120 equally divided male and female persons within the age range of 25 to 55 years. Age more than 55 years and less than 25 years and diagnosed case of Hypothyroidism, Cushing's syndrome, polycystic ovary, Antipsychotic drug user and regular steroid users were excluded. Non probability purposive type of sampling technique was used for selecting the study subjects. Measurement of body mass index was done as per procedure. Fasting serum glucose was estimated by glucose oxidase method and Glycosylated hemoglobin by Boronate Affinity method. Statistical analysis was done by SPSS (version 17.0). Data were expressed as Mean±SE and statistical significance of difference among the groups were calculated by unpaired student's 't' test and Pearson's correlation coefficient tests were done as applicable. The Mean±SE of fasting serum glucose was significant at 1% level (P value obese group of BMI. There was no significant difference of glycosylated hemoglobin level between control and study groups. But there was positive correlation within each group. Fasting serum glucose also showed a bit stronger positive correlation with BMI. Both obese male and female persons showed higher levels of fasting serum glucose and glycosylated hemoglobin. The observed positive

  9. Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin - A comparison between pheno- and genotype and variation in phenotypic expression

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Larsen, H.D.; Eriksen, N.H.R.

    1999-01-01

    The phenotypic expression of haemolysins and the presence of genes encoding alpha and beta-haemolysin were determined in 105 Sraphylococcus aureus isolates from bovine mastitis, 100 isolates from the nostrils of healthy humans, and 60 isolates from septicaemia in humans. Furthermore, the possible...... change in expression of haemolysins after subcultivation in human and bovine blood and milk was studied in selected isolates. alpha-haemolysin was expressed phenotypically in 39 (37%) of the bovine isolates, in 59 (59%) of the human carrier isolates, and in 40 (67%) of the isolates from septicaemia. beta......-haemolysin was expressed in 76 (72%) bovine, 11 (11%) carrier, and 8 (13%) septicaemia isolates. Significantly more bovine than human isolates expressed beta-haemolysin and significantly fewer expressed alpha-haemolysin. Genotypically, the gene encoding alpha-haemolysin was detected in all isolates. A significant...

  10. Involvement of Aberrant Glycosylation in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Eiji Miyoshi

    2010-01-01

    Full Text Available Glycosylation is one of the most common posttranslational modification reactions and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharides structures are associated with many physiological and pathological events, including cell growth, migration and differentiation, and tumor invasion. Therefore, functional glycomics, which is a comprehensive study of the structures and functions of glycans, is attracting the increasing attention of scientists in various fields of life science. In cases of thyroid cancer, the biological characters and prognosis are completely different in each type of histopathology, and their oligosaccharide structures as well as the expression of glycosyltransferases are also different. In this review, we summarized our previous papers on oligosaccharides and thyroid cancers and discussed a possible function of oligosaccharides in the carcinogenesis in thyroid cancer.

  11. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly...

  12. Glucosamine derived DISAL donors for stereoselective glycosylations under neutral conditions

    DEFF Research Database (Denmark)

    Grathe, S.; Thygesen, M.B.; Larsen, K.

    2005-01-01

    DISAL (methyl 3,5-dinitrosa/icylate) D-glcosyl, D-galactosyl, D-mannosyl, and L-quinovosyl donors have previously provided the efficient glycosylation of a range of substrates under either strictly neutral, mildly basic, or very mildly Lewis acidic (LiClO4) conditions. Herein we report the synthe......DISAL (methyl 3,5-dinitrosa/icylate) D-glcosyl, D-galactosyl, D-mannosyl, and L-quinovosyl donors have previously provided the efficient glycosylation of a range of substrates under either strictly neutral, mildly basic, or very mildly Lewis acidic (LiClO4) conditions. Herein we report...... the synthesis of new glucosamine DISAL donors, carrying N-TCP, -Troc, or -TFAc protecting groups, and their use in beta-(1,2-trans) selective glycosylations, primarily in NMP in the absence of any added Lewis acids, or in CH3NO2 with LiClO4. Finally, precise microwave heating proved effective in promoting...

  13. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  14. Free hemoglobin enhances tumor necrosis factor-alpha production in isolated human monocytes.

    Science.gov (United States)

    Carrillo, Eddy H; Gordon, Laura E; Richardson, J David; Polk, Hiram C

    2002-03-01

    A systemic inflammatory response (SIR) is seen in approximately 75% of patients with complex blunt liver injuries treated nonoperatively. Many feel this response is caused by blood, bile, and necrotic tissue accumulation in the peritoneal cavity. Our current treatment for these patients is a delayed laparoscopic washout of the peritoneal cavity, resulting in a dramatic resolution of the SIR. Spectrophotometric analysis of the intraperitoneal fluid has confirmed the presence of high concentrations of free hemoglobin (Hb). We hypothesize that free Hb enhances the local peritoneal response by increasing tumor necrosis factor-alpha (TNF-alpha) production by monocytes, contributing to the local inflammatory response and SIR. Monocytes from five healthy volunteers were isolated and cultured in RPMI-1640 for 24 hours. Treatment groups included saline controls, lipopolysaccharide ([LPS], 10 ng/mL, from Escherichia coli), human Hb (25 microg/mL), and Hb + LPS. Supernatants were analyzed by enzyme-linked immunosorbent assay. Student's t test with Mann-Whitney posttest was used for statistical analysis with p < or = 0.05 considered significant. Free Hb significantly increased TNF-alpha production 915 +/- 223 pg/mL versus saline (p = 0.02). LPS and Hb + LPS further increased TNF-alpha production (2294 pg/mL and 2501 pg/mL, respectively, p < 0.001) compared with saline controls. These data confirm that free Hb is a proinflammatory mediator resulting in the production of significant amounts of TNF-alpha. These in vitro findings support our clinical data in which timely removal of intraperitoneal free hemoglobin helps prevent its deleterious local and systemic inflammatory effects in patients with complex liver injuries managed nonoperatively.

  15. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch*

    Science.gov (United States)

    Harvey, Beth M.; Rana, Nadia A.; Moss, Hillary; Leonardi, Jessica; Jafar-Nejad, Hamed; Haltiwanger, Robert S.

    2016-01-01

    Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity. PMID:27268051

  16. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2016-01-01

    to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide...... distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members...

  17. Diversity in protein glycosylation among insect species.

    Directory of Open Access Journals (Sweden)

    Gianni Vandenborre

    Full Text Available BACKGROUND: A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum, the silkworm (Bombyx mori, the honeybee (Apis mellifera, the fruit fly (D. melanogaster and the pea aphid (Acyrthosiphon pisum. To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE: The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.

  18. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  19. Variation of Human Salivary O-Glycome.

    Directory of Open Access Journals (Sweden)

    Radoslaw P Kozak

    Full Text Available The study of saliva O-glycosylation is receiving increasing attention due to the potential of glycans for disease biomarkers, but also due to easy access and non-invasive collection of saliva as biological fluid. Saliva is rich in glycoproteins which are secreted from the bloodstream or produced by salivary glands. Mucins, which are highly O-glycosylated proteins, are particularly abundant in human saliva. Their glycosylation is associated with blood group and secretor status, and represents a reservoir of potential disease biomarkers. This study aims to analyse and compare O-glycans released from whole human mouth saliva collected 3 times a day from a healthy individual over a 5 days period. O-linked glycans were released by hydrazinolysis, labelled with procainamide and analysed by ultra-high performance liquid chromatography with fluorescence detection (UHPLC-FLR coupled to electrospray ionization mass spectrometry (ESI-MS/MS. The sample preparation method showed excellent reproducibility and can therefore be used for biomarker discovery. Our data demonstrates that the O-glycosylation in human saliva changes significantly during the day. These changes may be related to changes in the salivary concentrations of specific proteins.

  20. Patterns of glycemic control using glycosylated hemoglobin in diabetics

    Directory of Open Access Journals (Sweden)

    Arunpreet Singh Kahlon

    2011-01-01

    Full Text Available Aim : Till now estimation of blood glucose is the highly effective method for diagnosing diabetes mellitus but it provides a short-term picture of control. More evidence is required to prove that plasma glucose and glycosylated hemoglobin levels together gives a better estimate of glycemic control and compliance with treatment. Indian diabetes risk score (IDRS is a simplified screening tool for identifying undiagnosed diabetic subjects, requires minimum time, and effort and can help to considerably reduce the costs of screening. Objective : To study patterns of glycemic control using glycosylated hemoglobin in diabetic patients. To find out correlation between levels of plasma glucose and glycosylated hemoglobin in diabetics and to calculate IDRS of the study population. Materials and Methods : A cross sectional study was conducted among 300 known diabetic patients attending outpatient department of a rural medical college in Haryana, India. Following standard procedures and protocols FPG and glycosylated hemoglobin were measured to find out a pattern of glycemic control in them after taking their written and informed consent. A correlation between the levels of glycosylated hemoglobin and fasting blood glucose was also calculated. These patients were made to fill a performa and their demographic and clinical risk factors were noted and based on this, their IDRS was calculated. This was done to validate the IDRS in Indian rural population. Results : Fifty-two percent of the population had fasting plasma glucose level between 125-150 mg/dl, 21% had this level between 151-175 mg/dl. Thirteen percent of the study subjects had HbA1C between 6.5-7.5, more than half (57.3% had this value between 7.5-8.5, 12% and 18% had values between 8.5-9.5 and 9.5-10.5, respectively. Twelve percent of the participants had HbA1C level higher than 10.5. Correlation of fasting plasma glucose level and HbA1C was also studied and found that correlation coefficient came

  1. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    Science.gov (United States)

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells.

    Science.gov (United States)

    Bolduc, Gilles R; Madoff, Lawrence C

    2007-12-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.

  3. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein

    International Nuclear Information System (INIS)

    Yamaguchi, Suguru; Ishihara, Hisamitsu; Tamura, Akira; Yamada, Takahiro; Takahashi, Rui; Takei, Daisuke; Katagiri, Hideki; Oka, Yoshitomo

    2004-01-01

    Mutations of the WFS1 gene are responsible for two hereditary diseases, Wolfram syndrome and low frequency sensorineural hearing loss. The WFS1 protein is a glycoprotein located in the endoplasmic reticulum (ER) membrane but its function is poorly understood. Herein we show WFS1 mRNA and protein levels in pancreatic islets to be increased with ER-stress inducers, thapsigargin and dithiothreitol. Another ER-stress inducer, the N-glycosylation inhibitor tunicamycin, also raised WFS1 mRNA but not protein levels. Site-directed mutagenesis showed both Asn-663 and Asn-748 to be N-glycosylated in mouse WFS1 protein. The glycosylation-defective WFS1 protein, in which Asn-663 and Asn-748 had been substituted with aspartate, exhibited an increased protein turnover rate. Consistent with this, the WFS1 protein was more rapidly degraded in the presence of tunicamycin. These data indicate that ER-stress and N-glycosylation play important roles in WFS1 expression and stability, and also suggest regulatory roles for this protein in ER-stress induced cell death

  4. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia

    International Nuclear Information System (INIS)

    Almayahi, B.A.; Tajuddin, A.A.; Jaafar, M.S.

    2014-01-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm −2 and 0.061 ± 0.008 mBq cm −2 , whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm −2 and 0.7700 ± 0.0282 mBq cm −2 , respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm −2 , whereas that of female teeth was 0.0199 ± 0.0010 mBq cm −2 . The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm −2 ) than in non-smokers (0.0179 ± 0.0008 mBq cm −2 ). Such difference was found statistically significant (p < 0.01). - Highlights: • Alpha emission rates in teeth from smokers slightly higher than non-smokers. • Difference between alpha rates in male and female tooth not statistically significant. • Alpha particles have the same effect at any age. • Difference between alpha rates in bones was statistically significant

  5. Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.

    Science.gov (United States)

    Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J

    2001-07-01

    We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.

  6. Transcriptional Response of Human Cells to Microbeam Irradiation with 2.1 MeV Alpha Particles

    Science.gov (United States)

    Hellweg, C. E.; Bogner, S.; Spitta, L.; Arenz, A.; Baumstark-Khan, C.; Greif, K. D.; Giesen, U.

    Within the next decades an increasing number of human beings in space will be simultaneously exposed to different stimuli especially microgravity and radiation To assess the risks for humans during long-duration space missions the complex interplay of these parameters at the cellular level must be understood Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors Activation of the Nuclear Factor kappa B NF- kappa B pathway as a possible anti-apoptotic route represents such an important cellular stress response A screening assay for detection of NF- kappa B-dependent gene activation using the destabilized variant of Enhanced Green Fluorescent Protein d2EGFP as reporter protein had been developed It consists of Human Embryonic Kidney HEK 293 Cells stably transfected with a receptor-reporter-construct carrying d2EGFP under the control of a NF- kappa B response element Clones positive for Tumor Necrosis Factor alpha TNF- alpha inducible d2EGFP expression were selected as cellular reporters Irradiation was performed either with X-rays 150 kV 19 mA at DLR Cologne or with 2 1 MeV alpha particles LET sim 160 keV mu m at PTB Braunschweig After irradiation the following biological endpoints were determined i cell survival via the colony forming ability test ii time-dependent activation of NF- kappa B dependent d2EGFP gene expression using flow cytometry iii quantitative RT-PCR

  7. Selective effects of alpha interferon on human T-lymphocyte subsets during mixed lymphocyte cultures

    DEFF Research Database (Denmark)

    Hokland, M; Hokland, P; Heron, I

    1983-01-01

    Mixed lymphocyte reaction (MLR) cultures of human lymphocyte subsets with or without the addition of physiological doses of human alpha interferon (IFN-alpha) were compared with respect to surface marker phenotypes and proliferative capacities of the responder cells. A selective depression on the T...... T4 cells and decreased numbers of T4 cells harvested from IFN MLRs (days 5-6 of culture). In contrast, it was shown that the T8 (cytotoxic/suppressor) subset in MLRs was either not affected or slightly stimulated by the addition of IFN. The depression of the T4 cells by IFN was accompanied...... by a decrease in the number of activated T cells expressing Ia antigens. On the other hand, IFN MLRs contained greater numbers of cells expressing the T10 differentiation antigen. In experiments with purified T-cell subsets the IFN effect was exerted directly on the T4 cells and not mediated by either T8...

  8. Cloning, expression, and mapping of allergenic determinants of alphaS1-casein, a major cow's milk allergen.

    Science.gov (United States)

    Schulmeister, Ulrike; Hochwallner, Heidrun; Swoboda, Ines; Focke-Tejkl, Margarete; Geller, Beate; Nystrand, Mats; Härlin, Annika; Thalhamer, Josef; Scheiblhofer, Sandra; Keller, Walter; Niggemann, Bodo; Quirce, Santiago; Ebner, Christoph; Mari, Adriano; Pauli, Gabrielle; Herz, Udo; Valenta, Rudolf; Spitzauer, Susanne

    2009-06-01

    Milk is one of the first components introduced into human diet. It also represents one of the first allergen sources, which induces IgE-mediated allergies in childhood ranging from gastrointestinal, skin, and respiratory manifestations to severe life-threatening manifestations, such as anaphylaxis. Here we isolated a cDNA coding for a major cow's milk allergen, alphaS1-casein, from a bovine mammary gland cDNA library with allergic patients' IgE Abs. Recombinant alphaS1-casein was expressed in Escherichia coli, purified, and characterized by circular dichroism as a folded protein. IgE epitopes of alphaS1-casein were determined with recombinant fragments and synthetic peptides spanning the alphaS1-casein sequence using microarrayed components and sera from 66 cow's milk-sensitized patients. The allergenic activity of ralphaS1-casein and the alphaS1-casein-derived peptides was determined using rat basophil leukemia cells transfected with human FcepsilonRI, which had been loaded with the patients' serum IgE. Our results demonstrate that ralphaS1-casein as well as alphaS1-casein-derived peptides exhibit IgE reactivity, but mainly the intact ralphaS1-casein induced strong basophil degranulation. These results suggest that primarily intact alphaS1-casein or larger IgE-reactive portions thereof are responsible for IgE-mediated symptoms of food allergy. Recombinant alphaS1-casein as well as alphaS1-casein-derived peptides may be used in clinical studies to further explore pathomechanisms of food allergy as well as for the development of new diagnostic and therapeutic strategies for milk allergy.

  9. IN VITRO STUDY ON INHIBITION OF GLYCOSYLATION OF ...

    African Journals Online (AJOL)

    Administrator

    complications of diabetes mellitus (Makita et al., 1991). Apart from protein ... enzymes; inhibition of regulatory molecule binding; crosslinking of glycosylated .... further investigation specific bio active compound responsible for such activities.

  10. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging.

    Science.gov (United States)

    Hauptmann, Peter; Lehle, Ludwig

    2008-07-04

    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.

  11. Radioprotection of the intestinal crypts of mice by recombinant human interleukin-1 alpha

    International Nuclear Information System (INIS)

    Wu, S.G.; Miyamoto, T.

    1990-01-01

    Recombinant human interleukin-1 alpha (rHIL-1 alpha or IL-1) protected the intestinal crypt cells of mice against X-ray-induced damage. The survival of crypt cells measured in terms of their ability to form colonies of regenerating duodenal epithelium in situ was increased when IL-1 was given either before or after irradiation. The maximum degree of radioprotection was seen when the drug was given between 13 and 25 h before irradiation. The IL-1 dose producing maximum protection was about 6.3 micrograms/kg. This is the first report indicating that the cytokine IL-1 has a radioprotective effect in the intestine. The finding suggests that IL-1 may be of potential value in preventing radiation injury to the gut in the clinic

  12. Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors.

    Science.gov (United States)

    Kelley, Joshua B; Talley, Ashley M; Spencer, Adam; Gioeli, Daniel; Paschal, Bryce M

    2010-08-11

    Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin alpha and importin beta. NLS cargo is recognized by importin alpha, which is bound by importin beta. Importin beta mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin beta triggers disassembly of the complex. To date, six importin alpha family members, encoded by separate genes, have been described in humans. We sequenced and characterized a seventh member of the importin alpha family of transport factors, karyopherin alpha 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin beta (IBB) is divergent, and shows stronger binding to importin beta than the IBB domains from of other importin alpha family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic. KPNA7 is a novel importin alpha family member in humans that belongs to the importin alpha2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin alpha family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.

  13. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    International Nuclear Information System (INIS)

    Jones, Meredith B.; Tomiya, Noboru; Betenbaugh, Michael J.; Krag, Sharon S.

    2010-01-01

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man 5 GlcNAc 2 -P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man 9 GlcNAc 2 -P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc 3 Man 9 GlcNAc 2 -P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man 5 GlcNAc 2 -PP-Dol through Glc 1 Man 9 GlcNAc 2 -PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc 3 Man 9 GlcNAc 2 -P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  14. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Meredith B., E-mail: mbauman7@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Tomiya, Noboru, E-mail: ntomiya1@jhu.edu [Department of Biology, Johns Hopkins University, 3400 North Charles Street, Mudd Hall 104A, Baltimore, MD 21218 (United States); Betenbaugh, Michael J., E-mail: beten@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Krag, Sharon S., E-mail: skrag@jhsph.edu [Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205 (United States)

    2010-04-23

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man{sub 5}GlcNAc{sub 2}-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man{sub 9}GlcNAc{sub 2}-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man{sub 5}GlcNAc{sub 2}-PP-Dol through Glc{sub 1}Man{sub 9}GlcNAc{sub 2}-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  15. Congenital disorders of glycosylation: The Saudi experience.

    Science.gov (United States)

    Alsubhi, Sarah; Alhashem, Amal; Faqeih, Eissa; Alfadhel, Majid; Alfaifi, Abdullah; Altuwaijri, Waleed; Alsahli, Saud; Aldhalaan, Hesham; Alkuraya, Fowzan S; Hundallah, Khalid; Mahmoud, Adel; Alasmari, Ali; Mutairi, Fuad Al; Abduraouf, Hanem; AlRasheed, Layan; Alshahwan, Saad; Tabarki, Brahim

    2017-10-01

    We retrospectively reviewed Saudi patients who had a congenital disorder of glycosylation (CDG). Twenty-seven Saudi patients (14 males, 13 females) from 13 unrelated families were identified. Based on molecular studies, the 27 CDG patients were classified into different subtypes: ALG9-CDG (8 patients, 29.5%), ALG3-CDG (7 patients, 26%), COG6-CDG (7 patients, 26%), MGAT2-CDG (3 patients, 11%), SLC35A2-CDG (1 patient), and PMM2-CDG (1 patient). All the patients had homozygous gene mutations. The combined carrier frequency of CDG for the encountered founder mutations in the Saudi population is 11.5 per 10,000, which translates to a minimum disease burden of 14 patients per 1,000,000. Our study provides comprehensive epidemiologic information and prevalence figures for each of these CDG in a large cohort of congenital disorder of glycosylation patients. © 2017 Wiley Periodicals, Inc.

  16. Optimal Synthetic Glycosylation of a Therapeutic Antibody.

    Science.gov (United States)

    Parsons, Thomas B; Struwe, Weston B; Gault, Joseph; Yamamoto, Keisuke; Taylor, Thomas A; Raj, Ritu; Wals, Kim; Mohammed, Shabaz; Robinson, Carol V; Benesch, Justin L P; Davis, Benjamin G

    2016-02-12

    Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase-catalyzed glycosylation of the best-selling biotherapeutic Herceptin, an anti-HER2 antibody. Precise MS analysis of the intact four-chain Ab heteromultimer reveals nonspecific, non-enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non-natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or "glycorandomization") were readily generated.

  17. Dengue Virus Glycosylation: What Do We Know?

    Directory of Open Access Journals (Sweden)

    Sally S. L. Yap

    2017-07-01

    Full Text Available In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E and non-structural protein 1 (NS1 are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.

  18. IFN-alpha antibodies in patients with age-related macular degeneration treated with recombinant human IFN-alpha2a

    DEFF Research Database (Denmark)

    Ross, Christian; Engler, Claus Bødker; Sander, Birgit

    2002-01-01

    We tested for development of binding and neutralizing antibodies to interferon-alpha (IFN-alpha) during IFN-alpha2a therapy of patients with age-related macular degeneration (AMD) of the eyes. Antibodies were investigated retrospectively in sera of 34 patients treated with 3 x 10(6) IU IFN-alpha2...

  19. IFN-alpha antibodies in patients with age-related macular degeneration treated with recombinant human IFN-alpha2a

    DEFF Research Database (Denmark)

    Ross, Christian; Engler, Claus Bødker; Sander, Birgit

    2002-01-01

    We tested for development of binding and neutralizing antibodies to interferon-alpha (IFN-alpha) during IFN-alpha2a therapy of patients with age-related macular degeneration (AMD) of the eyes. Antibodies were investigated retrospectively in sera of 34 patients treated with 3 x 10(6) IU IFN-alpha2a...

  20. Fluorine-Directed Glycosylation Enables the Stereocontrolled Synthesis of Selective SGLT2 Inhibitors for Type II Diabetes.

    Science.gov (United States)

    Sadurní, Anna; Kehr, Gerald; Ahlqvist, Marie; Wernevik, Johan; Sjögren, Helena Peilot; Kankkonen, Cecilia; Knerr, Laurent; Gilmour, Ryan

    2018-02-26

    Inhibition of the sodium-glucose co-transporters (SGLT1 and SGLT2) is a validated strategy to address the increasing prevalence of type II diabetes mellitus. However, achieving selective inhibition of human SGLT1 or SGLT2 remains challenging. Orally available small molecule drugs based on the d-glucose core of the natural product Gliflozin have proven to be clinically effective in this regard, effectively impeding glucose reabsorption. Herein, we disclose the influence of molecular editing with fluorine at the C2 position of the pyranose ring of Phlorizin analogues Remogliflozin Etabonate and Dapagliflozin (Farxiga ® ) to concurrently direct β-selective glycosylation, as is required for biological efficacy, and enhance aspects of the physicochemical profile. Given the abundance of glycosylated pharmaceuticals in diabetes therapy that contain a β-configured d-glucose nucleus, it is envisaged that this strategy may prove to be expansive. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  2. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    Science.gov (United States)

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  3. Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    Science.gov (United States)

    Porter, Edith; Bevins, Charles L.; DiRosario, Julianne; Becknell, Brian; Wang, Huanyu

    2012-01-01

    Background The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects. Methodology/Principal Findings Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection. Conclusions/Significance DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility. PMID:22359618

  4. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peigen; Allam, Ayman; Perez, Luis A; Taghian, Alphonse; Freeman, Jill; Suit, Herman D

    1995-04-30

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-{alpha}) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-{alpha} with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm{sup 3}, mice were randomly assigned to treatment: rHuTNF-{alpha} alone compared with normal saline control; or local radiation plus rHuTNF-{alpha} vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-{alpha} on this tumor. The TCD{sub 50} (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-{alpha} with local radiation. Results: Tumor growth in mice treated with a dose of 150 {mu}g/kg body weight rHuTNF-{alpha}, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-{alpha} also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-{alpha} starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD{sub 50} from the control value of 60.9 Gy to 50.5 Gy (p < 0.01). Conclusion: rHuTNF-{alpha} exhibits an antitumor effect against U87 xenograft in nude mice, as evidenced by an increased delay in tumor growth as well as cell loss factor. Also, there was an augmentation of tumor curability when given in combination with radiotherapy, resulting in a significantly lower TCD{sub 50} value in the treatment vs. the

  5. Conformationally superarmed S-ethyl glycosyl donors as effective building blocks for chemoselective oligosaccharide synthesis in one pot

    DEFF Research Database (Denmark)

    Bandara, Mithila D.; Yasomanee, Jagodige P.; Rath, Nigam P.

    2017-01-01

    A new series of superarmed glycosyl donors has been investigated. It was demonstrated that the S-ethyl leaving group allows for high reactivity, which is much higher than that of equally equipped S-phenyl glycosyl donors that were previously investigated by our groups. The superarmed S......-ethyl glycosyl donors equipped with a 2-O-benzoyl group gave complete β-stereoselectivity. Utility of the new glycosyl donors has been demonstrated in a one-pot one-addition oligosaccharide synthesis with all of the reaction components present from the beginning...

  6. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    International Nuclear Information System (INIS)

    Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.; Biegon, A.

    1990-01-01

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography

  7. Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Wang, Shengjun; Narimatsu, Yoshiki

    2014-01-01

    , which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide Gal...

  8. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites

    DEFF Research Database (Denmark)

    Julenius, Karin; Mølgaard, Anne; Gupta, Ramneek

    2005-01-01

    could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc....

  9. Glycosylation of DMP1 Is Essential for Chondrogenesis of Condylar Cartilage.

    Science.gov (United States)

    Weng, Y; Liu, Y; Du, H; Li, L; Jing, B; Zhang, Q; Wang, X; Wang, Z; Sun, Y

    2017-12-01

    The mandibular condylar cartilage (MCC) shoulders force for the subchondral bone during mastication. The cartilage matrix contains various large molecules, such as type I, II, and X collagens and proteoglycans (PGs), which jointly play essential roles in maintaining cartilage characteristics. PGs play key roles in maintaining the elasticity of cartilage and providing a cushion against mastication forces. In addition to the well-known PGs, DMP1-PG, which is the PG form of dentin matrix protein 1 (DMP1), is a newly identified PG. DMP1 is proteolytically processed in vivo, and the N-terminus is glycosylated into its PG form-that is, DMP1-PG, which is highly expressed not only in tooth and bone but also in the matrix of the MCC. However, the specific functions of DMP1-PG in the MCC remain unclear. In human temporomandibular joint osteoarthritis and hyperocclusion model rat specimens, PGs are significantly downregulated, and DMP1-PG is the most prominently affected PG. To further investigate the role of DMP1-PG in condylar chondrogenesis, a glycosylation site mutant (S 89 -G 89 ) mouse model was established with knock-in methods. In the MCC of the S89G-DMP1 mice, the glycosylation level of DMP1 was significantly downregulated, and a series of abnormal developmental and pathologic changes could be observed. The morphologic changes included thinner cartilage layers, deformations of the MCC, and disordered arrangements of the chondrocytes, and an earlier onset of temporomandibular joint osteoarthritis-like changes was observed. In addition, markers of chondrogenesis were downregulated, and the matrix of the MCC displayed OA phenotypes in the S89G-DMP1 mice. Further investigations showed that the transforming growth factor β signaling molecules were affected in the MCC after the loss of DMP1-PG. In addition, the loss of DMP1-PG significantly accelerated the progression of cartilage injuries in the hyperocclusion models. Given these findings, we investigated the significant

  10. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  11. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  12. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism.

    NARCIS (Netherlands)

    Morava, E.; Wevers, R.A.; Cantagrel, V.; Hoefsloot, L.H.; Al-Gazali, L.; Schoots, J.; Rooij, A. van; Huijben, K.; Ravenswaaij-Arts, C.M.A. van; Jongmans, M.C.J.; Sykut-Cegielska, J.; Hoffmann, G.F.; Bluemel, P.; Adamowicz, M.; Reeuwijk, J. van; Ng, B.G.; Bergman, J.E.; Bokhoven, J.H.L.M. van; Korner, C.; Babovic-Vuksanovic, D.; Willemsen, M.A.A.P.; Gleeson, J.G.; Lehle, L.; Brouwer, A.P.M. de; Lefeber, D.J.

    2010-01-01

    Cerebellar hypoplasia and slowly progressive ophthalmological symptoms are common features in patients with congenital disorders of glycosylation type I. In a group of patients with congenital disorders of glycosylation type I with unknown aetiology, we have previously described a distinct phenotype

  13. Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia.

    Science.gov (United States)

    Almayahi, B A; Tajuddin, A A; Jaafar, M S

    2014-03-01

    In this study, the radiobiological analysis of natural alpha emitters in extracted human teeth and animal bones from Malaysia was estimated. The microdistributions of alpha particles in tooth and bone samples were measured using CR-39 alpha-particle track detectors. The lowest and highest alpha emission rates in teeth in the Kedah and Perak states were 0.0080 ± 0.0005 mBq cm(-2) and 0.061 ± 0.008 mBq cm(-2), whereas those of bones in the Perlis and Kedah states were 0.0140 ± 0.0001 mBq cm(-2) and 0.7700 ± 0.0282 mBq cm(-2), respectively. The average alpha emission rate in male teeth was 0.0209 ± 0.0008 mBq cm(-2), whereas that of female teeth was 0.0199 ± 0.0010 mBq cm(-2). The alpha emission rate in teeth is higher in smokers (0.0228 ± 0.0008 mBq cm(-2)) than in non-smokers (0.0179 ± 0.0008 mBq cm(-2)). Such difference was found statistically significant (p < 0.01). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  15. Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer.

    Science.gov (United States)

    Barrabés, Sílvia; Llop, Esther; Ferrer-Batallé, Montserrat; Ramírez, Manel; Aleixandre, Rosa N; Perry, Antoinette S; de Llorens, Rafael; Peracaula, Rosa

    2017-07-01

    The levels of core fucosylation and α2,3-linked sialic acid in serum Prostate Specific Antigen (PSA), using the lectins Pholiota squarrosa lectin (PhoSL) and Sambucus nigra agglutinin (SNA), can discriminate between Benign Prostatic Hyperplasia (BPH) and indolent prostate cancer (PCa) from aggressive PCa. In the present work we evaluated whether these glycosylation determinants could also be altered in urinary PSA obtained after digital rectal examination (DRE) and could also be useful for diagnosis determinations. For this purpose, α2,6-sialic acid and α1,6-fucose levels of urinary PSA from 53 patients, 18 biopsy-negative and 35 PCa patients of different aggressiveness degree, were analyzed by sandwich ELLA (Enzyme Linked Lectin Assay) using PhoSL and SNA. Changes in the levels of specific glycosylation determinants, that in serum PSA samples were indicative of PCa aggressiveness, were not found in PSA from DRE urine samples. Although urine is a simpler matrix for analyzing PSA glycosylation compared to serum, an immunopurification step was necessary to specifically detect the glycans on the PSA molecule. Those specific glycosylation determinants on urinary PSA were however not useful to improve PCa diagnosis. This could be probably due to the low proportion of PSA from the tumor in urine samples, which precludes the identification of aberrantly glycosylated PSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility

    DEFF Research Database (Denmark)

    Hansen, Jan Erik; Lund, Ole; Tolstrup, Niels

    1998-01-01

    -glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predicition of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O...... structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. charged residues were disfavoured at postition -1 and +3......-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based...

  17. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  18. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  19. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability, wher....... This is compatible with a negative modulating effect of the less-stable alpha-T171 ETF variant in this group of VLCAD patients that harbor missense mutations in at least one allele and therefore potentially display residual levels of VLCAD enzyme activity. Udgivelsesdato: 1999-Jun...

  20. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    International Nuclear Information System (INIS)

    Kalra, Rajkumar S.; Wadhwa, Renu

    2015-01-01

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein

  1. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rajkumar S., E-mail: renu-wadhwa@aist.go.jp; Wadhwa, Renu, E-mail: renu-wadhwa@aist.go.jp [Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST Central 4), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2015-02-27

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein.

  2. Cytokine vaccination: neutralising IL-1alpha autoantibodies induced by immunisation with homologous IL-1alpha

    DEFF Research Database (Denmark)

    Svenson, M; Hansen, M B; Thomsen, Allan Randrup

    2000-01-01

    with IL-1alpha coupled to purified protein derivative of tuberculin (PPD). Both unprimed and primed animals developed IgG aAb to IL-1alpha. These aAb persisted at high levels more than 100 days after vaccination and did not cross-react with murine IL-1beta. The induced anti-IL-1alpha aAb inhibited binding...... in mice by vaccination with recombinant murine IL-1alpha conjugated to PPD. Studies of the effects of IL-1alpha aAb in such animals may help clarify the importance of naturally occurring IL-1alpha aAb in humans and permit the evaluation of future therapies with cytokine aAb in patients...

  3. Reduced apolipoprotein glycosylation in patients with the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Olga V Savinova

    Full Text Available The purpose of this study was to compare the apolipoprotein composition of the three major lipoprotein classes in patients with metabolic syndrome to healthy controls.Very low density (VLDL, intermediate/low density (IDL/LDL, hereafter LDL, and high density lipoproteins (HDL fractions were isolated from plasma of 56 metabolic syndrome subjects and from 14 age-sex matched healthy volunteers. The apolipoprotein content of fractions was analyzed by one-dimensional (1D gel electrophoresis with confirmation by a combination of mass spectrometry and biochemical assays.Metabolic syndrome patients differed from healthy controls in the following ways: (1 total plasma--apoA1 was lower, whereas apoB, apoC2, apoC3, and apoE were higher; (2 VLDL--apoB, apoC3, and apoE were increased; (3 LDL--apoC3 was increased, (4 HDL--associated constitutive serum amyloid A protein (SAA4 was reduced (p<0.05 vs. controls for all. In patients with metabolic syndrome, the most extensively glycosylated (di-sialylated isoform of apoC3 was reduced in VLDL, LDL, and HDL fractions by 17%, 30%, and 25%, respectively (p<0.01 vs. controls for all. Similarly, the glycosylated isoform of apoE was reduced in VLDL, LDL, and HDL fractions by 15%, 26%, and 37% (p<0.01 vs. controls for all. Finally, glycosylated isoform of SAA4 in HDL fraction was 42% lower in patients with metabolic syndrome compared with controls (p<0.001.Patients with metabolic syndrome displayed several changes in plasma apolipoprotein composition consistent with hypertriglyceridemia and low HDL cholesterol levels. Reduced glycosylation of apoC3, apoE and SAA4 are novel findings, the pathophysiological consequences of which remain to be determined.

  4. Glycosylation analysis of recombinant neutral protease I from Aspergillus oryzae expressed in Pichia pastoris.

    Science.gov (United States)

    Lei, Da; Xu, Yang; He, Qinghua; Pang, Yifeng; Chen, Bo; Xiong, Liang; Li, Yanping

    2013-12-01

    Neutral protease I from Aspergillus oryzae 3.042 was expressed in Pichia pastoris and its N-glycosylation properties were analyzed. After purification by nickel-affinity chromatography column, the recombinant neutral protease (rNPI) was confirmed to be N-glycosylated by periodicacid/Schiff's base staining and Endo H digestion. Moreover, the deglycosylated protein's molecular weight decreased to 43.3 kDa from 54.5 kDa analyzed by SDS-PAGE and MALDI-TOF-MS, and the hyperglycosylation extent was 21 %. The N-glycosylation site of rNPI was analyzed by nano LC-MS/MS after digesting by trypsin and Glu-C, and the unique potential site Asn41 of mature peptide was found to be glycosylated. Homology modeling of the 3D structure of rNPI indicated that the attached N-glycans hardly affected neutral protease's activity due to the great distance away from the active site of the enzyme.

  5. The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells.

    Science.gov (United States)

    Fujita, Naonobu; Tamura, Ayako; Higashidani, Aya; Tonozuka, Takashi; Freeze, Hudson H; Nishikawa, Atsushi

    2008-02-01

    Mannose for mammalian glycan biosynthesis can be imported directly from the medium, derived from glucose or salvaged from endogenous or external glycans. All pathways must generate mannose 6-phosphate, the activated form of mannose. Imported or salvaged mannose is directly phosphorylated by hexokinase, whereas fructose 6-phosphate from glucose is converted to mannose 6-phosphate by phosphomannose isomerase (PMI). Normally, PMI provides the majority of mannose for glycan synthesis. To assess the contribution of PMI-independent pathways, we used PMI-null fibroblasts to study N-glycosylation of DNase I, a highly sensitive indicator protein. In PMI-null cells, imported mannose and salvaged mannose make a significant contribution to N-glycosylation. When these cells were grown in mannose-free medium along with the mannosidase inhibitor, swainsonine, to block the salvage pathways, N-glycosylation of DNase I was almost completely eliminated. Adding approximately 13 microm mannose to the medium completely restored normal glycosylation. Treatment with bafilomycin A(1), an inhibitor of lysosomal acidification, also markedly reduced N-glycosylation of DNase I, but in this case only 8 microm mannose was required to restore full glycosylation, indicating that a nonlysosomal source of mannose made a significant contribution. Glycosylation levels were greatly also reduced in glycoconjugate-free medium, when endosomal membrane trafficking was blocked by expression of a mutant SKD1. From these data, we conclude that PMI-null cells can salvage mannose from both endogenous and external glycoconjugates via lysosomal and nonlysosomal degradation pathways.

  6. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, Maja [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Boehme, Mike [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Nitz, Inke [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Doering, Frank [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany)

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  7. The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    Faris Azzouni

    2012-01-01

    Full Text Available Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family.

  8. NCBI nr-aa BLAST: CBRC-FRUB-02-0655 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FRUB-02-0655 ref|NP_037376.1| UDP-N-acetylglucosamine: alpha-1,3-D-mannoside beta-1,4-N-acetylglucosa...minyltransferase IV [Homo sapiens] sp|Q9UBM8|MGT4C_HUMAN Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucos...aminyltransferase C (UDP-N-acetylglucosamine: alpha-1,3-D-mannoside beta-1,4-N-acetylglucosa...minyltransferase IVc) (N-glycosyl-oligosaccharide-glycoprotein N-acetylglucosa...minyltransferase IVc) (N-acetylglucosaminyltransferase IVc) (GnT-IVc) (GlcNAc-T IVc) (N-acetylglucosam

  9. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  10. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  11. Xylosylation of proteins by expression of human xylosyltransferase 2 in plants.

    Science.gov (United States)

    Matsuo, Kouki; Atsumi, Go

    2018-04-12

    Through the years, the post-translational modification of plant-made recombinant proteins has been a considerable problem. Protein glycosylation is arguably the most important post-translational modification; thus, for the humanization of protein glycosylation in plants, the introduction, repression, and knockout of many glycosylation-related genes has been carried out. In addition, plants lack mammalian-type protein O-glycosylation pathways; thus, for the synthesis of mammalian O-glycans in plants, the construction of these pathways is necessary. In this study, we successfully xylosylated the recombinant human proteoglycan core protein, serglycin, by transient expression of human xylosyltransferase 2 in Nicotiana benthamiana plants. When human serglycin was co-expressed with human xylosyltransferase 2 in plants, multiple serine residues of eight xylosylation candidates were xylosylated. From the results of carbohydrate assays for total soluble proteins, some endogenous plant proteins also appeared to be xylosylated, likely through the actions of xylosyltransferase 2. The xylosylation of core proteins is the initial step of the glycosaminoglycan part of the synthesis of proteoglycans. In the future, these novel findings may lead to whole mammalian proteoglycan synthesis in plants. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  13. Is glycosylated haemoglobin a marker of fertility?

    DEFF Research Database (Denmark)

    Hjollund, N H; Jensen, Tina Kold; Bonde, Jens Peter

    1999-01-01

    We performed a follow-up study of time to pregnancy in a population of first-time pregnancy planners without previous reproductive experience. The objective of this paper is to report and discuss a finding of a strong relationship between glycosylated haemoglobin (HbA1C) and fertility. A total...

  14. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    Science.gov (United States)

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  15. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Rapacki, Kristoffer

    1997-01-01

    O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is...... patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP....

  16. Characterization of kallikrein-related peptidase 4 glycosylations.

    Science.gov (United States)

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C; Simmer, James P

    2011-12-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1-6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. © 2011 Eur J Oral Sci.

  17. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Tachibana, Keisuke; Takeuchi, Kentaro; Inada, Hirohiko; Yamasaki, Daisuke; Ishimoto, Kenji; Tanaka, Toshiya; Hamakubo, Takao; Sakai, Juro; Kodama, Tatsuhiko; Doi, Takefumi

    2009-01-01

    Solute carrier family 25, member 20 (SLC25A20) is a key molecule that transfers acylcarnitine esters in exchange for free carnitine across the mitochondrial membrane in the mitochondrial β-oxidation. The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor that plays an important role in the regulation of β-oxidation. We previously established tetracycline-regulated human cell line that can be induced to express PPARα and found that PPARα induces the SLC25A20 expression. In this study, we analyzed the promoter region of the human slc25a20 gene and showed that PPARα regulates the expression of human SLC25A20 via the peroxisome proliferator responsive element.

  18. Human placental Na/sup +/, K/sup +/-ATPase. cap alpha. subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-11-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na/sup +/, K/sup +/-ATPase ..cap alpha.. subunit was cloned from human placenta and its sequence was identical to that encoding the ..cap alpha.. subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na/sup +/, K/sup +/-ATPase gene from various human tissues and cell lines revealed only one band (approx. = 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) lambdagt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the ..cap alpha.. subunit is on the short is on the short arm (band p11-p13) of chromosome 1.

  19. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study.

    Science.gov (United States)

    Lee, Hui Sun; Qi, Yifei; Im, Wonpil

    2015-03-09

    N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.

  20. Ubiquitous hazardous metal lead induces TNF-{alpha} in human phagocytic THP-1 cells: Primary role of ERK 1/2

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohd Imran [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Islam, Najmul [Department of Biochemistry, J.N Medical College, Aligarh Muslim University, Aligarh (India); Sahasrabuddhe, Amogh A. [Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow (India); Mahdi, Abbas Ali [Department of Biochemistry, C.S.M. Medical University, Lucknow (India); Siddiqui, Huma; Ashquin, Mohd [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India); Ahmad, Iqbal, E-mail: ahmadi@sify.com [Fiber Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research (CSIR), Mahatma Gandhi Marg, P.O Box 80, Lucknow 226001, U.P. (India)

    2011-05-15

    Induction of tumor necrosis factor-{alpha} (TNF-{alpha}) in response to lead (Pb) exposure has been implicated in its immunotoxicity. However, the molecular mechanism by which Pb upregulates the level of TNF-{alpha} is wagely known. An attempt was therefore made to elucidate the mechanistic aspect of TNF-{alpha} induction, mainly focusing transcriptional and post transcriptional regulation via mitogen activated protein kinases (MAPKs) activation. We observed that exposure of Pb to human monocytic THP-1 cells resulted in significant enhanced production of TNF-{alpha} m-RNA and protein secretion. Moreover, the stability of TNF-{alpha} m-RNA was also increased as indicated by its half life. Notably, activation of ERK 1/2, p38 and JNK in Pb exposed THP-1 was also evident. Specific inhibitor of ERK1/2, PD 98059 caused significant inhibition in production and stability of TNF-{alpha} m-RNA. However, SB 203580 partially inhibited production and stability of TNF-{alpha} m-RNA. Interestingly, a combined exposure of these two inhibitors completely blocked modulation of TNF-{alpha} m-RNA. Data tends to suggest that expression and stability of TNF-{alpha} induction due to Pb exposure is mainly regulated through ERK. Briefly, these observations are useful in understanding some mechanistic aspects of proinflammatory and immunotoxicity of Pb, a globally acknowledged key environmental contaminant.

  1. Explant culture of human peripheral lung. I. Metabolism of benzo[alpha]pyrene

    DEFF Research Database (Denmark)

    Stoner, G.D.; Harris, C.C.; Autrup, Herman

    1978-01-01

    the predominant alveolar epithelial cell type. Lamellar inclusion bodies were released from the type 2 cells and accumulated in the alveolar spaces. The metabolism of benzo[alpha]pyrene (BP) in human lung explants cultured for up to 7 days was investigated. Human lung explants had measurable aryl hydrocarbon......Human lung explants have been maintained in vitro for a period of 25 days. Autoradiographic studies indicated that the broncholar epithelial cells, type 2 alveolar epithelial cells, and stromal fibroblasts incorporated 3H-thymidine during the culture. After 7 to 10 days, type 2 cells were...... hydroxylase activity and could metabolize BP into forms that were bound to cellular DNA and protein. Peripheral lung had significantly lower aryl hydrocarbon hydroxylase activity than cultured bronchus but both tissues had similar binding levels of BP to DNA. Radioautographic studies indicated that all cell...

  2. aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid.

    Science.gov (United States)

    de Vries, R P; Poulsen, C H; Madrid, S; Visser, J

    1998-01-01

    An extracellular alpha-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70 degrees C. The alpha-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and beta-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this alpha-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and alpha-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose.

  3. Thermotolerance and protein glycosylation: Inhibition studies with sodium fluoride, azauridine and tunicamycin

    International Nuclear Information System (INIS)

    Bursey, D.L.; Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    The glycosylation hypothesis predicts increased incorporation of monosaccharides into 0-linked glycoproteins during thermotolerance development and inhibition of thermotolerance when this process is blocked. Specific inhibitors of 0-linked glycosylation are not available. The authors examined the effect of non-specific inhibition of glycosylation on thermotolerance development by: 1. restriction of both exogenous sugars and endogeneous sugar synthesis with NaF to block glycolysis while providing L-glutamine as a substrate for ATP synthesis in the TCA cycle; or 2. inhibition of UDP-sugar synthesis using azauridine and tunicamycin. Inhibitors were added to cell cultures after heat conditioning (10 min, 45 0 ) and removed after 6 hr prior to 45 0 -test heating. Sugar deprivation was achieved with 10mM NaF in glucose-free EBSS, supplemented with 2mM L-glutamine. Synthesis of UDP-sugars was inhibited with 1mM azauridine + 1μg/ml tunicamycin. Thermotolerance development was inhibited 87% by NaF/glutamine and 47% by azauridine/tunicamycin. For example, the D/sub o/ of the thermotolerant cells was 42.5 min (control D/sub o/ = 3 min), but only 5.5 min with inhibition by the NaF solution. These results support the absolute requirement of sugar precursors for thermotolerance development as predicted by the glycosylation hypothesis

  4. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  5. Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants

    Directory of Open Access Journals (Sweden)

    Martina eDicker

    2016-01-01

    Full Text Available The production of therapeutic antibodies to combat pathogens and treat diseases such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG, less effort has been undertaken to express immunoglobulin A (IgA, which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumour activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered deltaXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that deltaXT/FT Nicotiana benthamiana plants can be engineered towards the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  6. A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vester-Christensen, Malene B.; Goth, Christoffer K.

    2011-01-01

    Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition...... and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc......-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model...

  7. In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola compared with its reference medicinal product (GONAL-f.

    Directory of Open Access Journals (Sweden)

    Renato Mastrangeli

    Full Text Available Recombinant human follicle-stimulating hormone (r-hFSH is widely used in fertility treatment. Although biosimilar versions of r-hFSH (follitropin alfa are currently on the market, given their structural complexity and manufacturing process, it is important to thoroughly evaluate them in comparison with the reference product. This evaluation should focus on how they differ (e.g., active component molecular characteristics, impurities and potency, as this could be associated with clinical outcome. This study compared the site-specific glycosylation profile and batch-to-batch variability of the in-vivo bioactivity of Bemfola, a biosimilar follitropin alfa, with its reference medicinal product GONAL-f. The focus of this analysis was the site-specific glycosylation at asparagine (Asn 52 of the α-subunit of FSH, owing to the pivotal role of Asn52 glycosylation in FSH receptor (FSHR activation/signalling. Overall, Bemfola had bulkier glycan structures and greater sialylation than GONAL-f. The nominal specific activity for both Bemfola and GONAL-f is 13,636 IU/mg. Taking into account both the determined potency and the nominal amount the average specific activity of Bemfola was 14,522 IU/mg (105.6% of the nominal value, which was greater than the average specific activity observed for GONAL-f (13,159 IU/mg; 97.3% of the nominal value; p = 0.0048, although this was within the range stated in the product label. A higher batch-to-batch variability was also observed for Bemfola versus GONAL-f (coefficient of variation: 8.3% vs 5.8%. A different glycan profile was observed at Asn52 in Bemfola compared with GONAL-f (a lower proportion of bi-antennary structures [~53% vs ~77%], and a higher proportion of tri-antennary [~41% vs ~23%] and tetra-antennary structures [~5% vs <1%]. These differences in the Asn52 glycan profile might potentially lead to differences in FSHR activation. This, together with the greater bioactivity and higher batch-to-batch variability

  8. fasting blood glucose and glycosylated haemoglobin levels

    African Journals Online (AJOL)

    Prince Acheampong

    (HbA1c) levels of diabetes mellitus patients as an index of glycaemic control. It was a prospective case- finding study using laboratory and general practice records. ... range of glycosylated haemoglobins, and the cut-off values for some clinical .... quality of glycaemic control by glycated haemoglobin in out-patient diabetic ...

  9. Proteomics and pathway analysis of N-glycosylated mammary gland proteins in response to Escherichia coli mastitis in cattle.

    Science.gov (United States)

    Yang, Yongxin; Shen, Weijun; Zhao, Xiaowei; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong

    2014-06-01

    The aim of this study was to investigate the N-linked glycosylated protein profile of mammary tissue from healthy cows and cows with mastitis due to Escherichia coli, in order to understand the molecular mechanisms of the host response to mastitis. N-glycopeptides were enriched with a lectin mixture and identified through high-accuracy mass spectrometry. A total of 551 N-glycosylation sites, corresponding to 294 proteins, were identified in the mammary tissues of healthy cows; these glycoproteins were categorised into three functional groups and clustered into 11 specific pathways. A total of 511 N-glycosylation sites, corresponding to 283 glycosylated proteins, were detected in the mammary tissues of cows with E. coli mastitis. There were differences in N-glycosylation sites in 98 proteins in the mammary tissues of healthy cows and cows with mastitis due to E. coli. Most proteins with altered glycosylation were those involved in responses to stress, cell adhesion and the immune response, and were assigned to five specific pathways based on their gene ontology annotation. The results from this study show that the glycosylated protein profile in the mammary tissues of healthy and mastitic cows are different, and altered glycoproteins are associated with several pathways, including the lysosome and O-glycan biosynthesis pathways. Copyright © 2014. Published by Elsevier Ltd.

  10. Anti-interleukin-1 alpha autoantibodies in humans: Characterization, isotype distribution, and receptor-binding inhibition--higher frequency in Schnitzler's syndrome (urticaria and macroglobulinemia)

    International Nuclear Information System (INIS)

    Saurat, J.H.; Schifferli, J.; Steiger, G.; Dayer, J.M.; Didierjean, L.

    1991-01-01

    Since autoantibodies (Abs) to cytokines may modify their biologic activities, high-affinity binding factors for interleukin-1 alpha (IL-1 alpha BF) were characterized in human sera. IL-1 alpha BF was identified as IgG (1) by sucrose density-gradient centrifugation followed by immunodiffusion autoradiography, (2) by ligand-blotting method, (3) by ligand binding to affinity-immobilized serum IgG, and (4) by IgG affinity purification followed by sucrose density-gradient centrifugation. IL-1 alpha binding activity resided in the F(ab)2 fragment. The apparent equilibrium constant was in the range of IgG found after immunization with conventional antigens (i.e., 10(-9) to 10(-10) mol/L). Anti-IL-1 alpha IgG auto-Abs represented only an extremely small fraction of total IgG (less than 1/10(-5)). Some sera with IL-1 alpha BF and purified IgG thereof were able to inhibit by 96% to 98% the binding of human recombinant IL-1 alpha to its receptor on murine thymoma EL4-6.1 cells, whereas other sera did not. When 125I-labeled anti-IL-1 alpha IgG complexes were injected into rats, they prolonged the plasma half-life of 125I-labeled IL-1 alpha several fold and altered its tissue distribution. The predominant class was IgG (12/19), mainly IgG4 (9/19), but in five of the sera, anti-IL-1 alpha IgA was also detected. In a screening of 271 sera, IL-1 alpha BF was detected in 17/98 normal subjects and was not more frequent in several control groups of patients, except in patients with Schnitzler's syndrome (fever, chronic urticaria, bone pain, and monoclonal IgM paraprotein) (6/9; p less than 0.005). The pathologic significance of these auto-Abs remains to be determined

  11. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey; Joshi, Hiren Jitendra

    2013-01-01

    Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is hig......Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O......-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O...

  12. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype

    NARCIS (Netherlands)

    Iqbal, Z.; Shahzad, M.; Vissers, L.E.L.M.; Scherpenzeel, M. van; Gilissen, C.; Razzaq, A.; Zahoor, M.Y.; Khan, S.N.; Kleefstra, T.; Veltman, J.A.; Brouwer, A.P.M. de; Lefeber, D.J.; Bokhoven, H. van; Riazuddin, S.

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a large group of recessive multisystem disorders caused by impaired protein or lipid glycosylation. The CDG-I subgroup is characterized by protein N-glycosylation defects originating in the endoplasmic reticulum. The genetic defect is known for 17

  13. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G

    1991-01-01

    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...

  14. Modeling the mechanism of glycosylation reactions between ethanol, 1,2-ethanediol and methoxymethanol.

    Science.gov (United States)

    Azofra, Luis Miguel; Alkorta, Ibon; Toro-Labbé, Alejandro; Elguero, José

    2013-09-07

    The mechanism of the S(N)2 model glycosylation reaction between ethanol, 1,2-ethanediol and methoxymethanol has been studied theoretically at the B3LYP/6-311+G(d,p) computational level. Three different types of reactions have been explored: (i) the exchange of hydroxyl groups between these model systems; (ii) the basic catalysis reactions by combination of the substrates as glycosyl donors (neutral species) and acceptors (enolate species); and (iii) the effect on the reaction profile of an explicit H2O molecule in the reactions considered in (ii). The reaction force, the electronic chemical potential and the reaction electronic flux have been characterized for the reaction path in each case. Energy calculations show that methoxymethanol is the worst glycosyl donor model among the ones studied here, while 1,2-ethanediol is the best, having the lowest activation barrier of 74.7 kJ mol(-1) for the reaction between this one and the ethanolate as the glycosyl acceptor model. In general, the presence of direct interactions between the atoms involved in the penta-coordinated TS increases the activation energies of the processes.

  15. N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase.

    Science.gov (United States)

    Navarre, Catherine; Smargiasso, Nicolas; Duvivier, Laurent; Nader, Joseph; Far, Johann; De Pauw, Edwin; Boutry, Marc

    2017-06-01

    Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.

  16. Comparative Glycoproteome Analysis: Dynamics of Protein Glycosylation during Metamorphic Transition from Pelagic to Benthic Life Stages in Three Invertebrates

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2012-02-03

    The life cycle of most benthic marine invertebrates has two distinct stages: the pelagic larval stage and the sessile juvenile stage. The transition between the larval stage and the juvenile stage is often abrupt and may be triggered by post-translational modification of proteins. Glycosylation, a very important post-translational modification, influences the biological activity of proteins. We used two-dimensional gel electrophoresis (2-DE) followed by glycoprotein-specific fluorescence staining and mass spectrometry with the goal of identifying glycosylation pattern changes during larval settlement and metamorphosis in barnacles, bryozoans, and polychaetes. Our results revealed substantial changes in the protein glycosylation patterns from larval to juvenile stages. Before metamorphosis, the degree of protein glycosylation was high in the barnacle Balanus (=Amphibalanus) amphitrite and the spionid polychaete Pseudopolydora vexillosa, whereas it increased after metamorphosis in the bryozoan Bugula neritina. We identified 19 abundant and differentially glycosylated proteins in these three species. Among the proteins, cellular stress- and metabolism-related proteins exhibited distinct glycosylation in B. amphitrite and B. neritina, whereas fatty acid metabolism-related proteins were abundantly glycosylated in P. vexillosa. Furthermore, the protein and gene expression analysis of some selected glycoproteins revealed that the degree of protein glycosylation did not always complement with transcriptional and translational changes associated with the larval-juvenile transition. The current study provides preliminary information on protein glycosylation in marine invertebrates that will serve as a solid basis for future comprehensive analysis of glycobiology during larval settlement and metamorphosis. © 2011 American Chemical Society.

  17. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy

    NARCIS (Netherlands)

    A. Bondt (Albert); M. Wuhrer (Manfred); T.M. Kuijper (Martijn); J.M.W. Hazes (Mieke); R.J.E.M. Dolhain (Radboud)

    2016-01-01

    textabstractBackground: Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. Methods:

  18. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J. [Medical Physics Research Group, Physics Department, Education College, Salahaddin University-Erbil, Iraqi Kurdistan (Iraq)

    2015-07-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  19. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    International Nuclear Information System (INIS)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J.

    2015-01-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ( 226 Ra, and 137 Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm 2 ) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  20. Alpha-amidated peptides derived from pro-opiomelanocortin in human pituitary tumours

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Human pituitary tumours, obtained at surgery for Cushing's disease and Nelson's syndrome, were extracted and the content and molecular forms of pro-opiomelanocortin (POMC)-derived peptides determined by radioimmunoassay, gel chromatography, reversed-phase high-performance liquid chromatography....... In conclusion, all the molecular forms of the amidated peptides detected in tumours from patients with Cushing's disease and Nelson's syndrome were similar to the molecular forms found in the normal human pituitary. The main difference between the tumours and the normal pituitary was the greater amount...... (HPLC) and sequence analysis. In the tumours from patients with Cushing's disease the mean concentrations of amidated peptides relative to the total amount of POMC were as follows: alpha-MSH, 1.7%; amidated gamma-MSH (gamma 1-MSH), 8.5% and the peptide linking gamma-MSH and ACTH in the precursor (hinge...

  1. The glycosylated IgII extracellular domain of EMMPRIN is implicated in the induction of MMP-2.

    Science.gov (United States)

    Papadimitropoulou, Adriana; Mamalaki, Avgi

    2013-07-01

    EMMPRIN is a widely expressed transmembrane glycoprotein that plays important roles in many physiological and pathological processes, such as tumor invasion and metastasis. It stimulates the production of matrix metalloproteinase (MMPs) by tumor-associated fibroblasts. In the present study, our aim was to (a) to investigate if the IgII loop domain of the extracellular domain (ECD) of EMMPRIN contributes to the MMP production by fibroblasts and (b) to evaluate the significance of glycosylation in this process. For this purpose, we expressed the ECD, IgI, or IgII domains of EMMPRIN, in their glycosylated and non-glycosylated forms, in the heterologous expression systems of P. pastoris and E. coli, respectively. Dermal fibroblasts were treated with purified recombinant domains and proteins from cell extracts and supernatants were analyzed by Western blot and zymography assays. Fibroblasts treated with ECD-, IgI-, and IgII-glycosylated domains of EMMPRIN significantly stimulated the gelatinolytic activity of MMP-2, compared to untreated fibroblasts, whereas no significant effect was observed after treatment with the non-glycosylated ECD, IgI, and IgII domains. Western blot analysis from cell extracts and supernatants revealed that only the glycosylated forms were able to stimulate MMP-2 production and secretion, respectively. Quantitative PCR revealed that this effect was not attributed to transcriptional alterations. This study showed that N-glycosylation was a prerequisite for efficient MMP-2 production, with the IgII loop domain contributing significantly to this process. Perturbation of the function of IgII-EMMPRIN loop could have potential therapeutic value in the inhibition of MMP-2-dependent cancer cell invasion and metastasis.

  2. SIKLODEKSTRIN GLIKOSIL TRANSFERASE DAN PEMANFAATANNYA DALAM INDUSTRI [Cyclodextrin Glycosyl Transferase and its application in industries

    Directory of Open Access Journals (Sweden)

    Budiasih Wahyuntari

    2005-12-01

    Full Text Available Cyclodextrin glycosyl transferase (CGT-ase is mainly produced by Bacilli. Systematical name of the enzyme is E.C. 2.4.1.19 a-1,4 glucan-4-glycosyl transferase. The enzyme catalyzes hydrolysis of starch intramolecular, and intermolecular transglycosylation of a-1,4, glucan chains. Cyclodextrins are a-1,4 linked cyclic oligosaccharides resulting from enzymatic degradation of starch by cyclodextrin glycosyl transferase through untramolecular transglycosylation. The major cyclodextrins are made up of 6, 7 and 8 glucopyranose units which are known as a-, b-, and y-cyclodextrin. All CGT-ase catalyze three kinds of cyclodextrins, the proportion of the cyclodextrins depends on the enzyme source and reaction conditions. The intermolecular transglycosylation ability of the enzyme has been applied in transfering glycosyl residues into suitable acceptor. Transglycosylation by the enzymes have been tested to improve solubility of some flavonoids and to favor precipitation ci some glycosides.

  3. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling.

    Directory of Open Access Journals (Sweden)

    Suresh Marada

    2015-08-01

    Full Text Available The G protein-coupled receptor (GPCR Smoothened (Smo is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.

  4. Identification of distal regulatory regions in the human alpha IIb gene locus necessary for consistent, high-level megakaryocyte expression.

    Science.gov (United States)

    Thornton, Michael A; Zhang, Chunyan; Kowalska, Maria A; Poncz, Mortimer

    2002-11-15

    The alphaIIb/beta3-integrin receptor is present at high levels only in megakaryocytes and platelets. Its presence on platelets is critical for hemostasis. The tissue-specific nature of this receptor's expression is secondary to the restricted expression of alphaIIb, and studies of the alphaIIb proximal promoter have served as a model of a megakaryocyte-specific promoter. We have examined the alphaIIb gene locus for distal regulatory elements. Sequence comparison between the human (h) and murine (m) alphaIIb loci revealed high levels of conservation at intergenic regions both 5' and 3' to the alphaIIb gene. Additionally, deoxyribonuclease (DNase) I sensitivity mapping defined tissue-specific hypersensitive (HS) sites that coincide, in part, with these conserved regions. Transgenic mice containing various lengths of the h(alpha)IIb gene locus, which included or excluded the various conserved/HS regions, demonstrated that the proximal promoter was sufficient for tissue specificity, but that a region 2.5 to 7.1 kb upstream of the h(alpha)IIb gene was necessary for consistent expression. Another region 2.2 to 7.4 kb downstream of the gene enhanced expression 1000-fold and led to levels of h(alpha)IIb mRNA that were about 30% of the native m(alpha)IIb mRNA level. These constructs also resulted in detectable h(alpha)IIb/m(beta)3 on the platelet surface. This work not only confirms the importance of the proximal promoter of the alphaIIb gene for tissue specificity, but also characterizes the distal organization of the alphaIIb gene locus and provides an initial localization of 2 important regulatory regions needed for the expression of the alphaIIb gene at high levels during megakaryopoiesis.

  5. Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist.

    Science.gov (United States)

    Nutt, David J; Besson, Marie; Wilson, Susan J; Dawson, Gerard R; Lingford-Hughes, Anne R

    2007-12-01

    Alcohol produces many subjective and objective effects in man including pleasure, sedation, anxiolysis, plus impaired eye movements and memory. In human volunteers we have used a newly available GABA-A/benzodiazepine receptor inverse agonist that is selective for the alpha5 subtype (a5IA) to evaluate the role of this subtype in mediating these effects of alcohol on the brain. After pre-treatment with a5IA, we found almost complete blockade of the marked impairment caused by alcohol (mean breath concentration 150mg/100ml) of word list learning and partial but non-significant reversal of subjective sedation without effects on other measures such as intoxication, liking, and slowing of eye movements. This action was not due to alterations in alcohol kinetics and so provides the first proof of concept that selectively decreasing GABA-A receptor function at a specific receptor subtype can offset some actions of alcohol in humans. It also supports growing evidence for a key role of the alpha5 subtype in memory. Inverse agonists at other GABA-A receptor subtypes may prove able to reverse other actions of alcohol, and so offer a new approach to understanding the actions of alcohol in the human brain and in the treatment of alcohol related disorders in humans.

  6. Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver

    NARCIS (Netherlands)

    Verhoeven, N. M.; Wanders, R. J.; Schor, D. S.; Jansen, G. A.; Jakobs, C.

    1997-01-01

    The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied.

  7. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35.

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    Full Text Available The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS, which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs in their C-termini. Hemin-binding protein 35 (HBP35, which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.

  8. TNF-alpha, leptin, and lymphocyte function in human aging

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.

    2000-01-01

    Aging is associated with increased inflammatory activity and concomitant decreased T cell mediated immune responses. Leptin may provide a link between inflammation and T cell function in aging. The aim of the study was to investigate if plasma levels of tumor necrosis factor (TNF)-alpha were...... there was no difference with regard to IL-2 production. Furthermore, there were no age-related differences in serum levels of leptin, However, women had higher levels than men. In the elderly people, serum levels of leptin were correlated with TNF-alpha in univariate regression analysis and in a multiple linear...... regression analysis adjusting for the effect of gender and body mass index. Furthermore, TNF-alpha, but not leptin, was positively correlated to sIL-2R and negatively correlated to IL-2 production. In conclusion, increased plasma levels of TNF-alpha in aging is associated with poor IL-2 production ex vivo...

  9. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry

    NARCIS (Netherlands)

    Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2017-01-01

    The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis

  10. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer

    Directory of Open Access Journals (Sweden)

    Justine H. Dewald

    2016-11-01

    Full Text Available Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.

  11. General N-and O-Linked Glycosylation of Lipoproteins in Mycoplasmas and Role of Exogenous Oligosaccharide.

    Science.gov (United States)

    Daubenspeck, James M; Jordan, David S; Simmons, Warren; Renfrow, Matthew B; Dybvig, Kevin

    2015-01-01

    The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.

  12. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone.

    Science.gov (United States)

    Fujimori, Miki; Kadota, Kazunori; Kato, Kouki; Seto, Yoshiki; Onoue, Satomi; Sato, Hideyuki; Ueda, Hiroshi; Tozuka, Yuichi

    2016-01-01

    The improvement in the solubility and dissolution rate may promote a superior absorption property towards the human body. The spray-dried powders (SDPs) of ipriflavone, which was used as a model hydrophobic flavone, with trans-glycosylated rutin (Rutin-G) showed the highest solubilizing effect of ipriflavone among three types of trans-glycosylated food additives. The SDPs of ipriflavone with Rutin-G have both a significant higher dissolution rate and solubility enhancement of ipriflavone. This spray-dried formulation of ipriflavone with Rutin-G exhibited a low hygroscopicity as a critical factor in product preservation. In addition, an improvement in the oral absorption of ipriflavone was achieved by means of preparing composite particles of ipriflavone/Rutin-G via spray drying, indicating a 4.3-fold increase in the area under the plasma concentration-time curve compared with that of untreated ipriflavone. These phenomena could be applicable to food ingredients involving hydrophobic flavones for producing healthy food with a high quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of......-glycans found in different organisms and their principle biosynthetic pathways...

  14. Role of protein glycosylation on the expression of muscarinic receptors of N4TG1 neuroblastoma cells

    International Nuclear Information System (INIS)

    Ahmad, A.; Chiang, P.K.

    1986-01-01

    Muscarinic acetylcholine receptors (mAChR) are glycoproteins. Experiments were conducted to determine whether active glycosylation of proteins in N4TG1 neuroblastoma cells could affect the expression of muscarinic receptors on the cell surface. The binding of radioactive N-methylscopolamine, a membrane impermeable ligand, to intact cells was used as a measure of mAChR. In the presence of the inhibitors of glycosylation, such as tunicamycin, monensin and amphomycin, N-linked glycosylation of proteins in the N4TG1 cells was inhibited, as measured by the incorporation of radioactive glucosamine or mannose in proteins. At the concentrations of tunicamycin and monensin used, the glycosylation of proteins after 3 hours were drastically reduced, but the number of mAChR in the cells was not altered. The apparent lack of effect within a short incubation period could be attributed to the presence of preformed oligosaccharide dolichol readily available for N-glycosylation. However, after 24 hours, tunicamycin (0.05 μg/ml) caused a decrease in the number of mAChR by 17% without having any effect on protein synthesis. Therefore, de novo glycosylation of proteins may be required for the expression of mAChR receptors in the N4TG1 neuroblastoma cell surface

  15. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.

    Science.gov (United States)

    Karst, Daniel J; Scibona, Ernesto; Serra, Elisa; Bielser, Jean-Marc; Souquet, Jonathan; Stettler, Matthieu; Broly, Hervé; Soos, Miroslav; Morbidelli, Massimo; Villiger, Thomas K

    2017-09-01

    Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can

  16. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  17. Differences in genotoxic activity of alpha-Ni3S2 on human lymphocytes from nickel-hypersensitized and nickel-unsensitized donors.

    Science.gov (United States)

    Arrouijal, F Z; Marzin, D; Hildebrand, H F; Pestel, J; Haguenoer, J M

    1992-05-01

    The genotoxic activity of alpha-Ni3S2 was assessed on human lymphocytes from nickel-hypersensitized (SSL) and nickel-unsensitized (USL) subjects. Three genotoxicity tests were performed: the sister chromatid exchange (SCE) test, the metaphase analysis test and the micronucleus test. (i) The SCE test (3-100 micrograms/ml) showed a weak but statistically significant increase in the number of SCE in both lymphocyte types with respect to controls, USL presenting a slightly higher SCE incidence but only at one concentration. (ii) The metaphase analysis test demonstrated a high dose-dependent clastogenic activity of alpha-Ni3S2 in both lymphocyte types. The frequency of chromosomal anomalies was significantly higher in USL than in SSL for all concentrations applied. (iii) The micronucleus test confirmed the dose-dependent clastogenic activity of alpha-Ni3S2 and the differences already observed between USL and SSL, i.e. the number of cells with micronuclei was statistically higher in USL. Finally, the incorporation study with alpha-63Ni3S2 showed a higher uptake of its solubilized fraction by USL. This allows an explanation of the different genotoxic action of nickel on the two cell types. In this study we demonstrated that hypersensitivity has an influence on the incorporation of alpha-Ni3S2 and subsequently on the different induction of chromosomal aberrations in human lymphocytes.

  18. Stannylene‐Mediated Regioselective 6‐O‐Glycosylation of Unprotected Phenyl 1‐Thioglycopyranosides

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    2013-01-01

    acetal, and then subjected to selective glycosylation at the 6‐position with the Koenigs–Knorr protocol. Peracylated glycosyl bromides of D‐glucose, D‐galactose, D‐mannose and D‐glucosamine were employed as the donors to give the corresponding (1→6)‐linked disaccharides in moderate to good yields......‐thio‐β‐D‐glucopyranoside gave rise to the corresponding (1→6)‐linked trisaccharides in moderate yields....

  19. Divergent effects of 17-{beta}-estradiol on human vascular smooth muscle and endothelial cell function diminishes TNF-{alpha}-induced neointima formation

    Energy Technology Data Exchange (ETDEWEB)

    Nintasen, Rungrat [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Riches, Kirsten; Mughal, Romana S. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Viriyavejakul, Parnpen; Chaisri, Urai; Maneerat, Yaowapa [Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University (Thailand); Turner, Neil A. [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom); Porter, Karen E., E-mail: medkep@leeds.ac.uk [Division of Cardiovascular Medicine, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT (United Kingdom); Multidisciplinary Cardiovascular Research Center (MCRC), University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there

  20. GtfA and GtfB Are Both Required for Protein O-Glycosylation in Lactobacillus plantarum

    Science.gov (United States)

    Lee, I-Chiao; van Swam, Iris I.; Tomita, Satoru; Morsomme, Pierre; Rolain, Thomas; Hols, Pascal; Bron, Peter A.

    2014-01-01

    Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively. PMID:24532775

  1. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome.

    Science.gov (United States)

    Waye, J S; Willard, H F

    1986-09-01

    The centromeric regions of all human chromosomes are characterized by distinct subsets of a diverse tandemly repeated DNA family, alpha satellite. On human chromosome 17, the predominant form of alpha satellite is a 2.7-kilobase-pair higher-order repeat unit consisting of 16 alphoid monomers. We present the complete nucleotide sequence of the 16-monomer repeat, which is present in 500 to 1,000 copies per chromosome 17, as well as that of a less abundant 15-monomer repeat, also from chromosome 17. These repeat units were approximately 98% identical in sequence, differing by the exclusion of precisely 1 monomer from the 15-monomer repeat. Homologous unequal crossing-over is suggested as a probable mechanism by which the different repeat lengths on chromosome 17 were generated, and the putative site of such a recombination event is identified. The monomer organization of the chromosome 17 higher-order repeat unit is based, in part, on tandemly repeated pentamers. A similar pentameric suborganization has been previously demonstrated for alpha satellite of the human X chromosome. Despite the organizational similarities, substantial sequence divergence distinguishes these subsets. Hybridization experiments indicate that the chromosome 17 and X subsets are more similar to each other than to the subsets found on several other human chromosomes. We suggest that the chromosome 17 and X alpha satellite subsets may be related components of a larger alphoid subfamily which have evolved from a common ancestral repeat into the contemporary chromosome-specific subsets.

  2. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    Science.gov (United States)

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413

  3. Discrimination between glycosylation patterns of therapeutic antibodies using a microfluidic platform, MALDI-MS and multivariate statistics.

    Science.gov (United States)

    Thuy, Tran Thi; Tengstrand, Erik; Aberg, Magnus; Thorsén, Gunnar

    2012-11-01

    Optimal glycosylation with respect to the efficacy, serum half-life time, and immunogenic properties is essential in the generation of therapeutic antibodies. The glycosylation pattern can be affected by several different parameters during the manufacture of antibodies and may change significantly over cultivation time. Fast and robust methods for determination of the glycosylation patterns of therapeutic antibodies are therefore needed. We have recently presented an efficient method for the determination of glycans on therapeutic antibodies using a microfluidic CD platform for sample preparation prior to matrix-assisted laser-desorption mass spectrometry analysis. In the present work, this method is applied to analyse the glycosylation patterns of three commercially available therapeutic antibodies and one intended for therapeutic use. Two of the antibodies produced in mouse myeloma cell line (SP2/0) and one produced in Chinese hamster ovary (CHO) cells exhibited similar glycosylation patterns but could still be readily differentiated from each other using multivariate statistical methods. The two antibodies with most similar glycosylation patterns were also studied in an assessment of the method's applicability for quality control of therapeutic antibodies. The method presented in this paper is highly automated and rapid. It can therefore efficiently generate data that helps to keep a production process within the desired design space or assess that an identical product is being produced after changes to the process. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Science.gov (United States)

    MacDonald, Patrick E; De Marinis, Yang Zhang; Ramracheya, Reshma; Salehi, Albert; Ma, Xiaosong; Johnson, Paul R V; Cox, Roger; Eliasson, Lena; Rorsman, Patrik

    2007-06-01

    Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  5. Cow's milk increases the activities of human nuclear receptors peroxisome proliferator-activated receptors alpha and delta and retinoid X receptor alpha involved in the regulation of energy homeostasis, obesity, and inflammation.

    Science.gov (United States)

    Suhara, W; Koide, H; Okuzawa, T; Hayashi, D; Hashimoto, T; Kojo, H

    2009-09-01

    The nuclear peroxisome proliferator-activated receptors (PPAR) have been shown to play crucial roles in regulating energy homeostasis including lipid and carbohydrate metabolism, inflammatory responses, and cell proliferation, differentiation, and survival. Because PPAR agonists have the potential to prevent or ameliorate diseases such as hyperlipidemia, diabetes, atherosclerosis, and obesity, we have explored new natural agonists for PPAR. For this purpose, cow's milk was tested for agonistic activity toward human PPAR subtypes using a reporter gene assay. Milk increased human PPARalpha activity in a dose-dependent manner with a 3.2-fold increase at 0.5% (vol/vol). It also enhanced human PPARdelta activity in a dose-dependent manner with an 11.5-fold increase at 0.5%. However, it only slightly affected human PPARgamma activity. Ice cream, butter, and yogurt also increased the activities of PPARalpha and PPARdelta, whereas vegetable cream affected activity of PPARdelta but not PPARalpha. Skim milk enhanced the activity of PPAR to a lesser degree than regular milk. Milk and fresh cream increased the activity of human retinoid X receptor (RXR)alpha as well as PPARalpha and PPARdelta, whereas neither affected vitamin D3 receptor, estrogen receptors alpha and beta, or thyroid receptors alpha and beta. Both milk and fresh cream were shown by quantitative real-time PCR to increase the quantity of mRNA for uncoupling protein 2 (UCP2), an energy expenditure gene, in a dose-dependent manner. The increase in UCP2 mRNA was found to be reduced by treatment with PPARdelta-short interfering (si)RNA. This study unambiguously clarified at the cellular level that cow's milk increased the activities of human PPARalpha, PPARdelta, and RXRalpha. The possible role in enhancing the activities of PPARalpha, PPARdelta, and RXRalpha, and the health benefits of cow's milk were discussed.

  6. Fetal antigen 2: an amniotic protein identified as the aminopropeptide of the alpha 1 chain of human procollagen type I

    DEFF Research Database (Denmark)

    Teisner, B; Rasmussen, H B; Højrup, P

    1992-01-01

    -PAGE analysis gave an M(r) = 27 kDa under reducing and non-reducing conditions for both forms, whereas the exact M(r) determined by mass spectrometry was 14,343 +/- 3 Da. FA2 was N-terminally blocked and after tryptic digestion the amino acid composition and sequences of the peptides showed identity...... with the aminopropeptide of the alpha 1 chain of human procollagen type I as determined by nucleotide sequences. After oxidative procedures normally employed for radio-iodination (iodogen and chloramine-T), FA2 lost its immunoreactivity. An antigen which cross-reacted with polyclonal rabbit anti-human FA2 was demonstrated...... to that of FA2 in human skin. FA2 is a circulating form of the aminopropeptide of the alpha 1 chain of procollagen type I, and this is the first description of its isolation and structural characterization in humans. Udgivelsesdato: 1992-Dec...

  7. Mining the Virgin Land of Neurotoxicology: A Novel Paradigm of Neurotoxic Peptides Action on Glycosylated Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Zhirui Liu

    2012-01-01

    Full Text Available Voltage-gated sodium channels (VGSCs are important membrane protein carrying on the molecular basis for action potentials (AP in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.

  8. Comprehensive quantitative comparison of the membrane proteome and PTM-ome of human embryonic stem cells and neural stem cells

    DEFF Research Database (Denmark)

    Braga, Marcella Nunes de Melo; Schulz, Melanie; Jakobsen, Lene

    Introduction: Human embryonic stem cells (hESCs) can differentiate into all three germ layers and self-renew. Due to its ability to differentiate in vitro into human neural stem cells (hNSCs), which can further be differentiated into motor neurons and dopaminergic neurons, these cells are potential...... identified phosphorylated and SA glycosylated proteins, respectively. This study allowed us to identify several significantly regulated proteins during the differentiation process, including proteins involved in the early embryonic development as well as in the neural development. In the latter group...... of proteins we could identify a number of proteins associated with synaptic vesicles, which are vesicles that store neurotransmitters in the nerve-terminals. An example of an upregulated protein in hESCs is the gap junction alpha 1 (GJA1), a phosphorylated protein which plays a crucial role in embryonic...

  9. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    Science.gov (United States)

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  10. Glycosyl-Nucleolipids as new bioinspired amphiphiles.

    Science.gov (United States)

    Latxague, Laurent; Patwa, Amit; Amigues, Eric; Barthélémy, Philippe

    2013-09-30

    Four new Glycosyl-NucleoLipid (GNL) analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry) indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim) compared to the first generation of GNFs.

  11. Basal cell carcinoma is associated with high TNF-alpha release but nor with TNF-alpha polymorphism at position--308

    DEFF Research Database (Denmark)

    Skov, Lone; Allen, Michael H; Bang, Bo

    2003-01-01

    secretion of TNF-alpha has been identified in humans. We have therefore investigated the association of the --308 polymorphism with the risk of basal cell carcinoma (BCC) in humans. The frequency of TNF G and TNF A alleles among Caucasian patients with a previous BCC (n=191) and health adults (n-107) were...... compared. For the TNF--308 polymorphism there was significant association between the genotype or allele frequencies and having BCC. To determine whether patients with a previous BCC had an increased capacity to secrete TNF-alpha, mononuclear cells were stimulated with lipopolysaccharide. Mononuclear cells...... from patients with a previous BCC (n=15) demonstrated a significantly increased release of TNF-alpha upon stimulation with lipopolysaccharide (Pcells age-matched control subjects (n=16). Further studies of other polymorphisms of the TNF-alpha gene associated...

  12. Absorption and transport of deuterium-substituted 2R,4'R,8'R-alpha-tocopherol in human lipoproteins

    International Nuclear Information System (INIS)

    Traber, M.G.; Ingold, K.U.; Burton, G.W.; Kayden, H.J.

    1988-01-01

    Oral administration of a single dose of tri- or hexadeuterium substituted 2R,4'R,8'R-alpha-tocopheryl acetate (d3- or d6-alpha-T-Ac) to humans was used to follow the absorption and transport of vitamin E in plasma lipoproteins. Three hr after oral administration of d3-alpha-T-Ac (15 mg) to 2 subjects, plasma levels of d3-alpha-T were detectable; these increased up to 10 hr, reached a plateau at 24 hr, then decreased. Following administration of d6-alpha-T-Ac (15-16 mg) to 2 subjects, the percentage of deuterated tocopherol relative to the total tocopherol in chylomicrons increased more rapidly than the corresponding percentage in whole plasma. Chylomicrons and plasma lipoproteins were isolated from 2 additional subjects following administration of d3-alpha-T-Ac (140 or 60 mg). The percentage of deuterated tocopherol relative to the total tocopherol increased most rapidly in chylomicrons, then in very low density lipoproteins (VLDL), followed by essentially identical increases in low and high density lipoproteins (LDL and HDL, respectively) and lastly, in the red blood cells. This pattern of appearance of deuterated tocopherol is consistent with the concept that newly absorbed vitamin E is secreted by the intestine into chylomicrons; subsequently, chylomicron remnants are taken up by the liver from which the vitamin E is secreted in VLDL. The metabolism of VLDL in the circulation results in the simultaneous delivery of vitamin E into LDL and HDL

  13. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice.

    Science.gov (United States)

    Matsuoka, Yumiko; Swayne, David E; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-05-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans.

  14. Neuraminidase Stalk Length and Additional Glycosylation of the Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice▿

    Science.gov (United States)

    Matsuoka, Yumiko; Swayne, David E.; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-01-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans. PMID:19225004

  15. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Wan-Ling Ho

    2016-09-01

    Full Text Available Abstract Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs. The success of anti-disialoganglioside (GD2, a glycolipid antigen antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.

  16. Taraxacum officinale induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

    Science.gov (United States)

    Koo, Hyun-Na; Hong, Seung-Heon; Song, Bong-Keun; Kim, Cheorl-Ho; Yoo, Young-Hyun; Kim, Hyung-Min

    2004-01-16

    Taraxacum officinale (TO) has been frequently used as a remedy for women's disease (e.g. breast and uterus cancer) and disorders of the liver and gallbladder. Several earlier studies have indicated that TO exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we investigated the effect of TO on the cytotoxicity and production of cytokines in human hepatoma cell line, Hep G2. Our results show that TO decreased the cell viability by 26%, and significantly increased the tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha production compared with media control (about 1.6-fold for TNF-alpha, and 2.4-fold for IL-1alpha, P < 0.05). Also, TO strongly induced apoptosis of Hep G2 cells as determined by flow cytometry. Increased amounts of TNF-alpha and IL-1alpha contributed to TO-induced apoptosis. Anti-TNF-alpha and IL-1alpha antibodies almost abolished it. These results suggest that TO induces cytotoxicity through TNF-alpha and IL-1alpha secretion in Hep G2 cells.

  17. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing.

    Science.gov (United States)

    Franc, Vojtěch; Řehulka, Pavel; Raus, Martin; Stulík, Jiří; Novak, Jan; Renfrow, Matthew B; Šebela, Marek

    2013-10-30

    Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel

  18. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    Science.gov (United States)

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  19. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.

    Science.gov (United States)

    Ichikawa, Shoji; Gray, Amie K; Padgett, Leah R; Allen, Matthew R; Clinkenbeard, Erica L; Sarpa, Nicole M; White, Kenneth E; Econs, Michael J

    2014-10-01

    Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence ((176)RHTR(179)↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineate the role of glycosylation in the Fgf23 function, we generated an inducible FGF23 transgenic mouse expressing human mutant FGF23 (R176Q and R179Q) found in patients with autosomal dominant hypophosphatemic rickets (ADHR) and bred this animal to Galnt3 knockout mice, a model of familial tumoral calcinosis. Due to the low intact Fgf23 level, Galnt3 knockout mice with wild-type Fgf23 alleles were hyperphosphatemic. In contrast, carriers of the mutant FGF23 transgene, regardless of Galnt3 mutation status, had significantly higher serum intact FGF23, resulting in severe hypophosphatemia. Importantly, serum phosphorus and FGF23 were comparable between transgenic mice with or without normal Galnt3 alleles. To determine whether the presence of the ADHR mutation could improve biochemical and skeletal abnormalities in Galnt3-null mice, these mice were also mated to Fgf23 knock-in mice, carrying heterozygous or homozygous R176Q ADHR Fgf23 mutations. The knock-in mice with functional Galnt3 had normal Fgf23 but were slightly hypophosphatemic. The stabilized Fgf23 ADHR allele reversed the Galnt3-null phenotype and normalized total Fgf23, serum phosphorus, and bone Fgf23 mRNA. However, the skeletal phenotype was unaffected. In summary, these data demonstrate that O-glycosylation by ppGaINAc-T3 is only necessary for proper secretion of intact Fgf23 and, once secreted, does not affect Fgf23 function. Furthermore, the more stable Fgf23 ADHR mutant protein could normalize serum phosphorus

  20. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from

  1. Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study

    Directory of Open Access Journals (Sweden)

    Oshrat Levy-Ontman

    2014-02-01

    Full Text Available N-glycosylation is one of the most important post-translational modifications that influence protein polymorphism, including protein structures and their functions. Although this important biological process has been extensively studied in mammals, only limited knowledge exists regarding glycosylation in algae. The current research is focused on the red microalga Porphyridium sp., which is a potentially valuable source for various applications, such as skin therapy, food, and pharmaceuticals. The enzymes involved in the biosynthesis and processing of N-glycans remain undefined in this species, and the mechanism(s of their genetic regulation is completely unknown. In this study, we describe our pioneering attempt to understand the endoplasmic reticulum N-Glycosylation pathway in Porphyridium sp., using a bioinformatic approach. Homology searches, based on sequence similarities with genes encoding proteins involved in the ER N-glycosylation pathway (including their conserved parts were conducted using the TBLASTN function on the algae DNA scaffold contigs database. This approach led to the identification of 24 encoded-genes implicated with the ER N-glycosylation pathway in Porphyridium sp. Homologs were found for almost all known N-glycosylation protein sequences in the ER pathway of Porphyridium sp.; thus, suggesting that the ER-pathway is conserved; as it is in other organisms (animals, plants, yeasts, etc..

  2. Blood pressure reduction due to hemoglobin glycosylation in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Pedro Cabrales

    2008-08-01

    Full Text Available Pedro Cabrales1, Miguel A Salazar Vázquez2,3, Beatriz Y Salazar Vázquez3,4, Martha Rodríguez-Morán5, Marcos Intaglietta4, Fernando Guerrero-Romero51La Jolla Bioengineering Institute, La Jolla, California, USA; 2Hospital Regional No. 1, of the Mexican Social Security Institute, Victoria de Durango, Dgo. Mexico; 3Faculty of Medicine and Dept. of Physical Chemistry, Universidad Juárez del Estado de Durango, Victoria de Durango, Dgo. Mexico; 4Department of Bioengineering, University of California, San Diego, La Jolla, California, USA; 5Biomedical Research Unit, of the Mexican Social Security Institute, Victoria de Durango, Dgo. MexicoObjective: To test the hypothesis that glycosylation of hemoglobin constitutes a risk factor for hypertension.Methods: A total of 129 relative uniform diabetic subjects (86 women and 42 men were enrolled in a cross-sectional study. Exclusion criteria included alcohol consumption, smoking, ischemic heart disease, stroke, neoplasia, renal, hepatic, and chronic inflammatory disease. Systolic and diastolic pressures were recorded in subsequent days and mean arterial blood pressure (MAP was determined. Hemoglobin glycosylation was measured by determining the percentage glycosylated hemoglobin (HbA1c by means of the automated microparticle enzyme immunoassay test.Results: MAP was found to be independent of the concentration of HbA1c; however, correcting MAP for the variability in hematocrit, to evidence the level of vasoconstriction (or vasodilatation showed that MAP is negatively correlated with the concentration of HbA1c (p for trend <0.05, when patients treated for hypertension are excluded from the analysis. Patients treated for hypertension showed the opposite trend with increasing MAP as HbA1c increased (p for the difference in trends <0.05.Conclusions: Glycosylation per se appears to lead to blood pressure reduction in type 2 diabetic patients untreated for hypertension. Treatment for hypertension may be

  3. N-Glycosylation of cholera toxin B subunit: serendipity for novel plant-made vaccines?

    Directory of Open Access Journals (Sweden)

    Nobuyuki eMatoba

    2015-12-01

    Full Text Available The non-toxic B subunit of cholera toxin (CTB has attracted considerable interests from vaccinologists due to strong mucosal immunomodulatory effects and potential utility as a vaccine scaffold for heterologous antigens. Along with other conventional protein expression systems, various plant species have been used as recombinant production hosts for CTB and its fusion proteins. However, it has recently become clear that the protein is N-glycosylated within the endoplasmic reticulum of plant cells – a eukaryotic post-translational modification that is not present in native CTB. While functionally active aglycosylated variants have been successfully engineered to circumvent potential safety and regulatory issues related to glycosylation, this modification may actually provide advantageous characteristics to the protein as a vaccine platform. Based on data from our recent studies, I discuss the unique features of N-glycosylated CTB produced in plants for the development of novel vaccines.

  4. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs

    Directory of Open Access Journals (Sweden)

    Sheng Zhi-Ya

    2008-02-01

    Full Text Available Abstract Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM. When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%. When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor. Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP

  5. A K ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Patrick E MacDonald

    2007-06-01

    Full Text Available Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+ responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+ signalling was blocked, but was reversed by low concentrations (1-20 muM of the ATP-sensitive K(+ (KATP channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM. Higher diazoxide concentrations (>/=30 muM decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (10 muM were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM, glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+ (TTX and N-type Ca(2+ channels (omega-conotoxin, but not L-type Ca(2+ channels (nifedipine, prevented glucagon secretion. Both the N-type Ca(2+ channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.

  6. Unraveling the Molecular Complexity of O-Glycosylated Endogenous (N-Terminal) pro-B-Type Natriuretic Peptide Forms in Blood Plasma of Patients with Severe Heart Failure.

    Science.gov (United States)

    Halfinger, Bernhard; Hammerer-Lercher, Angelika; Amplatz, Benno; Sarg, Bettina; Kremser, Leopold; Lindner, Herbert H

    2017-01-01

    Currently, N-terminal pro-B-type natriuretic peptide (NT-proBNP) and its physiologically active counterpart, BNP, are most frequently used as biomarkers for diagnosis, prognosis, and disease monitoring of heart failure (HF). Commercial NT-proBNP and BNP immunoassays cross-react to varying degrees with unprocessed proBNP, which is also found in the circulation. ProBNP processing and immunoassay response are related to O-linked glycosylation of NT-proBNP and proBNP. There is a clear and urgent need to identify the glycosylation sites in the endogenously circulating peptides requested by the community to gain further insights into the different naturally occurring forms. The glycosylation sites of (NT-) proBNP (NT-proBNP and/or proBNP) were characterized in leftovers of heparinized plasma samples of severe HF patients (NT-proBNP: >10000 ng/L) by using tandem immunoaffinity purification, sequential exoglycosidase treatment for glycan trimming, β-elimination and Michael addition chemistry, as well as high-resolution nano-flow liquid chromatography electrospray multistage mass spectrometry. We describe 9 distinct glycosylation sites on circulating (NT-) proBNP in HF patients. Differentially glycosylated variants were detected based on highly accurate mass determination and multistage mass spectrometry. Remarkably, for each of the identified proteolytic glycopeptides, a nonglycosylated form also was detectable. Our results directly demonstrate for the first time a rather complex distribution of the endogenously circulating glycoforms by mass spectrometric analysis in HF patients, and show 9 glycosites in human (NT-) proBNP. This information may also have an impact on commercial immunoassays applying antibodies specific for the central region of (NT-) proBNP, which detect mostly nonglycosylated forms. © 2016 American Association for Clinical Chemistry.

  7. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  8. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha

    International Nuclear Information System (INIS)

    Whiteheart, S.W.; Shenbagamurthi, P.; Chen, L.; Cotter, R.J.; Hart, G.W.

    1989-01-01

    Elongation Factor 1 alpha (EF-1 alpha), an important eukaryotic translation factor, transports charged aminoacyl-tRNA from the cytosol to the ribosomes during poly-peptide synthesis. Metabolic radiolabeling with [ 3 H] ethanolamine shows that, in all cells examined, EF-1 alpha is the major radiolabeled protein. Radiolabeled EF-1 alpha has an apparent Mr = 53,000 and a basic isoelectric point. It is cytosolic and does not contain N-linked oligosaccharides. Trypsin digestion of murine EF-1 alpha generated two major [ 3 H]ethanolamine-labeled peptides. Three peptides were sequenced and were identical to two distinct regions of the human EF-1 alpha protein. Blank sequencing cycles coinciding with glutamic acid in the human cDNA-derived sequence were also found to release [ 3 H]ethanolamine, and compositional analysis of these peptides confirmed the presence of glutamic acid. Dansylation analysis demonstrates that the amine group of the ethanolamine is blocked. These results indicate that EF-1 alpha is posttranslationally modified by the covalent attachment of ethanolamine via an amide bond to at least two specific glutamic acid residues (Glu-301 and Glu-374). The hydroxyl group of the attached ethanolamine was shown by mass spectrometry and compositional analysis, to be further modified by the addition of a phosphoglycerol unit. This novel posttranslational modification may represent an important alteration of EF-1 alpha, comparable to the regulatory effects of posttranslational methylation of EF-1 alpha lysine residues

  9. Purification and functional characterization of nine human Aquaporins produced in Saccharomyces cerevisiae for the purpose of biophysical characterization

    DEFF Research Database (Denmark)

    Pedersen, Per Amstrup; Gourdon, Pontus Emanuel; Gotfryd, Kamil

    2017-01-01

    investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting...... in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were...... not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-to-express human...

  10. High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes

    Directory of Open Access Journals (Sweden)

    González Mario

    2012-09-01

    Full Text Available Abstract Background O-glycosylation of secretory proteins has been found to be an important factor in fungal biology and virulence. It consists in the addition of short glycosidic chains to Ser or Thr residues in the protein backbone via O-glycosidic bonds. Secretory proteins in fungi frequently display Ser/Thr rich regions that could be sites of extensive O-glycosylation. We have analyzed in silico the complete sets of putatively secretory proteins coded by eight fungal genomes (Botrytis cinerea, Magnaporthe grisea, Sclerotinia sclerotiorum, Ustilago maydis, Aspergillus nidulans, Neurospora crassa, Trichoderma reesei, and Saccharomyces cerevisiae in search of Ser/Thr-rich regions as well as regions predicted to be highly O-glycosylated by NetOGlyc (http://www.cbs.dtu.dk. Results By comparison with experimental data, NetOGlyc was found to overestimate the number of O-glycosylation sites in fungi by a factor of 1.5, but to be quite reliable in the prediction of highly O-glycosylated regions. About half of secretory proteins have at least one Ser/Thr-rich region, with a Ser/Thr content of at least 40% over an average length of 40 amino acids. Most secretory proteins in filamentous fungi were predicted to be O-glycosylated, sometimes in dozens or even hundreds of sites. Residues predicted to be O-glycosylated have a tendency to be grouped together forming hyper-O-glycosylated regions of varying length. Conclusions About one fourth of secretory fungal proteins were predicted to have at least one hyper-O-glycosylated region, which consists of 45 amino acids on average and displays at least one O-glycosylated Ser or Thr every four residues. These putative highly O-glycosylated regions can be found anywhere along the proteins but have a slight tendency to be at either one of the two ends.

  11. Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts

    Czech Academy of Sciences Publication Activity Database

    Desmet, T.; Soetaert, W.; Bojarová, Pavla; Křen, Vladimír; Dijkhuizen, L.; Eastwick-Field, V.; Schiller, A.

    2012-01-01

    Roč. 18, č. 35 (2012), s. 10786-10801 ISSN 0947-6539 Institutional support: RVO:61388971 Keywords : acceptor specificity * enzyme engineering * glycosylation Subject RIV: CE - Biochemistry Impact factor: 5.831, year: 2012

  12. The S-Layer Glycoprotein of the Crenarchaeote Sulfolobus acidocaldarius Is Glycosylated at Multiple Sites with Chitobiose-Linked N-Glycans

    Directory of Open Access Journals (Sweden)

    Elham Peyfoon

    2010-01-01

    Full Text Available Glycosylation of the S-layer of the crenarchaea Sulfolobus acidocaldarius has been investigated using glycoproteomic methodologies. The mature protein is predicted to contain 31 N-glycosylation consensus sites with approximately one third being found in the C-terminal domain spanning residues L1004-Q1395. Since this domain is rich in Lys and Arg and therefore relatively tractable to glycoproteomic analysis, this study has focused on mapping its N-glycosylation. Our analysis identified nine of the 11 consensus sequence sites, and all were found to be glycosylated. This constitutes a remarkably high glycosylation density in the C-terminal domain averaging one site for each stretch of 30–40 residues. Each of the glycosylation sites observed was shown to be modified with a heterogeneous family of glycans, with the largest having a composition Glc1Man2GlcNAc2 plus 6-sulfoquinovose (QuiS, consistent with the tribranched hexasaccharide previously reported in the cytochrome b558/566 of S. acidocaldarius. S. acidocaldarius is the only archaeal species whose N-glycans are known to be linked via the chitobiose core disaccharide that characterises the N-linked glycans of Eukarya.

  13. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  14. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Joshi Sandeep S

    2009-11-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP, vertical growth phase (VGP and metastatic (MET melanomas. Results HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part of the oxygen-dependent regulation domain in WM1366 and WM9 melanoma cells. Over-expression of HIF-1α and its splice variant in the RGP cell line SbCl2 resulted in a small increase in soft agar colony formation and a large increase in matrigel invasion relative to control transfected cells. Knockdown of HIF-1α expression by siRNA in the MET WM9 melanoma cell line resulted in a large decrease in both soft agar colony formation and matrigel invasion relative to cells treated with non-specific siRNA. There is a high level of ERK1/2 phosphorylation in WM9 cells, indicating an activated Ras-Raf-MEK-ERK1/2 MAPK pathway. Treatment of WM9 cells with 30 μM U0126 MEK inhibitor, decreased ERK1/2 phosphorylation and resulted in a decrease in HIF-1α expression. However, a 24 h treatment with 10 μM U0126 totally eliminated Erk1/2 phosphorylation, but did not change HIF-1alpha levels. Furthermore, siRNA knockdown of MEK siRNA did not change HIF-1alpha levels. Conclusion We speculate that metabolic products of U0126 decrease HIF-1alpha expression through "off target" effects. Overall our data suggest that increased HIF-1α expression under normoxic conditions contributes to some of the malignant phenotypes exhibited by human melanoma cells. The expanded role of HIF-1α in melanoma biology increases

  15. Glycosyl-Nucleolipids as New Bioinspired Amphiphiles

    Directory of Open Access Journals (Sweden)

    Philippe Barthélémy

    2013-09-01

    Full Text Available Four new Glycosyl-NucleoLipid (GNL analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim compared to the first generation of GNFs.

  16. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    Science.gov (United States)

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-06-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.

  17. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

    DEFF Research Database (Denmark)

    Fluhr, Herbert; Krenzer, Stefanie; Stein, Gerburg M

    2007-01-01

    The subtle interaction between the implanting embryo and the maternal endometrium plays a pivotal role during the process of implantation. Human endometrial stromal cells (ESCs) express Fas and the implanting trophoblast cells secrete Fas ligand (FASLG, FasL), suggesting a possible role for Fas......-mediated signaling during early implantation. Here we show that ESCs are primarily resistant to Fas-mediated apoptosis independently of their state of hormonal differentiation. Pre-treatment of ESCs with interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha sensitizes them to become apoptotic upon stimulation...... of Fas by an agonistic anti-Fas antibody. Incubation of ESCs with the early embryonic signal human chorionic gonadotropin (hCG, CGB) does not influence their reaction to Fas stimulation. The sensitizing effect of IFN-gamma and TNF-alpha was accompanied by a significant upregulation of Fas and FLICE...

  18. Conformational analysis of HAMLET, the folding variant of human alpha-lactalbumin associated with apoptosis.

    Science.gov (United States)

    Casbarra, Annarita; Birolo, Leila; Infusini, Giuseppe; Dal Piaz, Fabrizio; Svensson, Malin; Pucci, Piero; Svanborg, Catharina; Marino, Gennaro

    2004-05-01

    A combination of hydrogen/deuterium (H/D) exchange and limited proteolysis experiments coupled to mass spectrometry analysis was used to depict the conformation in solution of HAMLET, the folding variant of human alpha-lactalbumin, complexed to oleic acid, that induces apoptosis in tumor and immature cells. Although near- and far-UV CD and fluorescence spectroscopy were not able to discriminate between HAMLET and apo-alpha-lactalbumin, H/D exchange experiments clearly showed that they correspond to two distinct conformational states, with HAMLET incorporating a greater number of deuterium atoms than the apo and holo forms. Complementary proteolysis experiments revealed that HAMLET and apo are both accessible to proteases in the beta-domain but showed substantial differences in accessibility to proteases at specific sites. The overall results indicated that the conformational changes associated with the release of Ca2+ are not sufficient to induce the HAMLET conformation. Metal depletion might represent the first event to produce a partial unfolding in the beta-domain of alpha-lactalbumin, but some more unfolding is needed to generate the active conformation HAMLET, very likely allowing the protein to bind the C18:1 fatty acid moiety. On the basis of these data, a putative binding site of the oleic acid, which stabilizes the HAMLET conformation, is proposed.

  19. Ancient roots for polymorphism at the HLA-DQ. alpha. locus in primates

    Energy Technology Data Exchange (ETDEWEB)

    Gyllensten, U.B.; Erlich, H.A. (Cetus Corp., Emeryville, CA (USA))

    1989-12-01

    The genes encoding the human histocompatibility antigens (HLA) exhibit a remarkable degree of polymorphism as revealed by immunologic and molecular analyses. This extensive sequence polymorphism either may have been generated during the lifetime of the human species or could have arisen before speciation and been maintained in the contemporary human population by selection or, possibly, by genetic drift. These two hypotheses were examined using the polymerase chain reaction method to amplify polymorphic sequences from the DQ{alpha} locus, as well as the DX{alpha} locus, an homologous but nonexpressed locus, in a series of primates that diverged at known times. In general, the amino acid sequence of a specific human DQ{alpha} allelic type is more closely related to its chimpanzee or gorilla counterpart than to other human DQ{alpha} alleles. Phylogenetic analysis of the silent nucleotide position changes shows that the similarity of allelic types between species is due to common ancestry rather than convergent evolution. Thus, most of the polymorphism at the DQ{alpha} locus in the human species was already present at least 5 million years ago in the ancestral species that gave rise to the chimpanzee, gorilla, and human lineages. However, one of the DQ{alpha} alleles may have arisen after speciation by recombination between two ancestral alleles.

  20. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen; Saksena, Nitin K.

    2013-01-01

    architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may

  1. UGT74AN1, a Permissive Glycosyltransferase from Asclepias curassavica for the Regiospecific Steroid 3-O-Glycosylation.

    Science.gov (United States)

    Wen, Chao; Huang, Wei; Zhu, Xue-Lin; Li, Xiao-San; Zhang, Fan; Jiang, Ren-Wang

    2018-02-02

    A permissive steroid glycosyltransferase (UGT74AN1) from Asclepias curassavica exhibited robust capabilities for the regiospecific C3 glycosylation of cardiotonic steroids and C 21 steroid precursors, and unprecedented promiscuity toward 53 structurally diverse natural and unnatural compounds to form O-, N-, and S-glycosides, along with the catalytic reversibility for a one-pot transglycosylation reaction. These findings highlight UGT74AN1 as the first regiospecific catalyst for cardiotonic steroid C3 glycosylation and exhibit significant potential for glycosylation of diverse bioactive molecules in drug discovery.

  2. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Eletxigerra, U. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Martinez-Perdiguero, J. [CIC microGUNE, Arrasate-Mondragón (Spain); Merino, S. [Micro-NanoFabrication Unit, IK4-Tekniker, Eibar (Spain); CIC microGUNE, Arrasate-Mondragón (Spain); Villalonga, R.; Pingarrón, J.M. [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain); Campuzano, S., E-mail: susanacr@quim.ucm.es [Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid (Spain)

    2014-08-01

    Highlights: • Electrochemical magnetoimmunosensor for tumor necrosis factor alpha (TNFα) biomarker. • Sensitive and selective detection of TNFα in undiluted serum. • LOD achieved lower than the cut-off value established for relevant illnesses. • Useful and affordable alternative to ELISAs for TNFα determination in serum. - Abstract: An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H{sub 2}O{sub 2} as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL{sup −1} (36 fM) and 5.8 pg mL{sup −1} (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application.

  3. Amperometric magnetoimmunoassay for the direct detection of tumor necrosis factor alpha biomarker in human serum

    International Nuclear Information System (INIS)

    Eletxigerra, U.; Martinez-Perdiguero, J.; Merino, S.; Villalonga, R.; Pingarrón, J.M.; Campuzano, S.

    2014-01-01

    Highlights: • Electrochemical magnetoimmunosensor for tumor necrosis factor alpha (TNFα) biomarker. • Sensitive and selective detection of TNFα in undiluted serum. • LOD achieved lower than the cut-off value established for relevant illnesses. • Useful and affordable alternative to ELISAs for TNFα determination in serum. - Abstract: An amperometric immunoassay for the determination of tumor necrosis factor alpha (TNFα) protein biomarker in human serum based on the use of magnetic microbeads (MBs) and disposable screen-printed carbon electrodes (SPCEs) has been developed. The specifically modified microbeads were magnetically captured on the working electrode surface and the amperometric responses were measured at −0.20 V (vs. Ag pseudo-reference electrode), upon addition of hydroquinone (HQ) as electron transfer mediator and H 2 O 2 as the enzyme substrate. After a thorough optimization of the assay, extremely low limits of detection were achieved: 2.0 pg mL −1 (36 fM) and 5.8 pg mL −1 (105 fM) for standard solutions and spiked human serum, respectively. The simplicity, robustness and this clinically interesting LOD proved the developed TNFα immunoassay as a good contender for real clinical application

  4. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences

    DEFF Research Database (Denmark)

    Rivas, Matilde De Las; Lira-Navarrete, Erandi; Daniel, Earnest James Paul

    2017-01-01

    The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- A nd/or C-terminal prior glycosylation ...

  5. Characterization and application of a radioimmunoassay for reduced, carboxymethylated human luteinizing hormone. cap alpha. -subunit. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Keutmann, H.T.; Beitins, I.Z.; Johnson, L.; McArthur, J.W.

    1978-12-01

    We have established a double antibody RIA using a rabbit antiserum prepared against reduced, carboxymethylated (RCXM) human LH ..cap alpha..-subunit, with RCXM-..cap alpha.. as tracer and standard. This antiserum did not cross-react with any native gonadotropins or subunit, and reacted only weakly with RCXM-..cap alpha... A tryptic digest of RCXM ..cap alpha..-subunit was completely reactive, while chymotryptic digestion abolished all immunoreactivity. By testing with separate tryptic fragments, the recognition site could be localized to a segment close to the amino-terminus of the peptide chain. When applied to measurement of serum and urine, an immunoreactive species, parallel to RCXM ..cap alpha..-subunit by serial dilution, was found in concentrations of 1-2 ng/ml in serum and 3-4 ng/ml in urine. Similar levels of the immunoreactive component were found in conditions of elevated gonadotropins (e.g. pregnancy) as well as gonadotropin deficiency (panhypopituitarism and Kallmann's syndrome). After stimulation with LHRH, no rise was noted at times up to 6 h despite the fact that both LH and LH-..cap alpha.. were elevated. The data indicate that the sequence-specific antiserum may be detecting an immunoreactive form of ..cap alpha..-subunit of LH whose kinetics of appearance and disappearance differs from those of the native subunit.

  6. Acute toxicity of high doses of the glycoalkaloids, alpha-solanine and alpha-chaconine, in the Syrian Golden hamster

    DEFF Research Database (Denmark)

    Langkilde, Søren; Schrøder, Malene; Stewart, Derek

    2008-01-01

    Sprouted, stressed, or spoiled potato tubers have reportedly led to human acute intoxication, coma, and death when consumed in high amounts. These effects have been attributed to glycoalkaloids (GAs), primarily alpha-solanine and alpha-chaconine, naturally present in all potatoes. The level of GAs...

  7. Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution.

    Directory of Open Access Journals (Sweden)

    Ryan Williams

    Full Text Available Protein N-glycosylation is found in all domains of life and has a conserved role in glycoprotein folding and stability. In animals, glycoproteins transit through the Golgi where the N-glycans are trimmed and rebuilt with sequences that bind lectins, an innovation that greatly increases structural diversity and redundancy of glycoprotein-lectin interaction at the cell surface. Here we ask whether the natural tension between increasing diversity (glycan-protein interactions and site multiplicity (backup and status quo might be revealed by a phylogenic examination of glycoproteins and NXS/T(X ≠ P N-glycosylation sites. Site loss is more likely by mutation at Asn encoded by two adenosine (A-rich codons, while site gain is more probable by generating Ser or Thr downstream of an existing Asn. Thus mutations produce sites at novel positions more frequently than the reversal of recently lost sites, and therefore more paths though sequence space are made available to natural selection. An intra-species comparison of secretory and cytosolic proteins revealed a departure from equilibrium in sequences one-mutation-away from NXS/T and in (A content, indicating strong selective pressures and exploration of N-glycosylation positions during vertebrate evolution. Furthermore, secretory proteins have evolved at rates proportional to N-glycosylation site number, indicating adaptive interactions between the N-glycans and underlying protein. Given the topology of the genetic code, mutation of (A is more often nonsynonomous, and Lys, another target of many PTMs, is also encoded by two (A-rich codons. An examination of acetyl-Lys sites in proteins indicated similar evolutionary dynamics, consistent with asymmetry of the target and recognition portions of modified sites. Our results suggest that encoding asymmetry is an ancient mechanism of evolvability that increases diversity and experimentation with PTM site positions. Strong selective pressures on PTMs may have

  8. Identification of high-mannose and multiantennary complex-type N-linked glycans containing alpha-galactose epitopes from Nurse shark IgM heavy chain.

    Science.gov (United States)

    Harvey, David J; Crispin, Max; Moffatt, Beryl E; Smith, Sylvia L; Sim, Robert B; Rudd, Pauline M; Dwek, Raymond A

    2009-11-01

    MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man(6)GlcNAc(2) accompanied by small amounts of Man(5)GlcNAc(2), Man(7)GlcNAc(2) and Man(8)GlcNAc(2). Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (beta1-->4-linked to the central mannose) and with varying numbers of alpha-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.

  9. The Z-isomer of 11 beta-methoxy-17 alpha-[123I]iodovinylestradiol is a promising radioligand for estrogen receptor imaging in human breast cancer

    NARCIS (Netherlands)

    Rijks, L. J.; Boer, G. J.; Endert, E.; de Bruin, K.; Janssen, A. G.; van Royen, E. A.

    1997-01-01

    The potential of both stereoisomers of 11 beta-methoxy-17 alpha-[123I] iodovinylestradiol (E- and Z-[123I]MIVE) as suitable radioligands for imaging of estrogen receptor (ER)-positive human breast tumours was studied. The 17 alpha-[123I]iodovinylestradiol derivatives were prepared stereospecifically

  10. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa.

    Science.gov (United States)

    Daroch, Maurycy; Houghton, Catharine A; Moore, Jonathan K; Wilkinson, Mark C; Carnell, Andrew J; Bates, Andrew D; Iwanejko, Lesley A

    2014-05-10

    Here we describe the identification, purification and characterisation of glycosylated yellow laccase proteins from the basidiomycete fungus Stropharia aeruginosa. Biochemical characterisation of two yellow laccases, Yel1p and Yel3p, show that they are both secreted, monomeric, N-glycosylated proteins of molecular weight around 55kDa with substrate specificities typical of laccases, but lacking the absorption band at 612nm typical of the blue laccase proteins. Low coverage, high throughput 454 transcriptome sequencing in combination with inverse-PCR was used to identify cDNA sequences. One of the cDNA sequences has been assigned to the Yel1p protein on the basis of identity between the translated protein sequence and the peptide data from the purified protein, and the full length gene sequence has been obtained. Biochemical properties, substrate specificities and protein sequence data have been used to discuss the unusual spectroscopic properties of S. aeruginosa proteins in the context of recent theories about the differences between yellow and blue laccases. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  12. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Elortza, Felix

    2004-01-01

    remains linked to the asparagine residue. The removal of the major part of the glycan simplifies the MS/MS fragment ion spectra of glycopeptides, while the remaining GlcNAc residue enables unambiguous assignment of the glycosylation site together with the amino acid sequence. We first tested our approach...

  13. Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells.

    Science.gov (United States)

    Böhm, Ernst; Seyfried, Birgit K; Dockal, Michael; Graninger, Michael; Hasslacher, Meinhard; Neurath, Marianne; Konetschny, Christian; Matthiessen, Peter; Mitterer, Artur; Scheiflinger, Friedrich

    2015-09-18

    BACKGROUND & Recombinant factor VII (rFVII), the precursor molecule for recombinant activated FVII (rFVIIa), is, due to its need for complex post translational modifications, produced in mammalian cells. To evaluate the suitability of a human cell line in order to produce rFVII with post-translational modifications as close as possible to pdFVII, we compared the biochemical properties of rFVII synthesized in human embryonic kidney-derived (HEK)293 cells (HEK293rFVII) with those of rFVII expressed in Chinese hamster ovary (CHO, CHOrFVII) and baby hamster kidney (BHK, BHKrFVII) cells, and also with those of plasma derived FVII (pdFVII), using various analytical methods. rFVII was purified from selected production clones derived from BHK, CHO, and HEK293 cells after stable transfection, and rFVII isolates were analyzed for protein activity, impurities and post-translational modifications. RESULTS & The analytical results showed no apparent gross differences between the various FVII proteins, except in their N-linked glycosylation pattern. Most N-glycans found on rFVII produced in HEK293 cells were not detected on rFVII from CHO and BHK cells, or, somewhat unexpectedly, on pdFVII; all other protein features were similar. HEK293rFVII glycans were mainly characterized by a higher structural variety and a lower degree of terminal sialylation, and a high amount of terminal N-acetyl galactosamines (GalNAc). All HEK293rFVII oligosaccharides contained one or more fucoses (Fuc), as well as hybrid and high mannose (Man) structures. From all rFVII isolates investigated, CHOrFVII contained the highest degree of sialylation and no terminal GalNAc, and CHO cells were therefore assumed to be the best option for the production of rFVII.

  14. Chromatographic Monoliths for High-Throughput Immunoaffinity Isolation of Transferrin from Human Plasma

    Directory of Open Access Journals (Sweden)

    Irena Trbojević-Akmačić

    2016-06-01

    Full Text Available Changes in protein glycosylation are related to different diseases and have a potential as diagnostic and prognostic disease biomarkers. Transferrin (Tf glycosylation changes are common marker for congenital disorders of glycosylation. However, biological interindividual variability of Tf N-glycosylation and genes involved in glycosylation regulation are not known. Therefore, high-throughput Tf isolation method and large scale glycosylation studies are needed in order to address these questions. Due to their unique chromatographic properties, the use of chromatographic monoliths enables very fast analysis cycle, thus significantly increasing sample preparation throughput. Here, we are describing characterization of novel immunoaffinity-based monolithic columns in a 96-well plate format for specific high-throughput purification of human Tf from blood plasma. We optimized the isolation and glycan preparation procedure for subsequent ultra performance liquid chromatography (UPLC analysis of Tf N-glycosylation and managed to increase the sensitivity for approximately three times compared to initial experimental conditions, with very good reproducibility. This work is licensed under a Creative Commons Attribution 4.0 International License.

  15. [Proteins modified in the nonenzymatically glycosylation reaction (AGE-proteins)--new markers for diabetes?].

    Science.gov (United States)

    Zdrojewicz, Z; Januszewski, A; Kwiatkowska, D

    1994-01-01

    Paper present a recent review on the formation and clinical significance of advanced glycosylation end products, produced in nonenzymatically glycosylation, called Maillard reaction. The special attention was paid to AGEs role in diabetic and aging processes. Instant of occurring of AGEs in circulation or increase of AGE receptor concentration are many years faster than clinical pathology of vessels, nervous or kidneys connect with diabetes or aging. May be in the future it will be possible to decrease the consequence of Maillard reaction by using pharmacology drugs.

  16. Glycosylation intermediates studied using low temperature 1H- and 19F-DOSY NMR

    DEFF Research Database (Denmark)

    Qiao, Yan; Ge, Wenzhi; Jia, Lingyu

    2016-01-01

    Low temperature 1H- and 19F-DOSY have been used for analyzing reactive intermediates in glycosylation reactions, where a glycosyl trichloroacetimidate donor has been activated using different catalysts. The DOSY protocols have been optimized for low temperature experiments and provided new insight...

  17. Glycosyl azide-a novel substrate for enzymatic transgycosylations

    Czech Academy of Sciences Publication Activity Database

    Fialová, Pavla; Carmona, A. T.; Robina, I.; Ettrich, R.; Sedmera, Petr; Přikrylová, Věra; Hušáková, Lucie; Křen, Vladimír

    2005-01-01

    Roč. 46, - (2005), s. 8715-8718 ISSN 0040-4039 R&D Projects: GA ČR GA203/05/0172; GA MŠk OC D25.002 Grant - others:GA KONTAKT 1862/04 Institutional research plan: CEZ:AV0Z50200510 Keywords : enzyme catalysis * glycosyl azide * molecular modelling Subject RIV: EE - Microbiology, Virology Impact factor: 2.477, year: 2005

  18. N-glycosylation-negative catalase: a useful tool for exploring the role of hydrogen peroxide in the endoplasmic reticulum.

    Science.gov (United States)

    Lortz, S; Lenzen, S; Mehmeti, I

    2015-03-01

    Disulfide bond formation during protein folding of nascent proteins is associated with the generation of H2O2 in the endoplasmic reticulum (ER). Approaches to quantifying H2O2 directly within the ER failed because of the oxidative environment in the ER lumen, and ER-specific catalase expression to detoxify high H2O2 concentrations resulted in an inactive protein owing to N-glycosylation. Therefore, the N-glycosylation motifs at asparagine-244 and -439 of the human catalase protein were deleted by site-directed mutagenesis. The ER-targeted expression of these variants revealed that the deletion of the N-glycosylation motif only at asparagine-244 (N244) was associated with the maintenance of full enzymatic activity in the ER. Expression of catalase N244 in the ER (ER-Catalase N244) was ER-specific and protected the cells significantly against exogenously added H2O2. With the expression of ER-Catalase N244, a highly effective H2O2 inactivation within the ER was achieved for the first time. Catalase has a high H2O2-inactivation capacity without the need of reducing cofactors, which might interfere with the ER redox homeostasis, and is not involved in protein folding. With these characteristics ER-Catalase N244 is an ideal tool to explore the impact of ER-generated H2O2 on the generation of disulfide bonds or to study the induction of ER-stress pathways through protein folding overload and accumulation of H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A peptide mimic of an antigenic loop of alpha-human chorionic gonadotropin hormone: solution structure and interaction with a llama V-HH domain

    NARCIS (Netherlands)

    Ferrat, G.; Renisio, J.G.; Morelli, X.; Slootstra, J.W.; Meloen, R.; Cambillau, C.; Darbon, H.

    2002-01-01

    The X-ray structure of a ternary complex between human chorionic gonadotropin hormone (hCG) and two Fvs recognizing its alpha and beta subunits has been recently determined. The Fvs recognize the elongated hCG molecule by its two ends, one being the Leu-12-Cys-29 loop of the alpha subunit. We have

  20. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies.

    Science.gov (United States)

    Hacker, Benedikt; Schultheiß, Christoph; Döring, Michael; Kurzik-Dumke, Ursula

    2018-06-01

    This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence for its in vivo interaction with the functionally linked proteins OSBP, OSBPL9 and LRP1, the SYPL1 protein and the transcription factor CREB3. Regarding the latter, we show that the 55 kDa N-glycosylated hNOT-1/ALG3-1 molecule binds the N-glycosylated CREB3 precursor but does not interact with CREB3's proteolytic products specific to the endoplasmic reticulum and to the nucleus. The interaction between the two partners is a prerequisite for the proteolytic activation of CREB3. In case of the further binding partners, our data suggest that hNOT-1/ALG3-1 interacts with both OSBPs and with their direct targets LRP1 and VAMP/VAP-A. Moreover, our results show that various partners of hNOT-1/ALG3-1 interact with its diverse post translationally processed products destined to distinct cellular compartments. Generally, our data suggest the involvement of hNOT-1/ALG3-1 in various molecular contexts determining essential processes associated with distinct cellular machineries and related to various pathologies, such as cancer, viral infections, neuronal and immunological disorders and CDG.

  1. Lack of co-ordinate expression of the alpha1(I) and alpha1(III) procollagen genes in fibroblast clonal cultures.

    Science.gov (United States)

    Yamaguchi, Y; Crane, S; Zhou, L; Ochoa, S M; Falanga, V

    2000-12-01

    Several extracellular matrix genes, most notably alpha1(I) and alpha1(III) procollagen, are reported to be co-ordinately expressed in cultures of dermal fibroblasts. However, it remains unclear whether the expression of these genes is truly co-ordinate or whether it may be the result of averaging the phenotypic expression of different fibroblast subpopulations present within each culture. Objectives To determine by Northern analysis the correlation between alpha1(I) and alpha1(III) procollagen mRNA levels in clonal populations of human dermal fibroblasts. As previously described, clonal cultures were derived from parent strains of human dermal fibroblasts by a microscopically controlled dilution technique and by stimulation of single cells with low oxygen tension in the early phases of clonal growth. In agreement with previous reports, we found that baseline steady-state levels of alpha1(I) procollagen mRNA were co-ordinately regulated with the alpha1(III) procollagen mRNA in 26 parent strains (r = 0. 9003; P ordinate regulation observed in non-clonal cultures, suggesting that these two genes operate under different sets of regulatory controls. This clonal heterogeneity may provide additional flexibility to the process of tissue repair and fibroblast clonal expansion.

  2. Tumor necrosis factor alpha promotes the expression of immunosuppressive proteins and enhances the cell growth in a human bone marrow-derived stem cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, Johanna A., E-mail: johanna.miettinen@oulu.fi [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Pietilae, Mika [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Salonen, Riikka J. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Ohlmeier, Steffen [Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Ylitalo, Kari; Huikuri, Heikki V. [Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland); Lehenkari, Petri [Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, FIN-90014 Oulu (Finland)

    2011-04-01

    Mesenchymal stem cells (MSCs) are widely used in experimental treatments for various conditions that involve normal tissue regeneration via inflammatory repair. It is known that MSCs can secrete multiple soluble factors and suppress inflammation. Even though the effect of MSCs on inflammation has been extensively studied, the effect of inflammation on MSCs is poorly understood. One of the major cytokines released at the site of inflammation is tumor necrosis factor alpha (TNF-{alpha}) which is known to induce MSC invasion and proliferation. Therefore, we wanted to test the effects of TNF-{alpha} exposure on MSCs derived from human bone marrow. We found, as expected, that cell proliferation was significantly enhanced during TNF-{alpha} exposure. However, according to the cell surface marker analysis, the intensity of several antigens in the minimum criteria panel for MSCs proposed by International Society of Cellular Therapy (ISCT) was decreased dramatically, and in certain cases, the criteria for MSCs were not fulfilled. In addition, TNF-{alpha} exposure resulted in a significant but transient increase in human leukocyte antigen and CD54 expression. Additional proteomic analysis by two-dimensional difference gel electrophoresis and mass spectrometry revealed three proteins whose expression levels decreased and 8 proteins whose expression levels increased significantly during TNF-{alpha} exposure. The majority of these proteins could be linked to immunosuppressive and signalling pathways. These results strongly support reactive and immunosuppressive activation of MSCs during TNF-{alpha} exposure, which might influence MSC differentiation stage and capacity.

  3. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-{alpha} with BCAR1 and Traf6

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Lisa J., E-mail: robinsonlj@msx.upmc.edu [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Blair, Harry C. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Veteran' s Affairs Medical Center, Pittsburgh, PA 15243 (United States)

    2009-04-15

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at {approx} 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-{beta}-estradiol. Estrogen receptor-{alpha} (ER{alpha}) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ER{alpha}. However, ER{alpha} was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ER{alpha} in the presence of estrogen, was abundant. Immunoprecipitation showed rapid ({approx} 5 min) estrogen-dependent formation of ER{alpha}-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-{kappa}B activity, precipitated with this complex. Reduction of NF-{kappa}B nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of I{kappa}B in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ER{alpha}.

  4. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    Science.gov (United States)

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Radial-velocity variations in Alpha Ori, Alpha Sco, and Alpha Her

    International Nuclear Information System (INIS)

    Smith, M.A.; Patten, B.M.; Goldberg, L.

    1989-01-01

    Radial-velocity observations of Alpha Ori, Alpha Sco A, and Alpha Her A are used to study radial-velocity periodicities in M supergiants. The data refer to several metallic lines in the H-alpha region and to H-alpha itself. It is shown that Alpha Ori and Alpha Sco A have cycle lengths of about 1 yr and semiamplitudes of 2 km/s. It is suggested that many semiregular red supergiant varibles such as Alpha Ori may be heading toward chaos. All three stars show short-term stochastic flucutations with an amplitude of 1-2 km/s. It is found that the long-term variability of H-alpha velocities may be a consequence of intermittent failed ejections. 58 refs

  6. Carbohydrate as covalent crosslink in human inter-alpha-trypsin inhibitor

    DEFF Research Database (Denmark)

    Jessen, T E; Faarvang, K L; Ploug, M

    1988-01-01

    The primary structure of inter-alpha-trypsin inhibitor is partially elucidated, but controversy about the construction of the polypeptide backbone still exists. We present evidence suggesting that inter-alpha-trypsin inhibitor represents a novel plasma protein structure with two separate polypept...... polypeptide chains covalently crosslinked only by carbohydrate (chondroitin sulphate)....

  7. A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering

    DEFF Research Database (Denmark)

    Spahn, Philipp N.; Hansen, Anders Holmgaard; Hansen, Henning Gram

    2016-01-01

    Glycosylation is a critical quality attribute of most recombinant biotherapeutics. Consequently, drug development requires careful control of glycoforms to meet bioactivity and biosafety requirements. However, glycoengineering can be extraordinarily difficult given the complex reaction networks...... present a novel low-parameter approach to describe glycosylation using flux-balance and Markov chain modeling. The model recapitulates the biological complexity of glycosylation, but does not require user-provided kinetic information. We use this method to predict and experimentally validate glycoprofiles...

  8. Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk.

    Science.gov (United States)

    Sheng, Long; He, Zhenjiao; Liu, Yaping; Ma, Meihu; Cai, Zhaoxia

    2018-03-01

    Immunoglobulin Y (IgY) is a new therapeutic antibody that exists in hen egg yolk. It is a glycoprotein, not much is known about its N-glycan structures, site occupancy and site-specific N-glycosylation. In this study, purified protein from hen egg yolk was identified as IgY based on SDS-PAGE and MALDI-TOF/TOF MS. N-glycan was released from IgY using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase treatment, and the molecular weight of IgY was calculated using the difference between the molecular weight of IgY and deglycosylated IgY. Two potential N-Glycosylation sites (ASN 308 and ASN 409 ) were detected on IgY by nanoLC-ESI MS. Sugar chains were separated using normal phase liquid chromatography after fluorescence labeling, and 17 N-glycan structures were confirmed using ESI-MS. The sugar chain pattern contained high-mannose oligosaccharide, hybrid oligosaccharide and complex oligosaccharide. These results could lead to other important information regarding IgY glycosylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A study of membrane protein defects and alpha hemoglobin chains of red blood cells in human beta thalassemia

    International Nuclear Information System (INIS)

    Rouyer-Fessard, P.; Garel, M.C.; Domenget, C.; Guetarni, D.; Bachir, D.; Colonna, P.; Beuzard, Y.

    1989-01-01

    The soluble pool of alpha hemoglobin chains present in blood or bone marrow cells was measured with a new affinity method using a specific probe, beta A hemoglobin chain labeled with [ 3 H]N-ethylmaleimide. This pool of soluble alpha chains was 0.067 ± 0.017% of hemoglobin in blood of normal adult, 0.11 ± 0.03% in heterozygous beta thalassemia and ranged from 0.26 to 1.30% in homozygous beta thalassemia intermedia. This elevated pool of soluble alpha chains observed in human beta thalassemia intermedia decreased 33-fold from a value of 10% of total hemoglobin in bone marrow cells to 0.3% in the most dense red blood cells. The amount of insoluble alpha chains was measured by using the polyacrylamide gel electrophoresis in urea and Triton X-100. In beta thalassemia intermedia the amount of insoluble alpha chains was correlated with the decreased spectrin content of red cell membrane and was associated with a decrease in ankyrin and with other abnormalities of the electrophoretic pattern of membrane proteins. The loss and topology of the reactive thiol groups of membrane proteins was determined by using [ 3 H]N-ethylmaleimide added to membrane ghosts prior to urea and Triton X-100 electrophoresis. Spectrin and ankyrin were the major proteins with the most important decrease of thiol groups

  10. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Science.gov (United States)

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  11. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts.

    Science.gov (United States)

    Rutault, K; Hazzalin, C A; Mahadevan, L C

    2001-03-02

    Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.

  12. The C-terminal N-glycosylation sites of the human α1,3/4-fucosyltransferase III, -V and -VI (hFucTIII, -V and -VI) are necessary for the expression of full enzyme activity

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Jensen, Uffe Birk; Bross, Peter Gerd

    2000-01-01

    FucTIII enzyme activity to approximately 40% of the activity of the native enzyme. To further analyze the role of the conserved N-glycosylation sites in hFucTIII, -V, and -VI, we made a series of mutant genomic DNAs in which the asparagine residues in the potential C-terminal N-glycosylation sites were replaced...

  13. Analyses of human exposures to alpha-emitting radionuclides from nuclear fuel cycles

    International Nuclear Information System (INIS)

    Cuddihy, R.G.; McClellan, R.O.; Griffith, W.C.; Hoover, M.D.

    1977-01-01

    Human populations may potentially be exposed to alpha-emitting radionuclides released to the environment from a variety of activities associated with nuclear fuel cycles. Generally, the most important exposure pathway is by way of inhalation. This can occur soon after release of these substances or after they have been deposited on ground surfaces and resuspended with soil particles. Estimating the potential magnitude of these exposures is usually done through the use of mathematical models accounting for the dispersion of the released material through the environment and its uptake by people living near the nuclear facilities. Studies described in this paper suggest that these exposures can probably be estimated within a factor of 10 based upon our previous experience with measured human organ levels of other trace metals taken up from the environment. It should also be noted that variability among individuals within the population may result in a few percent accumulating more than 10 times the geometric mean of the internal organ radionuclide burdens

  14. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    Science.gov (United States)

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  15. Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells

    DEFF Research Database (Denmark)

    Bantleon, Frank; Wolf, Sara; Seismann, Henning

    2016-01-01

    the recombinant production of the highly complex IgE isotype in insect cells. Recombinant IgE (rIgE) was efficiently assembled and secreted into the supernatant in yields of >30 mg/L. Purification from serum free medium using different downstream processing methods provided large amounts of rIgE. This exhibited...... a highly specific interaction with its antigen, therapeutic anti-IgE and its high affinity receptor, the FcεRI. Lectins and glyco-proteomic analyses proved the presence of prototypic insect type N-glycans on the epsilon heavy chain. Mediator release assays demonstrated a biological activity of the r......IgE comparable to IgE derived from mammalian cells. In summary the expression in insect cells provides rIgE with variant glycosylation pattern, but retained characteristics and biological activity. Therefore our data contribute to the understanding of functional and structural aspects and potential use of the Ig...

  16. Prepubertal growth in congenital disorder of glycosylation type Ia (CDG-Ia)

    OpenAIRE

    Kjaergaard, S; Muller, J; Skovby, F

    2002-01-01

    Aims: To delineate the pattern of growth in prepubertal children with congenital disorder of glycosylation type Ia (CDG-Ia) in order to identify critical period(s) and possible cause(s) of growth failure.

  17. Predictive glycoengineering of biosimilars using a Markov chain glycosylation model

    DEFF Research Database (Denmark)

    Spahn, Philipp N.; Hansen, Anders Holmgaard; Kol, Stefan

    2017-01-01

    Biosimilar drugs must closely resemble the pharmacological attributes of innovator products to ensure safetyand efficacy to obtain regulatory approval. Glycosylation is one critical quality attribute that must be matched, but it is inherently difficult to control due to the complexity of its...

  18. An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles

    NARCIS (Netherlands)

    Wilson, A. G.; de Vries, N. [=Niek; Pociot, F.; di Giovine, F. S.; van der Putte, L. B.; Duff, G. W.

    1993-01-01

    The tumor necrosis factor (TNF) alpha gene lies within the class III region of the major histocompatibility complex (MHC), telomeric to the class II and centromeric to the class I region. We have recently described the first polymorphism within the human TNF-alpha locus. This is biallelic and lies

  19. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: Implications for biological function

    DEFF Research Database (Denmark)

    Ahmad, I.; Hoessli, D.C.; Gupta, Ramneek

    2007-01-01

    Post-translational modifications provide the proteins with the possibility to perform functions in addition to those determined by their primary sequence. However, analysis of multifunctional protein structures in the environment of cells and body fluids is made especially difficult by the presence...... both modifications are likely to occur can also be predicted (YinYang sites), to suggest further functional versatility. Structural modifications of hydroxyl groups of P-, E-, and L-selectins have been predicted and possible functions resulting from such modifications are proposed. Functional changes...... of the three selectins are based on the assumption that transitory and reversible protein modifications by phosphate and O-GlcNAc cause specific conformational changes and generate binding sites for other proteins. The computer-assisted prediction of glycosylation and phosphorylation sites in selectins should...

  20. Evidence for glycosylation on a DNA-binding protein of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Almeida Igor C

    2007-04-01

    Full Text Available Abstract Background All organisms living under aerobic atmosphere have powerful mechanisms that confer their macromolecules protection against oxygen reactive species. Microorganisms have developed biomolecule-protecting systems in response to starvation and/or oxidative stress, such as DNA biocrystallization with Dps (DNA-binding protein from starved cells. Dps is a protein that is produced in large amounts when the bacterial cell faces harm, which results in DNA protection. In this work, we evaluated the glycosylation in the Dps extracted from Salmonella enterica serovar Typhimurium. This Dps was purified from the crude extract as an 18-kDa protein, by means of affinity chromatography on an immobilized jacalin column. Results The N-terminal sequencing of the jacalin-bound protein revealed 100% identity with the Dps of S. enterica serovar Typhimurium. Methyl-alpha-galactopyranoside inhibited the binding of Dps to jacalin in an enzyme-linked lectin assay, suggesting that the carbohydrate recognition domain (CRD of jacalin is involved in the interaction with Dps. Furthermore, monosaccharide compositional analysis showed that Dps contained mannose, glucose, and an unknown sugar residue. Finally, jacalin-binding Dps was detected in larger amounts during the bacterial earlier growth periods, whereas high detection of total Dps was verified throughout the bacterial growth period. Conclusion Taken together, these results indicate that Dps undergoes post-translational modifications in the pre- and early stationary phases of bacterial growth. There is also evidence that a small mannose-containing oligosaccharide is linked to this bacterial protein.